WorldWideScience

Sample records for biological shielding

  1. Shielding in biology and biophysics: Methodology, dosimetry, interpretation

    Science.gov (United States)

    Vladimirsky, B. M.; Temuryants, N. A.

    2016-12-01

    An interdisciplinary review of the publications on the shielding of organisms by different materials is presented. The authors show that some discrepancies between the results of different researchers might be attributed to methodological reasons, including purely biological (neglect of rhythms) and technical (specific features of the design or material of the screen) ones. In some cases, an important factor is the instability of control indices due to the variations in space weather. According to the modern concept of biological exposure to microdoses, any isolation of a biological object by any material necessarily leads to several simultaneous changes in environmental parameters, and this undermines the principle of "all other conditions being equal" in the classical differential scheme of an experiment. The shielding effects of water solution are universally recognized and their influence is to be observed for all organisms. Data on the exposure of living organisms to weak combined magnetic fields and on the influence of space weather enabled the development of theoretical models generally explaining the effect of shielding for bioorganisms. Ferromagnetic shielding results in changes of both the static magnetic field and the field of radio waves within the area protected by the screen. When screens are nonmagnetic, changes are due to the isolation from the radio waves. In both cases, some contribution to the fluctuations of measured parameters can be made by variations in the level of ionizing radiation.

  2. Bragg Curve, Biological Bragg Curve and Biological Issues in Space Radiation Protection with Shielding

    Science.gov (United States)

    Honglu, Wu; Cucinotta, F.A.; Durante, M.; Lin, Z.; Rusek, A.

    2006-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. To achieve a Bragg curve distribution, we exposed cells to energetic heavy ions with the beam geometry parallel to a monolayer of fibroblasts. Qualitative analyses of gamma-H2AX fluorescence, a known marker of DSBs, indicated increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak. A quantitative biological response curve generated for micronuclei (MN) induction across the Bragg curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono-to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results, along with other biological concerns, show that space radiation protection with shielding can be a complicated issue.

  3. Decommissioning of the ASTRA research reactor: Dismantling of the biological shield

    Directory of Open Access Journals (Sweden)

    Meyer Franz

    2006-01-01

    Full Text Available The paper describes the dismantling of the inactive and activated areas of the biological shield of the ASTRA research reactor at the Austrian Research Center in Seibersdorf. The calculation of the parameters determining the activated areas at the shield (reference nuclide, nuclide vector in the barite concrete and horizontal and vertical reduction behaviors of activity concentration and the activation profiles within the biological shield for unrestricted release, release restricted to permanent deposit and radioactive waste are presented. Considerations of located activation anomalies in the shield, e.g. in the vicinities of the beam-tubes, were made according to the reactor's operational history. Finally, an overview of the materials removed from the biological shield is given.

  4. Neutron streaming along ducts and labyrinths at the JET biological shielding: Effect of concrete composition

    Science.gov (United States)

    Vasilopoulou, T.; Stamatelatos, I. E.; Batistoni, P.; Conroy, S.; Obryk, B.; Popovichev, S.; Syme, D. B.

    2015-11-01

    Experiments and Monte Carlo simulations were performed at the Joint European Torus (JET) in order to validate the computational tools and methods applied for neutron streaming calculations through penetrations in the JET Hall biological shielding. In the present work the sensitivity of the simulations on the hydrogen and boron content in concrete shielding was investigated. MCNP code was used to simulate neutron streaming along the JET Hall personnel entrance labyrinth for deuterium-deuterium and deuterium-tritium plasma sources for different concrete wall compositions. Neutron fluence and ambient dose equivalent along the labyrinth were calculated. Simulation results for the "as built" JET concrete composition were compared against measurements performed using thermoluminescence detectors. This study contributes to the optimization of the radiation shielding of JET and, furthermore, provides information from JET experience that may assist in optimizing and validating the radiation shielding design methodology used in its successor fusion devices ITER and DEMO.

  5. Biological shielding assessment and dose rate calculation for a neutron inspection portal

    Science.gov (United States)

    Donzella, A.; Bonomi, G.; Giroletti, E.; Zenoni, A.

    2012-04-01

    With reference to the prototype of neutron inspection portal built and successfully tested in the Rijeka seaport (Croatia) within the EURITRACK (EURopean Illicit Trafficking Countermeasures Kit) project, an assessment of the biological shielding in different set-up configurations of a future portal has been calculated with MCNP Monte Carlo code in the frame of the Eritr@C (European Riposte against Illicit TR@ffiCking) project. In the configurations analyzed the compliance with the dose limits for workers and the population stated by the European legislation is provided by appropriate shielding of the neutron sources and by the delimitation of a controlled area.

  6. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Stefan [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Djuricic, Mile [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Nuclear Engineering Seibersdorf, 2444 Seibersdorf (Austria); Villa, Mario; Boeck, Helmuth [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Steinhauser, Georg, E-mail: georg.steinhauser@ati.ac.at [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

    2011-11-15

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10{sup 9} cm{sup -2} s{sup -1} at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. - Highlights: > Neutron activation is an important process for the waste management of nuclear facilities. > Biological shield of the TRIGA reactor Vienna has been topic of investigation. > Flux values allow a categorization of the concrete concerning radiation protection legislation. > Reactor installations are of great importance as neutron sources into the biological shield. > Every installation shows distinguishable flux profiles.

  7. Photon spectrum behind biological shielding of the LVR-15 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klupak, V.; Viererbl, L.; Lahodova, Z.; Marek, M.; Vins, M. [Research Centre Rez Ltd., Husinec-Rez 130 (Czech Republic)

    2011-07-01

    The LVR-15 reactor is a light water research reactor situated at the Research Centre Rez, near Prague. It operates as a multipurpose facility with a maximum thermal power of 10 MW. The reactor core usually contains from 28 to 32 fuel assemblies with a total mass of {sup 235}U of about 5 kg. Emitted radiation from the fuel caused by fission is shielded by moderating water, a steel reactor vessel, and heavy concrete. This paper deals with measurement and analysis of the gamma spectrum near the outer surface of the concrete wall, behind biological shielding, mainly in the 3- to 10-MeV energy range. A portable HPGe detector with a portable multichannel analyzer was used to measure gamma spectra. The origin of energy lines in gamma detector spectra was identified. (authors)

  8. Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Yann [ORNL; Huang, Hai [Idaho National Laboratory (INL)

    2016-01-01

    Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.

  9. Evaluation and Verification of a Biological Shield in a SHARS Unit

    Energy Technology Data Exchange (ETDEWEB)

    Dhlomo, S.V.; Swart, H.S. [Compliance Management Department, Nuclear Liabilities Management, South African Nuclear Energy Corporation, P.O. Box 582, Pretoria 0001 (South Africa)

    2008-07-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Agency (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused SHARS in obsolete irradiation devices such as teletherapy heads and dry irradiators. This unit, designed and manufactured by the South African Nuclear Energy Corporation (Necsa), can be assembled, disassembled and packed inside two ISO containers and transported to the desired destination with relative ease. The unit was also licensed by the South African Regulator, the Department of Health (DoH), Directorate Radiation Control. This facility is used for the recovery and conditioning of orphaned/ abandoned or spent high activity radioactive sources from teletherapy units, gamma irradiators, and brachytherapy units. The hot cell was designed for a 3,7 E+13 Bq (1000 Ci) activity although it was demonstrated that it can handle activities of more than 7,4 E+13 Bq (2000 Ci) with ease. The biological shield of the SHARS facility consists of river sand sandwiched between metal plates, and a viewing window filled with a 50% zinc bromide solution. The shielding effectiveness of the river sand is evaluated experimentally by determining its density. The experimentally measured dose rates are compared to the dose rates estimated by computational codes. (authors)

  10. Radiological characterization of the concrete biological shield of the APSARA reactor

    Directory of Open Access Journals (Sweden)

    Srinivasan Priya

    2013-01-01

    Full Text Available The first Indian research reactor, APSARA, was utilized for various R&D programmes from 1956 until its shutdown in 2009. The biological shield of the reactor developed residual activity due to neutron irradiation during the operation of the reactor. Dose rate mapping and in-situ gamma spectrometry of the concrete structures of the reactor pool were carried out. Representative concrete samples collected from various locations were subjected to high-resolution gamma spectrometry analysis. 60Co and 152Eu were found to be the dominant gamma-emitting radionuclides in most of the locations. 133Ba was also found in some of the concrete structures. The separation of 3H from concrete was achieved using an acid digestion method and beta activity measured using liquid scintillation counting. The depth profile of radionuclide specific activity in the concrete wall of the shielding corner was also studied. Specific activities of the radionuclides were found to decrease exponentially with depth inside the concrete walls. This study would be helpful in bulk waste management during the decommissioning of the reactor.

  11. Space life sciences: ground-based iron-ion biology and physics, including shielding.

    Science.gov (United States)

    2005-01-01

    This session of the 35th Scientific Assembly of COSPAR focuses on recent advances in ground-based studies of high-energy (mainly 1 GeV/nucleon) iron ions. The theme is interdisciplinary in nature and encompasses both physics and biology reports. Manned space missions, including those of the International Space Station and the planned Mars mission, will require the extended presence of crew members in space. As such, a better understanding in shielding design--in radiation detection as well as radio-protection based on simulating studies--is much needed. On the other hand, a better understanding of the basic mechanisms that modulate radiation sensitivity; in determining DNA double strand breaks, chromosomal aberrations, and the induction of apoptosis, will provide important information for an interventional approach.

  12. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [ORNL; Rosseel, Thomas M [ORNL; Field, Kevin G [ORNL; Pape, Yann Le [Oak Ridge National Laboratory (ORNL)

    2016-01-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete with a particular focus on radiation-induced effects. Based on the projected neutron fluence (E > 0.1 MeV) values in the concrete biological shields of the US PWR fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to assure reliable risk assessment for NPPs extended operation.

  13. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Williams, J. R.; Dicello, J. F.

    2000-01-01

    We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/micrometers. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used.

  14. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    Science.gov (United States)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann

    2016-02-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC0500OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  15. Monte Carlo calculations of the energy deposited in biological samples and shielding materials

    Science.gov (United States)

    Akar Tarim, U.; Gurler, O.; Ozmutlu, E. N.; Yalcin, S.

    2014-03-01

    The energy deposited by gamma radiation from the Cs-137 isotope into body tissues (bone and muscle), tissue-like medium (water), and radiation shielding materials (concrete, lead, and water), which is of interest for radiation dosimetry, was obtained using a simple Monte Carlo algorithm. The algorithm also provides a realistic picture of the distribution of backscattered photons from the target and the distribution of photons scattered forward after several scatterings in the scatterer, which is useful in studying radiation shielding. The presented method in this work constitutes an attempt to evaluate the amount of energy absorbed by body tissues and shielding materials.

  16. Evaluation of the Biological Shields of the Secondary Standard Dosimetry Laboratory of Ghana Using MCNP5

    Directory of Open Access Journals (Sweden)

    P. Deatanyah

    2012-03-01

    Full Text Available The primary objective with radiation sources and facilities is the protection of both radiation workers and the general public. The biological shields of the Secondary Standard Dosimetry Laboratory of the Radiation Protection Institute (RPI Ghana had been evaluated for a collimated isotropic cesium-137 source for calibration purpose using MCNP5 code. The dose rate at supervised areas ranged from 0.57 to 8.35 :Sv/h and 0.26 to 10.22 :Sv/h at control areas when the source was panoramic. When the source was collimated, the dose rate ranged from 0.05 to 0.30 :Sv/h at supervised areas and 0.23 to 8.88 :Sv/h at control areas for 22.2 GBq of the cesium-137 source. The scatter contribution from the surfaces of the walls and roofs were also accounted for. The scatter radiation in the room decreased to 400 :Sv/h when the source was first collimated and to 3.5 :Sv/h when the source was further collimated. These results agreed quite well with experimental measurement. To effectively protect the staff, a narrow beam of 1.2 cm diameter which was defined at 1.0 m by the total surface of the ISO slab phantom was recommended to reduce the dose rate to less than 1.5 :Sv/h outside the calibration bunker even when the current activity is doubled. It was concluded that the 4.7 cm diameter of the existing narrow beam should be decreased to 1.2 cm by further collimation of the beam.

  17. Total and secondary gamma doses in ilmenite-limonite concrete biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Makarious, A.S. (AEA, Cairo (Egypt). Reactor and Neutron Physics Dept.); El-Kolaly, M.A. (AEA, Cairo (Egypt). Radiation Protection Dept.); Bashter, I.I. (Zagazig Univ. (Egypt). Physics Dept.); Kansouh, W.A. (AEA, Cairo (Egypt). Nuclear Research Centre)

    1991-10-01

    The attenuation and distribution of total gamma ray doses in a bulk shield of ilmenite-limonite concrete of density 2.9 g cm{sup -3} have been measured. Direct, cadmium filtered and B{sub 4}C filtered collimated reactor beam emitted from one of the horizontal channels of the ET-RR-1 reactor have been utilized in the present work. The distribution of the secondary gamma ray doses generated from the interaction of reactor neutrons of definite energy ranges has also been obtained for ilmenite-limonite concrete. The gamma doses were measured using {sup 7}LiF Teflon disc TL dosimeters. A semiempirical formula was derived to calculate total gamma dose distributions for bare, cadmium filtered and B{sub 4}C filtered reactor beams at different thickness along the beam axis in ordinary concrete, with density 2.3 g cm{sup -3}, using the corresponding measured value in ilmenite-limonite concrete. Good agreement has been achieved between the values of the total gamma doses and those calculated using the derived empirical formula. Isodose curves were constructed for both the total gamma-ray doses and the secondary gamma-ray doses shields together with the corresponding values for ordinary concrete shields. The thickness of ilmenite-limonite concrete required to attenuate the total gamma dose intensity to a certain factor is approximately 94% of the thickness when the shield is made of ordinary concrete. (orig./HP).

  18. Radiation distribution through ilmenite-limonite concrete and its application as a reactor biological shield

    Energy Technology Data Exchange (ETDEWEB)

    Makarious, A.S.; El-Kolaly, M.A.; Kansouh, W.A.; Bashter, I.I.

    1989-01-01

    A study of the penetration of primary ..gamma.. rays, secondary ..gamma.. rays and slow neutrons through an ilmenite-limonite concrete shield (heat resistant concrete) and through both ordinary and ilmenite concrete shields has been carried out. A shielding assembly with dimensions of 120 x 120 x 120cm/sup 3/ for each concrete type has been used. Direct, cadmium filtered and B/sub 4/C-filtered reactor beams emitted from one of the horizontal channels of the ET-RR-1 reactor were used. The ..gamma..-ray doses were measured using LiF-7 Teflon disc TLD dosimeters and the slow neutron doses were measured using LiF-6 Teflon disc TLD dosimeters. Ratios of the total ..gamma.. doses, secondary ..gamma.. doses and slow neutron doses for an ilmenite-limonite concrete shield, and for both ordinary and ilmenite concrete, have been obtained. The results show that ilmenite concrete is better than both ordinary and ilmenite-limonite concrete for ..gamma.. ray attenuation, especially at deep penetration. Also it was concluded that ilmenite concrete with a density p = 4.6 g/cm/sup 3/ is better than both ordinary and ilmenite-limonite concrete for slow neutron attenuation.

  19. The influence of shielding on the biological effectiveness of accelerated particles for the induction of chromosome damage

    Science.gov (United States)

    George, K.; Cucinotta, F. A.

    Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to 28Si (490 or 600 MeV/n), 48Ti (1000 MeV/n), or 56Fe (600, 1000, or 5000 MeV/n). LET values for these ions ranged from 51 to 184 keV/μm and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. After chromosomes were prematurely condensed using calyculin-A, chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected at G2 and at mitosis in first division post-irradiation. The yield of chromosome aberrations increased linearly with dose, and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose-response curve for total chromosome exchanges with respect to γ-rays, ranged from 9 to 35. The RBE values increased with LET, reaching a maximum for the 600 MeV/n Fe ions with LET of 184 keV/μm. When the LET of the primary beam was below about 100 keV/μm, the addition of shielding material increased the effectiveness per unit dose. When the LET of the primary beam was greater than 100 keV/μm, shielding decreased the effectiveness per unit dose.

  20. The Influence of Shielding on the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damages

    Science.gov (United States)

    George, K.; Cucinotta, F. A.

    2006-01-01

    Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from approximately 50 to 174 keV/micrometers and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected 48-56 hours after irradiation using a chemical-induced premature chromosome condensation (PCC) technique. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 14 to 35. The RBE values increased with LET, reaching a maximum for the 1 GeV/n Fe ions with LET of 150 keV/micrometers, and decreased with further increases in LET. When LET of the primary beam was in the region of increasing RBE (i.e. below approximately 100 keV/micrometers), the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of the primary particle beam was higher than 150 keV/micrometers.

  1. The Influence of Shielding on the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage

    Science.gov (United States)

    Goeorge, Kerry; Cucinotta, Francis A.

    2007-01-01

    Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from 51 to 184 keV/micron and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected at G2 and mitosis in first division post irradiation after chromosomes were prematurely condensed using calyculin-A. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 9 to 35. The RBE values increased with LET, reaching a maximum for the 600 MeV/n Fe ions with LET of 184 keV/micron. When the LET of the primary beam was below approximately 100 keV/micron, the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of primary beams was higher than 100 keV/micron. The yield of aberrations correlated with the dose-average LET of the beam after traversal through the shielding.

  2. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A

    Science.gov (United States)

    Chang, Joshua C.; Miura, Robert M.

    2016-04-01

    In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are usually present at high concentrations throughout bodily fluids—at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this manuscript, we extend mean-field continuum classical nucleation theory of the growth of clusters to encompass surface shielding. We use this formulation to study the regulation of sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear shielding of nascent mineral particles by binding proteins. We develop a mathematical description of this phenomenon using a countable system of hyperbolic partial differential equations. A critical concentration of regulatory protein is identified as a function of the physical parameters that describe the system.

  3. The effect of biological shielding on fast neutron and photon transport in the VVER-1000 mock-up model placed in the LR-0 reactor.

    Science.gov (United States)

    Košťál, Michal; Cvachovec, František; Milčák, Ján; Mravec, Filip

    2013-05-01

    The paper is intended to show the effect of a biological shielding simulator on fast neutron and photon transport in its vicinity. The fast neutron and photon fluxes were measured by means of scintillation spectroscopy using a 45×45 mm(2) and a 10×10 mm(2) cylindrical stilbene detector. The neutron spectrum was measured in the range of 0.6-10 MeV and the photon spectrum in 0.2-9 MeV. The results of the experiment are compared with calculations. The calculations were performed with various nuclear data libraries.

  4. Biological Shielding Design Effectiveness of the Brachytherapy Unit at the Korle Bu Teaching Hospital in Ghana Using Mcnp5 Monte Carlo Code

    Directory of Open Access Journals (Sweden)

    C.C. Arwui

    2011-05-01

    Full Text Available Design objectives for brachytherapy treatment facilities require sufficient shielding to reduce primary and scatter radiation to design limit in order to limit exposure to patients, staff and the general public. The primary aim of this study is to verify whether shielding of the brachytherapy unit at the Korle Bu teaching Hospital in Ghana provides adequate protection in order to assess any radiological health and safety impact and also test the suitability of other available sources. The study evaluates the effectiveness of the biological shielding design of a Cs-137 brachytherapy unit at the Korle-Bu Teaching Hospital in Ghana using MCNP5. The facility was modeled based on the design specifications for LDR Cs-137, MDR Cs-137, HDR Co-60 and HDR Ir-192 treatment modalities. The estimated dose rate ranged from (0.01-0.15 μSv/h and (0.37-3.05 μSv/h for the existing initial and decayed activities of LDR Cs-137 for the public and controlled areas respectively, (0.03-0.57 μSv/h and (1.53-8.06 μSv/h for MDR Cs-137, (7.47-59.46 μSv/h and (144.87-178.74 μSv/h for HDR Co- 60, (0.13-6.95 μSv/h and (19.47-242.98 μSv/h for HDR Ir-192 for the public and controlled areas respectively. The results were verified by dose rates measurement for the current LDR setup at the Brachytherapy unit and agreed quiet well. It was also compared with the reference values of 0.5 μSv/h for public areas and 7.5 μSv/h for controlled areas respectively. It can be concluded that the shielding is adequate for the existing source.

  5. Shielding Effectiveness of Laminated Shields

    Directory of Open Access Journals (Sweden)

    B. P. Rao

    2008-12-01

    Full Text Available Shielding prevents coupling of undesired radiated electromagnetic energy into equipment otherwise susceptible to it. In view of this, some studies on shielding effectiveness of laminated shields with conductors and conductive polymers using plane-wave theory are carried out in this paper. The plane wave shielding effectiveness of new combination of these materials is evaluated as a function of frequency and thickness of material. Conductivity of the polymers, measured in previous investigations by the cavity perturbation technique, is used to compute the overall reflection and transmission coefficients of single and multiple layers of the polymers. With recent advances in synthesizing stable highly conductive polymers these lightweight mechanically strong materials appear to be viable alternatives to metals for EM1 shielding.

  6. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    Science.gov (United States)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  7. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  8. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Directory of Open Access Journals (Sweden)

    Košťál Michal

    2016-01-01

    Full Text Available A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1–10 MeV and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1. Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  9. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Science.gov (United States)

    Košťál, Michal; Milčák, Ján; Cvachovec, František; Jánský, Bohumil; Rypar, Vojtěch; Juříček, Vlastimil; Novák, Evžen; Egorov, Alexander; Zaritskiy, Sergey

    2016-02-01

    A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1-10 MeV) and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1). Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  10. Reliability Methods for Shield Design Process

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.

    2002-01-01

    Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space operations. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. An important component of this technology is the estimation of two most commonly identified uncertainties in radiation shield design, the shielding properties of materials used and the understanding of the biological response of the astronaut to the radiation leaking through the materials into the living space. The largest uncertainty, of course, is in the biological response to especially high charge and energy (HZE) ions of the galactic cosmic rays. These uncertainties are blended with the optimization design procedure to formulate reliability-based methods for shield design processes. The details of the methods will be discussed.

  11. A Magnetic Shielded Incubation System for Investigating Biological Effects of Hypomagnetic Field%亚磁生物学效应研究的磁屏蔽培养系统研制

    Institute of Scientific and Technical Information of China (English)

    莫炜川; 刘缨; 蒋远大; 翟光杰; 赫荣乔

    2013-01-01

    Objective To simulate a hypomagnetic field on the ground for providing a platform to investigate its biological effects.Methods A permalloy magnetic shielded box was placed in a cell incubatorto form the hypomagnetic field.The incubation conditions in the hypomagnetic field and the control magnetic fields were balanced by the temperature-humidity-CO2 control system of the cell incubator and airing fans in the magnetic shielded box.Results The hypomagnetic incubation system provided a 0 ~600 nT hypomagnetic environment and a series of control magnetic fields from 9 μT to 60 μT.The other incubation conditions were controlled at the same level between the hypomagnetic field and the control magnetic fields.Conclusion A standardized hypomagnetic field simulation system is established.It is suitable to conduct extensive biological experiments under the hypomagnetic condition,such as.seeds,tissues,cells and molecules.It would have important benefit value to improve the study level of biological effects and the counteractive strategies for the negative effects of the hypomagnetic field.%目的 在地面模拟空间亚磁环境,为亚磁场的生物学效应及其防护措施的研究提供技术平台.方法 将坡镆合金磁屏蔽箱放入细胞培养箱中,平衡磁屏蔽箱以及细胞培养箱中的培养条件,形成亚磁培养环境.结果 该磁屏蔽培养系统能够提供0~ 600 nT范围的亚磁场,以及9~ 60 μT范围的多梯度对照磁场.结论 成功构建了一套适用于细胞和分子生物学实验的亚磁培养系统,实现了亚磁模拟系统的标准化,对于提高亚磁生物学效应的研究水平有重要的应用价值.

  12. Radiation Shielding Materials

    Science.gov (United States)

    Adams, James H., Jr.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    NASA has relied on the materials to provide radiation shielding for astronauts since the first manned flights. Until very recently existing materials in the structure of manned spacecraft as well as the equipment and consumables onboard have been taken advantage of for radiation shielding. With the advent of the International Space Station and the prospect of extended missions to the Moon or Mars, it has been found that the materials, which were included in the spacecraft for other reasons, do not provide adequate shielding. For the first time materials are being added to manned missions solely to improve the radiation shielding. It is now recognized that dual use materials must be identified/developed. These materials must serve a purpose as part of the spacecraft or its cargo and at the same time be good shielding. This paper will review methods for evaluating the radiation shielding effectiveness of materials and describe the character of materials that have high radiation shielding effectiveness. Some candidate materials will also be discussed.

  13. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  14. iSHIELD - A Line Source Application of SHIELD11

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Rokni, S.H.; /SLAC

    2006-04-27

    iSHIELD11 performs a line-source numerical integration of radiation source terms that are defined by the iSHIELD11 computer code[1] . An example is provided to demonstrate how one can use iSHIELD11 to perform a shielding analysis for a 250 GeV electron linear accelerator.

  15. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  16. Adhesive particle shielding

    Science.gov (United States)

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  17. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    Science.gov (United States)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  18. Radiation Shielding for Manned Deep Space Missions

    Science.gov (United States)

    Adams, James H., Jr.

    2003-01-01

    The arrival of the Expedition 1 Crew at the International Space Station represents the beginning of the continuous presence of man in space. Already we are deploying astronauts and cosmonauts for missions of approx. 6 months onboard the ISS. In the future we can anticipate that more people will be in space and they will be there for longer periods. Even with 6-months deployments to the ISS, the radiation exposure that crew members receive is approaching the exposure limits imposed by the governments of the space- faring nations. In the future we can expect radiation protection to be a dominant consideration for long manned missions. Recognizing this, NASA has expanded their research program on radiation health. This program has three components, bioastronautics, fundamental biology and radiation shielding materials. Bioastronautics is concerned with the investigating the effects of radiation on humans. Fundamental biology investigates the basic mechanisms of radiation damage to tissue. Radiation shielding materials research focuses on developing accurate computational tools to predict the radiation shielding effectiveness of materials. It also investigates new materials that can be used for spacecraft. The radiation shielding materials program will be described and examples of results from the ongoing research will be shown.

  19. Radiation fields from neutron generators shielded with different materials

    Science.gov (United States)

    Chichester, D. L.; Blackburn, B. W.

    2007-08-01

    As a general guide for assessing radiological conditions around a DT neutron generator numerical modeling has been performed to assess neutron and photon dose profiles for a variety of shield materials ranging from 1 to 100 cm thick. In agreement with accepted radiation safety practices high-Z materials such as bismuth and lead have been found to be ineffective biological shield materials, owing in part to the existence of (n,2n) reaction channels available with 14.1 MeV DT neutrons, while low-Z materials serve as effective shields for these sources. Composite materials such as a mixture of polyethylene and bismuth, or regular concrete, are ideal shield materials for neutron generator radiation because of their ability to attenuate internally generated photon radiation resulting from neutron scattering and capture within the shields themselves.

  20. Hinged Shields for Machine Tools

    Science.gov (United States)

    Lallande, J. B.; Poland, W. W.; Tull, S.

    1985-01-01

    Flaps guard against flying chips, but fold away for tool setup. Clear plastic shield in position to intercept flying chips from machine tool and retracted to give operator access to workpiece. Machine shops readily make such shields for own use.

  1. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  2. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm.

  3. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  4. Shielding in Mental Health Hospitals

    Directory of Open Access Journals (Sweden)

    Espen W. Haugom

    2016-02-01

    Full Text Available Shielding is defined as the confinement of patients to a single room or a separate unit/area inside the ward, accompanied by a member of staff. It is understood as both a treatment and a control. The purpose of this study is to examine how staff in psychiatric hospitals describe and assess shielding. This qualitative study uses a descriptive and exploratory design with an inductive approach. The material was acquired through the Acute Network (in Psychiatry nationwide shielding project. Data collection was carried out by the staff, who described the shielding procedure on a semi-structured form. The analysis was inspired by Graneheim and Lundman’s qualitative content analysis. Shielding has been described as an ambiguous practice, that is, shielding can be understood in several ways. There is a clear tension between shielding as a control and shielding as a treatment, with control being described as more important. The important therapeutic elements of shielding have also been mentioned, and shielding involves isolation to different degrees.

  5. A contribution to shielding effectiveness analysis of shielded tents

    Directory of Open Access Journals (Sweden)

    Vranić Zoran M.

    2004-01-01

    Full Text Available An analysis of shielding effectiveness (SE of the shielded tents made of the metallised fabrics is given. First, two electromagnetic characteristic fundamental for coupling through electrically thin shield, the skin depth break frequency and the surface resistance or transfer impedance, is defined and analyzed. Then, the transfer function and the SE are analyzed regarding to the frequency range of interest to the Electromagnetic Compatibility (EMC Community.

  6. Justification for Shielded Receiver Tube Additional Lead Shielding

    Energy Technology Data Exchange (ETDEWEB)

    BOGER, R.M.

    2000-04-11

    In order to reduce high radiation dose rates encountered when core sampling some radioactive waste tanks the addition of 240 lbs. of lead shielding is being considered to the shielded receiver tube on core sample trucks No.1, No.3 and No.4. The lead shielding is 4 inch diameter x 1/2 inch thick half rounds that have been installed around the SR tube over its' full length. Using three unreleased but independently reviewed structural analyses HNF-6018 justifies the addition of the lead shielding.

  7. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M

    2007-01-01

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  8. The axion shield

    CERN Document Server

    Andrianov, A A; Mescia, F; Renau, A

    2010-01-01

    We investigate the propagation of a charged particle in a spatially constant, but time dependent, pseudoscalar background. Physically this pseudoscalar background could be provided by a relic axion density. The background leads to an explicit breaking of Lorentz invariance; as a consequence the process p-> p gamma is possible and the background acts as a shield against extremely energetic cosmic rays, an effect somewhat similar to the GZK cut-off effect. The effect is model independent and can be computed exactly. The hypothetical detection of the photons radiated via this mechanism would provide an indirect way of verifying the cosmological relevance of axions.

  9. Watching a disappearing shield

    Science.gov (United States)

    Stolarski, Richard S.

    1988-10-01

    The remote-sensing techniques used to monitor atmospheric ozone levels are reviewed, and recent results are discussed. The importance of the ozone layer as a shield for UV radiation is stressed, and the impact of human activities generating ozone-destroying compounds is considered. Ground-based, airborne, balloon-borne, and satellite remote-sensing methods are shown to complement each other to provide both global coverage and detailed structural information. Data obtained with the Nimbus-7 TOMS and solar-backscatter UV instruments are presented in graphs and briefly characterized.

  10. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  11. Drip Shield Emplacement Gantry Concept

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.; Cron, J.

    2000-03-29

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existing equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made

  12. Radiation Shielding Optimization on Mars

    Science.gov (United States)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  13. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  14. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  15. New Materials for EMI Shielding

    Science.gov (United States)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  16. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L. [Design and Accelerator Operations Consulting, 568 Wintergreen Ct Ridge, NY 11961 (United States); Ghosh, V.J.; Breitfeller, M. [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-08-11

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  17. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-08-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  18. Hybrid Shielding for Magnetic Fields

    Science.gov (United States)

    Mullins, David; Royal, Kevin

    2017-01-01

    Precision symmetry measurements such as the search for the electric dipole moment of the neutron require magnetic shielding rooms to reduce the ambient field to the pT scale. The massive mu-metal sheets and large separation between layers make these shield rooms bulky and expensive. Active field cancellation systems used to reduce the surrounding field are limited in uniformity of cancellation. A novel approach to reducing the space between shield layers and increasing the effectiveness of active cancellation is to combine the two systems into a hybrid system, with active and passive layers interspersed. We demonstrate this idea in a prototype with an active layer sandwiched between two passive layers of shielding.

  19. Radiation shielding for neutron guides

    Science.gov (United States)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  20. Structural/Radiation-Shielding Epoxies

    Science.gov (United States)

    Connell, John W.; Smith, Joseph G.; Hinkley, Jeffrey; Blattnig, Steve; Delozier, Donavon M.; Watson, Kent A.; Ghose, Sayata

    2009-01-01

    A development effort was directed toward formulating epoxy resins that are useful both as structural materials and as shielding against heavy-ion radiation. Hydrogen is recognized as the best element for absorbing heavy-ion radiation, and high-hydrogen-content polymers are now in use as shielding materials. However, high-hydrogen-content polymers (e.g. polyethylene) are typically not good structural materials. In contrast, aromatic polymers, which contain smaller amounts of hydrogen, often have the strength necessary for structural materials. Accordingly, the present development effort is based on the concept that an ideal structural/ heavy-ion-radiation-shielding material would be a polymer that contains sufficient hydrogen (e.g., in the form of aliphatic molecular groups) for radiation shielding and has sufficient aromatic content for structural integrity.

  1. Neutron Shielding Effectiveness of Multifunctional Composite Materials

    Science.gov (United States)

    2013-03-01

    shielded fast neutrons more effectively than the other materials overall, but the sample with boron shielded ...the materials will shield against fast neutrons . 3.2 Assumptions With the information and specifications originally provided by the manufacturer on...to conduct fast foil activation experiments to determine the relative difference in the amount of neutrons shielded by the materials . This

  2. Thermal neutron shield and method of manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  3. Optimized shielding for space radiation protection

    Science.gov (United States)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M. H.; Schimmerling, W.

    2001-01-01

    Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  4. Shielding requirements in helical tomotherapy

    Science.gov (United States)

    Baechler, S.; Bochud, F. O.; Verellen, D.; Moeckli, R.

    2007-08-01

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest.

  5. Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics

    Science.gov (United States)

    de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.

    A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.

  6. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  7. Novel shielding materials for space and air travel.

    Science.gov (United States)

    Vana, N; Hajek, M; Berger, T; Fugger, M; Hofmann, P

    2006-01-01

    The reduction of dose onboard spacecraft and aircraft by appropriate shielding measures plays an essential role in the future development of space exploration and air travel. The design of novel shielding strategies and materials may involve hydrogenous composites, as it is well known that liquid hydrogen is most effective in attenuating charged particle radiation. As precursor for a later flight experiment, the shielding properties of newly developed hydrogen-rich polymers and rare earth-doped high-density rubber were tested in various ground-based neutron and heavy ion fields and compared with aluminium and polyethylene as reference materials. Absorbed dose, average linear energy transfer and gamma-equivalent neutron absorbed dose were determined by means of LiF:Mg,Ti thermoluminescence dosemeters and CR-39 plastic nuclear track detectors. First results for samples of equal aerial density indicate that selected hydrogen-rich plastics and rare-earth-doped rubber may be more effective in attenuating cosmic rays by up to 10% compared with conventional aluminium shielding. The appropriate adaptation of shielding thicknesses may thus allow reducing the biologically relevant dose. Owing to the lower density of the plastic composites, mass savings shall result in a significant reduction of launch costs. The experiment was flown as part of the European Space Agency's Biopan-5 mission in May 2005.

  8. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  9. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  10. Shielding structure analysis for LSDS facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization.

  11. A Novel Radiation Shielding Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation shielding simulations showed that epoxy loaded with 10-70% polyethylene would be an excellent shielding material against GCRs and SEPs. Milling produced an...

  12. Reliability-Based Electronics Shielding Design Tools

    Science.gov (United States)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  13. Material Effectiveness for Radiation Shielding

    Science.gov (United States)

    2003-01-01

    Materials with a smaller mean atomic mass, such as lithium (Li) hydride and polyethylene, make the best radiation shields for astronauts. The materials have a higher density of nuclei and are better able to block incoming radiation. Also, they tend to produce fewer and less dangerous secondary particles after impact with incoming radiation.

  14. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    Directory of Open Access Journals (Sweden)

    Zhaopeng Zhong

    2016-06-01

    Full Text Available The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both

  15. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  16. Predictions for Radiation Shielding Materials

    Science.gov (United States)

    Kiefer, Richard L.

    2002-01-01

    Radiation from galactic cosmic rays (GCR) and solar particle events (SPE) is a serious hazard to humans and electronic instruments during space travel, particularly on prolonged missions outside the Earth s magnetic fields. Galactic cosmic radiation (GCR) is composed of approx. 98% nucleons and approx. 2% electrons and positrons. Although cosmic ray heavy ions are 1-2% of the fluence, these energetic heavy nuclei (HZE) contribute 50% of the long-term dose. These unusually high specific ionizations pose a significant health hazard acting as carcinogens and also causing microelectronics damage inside spacecraft and high-flying aircraft. These HZE ions are of concern for radiation protection and radiation shielding technology, because gross rearrangements and mutations and deletions in DNA are expected. Calculations have shown that HZE particles have a strong preference for interaction with light nuclei. The best shield for this radiation would be liquid hydrogen, which is totally impractical. For this reason, hydrogen-containing polymers make the most effective practical shields. Shielding is required during missions in Earth orbit and possibly for frequent flying at high altitude because of the broad GCR spectrum and during a passage into deep space and LunarMars habitation because of the protracted exposure encountered on a long space mission. An additional hazard comes from solar particle events (SPEs) which are mostly energetic protons that can produce heavy ion secondaries as well as neutrons in materials. These events occur at unpredictable times and can deliver a potentially lethal dose within several hours to an unshielded human. Radiation protection for humans requires safety in short-term missions and maintaining career exposure limits within acceptable levels on future long-term exploration missions. The selection of shield materials can alter the protection of humans by an order of magnitude. If improperly selected, shielding materials can actually

  17. WAVS radiation shielding references and assumptions

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-07

    At ITER, the confluence of a high radiation environment and the requirement for high performance imaging for plasma and plasma-facing surface diagnosis will necessitate extensive application of radiation shielding. Recommended here is a dual-layer shield design composed of lead for gamma attenuation, surrounded by a fire-resistant polyehtylene doped with a thermal neutron absorber for neutron shielding.

  18. Chemical and Biological Defense Program Annual Report to Congress

    Science.gov (United States)

    2006-03-01

    state public health systems, to expand existing biosurveillance efforts, and to fund research on medical countermeasures against potential bioterror...Detection System (JBSDS) • Joint Portal ShieldBiological Identification System (BIDS) • Dry Filter Units (DFUs) Table 2-3 Biological Defense...Detection System (BIDS) • Joint Portal Shield Network Sensor System • Automated biological remote detection and early warning capabilities

  19. A new radiation shielding material: Amethyst ore

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Turgay, E-mail: turgaykorkut@hotmail.co [Faculty of Science and Art, Department of Physics, Ibrahim Cecen University, Agri (Turkey); Korkut, Hatun [Faculty of Science and Art, Department of Physics, Ibrahim Cecen University, Agri (Turkey); Karabulut, Abdulhalik; Budak, Goekhan [Faculty of Science, Department of Physics, Atatuerk University, Erzurum (Turkey)

    2011-01-15

    This paper describes a new radiation shielding material, amethyst ore. We have determined the elemental composition of amethyst using WDXRF spectroscopy technique. To see the shielding capability of amethyst for several photon energies, these results have been used in simulation process by FLUKA Monte Carlo radiation transport code. Linear attenuation coefficients have been calculated according to the simulation results. Then, these values have been compared to a fine shielding concrete material. The results show that amethyst shields more gamma beams than concrete. This investigation is the first study about the radiation shielding properties of amethyst ore.

  20. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  1. Radiation shielding for diagnostic radiology.

    Science.gov (United States)

    Martin, Colin J

    2015-07-01

    Scattered radiation makes up the majority of the stray radiation field around an X-ray unit. The scatter is linked to the amount of radiation incident on the patient. It can be estimated from quantities used to assess patient dose such as the kerma-area product, and factors have been established linking this to levels of scattered radiation for radiography and fluoroscopy. In radiography shielding against primary radiation is also needed, but in other modalities this is negligible, as the beam is intercepted by the image receptor. In the same way scatter from CT can be quantified in terms of dose-length product, but because of higher radiation levels, exposure to tertiary scatter from ceilings needs to be considered. Transmission requirements are determined from comparisons between calculated radiation levels and agreed dose criteria, taking into account the occupancy of adjacent areas. Thicknesses of shielding material required can then be calculated from simple equations.

  2. Stellar activity and magnetic shielding

    CERN Document Server

    Grießmeier, J -M; Lammer, H; Grenfell, J L; Stadelmann, A; Motschmann, U; 10.1017/S1743921309992961

    2010-01-01

    Stellar activity has a particularly strong influence on planets at small orbital distances, such as close-in exoplanets. For such planets, we present two extreme cases of stellar variability, namely stellar coronal mass ejections and stellar wind, which both result in the planetary environment being variable on a timescale of billions of years. For both cases, direct interaction of the streaming plasma with the planetary atmosphere would entail servere consequences. In certain cases, however, the planetary atmosphere can be effectively shielded by a strong planetary magnetic field. The efficiency of this shielding is determined by the planetary magnetic dipole moment, which is difficult to constrain by either models or observations. We present different factors which influence the strength of the planetary magnetic dipole moment. Implications are discussed, including nonthermal atmospheric loss, atmospheric biomarkers, and planetary habitability.

  3. Light shield for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  4. ATLAS Award for Shield Supplier

    CERN Multimedia

    2004-01-01

    ATLAS technical coordinator Dr. Marzio Nessi presents the ATLAS supplier award to Vojtech Novotny, Director General of Skoda Hute.On 3 November, the ATLAS experiment honoured one of its suppliers, Skoda Hute s.r.o., of Plzen, Czech Republic, for their work on the detector's forward shielding elements. These huge and very massive cylinders surround the beampipe at either end of the detector to block stray particles from interfering with the ATLAS's muon chambers. For the shields, Skoda Hute produced 10 cast iron pieces with a total weight of 780 tonnes at a cost of 1.4 million CHF. Although there are many iron foundries in the CERN member states, there are only a limited number that can produce castings of the necessary size: the large pieces range in weight from 59 to 89 tonnes and are up to 1.5 metres thick.The forward shielding was designed by the ATLAS Technical Coordination in close collaboration with the ATLAS groups from the Czech Technical University and Charles University in Prague. The Czech groups a...

  5. The Feasibility of Multipole Electrostatic Radiation Shielding

    Science.gov (United States)

    Metzger, Philip T.; Lane, John E.; Youngquist, Robert C.

    2004-01-01

    Although passive shielding appears to be the only workable solution for galactic cosmic radiation (GCR), active shielding may play an important augmenting role to control the dose from solar particle events (SPEs). It has been noted that, to meet the guidelines of NCRP Report No. 98 through the six SPEs of 1989, a crew member would need roughly double the passive shielding that is necessary to control the GCR dose . This would dramatically increase spacecraft mass, and so it has been proposed that a small but more heavily shielded storm shelter may be used to protect the crew during SPEs. Since a gradual SPE may last 5 or more days, staying in a storm shelter may be psychologically and physiologically distressing to the crew. Storm shelters do not provide shielding for the spacecraft itself against the SPE radiation, and radiation damage to critical electronics may result in loss of mission and life. Single-event effects during the radiation storm may require quick crew response to maintain the integrity of the spacecraft, and confining the crew to a storm shelter prohibits their attending to the spacecraft at the precise time when that attention is needed the most. Active shielding cannot protect against GCR because the particle energies are too high. Although lower energy particles are easier to stop in a passive shield, such shielding is more satisfactory against GCR than against SPE radiation because of the tremendous difference in their initial fluences. Even a small fraction of the SPE fluence penetrating the passive shielding may result in an unacceptably high dose. Active shielding is more effective than passive shielding against SPE radiation because it offers 100% shielding effectiveness up to the cutoff energy, and significant shielding effectiveness beyond the cutoff as well.

  6. Radiation shielding concrete made of Basalt aggregates.

    Science.gov (United States)

    Alhajali, S; Yousef, S; Kanbour, M; Naoum, B

    2013-04-01

    In spite of the fact that Basalt is a widespread type of rock, there is very little available information on using it as aggregates for concrete radiation shielding. This paper investigates the possibility of using Basalt for the aforementioned purpose. The results have shown that Basalt could be used successfully for preparing radiation shielding concrete, but some attention should be paid to the choice of the suitable types of Basalt and for the neutron activation problem that could arise in the concrete shield.

  7. Dique seco, en South Shields

    Directory of Open Access Journals (Sweden)

    Frank Stott, Peter

    1958-10-01

    Full Text Available La conocida empresa Brigham & Cowan Ltd, de South Shields (Inglaterra, acaba de construir un dique de carena en la desembocadura del río Tyne, destinado a la reparación de tanques y cargas de gran tonelaje y de relativamente poco calado. El vaso tiene 217 m de longitud, 29 de anchura mínima en la entrada, 6,40 de a l tura de agua sobre el umbral de entrada y una compuerta metálica rebatible hacia adelante. En este trabajo se describen las partes que mejor caracterizan esta importante obra.

  8. Lithium hydride - A space age shielding material

    Science.gov (United States)

    Welch, F. H.

    1974-01-01

    Men and materials performing in the environment of an operating nuclear reactor require shielding from the escaping neutron particles and gamma rays. For efficient shielding from gamma rays, dense, high atomic number elements such as iron, lead, or tungsten are required, whereas light, low atomic number elements such as hydrogen, lithium, or beryllium are required for efficient neutron shielding. The use of lithium hydride (LiH) as a highly efficient neutron-shielding material is considered. It contains, combined into a single, stable compound, two of the elements most effective in attenuating and absorbing neutrons.

  9. Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.

    Science.gov (United States)

    Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo

    2017-05-01

    Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes.

  10. Improved Spacecraft Materials for Radiation Shielding

    Science.gov (United States)

    Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Tai, H.; Thibeault, S. A.; Simonsen, L. C.; Cucinotta, F. A.; Miller, J.

    1999-01-01

    In the execution of this proposal, we will first examine current and developing spacecraft materials and evaluate their ability to attenuate adverse biological mutational events in mammalian cell systems and reduce the rate of cancer induction in mice harderian glands as a measure of their protective qualities. The HZETRN code system will be used to generate a database on GCR attenuation in each material. If a third year of funding is granted, the most promising and mission-specific materials will be used to study the impact on mission cost for a typical Mars mission scenario as was planned in our original two year proposal at the original funding level. The most promising candidate materials will be further tested as to their transmission characteristics in Fe and Si ion beams to evaluate the accuracy of the HZETRN transmission factors. Materials deemed critical to mission success may also require testing as well as materials developed by industry for their radiation protective qualities (e.g., Physical Sciences Inc.) A study will be made of designing polymeric materials and composite materials with improved radiation shielding properties as well as the possible improvement of mission-specific materials.

  11. Artificial Dielectric Shields for Integrated Transmission Lines

    NARCIS (Netherlands)

    Ma, Y.; Rejaei, B.; Zhuang, Y.

    2008-01-01

    We present a novel shielding method for on-chip transmission lines built on conductive silicon substrates. The shield consists of an artificial dielectric with a very high in-plane dielectric constant, built from two patterned metal layers isolated by a very thin dielectric film. Inserted below an i

  12. Alignment modification for pencil eye shields

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.D.; Pla, M.; Podgorsak, E.B. (McGill Univ., Quebec (Canada))

    1989-01-01

    Accurate alignment of pencil beam eye shields to protect the lens of the eye may be made easier by means of a simple modification of existing apparatus. This involves drilling a small hole through the center of the shield to isolate the rayline directed to the lens and fabricating a suitable plug for this hole.

  13. Shielding for beta-gamma radiation.

    Science.gov (United States)

    Fletcher, J J

    1993-06-01

    The build-up factor, B, for lead was expressed as a polynominal cubic function of the relaxation length, mu x, and incorporated in a "general beta-gamma shielding equation." A computer program was written to determine shielding thickness for polyenergetic beta-gamma sources without resorting to the conventional "add-one-HVL" method.

  14. Thermal neutron shield and method of manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  15. Radiation Shielding for Nuclear Thermal Propulsion

    Science.gov (United States)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  16. Results of shielding characteristics tests in Monju

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Shin; Suzuoki, Zenro; Deshimaru, Takehide; Nakashima, Fumiaki [Japan Nuclear Cycle Development Inst., Tsuruga, Fukui (Japan)

    2001-06-01

    In the prototype fast breeder reactor Monju, the shielding characteristics tests were made around the reactor core, the primary heat transport system, and the fuel handling and storage system as a part of the system start-up tests from 0% to 45% of rated power from October 1993 through December 1995. The results of the measurements, analyses and evaluations in these tests validated the FBR shielding analysis methods and demonstrated that there was a safe shielding design margin in Monju. The important basic data for use in future FBR shielding design were successfully acquired. In order to obtain more substantial basic data and to improve the accuracy of the analyses, the next shielding measurements are planned for the period of the system start-up tests at the restart of Monju. (author)

  17. Mars Exploration Rover Heat Shield Recontact Analysis

    Science.gov (United States)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  18. Radiation Shielding Systems Using Nanotechnology

    Science.gov (United States)

    Chen, Bin (Inventor); McKay, Christoper P. (Inventor)

    2011-01-01

    A system for shielding personnel and/or equipment from radiation particles. In one embodiment, a first substrate is connected to a first array or perpendicularly oriented metal-like fingers, and a second, electrically conducting substrate has an array of carbon nanostructure (CNS) fingers, coated with an electro-active polymer extending toward, but spaced apart from, the first substrate fingers. An electric current and electric charge discharge and dissipation system, connected to the second substrate, receives a current and/or voltage pulse initially generated when the first substrate receives incident radiation. In another embodiment, an array of CNSs is immersed in a first layer of hydrogen-rich polymers and in a second layer of metal-like material. In another embodiment, a one- or two-dimensional assembly of fibers containing CNSs embedded in a metal-like matrix serves as a radiation-protective fabric or body covering.

  19. Spacesuit Radiation Shield Design Methods

    Science.gov (United States)

    Wilson, John W.; Anderson, Brooke M.; Cucinotta, Francis A.; Ware, J.; Zeitlin, Cary J.

    2006-01-01

    Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable. Transition to a new spacesuit design including soft upper-torso and reconfigured life support hardware gives an opportunity to optimize the next generation spacesuit for reduced potential health effects during an accidental exposure.

  20. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  1. Background simulations and shielding calculations

    Science.gov (United States)

    Kudryavtsev, Vitaly A.

    2011-04-01

    Key improvements in the sensitivity of the underground particle astrophysics experiments can only be achieved if the radiation causing background events in detectors is well understood and proper measures are taken to suppress it. The background radiation arising from radioactivity and cosmic-ray muons is discussed here together with the methods of its suppression. Different shielding designs are considered to attenuate gamma-rays and neutrons coming from radioactivity in rock and lab walls. Purity of materials used in detector construction is analysed and the background event rates due to the presence of radioactive isotopes in detector components are discussed. Event rates in detectors caused by muon-induced neutrons with and without active veto systems are presented leading to the requirements for the depth of an underground laboratory and the efficiency of the veto system.

  2. The use of nipple shields: A review

    Directory of Open Access Journals (Sweden)

    Selina Chow

    2016-11-01

    Full Text Available A nipple shield is a breastfeeding aid with a nipple-shaped shield that is positioned over the nipple and areola prior to nursing. Nipple shields are usually recommended to mothers with flat nipples or in cases in which there is a failure of the baby to effectively latch onto the breast within the first two days postpartum. The use of nipple shields is a controversial topic in the field of lactation. Its use has been an issue in the clinical literature since some older studies discovered reduced breast milk transfer when using nipple shields, while more recent studies reported successful breastfeeding outcomes. The purpose of this review was to examine the evidence and outcomes with nipple shield use. Methods: A literature search was conducted in Ovid MEDLINE, OLDMEDLINE, EMBASE Classic, EMBASE, Cochrane Central Register of Controlled Trials and CINAHL. The primary endpoint was any breastfeeding outcome following nipple shield use. Secondary endpoints included the reasons for nipple shield use and the average/median length of use. For the analysis, we examined the effect of nipple shield use on physiological responses, premature infants, mothers’ experiences, and health professionals’ experiences. Results: The literature search yielded 261 articles, 14 of which were included in this review. Of these 14 articles, three reported on physiological responses, two reported on premature infants, eight reported on mothers’ experiences, and one reported on health professionals’ experiences. Conclusion: Through examining the use of nipple shields, further insight is provided on the advantages and disadvantages of this practice, thus allowing clinicians and researchers to address improvements on areas that will benefit mothers and infants the most.

  3. On the morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  4. Improved Metal-Polymeric Laminate Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed Phase I program, a multifunctional lightweight radiation shield composite will be developed and fabricated. This structural radiation shielding will...

  5. Foam-Reinforced Polymer Matrix Composite Radiation Shields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New and innovative lightweight radiation shielding materials are needed to protect humans in future manned exploration vehicles. Radiation shielding materials are...

  6. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  7. International Space Station Radiation Shielding Model Development

    Science.gov (United States)

    Qualls, G. D.; Wilson, J. W.; Sandridge, C.; Cucinotta, F. A.; Nealy, J. E.; Heinbockel, J. H.; Hugger, C. P.; Verhage, J.; Anderson, B. M.; Atwell, W.

    2001-01-01

    The projected radiation levels within the International Space Station (ISS) have been criticized by the Aerospace Safety Advisory Panel in their report to the NASA Administrator. Methods for optimal reconfiguration and augmentation of the ISS shielding are now being developed. The initial steps are to develop reconfigurable and realistic radiation shield models of the ISS modules, develop computational procedures for the highly anisotropic radiation environment, and implement parametric and organizational optimization procedures. The targets of the redesign process are the crew quarters where the astronauts sleep and determining the effects of ISS shadow shielding of an astronaut in a spacesuit. The ISS model as developed will be reconfigurable to follow the ISS. Swapping internal equipment rack assemblies via location mapping tables will be one option for shield optimization. Lightweight shield augmentation materials will be optimally fit to crew quarter areas using parametric optimization procedures to minimize the augmentation shield mass. The optimization process is being integrated into the Intelligence Synthesis Environment s (ISE s) immersive simulation facility at the Langley Research Center and will rely on High Performance Computing and Communication (HPCC) for rapid evaluation of shield parameter gradients.

  8. Optimization design of electromagnetic shielding composites

    Science.gov (United States)

    Qu, Zhaoming; Wang, Qingguo; Qin, Siliang; Hu, Xiaofeng

    2013-03-01

    The effective electromagnetic parameters physical model of composites and prediction formulas of composites' shielding effectiveness and reflectivity were derived based on micromechanics, variational principle and electromagnetic wave transmission theory. The multi-objective optimization design of multilayer composites was carried out using genetic algorithm. The optimized results indicate that material parameter proportioning of biggest absorption ability can be acquired under the condition of the minimum shielding effectiveness can be satisfied in certain frequency band. The validity of optimization design model was verified and the scheme has certain theoretical value and directive significance to the design of high efficiency shielding composites.

  9. Carbon nanostructure composite for electromagnetic interference shielding

    Indian Academy of Sciences (India)

    Anupama Joshi; Suwarna Datar

    2015-06-01

    This communication reviews current developments in carbon nanostructure-based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference. Conventionally, metal-based shielding materials have been used. But due to the requirement of light weight, corrosion resistive materials, lot of work is being done on composite materials. In this research the forerunner is the nanocarbon-based composite material whose different forms add different characteristics to the composite. The article focusses on composites based on graphene, graphene oxide, carbon nanotubes, and several other novel forms of carbon.

  10. OPTIMAL BETA-RAY SHIELDING THICKNESSES FOR DIFFERENT THERAPEUTIC RADIONUCLIDES AND SHIELDING MATERIALS.

    Science.gov (United States)

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2016-04-06

    To better understand the distribution of deposited energy of beta and gamma rays according to changes in shielding materials and thicknesses when radionuclides are used for therapeutic nuclear medicine, a simulation was conducted. The results showed that due to the physical characteristics of each therapeutic radionuclide, the thicknesses of shielding materials at which beta-ray shielding takes place varied. Additional analysis of the shielding of gamma ray was conducted for radionuclides that emit both beta and gamma rays simultaneously with results showing shielding effects proportional to the atomic number and density of the shielding materials. Also, analysis of bremsstrahlung emission after beta-ray interactions in the simulation revealed that the occurrence of bremsstrahlung was relatively lower than theoretically calculated and varied depending on different radionuclides.

  11. Molecular biology. Shielding broken DNA for a quick fix

    DEFF Research Database (Denmark)

    Lukas, Jiri; Lukas, Claudia

    2013-01-01

    A fast-acting DNA repair mechanism involves a protein complex that blocks an alternative process that requires a cell to wait for repair.......A fast-acting DNA repair mechanism involves a protein complex that blocks an alternative process that requires a cell to wait for repair....

  12. Shielded ADR Magnets For Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II program will concentrate on manufacturing of qualified low-current, light-weight, 10K ADR magnets for space application. Shielded ADR solenoidal magnets...

  13. Boron-10 loaded inorganic shielding material

    Science.gov (United States)

    Baker, S. I.; Ryskiewicz, R. S.

    1972-01-01

    Shielding material containing Boron 10 and gadoliunium for neutron absorption has been developed to reduce interference from low energy neutrons in measurement of fission neutron spectrum using Li-6 fast neutron spectrometer.

  14. Long Duration Space Shelter Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed fiber reinforced ceramic composites for radiation shielding that can be used for external walls in long duration manned...

  15. Shielded ADR Magnets For Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An important consideration of the use of superconducting magnets in ADR applications is shielding of the other instruments in the vicinity of the superconducting...

  16. Passive Magnetic Shielding in Gradient Fields

    CERN Document Server

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  17. Long Duration Space Shelter Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed a ceramic composite material system that is more effective for shielding both GCR and SPE than aluminum. The composite...

  18. Materials for Shielding Astronauts from the Hazards of Space Radiations

    Science.gov (United States)

    Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.

    1997-01-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Because cancer induction rates increase behind low to rather large thickness of aluminum shielding according to available biological data on mammalian exposures to GCR like ions, the shield requirements for a Mars mission are prohibitively expensive in terms of mission launch costs. Preliminary studies indicate that materials with high hydrogen content and low atomic number constituents are most efficient in protecting the astronauts. This occurs for two reasons: the hydrogen is efficient in breaking up the heavy GCR ions into smaller less damaging fragments and the light constituents produce few secondary radiations (especially few biologically damaging neutrons). An overview of the materials related issues and their impact on human space exploration will be given.

  19. Influence of Shielding Arrangement on ECT Sensors

    Directory of Open Access Journals (Sweden)

    J. L. Fernandez Marron

    2006-09-01

    Full Text Available This paper presents a full 3D study of a shielded ECT sensor. The spatialresolution and effective sensing field are obtained by means of Finite Element Methodbased simulations and are the compared to a conventional sensor's characteristics. Aneffective improvement was found in the sensitivity in the pipe cross-section, resulting inenhanced quality of the reconstructed image. The sensing field along the axis of the sensoralso presents better behaviour for a shielded sensor.

  20. Enhanced radiation shielding with galena concrete

    OpenAIRE

    Hadad Kamal; Majidi Hosein; Sarshough Samira

    2015-01-01

    A new concrete, containing galena mineral, with enhanced shielding properties for gamma sources is developed. To achieve optimized shielding properties, ten types of galena concrete containing different mixing ratios and a reference normal concrete of 2300 kg/m3 density are studied experimentally and numerically using Monte Carlo and XCOM codes. For building galena concrete, in addition to the main composition, micro-silica and water, galena mineral (contai...

  1. Shielding Design for a Medical Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WANG; Feng; SONG; Guo-fang; GUAN; Feng-ping; LV; Yin-long; ZHANG; Xing-zhi

    2012-01-01

    <正>A 10 MeV 100 μA medical cyclotron is constructed at CIAE which is used in the production of FDG. The energy of the cyclotron can reach 14 MeV by adjusting the magnetic field and RF system parameters, and the shielding design is in accordance with the 14 MeV beam energy. In this shielding design only neutron is considered, and the neutron source is produced by proton

  2. Shielding Effectiveness of Composites Containing Flaky Inclusions

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; QU Zhaoming; WANG Yilong

    2013-01-01

    To investigate the quantitative relationship between the electromagnetic-shielding property of composites and the distribution of inclusions,a scheme for predicting the shielding effectiveness of composites containing variously-distributed flaky inclusions is proposed.The scheme is based on equivalent parameters of homogeneous comparison materials and the plane-wave shielding theory.It leads to explicit formulas for the shielding effectiveness of multi-layered composites in terms of microstructural parameters that characterize the shape,distribution and orientation of the inclusions.For single layer composite that contains random and aligned flaky silver-coated carbonyl-iron particles with fractions of different volume,the predicted shielding effectiveness agrees well with the experimental data.As for composites containing aligned flaky particles,the shielding effectiveness obtained by the proposed scheme and experiment data is higher than that the random case,e.g.about 20 dB higher at 750 MHz.The proposed scheme is a straightforward method for optimizing future composite designs.

  3. Corrugation Stuffed Shield for Spacecraft and Its Performance

    Institute of Scientific and Technical Information of China (English)

    LIU You-ying; WANG Hai-fu

    2006-01-01

    A corrugation stuffed shield system protecting spacecrafts against meteoroid and orbital debris (M/OD) is presented. The semi-empirical ballistic limit equations (BLEs)defining the protection capability of the shield system are given, an d the shielding performance is also discussed. The corrugation stuffed shield (CSS) is more effective than stuffed Whipple shield for M/OD protection,and its shielding performance will be improved significantly as increasing the impact angle. Orbital debris up to 1cm in diameter can be shielded effectively as increasing the impact angle to 25° at the corrugated angle of 30°. The results are significant to spacecraft design.

  4. Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers

    Science.gov (United States)

    Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.

    2016-09-01

    Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.

  5. Space Shielding Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    R. Lewis

    2006-01-20

    At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower mass than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and

  6. Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

    2008-10-31

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured

  7. Targeted and shielded adenovectors for cancer therapy.

    Science.gov (United States)

    Hedley, Susan J; Chen, Jian; Mountz, John D; Li, Jing; Curiel, David T; Korokhov, Nikolay; Kovesdi, Imre

    2006-11-01

    Conditionally replicative adenovirus (CRAd) vectors are novel vectors with utility as virotherapy agents for alternative cancer therapies. These vectors have already established a broad safety record in humans and overcome some of the limitations of non-replicative adenovirus (Ad) vectors. In addition, one potential problem with these vectors, attainment of tumor or tissue selectivity has widely been addressed. However, two confounding problems limiting efficacy of these drug candidates remains. The paucity of the native Ad receptor on tumor tissues, and host humoral response due to pre-existing titers of neutralizing antibodies against the vector itself in humans have been highlighted in the clinical context. The well-characterized CRAd, AdDelta24-RGD, is infectivity enhanced, thus overcoming the lack of coxsackievirus and adenovirus receptor (CAR), and this agent is already rapidly progressing towards clinical translation. However, the perceived host humoral response potentially will limit gains seen from the infectivity enhancement and therefore a strategy to blunt immunity against the vector is required. On the basis of this caveat a novel strategy, termed shielding, has been developed in which the genetic modification of a virion capsid protein would provide uniformly shielded Ad vectors. The identification of the pIX capsid protein as an ideal locale for genetic incorporation of shielding ligands to conceal the Ad vector from pre-existing neutralizing antibodies is a major progression in the development of shielded CRAds. Preliminary data utilizing an Ad vector with HSV-TK fused to the pIX protein indicates that a shield against neutralizing antibodies can be achieved. The utility of various proteins as shielding molecules is currently being addressed. The creation of AdDelta24S-RGD, an infectivity enhanced and shielded Ad vector will provide the next step in the development of clinically and commercially feasible CRAds that can be dosed multiple times for

  8. Electromagnetic shielding mats: facts and fiction.

    Science.gov (United States)

    Leitgeb, N; Cech, R

    2007-01-01

    The use of electricity is accompanied by electric and magnetic fields which, intended or not, became a part of our environment. However, fear from environmental electromagnetic fields (EMFs) is widespread and so is business with fear. A number of more or less serious products including miracle products are placed on the market partly at excessive costs. By numerical simulation the efficiency of electromagnetic shielding mats was investigated and claims of manufacturers and their cited expert opinions checked. It could be shown that such products do not fulfil the justified expectations of customers, neither in the extremely low frequency (ELF) nor in the radiofrequency (RF) range. On the contrary, these mats usually make things even worse. The connection to ground, if available, might increase the belief on shielding efficiency, but in fact it even enhances fields instead of improving shielding. The electric conductivity of the mat material plays a minor role in the ELF range and enhances field increase in the RF range. It can not explain the enormous price differences. It could be shown that positive reports can be explained by result picking and exceptional arrangements of selected field sources. Overall, the investigation showed that manufacturer's claims about the shielding effectiveness are misleading and fool the customers about the real situation. Therefore, acquisition and use of electromagnetic shielding mats must be strongly discouraged.

  9. Cosmic Ray Interactions in Shielding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  10. Advances in space radiation shielding codes

    Science.gov (United States)

    Wilson, John W.; Tripathi, Ram K.; Qualls, Garry D.; Cucinotta, Francis A.; Prael, Richard E.; Norbury, John W.; Heinbockel, John H.; Tweed, John; De Angelis, Giovanni

    2002-01-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  11. Asymmetric Electrostatic Radiation Shielding for Spacecraft

    Science.gov (United States)

    Metzger, Philip T.; Youngquist, Robert C.; Lane, John E.

    2005-01-01

    A paper describes the types, sources, and adverse effects of energetic-particle radiation in interplanetary space, and explores a concept of using asymmetric electrostatic shielding to reduce the amount of such radiation impinging on spacecraft. Typically, such shielding would include a system of multiple inflatable, electrically conductive spheres deployed in clusters in the vicinity of a spacecraft on lightweight structures that would maintain the spheres in a predetermined multipole geometry. High-voltage generators would maintain the spheres at potential differences chosen in conjunction with the multipole geometry so that the resulting multipole field would gradually divert approaching energetic atomic nuclei from a central region occupied by the spacecraft. The spheres nearest the center would be the most positive, so as to repel the positively charged impinging nuclei from the center. At the same time, the monopole potential of the overall spacecraft-and-shielding system would be made negative so as to repel thermal electrons. The paper presents results of computational simulations of energetic-particle trajectories and shield efficiency for a trial system of 21 spheres arranged in three clusters in an overall linear quadrupole configuration. Further development would be necessary to make this shielding concept practical.

  12. Preliminary Thermal Design of Cryogenic Radiation Shielding

    Science.gov (United States)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  13. Correlated Uncertainties in Radiation Shielding Effectiveness

    Science.gov (United States)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  14. Accelerator shielding experts meet at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Fifteen years after its first CERN edition, the Shielding Aspects of Accelerator, Targets and Irradiation Facility (SATIF) conference was held again here from 2-4 June. Now at its 10th edition, SATIF10 brought together experts from all over the world to discuss issues related to the shielding techniques. They set out the scene for an improved collaboration and discussed novel shielding solutions.   This was the most attended meeting of the series with more than 65 participants from 34 institutions and 14 countries. “We welcomed experts from many different laboratories around the world. We come from different contexts but we face similar problems. In this year’s session, among other things, we discussed ways for improving the effectiveness of calculations versus real data, as well as experimental solutions to investigate the damage that radiation produces on various materials and the electronics”, says Marco Silari, Chair of the conference and member of the DGS/RP gro...

  15. Carbohydrate based materials for gamma radiation shielding

    Science.gov (United States)

    Tabbakh, F.; Babaee, V.; Naghsh-Nezhad, Z.

    2015-05-01

    Due to the limitation in using lead as a shielding material for its toxic properties and limitation in abundance, price or non-flexibility of other commonly used materials, finding new shielding materials and compounds is strongly required. In this conceptual study carbohydrate based compounds were considered as new shielding materials. The simulation of radiation attenuation is performed using MCNP and Geant4 with a good agreement in the results. It is found that, the thickness of 2 mm of the proposed compound may reduce up to 5% and 50% of 1 MeV and 35 keV gamma-rays respectively in comparison with 15% and 100% for the same thickness of lead.

  16. Electronics Shielding and Reliability Design Tools

    Science.gov (United States)

    Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2006-01-01

    It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.

  17. Radiation shielding effectiveness of newly developed superconductors

    Science.gov (United States)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  18. Self-Shielding Of Transmission Lines

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-03-01

    The use of shielding to contend with noise or harmful EMI/EMR energy is not a new concept. An inevitable trade that must be made for shielding is physical space and weight. Space was often not as much of a painful design trade in older larger systems as they are in today’s smaller systems. Today we are packing in an exponentially growing number of functionality within the same or smaller volumes. As systems become smaller and space within systems become more restricted, the implementation of shielding becomes more problematic. Often, space that was used to design a more mechanically robust component must be used for shielding. As the system gets smaller and space is at more of a premium, the trades starts to result in defects, designs with inadequate margin in other performance areas, and designs that are sensitive to manufacturing variability. With these challenges in mind, it would be ideal to maximize attenuation of harmful fields as they inevitably couple onto transmission lines without the use of traditional shielding. Dr. Tom Van Doren proposed a design concept for transmission lines to a class of engineers while visiting New Mexico. This design concept works by maximizing Electric field (E) and Magnetic Field (H) field containment between operating transmission lines to achieve what he called “Self-Shielding”. By making the geometric centroid of the outgoing current coincident with the return current, maximum field containment is achieved. The reciprocal should be true as well, resulting in greater attenuation of incident fields. Figure’s 1(a)-1(b) are examples of designs where the current centroids are coincident. Coax cables are good examples of transmission lines with co-located centroids but they demonstrate excellent field attenuation for other reasons and can’t be used to test this design concept. Figure 1(b) is a flex circuit design that demonstrate the implementation of self-shielding vs a standard conductor layout.

  19. Evaluation of Spacecraft Shielding Effectiveness for Radiation Protection

    Science.gov (United States)

    Cucinotta, Francis A.; Wilson, John W.

    1999-01-01

    The potential for serious health risks from solar particle events (SPE) and galactic cosmic rays (GCR) is a critical issue in the NASA strategic plan for the Human Exploration and Development of Space (HEDS). The excess cost to protect against the GCR and SPE due to current uncertainties in radiation transmission properties and cancer biology could be exceedingly large based on the excess launch costs to shield against uncertainties. The development of advanced shielding concepts is an important risk mitigation area with the potential to significantly reduce risk below conventional mission designs. A key issue in spacecraft material selection is the understanding of nuclear reactions on the transmission properties of materials. High-energy nuclear particles undergo nuclear reactions in passing through materials and tissue altering their composition and producing new radiation types. Spacecraft and planetary habitat designers can utilize radiation transport codes to identify optimal materials for lowering exposures and to optimize spacecraft design to reduce astronaut exposures. To reach these objectives will require providing design engineers with accurate data bases and computationally efficient software for describing the transmission properties of space radiation in materials. Our program will reduce the uncertainty in the transmission properties of space radiation by improving the theoretical description of nuclear reactions and radiation transport, and provide accurate physical descriptions of the track structure of microscopic energy deposition.

  20. Scale-PC shielding analysis sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, S.M.

    1996-05-01

    The SCALE computational system is a modular code system for analyses of nuclear fuel facility and package designs. With the release of SCALE-PC Version 4.3, the radiation shielding analysis community now has the capability to execute the SCALE shielding analysis sequences contained in the control modules SAS1, SAS2, SAS3, and SAS4 on a MS- DOS personal computer (PC). In addition, SCALE-PC includes two new sequences, QADS and ORIGEN-ARP. The capabilities of each sequence are presented, along with example applications.

  1. Novel Concepts for Radiation Shielding Materials

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    It is critical that safety factors be maximized with respect to long duration, extraterrestrial space flight. Any significant improvement in radiation protection will be critical in ensuring the safety of crew and hardware on such missions. The project goal is to study novel concepts for radiation shielding materials that can be used for long-duration space missions. As part of this project we will investigate the use of thin films for the evaluation of a containment system that can retain liquid hydrogen and provide the necessary hydrogen density for effective shielding.

  2. Shielding effectiveness of rectangular cavity made of a new shielding material and resonance suppression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    New shielding material has become an alternative to traditional metal to shield boxes from electromagnetic interferences. This article introduces the theory of transmission line method to study the shield boxes made of a new sort of material, and then expands the fundamental formulas to deal with the cases of multiple holes and polarization with arbitrary angle. By means of genetic algorithms with the aid of a three dimensional simulation tool, the damping of electromagnetic resonances in enclosures is researched.The computation indicates that under resonant frequency, electromagnetic resonance results in low, even negative shielding coefficient; whereas, for the same areas, shielding effectiveness of a single hole is worse than that of multiple holes. Shielding coefficient varies when polarization angle increases, and the coupled field through the rectangular aperture with the long side parallel to the thin wire is much weaker than that with the long side vertical to the thin wire. By using the metallic-loss dielectric layer of optimized calculation on the internal surface of the cavity, the best result of resonance suppression has been realized with the same thickness of coating. Finally, according to the calculation result, suggestions for shielding are proposed.

  3. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    Science.gov (United States)

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-01

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giving the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheterization labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  4. Botulinum Neurotoxin Is Shielded by NTNHA in an Interlocked Complex

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Shenyan; Rumpel, Sophie; Zhou, Jie; Strotmeier, Jasmin; Bigalke, Hans; Perry, Kay; Shoemaker, Charles B.; Rummel, Andreas; Jin, Rongsheng (Cornell); (Tufts); (Hannover-MED); (Sanford-Burnham)

    2012-03-28

    Botulinum neurotoxins (BoNTs) are highly poisonous substances that are also effective medicines. Accidental BoNT poisoning often occurs through ingestion of Clostridium botulinum-contaminated food. Here, we present the crystal structure of a BoNT in complex with a clostridial nontoxic nonhemagglutinin (NTNHA) protein at 2.7 angstroms. Biochemical and functional studies show that NTNHA provides large and multivalent binding interfaces to protect BoNT from gastrointestinal degradation. Moreover, the structure highlights key residues in BoNT that regulate complex assembly in a pH-dependent manner. Collectively, our findings define the molecular mechanisms by which NTNHA shields BoNT in the hostile gastrointestinal environment and releases it upon entry into the circulation. These results will assist in the design of small molecules for inhibiting oral BoNT intoxication and of delivery vehicles for oral administration of biologics.

  5. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    Energy Technology Data Exchange (ETDEWEB)

    J. Stephens

    2006-01-13

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  6. Neutron shielding material based on colemanite and epoxy resin.

    Science.gov (United States)

    Okuno, Koichi

    2005-01-01

    In recent years, there has been a need for compact shielding design such as self-shielding of a PET cyclotron or upgradation of radiation machinery in existing facilities. In these cases, high performance shielding materials are needed. Concrete or polyethylene have been used for a neutron shield. However, for compact shielding, they fall short in terms of performance or durability. Therefore, a new type of neutron shielding material based on epoxy resin and colemanite has been developed. Slab attenuation experiments up to 40 cm for the new shielding material were carried out using a 252Cf neutron source. Measurement was carried out using a REM-counter, and compared with calculation. The results show that the shielding performance is better than concrete and polyethylene mixed with 10 wt% boron oxide. From the result, we confirmed that the performance of the new material is suitable for practical use.

  7. MPACT Subgroup Self-Shielding Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Stimpson, Shane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yuxuan [Univ. of Michigan, Ann Arbor, MI (United States); Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clarno, Kevin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-31

    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The next improvement that is covered is what is currently being termed as “Lumped Parameter MOC”. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.

  8. Oxygen Abundance Measurements of SHIELD Galaxies

    CERN Document Server

    Haurberg, Nathalie C; Cannon, John M; Marshall, Melissa V

    2015-01-01

    We have derived oxygen abundances for 8 galaxies from the Survey of HI in Extremely Low-mass Dwarfs (SHIELD). The SHIELD survey is an ongoing study of very low-mass galaxies, with M$_{\\rm HI}$ between 10$^{6.5}$ and 10$^{7.5}$ M$_{\\odot}$, that were detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. H$\\alpha$ images from the WIYN 3.5m telescope show that these 8 SHIELD galaxies each possess one or two active star-forming regions which were targeted with long-slit spectral observations using the Mayall 4m telescope at KPNO. We obtained a direct measurement of the electron temperature by detection of the weak [O III] $\\lambda$4363 line in 2 of the HII regions. Oxygen abundances for the other HII regions were estimated using a strong-line method. When the SHIELD galaxies are plotted on a B-band luminosity-metallicity diagram they appear to suggest a slightly shallower slope to the relationship than normally seen. However, that offset is systematically reduced when the near-infrared luminosity is used ins...

  9. The Tower Shielding Facility: Its glorious past

    Energy Technology Data Exchange (ETDEWEB)

    Muckenthaler, F.J.

    1997-05-07

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

  10. New shield for gamma-ray spectrometry

    Science.gov (United States)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  11. Lightweight concrete with enhanced neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2016-09-13

    A lightweight concrete containing polyethylene terephthalate in an amount of 20% by total volume. The concrete is enriched with hydrogen and is therefore highly effective at thermalizing neutrons. The concrete can be used independently or as a component of an advanced neutron radiation shielding system.

  12. EFFECTS OF INTERFACES ON GAMMA SHIELDING

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, C.E.

    1963-06-15

    A survey is presented of studies of interface effects in gamma shielding problems. These studies are grouped into three types of approaches, viz.: sources at the interface; radiation backscattered from the interface; and radiation transmitted through the interface. A bibliography of 54 references is included. Limitations on the applicability of the results are discussed. (T.F.H.)

  13. In-beam background suppression shield

    DEFF Research Database (Denmark)

    Santoro, V.; Cai, Xiao Xiao; DiJulio, D. D.

    2015-01-01

    , which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative...

  14. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  15. On New Limits of the Coefficient of Gravitation Shielding

    Indian Academy of Sciences (India)

    Michele Caputo

    2006-12-01

    New limits of the shielding coefficients in the supposed phenomenon of gravitation shielding have recently become available. The new values are briefly reviewed and discussed in order to update the state of art since some new limits for gravitation shielding are not necessarily the lowest ones which, instead, are those of interest when planning new experimental research or studying theoretically the possible effects of gravitation shielding.

  16. Effective shielding to measure beam current from an ion source

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, H., E-mail: bayle@bergoz.com [Bergoz Instrumentation, Saint-Genis-Pouilly (France); Delferrière, O.; Gobin, R.; Harrault, F.; Marroncle, J.; Senée, F.; Simon, C.; Tuske, O. [CEA, Saclay (France)

    2014-02-15

    To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.

  17. Electromagnetic shielding. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-06-01

    The bibliography presents research on electromagnetic shielding of electronic and electrical equipment personnel, and ordnance. The shielding effectiveness of materials and structures is covered. Nuclear electromagnetic pulse shielding is included. This updated bibliography contains 301 abstracts, 19 of which are new entries to the previous edition.

  18. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous...

  19. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  20. How stable are the 'stable ancient shields'?

    Science.gov (United States)

    Viola, Giulio; Mattila, Jussi

    2014-05-01

    "Archean cratons are relatively flat, stable regions of the crust that have remained undeformed since the Precambrian, forming the ancient cores of the continents" (King, EPSL, 2005). While this type of statement is supported by a wealth of constraints in the case of episodes of thoroughgoing ductile deformation affecting shield regions of Archean and also Peleoproterozoic age, a growing amount of research indicates that shields are not nearly as structurally stable within the broad field of environmental conditions leading to brittle deformation. In fact, old crystalline basements usually present compelling evidence of long brittle deformation histories, often very complex and challenging to unfold. Recent structural and geochronological studies point to a significant mechanical instability of the shield areas, wherein large volumes of 'stable' rocks actually can become saturated with fractures and brittle faults soon after regional cooling exhumes them to below c. 300-350° C. How cold, rigid and therefore strong shields respond to applied stresses remains, however, still poorly investigated and understood. This in turn precludes a better definition of the shallow rheological properties of large, old crystalline blocks. In particular, we do not yet have good constraints on the mechanisms of mechanical reactivation that control the partial (if not total) accommodation of new deformational episodes by preexisting structures, which remains a key to untangle brittle histories lasting several hundred Myr. In our analysis, we use the Svecofennian Shield (SS) as an example of a supposedly 'stable' region with Archean nucleii and Paleoproterozoic cratonic areas to show how it is possible to unravel the details of brittle histories spanning more than 1.5 Gyr. New structural and geochronological results from Finland are integrated with a review of existing data from Sweden to explore how the effects of far-field stresses are partitioned within a shield, which was growing

  1. Shielding of Electronic Systems against Transient Electromagnetic Interferences

    Directory of Open Access Journals (Sweden)

    H. Herlemann

    2005-01-01

    Full Text Available In order to protect electronic systems against the effects of transient electromagnetic interferences, shields made of electrically conductive material can be used. The subject of this paper is an electrically conductive textile. When applying the shield, a reliable measure is needed in order to determine the effectiveness of the shield to protect against electromagnetic pulses. For this purpose, a time domain measurement technique is presented using double exponential pulses. With these pulses, the susceptibility of an operating electronic device with and without the shield is determined. As a criterion of quality of a shield, the breakdown failure rate found in both cases is compared.

  2. Measurement of shielding characteristics in the prototype FBR Monju

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Shin; Sasaki, Kenji; Deshimaru, Takehide; Nakashima, Fumiaki [Japan Nuclear Cycle Development Institute, Tsuruga, Fukui (Japan)

    2000-03-01

    In the prototype fast breeder reactor Monju, shielding measurements were made around the reactor core, the primary heat transport system (PHTS), and the fuel handling and storage system during the system start-up tests at different power levels between 0% and 45%. The objectives of the tests were to evaluate the margins by which the shielding performance exceeds the original design requirements, to demonstrate the validity of the shielding analysis method, and to acquire basic data for use in future FBR design. This paper summarizes the important features of the Monju shielding structures and the shielding measurement. (author)

  3. Shield Insertion to Minimize Noise Amplitude in Global Interconnects

    Directory of Open Access Journals (Sweden)

    Kalpana.A.B

    2012-09-01

    Full Text Available Shield insertion is an effective technique for minimise crosstalk noise and signal delay uncertainty .To reduce the effects of coupling uniform or simultaneous shielding may be used on either or both sides of a signal line. Shields are ground or power lines placed between two signal wires to prevent direct coupling between them as the shield width increases, the noise amplitude decreases, in this paper inserting a shield line between two coupled interconnects is shown to be more effective in reducing crosstalk noise for different technology nodes .

  4. Evaluation of Personal Shields Used in Selected Radiology Departments

    Directory of Open Access Journals (Sweden)

    Mohsen Salmanvandi

    2015-05-01

    Full Text Available Introduction The purpose of this study was to evaluate personal shields in radiation departments of hospitals affiliated to Mashhad University of Medical Sciences. Materials and Methods First, the information related to 109 personal shields was recorded and evaluated by imaging equipment. Afterwards, the equivalent lead thickness (ELT of 62 personal shields was assessed, using dosimeter and standard lead layers at 100 kVp. Results In this study, 109 personal shields were assessed in terms of tears, holes and cracks. The results showed that 18 shields were damaged. Moreover, ELT was evaluated in 62 shields. As the results indicated, ELT was unacceptable in 8 personal shields and lower than expected in 9 shields. Conclusion According to the results, 16.5% of personal shields had defects (tears, holes and cracks and 13% of them were unacceptable in terms of ELT and needed to be replaced. Therefore, regular quality control of personal shields and evaluation of new shields are necessary at any radiation department.

  5. Current Evidence on the Socket-Shield Technique: A Systematic Review.

    Science.gov (United States)

    Gharpure, Amit Srikant; Bhatavadekar, Neel B

    2016-11-29

    The recently popularised socket shield technique involves intentional retention of a thin buccal section of the remnant root at the time of immediate implant placement to preserve the buccal crestal bone from resorption. The objective of this systematic review was to assess the literature available on the socket-shield technique and weigh its biological plausibility and long-term clinical prognosis. A Systematic Search was performed in PubMed-Medline, Embase, Web of Knowledge, Google Scholar and Cochrane Central for clinical/ animal studies up to May 2016 without restrictions of language, duration, and follow-up. The literature search revealed that 15 out of 16 articles available were case reports and series, with 12 out of 16 having less than 12 months duration. Animal histological evidence demonstrated the formation of PDL and/or cementum on the implant surfaces in contact with/ in proximity to the socket-shield. Some clinical reports indicated stable results at 12 months; however, a few studies also reported infection and resorption of the socket-shield and bone loss. It would be difficult to predict the long -term success of this technique until high-quality evidence becomes available. Given some negative results, clinicians are recommended to use this technique with caution.

  6. Attenuation of X and Gamma Rays in Personal Radiation Shielding Protective Clothing.

    Science.gov (United States)

    Kozlovska, Michaela; Cerny, Radek; Otahal, Petr

    2015-11-01

    A collection of personal radiation shielding protective clothing, suitable for use in case of accidents in nuclear facilities or radiological emergency situations involving radioactive agents, was gathered and tested at the Nuclear Protection Department of the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. Attenuating qualities of shielding layers in individual protective clothing were tested via spectra measurement of x and gamma rays, penetrating them. The rays originated from different radionuclide point sources, the gamma ray energies of which cover a broad energy range. The spectra were measured by handheld spectrometers, both scintillation and High Purity Germanium. Different narrow beam geometries were adjusted using a special testing bench and a set of various collimators. The main experimentally determined quantity for individual samples of personal radiation shielding protective clothing was x and gamma rays attenuation for significant energies of the spectra. The attenuation was assessed comparing net peak areas (after background subtraction) in spectra, where a tested sample was placed between the source and the detector, and corresponding net peak areas in spectra, measured without the sample. Mass attenuation coefficients, which describe attenuating qualities of shielding layers materials in individual samples, together with corresponding lead equivalents, were determined as well. Experimentally assessed mass attenuation coefficients of the samples were compared to the referred ones for individual heavy metals.

  7. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  8. Thermoforming plastic in lead shield construction

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, M.E.; Chow, C.H.; Loyd, M.D. (Univ. of Texas Medical Branch, Galveston (USA))

    1989-09-01

    Radiation treatments using low energy X-rays or electrons frequently require a final field defining shield to be placed on the patient's skin. A custom made lead cut-out is used to provide a close fit to a particular patient's surface contours. We have developed a procedure which utilizes POLYFORM thermoplastic to obtain a negative mold of the patient instead of the traditional plaster bandage or dental impression gel. The Polyform is softened in warm water, molded carefully over the patient's surface, and is removed when set or hardened, usually within five minutes. Then lead sheet cut-outs can be formed within this negative. For shielding cut-outs requiring thicker lead sheet, a positive is made from dental stone using this Polyform negative. We have found this procedure to be neat, fast and comfortable for both patient and the dosimetrist.

  9. Thermoforming plastic in lead shield construction.

    Science.gov (United States)

    Abrahams, M E; Chow, C H; Loyd, M D

    1989-09-01

    Radiation treatments using low energy X-rays or electrons frequently require a final field defining shield to be placed on the patient's skin. A custom made lead cut-out is used to provide a close fit to a particular patient's surface contours. We have developed a procedure which utilizes POLYFORM thermoplastic to obtain a negative mold of the patient instead of the traditional plaster bandage or dental impression gel. The Polyform is softened in warm water, molded carefully over the patient's surface, and is removed when "set" or hardened, usually within five minutes. Then lead sheet cut-outs can be formed within this negative. For shielding cut-outs requiring thicker lead sheet, a positive is made from dental stone using this Polyform negative. We have found this procedure to be neat, fast and comfortable for both patient and the dosimetrist.

  10. In-Beam Background Suppression Shield

    CERN Document Server

    Santoro, V; DiJulio, D D; Ansell, S; Bentley, P M

    2015-01-01

    The long (3ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument capabilities will be limited by it's Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks .

  11. Grounding and shielding circuits and interference

    CERN Document Server

    Morrison, Ralph

    2016-01-01

    Applies basic field behavior in circuit design and demonstrates how it relates to grounding and shielding requirements and techniques in circuit design This book connects the fundamentals of electromagnetic theory to the problems of interference in all types of electronic design. The text covers power distribution in facilities, mixing of analog and digital circuitry, circuit board layout at high clock rates, and meeting radiation and susceptibility standards. The author examines the grounding and shielding requirements and techniques in circuit design and applies basic physics to circuit behavior. The sixth edition of this book has been updated with new material added throughout the chapters where appropriate. The presentation of the book has also been rearranged in order to reflect the current trends in the field.

  12. EMC Test Report Electrodynamic Dust Shield

    Science.gov (United States)

    Carmody, Lynne M.; Boyette, Carl B.

    2014-01-01

    This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.

  13. SHIELD II: WSRT HI Spectral Line Observations

    Science.gov (United States)

    Gordon, Alex Jonah Robert; Cannon, John M.; Adams, Elizabeth A.; SHIELD II Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We present new results from WSRT HI spectral line observations of 22 galaxies in the SHIELD II sample. We explore the morphology and kinematics by comparing images of the HI surface densities and the intensity weighted velocity fields with optical images from HST, SDSS, and WIYN. In most cases the HI and stellar populations are cospatial; projected rotation velocities range from less than 10 km/s to roughly 30 km/s.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College, and by NASA through grant GO-13750 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  14. SQUID holder with high magnetic shielding

    Science.gov (United States)

    Rigby, K. W.; Marek, D.; Chui, T. C. P.

    1990-01-01

    A SQUID holder designed for high magnetic shielding is discussed. It is shown how to estimate the attenuation of the magnetic field from the normal magnetic modes for an approximate geometry. The estimate agrees satisfactorily with the attenuation measured with a commercial RF SQUID installed in the holder. The holder attenuates external magnetic fields by more than 10 to the 9th at the SQUID input. With the SQUID input shorted, the response to external fields is 0.00001 Phi(0)/G.

  15. Homogeneous Dielectric Equivalents of Composite Material Shields

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper deals with the methodology of replacing complicated parts of an airplane skin by simple homogeneous equivalents, which can exhibit similar shielding efficiency. On one hand, the airplane built from the virtual homogeneous equivalents can be analyzed with significantly reduced CPU-time demands and memory requirements. On the other hand, the equivalent model can estimate the internal fields satisfactory enough to evaluate the electromagnetic immunity of the airplane.

  16. Shielding design for PWR in France

    Energy Technology Data Exchange (ETDEWEB)

    Champion, G.; Charransol; Le Dieu de Ville, A.; Nimal, J.C.; Vergnaud, T.

    1983-05-01

    Shielding calculation scheme used in France for PWR is presented here for 900 MWe and 1300 MWe plants built by EDF the French utility giving electricity. Neutron dose rate at areas accessible by personnel during the reactor operation is calculated and compared with the measurements which were carried out in 900 MWe units up to now. Measurements on the first French 1300 MWe reactor are foreseen at the end of 1983.

  17. Heavy Metal Pad Shielding during Fluoroscopic Interventions

    OpenAIRE

    Dromi, Sergio; Wood, Bradford J.; Oberoi, Jay; Neeman, Ziv

    2006-01-01

    Significant direct and scatter radiation doses to patient and physician may result from routine interventional radiology practice. A lead-free disposable tungsten antimony shielding pad was tested in phantom patients during simulated diagnostic angiography procedures. Although the exact risk of low doses of ionizing radiation is unknown, dramatic dose reductions can be seen with routine use of this simple, sterile pad made from lightweighttungsten antimony material.

  18. An attenuation Layer for Electromagnetic Shielding in X- Band Frequency

    Directory of Open Access Journals (Sweden)

    vida Zaroushani

    2015-06-01

    Full Text Available Uncontrolled exposure to X-band frequency leads to health damage. One of the principles of radiation protection is shielding. But, conventional shielding materials have disadvantages. Therefore, studies of novel materials, as an alternative to conventional shielding materials, are required to obtain new electromagnetic shielding material. Therefore, this study investigated the electromagnetic shielding of two component epoxy thermosetting resin for the X - band frequency with workplace approach. Two components of epoxy resin mixed according to manufacturing instruction with the weight ratio that was 100:10 .Epoxy plates fabricated in three different thicknesses (2, 4 and 6mm and shielding effectiveness measured by Vector Network Analyzer. Then, shielding effectiveness measured by the scattering parameters.The results showed that 6mm thickness of epoxy had the highest and 2mm had the lowest average of shielding effectiveness in X-band frequency that is 4.48 and 1.9 dB, respectively. Also, shielding effectiveness increased by increasing the thickness. But this increasing is useful up to 4mm. Percentage shielding effectiveness of attenuation for 6, 4 and 2mm thicknesses is 64.35%, 63.31% and 35.40%. Also, attenuation values for 4mm and 6mm thicknesses at 8.53 GHz and 8.52 GHz frequency are 77.15% and 82.95%, respectively, and can be used as favourite shields for the above frequency. 4mm-Epoxy is a suitable candidate for shielding application in X-band frequency range but, in the lower section, 6mm thickness is recommended. Finely, the shielding matrix can be used for selecting the proper thickness for electromagnetic shielding in X- Band frequency.

  19. Beta Bremsstrahlung dose in concrete shielding

    Science.gov (United States)

    Manjunatha, H. C.; Chandrika, B. M.; Rudraswamy, B.; Sankarshan, B. M.

    2012-05-01

    In a nuclear reactor, beta nuclides are released during nuclear reactions. These betas interact with shielding concrete and produces external Bremsstrahlung (EB) radiation. To estimate Bremsstrahlung dose and shield efficiency in concrete, it is essential to know Bremsstrahlung distribution or spectra. The present work formulated a new method to evaluate the EB spectrum and hence Bremsstrahlung dose of beta nuclides (32P, 89Sr, 90Sr-90Y, 90Y, 91Y, 208Tl, 210Bi, 234Pa and 40K) in concrete. The Bremsstrahlung yield of these beta nuclides in concrete is also estimated. The Bremsstrahlung yield in concrete due to 90Sr-90Y is higher than those of other given nuclides. This estimated spectrum is accurate because it is based on more accurate modified atomic number (Zmod) and Seltzer's data, where an electron-electron interaction is also included. Presented data in concrete provide a quick and convenient reference for radiation protection. The present methodology can be used to calculate the Bremsstrahlung dose in nuclear shielding materials. It can be quickly employed to give a first pass dose estimate prior to a more detailed experimental study.

  20. Beta radiation shielding with lead and plastic: effect on bremsstrahlung radiation when switching the shielding order.

    Science.gov (United States)

    Van Pelt, Wesley R; Drzyzga, Michael

    2007-02-01

    Lead and plastic are commonly used to shield beta radiation. Radiation protection literature is ubiquitous in advising the placement of plastic first to absorb all the beta particles before any lead shielding is used. This advice is based on the well established theory that radiative losses (bremsstrahlung production) are more prevalent in higher atomic number (Z) materials than in low Z materials. Using 32P beta radiation, we measured bremsstrahlung photons transmitted through lead and plastic (Lucite) shielding in different test configurations to determine the relative efficacy of lead alone, plastic alone, and the positional order of lead and plastic. With the source (32P) and detector held at a constant separation distance, we inserted lead and/or plastic absorbers and measured the reduction in bremsstrahlung radiation level measured by the detector. With these test conditions, analysis of measured bremsstrahlung radiation in various thicknesses and configurations of lead and plastic shielding shows the following: placing plastic first vs. lead first reduces the transmitted radiation level only marginally (10% to 40%); 2 mm of additional lead is sufficient to correct the "mistake" of placing the lead first; and for equal thicknesses or weights of lead and plastic, lead is a more efficient radiation shield than plastic.

  1. Analysis and improvement of cyclotron thallium target room shield.

    Science.gov (United States)

    Hajiloo, N; Raisali, G; Aslani, G

    2008-01-01

    Because of high neutron and gamma-ray intensities generated during bombardment of a thallium-203 target, a thallium target-room shield and different ways of improving it have been investigated. Leakage of neutron and gamma ray dose rates at various points behind the shield are calculated by simulating the transport of neutrons and photons using the Monte Carlo N Particle transport computer code. By considering target-room geometry, its associated shield and neutron and gamma ray source strengths and spectra, three designs for enhancing shield performance have been analysed: a shielding door at the maze entrance, covering maze walls with layers of some effective materials and adding a shadow-shield in the target room in front of the radiation source. Dose calculations were carried out separately for different materials and dimensions for all the shielding scenarios considered. The shadow-shield has been demonstrated to be one suitable for neutron and gamma dose equivalent reduction. A 7.5-cm thick polyethylene shadow-shield reduces both dose equivalent rate at maze entrance door and leakage from the shield by a factor of 3.

  2. Radiation attenuation by lead and nonlead materials used in radiation shielding garments.

    Science.gov (United States)

    McCaffrey, J P; Shen, H; Downton, B; Mainegra-Hing, E

    2007-02-01

    The attenuating properties of several types of lead (Pb)-based and non-Pb radiation shielding materials were studied and a correlation was made of radiation attenuation, materials properties, calculated spectra and ambient dose equivalent. Utilizing the well-characterized x-ray and gamma ray beams at the National Research Council of Canada, air kerma measurements were used to compare a variety of commercial and pre-commercial radiation shielding materials over mean energy ranges from 39 to 205 keV. The EGSnrc Monte Carlo user code cavity. cpp was extended to provide computed spectra for a variety of elements that have been used as a replacement for Pb in radiation shielding garments. Computed air kerma values were compared with experimental values and with the SRS-30 catalogue of diagnostic spectra available through the Institute of Physics and Engineering in Medicine Report 78. In addition to garment materials, measurements also included pure Pb sheets, allowing direct comparisons to the common industry standards of 0.25 and 0.5 mm "lead equivalent." The parameter "lead equivalent" is misleading, since photon attenuation properties for all materials (including Pb) vary significantly over the energy spectrum, with the largest variations occurring in the diagnostic imaging range. Furthermore, air kerma measurements are typically made to determine attenuation properties without reference to the measures of biological damage such as ambient dose equivalent, which also vary significantly with air kerma over the diagnostic imaging energy range. A single material or combination cannot provide optimum shielding for all energy ranges. However, appropriate choice of materials for a particular energy range can offer significantly improved shielding per unit mass over traditional Pb-based materials.

  3. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    Directory of Open Access Journals (Sweden)

    L. Ran

    2014-01-01

    Full Text Available Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented.

  4. Neutron shielding performance of water-extended polyester

    Energy Technology Data Exchange (ETDEWEB)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Nuclear Studies (Mexico); Vega Carrillo, H.R.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Electric Engineering Academic Units (Mexico); Gallego, E.; Lorente, A. [Madrid Univ. Politecnica, cNuclear Engineering Department (Mexico)

    2006-07-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  5. Latest experiences in inspecting the inside of BWR vessel shields

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.

    2001-07-01

    In the last few years, the owners of BWR nuclear power plants have been forced to address new fuel shield inspection requirements, TECNATOM has responded to this situation by launching the TEIDE projects, which include development of an inspection machine and the corresponding Non-Destructive Tests to examine the inside of this shield. With these projects, TECNATOM has performed more than 12 fuel shield inspections in different countries. This article describes the experience gained in the last three years. (Author)

  6. The heterogeneous anti-radiation shield for spacecraft*

    Science.gov (United States)

    Telegin, S. V.; Draganyuk, O. N.

    2016-04-01

    The paper deals with modeling of elemental composition and properties of heterogeneous layers in multilayered shields to protect spacecraft onboard equipment from radiation emitted by the natural Earth’s radiation belt. This radiation causes malfunctioning of semiconductor elements in electronic equipment and may result in a failure of the spacecraft as a whole. We consider four different shield designs and compare them to the most conventional radiation-protective material for spacecraft - aluminum. Out of light and heavy chemical elements we chose the materials with high reaction cross sections and low density. The mass attenuation coefficient of boron- containing compounds is 20% higher than that of aluminum. Heterogeneous shields consist of three layers: a glass cloth, borated material, and nickel. With a protective shield containing heavy metal the output bremsstrahlung can be reduced. The amount of gamma rays that succeed to penetrate the shield is 4 times less compared to aluminum. The shields under study have the thicknesses of 5.95 and 6.2 mm. A comparative analysis of homogeneous and multilayered protective coatings of the same chemical composition has been performed. A heterogeneous protective shield has been found to be advantageous in weight and shielding properties over its homogeneous counterparts and aluminum. The dose characteristics and transmittance were calculated by the Monte Carlo method. The results of our study lead us to conclude that a three-layer boron carbide shield provides the most effective protection from radiation. This shield ensures twice as low absorbed dose and 4 times less the number of penetrated gamma-ray photons compared to its aluminum analogue. Moreover, a heterogeneous shield will have a weight 10% lighter than aluminum, with the same attenuation coefficient of the electron flux. Such heterogeneous shields can be used to protect spacecraft launched to geostationary orbit. Furthermore, a protective boron-containing and

  7. Optimal Shielding for Minimum Materials Cost of Mass

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Robert D. [PPPL

    2014-08-01

    Material costs dominate some shielding design problems. This is certainly the case for manned nuclear power space applications for which shielding is essential and the cost of launching by rocket from earth is high. In such situations or in those where shielding volume or mass is constrained, it is important to optimize the design. Although trial and error synthesis methods may succeed a more systematic approach is warranted. Design automation may also potentially reduce engineering costs.

  8. Radiation Shielding at High-Energy Electron and Proton Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Sayed H.; /SLAC; Cossairt, J.Donald; /Fermilab; Liu, James C.; /SLAC

    2007-12-10

    The goal of accelerator shielding design is to protect the workers, general public, and the environment against unnecessary prompt radiation from accelerator operations. Additionally, shielding at accelerators may also be used to reduce the unwanted background in experimental detectors, to protect equipment against radiation damage, and to protect workers from potential exposure to the induced radioactivity in the machine components. The shielding design for prompt radiation hazards is the main subject of this chapter.

  9. Nutrient Shielding in Clusters of Cells

    CERN Document Server

    Lavrentovich, Maxim O; Nelson, David R

    2013-01-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells' spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness $\\ell$ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter $\

  10. Interstitial rotating shield brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Quentin E., E-mail: quentin-adams@uiowa.edu; Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Enger, Shirin A. [Medical Physics Unit, McGill University, 1650 Cedar Ave, Montreal, Quebec H3G 1A4 (Canada)

    2014-05-15

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq{sup 153}Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D{sub 98%}), I-RSBT reduced urethral D{sub 0.1cc} below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D{sub 1cc} was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D{sub 1cc} was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq {sup 153}Gd sources. Conclusions: For the case considered, the proposed{sup 153}Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29

  11. Space Shuttle Orbiter AFT heat shield seal

    Science.gov (United States)

    Walkover, L. J.

    1979-01-01

    The evolution of the orbiter aft heat shield seal (AHSS) design, which involved advancing mechanical seal technology in severe thermal environment is discussed. The baseline design, various improvements for engine access, and technical problem solution are presented. It is a structure and mechanism at the three main propulsion system (MPS) engine interfaces to the aft compartment structure. Access to each MPS engine requires disassembly and removal of the AHSS. Each AHSS accommodates the engine movement, is exposed to an extremely high temperature environment, and is part of the venting control of the aft compartment.

  12. Self-shielding clumps in starburst clusters

    CERN Document Server

    Palouš, Jan; Ehlerová, Soňa; Tenorio-Tagle, Guillermo

    2016-01-01

    Young and massive star clusters above a critical mass form thermally unstable clumps reducing locally the temperature and pressure of the hot 10$^{7}$~K cluster wind. The matter reinserted by stars, and mass loaded in interactions with pristine gas and from evaporating circumstellar disks, accumulate on clumps that are ionized with photons produced by massive stars. We discuss if they may become self-shielded when they reach the central part of the cluster, or even before it, during their free fall to the cluster center. Here we explore the importance of heating efficiency of stellar winds.

  13. Radiation-Shielding Polymer/Soil Composites

    Science.gov (United States)

    Sen, Subhayu

    2007-01-01

    It has been proposed to fabricate polymer/ soil composites primarily from extraterrestrial resources, using relatively low-energy processes, with the original intended application being that habitat structures constructed from such composites would have sufficient structural integrity and also provide adequate radiation shielding for humans and sensitive electronic equipment against the radiation environment on the Moon and Mars. The proposal is a response to the fact that it would be much less expensive to fabricate such structures in situ as opposed to transporting them from Earth.

  14. Cerrobend shielding stents for buccal carcinoma patients

    Directory of Open Access Journals (Sweden)

    Karma Yangchen

    2016-01-01

    Full Text Available Buccal carcinoma is one of the most common oral malignant neoplasms, especially in the South Asian region. Radiotherapy, which plays a significant role in the treatment of this carcinoma, has severe adverse effects. Different types of prosthesis may be constructed to protect healthy tissues from the adverse effects of treatment and concentrate radiation in the region of the tumor mass. However, the technique for fabrication of shielding stent with Lipowitz's alloy (cerrobend/Wood's alloy has not been well documented. This article describes detailed technique for fabrication of such a stent for unilateral buccal carcinoma patients to spare the unaffected oral cavity from potential harmful effects associated with radiotherapy.

  15. Gamma shielding properties of Tamoxifen drug

    Science.gov (United States)

    Kanberoglu, Gulsah Saydan; Oto, Berna; Gulebaglan, Sinem Erden

    2017-02-01

    Tamoxifen (MW=371 g/mol) is an endocrine therapeutic drug widely prescribed as chemopreventive in women to prevent and to treat all stages of breast cancer. It is also being studied for other types of cancer. In this study, we have calculated some gamma shielding parameters such as mass attenuation coefficient (μρ), effective atomic number (Zeff) and electron density (Nel) for Tamoxifen drug. The values of μρ were calculated using WinXCom computer program and then the values of Zeff and Nel were derived using μρ values in the wide energy range (1 keV - 100 GeV).

  16. InfuShield: a shielded enclosure for administering therapeutic radioisotope treatments using standard syringe pumps.

    Science.gov (United States)

    Rushforth, Dominic P; Pratt, Brenda E; Chittenden, Sarah J; Murray, Iain S; Causer, Louise; Grey, Matthew J; Gear, Jonathan I; Du, Yong; Flux, Glenn D

    2017-03-01

    The administration of radionuclide therapies presents significant radiation protection challenges. The aim of this work was to develop a delivery system for intravenous radioisotope therapies to substantially moderate radiation exposures to staff and operators. A novel device (InfuShield) was designed and tested before being used clinically. The device consists of a shielded enclosure which contains the therapeutic activity and, through the hydraulic action of back-to-back syringes, allows the activity to be administered using a syringe pump external to the enclosure. This enables full access to the pump controls while simultaneously reducing dose to the operator. The system is suitable for use with all commercially available syringe pumps and does not require specific consumables, maximising both the flexibility and economy of the system. Dose rate measurements showed that at key stages in an I mIBG treatment procedure, InfuShield can reduce dose to operators by several orders of magnitude. Tests using typical syringes and infusion speeds show no significant alteration in administered flow rates (maximum of 1.2%). The InfuShield system provides a simple, safe and low cost method of radioisotope administration.

  17. Gravity Scaling of a Power Reactor Water Shield

    Science.gov (United States)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  18. Neutron shielding for a {sup 252} Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M. [Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Eduardo Gallego, Alfredo Lorente [Depto. de Ingenieria Nuclear, ETS Ingenieros Industriales, Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)]. e-mail: fermineutron@yahoo.com

    2006-07-01

    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source. During calculations a detailed model for the {sup 252}Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare {sup 252}Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  19. Polyolefin-Nanocrystal Composites for Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — EIC Laboratories Inc. is proposing a lightweight multifunctional polymer/nanoparticle composite for radiation shielding during long-duration lunar missions. Isolated...

  20. Movable radiation shields for the CLEO II silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, D.J.; Ward, C.W.; Alexander, J.; Cherwinka, J.; Henderson, S. [Cornell Univ., Ithaca, NY (United States); Cinabro, D. [Harvard University, Cambridge, MA 02138 (United States); Fast, J. [Purdue University, Lafayette, IN 47907 (United States); Morrison, R. [University of California at Santa Barbara, Santa Barbara, CA 93106 (United States); O`Neill, M. [CRPP, Carleton University, Ottawa, Ont. (Canada)

    1998-02-11

    Two movable tungsten radiation shields were installed on the beam pipe during the upgrade of the CLEO II detector, operating at the Cornell electron storage ring (CESR). This upgrade included the installation of a silicon vertex detector (SVX) and the purpose of the shields is to protect the SVX readout electronics from synchrotron radiation produced during injection and non-high-energy physics operation of CESR. Shield motion is controlled remotely by cables, keeping the associated motors and controls outside the detection volume. We discuss the design and performance of the radiation shields and the associated control system. (orig.). 8 refs.

  1. Graphene shield enhanced photocathodes and methods for making the same

    Science.gov (United States)

    Moody, Nathan Andrew

    2014-09-02

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  2. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  3. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  4. Crack tip shielding and anti-shielding effects of parallel cracks for a superconductor slab under an electromagnetic force

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhi Wen; Zhou, You He [Ministry of Education, Singapore (China); Lee, Kang Yong [Yonsei University, Seoul (Korea, Republic of)

    2012-02-15

    In this letter, the shielding or anti-shielding effect is firstly applied to obtain the behavior of two parallel cracks in a two-dimensional type-II superconducting under electromagnetic force. Fracture analysis is performed by the finite element method and the magnetic behavior of superconductor is described by the critical state Bean model. The stress intensity factors at the crack tips can be obtained and discussed for decreasing field after zero-field cooling. The shielding or anti-shielding effect at the crack tips depend on the distance between two parallel cracks and the crack length. The results indicate that the shielding effects of the two parallel cracks increase when the distance between the two parallel cracks decreases. It can be also obtained that the superconductors with shorter cracks has more remarkable shielding effect than those with longer cracks.

  5. SHIELD: Observations of Three Candidate Interacting Systems

    Science.gov (United States)

    Ruvolo, Elizabeth; Miazzo, Masao; Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    Abstract:The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies. Using the now-complete Arecibo Legacy Fast ALFA (ALFALFA) source catalog, 82 systems are identified that meet distance, line width, and HI flux criteria for being gas-rich, low-mass galaxies. These systems harbor neutral gas reservoirs smaller than 3x10^7 M_sun, thus populating the faint end of the HI mass function with statistical confidence for the first time. In a companion poster, we present new Karl G. Jansky Very Large Array D-configuration HI spectral line observations of 32 previously unobserved galaxies. Three galaxies in that study have been discovered to lie in close angular proximity to more massive galaxies. Here we present VLA HI imaging of these candidate interacting systems. We compare the neutral gas morphology and kinematics with optical images from SDSS. We discuss the frequency of low-mass galaxies undergoing tidal interaction in the complete SHIELD sample.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  6. Technique and results of cartilage shield tympanoplasty

    Directory of Open Access Journals (Sweden)

    Sohil I Vadiya

    2014-01-01

    Full Text Available Aim: Use of cartilage for repair of tympanic membrane is recommended by many otologists. The current study aims at evaluating results of cartilage shield tympanoplasty in terms of graft take up and hearing outcomes. Material and Methods: In the current study, cartilage shield tympanoplasty(CST is used in ears with high risk perforations of the tympanic membrane. A total of 40 ears were selected where type I CST was done in 30 ears and type III CST was done in 10 ears. Results: An average of 37.08 dB air bone gap(ABG was present in pre operative time and an average of 19.15 dB of ABG was observed at 6 months after the surgery with hearing gain of 17.28 dB on average was observed. Graft take up rate of 97.5% was observed. The technique is modified to make it easier and to minimize chances of lateralization of graft. Conclusion: The hearing results of this technique are comparable to other methods of tympanic membrane repair.

  7. Discussion on variance reduction technique for shielding

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    As the task of the engineering design activity of the international thermonuclear fusion experimental reactor (ITER), on 316 type stainless steel (SS316) and the compound system of SS316 and water, the shielding experiment using the D-T neutron source of FNS in Japan Atomic Energy Research Institute has been carried out. However, in these analyses, enormous working time and computing time were required for determining the Weight Window parameter. Limitation or complication was felt when the variance reduction by Weight Window method of MCNP code was carried out. For the purpose of avoiding this difficulty, investigation was performed on the effectiveness of the variance reduction by cell importance method. The conditions of calculation in all cases are shown. As the results, the distribution of fractional standard deviation (FSD) related to neutrons and gamma-ray flux in the direction of shield depth is reported. There is the optimal importance change, and when importance was increased at the same rate as that of the attenuation of neutron or gamma-ray flux, the optimal variance reduction can be done. (K.I.)

  8. The AA disappearing under concrete shielding

    CERN Multimedia

    1982-01-01

    When the AA started up in July 1980, the machine stood freely in its hall, providing visitors with a view through the large window in the AA Control Room. The target area, in which the high-intensity 26 GeV/c proton beam from the PS hit the production target, was heavily shielded, not only towards the outside but also towards the AA-Hall. However, electrons and pions emanating from the target with the same momentum as the antiprotons, but much more numerous, accompanied these through the injection line into the AA ring. The pions decayed with a half-time corresponding to approximately a revolution period (540 ns), whereas the electrons lost energy through synchrotron radiation and ended up on the vacuum chamber wall. Electrons and pions produced the dominant component of the radiation level in the hall and the control room. With operation times far exceeding original expectations, the AA had to be buried under concrete shielding in order to reduce the radiation level by an order of magnitude.

  9. MicroShield/ISOCS gamma modeling comparison.

    Energy Technology Data Exchange (ETDEWEB)

    Sansone, Kenneth R

    2013-08-01

    Quantitative radiological analysis attempts to determine the quantity of activity or concentration of specific radionuclide(s) in a sample. Based upon the certified standards that are used to calibrate gamma spectral detectors, geometric similarities between sample shape and the calibration standards determine if the analysis results developed are qualitative or quantitative. A sample analyzed that does not mimic a calibrated sample geometry must be reported as a non-standard geometry and thus the results are considered qualitative and not quantitative. MicroShieldR or ISOCSR calibration software can be used to model non-standard geometric sample shapes in an effort to obtain a quantitative analytical result. MicroShieldR and Canberras ISOCSR software contain several geometry templates that can provide accurate quantitative modeling for a variety of sample configurations. Included in the software are computational algorithms that are used to develop and calculate energy efficiency values for the modeled sample geometry which can then be used with conventional analysis methodology to calculate the result. The response of the analytical method and the sensitivity of the mechanical and electronic equipment to the radionuclide of interest must be calibrated, or standardized, using a calibrated radiological source that contains a known and certified amount of activity.

  10. A superconducting shield to protect astronauts

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  11. Concrete enclosure to shield a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Villagrana M, L. E.; Rivera P, E.; De Leon M, H. A.; Soto B, T. G.; Hernandez D, V. M.; Vega C, H. R., E-mail: emmanuelvillagrana@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    In the aim to design a shielding for a {sup 239}PuBe isotopic neutron source several Monte Carlo calculations were carried out using MCNP5 code. First, a point-like source was modeled in vacuum and the neutron spectrum and the ambient dose equivalent were calculated at several distances ranging from 5 up to 150 cm, these calculations were repeated including air, and a 1 x 1 x 1 m{sup 3} enclosure that was shielded with 5, 15, 20, 25, 30, 50 and 80 cm-thick Portland type concrete walls. At all the points located inside the enclosure neutron spectra from 10{sup -8} up 0.5 MeV were the same regardless the distance from the source showing the room-return effect, for energies larger than 0.5 MeV neutron spectra are diminished as the distance increases. Outside the enclosure it was noticed that neutron spectra becomes -softer- as the concrete thickness increases due to reduction of mean neutron energy. With the ambient dose values the attenuation curve in terms of concrete thickness was calculated. (Author)

  12. Optimization of Shielded Scintillator for Neutron Detection

    Science.gov (United States)

    Belancourt, Patrick; Morrison, John; Akli, Kramer; Freeman, Richard; High Energy Density Physics Team

    2011-10-01

    The High Energy Density Physics group is interested in the basic science of creating a neutron and gamma ray source. The neutrons and gamma rays are produced by accelerating ions via a laser into a target and creating fusion neutrons and gamma rays. A scintillator and photomultiplier tube will be used to detect these neutrons. Neutrons and photons produce ionizing radiation in the scintillator which then activates metastable states. These metastable states have both short and long decay rates. The initial photon count is orders of magnitude higher than the neutron count and poses problems for accurately detecting the neutrons due to the long decay state that is activated by the photons. The effects of adding lead shielding on the temporal response and signal level of the neutron detector will be studied in an effort to minimize the photon count without significant reduction to the temporal resolution of the detector. MCNP5 will be used to find the temporal response and energy deposition into the scintillator by adding lead shielding. Results from the simulations will be shown. Optimization of our scintillator neutron detection system is needed to resolve the neutron energies and neutron count of a novel neutron and gamma ray source.

  13. Enhanced radiation shielding with galena concrete

    Directory of Open Access Journals (Sweden)

    Hadad Kamal

    2015-01-01

    Full Text Available A new concrete, containing galena mineral, with enhanced shielding properties for gamma sources is developed. To achieve optimized shielding properties, ten types of galena concrete containing different mixing ratios and a reference normal concrete of 2300 kg/m3 density are studied experimentally and numerically using Monte Carlo and XCOM codes. For building galena concrete, in addition to the main composition, micro-silica and water, galena mineral (containing lead were used. The built samples have high density of 4470 kg/m3 to 5623 kg/m3 and compressive strength of 628 kg/m2 to 685 kg/m2. The half and tenth value layers (half value layer and tenth value layers for the galena concrete, when irradiated with 137Cs gamma source, were found to be 1.45 cm and 4.94 cm, respectively. When irradiated with 60Co gamma source, half value layer was measured to be 2.42 cm. The computation modeling by FLUKA and XCOM shows a good agreement between experimental and computational results.

  14. Large scale mechanical metamaterials as seismic shields

    Science.gov (United States)

    Miniaci, Marco; Krushynska, Anastasiia; Bosia, Federico; Pugno, Nicola M.

    2016-08-01

    Earthquakes represent one of the most catastrophic natural events affecting mankind. At present, a universally accepted risk mitigation strategy for seismic events remains to be proposed. Most approaches are based on vibration isolation of structures rather than on the remote shielding of incoming waves. In this work, we propose a novel approach to the problem and discuss the feasibility of a passive isolation strategy for seismic waves based on large-scale mechanical metamaterials, including for the first time numerical analysis of both surface and guided waves, soil dissipation effects, and adopting a full 3D simulations. The study focuses on realistic structures that can be effective in frequency ranges of interest for seismic waves, and optimal design criteria are provided, exploring different metamaterial configurations, combining phononic crystals and locally resonant structures and different ranges of mechanical properties. Dispersion analysis and full-scale 3D transient wave transmission simulations are carried out on finite size systems to assess the seismic wave amplitude attenuation in realistic conditions. Results reveal that both surface and bulk seismic waves can be considerably attenuated, making this strategy viable for the protection of civil structures against seismic risk. The proposed remote shielding approach could open up new perspectives in the field of seismology and in related areas of low-frequency vibration damping or blast protection.

  15. Earth pressure balance control for EPB shield

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper mainly deals with the critical technology of earth pressure balance (EPB) control in shield tunneling. On the assumption that the conditioned soil in the working chamber of the shield is plasticized, a theoretical principle for EPB control is proposed. Dynamic equilibrium of intake volume and discharge volume generated by thrust and discharge is modeled theoretically to simulate the earth pressure variation during excavating. The thrust system and the screw conveyor system for earth pressure control are developed based on the electro-hydraulic technique. The control models of the thrust speed regulation of the cylinders and the rotating speed adjustment of the screw conveyor are also presented. Simulation for earth pressure control is conducted with software AMESim and MATLAB/Simulink to verify the models. Experiments are carried out with intake control in clay soil and discharge control in sandy gravel section, respectively. The experimental results show that the earth pressure variations in the working chamber can be kept at the expected value with a practically acceptable precision by means of real-time tuning the thrust speed or the revolving speed of discharge system.

  16. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  17. Evidence for bacterially generated hydrocarbon gas in Canadian shield and fennoscandian shield rocks

    Science.gov (United States)

    Sherwood Lollar, B.; Frape, S. K.; Fritz, P.; Macko, S. A.; Welhan, J. A.; Blomqvist, R.; Lahermo, P. W.

    1993-12-01

    Hydrocarbon-rich gases found in crystalline rocks on the Canadian and Fennoscandian shields are isotopically and compositionally similar, suggesting that such gases are a characteristic feature of Precambrian Shield rocks. Gases occure in association with saline groundwaters and brines in pressurized "pockets" formed by sealed fracture systems within the host rocks. When released by drilling activities, gas pressures as high as 5000 kPa have been recorded. Typical gas flow rates for individual boreholes range from 0.25 L/min to 4 L/min. The highest concentrations of CH 4 are found in the deepest levels of the boreholes associated with CaNaCl (and NaCaCl) brines. N 2 is the second major component of the gases and with CH 4 accounts for up to 80 to >90 vol%. Higher hydrocarbon (C 2+) concentrations range from C2 = C3) ratios from 10-1000. Isotopically the gases show a wide range of values overall ( σ 13C = -57.5 to -41.1%; σ D = -245 to -470‰ ) but a relatively tight cluster of values within each sampling locality. The Enonkoski Mine methanes are unique with σ 13C values between -65.4 and -67.3‰ and σD values between -297 and -347‰. The shield gases are not readily reconcilable with conventional theories of methanogenesis. The range of C1/(C2 + C3) ratios for the shield gases is too low to be consistent with an entirely bacterial origin. In addition, σD CH 4 values are in general too depleted in the heavy isotope to be produced by thermogenic methanogenesis or by secondary alteration processes such as bacterial oxidation or migration. However, isotopic and compositional evidence indicates that bacterially derived gas can account for a significant component of the gas at all shield sites. Conventional bacterial gas accounts for 75-94 vol% of the occurrences at Enonkoski Mine in Finland. At each of the other shield sites, bacterial gas can account for up to 30-50 vol% of the total gas accumulation. This study and other recent evidence of active

  18. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  19. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  20. Gonad shielding in paediatric pelvic radiography: disadvantages prevail over benefit

    NARCIS (Netherlands)

    Frantzen, M.J.; Robben, S.; Postma, A.A.; Zoetelief, J.; Wildberger, J.E.; Kemerink, G.J.

    2012-01-01

    Objective To re-evaluate gonad shielding in paediatric pelvic radiography in terms of attainable radiation risk reduction and associated loss of diagnostic information. Methods A study on patient dose and the quality of gonad shielding was performed retrospectively using 500 pelvic radiographs of ch

  1. Preliminary review of Precambrian Shield rocks for potential waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yardley, D.H.; Goldich, S.S.

    1975-11-01

    This review of the Canadian Shield is primarily concerned with the part (such as in the Lake Superior region) that is seismically the least active of the North American continent. The crystalline metamorphic and igneous rocks of the more stable elements of the shield provide excellent possibilities for dry excavations suitable for long-term storage of radioactive waste materials. (DLC)

  2. Shield-related signal instability in magnetoresistive heads

    Science.gov (United States)

    Nakamoto, K.; Narumi, S.; Kawabe, T.; Kobayashi, T.; Fukui, H.

    1999-04-01

    Magnetoresistive (MR) heads with various upper shield materials were fabricated and their read-write performance was tested to clarify the shield-related effect on the signal instability in MR heads. Comparison of a head with an upper shield layer of higher magnetostriction and one with lower magnetostriction showed that the latter had better stability in the output signal of a repeated read-write test. The output amplitude of a head with an upper shield layer of Co52Ni27Fe21 film, which had a high magnetostriction of about +3×10-6, was varied by applying a low external longitudinal field, which affected just the shield layers. This change in the output corresponded well to the output variation in the repeated read-write test. The spin scanning electron micrograph image of this head revealed a distinct domain wall in the air bearing surface near the MR sensor. These results indicated that instability of the domain structure in a shield layer was one of the causes of the signal instability in MR heads; an unusual bias field from a domain wall of the shield layer, which could be moved easily by a repeated writing operation, caused a variation in the biased state of the MR layer which resulted in the signal variation, and that low magnetostriction was required for a shield material to achieve a stable head.

  3. 30 CFR 57.14213 - Ventilation and shielding for welding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 57.14213... welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to persons. (b) All welding operations shall be well-ventilated....

  4. Shielding Area Optimization Under the Solution of Interconnect Crosstalk

    Institute of Scientific and Technical Information of China (English)

    Yi-Ci Cai; Xin Zhao; Qiang Zhou; Xian-Long Hong

    2005-01-01

    As the technology advances into deep sub-micron era, crosstalk reduction is of paramount importance for signal integrity. Simultaneous shield insertion and net ordering (SINO) has been shown to be effective to reduce both capacitive and inductive couplings. As it introduces extra shields, area minimization is also critical for an efficient SINO algorithm.In this paper, three novel algorithms using fewer shields to solve crosstalk reduction problem with RLC noise constraint are proposed, namely, net coloring (NC), efficient middle shield insertion (EMSI) and NC+EMSI two-step algorithm. Compared with the corresponding algorithms in previous work, these algorithms can reduce shielding area up to 25.77%, 46.19%, and7.17%, respectively, with short runtime.

  5. Shielding of CO from dissociating radiation in interstellar clouds

    Science.gov (United States)

    Glassgold, A. E.; Huggins, P. J.; Langer, W. D.

    1985-01-01

    The paper investigates the photodissociation of CO in interstellar clouds in the light of recent laboratory studies which suggest that line rather than continuum processes dominate its dissociation by ultraviolet radiation. Using a simple radiative transfer model, the shielding of representative dissociating bands is estimated, including self-shielding, mutual shielding between different isotopes, and near coincidences with strong lines of H2. Each of these processes materially affects the photodestruction rates of the various isotopic species in the transition regions of molecular clouds. These results are combined with an appropriate gas phase chemical model to determine how the abundances of the CO isotopes vary with depth into the cloud. It is found that self-shielding and mutual shielding cause significant variations in isotopic ratios. In addition, fractionation enhances species containing C-13. The relationship between the column densities of CO and H2 is found to vary for the different isotopes and to be sensitive to local conditions.

  6. Design of ITER vacuum vessel in-wall shielding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X., E-mail: xiaoyu.wang@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ioki, K. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Morimoto, M. [Mitsubishi Heavy Industries, 1-1, Wadasaki-cho 1-chome, Hyogo-ku, Kobe (Japan); Choi, C.H.; Utin, Y.; Sborchia, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); TaiLhardat, O. [Assystem EOS, ZAC SAINT MARTIN, 23 rue Benjamin Franklin, 84120 Pertuis (France); Mille, B.; Terasawa, A.; Gribov, Y.; Barabash, V.; Polunovskiy, E.; Dani, S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pathak, H.; Raval, J. [ITER-India, Institute for Plasma Research, Gandhinagar 382025 (India); Liu, S.; Lu, M.; Du, S. [Institute of Plasma Physics, China Academy of Sciences, Shushanhu Road 350, Hefei (China)

    2014-10-15

    The ITER vacuum vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with in-wall shielding (IWS) and cooling water. The main purpose of the in-wall shielding is to provide neutron shielding together with the blanket and VV shells and water during ITER plasma operation and to reduce the ripple of the Toroidal magnetic field. Based on ITER vacuum vessel structure and related requirements, in-wall shielding are designed as about 8900 individual blocks with different sizes and several different materials distributed over nine vessel sectors and nine field joints of vessel sectors. This paper presents the design of the IWS, considering loads, structural stresses and assembly method, and also shows neutron shielding effect and TF ripple reduced by the IWS.

  7. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer.

    Science.gov (United States)

    Cao, Gang; Wang, Xiaoping; Xu, Yong; Liu, Sheng

    2016-08-13

    This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation.

  8. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    Science.gov (United States)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  9. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

    Science.gov (United States)

    Shahzad, Faisal; Alhabeb, Mohamed; Hatter, Christine B.; Anasori, Babak; Man Hong, Soon; Koo, Chong Min; Gogotsi, Yury

    2016-09-01

    Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

  10. Utilizing electromagnetic shielding textiles in wireless body area networks.

    Science.gov (United States)

    Sung, Grace H H; Aoyagi, Takahiro; Hernandez, Marco; Hamaguchi, Kiyoshi; Kohno, Ryuji

    2010-01-01

    For privacy and radio propagation controls, electromagnetic shielding textile could be adopted in WBANs. The effect of including a commercially available electromagnetic shielding apron in WBANs was examined in this paper. By having both the coordinator and the sensor covered by the shielding apron, signal could be confined around the body; however signal strength can be greatly influenced by body movements. Placing the shielding apron underneath both antennas, the transmission coefficient could be on average enhanced by at least 10dB, with less variation comparing to the case when apron does not exist. Shielding textiles could be utilized in designing a smart suit to enhance WBANs performance, and to prevent signals travelling beyond its intended area.

  11. Verification of some building materials as gamma-ray shields.

    Science.gov (United States)

    Mann, Kulwinder Singh; Singla, Jyoti; Kumar, Vipan; Sidhu, G S

    2012-08-01

    The shielding properties for gamma rays of a few low Z materials were investigated. The values of the mass attenuation coefficient, equivalent atomic number, effective atomic number, exposure buildup factor and energy absorption buildup factor were calculated and used to estimate the shielding effectiveness of the samples under investigation. It has been observed that the shielding effectiveness of a sample is directly related to its effective atomic number. The shielding character of any sample is a function of the incident photon energy. Good shielding behaviour has been verified in soil samples in the photon energy region of 0.015-0.30 MeV and of dolomite in 3-15 MeV. The results have been shown graphically with more useful conclusions.

  12. Thes - Website for Thermal Shields Upgrade Management

    CERN Document Server

    Micula, Adina

    2013-01-01

    There are a total of 1695 thermal shields (TS) in the interconnections between the superconducting magnets. During LHC Long Shutdown 1 (LS1) all of these TS are being upgraded with a new fixation design. This procedure involves the transport of all the TS from LHC to a workshop on the surface where they are being modified and the subsequent transport of the upgraded TS back to the tunnel where they are laid on the cryostats and await the closure of the interconnection. These operations have to be carefully coordinated in order to ensure that there are always enough modified TS to satisfy the demand in the tunnel and respect the time constraint imposed by the schedule of LS1. As part of my summer project, I developed a database driven website whose aim is to enable the TS upgrade monitoring.

  13. Response to Jakobsson on Human Body Shields

    Directory of Open Access Journals (Sweden)

    Walter E. Block

    2010-10-01

    Full Text Available A grabs B and uses him as a body shield. That is, A hides behind B (A renders B helpless to resist his grasp, and from that vantage point, shoots at C. According to libertarian theory, may B shoot at C, or, is it proper that C pull the trigger at B? In the view of Rothbard (1984, the former is correct: B is entitled to gun down C. In my (Block, forthcoming view, this is incorrect. Rather, it would be lawful to C to properly kill B. (Both Rothbard and I assume that neither B nor C can end A’s reign of terror. Jakobsson (2010 supports the Rothbardian position. The present paper is at an attempt of mine to refute Jakobsson, and, thus, also, Rothbard (1984, once again.

  14. On the accuracy of the Debye shielding

    CERN Document Server

    Martínez-Fuentes, M A

    2012-01-01

    The expression for the Debye shielding in plasma physics is usually derived under the assumptions that the plasma particles are weakly coupled, so their kinetic energy is much larger than the potential energy between them, and that the velocity distributions of the plasma species are Maxwellian. The first assumption also establishes that the plasma parameter ND, the number of particles within a sphere with a Debye radius should be greater than 1, and determines the difference between weakly and strongly coupled plasmas. Under such assumptions, Poisson's equation can be linearised, and a simple analytic expression obtained for the electrostatic potential. However, textbooks rarely discuss the accuracy of this approximation. In this work we compare the linearised solution with the exact one, obtained numerically, and show that the linearisation, which underestimates the exact solution, is reasonably good even for ND ~ 40. We give quantitative criteria to set the limit of the approximation when the number of par...

  15. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  16. Standardized Radiation Shield Design Methods: 2005 HZETRN

    Science.gov (United States)

    Wilson, John W.; Tripathi, Ram K.; Badavi, Francis F.; Cucinotta, Francis A.

    2006-01-01

    Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.

  17. SHIELD: Neutral Gas Kinematics and Dynamics

    CERN Document Server

    McNichols, Andrew T; Nims, Elise; Cannon, John M; Adams, Elizabeth A K; Bernstein-Cooper, Elijah Z; Giovanelli, Riccardo; Haynes, Martha P; Józsa, Gyula I G; McQuinn, Kristen B W; Salzer, John J; Skillman, Evan D; Warren, Steven R; Dolphin, Andrew; Elson, E C; Haurberg, Nathalie; Ott, Jürgen; Saintonge, Amelie; Cave, Ian; Hagen, Cedric; Huang, Shan; Janowiecki, Steven; Marshall, Melissa V; Thomann, Clara M; Van Sistine, Angela

    2016-01-01

    We present kinematic analyses of the 12 galaxies in the "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD). We use multi-configuration interferometric observations of the HI 21cm emission line from the Karl G. Jansky Very Large Array (VLA) to produce image cubes at a variety of spatial and spectral resolutions. Both two- and three-dimensional fitting techniques are employed in an attempt to derive inclination-corrected rotation curves for each galaxy. In most cases, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make spatially resolved position-velocity cuts, corrected for inclination using the stellar components, to estimate the circular rotation velocities. We find circular velocities <30 km/s for the entire survey population. Baryonic masses are calculated using single-dish HI fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical ...

  18. Shielding Integral Benchmark Archive and Database (SINBAD)

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Grove, Robert E [ORNL; Kodeli, I. [International Atomic Energy Agency (IAEA); Sartori, Enrico [ORNL; Gulliford, J. [OECD Nuclear Energy Agency

    2011-01-01

    The Shielding Integral Benchmark Archive and Database (SINBAD) collection of benchmarks was initiated in the early 1990 s. SINBAD is an international collaboration between the Organization for Economic Cooperation and Development s Nuclear Energy Agency Data Bank (OECD/NEADB) and the Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL). SINBAD is a major attempt to compile experiments and corresponding computational models with the goal of preserving institutional knowledge and expertise that need to be handed down to future scientists. SINBAD is also a learning tool for university students and scientists who need to design experiments or gain expertise in modeling and simulation. The SINBAD database is currently divided into three categories fission, fusion, and accelerator benchmarks. Where possible, each experiment is described and analyzed using deterministic or probabilistic (Monte Carlo) radiation transport software.

  19. Shielding integral benchmark archive and database (SINBAD)

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, B.L.; Grove, R.E. [Radiation Safety Information Computational Center RSICC, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6171 (United States); Kodeli, I. [Josef Stefan Inst., Jamova 39, 1000 Ljubljana (Slovenia); Gulliford, J.; Sartori, E. [OECD NEA Data Bank, Bd des Iles, 92130 Issy-les-Moulineaux (France)

    2011-07-01

    The shielding integral benchmark archive and database (SINBAD) collection of experiments descriptions was initiated in the early 1990s. SINBAD is an international collaboration between the Organization for Economic Cooperation and Development's Nuclear Energy Agency Data Bank (OECD/NEADB) and the Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL). SINBAD was designed to compile experiments and corresponding computational models with the goal of preserving institutional knowledge and expertise that need to be handed down to future scientists. SINBAD can serve as a learning tool for university students and scientists who need to design experiments or gain expertise in modeling and simulation. The SINBAD database is currently divided into three categories - fission, fusion, and accelerator experiments. Many experiments are described and analyzed using deterministic or stochastic (Monte Carlo) radiation transport software. The nuclear cross sections also play an important role as they are necessary in performing computational analysis. (authors)

  20. Radiation shielding in dentistry: an update.

    Science.gov (United States)

    Crane, G D; Abbott, P V

    2016-09-01

    The purpose of this article was to review the literature and provide guidelines on the use of radiation protection for patients in the dental setting. There are limited published data on the effects of low radiation doses such as those used in dental radiology. Most of the evidence is subject to bias, with risk models extrapolated from higher dose models such as studies of the Hiroshima bomb survivors. However, the lack of evidence does not denote the absence of risk, as there is no established 'safe' level of radiation exposure. All imaging utilizing ionizing radiation carries a risk for the patient. Hence the patient benefits of imaging must outweigh the potential risk. All diagnostic imaging should adhere to three basic principles, these being justification, optimization and application of dose limits. This article discusses dose reduction techniques and shielding of sensitive organs, particularly the thyroid, during procedures such as intraoral imaging, orthopantomograms and imaging of the pregnant patient.

  1. Scanning electron microscopy of Dalkon Shield tails.

    Science.gov (United States)

    Bank, H L; Williamson, H O

    1983-09-01

    Scanning electron micrographs of Dalkon Shield tails removed from asymptomatic patients show a variety of microbes and debris throughout their entire length. Apparently, even in undamaged tails, bacterial flora thrive in the protein-rich environment within the multifilament tail. The presence of microbes in the portion of the tail beyond the double knot indicates that an alternative mechanism of microbial transport can occur. Since transient endometritis often occurs immediately after insertion of intrauterine devices, microbes may come in contact with both exposed ends of the multifilament tail and be drawn into the tail by capillary action from the uterine environment down the tail toward the double knot as well as upward from the vagina. Such microorganisms could serve as an inoculum for infection.

  2. Lagrange interpolation for the radiation shielding calculation

    CERN Document Server

    Isozumi, Y; Miyatake, H; Kato, T; Tosaki, M

    2002-01-01

    Basing on some formulas of Lagrange interpolation derived in this paper, a computer program for table calculations has been prepared. Main features of the program are as follows; 1) maximum degree of polynomial in Lagrange interpolation is 10, 2) tables with both one variable and two variables can be applied, 3) logarithmic transformations of function and/or variable values can be included and 4) tables with discontinuities and cusps can be applied. The program has been carefully tested by using the data tables in the manual of shielding calculation for radiation facilities. For all available tables in the manual, calculations with the program have been reasonably performed under conditions of 1) logarithmic transformation of both function and variable values and 2) degree 4 or 5 of the polynomial.

  3. Shielding design for a laser-accelerated proton therapy system.

    Science.gov (United States)

    Fan, J; Luo, W; Fourkal, E; Lin, T; Li, J; Veltchev, I; Ma, C-M

    2007-07-07

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 x 10(21) W cm(-2). Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  4. Shielding design for a laser-accelerated proton therapy system

    Science.gov (United States)

    Fan, J.; Luo, W.; Fourkal, E.; Lin, T.; Li, J.; Veltchev, I.; Ma, C.-M.

    2007-07-01

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 × 1021 W cm-2. Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  5. Overview of the SHIELDS Project at LANL

    Science.gov (United States)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, D.; Vernon, L.; Woodroffe, J. R.; Toth, G.; Welling, D. T.; Yu, Y.; Birn, J.; Thomsen, M. F.; Borovsky, J.; Denton, M.; Albert, J.; Horne, R. B.; Lemon, C. L.; Markidis, S.; Young, S. L.

    2015-12-01

    The near-Earth space environment is a highly dynamic and coupled system through a complex set of physical processes over a large range of scales, which responds nonlinearly to driving by the time-varying solar wind. Predicting variations in this environment that can affect technologies in space and on Earth, i.e. "space weather", remains a big space physics challenge. We present a recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program that is developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to specify the dynamics of the hot (keV) particles (the seed population for the radiation belts) on both macro- and micro-scale, including important physics of rapid particle injection and acceleration associated with magnetospheric storms/substorms and plasma waves. This challenging problem is addressed using a team of world-class experts in the fields of space science and computational plasma physics and state-of-the-art models and computational facilities. New data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed in addition to physics-based models. This research will provide a framework for understanding of key radiation belt drivers that may accelerate particles to relativistic energies and lead to spacecraft damage and failure. The ability to reliably distinguish between various modes of failure is critically important in anomaly resolution and forensics. SHIELDS will enhance our capability to accurately specify and predict the near-Earth space environment where operational satellites reside.

  6. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology; SHIELD 1.0: desenvolvimento de um programa de calculo de blindagem em radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da [Hospital Sao Lucas (PUCRS), Porto Alegre, RS (Brazil); Friedrich, Barbara Q.; Silva, Ana Maria Marques da, E-mail: ana.marques@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)

    2013-08-15

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  7. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    Science.gov (United States)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    than possible with hydrogen storage; however, a systematic experimental hydrogenation study has not been reported. A combination of the two approaches may be explored to provide yet higher hydrogen content. The hydrogen containing BNNT produced in our study will be characterized for hydrogen content and thermal stability in simulated space service environments. These new materials systems will be tested for their radiation shielding effectiveness against high energy protons and high energy heavy ions at the HIMAC facility in Japan, or a comparable facility. These high energy particles simulate exposure to SEP and GCR environments. They will also be tested in the LaRC Neutron Exposure Laboratory for their neutron shielding effectiveness, an attribute that determines their capability to shield against the secondary neutrons found inside structures and on lunar and planetary surfaces. The potential significance is to produce a radiation protection enabling technology for future exploration missions. Crew on deep space human exploration missions greater than approximately 90 days cannot remain below current crew Permissible Exposure Limits without shielding and/or biological countermeasures. The intent of this research is to bring the Agency closer to extending space missions beyond the 90-day limit, with 1 year as a long-term goal. We are advocating a systems solution with a structural materials component. Our intent is to develop the best materials system for that materials component. In this Phase I study, we have shown, computationally, that hydrogen containing BNNT is effective for shielding against GCR, SEP, and neutrons over a wide range of energies. This is why we are focusing on hydrogen containing BNNT as an innovative advanced concept. In our future work, we plan to demonstrate, experimentally, that hydrogen, boron, and nitrogen based materials can provide mechanically strong, thermally stable, structural materials with effective radiation shielding against GCR

  8. Flexible neutron shielding composite material of EPDM rubber with boron trioxide: Mechanical, thermal investigations and neutron shielding tests

    Science.gov (United States)

    Özdemir, T.; Güngör, A.; Reyhancan, İ. A.

    2017-02-01

    In this study, EPDM and boron trioxide composite was produced and mechanical, thermal and neutron shielding tests were performed. EPDM rubber (Ethylene Propylene Diene Monomer) having a considerably high hydrogen content is an effective neutron shielding material. On the other hand, the materials containing boron components have effective thermal neutron absorption crossection. The composite of EPDM and boron trioxide would be an effective solution for both respects of flexibility and effectiveness for developing a neutron shielding material. Flexible nature of EPDM would be a great asset for the shielding purpose in case of intervention action to a radiation accident. The theoretical calculations and experimental neutron absorption tests have shown that the results were in parallel and an effective neutron shielding has been achieved with the use of the developed composite material.

  9. Development of Multifunctional Radiation Shielding Materials for Long Duration Human Exploration Beyond the Low Earth Orbit

    Science.gov (United States)

    Sen, S.; Bhattacharya, M.; Schofield, E.; Carranza, S.; O'Dell, S.

    2007-01-01

    One of the major challenges for long duration human exploration beyond the low Earth orbit and sustained human presence on planetary surfaces would be development of materials that would help minimize the radiation exposure to crew and equipment from the interplanetary radiation environment, This radiation environment consists primarily of a continuous flux of galactic cosmic rays (GCR) and transient but intense fluxes of solar energetic particles (SEP). The potential for biological damage by the relatively low percentage of high-energy heavy-ions in the GCR spectrum far outweigh that due to lighter particles because of their ionizing-power and the quality of the resulting biological damage. Although the SEP spectrum does not contain heavy ions and their energy range is much lower than that for GCRs, they however pose serious risks to astronaut health particularly in the event of a bad solar storm The primary purpose of this paper is to discuss our recent efforts in development and evaluation of materials for minimizing the hazards from the interplanetary radiation environment. Traditionally, addition of shielding materials to spacecrafts has invariably resulted in paying a penalty in terms of additional weight. It would therefore be of great benefit if materials could be developed not only with superior shielding effectiveness but also sufficient structural integrity. Such a multifunctional material could then be considered as an integral part of spacecraft structures. Any proposed radiation shielding material for use in outer space should be composed of nuclei that maximize the likelihood of projectile fragmentation while producing the minimum number of target fragments. A modeling based approach will be presented to show that composite materials using hydrogen-rich epoxy matrices reinforced with polyethylene fibers and/or fabrics could effectively meet this requirement. This paper will discuss the fabrication of such a material for a crewed vehicle. Ln addition

  10. A Reinforcement for Multifunctional Composites for Non-Parasitic Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative lightweight radiation shielding materials are enabling to shield humans in aerospace transportation vehicles and other human habited spaces....

  11. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    KAUST Repository

    Caputo, Fanny

    2015-08-20

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields. © The Royal Society of Chemistry 2015.

  12. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    Science.gov (United States)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  13. The assembly of the disk shielding is finished.

    CERN Multimedia

    Vincent Hedberg

    At the end of March, the shielding project engineer, Jan Palla, could draw a sigh of relief when the fourth and final rotation of the disk shielding was carried out without incident. The two 80-ton heavy shielding assemblies were built in a horizontal position and they had to be first turned upside-down and then rotated to a vertical position during the assembly. The relatively thin disk plate with a diameter of 9 meters, made this operation quite delicate and a lot of calculation work and strengthening of the shielding was carried out before the rotations could take place. The disk shielding is being turned upside-down. The stainless steel cylinder in the centre supports the shielding as well as the small muon wheel. The two disk shielding assemblies consist of different materials such as bronze, gray steel, cast iron, stainless steel, boron doped polyethylene and lead. The project is multinational with the major pieces having been made by companies in Armenia, Serbia, Spain, Bulgaria, Italy, Slovaki...

  14. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data

    Science.gov (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.

    2013-01-01

    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  15. Evaluation of syringe shield effectiveness in handling radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Cho Yong-In

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effectiveness of the radiation shield of radionuclide syringes and the personal dose equivalent by performing a simulation of radionuclides used in nuclear medicine diagnosis. In order to evaluate the dose depending on the distance between the radiation source and the ICRU sphere against the thickness of the shielding device, the distance at which a nuclear medicine worker may inadvertently come into contact with radiation from the radiation source was set at 0 cm to 30 cm according to the thickness of the shield, thus fixing the ICRU sphere. For a dose evaluation, Hp(10, Hp(3, and Hp(0.07 measurable in specific depth of the ICRU were evaluated. It was found that a dose measured on skin surface of nuclear medicine workers was relatively higher, that the dose varied in relation to the thickness of the radiation shield, and that the shielding effect decreased for some radiation sources such as 67Ga and 111In. It proved necessary to increase thickness of shielding device to the radiation sources such as 67Ga and 111In. It is also considered that a study of proper shielding thickness will be needed in future.

  16. Nuclear magnetic shieldings of stacked aromatic and antiaromatic molecules.

    Science.gov (United States)

    Sundholm, Dage; Rauhalahti, Markus; Özcan, Nergiz; Mera-Adasme, Raul; Kussmann, Jörg; Luenser, Arne; Ochsenfeld, Christian

    2017-03-13

    Nuclear magnetic shieldings have been calculated at the density functional theory (DFT) level for stacks of benzene, hexadehydro[12]annulene, dodecadehydro[18]annulene and hexabenzocoronene. The magnetic shieldings due to the ring currents in the adjacent molecules have been estimated by calculating nucleus independent molecular shieldings for the monomer in the atomic positions of neighbor molecules. The calculations show that the independent shielding model works reasonable well for the (1)H NMR shieldings of benzene and hexadehydro[12]annulene, whereas for the larger molecules and for the (13)C NMR shieldings the interaction between the molecules leads to shielding effects that are at least of the same size as the ring current contributions from the adjacent molecules. A better agreement is obtained when the nearest neighbors are also considered at full quantum mechanical (QM) level. The calculations suggest that the nearest solvent molecules must be included in the quantum mechanical system, at least when estimating solvent shifts at the molecular mechanics (MM) level. Current density calculations show that the stacking does not significantly affect the ring current strengths of the individual molecules, whereas the shape of the ring current for a single molecule differs from that of the stacked molecules.

  17. Checklist of the terrestrial vertebrates of the Guiana Shield

    Science.gov (United States)

    2005-01-01

    Distributions are given for 1850 species of terrestrial vertebrates in the Guiana Shield region of northeastern South America, with introductory text by the authors of each section. Distributions cover the three Guianas (Guyana, Surinam, and French Guiana), and the states of the Venezuelan Guayna (Amazonas, Bolivar, and Delta Amacuro), and in some cases the states of the Brazilian portion of the Guiana Shield (Amazonas, Roraima, Para, and Amapa), and the Colombian portion of the Guiana Shield. The first section is a checklist of amphibians of the Guiana Shield, by J. Celsa Sefiaris and Ross MacCulloch, detailing the distribution of 269 species. The second section is a checklist of the reptiles of the Guiana Shield by Teresa C. S. de Avila Pires, detailing the distribution of 295 species. The third section is a checklist of the birds of the Guiana Shield, by Chris Milensky, Wiltshire Hinds, Alexandre Aleixo, and Maria de Fatima C. Lima, detailing the distribution of 1004 species. The fourth section is a checklist of the mammals of the Guiana Shield, by Burton K. Lim, Mark D. Engstrom, and Jose Ochoa G., detailing the distribution of 282 species.

  18. Nuclear shielding of openings in ITER Tokamak building

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Arumugam, A.P.; Beaudoin, V.; Beltran, D.; Benchikhoune, M.; Berruyer, F.; Cortes, P.; Gandini, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ghirelli, N. [ASSYSTEM E.O.S, ZAC Saint Martin, 23, rue Benjamin Franklin, 84120 Pertuis (France); Gray, A.; Hurzlmeier, H.; Le Page, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Lemée, A. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Lentini, G.; Loughlin, M.; Mita, Y.; Patisson, L.; Rigoni, G.; Rathi, D.; Song, I. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Establishment of a methodology to design shielded opening in external wall of the Tokamak building. ► Analysis of the shielding requirement, case by case, depending on the localization and the context. ► Implementation of an integrated solution for shielded opening. -- Abstract: The external walls of the Tokamak building, made of thick concrete, provide the nuclear shielding for operators working in adjacent buildings and for the environment. There are a series of openings to these external walls, devoted to ducts or pipes for ventilation, waveguides and transmission lines for heating systems and diagnostics, cooling pipes, cable trays or busbars. The shielding properties of the wall shall be preserved by adequate design of the openings in order not to affect the radiological zoning in adjacent areas. For some of them, shielding properties of the wall are not affected because the size of the network is quite small or the source is far from the opening. But for most of the openings, specific features shall be considered. Even if the approach is the same and the ways to shield can be standardized, specific analysis is requested in any case because the constraints are different.

  19. DARHT : integration of shielding design and analysis with facility design /

    Energy Technology Data Exchange (ETDEWEB)

    Boudrie, R. L. (Richard L.); Brown, T. H. (Thomas H.); Gilmore, W. E. (Walter E.); Downing, J. N. (James N.), Jr.; Hack, Alan; McClure, D. A. (Donald A.); Nelson, C. A. (Christine A.); Wadlinger, E. Alan; Zumbro, M. V. (Martha V.)

    2002-01-01

    The design of the interior portions of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility incorporated shielding and controls from the beginning of the installation of the Accelerators. The purpose of the design and analysis was to demonstrate the adequacy of shielding or to determine the need for additional shielding or controls. Two classes of events were considered: (1) routine operation defined as the annual production of 10,000 2000-ns pulses of electrons at a nominal energy of 20 MeV, some of which are converted to the x-ray imaging beam consisting of four nominal 60-ns pulses over the 2000-ns time frame, and (2) accident case defined as up to 100 2000-ns pulses of electrons accidentally impinging on some metallic surface, thereby producing x rays. Several locations for both classes of events were considered inside and outside of the accelerator hall buildings. The analysis method consisted of the definition of a source term for each case studied and the definition of a model of the shielding and equipment present between the source and the dose areas. A minimal model of the fixed existing or proposed shielding and equipment structures was used for a first approximation. If the resulting dose from the first approximation was below the design goal (1 rem/yr for routine operations, 5 rem for accident cases), then no further investigations were performed. If the result of the first approximation was above our design goals, the model was refined to include existing or proposed shielding and equipment. In some cases existing shielding and equipment were adequate to meet our goals and in some cases additional shielding was added or administrative controls were imposed to protect the workers. It is expected that the radiation shielding design, exclusion area designations, and access control features, will result in low doses to personnel at the DARHT Facility.

  20. Low permeability asphalt concrete gamma ray shielding properties.

    Science.gov (United States)

    Binney, S E; Sykes, K L

    1997-01-01

    Energy-dependent gamma ray shielding properties were measured as a function of gamma ray energy for a low permeability asphalt concrete that is used as a cap to prevent water infiltration into radioactive waste sites. Experimental data were compared to ISO-PC point kernel shielding calculations. Calculated dose equivalent rates compared well with experimental values, especially considering the poor detector resolution involved. The shielding properties of the asphalt concrete closely resembled those of aluminum. The results presented can be used to determine the asphalt concrete thickness required to reduce dose equivalent rates from several gamma ray emitting radionuclides.

  1. Planar quadrature coil design using shielded-loop resonators

    DEFF Research Database (Denmark)

    Stensgaard, A

    1997-01-01

    The shielded-loop resonator is known to have a low capacitive sample loss due to a perfect balancing. In this paper, it is demonstrated that shielded-loop technology also can be used to improve design of planar quadrature coils. Both a dual-loop circuit and especially a dual-mode circuit may...... benefit from use of shielded-loop resonators. Observations in measurements agree with theory for both a dual-loop coil and a dual-mode coil. The coils were designed for use as transmit/receive coil for 1H imaging and spectroscopy at 4.7 T in rat brain....

  2. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2016-11-15

    Neutron and gamma flux and dose equivalent rate distribution are analysed in radial and shields of a typical PWR type reactor based on the Monte Carlo radiation transport computer code MCNP5. The ENDF/B-VI continuous energy cross-section library has been employed for the criticality and shielding analysis. The computed results are in good agreement with the reference results (maximum difference is less than 56 %). It implies that MCNP5 a good tool for accurate prediction of neutron and gamma flux and dose rates in radial shield around the core of PWR type reactors.

  3. Fusion reactor blanket/shield design study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Clemmer, R.G.; Harkness, S.D.

    1979-07-01

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  4. Shielded Coaxial Optrode Arrays for Neurophysiology.

    Science.gov (United States)

    Naughton, Jeffrey R; Connolly, Timothy; Varela, Juan A; Lundberg, Jaclyn; Burns, Michael J; Chiles, Thomas C; Christianson, John P; Naughton, Michael J

    2016-01-01

    Recent progress in the study of the brain has been greatly facilitated by the development of new tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array (MEA), which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic pathways emanating from specific cell stimulation. Here, we introduce a coaxial electrode architecture that is uniquely suited to address these issues, as it can simultaneously be utilized as an optical waveguide and a shielded electrode in dense arrays. Using optogenetically-transfected cells on a coaxial MEA, we demonstrate the utility of the architecture by recording cellular currents evoked from optical stimulation. We also show the capability for network recording by radiating an area of seven individually-addressed coaxial electrode regions with cultured cells covering a section of the extent.

  5. Shield Effect Of Functional Interlining Fabric

    Directory of Open Access Journals (Sweden)

    Šaravanja Bosiljka

    2015-06-01

    Full Text Available Electromagnetic interference (EMI have become very serious in a variety of different electronic equipments, such as personal computers (frequency at several GHz, mobile devices (0.9 – 2.4 GHz and similar. This imposes the need for setting boundaries for EM emission of electric and electronic devices in order to minimize the possibility of interference with radio and wireless communications. Functional textiles can offer protective properties against EM radiation. The aim of this study is to investigate the degree of protection against EM radiation provided by polyamide copper-coated interlining fabric before and after dry cleaning treatment. EM protection efficiency of the interlining functional fabric is explored on both sides at the frequencies of 0.9; 1.8; 2.1 and 2.4 GHz. The results obtained have shown that the interlining fabric has good protective properties against EM radiation, but after dry cleaning, treatment reduction is observed. Scanning electron microscopy micrographs of the interlining surface confirms shield effect decline due to degradation and firing of the copper layers during the process of dry cleaning.

  6. A Radiation shielding study for the Fermilab Linac

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I.; Johnstone, C.; /Fermilab

    2006-02-01

    Radiation shielding calculations are performed for the Fermilab Linac enclosure and gallery. The predicted dose rates around the access labyrinth at normal operation and a comparison to measured dose rates are presented. An accident scenario is considered as well.

  7. Low Cost, Lightweight, Multifunctional Structural Shielding Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR involves the development of a lightweight innovative material for use as structure and radiation shielding in one. APS has assembled a uniquely qualified...

  8. RADIO SHIELDING PROPERTIES OF CONCRETE BASED ON SHUNGITE NANOMATERIALS

    OpenAIRE

    BELOUSOVA Elena Sergeevna; LYNKOV Leonid Mihailovich; MAHMOOD Mohammed Shakir; NASONOVA Natalia Viktorovna

    2013-01-01

    Modifications of shielding construction materials based on Portland cement with the addition of powder nanomaterial shungite were developed. Attenuation and re­flection of electromagnetic radiation for obtained materials were studied. Recommen­dations for using are given.

  9. Multifunctional, Boron-Foam Based Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA vision of Space Exploration requires new approaches to radiation shielding. Both Spiral 2 and Spiral 3 concepts are extremely sensitive to weight reduction....

  10. Characterizing and Manufacturing Multifunctional Radiation Shielding Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  11. Radiation Shielding and Hydrogen Storage with Multifunctional Carbon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  12. Application of Advanced Radiation Shielding Materials to Inflatable Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is a weight-optimized, inflatable structure that incorporates radiation shielding materials into its construction, for use as a habitation module or...

  13. Multifunctional B/C Fiber Composites for Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation shielding is an enabling technology required for extended manned missions to the Moon, Mars and the planets beyond. Multifunctional structural must protect...

  14. The blattodeas.s. (Insecta, dictyoptera) of the Guiana shield.

    Science.gov (United States)

    Evangelista, Dominic A; Chan, Kimberly; Kaplan, Kayla L; Wilson, Megan M; Ware, Jessica L

    2015-01-01

    Here we provide a checklist of cockroach species known from areas within the Guiana Shield based on literature records and new field collection. We give records of sixteen species collected in Guyana, eight of which are new records for Guyana and one of which is a new generic record for the entire Guiana Shield. We also provide a description for a geographically disparate species of Calhypnorna Stal, and the new species Xestoblattaberenbaumae. The complete checklist contains 234 species of Blattodeas.s. currently known in the shield. This checklist shows particularly low richness in Guianan Venezuela, Roraima and Amapa Brazil, but this is likely an artifact due to under-sampling. Indeed, based on previously published data and current fieldwork, we believe that most regions of the Guiana Shield are under-sampled for cockroaches. Despite this, French Guiana (151 spp.) and Suriname (136 spp.) rank as the second and sixth most species dense faunas of cockroaches in the neotropics.

  15. Improved Metal-Polymeric Laminate Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed Phase II program, builds on the phase I feaibility where a multifunctional lightweight radiation shield composite was developed and fabricated. This...

  16. Thyroid shields and neck exposures in cephalometric radiography

    Directory of Open Access Journals (Sweden)

    Cunha-Cruz Joana

    2006-06-01

    Full Text Available Abstract Background The thyroid is among the more radiosensitive organs in the body. The goal of this study was twofold: (1 to evaluate age-related changes in what is exposed to ionizing radiation in the neck area, and (2 to assess thyroid shield presence in cephalometric radiographs Methods Cephalometric radiographs at one academic setting were sampled and neck exposure was related to calendar year and patient's gender and age. Results In the absence of shields, children have more vertebrae exposed than adults (p Conclusion In the absence of a thyroid shield, children have more neck structure exposed to radiation than adults. In agreement with other reports, thyroid shield utilization in this study was low, particularly in children.

  17. Self-shielding Electron Beam Installation for Sterilization

    Institute of Scientific and Technical Information of China (English)

    Linac; Laboratory

    2002-01-01

    China Institute of Atomic Energy (CIAE) has developed a self-shielding electron beam installationfor sterilization as handling letters with anthrax germ or spores which has the least volume and the least

  18. PHYSICS UPDATE: Does electrostatic shielding work both ways?

    Science.gov (United States)

    Sharma, Natthi L.; Reid, David D.

    1998-09-01

    We demonstrate that there is a sense in which electrostatic shielding works both ways and that Richard Feynman's discussion to this effect in The Feynman Lectures on Physics, though ambiguous, is not incorrect.

  19. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.

    2016-01-01

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding...... solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. The same approach is used to study the efficiencies of the steel wall a flat cylinder pierced by the guide...... in the middle and the polyethylene layer. The final model presented here has a 3 cm thick steel shielding around the guide, 30 cm of polyethylene around the shielding, two 5 mm thick B4C layers and a steel wall at position Z = 38 m, being 1 m thick and 10 m in radius. The final model finally proves...

  20. Space Radiation and the Challenges Towards Effective Shielding Solutions

    Science.gov (United States)

    Barghouty, Abdulnasser

    2014-01-01

    The hazards of space radiation and their effective mitigation strategies continue to pose special science and technology challenges to NASA. It is widely accepted now that shielding space vehicles and structures will have to rely on new and innovative materials since aluminum, like all high Z materials, are poor shields against the particulate and highly ionizing nature of space radiation. Shielding solutions, motivated and constrained by power and mass limitations, couple this realization with "multifunctionality," both in design concept as well as in material function and composition. Materials endowed with effective shielding properties as well as with some degree of multi-functionality may be the kernel of the so-called "radiation-smart" structures and designs. This talk will present some of the challenges and potential mitigation ideas towards the realization of such structures and designs.

  1. Radiation Shielding Utilizing A High Temperature Superconducting Magnet Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to leverage near-term high-temperature superconducting technologies to assess applicability of magnetic shielding for protecting against exposure...

  2. Optimization of the National Ignition Facility primary shield design

    Energy Technology Data Exchange (ETDEWEB)

    Annese, C.E.; Watkins, E.F.; Greenspan, E.; Miller, W.F. [California Univ., Berkeley, CA (United States). Dept. of Nuclear Engineering; Latkowski, J.; Lee, J.D.; Soran, P.; Tobin, M.L. [Lawrence Livermore National Lab., CA (United States)

    1993-10-01

    Minimum cost design concepts of the primary shield for the National Ignition laser fusion experimental Facility (NIF) are searched with the help of the optimization code SWAN. The computational method developed for this search involves incorporating the time dependence of the delayed photon field within effective delayed photon production cross sections. This method enables one to address the time-dependent problem using relatively simple, time-independent transport calculations, thus significantly simplifying the design process. A novel approach was used for the identification of the optimal combination of constituents that will minimize the shield cost; it involves the generation, with SWAN, of effectiveness functions for replacing materials on an equal cost basis. The minimum cost shield design concept was found to consist of a mixture of polyethylene and low cost, low activation materials such as SiC, with boron added near the shield boundaries.

  3. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    Directory of Open Access Journals (Sweden)

    Singh Vishvanath P.

    2016-01-01

    Full Text Available Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.

  4. Upgrade of the LHC magnet interconnections thermal shielding

    Science.gov (United States)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  5. Electromagnetic and transient shielding effectiveness for near-field sources

    Directory of Open Access Journals (Sweden)

    C. Möller

    2007-06-01

    Full Text Available The contribution deals with an investigation of the recently proposed definitions for the electromagnetic and transient shielding effectiveness (SE in the case of an electric-dipole near-field source. To this end, new factors are introduced which depend on the distance between the dipole source and the measurement point inside the shield and which are valid for perpendicularly (with respect to the distance vector polarized dipoles. Numerical results support and confirm the theoretical derivations.

  6. High frequency electromagnetic interference shielding magnetic polymer nanocomposites

    Science.gov (United States)

    He, Qingliang

    Electromagnetic interference is one of the most concerned pollution and problem right now since more and more electronic devices have been extensively utilized in our daily lives. Besides the interference, long time exposure to electromagnetic radiation may also result in severe damage to human body. In order to mitigate the undesirable part of the electromagnetic wave energy and maintain the long term sustainable development of our modern civilized society, new technology development based researches have been made to solve this problem. However, one of the major challenges facing to the electromagnetic interference shielding is the relatively low shielding efficiency and the high cost as well as the complicated shielding material manufacture. From the materials science point of view, the key solutions to these challenges are strongly depended on the breakthrough of the current limit of shielding material design and manufacture (such as hierarchical material design with controllable and predictable arrangement in nanoscale particle configuration via an easy in-situ manner). From the chemical engineering point of view, the upgrading of advanced material shielding performance and the enlarged production scale for shielding materials (for example, configure the effective components in the shielding material in order to lower their usage, eliminate the "rate-limiting" step to enlarge the production scale) are of great importance. In this dissertation, the design and preparation of morphology controlled magnetic nanoparticles and their reinforced polypropylene polymer nanocomposites will be covered first. Then, the functionalities of these polymer nanocomposites will be demonstrated. Based on the innovative materials design and synergistic effect on the performance advancement, the magnetic polypropylene polymer nanocomposites with desired multifunctionalities are designed and produced targeting to the electromagnetic interference shielding application. In addition

  7. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    DEFF Research Database (Denmark)

    Singh, Vishvanath P.; Badiger, Nagappa M.; Gerward, Leif

    2016-01-01

    Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fittin...... combination of low-and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors....

  8. Upgrade of the LHC magnet interconnections thermal shielding

    Energy Technology Data Exchange (ETDEWEB)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles [CERN European Organization for Nuclear Research, Meyrin 1211, Geneva 23, CH (Switzerland); Chrul, Anna [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul.Radzikowskiego 152, 31-324 Krakow (Poland); Damianoglou, Dimitrios [NTUA National Technical University of Athens, Heeron Polytechniou 9, 15780 Zografou (Greece); Strychalski, Michał [Wroclaw University of Technology, Faculty of Mechanical and Power Engineering, Wyb. Wyspianskiego 27, Wroclaw, 50-370 (Poland); Wright, Loren [Lancaster University, Bailrigg, Lancaster, LA1 4YW (United Kingdom)

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  9. Composite Materials for Radiation Shielding During Deep Space Missions

    Science.gov (United States)

    Grugel, R. N.; Watts, J.; Adams, J. H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Minimizing radiation exposure from the galactic cosmic ray (GCR) environment during deep space missions is essential to human health and sensitive instrument survivability. Given the fabrication constraints of space transportation vehicles protective shielding is, consequently, a complicated materials issue. These concerns are presented and considered in view of some novel composite materials being developed/suggested for GCR shielding applications. Advantages and disadvantages of the composites will be discussed as well as the need for coordinated testing/evaluation and modeling efforts.

  10. Analysis methods for Kevlar shield response to rotor fragments

    Science.gov (United States)

    Gerstle, J. H.

    1977-01-01

    Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.

  11. New gadolinium based glasses for gamma-rays shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaewjang, S.; Maghanemi, U.; Kothan, S. [Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chang Mai University, Chang Mai 50200 (Thailand); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Limkitjaroenporn, P. [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand)

    2014-12-15

    Highlights: • Gd{sub 2}O{sub 3} based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd{sub 2}O{sub 3.} • All the glasses of Gd{sub 2}O{sub 3} compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd{sub 2}O{sub 3} based glass matrices. - Abstract: In this work, Gd{sub 2}O{sub 3} based glasses in compositions (80−x)B{sub 2}O{sub 3}-10SiO{sub 2}-10CaO-xGd{sub 2}O{sub 3} (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd{sub 2}O{sub 3} concentration. The experimental values of mass attenuation coefficients (μ{sub m}), effective atomic number (Z{sub eff}) and effective electron densities (N{sub e}) of the glasses were found to increase with the increasing of Gd{sub 2}O{sub 3} concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd{sub 2}O{sub 3} compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials.

  12. The effect of breast shielding during lumbar spine radiography:

    OpenAIRE

    Žontar, Dejan; Škrk, Damijan; Mekiš, Nejc

    2013-01-01

    Background The aim of the study was to determine the influence of lead shielding on the dose to female breasts in conventional x-ray lumbar spine imaging. The correlation between the body mass index and the dose received by the breast was also investigated. Materials and methods Breast surface dose was measured by thermoluminescent dosimeters (TLD). In the first phase measurements of breast dose with and without shielding from lumbar spine imaging in two projections were conducted on an anthr...

  13. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    OpenAIRE

    Singh Vishvanath P.; Badiger Nagappa M.; Gerward Leif

    2016-01-01

    Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neu...

  14. Space Vehicle Heat Shield Having Edgewise Strips of Ablative Material

    Science.gov (United States)

    Blosser, Max L. (Inventor); Poteet, Carl C. (Inventor); Bouslog, Stan A. (Inventor)

    2015-01-01

    A heat shield for a space vehicle comprises a plurality of phenolic impregnated carbon ablator (PICA) blocks secured to a surface of the space vehicle and arranged in a pattern with gaps therebetween. The heat shield further comprises a plurality of PICA strips disposed in the gaps between the PICA blocks. The PICA strips are mounted edgewise, such that the structural orientation of the PICA strips is substantially perpendicular to the structural orientation of the PICA blocks.

  15. Shielding factors of ions in rock-salt crystals

    Science.gov (United States)

    Michihiro, Y.; Mahan, G. D.

    1997-11-01

    The calculation of the quadrupole shielding factor of closed-shell ions in crystalline solids with rock-salt structure is done based on the self-consistent-field local-density approximation, modified Sternheimer equation, and spherical solid model. A significant reduction of the values of the quadrupole shielding factor is found for the anions, and the amount of the reduction is different in different crystals.

  16. Gonad Shielding for Patients Undergoing Conventional Radiological Examinations: Is There Cause for Concern?

    Directory of Open Access Journals (Sweden)

    Karami

    2016-04-01

    Full Text Available Background Gonad shielding is one of the fundamental methods by which to protect reproductive organs in patients undergoing conventional radiological examinations. A lack of or inadequate shielding of the gonads may increase the exposure of these organs and result in malignancies future generations. Objectives The aim of this study is to investigate the prevalence of gonad shielding in patients undergoing conventional radiological examinations and the availability of gonad shields and gonad shielding protocols in radiology departments. Materials and Methods A retrospective, observational cross-sectional study on the application of gonad shielding, the availability of gonad shields and the existence of gonad shielding protocols in radiology departments was performed in five different hospitals in Ahvaz, Iran. Results The highest application of gonad shielding was 6.6% for the pediatric hospital. The prevalence of gonad shielding was less than 0.2%. In 64.3% of the radiography rooms, at least one flat-contact gonad shield of a large size was available. Only large-sized gonad shields were available. Curved-contact and shadow gonad shields did not exist. Gonad shielding protocols were not existence in any of the fourteen radiography rooms investigated. Conclusions Comprehensive protection programs with on-the-job training courses for staff members are strongly recommended, as well as, the provision of radiological shields and gonad shielding protocols in radiology departments to reduce the patient’s radiation dose during radiological examinations.

  17. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    Science.gov (United States)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  18. Communication: The absolute shielding scales of oxygen and sulfur revisited

    Energy Technology Data Exchange (ETDEWEB)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth, E-mail: kenneth.ruud@uit.no [Centre for Theoretical and Computational Chemistry, University of Tromsø — The Arctic University of Norway, N-9037 Tromsø (Norway); Gauss, Jürgen [Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz (Germany)

    2015-03-07

    We present an updated semi-experimental absolute shielding scale for the {sup 17}O and {sup 33}S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin–rotation constants of H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C{sup 17}O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H{sub 2}{sup 33}S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin–rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H{sub 2}{sup 17}O is 328.4(3) ppm and for C{sup 17}O −59.05(59) ppm. The relativistic correction for the sulfur shielding of H{sub 2}{sup 33}S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  19. Communication: The absolute shielding scales of oxygen and sulfur revisited

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth; Gauss, Jürgen

    2015-03-01

    We present an updated semi-experimental absolute shielding scale for the 17O and 33S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin-rotation constants of H217O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C17O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H233S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin-rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H217O is 328.4(3) ppm and for C17O -59.05(59) ppm. The relativistic correction for the sulfur shielding of H233S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  20. Gravitational Shielding Effect in Gauge Theory of Gravity

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2004-01-01

    In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.

  1. Noise Modeling From Conductive Shields Using Kirchhoff Equations.

    Science.gov (United States)

    Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J

    2010-10-01

    Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding the magnetic noise of conductive materials, especially of magnetic shields based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have radio frequency shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems with complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies, knowledge of the noise correlation between sensors is as important as knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for arbitrary shaped shields and multiple sensor systems. The approach is efficient enough to be able to run on a single PC system and return results on a minute scale. With a multiple sensor system our approach calculates not only the noise for each sensor but also the noise correlation matrix between sensors. Here we will show how the algorithm can be implemented.

  2. Gravitational Field Shielding by Scalar Field and Type II Superconductors

    Directory of Open Access Journals (Sweden)

    Zhang B. J.

    2013-01-01

    Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.

  3. Calculation of an optimized design of magnetic shields with integrated demagnetization coils

    Science.gov (United States)

    Sun, Z.; Schnabel, A.; Burghoff, M.; Li, L.

    2016-07-01

    Magnetic shielding made from permalloy is frequently used to provide a time-stable magnetic field environment. A low magnetic field and low field gradients inside the shield can be obtained by using demagnetization coils through the walls, encircling edges of the shield. We first introduce and test the computational models to calculate magnetic properties of large size shields with thin shielding walls. We then vary the size, location and shape of the openings for the demagnetization coils at the corners of a cubic shield. It turns out that the effect on the shielding factor and the expected influence on the residual magnetic field homogeneity in the vicinity of the center of the shield is negligible. Thus, a low-cost version for the openings can be chosen and their size could be enlarged to allow for additional cables and easier handling. A construction of a shield with beveled edges and open corners turned out to substantially improve the shielding factor.

  4. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    OpenAIRE

    Seon Chil Kim; Jeong Ryeol Choi; Byeong Kyou Jeon

    2016-01-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shieldin...

  5. Application of nano material for shielding power-frequency electromagnetic field

    Science.gov (United States)

    Li, Hualiang; Li, Li; Liu, Jiawen

    2015-07-01

    Only limited data are available on shielding electromagnetic field exposure in professional work. In our paper, we studied the electromagnetic field intensity in 500 kV substations, and explored influence of nanomaterial in high voltage laboratory simulation. Moreover, the results of nano-fabrics material for shielding power frequency electromagnetic field indicated that, both shielding fabrics can almost completely shield the electric field, but have weak shielding effectiveness against magnetic field.

  6. Emission of fluorescent x-radiation from non-lead based shielding materials of protective clothing: a radiobiological problem?

    Science.gov (United States)

    Schmid, E; Panzer, W; Schlattl, H; Eder, H

    2012-09-01

    material. Even if it is uncertain whether the marked dependency of the RBE at low doses on photon energy for chromosome aberrations is also representative for late radiation effects in healthy subjects, it should be taken into account that several prospective cohort studies have shown positive associations between higher chromosome aberrations in lymphocytes of healthy subjects and increased cancer incidence. Thus, it can be concluded that any additional biological damage by radiation exposure of healthy subjects, e.g. by using certain non-lead based shielding materials of protective clothing, should be avoided.

  7. Studies on the heat shield structure of ceramic gas turbine components, first report: heat shield properties of the ceramic combustor

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, K.; Hisamatsu, T.; Yuri, I. (CRIEPI, Yokosuka-shi (Japan). Yokosuka Research Lab.)

    1993-04-01

    The ceramic gas turbine for power generation consists of ceramic parts and metal parts. In order to improve the performance and reliability of the ceramic gas turbine, it is important to develop a heat shield structure between ceramics and metal. CRIEPI proposed a heat shield structure for the ceramic combustor wall in which a small amount of air is introduced in a ceramic fibre layer in the ceramic combustor wall. It was confirmed that the heat shield structure has excellent performance in a high pressure combustion test. This report describes the heat transfer property of the heat shield structure in the ceramic combustor wall by numerical analysis. As a result of analysis, it was clarified that the ceramic fibre temperature changes rapidly near the ceramic tiles, and that the heat transfer property of the heat shield structure is as follows: heat shield performance is maintained by introducing a small amount of air; metal wall temperature is little affected by combustion gas temperature, thermophysical property of ceramic fibres and so on. 9 refs., 19 figs., 2 tabs.

  8. All biology is computational biology

    Science.gov (United States)

    2017-01-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science. PMID:28278152

  9. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  10. Optimal shielding thickness for galactic cosmic ray environments

    Science.gov (United States)

    Slaba, Tony C.; Bahadori, Amir A.; Reddell, Brandon D.; Singleterry, Robert C.; Clowdsley, Martha S.; Blattnig, Steve R.

    2017-02-01

    Models have been extensively used in the past to evaluate and develop material optimization and shield design strategies for astronauts exposed to galactic cosmic rays (GCR) on long duration missions. A persistent conclusion from many of these studies was that passive shielding strategies are inefficient at reducing astronaut exposure levels and the mass required to significantly reduce the exposure is infeasible, given launch and associated cost constraints. An important assumption of this paradigm is that adding shielding mass does not substantially increase astronaut exposure levels. Recent studies with HZETRN have suggested, however, that dose equivalent values actually increase beyond ∼20 g/cm2 of aluminum shielding, primarily as a result of neutron build-up in the shielding geometry. In this work, various Monte Carlo (MC) codes and 3DHZETRN are evaluated in slab geometry to verify the existence of a local minimum in the dose equivalent versus aluminum thickness curve near 20 g/cm2. The same codes are also evaluated in polyethylene shielding, where no local minimum is observed, to provide a comparison between the two materials. Results are presented so that the physical interactions driving build-up in dose equivalent values can be easily observed and explained. Variation of transport model results for light ions (Z ≤ 2) and neutron-induced target fragments, which contribute significantly to dose equivalent for thick shielding, is also highlighted and indicates that significant uncertainties are still present in the models for some particles. The 3DHZETRN code is then further evaluated over a range of related slab geometries to draw closer connection to more realistic scenarios. Future work will examine these related geometries in more detail.

  11. Geomorphometirc Segmentation of Shield Deserts by Self-Organizing Maps

    Science.gov (United States)

    Foroutan, M.; Kompanizare, M.; Ehsani, A. H.

    2015-12-01

    Shield deserts have developed on ancient crystalline bedrocks and mainly composed of folded and faulted rocks hardened by heat and pressure over millions of years. They were unearthed by erosion and form steep-sided hills and basins filled with sediments. The Sahara, Arabian, southern African, central Kavir and Australian deserts are in this group. Their ranges usually supply groundwater resources or in some regions contain huge oil reservoirs. Geomorphological segmentation of shield deserts is one of the fundamental tools in their land use or site investigation planning as well as in their surface water and groundwater management. In many studies the morphology of shield deserts has been investigated by limited qualitative and subjective methods using limited number of simple parameters such as surface elevation and slope. However the importance of these regions supports the need for their accurate and quantitative morphologic classification. The present study attempts to implement a quantitative method, Self-Organizing Map (SOM), for geomorphological classification of a typical shield desert within Kavir Desert, Iran. The area is tectonically stable and characterized by flat clay pans, playas, well-developed pediments around scattered and low elevation ranges. Twenty-two multi-scale morphometric parameters were derived from the first- to third-orders partial derivatives of the surface elevation. Seven optimized parameters with their proper scales were selected by Artificial Neural Networks, Optimum Index Factor, Davies-Bouldin Index and statistic models. Finally, the area was segmented to seven homogeneous areas by SOM algorithm. The results revealed the most distinguishing parameter set (MDPS) for morphologic segmentation of shield deserts. The same segmentation results through using MDPS for another shield deserts in Australia proves the applicability of MDPS for shield deserts segmentation.

  12. Hydrogen-Induced Cracking of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-07

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944]).

  13. Jet Noise Shielding Provided by a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Doty, Michael J.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Pope, Dennis S.

    2014-01-01

    One approach toward achieving NASA's aggressive N+2 noise goal of 42 EPNdB cumulative margin below Stage 4 is through the use of novel vehicle configurations like the Hybrid Wing Body (HWB). Jet noise measurements from an HWB acoustic test in NASA Langley's 14- by 22-Foot Subsonic Tunnel are described. Two dual-stream, heated Compact Jet Engine Simulator (CJES) units are mounted underneath the inverted HWB model on a traversable support to permit measurement of varying levels of shielding provided by the fuselage. Both an axisymmetric and low noise chevron nozzle set are investigated in the context of shielding. The unshielded chevron nozzle set shows 1 to 2 dB of source noise reduction (relative to the unshielded axisymmetric nozzle set) with some penalties at higher frequencies. Shielding of the axisymmetric nozzles shows up to 6.5 dB of reduction at high frequency. The combination of shielding and low noise chevrons shows benefits beyond the expected additive benefits of the two, up to 10 dB, due to the effective migration of the jet source peak noise location upstream for increased shielding effectiveness. Jet noise source maps from phased array results processed with the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm reinforce these observations.

  14. Magnetic Shielding Studies of the RICH Photon Detectors

    CERN Document Server

    Patel, M; Gys, Thierry

    2006-01-01

    The Hybrid Photon Detectors (HPDs) adopted for LHCb's RICH detectors are required to operate in the fringe field of the 4Tm LHCb dipole magnet. In fields in excess of 15G, photoelectrons are lost from the active area of an HPD. Shielding the HPDs from the fringe field is therefore essential for the efficient operation of the RICH detectors. A primary magnetic shield has been designed that reduces the field at the photon detectors to <20G. This field is to be further reduced by a set of individual secondary magnetic shields around each HPD. This note describes the technique used to calculate the residual field inside these secondary shields. The size of the problem, together with the disparity in the geometric scales involved, make the calculations intractable using a finite element model of the entire magnetic environment. As a result, a sub-modelling method has been used together with a rectangular approximation to the circular cross-section shields. The model indicates that with a 89.5mm HPD pitch, 0.9mm...

  15. Evaluating Shielding Effectiveness for Reducing Space Radiation Cancer Risks

    Science.gov (United States)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2007-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDF s are used in significance tests of the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDF s. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the 95% confidence level (CL) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions (shielding, especially for carbon composites structures with high hydrogen content. In contrast, for long duration lunar (>180 d) or Mars missions, GCR risks may exceed radiation risk limits, with 95% CL s exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding can not be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection.

  16. Superconducting and hybrid systems for magnetic field shielding

    Science.gov (United States)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  17. STUDY OF WING SHIELDING EFFECT OF PROPELLER AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The calculation of wing shielding effect starts from solving Ffowcs Williams and Hawkings equation without quadrupole source in time domain. The sound scattering of the wing and fuselage which are surrounded by a multi-propeller sound field is modeled as a second sound source. A program is developed to calculate the acoustical effects of the rigid fuselage as well as wings with arbitrary shape in motion at low Mach number. As an example, the numerical calculation of the wing shielding of Y12 aircraft with an approximate shape is presented. The result manifests clearly the shielding effect of the wing on the fuselage and the approach is more efficient than that published before.

  18. Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material

    Energy Technology Data Exchange (ETDEWEB)

    Verst, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-12

    The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a function of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.

  19. Magnetic Field Design by Using Image Effect from Iron Shield

    Institute of Scientific and Technical Information of China (English)

    Quanling PENG; S.M. McMurry; J.M.D.Coey

    2004-01-01

    Permanent magnet rings are presented, which exploit the image effect in the surrounding circular iron shields. The theory is given for a general permanent ring when the magnetization orientation Ψ at each coordinate angle Ψ changes by Ψ=(n+1)Ψ,where n is a positive or negative integer. For the uniformly magnetized case n=-1, the permanent ring produces no field in its bore, and the field is that of a dipole outside. When the ring is surrounded by a soft iron shield, its field becomes uniform in the bore, and zero outside the ring. The field can be varied continuously by moving the iron shield along the magnet axis.A small variable field device was constructed by using NdFeB permanent rings, which produced a field flux density of 0~0.5 T in the central region.

  20. The ATLAS SCT grounding and shielding concept and implementation

    CERN Document Server

    Bates, RL; Bernabeu, J; Bizzell, J; Bohm, J; Brenner, R; Bruckman de Renstrom, P A; Catinaccio, A; Cindro, V; Ciocio, A; Civera, J V; Chouridou, S; Dervan, P; Dick, B; Dolezal, Z; Eklund, L; Feld, L; Ferrere, D; Gadomski, S; Gonzalez, F; Gornicki, E; Greenhall, A; Grillo, A A; Grosse-Knetter, J; Gruwe, M; Haywood, S; Hessey, N P; Ikegami, Y; Jones, T J; Kaplon, J; Kodys, P; Kohriki, T; Kondo, T; Koperny, S; Lacasta, C; Lozano Bahilo, J; Malecki, P; Martinez-McKinney, F; McMahon, S J; McPherson, A; Mikulec, B; Mikus, M; Moorhead, G F; Morrissey, M C; Nagai, K; Nichols, A; O'Shea, V; Pater, J R; Peeters, S J M; Pernegger, H; Perrin, E; Phillips, P W; Pieron, J P; Roe, S; Sanchez, J; Spencer, E; Stastny, J; Tarrant, J; Terada, S; Tyndel, M; Unno, Y; Wallny, R; Weber, M; Weidberg, A R; Wells, P S; Werneke, P; Wilmut, I

    2012-01-01

    This paper describes the design and implementation of the grounding and shielding system for the ATLAS SemiConductor Tracker (SCT). The mitigation of electromagnetic interference and noise pickup through power lines is the critical design goal as they have the potential to jeopardize the electrical performance. We accomplish this by adhering to the ATLAS grounding rules, by avoiding ground loops and isolating the different subdetectors. Noise sources are identified and design rules to protect the SCT against them are described. A rigorous implementation of the design was crucial to achieve the required performance. This paper highlights the location, connection and assembly of the different components that affect the grounding and shielding system: cables, filters, cooling pipes, shielding enclosure, power supplies and others. Special care is taken with the electrical properties of materials and joints. The monitoring of the grounding system during the installation period is also discussed. Finally, after con...

  1. Status of reactor shielding research in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bartine, D.E.

    1983-01-01

    Shielding research in the United States continues to place emphasis on: (1) the development and refinement of shielding design calculational methods and nuclear data; and (2) the performance of confirmation experiments, both to evaluate specific design concepts and to verify specific calculational techniques and input data. The successful prediction of the radiation levels observed within the now-operating Fast Flux Test Facility (FFTF) has demonstrated the validity of this two-pronged approach, which has since been applied to US fast breeder reactor programs and is now being used to determine radiation levels and possible further shielding needs at operating light water reactors, especially under accident conditions. A similar approach is being applied to the back end of the fission fuel cycle to verify that radiation doses at fuel element storage and transportation facilities and within fuel reprocessing plants are kept at acceptable levels without undue economic penalties.

  2. A current limiter with superconducting coil for magnetic field shielding

    Science.gov (United States)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  3. Tunnel face stability and ground settlement in pressurized shield tunnelling

    Institute of Scientific and Technical Information of China (English)

    苏艺; 汪国锋; 周庆宏

    2014-01-01

    An analysis of the stability of large-diameter circular tunnels and ground settlement during tunnelling by a pressurized shield was presented. An innovative three-dimensional translational multi-block failure mechanism was proposed to determine the face support pressure of large-shield tunnelling. Compared with the currently available mechanisms, the proposed mechanism has two unique features: (1) the supporting pressure applied to the tunnel face is assumed to have a non-uniform rather than uniform distribution, and (2) the method takes into account the entire circular excavation face instead of merely an inscribed ellipse. Based on the discrete element method, a numerical simulation of the Shanghai Yangtze River Tunnel was carried out using the Particle Flow Code in two dimensions. The immediate ground movement during excavation, as well as the behaviour of the excavation face, the shield movement, and the excavated area, was considered before modelling the excavation process.

  4. A Radiation Shielding Code for Spacecraft and Its Validation

    Science.gov (United States)

    Shinn, J. L.; Cucinotta, F. A.; Singleterry, R. C.; Wilson, J. W.; Badavi, F. F.; Badhwar, G. D.; Miller, J.; Zeitlin, C.; Heilbronn, L.; Tripathi, R. K.

    2000-01-01

    The HZETRN code, which uses a deterministic approach pioneered at NASA Langley Research Center, has been developed over the past decade to evaluate the local radiation fields within sensitive materials (electronic devices and human tissue) on spacecraft in the space environment. The code describes the interactions of shield materials with the incident galactic cosmic rays, trapped protons, or energetic protons from solar particle events in free space and low Earth orbit. The content of incident radiations is modified by atomic and nuclear reactions with the spacecraft and radiation shield materials. High-energy heavy ions are fragmented into less massive reaction products, and reaction products are produced by direct knockout of shield constituents or from de-excitation products. An overview of the computational procedures and database which describe these interactions is given. Validation of the code with recent Monte Carlo benchmarks, and laboratory and flight measurement is also included.

  5. Rapid Analysis of Mass Distribution of Radiation Shielding

    Science.gov (United States)

    Zapp, Edward

    2007-01-01

    Radiation Shielding Evaluation Toolset (RADSET) is a computer program that rapidly calculates the spatial distribution of mass of an arbitrary structure for use in ray-tracing analysis of the radiation-shielding properties of the structure. RADSET was written to be used in conjunction with unmodified commercial computer-aided design (CAD) software that provides access to data on the structure and generates selected three-dimensional-appearing views of the structure. RADSET obtains raw geometric, material, and mass data on the structure from the CAD software. From these data, RADSET calculates the distribution(s) of the masses of specific materials about any user-specified point(s). The results of these mass-distribution calculations are imported back into the CAD computing environment, wherein the radiation-shielding calculations are performed.

  6. Electromagnetic shielding of thermal protection system for hypersonic vehicles

    Science.gov (United States)

    Albano, M.; Micheli, D.; Gradoni, G.; Morles, R. B.; Marchetti, M.; Moglie, F.; Mariani Primiani, V.

    2013-06-01

    The numerical simulation and the measurement of electromagnetic shielding at microwave frequencies of thermal protection system for hypersonic vehicles is presented using nested reverberation chamber. An example of a possible thermal protection system for a re-entry vehicle is presented. This system based on carbon material is electromagnetically characterized. The characterization takes into account not only the materials but also the final assembly configuration of the thermal protection system. The frequency range is 2-8 GHz. The results of measurements and simulations show that the microwave shielding effectiveness of carbon materials is above 60 dB for a single tile and that the tile inter-distance is able to downgrade the shielding effectiveness on the average to about 40 dB.

  7. Barium-borate-flyash glasses: As radiation shielding materials

    Science.gov (United States)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3°. Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses.

  8. Reusable shielding material for neutron- and gamma-radiation

    Science.gov (United States)

    Calzada, Elbio; Grünauer, Florian; Schillinger, Burkhard; Türck, Harald

    2011-09-01

    At neutron research facilities all around the world radiation shieldings are applied to reduce the background of neutron and gamma radiation as far as possible in order to perform high quality measurements and to fulfill the radiation protection requirements. The current approach with cement-based compounds has a number of shortcomings: "Heavy concrete" contains a high amount of elements, which are not desired to obtain a high attenuation of neutron and/or gamma radiation (e.g. calcium, carbon, oxygen, silicon and aluminum). A shielding material with a high density of desired nuclei such as iron, hydrogen and boron was developed for the redesign of the neutron radiography facility ANTARES at beam tube 4 (located at a cold neutron source) of FRM-II. The composition of the material was optimized by help of the Monte Carlo code MCNP5. With this shielding material a considerable higher attenuation of background radiation can be obtained compared to usual heavy concretes.

  9. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    Science.gov (United States)

    Basyigit, Celalettin; Uysal, Volkan; Kilinçarslan, Şemsettin; Mavi, Betül; Günoǧlu, Kadir; Akkurt, Iskender; Akkaş, Ayşe

    2011-12-01

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  10. AA, radiation shielding curtain along the target area

    CERN Multimedia

    1980-01-01

    At the far left is the beam tube for the high-intensity proton beam from the 26 GeV PS. The tube ends in a thin window and the proton beam continues in air through a hole in the shielding blocks (see also 8010308), behind which the target (see 7905091, 7905094)was located. After the target followed the magnetic horn, focusing the antiprotons, and the first part of the injection line with a proton dump. The antiprotons, deflected by a magnet, left the target area through another shielding wall, to make their way to the AA ring. Laterally, this sequence of components was shielded with movable, suspended, concrete blocks: the "curtain". Balasz Szeless, who had constructed it, is standing at its side.

  11. Radiation Shielding Properties of Some Marbles in Turkey

    Science.gov (United States)

    Günoǧlu, K.; Akkurt, I.

    2011-12-01

    Especially after development of technology, radiation started to be used in a large fields such as medicine, industry and energy. Using radiation in those fields bring hazordous effect of radition into humancell. Thus radiation protection becomes important in physics. Although there are three ways for radiation protection, shielding of the radiation is the most commonly used method. Natural Stones such as marble is used as construction material especially in critical building and thus its radiation shielding capability should be determined. In this study, gamma ray shielding properties of some different types of marble mined in Turkey, have been measured using a NaI(Tl) scintillator detector. The measured results were also compared with the theoretical calculations XCOM.

  12. Characteristics of Electromagnetic Coupling with A Wire through Shielding Enclosure

    Directory of Open Access Journals (Sweden)

    Yanpeng Sun

    2013-09-01

    Full Text Available The paper presents a numerical method based on Finite Difference Time Domain (FDTD in both frequency and time domain for modeling the coupling of an incident electromagnetic pulse(EMP with a conducting wire through a metallic shielding enclosure with a small aperture. Simulation and analysis are done by radius, length, and number of the wires, the incidence angle of EMP and the polaration angle of electric field in consideration. The simulation result shows that interference of the electromagnetic coupling into the shielding enclosure can be affected in different degrees by above factors. At low frequency, the larger the leakage length, the radius or the number of the wire penetrated into the cavity, the more interference is coupled into the shielding cavity from electromagnetic field. Also, the smaller the incident direction angle of propagation of the electromagnetic pulse or the polarization direction angle of the incident electric field, the more easily the electromagnetic interference is coupled into the cavity.

  13. Effect of compositional variation in plutonium on process shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.H.

    1997-11-01

    Radiation dose rate from plutonium with high {sup 239}Pu content varies with initial nuclidic content, radioactive decay time, and impurity elemental content. The two idealized states of old plutonium and clean plutonium, whose initial compositions are given, provide approximate upper and lower bounds on dose rate variation. Whole-body dose rates were calculated for the two composition states, using unshielded and shielded plutonium spheres of varying density. The dose rates from these variable density spheres are similar to those from expanded plutonium configurations encountered during processing. The dose location of 40 cm from the sphere center is representative of operator standoff for direct handling of plutonium inside a glove box. The results have shielding implications for glove boxes with only structurally inherent shielding, especially for processing of old plutonium in an expanded configuration. Further reduction in total dose rate by using lead to reduce photon dose rate is shown for two density cases representing compact and expanded plutonium configurations.

  14. Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive

    Science.gov (United States)

    Yao, Ya; Zhang, Xiaowen; Li, Mi; Yang, Rong; Jiang, Tianjiao; Lv, Junwen

    2016-10-01

    Concrete has a proven ability to attenuate gamma rays and neutrons without compromising structural property; therefore, it is widely used as the primary shielding material in many nuclear facilities. Recently, there is a tendency toward using various additives to enhance the shielding properties of these concrete mixtures. However, most of these additives being used either pose hygiene hazards or require special handling processes. It would be ideal if environmentally friendly additives were available for use. The bismuth oxide (Bi2O3) additive shows promise in various shielding applications due to its proven radiation attenuation ability and environmentally friendly nature. To the best of our knowledge, however, Bi2O3 has never been used in concrete mixtures. Therefore, for this research, we fabricated the Bi2O3-based concrete mixtures by adding Bi2O3 powder in the ordinary concrete mixture. Concrete mixtures with lead oxide (PbO) additives were used for comparison. Radiation shielding parameters like the linear attenuation coefficients (LAC) of all these concrete mixtures showing the effects of the Bi2O3 additions are presented. The mechanical performances of concrete mixtures incorporated with Bi2O3 additive were also investigated. It suggested that the concrete mixture containing 25% Bi2O3 powder (B5 in this study) provided the best shielding capacity and mechanical performance among other mixes. It has a significant potential for application as a structural concrete where radiological protection capability is required.

  15. Toward a new methodology for measuring the threshold Shields number

    Science.gov (United States)

    Rousseau, Gauthier; Dhont, Blaise; Ancey, Christophe

    2016-04-01

    A number of bedload transport equations involve the threshold Shields number (corresponding to the threshold of incipient motion for particles resting on the streambed). Different methods have been developed for determining this threshold Shields number; they usually assume that the initial streambed is plane prior to sediment transport. Yet, there are many instances in real-world scenarios, in which the initial streambed is not free of bed forms. We are interested in developing a new methodology for determining the threshold of incipient motion in gravel-bed streams in which smooth bed forms (e.g., anti-dunes) develop. Experiments were conducted in a 10-cm wide, 2.5-m long flume, whose initial inclination was 3%. Flows were supercritical and fully turbulent. The flume was supplied with water and sediment at fixed rates. As bed forms developed and migrated, and sediment transport rates exhibited wide fluctuations, measurements had to be taken over long times (typically 10 hr). Using a high-speed camera, we recorded the instantaneous bed load transport rate at the outlet of the flume by taking top-view images. In parallel, we measured the evolution of the bed slope, water depth, and shear stress by filming through a lateral window of the flume. These measurements allowed for the estimation of the space and time-averaged slope, from which we deduced the space and time-averaged Shields number under incipient bed load transport conditions. In our experiments, the threshold Shields number was strongly dependent on streambed morphology. Experiments are under way to determine whether taking the space and time average of incipient motion experiments leads to a more robust definition of the threshold Shields number. If so, this new methodology will perform better than existing approaches at measuring the threshold Shields number.

  16. Design and Analysis of the Thermal Shield of EAST Tokamak

    Institute of Scientific and Technical Information of China (English)

    XIE Han; LIAO Ziying

    2008-01-01

    EAST (Experimental Advanced Superconducting Tokamak) is a tokamak with superconducting toroidal and poloidal magnets operated at 4.5 K. In order to reduce the thermal load applied on the surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system at a minimum, a continuous radiation shield system located between the magnet system and warm components is adopted. The main loads to which the thermal shield system is subjected are gravity, seismic, electromagnetic and thermal gradients. This study employed NASTRAN and ANSYS finite element codes to analyze the stress under a spectrum of loading conditions and combinations, providing a theoretical basis for an optimization design of the structure.

  17. Recent Improvements in the SHIELD-HIT Code

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Lühr, Armin Christian; Herrmann, Rochus

    2012-01-01

    Purpose: The SHIELD-HIT Monte Carlo particle transport code has previously been used to study a wide range of problems for heavy-ion treatment and has been benchmarked extensively against other Monte Carlo codes and experimental data. Here, an improved version of SHIELD-HIT is developed...... of using accelerator control files as a basis for the primaries. Furthermore, the code has been parallelized and efficiency is improved. The physical description of inelastic ion collisions has been modified. Results: The simulation of an experimental depth-dose distribution including a ripple filter...

  18. Preliminary Design and Analysis of ITER In-Wall Shielding

    Institute of Scientific and Technical Information of China (English)

    LIU Changle; YU Jie; WU Songtao; CAI Yingxiang; PAN Wanjiang

    2007-01-01

    ITER in-wall shielding (IIS) is situated between the doubled shells of the ITER Vacuum Vessel (IVV). Its main functions are applied in shielding neutron, gamma-ray and toroidal field ripple reduction. The structure of IIS has been modelled according to the IVV design criteria which has been updated by the ITER team (IT). Static analysis and thermal expansion analysis were performed for the structure. Thermal-hydraulic analysis verified the heat removal capability and resulting temperature, pressure, and velocity changes in the coolant flow. Consequently, our design work is possibly suitable as a reference for IT's updated or final design in its next step.

  19. Ab initio calculation of the NMR shielding constants for histamine

    Science.gov (United States)

    Mazurek, A. P.; Dobrowolski, J. Cz.; Sadlej, J.

    1997-12-01

    The gage-independent atomic orbital (GIAO) approach is used within the coupled Hartree-Fock approximation to compute the 1H, 13C and 15N NMR shielding constants in two tautomeric forms of both the histamine molecule and its protonated form. An analysis of the results shows that the protonation on the end of the chain changes its nitrogen shielding constants of the pyridine and pyrrole type. These changes are much higher for the N(3)-H than for the N(1)-H tautomer.

  20. Neutron shielding evaluation for a small fuel transport case

    CERN Document Server

    Coeck, M; Vanhavere, F

    2002-01-01

    We investigated the effectiveness of a small neutron shield configuration for the transportation of fresh MOX fuel rods in an experimental facility, this in order to reduce the dose received by the personnel. Monte Carlo simulations using the Tripoli and MCNP4B code were applied. Different configurations were studied, starting from the bare fuel rod positioned on an iron plate up to a fuel rod covered by a box-shaped shield made of different materials such as polyethylene, polyethylene with boron and polyethylene with a cadmium layer. We compared the neutron spectra for the different cases and calculated the corresponding ambient equivalent dose rate H*(10).

  1. "The Shield": un tipo de policía diferente

    OpenAIRE

    García-Martínez, A.N. (Alberto Nahum)

    2013-01-01

    No hay ficción televisiva que se abra y se cierre mejor que The Shield. El primer asalto es salvaje: una crochet de realismo sucio y adrenalina en la jungla de asfalto, una hora que castiga el hígado hasta noquearte. «Lo del poli bueno y el poli malo se acabó por hoy. Yo soy un tipo de policía diferente», clama Vic Mackey antes de partirle los dientes a un pederasta en la sala de interrogación. Como el protagonista, The Shield (FX, 2002-08) también es un relato diferente, arriesgado, que...

  2. Description of Transport Codes for Space Radiation Shielding

    Science.gov (United States)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.

    2011-01-01

    This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.

  3. Shielding Performance Measurements of Spent Fuel Transportation Container

    Directory of Open Access Journals (Sweden)

    SUN Hong-chao

    2015-11-01

    Full Text Available The safety supervision of radioactive material transportation package has been further stressed and implemented. The shielding performance measurements of spent fuel transport container is the important content of supervision. However, some of the problems and difficulties reflected in practice need to be solved, such as the neutron dose rate on the surface of package is too difficult to measure exactly, the monitoring results are not always reliable, etc. The monitoring results using different spectrometers were compared and the simulation results of MCNP runs were considered. An improvement was provided to the shielding performance measurements technique and management of spent fuel transport.

  4. Detailed mechanical design of the LIPAc beam dump radiological shielding

    OpenAIRE

    Nomen Escoda, Oriol; Mollá, Joaquin; Sanmartí, Manel; José I. Martínez; Arranz, Fernando; Iglesias, Daniel; Barrera, German; Brañas, Beatriz; Ogando, Francisco

    2013-01-01

    The LIPAc is a 9 MeV, D+ linear prototype accelerator for the validation of the IFMIF accelerator design. The high intensity, 125 mA CW beam is stopped in a copper cone involving a high production of neutrons and gamma radiation and activation of its surface. The beam stopper is surrounded by a shielding to attenuate the resulting radiation so that dose rate values comply with the limits at the different zones of the installation. The shielding includes for that purpose polyethylene rings...

  5. Shielding effectiveness of original and modified building materials

    Directory of Open Access Journals (Sweden)

    T. Frenzel

    2007-06-01

    Full Text Available This contribution deals with the determination of the shielding effectiveness of building materials used for office, factory and government buildings. Besides the examination of standard materials, measurements were also performed on modified materials, e.g. ferro concrete with enhanced shielding effectiveness due to a changed mixture or structure of the reinforcement. The measurements of original and modified materials were carried out in a fully anechoic room (FAR according to IEEE 299-1997 from 80 MHz up to 10 GHz.

  6. MCNPX vs. DORT for SNS shielding design studies.

    Science.gov (United States)

    Popova, Irina I

    2005-01-01

    Radiation transport occurs through the 18 m long access way adjacent to the Spallation Neutron Source accelerator tunnel and the 2.2 m thick massive shielding door which closes the access way. A variety of typical materials for accelerator shielding, such as concrete and steel, were used for construction of the door to study radiation penetration. A comparison was carried out using both Monte Carlo (code MCNPX) and discrete ordinates (code DORT) methods. The beam losses during the accelerator operation are the sources for the radiation calculations. Analyses show that the results from the two methods are in good agreement.

  7. Target station shielding issues at the spallation neutron source.

    Science.gov (United States)

    Ferguson, P D; Gallmeier, F X; Iverson, E B; Popova, I I

    2005-01-01

    Recent spallation neutron source shielding activities in support of the neutron beam shutters and the hot cell walls are presented. Existing neutron beam shutters can be replaced with concrete at low power or with concrete and steel at approximately 500 kW of beam power. Potential voids in the hot cell walls are analysed to determine the impact on dose rates as a function of void size. A change in the type of shielding work is noted as the project moved from the early design stages as a 'green field' site to the current stage as a construction project nearing completion, where issues to be addressed are approaching retrofit-type analyses.

  8. Radiation Shielding Design for ISOL System Beam Line

    Institute of Scientific and Technical Information of China (English)

    WANG; Feng; QIN; Jiu-chang

    2013-01-01

    The beam line of the ISOL system passes through the shielding wall and connects the HI-13 tandem accelerator.Neutron produced by tandem accelerator will affect the area of BRIF through the beam line.To protect the staff in BRIF area from radiation a shielding design of the beam line is carried out.The neutron source in the vault of tandem accelerator is the H.E Faraday cup of HI-13 tandem accelerator as showed in Fig.1.The Faraday cup is consisted of 1 mm molybdenum sheet and 10 mm

  9. [Breast dose reduction in female CT screening for lung cancer using various metallic shields].

    Science.gov (United States)

    Takada, Kenta; Kaneko, Junichi; Aoki, Kiyoshi

    2009-12-20

    We evaluated the effectiveness of metallic shields that were used for reduction of the breast dose in thoracic computed tomography(CT). For the evaluation, we measured breast surface dose and image standard deviation(SD)in the lung area. The metallic shields were made from bismuth, zinc, copper, and iron. The bismuth shield has been marketed and used for dose reduction. The other three metallic shields were chosen because they have lower atomic numbers and a lower yield of characteristic X-rays. As a result, use of the metallic shields showed a lower breast dose than the decrement of the tube current in the same image SD. The insertion of a thin aluminum sheet between the shield and a phantom was also effective in reducing breast surface dose. We calculated the dose reduction rate to evaluate the effectiveness of these metallic shields. This dose reduction rate was defined as the ratio of the decrease in breast surface dose by metallic shields to the breast surface dose measured with the tube current decrement in the same image SD. The maximum dose reduction rate was 6.4% for the bismuth shield, and 12.0-13.3% for the other shields. These results indicate that the shields made from zinc, copper, and iron are more effective for dose reduction than the shield made form bismuth. The best dose reduction rate, 13.3%, has been achieved when the zinc shield placed 20 mm apart from a phantom with 0.2 mm aluminum was used.

  10. Development of ITER shielding blanket prototype mockup by HIP bonding

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi; Furuya, Kazuyuki; Hatano, Toshihisa; Kuroda, Toshimasa; Enoeda, Mikio; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Office of ITER Project Promotion, Tokyo (Japan)

    2000-07-01

    A prototype ({approx}900{sup H} x 1700{sup W} x 350{sup T} mm) of the ITER shielding blanket module has been fabricated following the previous successful fabrication of a small-scale ({approx}500{sup H} x 400{sup W} x 150{sup T} mm) and mid-scale ({approx}800{sup H} x 500{sup W} x 350{sup T} mm) mock-ups. This prototype incorporates most of key design features essential to the fabrication of the ITER shielding blanket module such as 1) the first wall heat sink made of Al{sub 2}O{sub 3} dispersion strengthened Cu (DSCu) with built-in SS316L coolant tubes bonded to a massive SS316LN shield block, 2) toroidally curved first wall with a radius of 5106 mm while straight in poloidal direction, 3) coolant channels oriented in poloidal direction in the first wall and in toroidal direction in the shield block, 4) the first wall coolant channel routing to avoid the interference with the front access holes, 5) coolant channels drilled through the forged SS316LN-IG shield block, and 6) four front access holes of 30 mm in diameter penetrated through the first wall and the shield block. For the joining method, especially for the first wall/side wall parts and the shield block, the solid HIP (Hot Isostatic Pressing) process was applied. It is difficult to apply conventional joining methods such as field welding, brazing, explosion bonding and mechanical one-axial diffusion bonding to a wide area bonding because sufficient mechanical strengths can not be obtained and excessive deformations occurs. In order to solve these fabrication issues, HIP bonding was applied. The first wall stainless steel (SS) coolant tubes of 10 mm in inner diameter and l mm in thickness were sandwiched by semi-circular grooved DSCu plates at the first wall and the front region of the side wall, and by semi-circular grooved SS plates at the back region of the side wall. After assembling of these first wall/side wall parts with the shield block, they were simultaneously bonded by single step HIP in order to

  11. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays.

    Science.gov (United States)

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-07-27

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  12. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    Science.gov (United States)

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-07-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  13. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    Science.gov (United States)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  14. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  15. Elrotherm shielding systems. New pioneering material composites; Elrotherm-Abschirmsysteme. Neue Zukunftsweisende Materialkompositionen

    Energy Technology Data Exchange (ETDEWEB)

    Zika-Beyerlein, B. [ElringKlinger (Germany). Geschaeftsbereich Abschirmtechnik

    2004-09-01

    Tightly packed engine compartments put special demands on thermal and acoustic shielding systems. With new material composites allowing for particularly thin-walled and light shielding parts, ElringKlinger is well equipped for the future. (orig.)

  16. Small foamed polystyrene shield protects low-frequency microphones from wind noise

    Science.gov (United States)

    Tedrick, R. N.

    1964-01-01

    A foamed polystyrene noise shield for microphones has been designed in teardrop shape to minimize air turbulence. The shield slips on and off the microphone head easily and is very effective in low-frequency sound intensity measurements.

  17. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of the proposed research are to develop a space radiation shielding material system that has high efficacy for shielding radiation and also has high...

  18. 77 FR 67678 - Content Specifications and Shielding Evaluations for Type B Transportation Packages

    Science.gov (United States)

    2012-11-13

    ... COMMISSION Content Specifications and Shielding Evaluations for Type B Transportation Packages AGENCY... Regulatory Issue Summary (RIS) 2012-XX, ``Content Specifications and Shielding Evaluations for Type B... Plan for Transport Packages for Radioactive Material,'' for the review of content specifications...

  19. Spin-rotation and NMR shielding constants in HCl

    Energy Technology Data Exchange (ETDEWEB)

    Jaszuński, Michał, E-mail: michal.jaszunski@icho.edu.pl [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland); Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz [Laboratory of NMR Spectroscopy, Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2013-12-21

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of {sup 1}H{sup 35}Cl are C{sub Cl}  = −53.914 kHz and C{sub H}  = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.

  20. The Magnetic Shielding Effect of a Re-Fuelling Pellet

    DEFF Research Database (Denmark)

    Chang, C. T.

    1975-01-01

    The magnetic shielding effect of a refuelling pellet is considered by first briefly reviewing the existing balloon model. The limitation of the model is pointed out and discussed. Since solid deuterium is an insulator and the ablated plasma is expected to be cold and dense, it is felt that the ex...

  1. Sterically shielded diboron-containing metallocene olefin polymerization catalysts

    Science.gov (United States)

    Marks, Tobin J.; Ja, Li; Yang, Xinmin

    1995-09-05

    A non-coordinating anion, preferably containing a sterically shielded diboron hydride, if combined with a cyclopenta-dienyl-substituted metallocene cation component, such as a zirconocene metallocene, is a useful olefin polymerization catalyst component. The anion preferably has the formula ##STR1## where R is branched lower alkyl, such as t-butyl.

  2. RADIO SHIELDING PROPERTIES OF CONCRETE BASED ON SHUNGITE NANOMATERIALS

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2013-04-01

    Full Text Available Modifications of shielding construction materials based on Portland cement with the addition of powder nanomaterial shungite were developed. Attenuation and re­flection of electromagnetic radiation for obtained materials were studied. Recommen­dations for using are given.

  3. Structure of Self-shielding Electron Beam Installation for Sterilization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to prevent terrorist using letters with anthrax germ or spores to postal route and disturbsociety, and defend the people’s life-safety China Institute of Atomic Energy (CIAE) has developed aself-shielding electron beam installation for sterilization (SEBIS).

  4. A Gravitational Shielding Based on ZnS:Ag Phosphor

    OpenAIRE

    De Aquino, Fran

    2001-01-01

    It was shown that there is a practical possibility of gravity control on electroluminescent (EL) materials (physics/0109060). We present here a type Gravitational Shielding based on an EL phosphor namely zinc sulfide doped with silver (ZnS:Ag) which can reduce the cost of the Gravitational Motor previously presented.

  5. The Chemical Effects of Mutual Shielding in Photon Dominated Regions

    CERN Document Server

    Rollins, Richard P

    2012-01-01

    We investigate the importance of the shielding of chemical photorates by molecular hydrogen photodissociation lines and the carbon photoionization continuum deep within models of photon dominated regions. In particular, the photodissociation of N2 and CN are significantly shielded by the H2 photodissociation line spectrum. We model this by switching off the photodissociation channels for these species behind the HI to H2 transition. We also model the shielding effect of the carbon photoionization continuum as an attenuation of the incident radiation field shortwards of 1102\\AA. Using recent line and continuum cross section data, we present calculations of the direct and cosmic ray induced photorates for a range of species, as well as optically thick shielding factors for the carbon continuum. Applying these to a time dependent PDR model we see enrichments in the abundances of N2, N2H+, NH3 and CN by factors of roughly 3-100 in the extinction band Av=2.0 to Av=4.0 for a range of environments. While the precise...

  6. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.;

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding...

  7. SHIELD: Distance Estimates from Hubble Space Telescope Imaging

    Science.gov (United States)

    Cave, Ian; Cannon, J. M.; Larson, E.; Marshall, M.; Moody, S.; Adams, E. A.; Dolphin, A. E.; Elson, E. C.; Giovanelli, R.; Haynes, M. P.; McQuinn, K. B.; Ott, J.; Saintonge, A.; Salzer, J. J.; Skillman, E. D.

    2013-01-01

    The Survey of HI in Extremely Low-mass Dwarfs (SHIELD) is an ongoing study of twelve galaxies with HI masses between 106 and 107 Solar masses, detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. Here we present new Hubble Space Telescope (HST) imaging of the SHIELD galaxies. The primary goal is to determine the distance of each galaxy. We apply two techniques to measure the apparent magnitude of the tip of the red giant branch (TRGB) feature in the HST color magnitude diagrams. First, a custom designed edge detection filter was written to determine the TRGB magnitude based on a user-selected region of the color magnitude diagram. Second, we apply the maximum likelihood technique implemented in the "TRGBtool" software package (Makarov et al. 2006). In addition to the distances based on the TRGB feature, we also use the MATCH software (Dolphin 2002) to determine the best-fit distance based on the overall CMD morphology. We compare these distance estimates for all members of the SHIELD galaxies, and present a final table of distances that is used in each of the companion SHIELD presentations.

  8. Crystallographic Orientation of Cuttlebone Shield Determined by Electron Backscatter Diffraction

    Science.gov (United States)

    Cusack, Maggie; Chung, Peter

    2014-01-01

    In common with many cephalopod mollusks, cuttlefish produce an internal biomineral buoyancy device. This cuttlebone is analogous to a surf board in shape and structure, providing rigidity and a means of controlling buoyancy. The cuttlebone is composed of calcium carbonate in the form of aragonite and comprises an upper dorsal shield and a lower lamellar matrix. The lamellar matrix comprises layers of chambers with highly corrugated walls. The dorsal shield comprises bundles of aragonite needles stacked on top of each other. Electron backscatter diffraction analyses of the dorsal shield reveal that the c-axis of aragonite is parallel with the long axis of the needles in the bundles such that any spread in crystallographic orientation is consistent with the spread in orientation of the fibers as they radiate to form the overall structure of the dorsal shield. This arrangement of c-axis coincident with the long axis of the biomineral structure is similar to the arrangement in corals and in contrast to the situation in the molluskan aragonite nacre of brachiopod calcite where the c-axis is perpendicular to the aragonite tablet or calcite fiber, respectively.

  9. Neutron guide shielding for the BIFROST spectrometer at ESS

    Science.gov (United States)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C. P.; Lefmann, K.; Klinkby, E. B.

    2016-09-01

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. The same approach is used to study the efficiencies of the steel wall a flat cylinder pierced by the guide in the middle and the polyethylene layer. The final model presented here has a 3 cm thick steel shielding around the guide, 30 cm of polyethylene around the shielding, two 5 mm thick B4C layers and a steel wall at position Z = 38 m, being 1 m thick and 10 m in radius. The final model finally proves that it is sufficient to bring the background level below the cosmic neutron rate, which defines an order of magnitude of the lowest obtainable background in the instruments.

  10. SHIELD II: TRGB Distance Measurements from HST Imaging

    Science.gov (United States)

    Cannon, John M.; McQuinn, Kristen B.; Skillman, Evan D.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. The observations and science expand on the results from detailed studies of 12 similarly low-mass dwarf galaxies from the original SHIELD campaign. New HST observations of 18 SHIELD II galaxies have allowed us to determine their TRGB distances, thus anchoring the physical scales on which our ongoing analysis is based. Combined with the HST observations of the original 12 SHIELD galaxies presented in McQuinn et al. (2014, 2015), these HST optical images enable a holistic study of the fundamental parameters and characteristics of a statistically robust sample of 30 extremely low-mass galaxies. Additional science goals include an accurate census of the dark matter contents of these galaxies, a spatial and temporal study of star formation within them, and a characterization of the fundamental parameters that change as galaxy masses range from "mini-halo" to star-forming dwarf.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College, and by NASA through grant GO-13750 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  11. A new lead-free radiation shielding material for radiotherapy.

    Science.gov (United States)

    Yue, Kun; Luo, Wenyun; Dong, Xiaoqing; Wang, Chuanshan; Wu, Guohua; Jiang, Mawei; Zha, Yuanzi

    2009-02-01

    Lead has recently been recognised as a source of environmental pollution, including the lead used for radiation shielding in radiotherapy. The bremsstrahlung radiation caused by the interaction between the electron beam and lead may reduce the accuracy of radiotherapy. To avoid the use of lead, a new material composed of tungsten and hydrogenated styrene-butadiene-styrene copolymer is studied with the Monte Carlo (MC) method and experiment in this paper. The component of the material is chosen after simulation with the MC method and the practical measurement is taken to validate the shielding ability of the material. The result shows that the shielding ability of the new material is good enough to fulfill the requirement for application in radiotherapy. Compared with lead alloy, the present new material is so flexible that can be easily customized into arbitrary shapes. Moreover, the material is environmentally friendly and can be recycled conveniently. Therefore, the material can be used as an effective lead substitute for shielding against electron beams in radiotherapy.

  12. The value of thyroid shielding in intraoral radiography

    NARCIS (Netherlands)

    Hoogeveen, R.C.; Hazenoot, B.; Sanderink, G.C.H.; Berkhout, W.E.R.

    2016-01-01

    Objectives: To evaluate the utility of the application of a thyroid shield in intraoral radiography when using rectangular collimation. Methods: Experimental data were obtained by measuring the absorbed dose at the position of the thyroid gland in a RANDO® (The Phantom Laboratory, Salem, NY) male ph

  13. Analysis of the JASPER Program Radial Shield Attenuation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1993-01-01

    The results of the analysis of the JASPER Program Radial Shield Attenuation Experiment are presented. The experiment was performed in 1986 at the ORNL Tower Shielding Facility. It is the first of six experiments in this cooperative Japanese and American program in support of shielding designs for advanced sodium-cooled reactors. Six different shielding configurations and subconfigurations thereof were studied. The configurations were calculated with the DOT-IV two-dimensional discrete ordinates radiation transport computer code using the R-Z geometry option, a symmetric S{sub 12} quadrature (96 directions), and cross sections from ENDF/B versions IV and V in either a 51- or 61-group structure. Auxiliary codes were used to compute detector responses and prepare cross sections and source input for the DOT-IV calculations. Calculated detector responses were compared with measured responses and the agreement was good to excellent in many cases. However, the agreement for configurations having thick steel or B{sub 4}C regions or for some very large configurations was fair to poor. The disagreement was attributed to cross-section data, broad-group structure, or high background in the measurements. In particular, it is shown that two cross-section sets for ``B give very different results for neutron transmission through the thick B{sub 4}C regions used in one set of experimental configurations. Implications for design calculations are given.

  14. Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program

    Science.gov (United States)

    Ryan, Shannon

    2013-01-01

    This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks.

  15. The theory of sternheimer shielding in molecules in external fields

    Science.gov (United States)

    Fowler, P. W.; Lazzeretti, P.; Steiner, E.; Zanasi, R.

    1989-05-01

    A series of tensors is defined to describe the response to external electric and magnetic fields of the electric field gradient at a nucleus in a molecule. Perturbation expressions, symmetry relations and exact results for the hydrogen atom are given. The new tensors are related to derivatives of electric field shieldings with respect to motion of a test point through an electron distribution.

  16. When nearing the ATLAS cavern UX15 through RB16: the TX1S shielding

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Photo 01: 52 tons of ATLAS TX1S shielding with bare hands. Photos 02,03,04: Installation of the second TX1S shielding tube at Point Photos 05,06: Positioning of TX1S shielding, the first ATLAS/LHC interface component to be installed underground. Photo 07: Final adjustment of the TX1S shielding tube at the interface between the LHC tunnel and the ATLAS cavern (UX15).

  17. A Review on the Production Methods and Testing of Textiles for Electro Magnetic Interference (EMI) shielding

    OpenAIRE

    2015-01-01

    The need of the present generation to protect themselves from electromagnetic radiation due the various technological developments has paved way to the birth of EMI shielding of textiles. The shielding effectiveness of the developed fabric will vary depending upon the fabric or the coating constituents. The shielding requirements for different applications vary widely which has resulted in the development of wide variety of shielding mechanisms and materials which can be used in t...

  18. Characterization of a lead breast shielding for dose reduction in computed tomography*

    OpenAIRE

    Correia,Paula Duarte; Granzotti, Cristiano Roberto Fabri; Santos, Yago da Silva; Brochi,Marco Aurelio Corte; Azevedo-Marques,Paulo Mazzoncini de

    2014-01-01

    Objective Several studies have been published regarding the use of bismuth shielding to protect the breast in computed tomography (CT) scans and, up to the writing of this article, only one publication about barium shielding was found. The present study was aimed at characterizing, for the first time, a lead breast shielding. Materials and Methods The percentage dose reduction and the influence of the shielding on quantitative imaging parameters were evaluated. Dose measurements were made on ...

  19. MCNP Calculations for the Shielding Design of a Beam Tube to Be Installed at the Portuguese Research Reactor

    Science.gov (United States)

    Gonçalves, I. F.; Ramalho, A. G.; Gonçalves, I. C.; Salgado, J.

    The work presented concerns the calculation of the external biological shielding for a neutron beam tube that will be installed at the Portuguese Research Reactor, RPI. This tube will have enough versatility to be used in fields so different as the analysis of the composition of samples or research work in Boron Neutron Capture Therapy, BNCT. The calculation was made by using the MCNP code. This code is a well validated and widely used code, and has therefore become an important tool in the design and optimisation work of experiences related to neutrons and gamma radiation.

  20. Dimmuborgir: a rootless shield complex in northern Iceland

    Science.gov (United States)

    Skelton, Alasdair; Sturkell, Erik; Jakobsson, Martin; Einarsson, Draupnir; Tollefsen, Elin; Orr, Tim

    2016-01-01

    The origin of Dimmuborgir, a shield-like volcanic structure within the Younger Laxá lava flow field near Lake Mývatn, in northern Iceland, has long been questioned. New airborne laser mapping (light detection and ranging (LiDAR)), combined with ground-penetrating radar results and a detailed field study, suggests that Dimmuborgir is a complex of at least two overlapping rootless shields fed by lava erupting from the nearby Lúdentarborgir crater row. This model builds upon previous explanations for the formation of Dimmuborgir and is consistent with observations of rootless shield development at Kīlauea Volcano, Hawaii. The larger rootless shields at Dimmuborgir, 1–1.5 km in diameter, elliptical in plan view, ∼30 m in height, and each with a 500-m-wide summit depression, were capable of storing as much as 2–3 × 106 m3 of lava. They were fed by lava which descended 30–60 m in lava tubes along a distance of 3 km from the crater row. The height difference generated pressure sufficient to build rootless shields at Dimmuborgir in a timescale of weeks. The main summit depressions, inferred to be drained lava ponds, could have emptied via a 30-m-wide × 5-m-deep channel, with estimated effusion rates of 0.7–7 m3 s−1 and minimum flow durations of 5–50 days. We argue that the pillars for which Dimmuborgir is famed are remnants of lava pond rims, at various stages of disintegration that formed during pond drainage.

  1. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  2. Shielding measurements for a 230 MeV proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0{degree}, 22{degree}, 45{degree}, and 90{degree} in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm{sup 3} to 1000 cm{sup 3} were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0{degree}, 22{degree}, and 45{degree}, yet correctly predicted the attenuation length at 90{degree}. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations.

  3. PMMA/MWCNT nanocomposite for proton radiation shielding applications.

    Science.gov (United States)

    Li, Zhenhao; Chen, Siyuan; Nambiar, Shruti; Sun, Yonghai; Zhang, Mingyu; Zheng, Wanping; Yeow, John T W

    2016-06-10

    Radiation shielding in space missions is critical in order to protect astronauts, spacecraft and payloads from radiation damage. Low atomic-number materials are efficient in shielding particle-radiation, but they have relatively weak material properties compared to alloys that are widely used in space applications as structural materials. However, the issues related to weight and the secondary radiation generation make alloys not suitable for space radiation shielding. Polymers, on the other hand, can be filled with different filler materials for reinforcement of material properties, while at the same time provide sufficient radiation shielding function with lower weight and less secondary radiation generation. In this study, poly(methyl-methacrylate)/multi-walled carbon nanotube (PMMA/MWCNT) nanocomposite was fabricated. The role of MWCNTs embedded in PMMA matrix, in terms of radiation shielding effectiveness, was experimentally evaluated by comparing the proton transmission properties and secondary neutron generation of the PMMA/MWCNT nanocomposite with pure PMMA and aluminum. The results showed that the addition of MWCNTs in PMMA matrix can further reduce the secondary neutron generation of the pure polymer, while no obvious change was found in the proton transmission property. On the other hand, both the pure PMMA and the nanocomposite were 18%-19% lighter in weight than aluminum for stopping the protons with the same energy and generated up to 5% fewer secondary neutrons. Furthermore, the use of MWCNTs showed enhanced thermal stability over the pure polymer, and thus the overall reinforcement effects make MWCNT an effective filler material for applications in the space industry.

  4. PMMA/MWCNT nanocomposite for proton radiation shielding applications

    Science.gov (United States)

    Li, Zhenhao; Chen, Siyuan; Nambiar, Shruti; Sun, Yonghai; Zhang, Mingyu; Zheng, Wanping; Yeow, John T. W.

    2016-06-01

    Radiation shielding in space missions is critical in order to protect astronauts, spacecraft and payloads from radiation damage. Low atomic-number materials are efficient in shielding particle-radiation, but they have relatively weak material properties compared to alloys that are widely used in space applications as structural materials. However, the issues related to weight and the secondary radiation generation make alloys not suitable for space radiation shielding. Polymers, on the other hand, can be filled with different filler materials for reinforcement of material properties, while at the same time provide sufficient radiation shielding function with lower weight and less secondary radiation generation. In this study, poly(methyl-methacrylate)/multi-walled carbon nanotube (PMMA/MWCNT) nanocomposite was fabricated. The role of MWCNTs embedded in PMMA matrix, in terms of radiation shielding effectiveness, was experimentally evaluated by comparing the proton transmission properties and secondary neutron generation of the PMMA/MWCNT nanocomposite with pure PMMA and aluminum. The results showed that the addition of MWCNTs in PMMA matrix can further reduce the secondary neutron generation of the pure polymer, while no obvious change was found in the proton transmission property. On the other hand, both the pure PMMA and the nanocomposite were 18%-19% lighter in weight than aluminum for stopping the protons with the same energy and generated up to 5% fewer secondary neutrons. Furthermore, the use of MWCNTs showed enhanced thermal stability over the pure polymer, and thus the overall reinforcement effects make MWCNT an effective filler material for applications in the space industry.

  5. Evaluation of the efficiency of the shields for reduction of airplane noise effects

    Directory of Open Access Journals (Sweden)

    В. Ф. Шило

    1999-09-01

    Full Text Available Acoustic shield is one of the most effective means for reduction of transport noise effect, avia­tion included. Noise shields are widely used in world practice. Acoustic efficiency of shields depends on many factors, therefore it is necessary to use, on the designing stage, complicated methodical and computer means for their substantiation

  6. 78 FR 19148 - Shielding and Radiation Protection Review Effort and Licensing Conditions for Dry Storage...

    Science.gov (United States)

    2013-03-29

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 72 Shielding and Radiation Protection Review Effort and...-ISG-26A), Revision 0, ``Shielding and Radiation Protection Review Effort and Licensing Conditions for... to NRC staff when reviewing the shielding and radiation protection portions of applications...

  7. Evaluation of the frequency and accuracy of gonad shield placement in patients undergoing pelvic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Karami, V.; Zabihzadeh, Mansour; Sarikhani, S. [Ahvaz Jundishapur University of Medical Sciences, Ahvaz (Iran, Islamic Republic of)

    2016-11-01

    Gonad shielding has been advocated to reduce radiation exposure in patients undergoing pelvic radiography. The aim of this study is to evaluate the frequency and accuracy of gonad shield placement in patients undergoing pelvic radiography. A retrospective study was performed on 1230 anteroposterior (AP) pelvic radiographs of 939 children under 16 years old. All the radiographs were reviewed to determine the frequency of gonad shielding and to evaluate whether gonad shields were correctly positioned when they are used. The gonad shield was present in 82 radiographs (30 girls and 52 boys) and was completely disregarded in 1148 radiographs. From 82 images which shield was present, the gonad shields adequately positioned in 28 radiographs (3 girls and 25 boys) and in the remaining 54 radiographs, the shield did not adequately protected the gonads due to incorrect placement of the shield. The inaccuracy placement and absence of gonad shields were more common in girls than boys (P-value < 0.05). More care should be taken to correctly positioning of the gonad shields in boys and its usage should be encouraged. However, the practice of ovarian shielding is not an effective way to reduce radiation exposure in girls undergoing pelvis radiography. (author)

  8. Spacecraft Shielding: An Experimental Comparison Between Open Cell Aluminium Foam Core Sandwich Panel Structures and Whipple Shielding.

    Science.gov (United States)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Spacecraft shielding is generally provided by metallic plates in a Whipple shield type configuration [1] where possible. However, mission restrictions such as spacecraft payload mass, can prevent the inclusion of a dedicated protective structure for prevention against impact damage from micrometeoroids. Due to this, often the spacecraft's primary structure will act as the de facto shield. This is commonly an aluminium honeycomb backed with either glass fibre reinforced plastic (GFRP) or aluminium faceplates [2]. Such materials are strong, lightweight and relatively cheap due to their abundance used within the aerospace industry. However, these materials do not offer the best protection (per unit weight) against hypervelocity impact damage. A new material for shielding (porous aluminium foam [3]) is suggested for low risk space missions. Previous studies by NASA [4] have been performed to test this new material against hypervelocity impacts using spherical aluminium projectiles. This showed its potential for protection for satellites in Earth orbit, against metallic space debris. Here we demonstrate the material's protective capabilities against micrometeoroids, using soda-lime glass spheres as projectiles to accurately gauge its potential with relation to silicatious materials, such as micrometeoroids and natural solar system debris. This is useful for spacecraft missions beyond Earth orbit where solar system materials are the dominant threat (via hypervelocity impacts) to the spacecraft, rather than manmade debris.

  9. Guarding embryo development of zebrafish by shell engineering: a strategy to shield life from ozone depletion.

    Directory of Open Access Journals (Sweden)

    Ben Wang

    Full Text Available BACKGROUND: The reduced concentration of stratospheric ozone results in an increased flux of biologically damaging mid-ultraviolet radiation (UVB, 280 to 320 nm reaching earth surfaces. Environmentally relevant levels of UVB negatively impact various natural populations of marine organisms, which is ascribed to suppressed embryonic development by increased radiation. METHODOLOGY/PRINCIPAL FINDINGS: Inspired by strategies in the living systems generated by evolution, we induce an extra UVB-adsorbed coat on the chorion (eggshell surrounding embryo of zebrafish, during the blastula period. Short and long UV exposure experiments show that the artificial mineral-shell reduces the UV radiation effectively and the enclosed embryos become more robust. In contrast, the uncoated embryos cannot survive under the enhanced UVB condition. CONCLUSIONS: We suggest that an engineered shell of functional materials onto biological units can be developed as a strategy to shield lives to counteract negative changes of global environment, or to provide extra protection for the living units in biological research.

  10. Provision Of Carbon Nanotube Bucky Paper Cages For Immune Shielding Of Cells, Tissues, and Medical Devices

    Science.gov (United States)

    Loftus, David J. (Inventor)

    2006-01-01

    System and method for enclosing cells and/or tissue, for purposes of growth, cell differentiation, suppression of cell differentiation, biological processing and/or transplantation of cells and tissues (biological inserts), and for secretion, sensing and monitoring of selected chemical substances and activation of gene expression of biological inserts implanted into a human body. Selected cells and/or tissue are enveloped in a "cage" that is primarily carbon nanotube Bucky paper, with a selected thickness and porosity. Optionally, selected functional groups, proteins and/or peptides are attached to the carbon nanotube cage, or included within the cage, to enhance the growth and/or differentiation of the cells and/or tissue, to select for certain cellular sub-populations, to optimize certain functions of the cells and/or tissue and/or to optimize the passage of chemicals across the cage surface(s). A cage system is also used as an immuns shield and to control operation of a nano-device or macroscopic device, located within the cage, to provide or transform a selected chemical and/or a selected signal.

  11. [Biological weapons].

    Science.gov (United States)

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage.

  12. Wetting a rail tanker behind a noise shield.

    Science.gov (United States)

    Rosmuller, Nils

    2009-05-30

    In the Netherlands, the Betuweline is a dedicated freight railway. It will, among other things, be used for transportation of all kinds of hazardous materials from the Port of Rotterdam to the German Hinterland and vice versa. The line is approximately 150 km long. Alongside the line, over more than 100 km noise shields are apparent. The question is to what extent this noise shield hinders the cooling of a rail tanker, carrying flammable liquid such as liquefied petroleum gas (LPG)? To answer this question, a full scale test was conducted on an already constructed part of the Betuweline [N. Rosmuller, D.W.G. Arentsen, (2005). Praktijkproeven Betuweroute: Instantane uitstroming en koeling 24 juni 2005, Nibra, Arnhem, The Netherlands]. Two railcars and a rail tanker were placed behind a 3m high noise shield. First, it was tested as to whether firemen or water canons should be used to deliver the water. Water canons were best next, four positions of the water canons to wet the rail tanker were tested. Three camera's and three observers recorded the locations and the extent of water that hit the rail tanker. The results indicate that the noise shield, to a large extent, prevents the water from hitting, and therefore cooling, the rail tanker. The upper parts of the rail tanker were minimally struck by the water canons and the small amount of water flowing down the rail tanker did not reach the lower parts of it because of the armatures at the rail tanker. Also, the amount of water in the ditches to be used for wetting was too small. The ditch nearby ran empty. These insights are both relevant to emergency responders for disaster abatement purposes and to water management organizations. The Ministry of Transport is examining the possible strategies to deal with these findings. The results are based upon one single full scale test near a 3m high noise shield. In addition, it would be valuable to determine what the influence would be of other heights of the noise shields.

  13. Process for making RF shielded cable connector assemblies and the products formed thereby

    Science.gov (United States)

    Fisher, A.; Clatterbuck, C. H. (Inventor)

    1973-01-01

    A process for making RF shielded cable connector assemblies and the resulting structures is described. The process basically consists of potting wires of a shielded cable between the cable shield and a connector housing to fill in, support, regidize, and insulate the individual wires contained in the cable. The formed potting is coated with an electrically conductive material so as to form an entirely encompassing adhering conductive path between the cable shield and the metallic connector housing. A protective jacket is thereby formed over the conductive coating between the cable shield and the connector housing.

  14. A Launch Requirements Trade Study for Active Space Radiation Shielding for Long Duration Human Missions

    Science.gov (United States)

    Singleterry, Robert C., Jr.; Bollweg, Ken; Martin, Trent; Westover, Shayne; Battiston, Roberto; Burger, William J.; Meinke, Rainer

    2015-01-01

    A trade study for an active shielding concept based on magnetic fields in a solenoid configuration versus mass based shielding was developed. Monte Carlo simulations were used to estimate the radiation exposure for two values of the magnetic field strength and the mass of the magnetic shield configuration. For each field strength, results were reported for the magnetic region shielding (end caps ignored) and total region shielding (end caps included but no magnetic field protection) configurations. A value of 15 cSv was chosen to be the maximum exposure for an astronaut. The radiation dose estimate over the total shield region configuration cannot be used at this time without a better understanding of the material and mass present in the end cap regions through a detailed vehicle design. The magnetic shield region configuration, assuming the end cap regions contribute zero exposure, can be launched on a single Space Launch System rocket and up to a two year mission can be supported. The magnetic shield region configuration results in two versus nine launches for a comparable mass based shielding configuration. The active shielding approach is clearly more mass efficient because of the reduced number of launches than the mass based shielding for long duration missions.

  15. Design and calculation for the main shielding layer of researching reactor%反应堆主屏蔽的设计与计算

    Institute of Scientific and Technical Information of China (English)

    钟文发; 胡永明; 钟兆鹏

    2001-01-01

    为使反应堆处于运行状态时,对辐射源的屏蔽满足辐射安全的要求,以及对堆的各部件和材料满足辐射限制的要求,必须设计堆的主屏蔽层。介绍了主屏蔽的设计与计算方法,以研究堆为设计实例,给出了主屏蔽的主要计算结果表明,以池水和重混凝土作生物屏蔽能满足辐射安全限值的要求,设计的主屏蔽层是适宜的。%To satisfy the national safety criteria of the radiationshielding when the reactor is in operation, We must complete the design of shielding for the main body of reactor. This paper introduces the design and computing methods of the shielding for the main body of reactor, using the researching reactor as an example, and gives the results of the computing for the radiation shielding. The results show that it can satisfy the safety criteria of radiation to use water and heavy concrete as biological layer for radiation, so the design of the main layer for radiation shielding is reliable.

  16. Preliminary Analysis of a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson, J. Boise

    2006-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.

  17. Fine-tuning the etch depth profile via dynamic shielding of ion beam

    CERN Document Server

    Wu, Lixiang; Fu, Shaojun

    2016-01-01

    We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. We have conducted two experiments. In the experiment on parametric modeling of shielding rate profiles, its result shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. And the experimental result of fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method.

  18. Design and Implementation of Simultaneous Shield And Repeater Insertion for On-chip Interconnects

    Directory of Open Access Journals (Sweden)

    M. Surendra Goud Mr. Y. Sreenivas Goud

    2012-02-01

    Full Text Available A Resource based optimization is a new approach for high performance integrated circuits. The method is applied to simultaneous shield and repeater insertion, resulting in minimum coupling noise under power, delay, and area constraints Repeater insertion is a well known design technique to reduce the delay required to propagate a signal along a line. Shielding inserts an additional line between a victim line and an aggressor line. Finally placing a shield beside and inserting repeaters along a victim line and are chosen to exemplify the resource based optimization process. In the active shielding architecture shield driving circuits as 4:1 multiplexer, full adder, multipliers are inserted. The power consumption of active shielding architecture is observed to be approximately 20% less compare to passive shielding architecture. The main aim of this is minimize the coupling noise under power, delay, and area constraints

  19. A Study on the EM Leakage Arising from Braided Shielding Cable

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-xin; L(U) Ying-hua; BAO Yong-fang; L(U) Jian-gang

    2005-01-01

    To investigate the electromagnetic leakage caused by braided shielding cable, the finite-difference formulation of braided shielding cable for both the inner shield-conductor circuit and outer shield-ground circuit are proposed. Then, the current in shield-ground circuit induced by the transmitting signal in the cable is computed in time-domain, and the shielding effectiveness of braided shield against trapezoid signals is studied. Further more, the video EM leakage in far zone is calculated. At last, the information leakage caused by EM radiation of braided cable is intercepted and recovered using the simulation platform. It is proved that EM radiation of braided cable can give rise to information leakage. It is a key factor that should be concerned in the information secure field.

  20. Analysis for Radiation and Shielding Dose in Plasma Focus Neutron Source Using FLUKA

    Science.gov (United States)

    Nemati, M. J.; Amrollahi, R.; Habibi, M.

    2012-06-01

    Monte Carlo simulations have been performed for the attenuation of neutron radiation produced at Plasma focus (PF) devices through various shielding design. At the test site it will be fired with deuterium and tritium (D-T) fusion resulting in a yield of about 1013 fusion neutrons of 14 MeV. This poses a radiological hazard to scientists and personnel operating the device. The goal of this paper was to evaluate various shielding options under consideration for the PF operating with D-T fusion. Shields of varying neutrons-shielding effectiveness were investigated using concrete, polyethylene, paraffin and borated materials. The most effective shield, a labyrinth structure, allowed almost 1,176 shots per year while keeping personnel under 20 mSV of dose. The most expensive shield that used, square shield with 100 cm concrete thickness on the walls and Borated paraffin along with borated polyethylene added outside the concrete allowed almost 15,000 shot per year.

  1. A novel shielding material prepared from solid waste containing lead for gamma ray

    Science.gov (United States)

    Erdem, Mehmet; Baykara, Oktay; Doğru, Mahmut; Kuluöztürk, Fatih

    2010-09-01

    Human beings are continuously exposed to cosmogenic radiation and its products in the atmosphere from naturally occurring radioactive materials (NORM) within Earth, their bodies, houses and foods. Especially, for the radiation protection environments where high ionizing radiation levels appear should be shielded. Generally, different materials are used for the radiation shielding in different areas and for different situations. In this study, a novel shielding material produced by a metallurgical solid waste containing lead was analyzed as shielding material for gamma radiation. The photon total mass attenuation coefficients ( μ/ ρ) were measured and calculated using WinXCom computer code for the novel shielding material, concrete and lead. Theoretical and experimental values of total mass attenuation coefficient of the each studied sample were compared. Consequently, a new shielding material prepared from the solid waste containing lead could be preferred for buildings as shielding materials against gamma radiation.

  2. Approximate design calculation methods for radiation streaming in shield irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Toshimasa; Hirao, Yoshihiro [Ship Research Inst., Mitaka, Tokyo (Japan); Yoritsune, Tsutomu

    1997-10-01

    Investigation and assessment are made for approximate design calculation methods of radiation streaming in shield irregularities. Investigation is made for (1) source, (2) definition of streaming radiation components, (3) calculation methods of streaming radiation, (4) streaming formulas for each irregularity, (5) difficulties in application of streaming formulas, etc. Furthermore, investigation is made for simple calculation codes and albedo data. As a result, it is clarified that streaming calculation formulas are not enough to cover various irregularities and their accuracy or application limit is not sufficiently clear. Accurate treatment is not made in the formulas with respect to the radiation behavior for slant incidence, bend part, offset etc., that results in too much safety factors in the design calculation and distrust of the streaming calculation. To overcome the state and improve the accuracy of the design calculation for shield irregularities, it is emphasized to assess existing formulas and develop better formulas based on systematic experimental studies. (author)

  3. Active-passive gradient shielding for MRI acoustic noise reduction.

    Science.gov (United States)

    Edelstein, William A; Kidane, Tesfaye K; Taracila, Victor; Baig, Tanvir N; Eagan, Timothy P; Cheng, Yu-Chung N; Brown, Robert W; Mallick, John A

    2005-05-01

    An important source of MRI acoustic noise-magnet cryostat warm-bore vibrations caused by eddy-current-induced forces-can be mitigated by a passive metal shield mounted on the outside of a vibration-isolated, vacuum-enclosed shielded gradient set. Finite-element (FE) calculations for a z-gradient indicate that a 2-mm-thick Cu layer wrapped on the gradient assembly can decrease mechanical power deposition in the warm bore and reduce warm-bore acoustic noise production by about 25 dB. Eliminating the conducting warm bore and other magnet parts as significant acoustic noise sources could lead to the development of truly quiet, fully functioning MRI systems with noise levels below 70 dB.

  4. Shielding calculations for a production target for secondary beams

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Back, B.B.; Jiang, C.L. [and others

    1995-08-01

    In order to estimate the amount of shielding required for a radioactive beam facility dose rate were performed. The calculations for production targets with different geometries were performed. The calculations were performed with the MSU shielding code assuming a 500-p{mu}A 200-MeV deuteron beam stopped in a thick Al target. The target and the ion-optical elements for beam extraction are located in a 2 m{sup 3} large volume at the center of the production cell. These dose rate calculations show that with a combination of Fe and concrete it is possible to reduce the dose rate expected at the surface of a 7-m-wide cube housing the production target to less than 2 mrem/hr.

  5. Radiation Protection of New Lightweight Electromagnetic Interference Shielding Materials Determined

    Science.gov (United States)

    1996-01-01

    Weight savings as high as 80 percent could be achieved by simply switching from aluminum electromagnetic interference (EMI) shielding covers for spacecraft power systems to EMI covers made from intercalated graphite fiber composites. Because EMI covers typically make up about one-fifth of the power system mass, this change would decrease the mass of a spacecraft power system by more than 15 percent. Intercalated graphite fibers are made by diffusing guest atoms or molecules, such as bromine, between the carbon planes of the graphite fibers. The resulting bromine-intercalated fibers have mechanical and thermal properties nearly identical to pristine graphite fibers, but their resistivity is lower by a factor of 5, giving them better electrical conductivity than stainless steel and making these composites suitable for EMI shielding.

  6. Application of individual lead shield in radiotherapy of eyelid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Tadashi; Taniguchi, Hisashi; Inoue, Takaaki; Ohyama, Takashi [Tokyo Medical and Dental Univ. (Japan). Hospital; Oki, Meiko; Takeda, Masamune; Shibuya, Hitoshi

    1999-06-01

    In the treatment of the maxillofacial tumors, radiotherapy plays an important role in the achievement of good local control and to keep the normal shape and function. For the tumors occurring in or adjacent to the orbit, especially the tumors of eyelids, radiotherapy combined with/without surgery also yields better results than surgery alone, but the lens of the eye is a radiosensitive organ. Loss of vision could occur when radiation beam is directed at the eye, so radiotherapy prostheses must be used in the radiotherapy of eyelid tumor. An individual lead shield for the lens of eye was made for each of the 10 eyelid tumor patients and it was carefully placed in the conjunctival sac after anaesthesia with a few drops of oxybuprocaine (Benoxil) to avoid irradiation of the globe. The lead shield was applied to protect the normal surrounding structures. Excellent cosmetic and functional results were achieved during and after radiotherapy. (author)

  7. CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Kerry Dunn, K; Joseph Murphy, J

    2008-07-18

    Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding that was induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species used in the construction of the packaging, followed by polyvinyl acetate (PVAc) glue. Fiberboard material, also used in the construction of the packaging induced corrosion to a much lesser extent than the PVAc glue and RTV sealant, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water. In light of these corrosion mechanisms, the lead shielding was sheathed in a stainless steel liner to mitigate against corrosion.

  8. Active magnetic radiation shielding system analysis and key technologies.

    Science.gov (United States)

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited.

  9. Overview of HZETRN and BRNTRN Space Radiation Shielding Codes

    Science.gov (United States)

    Wilson, John W.; Cucinotta, F. A.; Shinn, J. L.; Simonsen, L. C.; Badavi, F. F.

    1997-01-01

    The NASA Radiation Health Program has supported basic research over the last decade in radiation physics to develop ionizing radiation transport codes and corresponding data bases for the protection of astronauts from galactic and solar cosmic rays on future deep space missions. The codes describe the interactions of the incident radiations with shield materials where their content is modified by the atomic and nuclear reactions through which high energy heavy ions are fragmented into less massive reaction products and reaction products are produced as radiations as direct knockout of shield constituents or produced as de-excitation products in the reactions. This defines the radiation fields to which specific devices are subjected onboard a spacecraft. Similar reactions occur in the device itself which is the initiating event for the device response. An overview of the computational procedures and data base with some applications to photonic and data processing devices will be given.

  10. Fe-based bulk metallic glasses used for magnetic shielding

    Science.gov (United States)

    Şerban, Va; Codrean, C.; Uţu, D.; Ercuţa, A.

    2009-01-01

    The casting in complex shapes (tubullar) and the main magnetic properties of bulk metallic glasses (BMG) alloys from the ferromagnetic Fe-Cr-Ni-Ga-P-Si-C system, with a small adittion of Ni (3%) were studied. Samples as rods and sockets having the thickness up to 1 mm were obtained from master alloys by melt injection by low cooling rates into a Cu mold and annealed in order to ensure adequate magnetic requirements. The structure was examined by X-ray diffraction (XRD) and the basic magnetic properties (coercivity, magnetic remanence, initial susceptibility, etc.) were determined by conventional low frequency induction method. The experimental investigations on producing of BMG ferromagnetic alloys with 3% Ni show the possibility to obtain magnetic shields of complex shape with satisfactory magnetic properties. The presence of Ni does not affect the glass forming ability, but reduce the shielding capacity.

  11. Self-shielded electron linear accelerators designed for radiation technologies

    Science.gov (United States)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  12. Shielding $^2\\Sigma$ ultracold dipolar molecular collisions with electric fields

    CERN Document Server

    Quéméner, Goulven

    2016-01-01

    The prospects for shielding ultracold, paramagnetic, dipolar molecules from inelastic and chemical collisions are investigated. Molecules placed in their first rotationally excited states are found to exhibit effective long-range repulsion for applied electric fields above a certain critical value, as previously shown for non-paramagnetic molecules. This repulsion can safely allow the molecules to scatter while reducing the risk of inelastic or chemically reactive collisions. Several molecular species of $^2\\Sigma$ molecules of experimental interest -- RbSr, SrF, BaF, and YO -- are considered, and all are shown to exhibit orders of magnitude suppression in quenching rates in a sufficiently strong laboratory electric field. It is further shown that, for these molecules described by Hund's coupling case b, electronic and nuclear spins play the role of spectator with respect to the shielding.

  13. Shielding design for the front end of the CERN SPL.

    Science.gov (United States)

    Magistris, Matteo; Silari, Marco; Vincke, Helmut

    2005-01-01

    CERN is designing a 2.2-GeV Superconducting Proton Linac (SPL) with a beam power of 4 MW, to be used for the production of a neutrino superbeam. The SPL front end will initially accelerate 2 x 10(14) negative hydrogen ions per second up to an energy of 120 MeV. The FLUKA Monte Carlo code was employed for shielding design. The proposed shielding is a combined iron-concrete structure, which also takes into consideration the required RF wave-guide ducts and access labyrinths to the machine. Two beam-loss scenarios were investigated: (1) constant beam loss of 1 Wm(-1) over the whole accelerator length and (2) full beam loss occurring at various locations. A comparison with results based on simplified approaches is also presented.

  14. Superconducting shielded core reactor with reduced AC losses

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  15. Gamma ray absorption of cylindrical fissile material with dual shields

    Institute of Scientific and Technical Information of China (English)

    WU Chen-Yan; TIAN Dong-Feng; CHENG Yi-Ying; HUANG Yong-Yi; LU Fu-Quan; YANG Fu-Jia

    2005-01-01

    This work analyzed the gamma ray attenuation effect from the self-absorption and shield attenuation perspectively. An exact mathematical equation was given for the geometric factor of the cylindrical fissile material with dual shields. In addition, several approximation approaches suitable for real situation were discussed, especially in the radial and axial directions of the cylinders, since the G-factors have simple forms. Then the space distribution patterns of the G-factor were analyzed based on numerical result and effective ways to solve the geometric information of the cylindrical fissile material, the radii and the heights, were deduced. This method was checked and verified by numerical calculation. Because of the efficiency of the method, it is ideal for application in real situations, such as nuclear safeguards, which demands speed of detection and accuracy of geometric analysis.

  16. Shielding of gamma radiation by typical European houses

    Science.gov (United States)

    Meckbach, Reinhard; Jacob, Peter; Paretzke, Herwig G.

    1987-03-01

    The shielding of gamma radiation by typical European houses has been investigated using a Monte Carlo photon transport code. Sources of the gamma radiation are activity deposited on the building and its surroundings and air-borne radionuclides in an semi-infinite cloud. Results are given for different source energies and at various locations inside and outside of the buildings. The effects of deposition on nearby trees and of shielding by neighbouring buildings was investigated. A comparison has been made with results obtained for the same buildings by the point kernel buildup factor method. More than an order of magnitude underestimations by the point kernel method are shown to arise in certain cases.

  17. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup

    2013-01-01

    , which are thought to be a source of extracellular DNA at sites of infections, increases the tolerance of P. aeruginosa biofilms toward aminoglycosides. Although biofilm-associated aminoglycoside tolerance recently has been linked to extracellular DNA-mediated activation of the pmr genes, we demonstrate...... that the aminoglycoside tolerance mediated by the presence of extracellular DNA is not caused by activation of the pmr genes in our P. aeruginosa biofilms but rather by a protective shield effect of the extracellular DNA....

  18. HYBRID METHOD FOR ANALYSE DISCONTINUITIES IN SHIELDED MICROSTRIP

    Directory of Open Access Journals (Sweden)

    MOHAMMED EL AMINE EL GOUZI

    2010-07-01

    Full Text Available A rigorous full-wave analysis is employed to analyze discontinuity in shielded Microstrip (open end, uniform bend. An accurate and efficient method of moments solution combined with the source method(SM formulation is proposed in order to achieve a full-wave characterization of the analyzed structures. A wavelet matrix transform(WMT, operated by wavelet-like transform (WLT allows a significant reduction of the central processing unit time and the memory storage.

  19. Shielding effectiveness of non-woven carbon fibre sheets

    OpenAIRE

    Dawson, John F.; Flintoft, Ian Dand; Austin, A. N.; Marvin, Andrew C.

    2016-01-01

    This paper describes work undertaken to understand how the structure of a nonwoven carbon fibre material determines its shielding effectiveness, including the effects of fibre orientation, and contact resistance. In order to facilitate understanding of the material behaviour, software has been written to generate Monte Carlo Models (MCMs) of the material structure. The results of our MCMs are compared with measurements and some empirical expressions.

  20. Heat Shield Paves the Way for Commercial Space

    Science.gov (United States)

    2014-01-01

    The Phenolic-Impregnated Carbon Ablator (PICA) heat shield, a lightweight material designed to withstand high temperatures, was used for the Stardust’s reentry into Earth’s atmosphere. Hawthorne, California-based SpaceX later worked with the inventors at Ames Research Center to outfit PICA on its Dragon capsule, which is now delivering cargo to and from the International Space Station through NASA’s Commercial Resupply Services contracts program.

  1. Acoustically shielded exhaust system for high thrust jet engines

    Science.gov (United States)

    Carey, John P. (Inventor); Lee, Robert (Inventor); Majjigi, Rudramuni K. (Inventor)

    1995-01-01

    A flade exhaust nozzle for a high thrust jet engine is configured to form an acoustic shield around the core engine exhaust flowstream while supplementing engine thrust during all flight conditions, particularly during takeoff. The flade airflow is converted from an annular 360.degree. flowstream to an arcuate flowstream extending around the lower half of the core engine exhaust flowstream so as to suppress exhaust noise directed at the surrounding community.

  2. Lead mobilization during tectonic reactivation of the western Baltic Shield

    Energy Technology Data Exchange (ETDEWEB)

    Romer, R.L. (Rice Univ., Houston, TX (United States) Luleaa Univ. (Sweden)); Wright, J.E. (Rice Univ., Houston, TX (United States))

    1993-06-01

    Lead isotope data from sulfide deposits of the western part of the Baltic Shield define mixing lines in the [sup 206]Pb/[sup 204]Pb-[sup 207]Pb/[sup 204]Pb diagram. Lead from two types of sulfide deposits have been investigated: (1) Exhalative and volcanogenic deposits that are syngenetic with their host rocks; and (2) vein deposits. The syngenetic deposits locally show a very wide range of lead isotopic compositions that reflect a variable addition of highly radiogenic lead, while the vein deposits, although they have radiogenic lead isotopic compositions, exhibit only limited isotopic variations. In different provinces of the shield, both types of deposits fall on the same lead mixing array. The slope of the lead mixing lines varies as a function of the age of basement rocks and the age of the tectonic event which produced the lead mobilization and therefore relates the source rock age with the age of lead mobilization. Calculated mixing ages fall into several short time periods that correspond either to orogenic events or to major phases of continental rifting. The orogenic events are the ca 360--430 Ma Caledonian, ca 900--1100 Ma Sveconorwegian, and the ca 1800--1900 Ma Svecofennian orogenic cycles. The rifting events correspond to the formation of the ca 280 Ma Oslo rift and the Ordovician (ca 450 Ma) graben system in the area of the present Gulf of Bothnia. Each mixing age indicates that lead was mobilized, probably as a consequence of mild thermal disturbances, and that the crust was permeable to lead migration. The data show that the geographic distribution of sulfide deposits with highly radiogenic lead isotopic compositions coincides with old graben systems, orogenic belts, and orogenic forelands on the Baltic Shield. The ages of vein deposits and their geographic distribution demonstrate multiple tectonic reactivation of the interior of the Baltic Shield in response to orogenic events at its margin. 68 refs., 6 refs., 4 tabs.

  3. REPOSITORY LAYOUT SUPPORTING DESIGN FEATURE #13- WASTE PACKAGE SELF SHIELDING

    Energy Technology Data Exchange (ETDEWEB)

    J. Owen

    1999-04-09

    The objective of this analysis is to develop a repository layout, for Feature No. 13, that will accommodate self-shielding waste packages (WP) with an areal mass loading of 25 metric tons of uranium per acre (MTU/acre). The scope of this analysis includes determination of the number of emplacement drifts, amount of emplacement drift excavation required, and a preliminary layout for illustrative purposes.

  4. Use of shield support on faces advanced in plastic strata

    Energy Technology Data Exchange (ETDEWEB)

    Pera, F.; Szentai, G.

    1987-01-01

    A new type of rock loading model is presented for shield support on faces advancing in plastic strata. Loading of strata is not independent of the speed of advance. The problem is approached on theoretical bases and is also illustrated by measurements carried out in practice. The interpretation of the active and passive loads is given and the loads are taken into account in different manner.

  5. Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials

    Science.gov (United States)

    Wilkins, Richard; Armendariz, Lupita (Technical Monitor)

    2002-01-01

    Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.

  6. Effect of CSR shielding in the compact linear collider

    CERN Document Server

    Esberg, J; Apsimon, R; Schulte, D

    2014-01-01

    The Drive Beam complex of the Compact Linear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility.

  7. Study on the effectiveness of QPS electronics shielding

    CERN Document Server

    Versaci, R

    2012-01-01

    About 30% of the 2011 LHC downtime is due to failures of the Quench Protection System (QPS) induced by the radiation affecting the electronics located below the LHC main dipoles (MB). In the view of LHC technical stop foreseen for December 2011, we have investigated, by means of FLUKA simulations, the efficiency of an iron shielding to reduce the radiation affecting the QPS electronics. These are situated in the Dispersion Suppressors where the use of radiation resistant hardware is not immediately possible.

  8. Radiation shielding properties of concretes including quiclime (CaO)

    Science.gov (United States)

    Özavcı, S.; ćetin, B.

    2017-02-01

    Lime is one of the oldest binder material used for concrete production. In this study, the shielding properties of γ-rays by Quicklime concretes have been investigated for concretes containing different rates of wood ash, küfenki stones, disbudak tree leaf juice and water. Measurements performed using a gamma spectrometer that contains an NaI(Tl) detector and MCA at 662, 1173 and 1332 keV.

  9. Bigger shield alliance, politics, and military change in Japan

    OpenAIRE

    Winward, Lynn H.

    2006-01-01

    Approved for public release; distribution is unlimited Military change has been a persistent characteristic of Japan's re-emergence from World War II. However, most studies focus on Tokyo's 'evolutionary-like' and 'incremental' efforts, rooting them in a host of structural impediments to change. Nonetheless, Japan continues to strengthen its reliance on the U.S. 'sword' while building a broader more effective 'shield.' Through three case studies (U.S alignment in the 1950s/1960s, the 198...

  10. Determination of dosimetric parameters for shielded 153Gd source in prostate cancer brachytherapy

    Science.gov (United States)

    Ghorbani, Mahdi; Ghatei, Najmeh; Mehrpouyan, Mohammad; Meigooni, Ali S.; Shahraini, Ramin

    2017-01-01

    Abstract Background Interstitial rotating shield brachytherapy (I-RSBT) is a recently developed method for treatment of prostate cancer. In the present study TG-43 dosimetric parameters of a 153Gd source were obtained for use in I-RSBT. Materials and methods A 153Gd source located inside a needle including a Pt shield and an aluminum window was simulated using MCNPX Monte Carlo code. Dosimetric parameters of this source model, including air kerma strength, dose rate constant, radial dose function and 2D anisotropy function, with and without the shields were calculated according to the TG-43 report. Results The air kerma strength was found to be 6.71 U for the non-shielded source with 1 GBq activity. This value was found to be 0.04 U and 6.19 U for the Pt shield and Al window cases, respectively. Dose rate constant for the non-shielded source was found to be 1.20 cGy/(hU). However, for a shielded source with Pt and aluminum window, dose rate constants were found to be 0.07 cGy/(hU) and 0.96 cGy/(hU), on the shielded and window sides, respectively. The values of radial dose function and anisotropy function were tabulated for these sources. Additionally, isodose curves were drawn for sources with and without shield, in order to evaluate the effect of shield on dose distribution. Conclusions Existence of the Pt shield may greatly reduce the dose to organs at risk and normal tissues which are located toward the shielded side. The calculated air kerma strength, dose rate constant, radial dose function and 2D anisotropy function data for the 153Gd source for the non-shielded and the shielded sources can be used in the treatment planning system (TPS). PMID:28265239

  11. Evaluation of the Prevalence and Utility of Gonad Shielding in Pediatrics Undergoing Pelvic X-Ray

    Directory of Open Access Journals (Sweden)

    Vahid Karami

    2016-11-01

    Full Text Available Background: Gonad shielding has been recommended during pelvic x-rays since the 1950s. The popular method of gonad shielding is placement a lead shield in the midline of the pelvis. The aim of this study was to evaluate the prevalence and utility of gonad shielding in pediatrics undergoing pelvic x-rays.Materials and MethodsFollowing study approval, we retrospectively retrieved data from the digital image library of ten radiology depertments of Khuzestan provience-Iran to identify pediatric patients who underwent pelvic x-ray (anteriorposterior [AP] view. All the images were reviewed for the probable evidence of gonad shield. If there was evidence of shielding, the accuracy positioning of the shield was also investigated by a single assistant radiologist.ResultsIn all 1745 pelvic x-rays (942 girls and 803 boys were identified of which the shield was present in 51 (5.41% radiographs of girls and 132 (16.43% radiographs of boys. When a shield was present; the shields has adequate positioning only in 8 (15.68% radiographs in girls and 59 radiographs in boys. Inaccurate placement and absence of gonad shields were more common in girls than the boys. Due to the shield has concealed the anatomical criteria of the pelvis, retakes of the examination was required in 11 (21.56% radiographs of girls and 14 (10.6% radiographs of boys.ConclusionThe current methods of gonad shielding in girls pelvic x-ray was not effective nor is justifiable. We  no longer advocate of gonad shielding during girls pelvic x-ray. However in boys it is controversial and depends on the skill and effort of radiographers.

  12. The radiation shielding potential of CI and CM chondrites

    Science.gov (United States)

    Pohl, Leos; Britt, Daniel T.

    2017-03-01

    Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) pose a serious limit on the duration of deep space human missions. A shield composed of a bulk mass of material in which the incident particles deposit their energy is the simplest way to attenuate the radiation. The cost of bringing the sufficient mass from the Earth's surface is prohibitive. The shielding properties of asteroidal material, which is readily available in space, are investigated. Solution of Bethe's equation is implemented for incident protons and the application in composite materials and the significance of various correction terms are discussed; the density correction is implemented. The solution is benchmarked and shows good agreement with the results in literature which implement more correction terms within the energy ranges considered. The shielding properties of CI and CM asteroidal taxonomy groups and major asteroidal minerals are presented in terms of stopping force. The results show that CI and CM chondrites have better stopping properties than Aluminium. Beneficiation is discussed and is shown to have a significant effect on the stopping power.

  13. Shielding Calculations for Positron Emission Tomography - Computed Tomography Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baasandorj, Khashbayar [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yang, Jeongseon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Integrated PET-CT has been shown to be more accurate for lesion localization and characterization than PET or CT alone, and the results obtained from PET and CT separately and interpreted side by side or following software based fusion of the PET and CT datasets. At the same time, PET-CT scans can result in high patient and staff doses; therefore, careful site planning and shielding of this imaging modality have become challenging issues in the field. In Mongolia, the introduction of PET-CT facilities is currently being considered in many hospitals. Thus, additional regulatory legislation for nuclear and radiation applications is necessary, for example, in regulating licensee processes and ensuring radiation safety during the operations. This paper aims to determine appropriate PET-CT shielding designs using numerical formulas and computer code. Since presently there are no PET-CT facilities in Mongolia, contact was made with radiological staff at the Nuclear Medicine Center of the National Cancer Center of Mongolia (NCCM) to get information about facilities where the introduction of PET-CT is being considered. Well-designed facilities do not require additional shielding, which should help cut down overall costs related to PET-CT installation. According to the results of this study, building barrier thicknesses of the NCCM building is not sufficient to keep radiation dose within the limits.

  14. Radiation shielding design of the PAL-XFEL

    Science.gov (United States)

    Jung, Nam-Suk; Lee, Hee-Seock; Oh, Joo-Hee; Kim, Bum-Jong

    2015-02-01

    The construction of the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) started in 2011. The PAL-XFEL is designed to generate X-rays using 10 GeV, 0.2 nC electron beams. For the radiation shielding design, a beam-loss scenario suitable for the PAL-XFEL should be established. The beam-loss scenario was determined and categorized as normal or accidental. The electron beam will be shut down automatically when accidental beam-loss occurs. Using this scenario, the thickness of the accelerator and undulator tunnel of the PAL-XFEL was calculated by using the SHIELD11 code, and complicated tunnel structures such as maze entrances, sliding doors, trenches, sleeves, and ducts, were determined under the assumption of a thick iron target by using the FLUKA code. A detailed design of the main beam dump was established, and shielding structures at the front end for suppression of the radiation dose at the experimental area under the accidental beam-loss scenario were considered. The muon production was estimated by using the FLUKA code.

  15. Distance Determinations to SHIELD Galaxies from HST Imaging

    CERN Document Server

    McQuinn, Kristen B W; Dolphin, Andrew E; Skillman, Evan D; Salzer, John J; Haynes, Martha P; Adams, Elizabeth; Cave, Ian; Elson, Ed C; Giovanelli, Riccardo; Ott, Juërgen; Saintonge, Amélie

    2014-01-01

    The Survey of HI in Extremely Low-mass Dwarf galaxies (SHIELD) is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ~10% of the HI ALFALFA survey based on their inferred low HI mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5-12 Mpc by applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the HI masses in the sample range from $4\\times10^6$ to $6\\times10^7$ M$_{\\odot}$, with a median HI mass of $1\\times10^7$ M$_{\\odot}$. The TRGB distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow model distances, we are biased towards selec...

  16. SHIELD: Comparing Gas and Star Formation in Low Mass Galaxies

    CERN Document Server

    Teich, Yaron G; Nims, Elise; Cannon, John M; Adams, Elizabeth A K; Bernstein-Cooper, Elijah Z; Giovanelli, Riccardo; Haynes, Martha P; Józsa, Gyula I G; McQuinn, Kristen B W; Salzer, John J; Skillman, Evan D; Warren, Steven R; Dolphin, Andrew; Elson, E C; Haurberg, Nathalie; Ott, Jürgen; Saintonge, Amelie; Cave, Ian; Hagen, Cedric; Huang, Shan; Janowiecki, Steven; Marshall, Melissa V; Thomann, Clara M; Van Sistine, Angela

    2016-01-01

    We analyze the relationships between atomic, neutral hydrogen (HI) and star formation (SF) in the 12 low-mass SHIELD galaxies. We compare high spectral (~0.82 km/s/channel) and spatial resolution (physical resolutions of 170 pc - 700 pc) HI imaging from the VLA with H\\alpha and far-ultraviolet imaging. We quantify the degree of co-spatiality between star forming regions and regions of high HI column densities. We calculate the global star formation efficiencies (SFE, $\\Sigma_{\\rm SFR}$ / $\\Sigma_{\\rm HI}$), and examine the relationships among the SFE and HI mass, HI column density, and star formation rate (SFR). The systems are consuming their cold neutral gas on timescales of order a few Gyr. While we derive an index for the Kennicutt-Schmidt relation of N ~ 0.68 $\\pm$ 0.04 for the SHIELD sample as a whole, the values of N vary considerably from system to system. By supplementing SHIELD results with those from other surveys, we find that HI mass and UV-based SFR are strongly correlated over five orders of ma...

  17. Integrated LiH Debris Shields for Warm PRS Loads

    Science.gov (United States)

    Terry, R. E.; Thornhill, J. W.; Clark, R. W.; Dasgupta, A.

    2006-10-01

    Plasma radiation sources can profitably employ thick LiH debris shields integrated into the return current surface. Shield material selection demands the highest specific enthalpy Hm to vaporization or decomposition in an attenuation length λ(Eprs) at the k-shell transmission energy of interest. As a figure of merit then, E ≡Hmρ/ M λ(Eprs) [kJcm^2] can order candidate materials. LiH is the best possible material for this purpose, offering E values of 130 for the 13 keV k-shell lines of Kr. In a level comparison, Be offers only 47 and pure Li, 77.5. For the Ti k-shell lines, a similar ordering is: LiH, 22.44; Be, 3.08; Li, 10.40. Early studies of these designs showed promise even for the more opaque Ar and Ti k-shell radiation. Here we examine the much easier problem for a Kr k-shell PRS and consider the influence of l-shell and m-shell radiation on the hydrodynamic flows developed in the LiH and its decay products. The radiation loading of the LiH shield is computed self consistently within the more generous trade space of stagnation energy, machine current, implosion time, and delivered mass for drivers capable of useful Kr k-shell yield. R.E.Terry, NRL Memo Report 6720--96-7868.

  18. Uranium self-shielding in fast reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kadiroglu, O.K.; Driscoll, M.J.

    1976-03-01

    The effects of heterogeneity on resonance self-shielding are examined with particular emphasis on the blanket region of the fast breeder reactor and on its dominant reaction--capture in /sup 238/U. The results, however, apply equally well to scattering resonances, to other isotopes (fertile, fissile and structural species) and to other environments, so long as the underlying assumptions of narrow resonance theory apply. The heterogeneous resonance integral is first cast into a modified homogeneous form involving the ratio of coolant-to-fuel fluxes. A generalized correlation (useful in its own right in many other applications) is developed for this ratio, using both integral transport and collision probability theory to infer the form of correlation, and then relying upon Monte Carlo calculations to establish absolute values of the correlation coefficients. It is shown that a simple linear prescription can be developed for the flux ratio as a function of only fuel optical thickness and the fraction of the slowing-down source generated by the coolant. This in turn permitted derivation of a new equivalence theorem relating the heterogeneous self-shielding factor to the homogeneous self-shielding factor at a modified value of the background scattering cross section per absorber nucleus. A simple version of this relation is developed and used to show that heterogeneity has a negligible effect on the calculated blanket breeding ratio in fast reactors.

  19. Neutron and gamma ray transport calculations in shielding system

    Energy Technology Data Exchange (ETDEWEB)

    Masukawa, Fumihiro; Sakamoto, Hiroki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In the shields for radiation in nuclear facilities, the penetrating holes of various kinds and irregular shapes are made for the reasons of operation, control and others. These penetrating holes and gaps are filled with air or the substances with relatively small shielding performance, and radiation flows out through them, which is called streaming. As the calculation techniques for the shielding design or analysis related to the streaming problem, there are the calculations by simplified evaluation, transport calculation and Monte Carlo method. In this report, the example of calculation by Monte Carlo method which is represented by MCNP code is discussed. A number of variance reduction techniques which seem effective for the analysis of streaming problem were tried. As to the investigation of the applicability of MCNP code to streaming analysis, the object of analysis which are the concrete walls without hole and with horizontal hole, oblique hole and bent oblique hole, the analysis procedure, the composition of concrete, and the conversion coefficient of dose equivalent, and the results of analysis are reported. As for variance reduction technique, cell importance was adopted. (K.I.)

  20. Characterization of the ballistic limit curve for metallic Whipple shield

    Directory of Open Access Journals (Sweden)

    Lee M.

    2012-08-01

    Full Text Available It has been known that space debris or meteoroid impact damage can have significant effects on spacecraft. Experimental test has been conducted up to 7 km/s, and numerical simulations are performed at higher velocities. Studies on the hypervelocity impact onto single plate, double spaced plates (Whipple shield, and multiple plates (MS shield have been performed and ballistic limit curves (BLCs are proposed. Last 15 years SPH (Smoothed Particle Hydrodynamics has been applied to the hypervelocity impact problems because of cost of test and numerical efficiency especially in the hypervelocity impact regime. Although most of the simulations captured the debris shape well, somehow they do not seem to match well with the empirical ballistic limit curves. We have recently developed a new axisymmetric SPH hydrocode. In order to assess the confidence that should be placed in such simulations we simulated the hypervelocity impacts on aluminum Whipple shields and compared with the empirical BLCs. The SPH simulations indicated an improved accuracy compared with the previously published SPH simulation results. Other effort we put was using different types of equation of state, however no further improvement was achieved.

  1. Synchrotron radiation shielding design and ICRP radiological protection quantities.

    Science.gov (United States)

    Bassey, Bassey; Moreno, Beatriz; Chapman, Dean

    2015-06-01

    Protection and operational quantities as defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU) are the two sets of quantities recommended for use in radiological protection for external radiation. Since the '80s, the protection quantities have evolved from the concept of dose equivalent to effective dose equivalent to effective dose, and the associated conversion coefficients have undergone changes. In this work, the influence of three different versions of ICRP photon dose conversion coefficients in the synchrotron radiation shielding calculations of an experimental enclosure has been examined. The versions are effective dose equivalent (ICRP Publication 51), effective dose (ICRP Publication 74), and effective dose (ICRP Publication 116) conversion coefficients. The sources of the synchrotron radiation white beam into the enclosure were a bending magnet, an undulator and a wiggler. The ranges of photons energy from these sources were 10-200 keV for the bending magnet and undulator, and 10-500 keV for the wiggler. The design criterion aimed a radiation leakage less than 0.5 µSv h(-1) from the enclosure. As expected, larger conversion coefficients in ICRP Publication 51 lead to higher calculated dose rates. However, the percentage differences among the calculated dose rates get smaller once shielding is added, and the choice of conversion coefficients set did not affect the final shielding decision.

  2. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  3. Efficacy of breast shielding during CT of the head

    Energy Technology Data Exchange (ETDEWEB)

    Brnic, Z.; Hebrang, A.; Anic, P. [Department of Diagnostic and Interventional Radiology, University Hospital Merkur, Zajceva 19, 10000, Zagreb (Croatia); Vekic, B. [' ' Ruder Boskovic' ' Research Institute, 10000, Zagreb (Croatia)

    2003-11-01

    In light of increasing frequency of CT examinations in the past decades, the aims of this prospective study were to investigate scatter radiation breast exposure in head CT and its dependence upon body constitution, and to assess the efficacy of lead shielding as a means of breast dose reduction. In 49 women referred to head CT for objective medical reasons one breast was covered with lead apron during CT scanning. Radiation doses were measured by use of thermoluminescent dosimeters, at skin of both breasts and over the apron. The doses were then compared as well as correlated to body mass index and meatus acusticus externus-to-dosimeter distance, respectively. Average exposure at the skin of the unshielded breast was 0.28 mGy (range 0.15-0.41 mGy), compared with 0.13 mGy (range 0.05-0.29 mGy) at the shielded breast. The doses showed a mean reduction by 57% due to lead shielding. At least half of breast exposure was imparted to the breast from outside, whereas the remainder results from internal scatter. The higher the body mass index, the higher the percentage of internal scatter in total breast dose. Although the level of scatter radiation to the breast is generally low during head CT examination, the use of lead cover enables recognizable further reduction of the exposure, and is recommended as a feasible and effective procedure of breast protection during CT of the head. (orig.)

  4. Chemistry and radiative shielding in star-forming galactic discs

    Science.gov (United States)

    Safranek-Shrader, Chalence; Krumholz, Mark R.; Kim, Chang-Goo; Ostriker, Eve C.; Klein, Richard I.; Li, Shule; McKee, Christopher F.; Stone, James M.

    2017-02-01

    To understand the conditions under which dense, molecular gas is able to form within a galaxy, we post-process a series of three-dimensional galactic-disc-scale simulations with ray-tracing-based radiative transfer and chemical network integration to compute the equilibrium chemical and thermal state of the gas. In performing these simulations, we vary a number of parameters, such as the interstellar radiation field strength, vertical scaleheight of stellar sources, and cosmic ray flux, to gauge the sensitivity of our results to these variations. Self-shielding permits significant molecular hydrogen (H2) abundances in dense filaments around the disc mid-plane, accounting for approximately ˜10-15 per cent of the total gas mass. Significant CO fractions only form in the densest, nH≳ 10^3 cm^{-3}, gas where a combination of dust, H2, and self-shielding attenuates the far-ultraviolet background. We additionally compare these ray-tracing-based solutions to photochemistry with complementary models where photoshielding is accounted for with locally computed prescriptions. With some exceptions, these local models for the radiative shielding length perform reasonably well at reproducing the distribution and amount of molecular gas as compared with a detailed, global ray-tracing calculation. Specifically, an approach based on the Jeans length with a T = 40 K temperature cap performs the best in regard to a number of different quantitative measures based on the H2 and CO abundances.

  5. Pb-free Radiation Shielding Glass Using Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Watcharin Rachniyom

    2015-12-01

    Full Text Available In this work, Pb-free shielding glass samples were prepared by the melt quenching technique using subbituminous fly ash (SFA composed of xBi2O3 : (60-xB2O3 : 10Na2O : 30SFA (where x = 10, 15, 20, 25, 30 and 35 by wt%. The samples were investigated for their physical and radiation shielding properties. The density and hardness were measured. The results showed that the density increased with the increase of Bi2O3 content. The highest value of hardness was observed for glass sample with 30 wt% of Bi2O3 concentration. The samples were investigated under 662 keV gamma ray and the results were compared with theoretical calculations. The values of the mass attenuation coefficient (μm, the atomic cross section (σe and the effective atomic number (Zeff were found to increase with an increase of the Bi2O3 concentration and were in good agreement with the theoretical calculations. The best results for the half-value layer (HVL were observed in the sample with 35 wt% of Bi2O3 concentration, better than the values of barite concrete. These results demonstrate the viability of using coal fly ash waste for radiation shielding glass without PbO in the glass matrices.

  6. Shielding of elliptic guides with direct sight to the moderator

    Science.gov (United States)

    Böni, P.; Grünauer, F.; Schanzer, C.

    2010-12-01

    With the invention of elliptic guides, the neutron flux at instruments can be increased significantly even without sacrificing resolution. In addition, the phase space homogeneity of the delivered neutrons is improved. Using superpolished metal substrates that are coated with supermirror, it is now possible to install neutron guides close to the moderator thus decreasing the illumination losses of the guide and reducing the background because the entrance window of the elliptic guide can be decreased significantly. We have performed Monte Carlo simulations using the program package MCNP5 to calculate the shielding requirements for an elliptic guide geometry assuming that the initial guide section elements are composed of Al substrates. We show that shielding made from heavy concrete shields the neutron and γ-radiation effectively to levels below 1 μSv/h. It is shown that the elliptic geometry allows to match the phase space of the transported neutrons easily to the needs of the instruments to be installed. In particular it is possible to maintain a compact phase space during the transport of the neutrons because the reflection losses are strongly reduced.

  7. Testing hot cell shielding in the fuel conditioning facility.

    Science.gov (United States)

    Courtney, J C; Klann, R T

    1997-01-01

    A comprehensive shield test program for a hot cell complex, the Fuel Conditioning Facility at Argonne National Laboratory, has been completed with minimum radiation exposure to participants. The recently modified shielding design for two hot cells and their associated transfer paths for irradiated materials was analyzed and tested for attenuating gamma rays from mixed fission product sources. Testing was accomplished using 0.37 TBq (10 Ci) and 518 TBq (14,000 Ci) 60Co sources. Of specific concern were radiation levels around wall penetrations and the interface between transport casks and the cell floor. Detailed measurements were made for surfaces that bound the hot cells, a transfer tunnel between the two cells, and storage pits that extend below the floors of both cells. In addition to surface measurements, dose equivalent rates in adjacent corridors were determined when the larger source was exposed. Results indicate that with some administrative controls, the facility shields are adequate to meet the design criterion that limits annual dose to less than 10 mSv (1 rem) for facility workers.

  8. Novel light-weight materials for shielding gamma ray

    Science.gov (United States)

    Chen, Shuo; Bourham, Mohamed; Rabiei, Afsaneh

    2014-03-01

    A comparison of gamma ray attenuation effectiveness of bulk aluminum, close-cell composite metal foams and open-cell aluminum foam infiltrated with variety of second phase materials were investigated and reported in this study. Mass attenuation coefficients for six sets of samples with three different areal densities of 2, 5 and 10 g/cm2 were determined at photon energies of 0.060, 0.662, 1.173, and 1.332 MeV. Theoretical values were calculated using XCOM software package. A complete agreement was observed between experimental and theoretical results. It is observed that close-cell composite metal foams exhibit a better shielding capability compared to open-cell Al foam with fillers. It is also observed that close-cell composite metal foams offer superior shielding effectiveness compared to bulk aluminum for energies below 0.662 MeV, the mass attenuation coefficients of steel-steel composite metal foam and Al-steel composite metal foam were measured 400 and 300% higher than that of aluminum A356. This study indicates the potential of utilizing the light-weight composite metal foams as shielding material replacing current heavy materials used for attenuation of low energy gamma ray with additional advantages such as high energy absorption and excellent heat rejection capabilities.

  9. Adaptation of radiation shielding code to space environment

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Koichi; Hara, Akihisa (Hazama Corp., Tokyo (Japan))

    1992-12-01

    Recently, the trend to the development of space has heightened. To the development of space, many problems are related, and as one of them, there is the protection from cosmic ray. The cosmic ray is the radiation having ultrahigh energy, and there was not the radiation shielding design code that copes with cosmic ray so far. Therefore, the high energy radiation shielding design code for accelerators was improved so as to cope with the peculiarity that cosmic ray possesses. Moreover, the calculation of the radiation dose equivalent rate in the moon base to which the countermeasures against cosmic ray were taken was simulated by using the improved code. As the important countermeasures for the safety protection from radiation, the covering with regolith is carried out, and the effect of regolith was confirmed by using the improved code. Galactic cosmic ray, solar flare particles, radiation belt, the adaptation of the radiation shielding code HERMES to space environment, the improvement of the three-dimensional hadron cascade code HETCKFA-2 and the electromagnetic cascade code EGS 4-KFA, and the cosmic ray simulation are reported. (K.I.).

  10. Chemistry and radiative shielding in star forming galactic disks

    CERN Document Server

    Safranek-Shrader, Chalence; Kim, Chang-Goo; Ostriker, Eve C; Klein, Richard I; Li, Shule; McKee, Christopher F; Stone, James M

    2016-01-01

    To understand the conditions under which dense, molecular gas is able to form within a galaxy, we post-process a series of three-dimensional galactic-disk-scale simulations with ray-tracing based radiative transfer and chemical network integration to compute the equilibrium chemical and thermal state of the gas. In performing these simulations we vary a number of parameters, such as the ISRF strength, vertical scale height of stellar sources, cosmic ray flux, to gauge the sensitivity of our results to these variations. Self-shielding permits significant molecular hydrogen (H2) abundances in dense filaments around the disk midplane, accounting for approximately ~10-15% of the total gas mass. Significant CO fractions only form in the densest, n>~10^3 cm^-3, gas where a combination of dust, H2, and self-shielding attenuate the FUV background. We additionally compare these ray-tracing based solutions to photochemistry with complementary models where photo-shielding is accounted for with locally computed prescript...

  11. Tissue equivalent proportional counter microdosimetry measurements utililzed aboard aircraft and in accelerator based space radiation shielding studies

    Science.gov (United States)

    Gersey, Brad; Wilkins, Richard

    The space radiation environment presents a potential hazard to the humans, electronics and materials that are exposed to it. Particle accelerator facilities such as the NASA Space Ra-diation Laboratory (NSRL) and Loma Linda University Medical Center (LLUMC) provide particle radiation of specie and energy within the range of that found in the space radiation environment. Experiments performed at these facilities determine various endpoints for bio-logical, electronic and materials exposures. A critical factor in the performance of rigorous scientific studies of this type is accurate dosimetric measurements of the exposures. A Tissue Equivalent Proportional Counter (TEPC) is a microdosimeter that may be used to measure absorbed dose, average quality factor (Q) and dose equivalent of the particle beam utilized in these experiments. In this work, results from a variety of space radiation shielding studies where a TEPC was used to perform dosimetry in the particle beam will be presented. These results compare the absorbed dose and dose equivalent measured downstream of equal density thicknesses of stan-dard and multifunctional shielding materials. The standard materials chosen for these shielding studies included High-Density Polyethylene (HDPE) and aluminum alloy, while the multifunc-tional materials included carbon composite infused with single walled carbon nanotubes. High energy particles including proton, silicon and iron nuclei were chosen as the incident radia-tion for these studies. Further, TEPC results from measurements taken during flights aboard ER-2 and KC-135 aircraft will also be discussed. Results from these flight studies include TEPC measurements for shielded and unshielded conditions as well as the effect of vibration and electromagnetic exposures on the TEPC operation. The data selected for presentation will highlight the utility of the TEPC in space radiation studies, and in shielding studies in particular. The lineal energy response function of the

  12. Prediction of jet noise shielding with forward flight effects

    Science.gov (United States)

    Mayoral, Salvador

    Aircraft noise continues to be a major concern among airport-neighboring communities. A strong component of aircraft noise is the jet noise that is generated from the turbulent mixing between the jet exhaust and ambient medium. The hybrid wing body aircraft suppresses jet noise by mounting the engines over-the-wing so that the airframe may shield ground observers from jet noise sources. Subscale jet noise shielding measurements of a scaled-down turbofan nozzle and a model of the hybrid wing body planform are taken with two 12-microphone polar arrays. Chevrons and wedge-type fan flow deflectors are integrated into the baseline bypass ratio 10 (BPR10) nozzle to modify the mean flow and alter the noise source behavior. Acoustic results indicate that the baseline BPR10 nozzle produces a long noise source region that the airframe has difficulty shielding, even when the nozzle is translated two fan diameters upstream of its nominal position. The integration of either chevrons or fan flow deflectors into the nozzle is essential for jet noise shielding because they translate peak intensities upstream, closer to the fan exit plane. The numerical counterpart of this study transforms the system of equations governing the acoustic diffraction with forward flight into the wave equation. Two forward flight formulations are considered: uniform flow over slender body; and non-uniform potential flow at low Mach number. The wave equation is solved numerically in the frequency domain using the boundary element method. The equivalent jet noise source is modeled using the combination of a wavepacket and a monopole. The wavepacket is parameterized using the experimental far-field acoustic autospectra of the BPR10 jets and knowledge of their peak noise locations. It is shown that the noise source compacts with increasing Mach number and consequently there is an increase in shielding. An assessment of the error associated with the non-uniform formulation for forward flight shows that the

  13. Optimization of NTP System Truss to Reduce Radiation Shield Mass

    Science.gov (United States)

    Scharber, Luke L.; Kharofa, Adam; Caffrey, Jarvis A.

    2016-01-01

    The benefits of nuclear thermal propulsion are numerous and relevant to the current NASA mission goals involving but not limited to the crewed missions to mars and the moon. They do however also present new and unique challenges to the design and logistics of launching/operating spacecraft. One of these challenges, relevant to this discussion, is the significant mass of the shielding which is required to ensure an acceptable radiation environment for the spacecraft and crew. Efforts to reduce shielding mass are difficult to accomplish from material and geometric design points of the shield itself, however by increasing the distance between the nuclear engines and the main body of the spacecraft the required mass of the shielding is lessened considerably. The mass can be reduced significantly per unit length, though any additional mass added by the structure to create this distance serves to offset those savings, thus the design of a lightweight structure is ideal. The challenges of designing the truss are bounded by several limiting factors including; the loading conditions, the capabilities of the launch vehicle, and achieving the ideal truss length when factoring for the overall mass reduced. Determining the overall set of mass values for a truss of varying length is difficult since to maintain an optimally designed truss the geometry of the truss or its members must change. Thus the relation between truss mass and length for these loading scenarios is not linear, and instead has relation determined by the truss design. In order to establish a mass versus length trend for various truss designs to compare with the mass saved from the shield versus length, optimization software was used to find optimal geometric properties that still met the design requirements at established lengths. By solving for optimal designs at various lengths, mass trends could be determined. The initial design findings show a clear benefit to extending the engines as far from the main

  14. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    Science.gov (United States)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I shield, and the effects of the aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could

  15. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  16. WAPDEG Analysis of Waste Package and Drip shield Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K. Mon

    2004-09-29

    As directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), an analysis of the degradation of the engineered barrier system (EBS) drip shields and waste packages at the Yucca Mountain repository is developed. The purpose of this activity is to provide the TSPA with inputs and methodologies used to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. This analysis provides information useful to satisfy ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]) requirements. Several features, events, and processes (FEPs) are also discussed (Section 6.2, Table 15). The previous revision of this report was prepared as a model report in accordance with AP-SIII.10Q, Models. Due to changes in the role of this report since the site recommendation, it no longer contains model development. This revision is prepared as a scientific analysis in accordance with AP-SIII.9Q, ''Scientific Analyses'' and uses models previously validated in (1) ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]); (2) ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' (BSC 2004 [DIRS 169984]); and (3) ''General Corrosion and Localized Corrosion of Drip Shield'' (BSC 2004 [DIRS 169845]). The integrated waste package degradation (IWPD) analysis presented in this report treats several implementation-related issues, such as defining the number and size of patches per waste package that undergo stress corrosion cracking; recasting the weld flaw analysis in a form as implemented in the Closure Weld Defects (CWD) software; and, general corrosion rate manipulations (e.g., change of

  17. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  18. Decreased dose of radiation to dogs during acquisition of elbow radiographs using draped shielding.

    Science.gov (United States)

    Nemanic, S; Nixon, B K; Francis, R A; Farmer, R H; Harlan, D L; Baltzer, W I

    2015-05-16

    Protective lead equivalent shielding of patients is not routinely used in veterinary radiology. The goal of this study was to determine whether the use of lead equivalent shielding results in a significant reduction in dose of radiation to dogs during acquisition of elbow radiographs. The authors measured radiation doses in the primary beam and over and under protective lead equivalent shielding that was placed at the level of the eyes, body and gonads during acquisition of elbow radiographs using 0.01 mSv sensitivity dosimetry badges. Shielding consisted of 0.5 mm lead equivalent aprons and thyroid shields placed over bodies and eyes, respectively. All badges in the primary beam-detected radiation. Shielding significantly decreased the dose of radiation with significantly less scatter and tube leakage radiation detected under compared with over shielding (P=0.0001). The dose of radiation detected over shielding was significantly greater than zero (P=0.0001), while that under shielding did not differ significantly from zero (P=0.09). Based on these results, the authors recommend protective shielding be used on veterinary patients during radiography.

  19. The Effects of Dyeing and Finishing Pretreatment Process to the Sliver Fiber Shielding Fabric and the Reasons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tan; MA Jian-wei; GUO Kun; XU Hong-xing

    2014-01-01

    Through the silver fiber and cotton mixed silver fiber shielding fabric, not only soft and comfortable, it can wear personal, but also has excellent anti electromagnetic shielding effect. Fabric in dyeing and finishing process, may cause some damage on the silver fiber, influence the shielding performance of shielding fabric. Therefore, in this paper, through the experimental and analysis, find dyeing and finishing process may affect silver fiber shielding fabric and the reasons.

  20. Biological Oceanography

    Science.gov (United States)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  1. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  2. Foldit Biology

    Science.gov (United States)

    2015-07-31

    Report 8/1/2013-7/31/2015 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Foldit Biology NOOO 14-13-C-0221 Sb. GRANT NUMBER N/A Sc. PROGRAM ELEMENT...Include area code) Unclassified Unclassified Unclassified (206) 616-2660 Zoran Popović Foldit Biology (Task 1, 2, 3, 4) Final Report...Period Covered by the Report August 1, 2013 – July 31, 2015 Date of Report: July 31, 2015 Project Title: Foldit Biology Contract Number: N00014-13

  3. Improving electrical equipment and control systems for shield integrated mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabinovich, Z.M.; Starikov, B.Ya.; Kibrik, I.S.

    1984-06-01

    The design and operation are discussed for electrical equipment and control systems for the 1AShchM, the ANShch and the 2ANShch shield integrated face systems consisting of shield supports, coal plow and chain conveyor. The shield system is used for mining inclined and steep coal seams endangered by coal dust explosions, methane or rock bursts. Control and electrical system for 3 types of shield face mining systems is similar. It cuts energy supply when methane content at working faces exceeds the maximum permissible level, controls haulage rate and cutting rate of a coal plow, controls operation of shield supports (using the Sirena system), controls dust suppression system and its water consumption. The system is also equipped with communications equipment. Tests of the control and electrical system for the integrated shield system carried out in the im. Gagarin mine in the Ukraine are described. The VAUS III control system developed by Dongiprouglemash was tested.

  4. News from the Library: Facilitating access to a program for radiation shielding - the Library can help

    CERN Multimedia

    CERN Library

    2013-01-01

    MicroShield® is a comprehensive photon/gamma ray shielding and dose assessment programme. It is widely used for designing shields, estimating source strength from radiation measurements, minimising exposure to people, and teaching shielding principles.   Integrated tools allow the graphing of results, material and source file creation, source inference with decay (dose-to-Bq calculations accounting for decay and daughter buildup), the projection of exposure rate versus time as a result of decay, access to material and nuclide data, and decay heat calculations. The latest version is able to export results using Microsoft Office (formatted and colour-coded for readability). Sixteen geometries accommodate offset dose points and as many as ten standard shields plus source self-shielding and cylinder cladding are available. The library data (radionuclides, attenuation, build-up and dose conversion) reflect standard data from ICRP 38 and 107* as well as ANSI/ANS standards and RSICC publicat...

  5. Overview of active methods for shielding spacecraft from energetic space radiation

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W. (Principal Investigator)

    2001-01-01

    During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made.

  6. LOW-FREQUENCY MAGNETIC FIELD SHIELDING BY A CIRCULAR PASSIVE LOOP AND CLOSED SHELLS

    Directory of Open Access Journals (Sweden)

    V.S. Grinchenko

    2016-05-01

    Full Text Available Purpose. To analyze the shielding factors for a circular passive loop and conductive closed shells placed in a homogeneous low-frequency magnetic field. Methodology. We have obtained simplified expressions for the shielding factors for a circular passive loop and a thin spherical shell. In addition, we have developed the numerical model of a thin cubical shell in a magnetic field, which allows exploring its shielding characteristics. Results. We have obtained dependences of the shielding factors for passive loops and shells on the frequency of the external field. Analytically determined frequency of the external magnetic field, below which field shielding of a passive loop is expedient to use, above which it is advisable to use a shielding shell.

  7. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  8. Structural Integrity Evaluation of Cold Neutron Laboratory Building by Design Change of Guide Shielding Room

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangik; Kim, Youngki; Kim, Harkrho

    2007-06-15

    This report summarizes the results of the structural integrity evaluation for the cold neutron laboratory building by design change of guide shielding room. The design of the guide shielding room was changed by making its structure members in normal concrete (2.3 g/cc) instead of heavy concrete (3.5 g/cc) because the heavy concrete could be not supplied to meet its design specification. Therefore, it was decided that the guide shielding room is made of the normal concrete. And, the shielding performance of the normal concrete was recalculated to confirm satisfying its design specification, which is of a 9000 zone according to HANARO radiation region classification. The change makes the shielding wall thicker than existing design, and then it is caused to qualify the structural integrity evaluation of the CNLB. Finally, the structural integrity of the CNLB was re-evaluated by considering the design change of the guide shielding room.

  9. Distance determinations to shield galaxies from Hubble space telescope imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M.; Cave, Ian [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Adams, Elizabeth; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Juërgen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Saintonge, Amélie, E-mail: kmcquinn@astro.umn.edu [Max-Planck-Institute for Astrophysics, D-85741 Garching (Germany)

    2014-04-10

    The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc by applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.

  10. Investigation of Shielding Properties of Yarns, Twisted with Metal Wire

    Directory of Open Access Journals (Sweden)

    Sandra VARNAITĖ-ŽURAVLIOVA

    2014-04-01

    Full Text Available The development level of the modern techniques and information technologies creates diverse nature electromagnetic fields and electric field accumulations in the human environment. Electrically conductive textiles that protect against electromagnetic waves and electric charge accumulations can be usable as protective covers for work in computer equipment rooms, measuring stands, air and gas filters and so on. One of the methods used in increase of electrical conductivity in textiles is the development of their specific structures (including the development of threads with the metal component. In this paper, unlike the currently used in the world conductive material production method, where different metal fibres are used as an additives to the main fibre composition in order to create a variety of fibres and yarns, a spun yarn with metal wire was prototyped as samples for this research and the parameters of protective properties of these samples were investigated (such as surface resistivity, vertical resistance, etc.. The protective and shielding properties of woven network with prototyped twisted electro conductive thread with a wire (metal wire diameter of 15 microns were investigated. During the investigation the influence of the following factors, such as conductive fibre composition, electrically conductive thread distribution frequency of the longitudinal and transverse direction, on the protective shielding properties of conductive network were analyzed. The research enabled the assessment of influence of electrically conductive fibre yarn composition and its distribution in the woven mesh on protective shielding properties. DOI: http://dx.doi.org/10.5755/j01.ms.20.1.2492

  11. Rare metal granites and related rocks of the Ukrainian shield

    Directory of Open Access Journals (Sweden)

    Esipchuk, K.Ye.

    1993-12-01

    Full Text Available Two rare metal leucocratic granites, Perga and Kamennaya complexes, can be distinquished on the Ukrainian shield. The Perga complex consists of medium- and coarse grained, mainly porphyric, biotite, riebeckite and aegirine granites, granite porphyries, microclinites and albitites with rare metal mineralization (genthelvite, phenacite, tantalite, cassiterite and wolframite etc.. Granites from several stocks (up to 30 km2 in the northwestern part of the shield, situated along the fracture zone, restricted the large Korosten pluton of rapakivi granites to the northwest. The age of these granites (Pb-Pb and U-Pb methods on zircon and monazite practically coincide with the age of rapakivi granites being 1750 Ma. Within the Korosten complex of rapakivi granites we consider that zinnwaldite granites, which are characterized by fluorite and topazine mineralization, represent the final phase of pluton. These granites differ from the Perga ones by their low content of rare metals. The Kamennaya Mogila complex lies in the southeastern part of the Ukrainian shield. It consists of biotite and muscovite-biotite, medium- and coarse-grained (also porphyric, and occasionally greisining granites with rare metal mineralization (cassiterite, columbite, molybdenite, wolframite and beryl. Granites form several stocks (5-30 km2 situated 10-30 km to the west-northwest of the South-Kalchik gabbro-syenite-granite pluton. Granitoids in both of these complexes have similar isotopic ages (1800 Ma. Leucocratic subalkaline granites (the Novoyanisol type are known within the pluton itself, occupying an intermediate position between the above mentioned in terms of mineral and geochemical composition. The gabbro-syenite-granite formation of the Nearazov region has a substantial similarity to the anorthosite-rapakivi-granite formation. In this respect the relation of each of them to rare metal granites is rather remarkable. This relation is, most probably, not only spatial, but

  12. Lithium isotope geochemistry and origin of Canadian shield brines.

    Science.gov (United States)

    Bottomley, D J; Chan, L H; Katz, A; Starinsky, A; Clark, I D

    2003-01-01

    Hypersaline calcium/chloride shield brines are ubiquitous in Canada and areas of northern Europe. The major questions relating to these fluids are the origin of the solutes and the concentration mechanism that led to their extreme salinity. Many chemical and isotopic tracers are used to solve these questions. For example, lithium isotope systematics have been used recently to support a marine origin for the Yellowknife shield brine (Northwest Territories). While having important chemical similarities to the Yellowknife brine, shield brines from the Sudbury/Elliot Lake (Ontario) and Thompson/Snow Lake (Manitoba) regions, which are the focus of this study, exhibit contrasting lithium behavior. Brine from the Sudbury Victor mine has lithium concentrations that closely follow the sea water lithium-bromine concentration trajectory, as well as delta6Li values of approximately -28/1000. This indicates that the lithium in this brine is predominantly marine in origin with a relatively minor component of crustal lithium leached from the host rocks. In contrast, the Thompson/Snow Lake brine has anomalously low lithium concentrations, indicating that it has largely been removed from solution by alteration minerals. Furthermore, brine and nonbrine mine waters at the Thompson mine have large delta6Li variations of approximately 30/1000, which primarily reflects mixing between deep brine with delta6Li of -35 +/- 2/1000 and near surface mine water that has derived higher delta6Li values through interactions with their host rocks. The contrary behavior of lithium in these two brines shows that, in systems where it has behaved conservatively, lithium isotopes can distinguish brines derived from marine sources.

  13. A database-informed approach to new plant shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, T. M. [Westinghouse Electric Company LLC, 226 Airport Parkway, San Jose, CA 95110 (United States)

    2011-07-01

    Document available in abstract form only, full text of document follows: To facilitate the definition and description of radiation dose rates in the numerous rooms and areas of a new nuclear power plant, a database approach was developed. This approach offers a number of benefits over more manual methods. A key benefit is that the selection of an appropriate shielding method to use in each area of the plant is greatly facilitated by virtue of the team's improved ability to grasp the significance of each of the individual sources that are candidates for making a significant contribution to the dose rate in each area. By understanding the level of relevant contribution - if any - of each of these candidate sources, an analyst is able to select a method that will define the contribution without becoming enmired in a model representing inappropriately high degrees of accuracy and modeling time. This database method, by allowing for an evolving understanding of dose rates and sources in the neighboring rooms for each portion of the plant, leads to substantial reductions in the effort of characterizing a plant's radiation environment. As an additional benefit, the database serves as a tool for documenting the shielding calculations themselves, automatically generating formatted sections including drawing and source term references, shielding calculation types, key dimensions, and results; these sections can form the starting point of a full calculation package. The approach offers a final project management benefit: estimating, tracking, and predicting the effort associated with the many calculations involved in such a project are greatly systematized, leading to more reliable manpower estimates. (authors)

  14. Shielding considerations for the small animal radiation research platform (SARRP).

    Science.gov (United States)

    Sayler, Elaine; Dolney, Derek; Avery, Stephen; Koch, Cameron

    2013-05-01

    The Small Animal Radiation Research Platform (SARRP) is a commercially available platform designed to deliver conformal, image-guided radiation to small animals using a dual-anode kV x-ray source. At the University of Pennsylvania, a free-standing 2 m enclosure was designed to shield the SARRP according to federal code regulating cabinet x-ray systems. The initial design consisted of 4.0-mm-thick lead for all secondary barriers and proved wholly inadequate. Radiation levels outside the enclosure were 15 times higher than expected. Additionally, the leakage appeared to be distributed broadly within the enclosure, so concern arose that a subject might receive significant doses outside the intended treatment field. Thus, a detailed analysis was undertaken to identify and block all sources of leakage. Leakage sources were identified by Kodak X-OmatV (XV) film placed throughout the enclosure. Radiation inside the enclosure was quantified using Gafchromic film. Outside the enclosure, radiation was measured using a survey meter. Sources of leakage included (1) an unnecessarily broad beam exiting the tube, (2) failure of the secondary collimator to confine the primary beam entirely, (3) scatter from the secondary collimator, (4) lack of beam-stop below the treatment volume, and (5) incomplete shielding of the x-ray tube. The exit window was restricted, and a new collimator was designed to address problems (1-3). A beam-stop and additional tube shielding were installed. These modifications reduced internal scatter by more than 100-fold. Radiation outside the enclosure was reduced to levels compliant with federal regulations, provided the SARRP is operated using tube potentials of 175 kV or less. In addition, these simple and relatively inexpensive modifications eliminate the possibility of exposing a larger animal (such as a rat) to significant doses outside the treatment field.

  15. Influence of shieldings or antioxidants on DNA damage and early and delyed cell death induced in human fibroblasts by accelerated 595 MeV/u Fe ions

    Science.gov (United States)

    Antonelli, Francesca; Esposito, Giuseppe; Dini, Valentina; Belli, Mauro; Campa, Alessandro; Sorrentino, Eugenio; Antonella Tabocchini, Maria; Lobascio, Cesare; Berra, Bruno

    HZE particles from space radiation raise an important protection concern during long-term astronauts' travels. As high charge, high energy particles interact with a shield, both projec-tile and target fragmentation may occurs, so that the biological properties of the emerging radiation field depend on the nature and energy of the incident particles, and on the nature and thickness of the shield. We have studied the influence of PMMA and Kevlar shielding as well as the antioxidant compounds Rosmarinic acid or Resveratrol on DNA damage induction and processing (as evaluated by the g-H2AX phosphorylation assay) and on early and delayed cell death in AG01522 human fibroblasts irradiated with Fe ions of 595 MeV/u at the NASA Space Radiation Laboratory (NSRL), Brookhaven National Laboratory (BNL, Upton, USA). Insertion of PMMA or Kevlar shields (10 g/cm2 thick) gave no substantial change in the bio-logical effect per unit dose on the sample for all the end points studied. When irradiation was performed in the presence of 300 mM Rosmarinic acid or Resveratrol no difference were found for both early and delayed cell death, while a slight protective effect was observed for the initial and residual DNA damage. For both early and delayed cell death, Fe-ions are more effective than g-rays. The number of Fe-ion induced g-H2AX foci is instead lower than that induced by g-rays, due to the presence of multiple DSB within a single focus induced by Fe-ions. From a comparison of the g-H2AX data with the results on DNA fragmentation obtained with 414 MeV/u Fe ions at the Heavy Ions Medical Accelerator (HIMAC, Chiba, Japan) and with 1 GeV/u Fe ions at BNL, in the absence or in the presence of PMMA shields (Esposito et al, Advance in Space Research 2004) we speculate that the overall effect of the shield is a balance between the contributions due to the slowing down of the primary particles and that due to the nuclear fragmentation. Acknowledgment: Financial support from ASI project

  16. The vertical shaft construction technology of cutter head transformation of large diameter shield

    Institute of Scientific and Technical Information of China (English)

    He Feng; Wang Ying; Wang Zhenfei; Wang Baiquan

    2012-01-01

    Taking vertical shaft construction of cutter transformation of the Beijing underground diameter shield for ex- ample, the design and construction of cutter structure transformation under complex boundary conditions for large diameter shield were discussed. Practice about how to ensure the structure safety of the shaft as well as well-coordinated shield construction was explored, and reliable solutions were provided successfully, which can provide reference for similar projects.

  17. Radiation shielding design for neutron diffractometers assisted by Monte Carlo methods

    Science.gov (United States)

    Osborn, John C.; Ersez, Tunay; Braoudakis, George

    2006-11-01

    Monte Carlo simulations may be used to model radiation shielding for neutron diffractometers. The use of the MCNP computer program to assess shielding for a diffractometer is discussed. A comparison is made of shielding requirements for radiation generated by several materials commonly used in neutron optical elements and beam stops, including lithium-6 based absorbers where the Monte Carlo method can model the effects of fast neutrons generated by this material.

  18. Application of solid waste containing lead for gamma ray shielding material

    OpenAIRE

    SARAEE, Rezaee Ebrahim; POURAJAM BAFERANI, S.; TAHMASEBI, O.

    2015-01-01

    Abstract. The basic strategies to decrease solid waste disposal problems have focused on the reduction of waste production and recovery of usable materials using waste and making raw materials. Generally, various materials have been used for radiation shielding in different areas and situations. In this study, a novel shielding material produced by a metallurgical solid waste containing lead has been analyzed in order to make a shielding material against gamma radiation. The photon total mass...

  19. Design and Testing of Improved Spacesuit Shielding Components

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.

    2002-05-08

    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs.

  20. Gravity, antigravity and gravitational shielding in (2+1) dimensions

    Science.gov (United States)

    Accioly, Antonio; Helayël-Neto, José; Lobo, Matheus

    2009-07-01

    Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.

  1. Reflector and Shield Material Properties for Project Prometheus

    Energy Technology Data Exchange (ETDEWEB)

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  2. Self sensing composites with emi shielding and self repair

    Science.gov (United States)

    Dry, Carolyn

    2015-04-01

    Emi shielding provided by metal coating on repair fibers and conductive repair chemical maintained overall emi resistance of structural panels as well as provided the basis for eddy current and ultrasonic sensing/monitoring of structural panels. The sensing/repair system was easily inserted into composite processing and survived the heat and pressure of VARTM, resin infusion /pressing and pultrusion processing. The panels were tested with a commercial emi test lab, a commercial non-destructive testing lab, and a structural testing lab, The results were positive and will be presented in the paper.

  3. Comparative study of radiation shielding parameters for bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaundal, Rajinder Singh, E-mail: rajinder_apd@yahoo.com [Department of Physics, School of Physical Sciences, Lovely Professional University, Phagwara, Punjab (India)

    2016-07-15

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi{sub 2}O{sub 3-}(1-x) B{sub 2}O{sub 3} where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of the prepared glass samples. (author)

  4. Experience with magnetic shielding of a large scale accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sergei Nagaitsev et al.

    2001-08-14

    It is not unusual to place multiple accelerators in a common enclosure to save on civil construction costs. This often complicates operations, especially if accelerators are affecting each other. At Fermilab, the influence of a rapidly cycling Main Injector (MI) synchrotron on an antiproton storage ring (Recycler), placed in a common tunnel, was initially found to be unacceptable for a reliable operation of the Recycler. Initial closed orbit excursions in the Recycler ring during the MI ramp were in excess of 5 mm (rms). This paper describes a shielding technique, used to reduce these orbit excursions by a factor of five.

  5. Radiographic artefact due to a faulty lead rubber shield

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, G. E-mail: gunasekarankumar@hotmail.com; Kamath, V.; Murali, S.R.; Temperley, D

    2003-05-01

    Radiographic examination is one of the commonest investigations performed in the field of Orthopaedics. There are several pitfalls to be kept in mind while interpreting radiographs in Orthopaedics. Bony or soft tissue lesions can be mimicked by anatomical variations, superimposition of soft tissues, inappropriate radiographic exposure and presence of external radio-opaque substances, to name a few. We present a case, where a faulty lead rubber shield mimicked a fracture of distal end of humerus. Early identification of these abnormalities can avoid distress to and unnecessary investigations of the patient.

  6. Revolutionary Concepts of Radiation Shielding for Human Exploration of Space

    Science.gov (United States)

    Adams, J. H., Jr.; Hathaway, D. H.; Grugel, R. N.; Watts, J. W.; Parnell, T. A.; Gregory, J. C.; Winglee, R. M.

    2005-01-01

    This Technical Memorandum covers revolutionary ideas for space radiation shielding that would mitigate mission costs while limiting human exposure, as studied in a workshop held at Marshall Space Flight Center at the request of NASA Headquarters. None of the revolutionary new ideas examined for the .rst time in this workshop showed clear promise. The workshop attendees felt that some previously examined concepts were de.nitely useful and should be pursued. The workshop attendees also concluded that several of the new concepts warranted further investigation to clarify their value.

  7. MCNPX and GEANT4 simulation of γ -ray polymeric shields

    Indian Academy of Sciences (India)

    Tabbakh F

    2016-04-01

    In this work, the shielding ability of a polymeric compound with gadolinium for gamma radiation has been investigated. The conceptual calculation of radiation attenuation and energy absorption as a function of different Gd percentages and the calculation of total compound density are performed using MCNP and GEANT4. It is found that, 2 mm of the compound can reduce up to 5% and 50% of 1 MeV and 50 keV $\\gamma$-rays respectively. Both Monte Carlo tools are in a good agreement.

  8. Thermal Degradation of Lead Monoxide Filled Polymer Composite Radiation Shields

    Science.gov (United States)

    Harish, V.; Nagaiah, N.

    2011-07-01

    Lead monoxide filled Isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the thermo gravimetric analysis of the composites done to understand their thermal properties especially the effect of filler concentration on the thermal stability & degradation rate of composites. Pristine polymer exhibits single stage degradation whereas filled composites exhibit two stage degradation processes. Further, the IDT values as well as degradation rates decrease with the increased filler content in the composite.

  9. Gamma radiation shielding analysis of lead-flyash concretes.

    Science.gov (United States)

    Singh, Kanwaldeep; Singh, Sukhpal; Dhaliwal, A S; Singh, Gurmel

    2014-11-04

    Six samples of lead-flyash concrete were prepared with lead as an admixture and by varying flyash content - 0%, 20%, 30%, 40%, 50% and 60% (by weight) by replacing cement and keeping constant w/c ratio. Different gamma radiation interaction parameters used for radiation shielding design were computed theoretically and measured experimentally at 662keV, 1173keV and 1332keV gamma radiation energy using narrow transmission geometry. The obtained results were compared with ordinary-flyash concretes. The radiation exposure rate of gamma radiation sources used was determined with and without lead-flyash concretes.

  10. The Magnetic Shielding Polarizabilities of Some Tetrahedral Molecules

    Directory of Open Access Journals (Sweden)

    Paul Chittenden

    2000-09-01

    Full Text Available TMS is the commonest standard reference for both protons and 13C NMR spectroscopy. The Magnetic Shielding and its Polarizabilities, plus the static polarizability have been calculated for TMS, tetramethyl ammonium cation and 2,2-dimethylpropane. An investigation of continuum solvation effects on these highly symmetrical molecules, whose first surviving electric moment is the octopole, showed interaction with solvent makes little change to these magnetic properties. This small change is however consistent with both the high symmetry of the molecules and the available extensive experimental data for TMS. A rationalization of the signs and magnitudes of A in a sequence of related molecules has been suggested.

  11. Shielding optimization studies for the detector systems of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.; Lillie, R.A.; Gabriel, T.A.

    1994-09-01

    Preliminary shielding optimization studies for the Superconducting Super Collider`s Solenoidal Detector Collaboration detector system were performed at the Oak Ridge National Laboratory in 1993. The objective of the study was to reduce the neutron and gamma-ray fluxes leaving the shield to a level that resulted in insignificant effects on the functionality of the detector system. Steel and two types of concrete were considered as components of the shield, and the shield was optimized according to thickness, weight, and cost. Significant differences in the thicknesses, weights, and costs were noted for the three optimization parameters. Results from the study are presented.

  12. Influence of the gas shielding method upon the properties of the weld joints

    Science.gov (United States)

    Chinakhov, D. A.; Sapozhkov, A. S.

    2016-11-01

    The authors consider the influence of the gas shielding method under consumable electrode welding and double-jet gas shielding together with its influence upon the processes in the arc zone and the properties of weld joints from high-strength alloyed 30HGSA steel. The authors provide the results of recent experimental research on weld joints properties improvement through changing the gas dynamics of the active shielding gas. It was established that the jet of active shielding gas has a considerable gas-dynamic influence upon weld joints formation, chemical composition, structure and properties of the weld joints from high-strength alloyed steels.

  13. Physical design of magnetic shielding for LEReC cooling section

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gassner, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kayran, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mahler, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-05

    The goal of this note is to set basic parameters for the magnetic shielding of LEReC CS with required design attenuation. We considered physical design of magnetic shielding of LEReC cooling section. The schematic of this design along with the list of its basic parameters is shown in Fig. 3. We are planning to use 2 layers of 1 mm thick cylindrical mu-metal shields with μ=11000. The radius of the first layer sitting on top of vacuum chamber is 63.5 mm. The second layer radius is 150 mm. Such shielding guarantees adequate transverse angles of electron beam trajectory in the CS.

  14. A Dynamic Discrete Dislocation Plasticity study of elastodynamic shielding of stationary cracks

    Science.gov (United States)

    Gurrutxaga-Lerma, B.; Balint, D. S.; Dini, D.; Sutton, A. P.

    2017-01-01

    Employing Dynamic Discrete Dislocation Plasticity (D3P), an elastodynamic analysis of the shielding of a stationary crack tip by dislocations is studied. Dislocations are generated via Frank-Read sources, and make a negligible contribution to the shielding of the crack tip, whereas dislocations generated at the crack tip via homogeneous nucleation dominate the shielding. Their effect is found to be highly localised around the crack, leading to a magnification of the shielding when compared to time-independent, elastostatic predictions. The resulting attenuation of KI(t) is computed, and is found to be directly proportional to the applied load and to √{ t }.

  15. Thermal-hydraulic Analysis in the Pool of PGSFR including the Shielding

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung; Lee, Taeho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Various design issues relate to this region, and one of them is thermal-hydraulic behavior when shielding exists inside the reactor vessel. The shielding is used for the blockage of the radiation emitted by the reactor core. The shielding is installed at the Intermediate Heat eXchanger (IHX), core shroud, and redan region at the top of core. However, this structure disturbs the normal flow path and heat transfer of the primary heat transfer system. In this study, the multi-dimensional thermal-hydraulic characteristics in the pool of PGSFR including the shielding are analyzed. Also these results are compared to a case in which no shielding is installed. A thermal-hydraulic analysis in the pool of the PGSFR considering the shielding structure are performed using STAR-CCM+. The internal major components of the pool inside are modeled, and calculations are performed with a normal operation condition. Also, these results are compared to a no shielding case. The flow and temperature changes owing to the shielding structure at a redan inside are shown, but the overall flow and temperature distributions in both cases are substantially similar. Also the physical properties such as the flow rate, temperature, and static pressure at each major point are almost the same. These results are utilized in the arrangement of the reactor internal structure and design of the shielding structure.

  16. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  17. Shielding design studies for a neutron irradiator system based on a 252Cf source.

    Science.gov (United States)

    da Silva, A X; Crispim, V R

    2001-01-01

    This study aims to investigate a shielding design against neutrons and gamma rays from a source of 252Cf, using Monte Carlo simulation. The shielding materials studied were borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP4B was used to design shielding for 252Cf based neutron irradiator systems. By normalising the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independent of the intensity of the actual 252Cf source. The results show that the total dose equivalent rates were reduced significantly by the shielding system optimisation.

  18. Deep-penetration calculations in concrete and iron for shielding of proton therapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 300, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 300, Taiwan (China); National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300, Taiwan (China); Chen, Yen-Fu [Department of Engineering and System Science, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 300, Taiwan (China); Lin, Uei-Tyng [Institute of Radiological Sciences, Tzu Chi College of Technology, 880 Sec. 2, Chien-Kuo Road, Hualien 970, Taiwan (China); Jiang, Shiang-Huei [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 300, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 300, Taiwan (China)

    2012-06-01

    Proton accelerators in the energy range of approximately 200 MeV have become increasingly popular for cancer treatment in recent years. These proton therapy facilities usually involve bulky concrete or iron in their shielding design or accelerator structure. Simple shielding data, such as source terms or attenuation lengths for various proton energies and materials are useful in designing accelerator shielding. Understanding the appropriateness or uncertainties associated with these data, which are largely generated from Monte Carlo simulations, is critical to the quality of a shielding design. This study demonstrated and investigated the problems of deep-penetration calculations on the estimation of shielding parameters through an extensive comparison between the FLUKA and MCNPX calculations for shielding against a 200-MeV proton beam hitting an iron target. Simulations of double-differential neutron production from proton bombardment were validated by comparison with experimental data. For the concrete shielding, the FLUKA calculated depth-dose distributions were consistent with the MCNPX results, except for some discrepancies in backward directions. However, for the iron shielding, if FLUKA is used inappropriately then overestimation of neutron attenuation can be expected as shown by this work because of the multigroup treatment for low-energy neutrons in FLUKA. Two neutron energy group structures, three degrees of self-shielding correction, and two iron compositions were considered in this study. Significant variation of the resulting attenuation lengths indicated the importance of problem-dependent multigroup cross sections and proper modeling of iron composition in deep-penetration calculations.

  19. Radiation shielding for the Main Injector collimation system

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, Igor; /Fermilab

    2007-12-01

    The results of Monte Carlo radiation shielding studies performed with the MARS15 code for the Main Injector collimation system are presented and discussed. A Proton Plan was developed recently at Fermilab for the benefit of the existing neutrino programs as well as to increase anti-proton production for the Tevatron programs [1]. As a part of the plan, the intensity of proton beams in the Main Injector (MI) should be increased by means of slip-stacking injection. In order to localize beam loss associated with the injection, a collimation system was designed [2] that satisfies all the radiation and engineering constraints. The system itself comprises a primary collimator and four secondary ones to which various masks are added. It is assumed that beam loss at the slip-stacking injection is equal to 5% of total intensity which is 5.5 x 10{sup 13} protons per pulse [2]. As far as pulse separation is 2.2 seconds, one has (5.5 x 10{sup 13}/2.2) x 0.05 = 1.25 x 10{sup 12} protons interacting per second with the primary collimator. In the paper the geometry model of the corresponding MI region and beam loss model are described. The model of the region was built by means of the MAD-MARS Beam Line Builder (MMBLB) [3] using results of the collimation studies [2]. The results of radiation shielding calculations performed with the MARS15 code [4] are presented.

  20. The role of venous valves in pressure shielding

    Directory of Open Access Journals (Sweden)

    Lawford Patricia V

    2008-02-01

    Full Text Available Abstract Background It is widely accepted that venous valves play an important role in reducing the pressure applied to the veins under dynamic load conditions, such as the act of standing up. This understanding is, however, qualitative and not quantitative. The purpose of this paper is to quantify the pressure shielding effect and its variation with a number of system parameters. Methods A one-dimensional mathematical model of a collapsible tube, with the facility to introduce valves at any position, was used. The model has been exercised to compute transient pressure and flow distributions along the vein under the action of an imposed gravity field (standing up. Results A quantitative evaluation of the effect of a valve, or valves, on the shielding of the vein from peak transient pressure effects was undertaken. The model used reported that a valve decreased the dynamic pressures applied to a vein when gravity is applied by a considerable amount. Conclusion The model has the potential to increase understanding of dynamic physical effects in venous physiology, and ultimately might be used as part of an interventional planning tool.