WorldWideScience

Sample records for biological shielding

  1. Asphalt as biological shielding against fusion neutrons

    International Nuclear Information System (INIS)

    For fusion experiments, thick biological radiation protection shields are necessary due to the deep penetration capability of the 14 MeV neutrons. A (D,T) neutron generator with a moderate output of around 1012 n/sec requires a concrete shielding of a wall thickness of 2 meters laterally and at the top of an experimental assembly. The cost for this biological shield may exceed the cost for most of the equipment for a fusion and/or hybrid experimental installation. Particularly, in Saudi Arabia, asphalt is very cheap and available in bulk quantities. As it is rich in hydrogen and carbon, it is worthwhile to investigate its shielding potential against fusion neutron. In the present work different biological shield configurations of asphalt at the wall of the experimental cavity for a research program being undertaken in Saudi Arabia, are investigated. The experimental cavity is approximated by a sphere of 5 meters radius. The yield of the neutron generator is taken as 1012 - 14 MeV - neutron/sec

  2. Leakage from biological shield cooling system in Pickering NGS A

    International Nuclear Information System (INIS)

    Over the past eight years, a number of leaks have developed in the Biological Shield Cooling (BSC) system of the Pickering NGS A reactors. The highest leak rate exists in Unit 4. The failure mechanism is not known, but corrosion and/or weld failure are suspected. This paper summarizes the concerns associated with the leaks and possible solutions. It should be noted that the BSC system is peculiar to Pickering A reactors only

  3. Decommissioning of the ASTRA research reactor: Dismantling of the biological shield

    Directory of Open Access Journals (Sweden)

    Meyer Franz

    2006-01-01

    Full Text Available The paper describes the dismantling of the inactive and activated areas of the biological shield of the ASTRA research reactor at the Austrian Research Center in Seibersdorf. The calculation of the parameters determining the activated areas at the shield (reference nuclide, nuclide vector in the barite concrete and horizontal and vertical reduction behaviors of activity concentration and the activation profiles within the biological shield for unrestricted release, release restricted to permanent deposit and radioactive waste are presented. Considerations of located activation anomalies in the shield, e.g. in the vicinities of the beam-tubes, were made according to the reactor's operational history. Finally, an overview of the materials removed from the biological shield is given.

  4. Decommissioning of the ASTRA research reactor - dismantling of the biological shield

    International Nuclear Information System (INIS)

    The paper describes the dismantling of the inactive and activated areas of the biological shield of the ASTRA research reactor at the Austrian Research Center in Seibersdorf. The calculation of the parameters determining the activated areas at the shield (reference nuclide, nuclide vector in the barite concrete and horizontal and vertical reduction behaviors of activity concentration) and the activation profiles within the biological shield for unrestricted release, release restricted to permanent deposit and radioactive waste are presented. Considerations of located activation anomalies in the shield, e. g. in the vicinities of the beam-tubes, were made according to the reactor's operational history. Finally, an overview of the materials removed from the biological shield is given. (author)

  5. Regolith Biological Shield for a Lunar Outpost from High Energy Solar Protons

    Science.gov (United States)

    Pham, Tai T.; El-Genk, Mohamed S.

    2008-01-01

    Beyond Earth atmosphere, natural space radiation from Galactic Cosmic Rays and Solar Energetic Protons (SEPs) represents a significant hazard to both manned and robotic missions. For lunar settlements, protecting astronauts from SEPs is a key safety issue that needs to be addressed by identifying appropriate shielding materials. This paper investigates the interaction of SEPs with the lunar regolith, and quantifies the effectiveness of the regolith as a biological shield for a human habitat, compared to aluminum, presently the standard shielding material. Also calculated is the shielding thickness to reduce the dose in the habitat to those recommended by International Radiation Protection Committee and by NASA for operation on the international space station. The present calculations are for the most energetic solar event of February 1956, which included high energy protons up to 1000 MeV. Results show that the lunar regolith is as effective as aluminum for shielding lunar outposts. A large thickness of the regolith (~30 g/cm2) would be needed to reduce the dose in the habitat from high energy protons below the 30 days flight crew limit of 25 Rem (or 250 mSv) and significantly more shielding would be needed (~150 g/cm2) to reduce the dose down to the limit for radiation workers of 5 Rem (or 50 mSv).

  6. Design concepts to minimize the activation of the biological shield of light-water reactors

    International Nuclear Information System (INIS)

    An investigation, concentrating on the nuclear aspects, has been made into the concept of minimizing the activation of the biological shield by substituting the material concrete with other neutron-shielding materials. This work was for nuclear plant designs which have a non-supporting inner shield wall such as that in the General Electric BWR/6 and the Kraftwerk Union PWR. The attenuation performance and activation levels have been analysed. Based on this analysis the performance of the materials in relation to that of concrete was assessed. Other non-nuclear properties were considered but the engineering problems were not addressed. The conclusion reached was that the concept was credible but would require a more rigorous examination in terms of structural design, economics and licensability

  7. Modelling the Influence of Shielding on Physical and Biological Organ Doses

    CERN Document Server

    Ballarini, Francesca; Ferrari, Alfredo; Ottolenghi, Andrea; Pelliccioni, Maurizio; Scannicchio, Domenico

    2002-01-01

    Distributions of "physical" and "biological" dose in different organs were calculated by coupling the FLUKA MC transport code with a geometrical human phantom inserted into a shielding box of variable shape, thickness and material. While the expression "physical dose" refers to the amount of deposited energy per unit mass (in Gy), "biological dose" was modelled with "Complex Lesions" (CL), clustered DNA strand breaks calculated in a previous work based on "event-by-event" track-structure simulations. The yields of complex lesions per cell and per unit dose were calculated for different radiation types and energies, and integrated into a version of FLUKA modified for this purpose, allowing us to estimate the effects of mixed fields. As an initial test simulation, the phantom was inserted into an aluminium parallelepiped and was isotropically irradiated with 500 MeV protons. Dose distributions were calculated for different values of the shielding thickness. The results were found to be organ-dependent. In most ...

  8. Determination of 36Cl in biological shield concrete using pyrohydrolysis and liquid scintillation counting.

    Science.gov (United States)

    Itoh, Mitsuo; Watanabe, Kazuo; Hatakeyama, Mutsuo; Tachibana, Mitsuo

    2002-07-01

    A method for the determination of 36Cl in biological shield concrete of nuclear reactors was developed. Cl in the concrete sample was extracted quantitatively by pyrohydrolysis at 900 degrees C and recovered in Na2CO3 solution for subsequent measurement of 36Cl by liquid scintillation counting. WO3 was used as an accelerator in the pyrohydrolysis. The Cl extraction procedure was optimized by investigating experimental conditions with the use of ion chromatography and its recovery was evaluated by the analysis of the geochemical reference samples. The detection limit of 36Cl was 0.02 Bq g(-1) for a sample weight of 2 g. The relative standard deviation was 3-7% for the samples containing 0.5 Bq g(-1) levels of 36Cl. The method was applied to determine 36Cl in biological shield concrete of the Japan Power Demonstration Reactor. PMID:12173658

  9. Application of a calculational model for thermal neutrons through biological shields

    International Nuclear Information System (INIS)

    In this work a computational program, based on the Boltzmann transport integrodifferential equation, is applied. The scattering kernel is represented by the synthetic scattering model. The behaviour of thermal neutron in hydrogenous materials, which can be used as biological shields, are studied. These materials are water, polyethylene, Oak-Ridge concrete, ordinary concrete and manganese concrete. The data obtained are presented in tables. The results are analysed and compared with similar experimental values. Safety evaluation and environmental impact are discussed. 2 tabs

  10. Neutron spectra at the outlet from the labyrinths in the IHEP proton synchrotron biological shield

    International Nuclear Information System (INIS)

    Neutron spectra in transport and cable labyrinths of concrete shielding were measured. It was related with planned increase of proton beam intensity in the IHEP synchrotron and the necessity of searching isotope radiation sources suitable for simulation of fields of neutron radiation in the accelerator biological shield. Multisphere Bonner spectrometer with 6LiI(Eu) monocrystal of 10x10 mm size as thermal neutron detector and a set of seven cadmium-plated polyethylene thermalizing spheres 2, 3, 5, 8, 10, 12 and 18 inch in diameter was used for measurement. Measurements were conducted at 100 MeV, 8 and 70 GeV proton energies. Analysis of obtained data shows that the average energy of neutron spectra increases at the outlet from the labyrinths from 110 up to 390 keV with growth of accelerated proton energy from 100 MeV up to 70 GeV. Neutron spectra are similar with respect to form and component composition at one and the same energy of accelerated particles and the same shield material regardless of labyrinth configuration. The shares of fast and interiediate neutrons equal about 10 and 90% respectively. It was concluded that neutron radiation fields typical for the labyrinths of the IHEP synchrotron yield can be simulated in model labyrinths with the use of californium-252 source

  11. Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Yann [ORNL; Huang, Hai [Idaho National Laboratory (INL)

    2016-01-01

    Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.

  12. Evaluation and Verification of a Biological Shield in a SHARS Unit

    Energy Technology Data Exchange (ETDEWEB)

    Dhlomo, S.V.; Swart, H.S. [Compliance Management Department, Nuclear Liabilities Management, South African Nuclear Energy Corporation, P.O. Box 582, Pretoria 0001 (South Africa)

    2008-07-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Agency (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused SHARS in obsolete irradiation devices such as teletherapy heads and dry irradiators. This unit, designed and manufactured by the South African Nuclear Energy Corporation (Necsa), can be assembled, disassembled and packed inside two ISO containers and transported to the desired destination with relative ease. The unit was also licensed by the South African Regulator, the Department of Health (DoH), Directorate Radiation Control. This facility is used for the recovery and conditioning of orphaned/ abandoned or spent high activity radioactive sources from teletherapy units, gamma irradiators, and brachytherapy units. The hot cell was designed for a 3,7 E+13 Bq (1000 Ci) activity although it was demonstrated that it can handle activities of more than 7,4 E+13 Bq (2000 Ci) with ease. The biological shield of the SHARS facility consists of river sand sandwiched between metal plates, and a viewing window filled with a 50% zinc bromide solution. The shielding effectiveness of the river sand is evaluated experimentally by determining its density. The experimentally measured dose rates are compared to the dose rates estimated by computational codes. (authors)

  13. Radiological characterization of the concrete biological shield of the APSARA reactor

    Directory of Open Access Journals (Sweden)

    Srinivasan Priya

    2013-01-01

    Full Text Available The first Indian research reactor, APSARA, was utilized for various R&D programmes from 1956 until its shutdown in 2009. The biological shield of the reactor developed residual activity due to neutron irradiation during the operation of the reactor. Dose rate mapping and in-situ gamma spectrometry of the concrete structures of the reactor pool were carried out. Representative concrete samples collected from various locations were subjected to high-resolution gamma spectrometry analysis. 60Co and 152Eu were found to be the dominant gamma-emitting radionuclides in most of the locations. 133Ba was also found in some of the concrete structures. The separation of 3H from concrete was achieved using an acid digestion method and beta activity measured using liquid scintillation counting. The depth profile of radionuclide specific activity in the concrete wall of the shielding corner was also studied. Specific activities of the radionuclides were found to decrease exponentially with depth inside the concrete walls. This study would be helpful in bulk waste management during the decommissioning of the reactor.

  14. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield.

    Science.gov (United States)

    Merz, Stefan; Djuricic, Mile; Villa, Mario; Böck, Helmuth; Steinhauser, Georg

    2011-11-01

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10(9)cm(-2)s(-1) at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. PMID:21646026

  15. Activation of the biological shield of the shut-down Gundremmingen block A reactor

    International Nuclear Information System (INIS)

    For the dismantling planning of a nuclear reactor, it is important to know the depth of the activation of the biological shield. With an important sampling and measurement program to support activity computer calculations, data have been obtained and hypothesis defined to avoid in the future high-cost measurement program. Measurement results agree with calculations. Some provisional results have been used as well to correct measurement results, doing new measurements, as to correct enter data, more particularly for what concerns the weight proportions. It is shown that a calculation of the activity in the median plane of the core is sufficient to determine the field from which concrete is only weakly activated. For the A-block of the RWE-Bayerwerk nuclear power plant, this field is before the external layer (primary concrete). Only, the inner (secondary) concrete is activated, separated from the first one by a layer of styropore

  16. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO

    Energy Technology Data Exchange (ETDEWEB)

    Cucinotta, F.A.; Wilson, J.W.; Williams, J.R.; Dicello, J.F

    2000-06-01

    We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/{mu}m. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm{sup 2} of material is used.

  17. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO.

    Science.gov (United States)

    Cucinotta, F A; Wilson, J W; Williams, J R; Dicello, J F

    2000-06-01

    We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/micrometers. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used. PMID:11543368

  18. Regulatory inhibition of biological tissue mineralization through post-nucleation shielding

    Science.gov (United States)

    Chang, Joshua; Miura, Robert

    In vertebrates, insufficient availability of calcium and phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are present at high concentrations throughout body fluids - at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. We adapted mean-field classical nucleation theory to the case of surface-shielding in order to study the regulation of sedimentation of calcium phosphate salts in biological tissues. Mathematical Biosciences Institute, NSF DMS-1021818, National Institutes of Health, Rehab Medicine.

  19. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    Science.gov (United States)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann

    2016-02-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC0500OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  20. Design improvement for reduction of decommissioning waste of PWR primary biological shield

    International Nuclear Information System (INIS)

    Most operating nuclear power plants were constructed with no attention to the amount of decommissioning waste. Consequently, a large portion of the primary concrete shield wall is irradiated by neutrons escaping from the reactor core to produce high concentration of activation products. These radioactive waste comprises of around 30% of the decommissioning waste. Under the circumstance that the rad waste disposal cost is continuously increasing, reduction of decommissioning waste becomes an important issue. In this study, a design improvement was attempted to reduce activation of the primary shield wall by placing a water-filled neutron shield tank between the reactor pressure vessel and the primary shield wall. Procedure for calculating the amount of activated radionuclides remaining at different cooling times were developed by MCNP-ORIGEN coupled calculations. Particular attention was paid to correction of activation cross sections since the ORIGEN code was designed for use in calculation of isotope generation and depletion in the operating reactor core where temperature is high, while temperature of the shield wall is low. The established procedure was applied to the 1500MWe APR+ model to evaluated the effectiveness of the neutron shield tank. Distributions of activation products for many different thickness of the neutron shield tank were calculated and an effective thickness was selected. Finally, by comparing the resulting activity distributions with the exemption criteria for radioactive waste, the expected cost reduction was assessed. The model applied in this study, however, is limited to preliminary design in terms of neutronics and does not take account any engineering problems which may be caused by installation of the shield tank. Practical engineering needs further detailed design analysis including cooling and cleaning of the shield water and other related engineering issues

  1. Evaluation of the Biological Shields of the Secondary Standard Dosimetry Laboratory of Ghana Using MCNP5

    Directory of Open Access Journals (Sweden)

    P. Deatanyah

    2012-03-01

    Full Text Available The primary objective with radiation sources and facilities is the protection of both radiation workers and the general public. The biological shields of the Secondary Standard Dosimetry Laboratory of the Radiation Protection Institute (RPI Ghana had been evaluated for a collimated isotropic cesium-137 source for calibration purpose using MCNP5 code. The dose rate at supervised areas ranged from 0.57 to 8.35 :Sv/h and 0.26 to 10.22 :Sv/h at control areas when the source was panoramic. When the source was collimated, the dose rate ranged from 0.05 to 0.30 :Sv/h at supervised areas and 0.23 to 8.88 :Sv/h at control areas for 22.2 GBq of the cesium-137 source. The scatter contribution from the surfaces of the walls and roofs were also accounted for. The scatter radiation in the room decreased to 400 :Sv/h when the source was first collimated and to 3.5 :Sv/h when the source was further collimated. These results agreed quite well with experimental measurement. To effectively protect the staff, a narrow beam of 1.2 cm diameter which was defined at 1.0 m by the total surface of the ISO slab phantom was recommended to reduce the dose rate to less than 1.5 :Sv/h outside the calibration bunker even when the current activity is doubled. It was concluded that the 4.7 cm diameter of the existing narrow beam should be decreased to 1.2 cm by further collimation of the beam.

  2. Pilot tests for dismantling by blasting of the biological shield of a shut down nuclear power station

    International Nuclear Information System (INIS)

    Following free-field tests on concrete blocks the feasibility of explosive dismantling of the biological shield of nuclear power stations has been succesfully tested at the former hotsteam reaction in Karlstein/Main Germany. For this purpose a model shield of scale 1:2 was embedded into the reactor structure at which bore-hole blasting tests employing up to about 15 kg of explosive were performed. An elaborate measurement system allowed to receive detailed information on the blast side-effects: Special emphasis was focussed on the quantitative registration of the dynamic blast loads; data for the transfer of the dismantling method to the removal of real ractor structures were obtained. (orig.)

  3. Shielding against galactic cosmic rays

    Science.gov (United States)

    Schimmerling, W.; Wilson, J. W.; Nealy, J. E.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kim, M.; Kiefer, R.

    1996-01-01

    Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately conntected with the shield transport porperties and is a strong function of shield composition. The systematic behavior of the shield properites in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to convectional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H1OT1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk.

  4. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A

    Science.gov (United States)

    Chang, Joshua C.; Miura, Robert M.

    2016-04-01

    In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are usually present at high concentrations throughout bodily fluids—at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this manuscript, we extend mean-field continuum classical nucleation theory of the growth of clusters to encompass surface shielding. We use this formulation to study the regulation of sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear shielding of nascent mineral particles by binding proteins. We develop a mathematical description of this phenomenon using a countable system of hyperbolic partial differential equations. A critical concentration of regulatory protein is identified as a function of the physical parameters that describe the system.

  5. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A.

    Science.gov (United States)

    Chang, Joshua C; Miura, Robert M

    2016-04-21

    In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are usually present at high concentrations throughout bodily fluids-at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this manuscript, we extend mean-field continuum classical nucleationtheory of the growth of clusters to encompass surface shielding. We use this formulation to study the regulation of sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear shielding of nascent mineral particles by binding proteins. We develop a mathematical description of this phenomenon using a countable system of hyperbolic partial differential equations. A critical concentration of regulatory protein is identified as a function of the physical parameters that describe the system. PMID:27389239

  6. Spectral and angular distributions of charged particles outside biological shielding of the 70 GeV Serpukhov accelerator

    International Nuclear Information System (INIS)

    Space, angular and energy distributions of the charged particle of radiation field outside the Serpukhov accelerator shielding at different protons beam energies obtained with the ΔE-E spectrometer are presented. The influence of the accelerating complex operation on the charged particles field shaping outside the concrete and heterogeneous steel-concrete shieldings has been analyzed. The ratios between neutrons and charged particles of the radiation field outside the 70 GeV accelerator shielding have been estimated

  7. Theoretical evaluation of the biological shielding sufficiency for the Pelletron NEC Particle Accelerator at the Ghana Atomic Energy Commission

    International Nuclear Information System (INIS)

    Theoretical evaluation of the biological shielding sufficiency provided for 1.7MV Pelletron NEC Particle Accelerator yet to be installed at the Accelerator Research Centre of the Ghana Atomic Energy Commission (GAEC) has been done. Using the Beer Lambert law attenuation of radiation dose outside the walls of the facility was made for protons of energy 1.7MeV. Simulation of charged particle-matter interactions leading to bremsstrahlung radiation using Monte Carlo code (MCNP5) have been carried out. Neutron Activation Analysis (NAA) technique has also been used to identify the composition of the concrete material used during the construction of the Accelerator Research Centre (ARC) building. The NAA analysis revealed that the elemental constituents of the ordinary concrete of density 2.3g/cm3 used for the construction of the walls included Na, Al, and Ca. Background radiation levels within and outside the facility was measured with the aid of a Sodium Iodide (NaI) identifinder and a Rados detector so as to have a practical reference datum. The weekly background radiation measurements yielded an average dose rate value of 0.05μSv/hr from recorded value range of 0.01μSv/hr to 0.07μSv/hr for an eight month period. Modeling and simulation of charged particle-matter interactions at different beam energies using Monte Carlo code (MCNP5) have yielded the dose rate of 1.58E-07μSv/hr, 1.98E-07μSv/h and 2.20E-05μSv/h outside the 22.86cm (9.0 inch) thick wall of the accelerator facility, for the beam energy range of 0.5-3.0MeV for Titanium, iron and Zirconium target samples respectively. From the Beer-Lambert law, the operational energy of 1.7MeV was used to evaluate theoretically the radiation dose rate of 1.178E-05μSv/hr, 2.656E-05μSv/hr and 4.787E-05μSv/hr outside the 22.86cm thick wall of the accelerator facility for Titanium, Iron and Zirconium targets respectively. At the operational energy energy of 3.0 MeV, the dose rate values obtained were 4.382E-05μSv/h, 9

  8. Measurements and calculation of the activation of the biologic shield of the Lingen BWR power reactor definitively stopped (in view of dismantling)

    International Nuclear Information System (INIS)

    For the dismantling planning of a power reactor, it is important to know among others the depth of activation of the biological shield. A large sampling and measurement program joint to computer calculations, has given data which will allow to avoid in the future high-cost measurement programs. One shows that the calculation of activation induced by neutrons in the median plane of the core, to determine the zone from which concrete is only slightly activated. In the reactor considered, this zone does not reach the external concrete (or first layer of concrete)

  9. The effect of biological shielding on fast neutron and photon transport in the VVER-1000 mock-up model placed in the LR-0 reactor.

    Science.gov (United States)

    Košťál, Michal; Cvachovec, František; Milčák, Ján; Mravec, Filip

    2013-05-01

    The paper is intended to show the effect of a biological shielding simulator on fast neutron and photon transport in its vicinity. The fast neutron and photon fluxes were measured by means of scintillation spectroscopy using a 45×45 mm(2) and a 10×10 mm(2) cylindrical stilbene detector. The neutron spectrum was measured in the range of 0.6-10 MeV and the photon spectrum in 0.2-9 MeV. The results of the experiment are compared with calculations. The calculations were performed with various nuclear data libraries.

  10. Biological Shielding Design Effectiveness of the Brachytherapy Unit at the Korle Bu Teaching Hospital in Ghana Using Mcnp5 Monte Carlo Code

    Directory of Open Access Journals (Sweden)

    C.C. Arwui

    2011-05-01

    Full Text Available Design objectives for brachytherapy treatment facilities require sufficient shielding to reduce primary and scatter radiation to design limit in order to limit exposure to patients, staff and the general public. The primary aim of this study is to verify whether shielding of the brachytherapy unit at the Korle Bu teaching Hospital in Ghana provides adequate protection in order to assess any radiological health and safety impact and also test the suitability of other available sources. The study evaluates the effectiveness of the biological shielding design of a Cs-137 brachytherapy unit at the Korle-Bu Teaching Hospital in Ghana using MCNP5. The facility was modeled based on the design specifications for LDR Cs-137, MDR Cs-137, HDR Co-60 and HDR Ir-192 treatment modalities. The estimated dose rate ranged from (0.01-0.15 μSv/h and (0.37-3.05 μSv/h for the existing initial and decayed activities of LDR Cs-137 for the public and controlled areas respectively, (0.03-0.57 μSv/h and (1.53-8.06 μSv/h for MDR Cs-137, (7.47-59.46 μSv/h and (144.87-178.74 μSv/h for HDR Co- 60, (0.13-6.95 μSv/h and (19.47-242.98 μSv/h for HDR Ir-192 for the public and controlled areas respectively. The results were verified by dose rates measurement for the current LDR setup at the Brachytherapy unit and agreed quiet well. It was also compared with the reference values of 0.5 μSv/h for public areas and 7.5 μSv/h for controlled areas respectively. It can be concluded that the shielding is adequate for the existing source.

  11. Shielding experiments

    International Nuclear Information System (INIS)

    Shielding mock-up experiments for Prototype Fast Breeder Reactor (PFBR) and Advanced Heavy Water Reactor (AHWR) are carried out in shielding corner facility of APSARA reactor, to assess the overall accuracy of the codes and nuclear data used in reactor shield design. As APSARA is a swimming pool-type thermal reactor, for fast reactor experiments, typical fast reactor shielding facility was created by using uranium assemblies as spectrum converter. The flux was also enhanced by replacing water by air. Experiments have been carried out to study neutron attenuation through typical fast reactor radial and axial bulk shielding materials such as steel, sodium, graphite, borated graphite and boron carbide. A large number of reaction rates, sensitive to different regions of the neutron energy spectrum, were measured using foil activation and Solid State Nuclear Track Detector (SSNTD) techniques. These experimental results were analysed using computational tools normally used in design calculations, viz., discrete ordinate transport codes with multigroup cross section sets. Comparison of measured reaction rates with calculations provided suitable bias factors for parameters relevant to shield design, such as sodium activation, fast neutron fluence, fission equivalent fluxes etc. The measured neutron spectrum on the incident face of shield model compares well with the calculated fast reactor blanket leakage neutron spectrum. The comparison of calculated reaction rates within shield model indicate that the calculations suffer from considerable uncertainties, in shield models with boron carbide/borated graphite. For AHWR shielding experiments, no spectrum converter was used as it is also a thermal reactor. Radiation streaming studies through penetrations/ducts of various shapes and sizes relevant to AHWR shielding were carried out. (author)

  12. Shielding Effectiveness of Laminated Shields

    Directory of Open Access Journals (Sweden)

    B. P. Rao

    2008-12-01

    Full Text Available Shielding prevents coupling of undesired radiated electromagnetic energy into equipment otherwise susceptible to it. In view of this, some studies on shielding effectiveness of laminated shields with conductors and conductive polymers using plane-wave theory are carried out in this paper. The plane wave shielding effectiveness of new combination of these materials is evaluated as a function of frequency and thickness of material. Conductivity of the polymers, measured in previous investigations by the cavity perturbation technique, is used to compute the overall reflection and transmission coefficients of single and multiple layers of the polymers. With recent advances in synthesizing stable highly conductive polymers these lightweight mechanically strong materials appear to be viable alternatives to metals for EM1 shielding.

  13. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  14. Shielded syringe

    International Nuclear Information System (INIS)

    This patent specification relates to a partially disposable shielded syringe for injecting radioactive material into a patient. It is claimed that the technique overcomes the problems of non-standardisation of syringe size. (U.K.)

  15. Radiation shields for a shelter

    International Nuclear Information System (INIS)

    A simple and cheap closure and radiation shield arrangement is described for the entrance of an underground shelter. The shelter can serve as a blast-proof, biological or nuclear shelter. The radiation shield is positioned above the habitable space of the shelter and below a blast-proof, dust-proof outer cover. The shield consists of a box containing a filling, e.g. coke with a concrete screed, is closed by bolted panels and is horizontally moveable by sliding on castors. (author)

  16. Biological Shielding Design Effectiveness of the Brachytherapy Unit at the Korle Bu Teaching Hospital in Ghana Using Mcnp5 Monte Carlo Code

    OpenAIRE

    C.C. Arwui; E.O. Darko; P. Deatanyah; S. Wotorchi-Gordon; H. Lawluvi; Kpeglo, D. O.; G. Emi-Reynolds

    2011-01-01

    Design objectives for brachytherapy treatment facilities require sufficient shielding to reduce primary and scatter radiation to design limit in order to limit exposure to patients, staff and the general public. The primary aim of this study is to verify whether shielding of the brachytherapy unit at the Korle Bu teaching Hospital in Ghana provides adequate protection in order to assess any radiological health and safety impact and also test the suitability of other available sources. The stu...

  17. Handout on shielding calculation

    International Nuclear Information System (INIS)

    In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)

  18. Magnetic shielding design analysis

    International Nuclear Information System (INIS)

    Two passive magnetic-shielding-design approaches for static external fields are reviewed. The first approach uses the shielding solutions for spheres and cylinders while the second approach requires solving Maxwell's equations. Experimental data taken at LLNL are compared with the results from these shieldings-design methods, and improvements are recommended for the second method. Design considerations are discussed here along with the importance of material gaps in the shield

  19. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  20. Rotating shielded crane system

    Science.gov (United States)

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  1. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Science.gov (United States)

    Košťál, Michal; Milčák, Ján; Cvachovec, František; Jánský, Bohumil; Rypar, Vojtěch; Juříček, Vlastimil; Novák, Evžen; Egorov, Alexander; Zaritskiy, Sergey

    2016-02-01

    A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1-10 MeV) and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1). Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  2. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Directory of Open Access Journals (Sweden)

    Košťál Michal

    2016-01-01

    Full Text Available A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1–10 MeV and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1. Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  3. Under the Rape Shield

    OpenAIRE

    Roman, Denise

    2011-01-01

    This article focuses on the Rape Shield Laws and their evolution in the United States, one of the pioneers in this field. The article also discusses constitutional and feminist critiques of present Rape Shield Laws, and ends with a comparative perspective throughout the Anglo-American legal space today. Finally, although the Rape Shield Laws can be approached from a variety of discourses, this article engages specifically with a discourse that intersects legal and feminist analyses.

  4. A Magnetic Shielded Incubation System for Investigating Biological Effects of Hypomagnetic Field%亚磁生物学效应研究的磁屏蔽培养系统研制

    Institute of Scientific and Technical Information of China (English)

    莫炜川; 刘缨; 蒋远大; 翟光杰; 赫荣乔

    2013-01-01

    Objective To simulate a hypomagnetic field on the ground for providing a platform to investigate its biological effects.Methods A permalloy magnetic shielded box was placed in a cell incubatorto form the hypomagnetic field.The incubation conditions in the hypomagnetic field and the control magnetic fields were balanced by the temperature-humidity-CO2 control system of the cell incubator and airing fans in the magnetic shielded box.Results The hypomagnetic incubation system provided a 0 ~600 nT hypomagnetic environment and a series of control magnetic fields from 9 μT to 60 μT.The other incubation conditions were controlled at the same level between the hypomagnetic field and the control magnetic fields.Conclusion A standardized hypomagnetic field simulation system is established.It is suitable to conduct extensive biological experiments under the hypomagnetic condition,such as.seeds,tissues,cells and molecules.It would have important benefit value to improve the study level of biological effects and the counteractive strategies for the negative effects of the hypomagnetic field.%目的 在地面模拟空间亚磁环境,为亚磁场的生物学效应及其防护措施的研究提供技术平台.方法 将坡镆合金磁屏蔽箱放入细胞培养箱中,平衡磁屏蔽箱以及细胞培养箱中的培养条件,形成亚磁培养环境.结果 该磁屏蔽培养系统能够提供0~ 600 nT范围的亚磁场,以及9~ 60 μT范围的多梯度对照磁场.结论 成功构建了一套适用于细胞和分子生物学实验的亚磁培养系统,实现了亚磁模拟系统的标准化,对于提高亚磁生物学效应的研究水平有重要的应用价值.

  5. Reactor shielding. Report of a panel

    International Nuclear Information System (INIS)

    Reactor shielding is necessary that people may work and live in the vicinity of reactors without receiving detrimental biological effects and that the necessary materials and instrumentation for reactor operation may function properly. Much of the necessary theoretical work and experimental measurement has been accomplished in recent years. Scientists have developed some very sophisticated methods which have contributed to a more thorough understanding of the problems involved and have produced some very reliable results leading to significant reductions in shield configurations. A panel of experts was convened from 9 to 13 March 1964 in Vienna at the Headquarters of the International Atomic Energy Agency to discuss the present status of reactor shielding. The participants were prominent shielding experts from most of the laboratories engaged in this field throughout the world. They presented status reports describing the past history and plans for further development of reactor shielding in their countries and much valuable discussion took place on some of the most relevant aspects of reactor shielding. All this material is presented in this report, together with abstracts of the supporting papers read to the Panel

  6. Radiation shielding device

    International Nuclear Information System (INIS)

    Purpose: To lower the shielding cost by providing a shielding wall having cavities and charging spherical shiedling materials in the cavities only when the shielding is required. Constitution: The structure comprises two parallel steel side plates aparting from each other to form a space therebetween and reinforcements such as H-type steels vertically provided between the side plates. The upper and the lower ends of the reinforcements are aparted from the upper and the lower edges of the side plates by a predetermined distance to form lateral passage between the top plate and the bottom plate. A guide plate having a plurality of openings is mounted on the upper ends of the reinforcements. If it is required for the structure to serve as the shield, spherical radioactive shielding materials are supplied through an injection port onto the guide plate while opening the injection port is opened and closing discharge port. The spherical radioactive shielding materials are fallen through the openings and filled in the space to thereby providing the structure with shielding performance. (Yoshino, Y.)

  7. Shielding member for thermonuclear device

    International Nuclear Information System (INIS)

    In a thermonuclear device for shielding fast neutrons by shielding members disposed in a shielding vessel (vacuum vessel and structures such as a blanket disposed in the vacuum vessel), the shielding member comprises a large number of shielding wires formed fine and short so as to have elasticity. The shielding wires are sealed in a shielding vessel together with water, and when the width of the shielding vessel is changed, the shielding wires follow after the change of the width while elastically deforming in the shielding vessel, so that great stress and deformation are not formed thereby enabling to improve reliability. In addition, the length, the diameter and the shape of each of the shielding wires can be selected in accordance with the shielding space of the shielding vessel. Even if the shape of the shielding vessel is complicated, the shielding wires can be inserted easily. Accordingly, the filling rate of the shielding members can be changed easily. It can be produced more easily compared with a conventional spherical pebbles. It can be produced more easily than existent spherical shielding pebbles thereby enabling to reduce the production cost. (N.H.)

  8. iSHIELD - A Line Source Application of SHIELD11

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Rokni, S.H.; /SLAC

    2006-04-27

    iSHIELD11 performs a line-source numerical integration of radiation source terms that are defined by the iSHIELD11 computer code[1] . An example is provided to demonstrate how one can use iSHIELD11 to perform a shielding analysis for a 250 GeV electron linear accelerator.

  9. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  10. Alternate shield material feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Specht, E.R.; Levitt, L.B.

    1984-04-01

    The feasibility and cost/benefit of using materials other than stainless steel for in-vessel neutron shielding in large LMFBRs were investigated. Canned vibratorally compacted B/sub 4/C powder shields were found to be much more economical than stainless steel (a savings of $1.1M in loop plant designs and $9.4M in pool plant designs). The helium gas pressure buildup in B/sub 4/C shields placed around LMFBR in-vessel components (direct reactor heat exchangers in a loop reactor and intermediate heat exchangers in a pool reactor) would only be 0.04 atm after 40 y of reactor operation (with 80% dense powder). The irradiation-induced swelling of the B/sub 4/C would only be 0.002%. No adverse reactor impact would occur if the B/sub 4/C escaped from the B/sub 4/C shields.

  11. Alternate shield material feasibility

    International Nuclear Information System (INIS)

    The feasibility and cost/benefit of using materials other than stainless steel for in-vessel neutron shielding in large LMFBRs were investigated. Canned vibratorally compacted B4C powder shields were found to be much more economical than stainless steel (a savings of $1.1M in loop plant designs and $9.4M in pool plant designs). The helium gas pressure buildup in B4C shields placed around LMFBR in-vessel components (direct reactor heat exchangers in a loop reactor and intermediate heat exchangers in a pool reactor) would only be 0.04 atm after 40 y of reactor operation (with 80% dense powder). The irradiation-induced swelling of the B4C would only be 0.002%. No adverse reactor impact would occur if the B4C escaped from the B4C shields

  12. Performance study of galactic cosmic ray shield materials

    Science.gov (United States)

    Kim, Myung-Hee Y.; Wilson, John W.; Thibeault, Sheila A.; Nealy, John E.; Badavi, Francis F.; Kiefer, Richard L.

    1994-11-01

    The space program is faced with two difficult radiation protection issues for future long-term operations. First, retrofit of shield material or conservatism in shield design is prohibitively expensive and often impossible. Second, shielding from the cosmic heavy ions is faced with limited knowledge on the physical properties and biological responses of these radiations. The current status of space shielding technology and its impact on radiation health is discussed herein in terms of conventional protection practice and a test biological response model. The impact of biological response on the selection of optimum materials for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although the systematics of nuclear cross sections are able to demonstrate the relation of exposure risk to shield-material composition, the current uncertainty in-nuclear cross sections will not allow an accurate evaluation of risk reduction. This paper presents a theoretical study of risk-related factors and a pilot experiment to study the effectiveness of choice of shield materials to reduce the risk in space operations.

  13. Radiation shielding curtain

    International Nuclear Information System (INIS)

    A radiation shield is described in the form of a stranded curtain made up of bead-chains whose material and geometry are selected to produce a cross-sectional density that is the equivalent of 0.25 mm or more of lead and which curtain may be mounted on various radiological devices to shield against scattered radiation while offering a minimum of obstruction to the radiologist

  14. Neutron shielding material

    International Nuclear Information System (INIS)

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  15. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    Science.gov (United States)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  16. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  17. Shield For Flexible Pipe

    Science.gov (United States)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.

    1995-01-01

    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  18. Radiation shielding materials

    International Nuclear Information System (INIS)

    Purpose: To obtain putty-like shielding materials excellent in the radiation shielding and packing workability for use in penetrations of electrical wires or pipeways in a nuclear installation. Constitution: A putty-like material is prepared from 100 parts by weight of a binder comprising a grease or the like having viscosity of greater than 5000 cst or an immiscible consistency of greater than 100 (JIS K 2220 (1980) para. 5.3.4) at 25 0C and from 1200 to 4000 parts by weight of high density inorganic powder such as lead powder or lead oxide powder having a density of greater than 5 g/cm3 and such a particle size that more than 95 % thereof passes through a 145 mesh sieve. The putty-like material is adjusted such that it has 1 - 35 mm of softness (JIS A 5752) at normal temperature, more than 1 g/5 sec of injection amount and a density of greater than 4 g/cm3. In this way, non-curable radiation shielding agent with excellent X-ray or γ-ray shielding property and being capable of packed densely to void portions can be obtained. (Ikeda, J.)

  19. Hinged Shields for Machine Tools

    Science.gov (United States)

    Lallande, J. B.; Poland, W. W.; Tull, S.

    1985-01-01

    Flaps guard against flying chips, but fold away for tool setup. Clear plastic shield in position to intercept flying chips from machine tool and retracted to give operator access to workpiece. Machine shops readily make such shields for own use.

  20. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  1. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  2. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm.

  3. Capacitive Proximity Sensors With Additional Driven Shields

    Science.gov (United States)

    Mcconnell, Robert L.

    1993-01-01

    Improved capacitive proximity sensors constructed by incorporating one or more additional driven shield(s). Sensitivity and range of sensor altered by adjusting driving signal(s) applied to shield(s). Includes sensing electrode and driven isolating shield that correspond to sensing electrode and driven shield.

  4. Combustor bulkhead heat shield assembly

    Energy Technology Data Exchange (ETDEWEB)

    Zeisser, M.H.

    1990-06-19

    This paper describes a gas turbine engine having an annular combustion chamber defined by an annular, inner liner, a concentric outer liner, and an upstream annular combustor head, wherein the head includes a radially extending bulkhead having circumferentially distributed openings for each receiving an individual fuel nozzle therethrough. It comprises: a segmented heat shield assembly, disposed between the combustion chamber interior and the bulkhead, including generally planar, sector shaped heat shields, each shield abutting circumferentially with two next adjacent shields and extending radially from proximate the inner liner to proximate the outer liner, the plurality of shields collectively defining an annular protective barrier, and wherein each sector shaped shield further includes an opening, corresponding to one of the bulkhead nozzle openings for likewise receiving the corresponding nozzle therethrough, the shield opening further including an annular lip extending toward the bulkhead and being received within the bulkhead opening, raised ridges on the shield backside, the ridges contacting the facing bulkhead surface and defining a flow path for a flow of cooling air issuing from a sized supply opening disposed in the bulkhead, the flow path running ultimately from adjacent the annular lip to the edges of each shield segment, wherein the raised edges extend fully along the lateral, circumferentially spaced edges of each shield segment and about the adjacent shield segments wherein the raised ridges further extend circumferentially between the annular lip and the abutting edge ridges.

  5. A contribution to shielding effectiveness analysis of shielded tents

    Directory of Open Access Journals (Sweden)

    Vranić Zoran M.

    2004-01-01

    Full Text Available An analysis of shielding effectiveness (SE of the shielded tents made of the metallised fabrics is given. First, two electromagnetic characteristic fundamental for coupling through electrically thin shield, the skin depth break frequency and the surface resistance or transfer impedance, is defined and analyzed. Then, the transfer function and the SE are analyzed regarding to the frequency range of interest to the Electromagnetic Compatibility (EMC Community.

  6. Measurement of the transient shielding effectiveness of shielding cabinets

    Directory of Open Access Journals (Sweden)

    H. Herlemann

    2008-05-01

    Full Text Available Recently, new definitions of shielding effectiveness (SE for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005. Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.

  7. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M

    2007-01-01

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  8. SHIELD verification and validation report

    Energy Technology Data Exchange (ETDEWEB)

    Boman, C.

    1992-02-01

    This document outlines the verification and validation effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system code. Along with its predecessors, SHIELD has been in use at the Savannah River Site (SRS) for more than ten years. During this time the code has been extensively tested and a variety of validation documents have been issued. The primary function of this report is to specify the features and capabilities for which SHIELD is to be considered validated, and to reference the documents that establish the validation.

  9. Design for shielding kit for local irradiation in mice and test of its shielding effect

    International Nuclear Information System (INIS)

    In order to fulfill the immediate requirement for experimental studies on biological effect of low dose radiation. A shielding kit for local irradiation in mice is designed. Its advantages are: (1) several mice can be irradiated at the same time; (2) the radiation condition is identical; (3) it is easy to control and perform; (4) during irradiation, the animals don't need any special treatments such as anaesthesia. It was proved by TLD test, that absorbed dose in areas of spleen and head in mice after shielding has decreased to 0.85% and 0.5% of the original dose in the center of radiation field respectively. The results suggest that the kit was able to satisfy the needs of the experimental studies on radiation biology

  10. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  11. Drip Shield Emplacement Gantry Concept

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.; Cron, J.

    2000-03-29

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existing equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made

  12. Reflective Shields for Artificial Satellites

    Science.gov (United States)

    Bouquet, F. L.

    1986-01-01

    Report proposes reflective shield that protects spacecraft from radiant energy. Also gives some protection against particle beams and cosmic rays. Conceptual shield essentially advanced version of decorative multifaceted mirror balls often hung over dance floors. Mirror facets disperse radiant energy in many directions.

  13. The shield effect

    DEFF Research Database (Denmark)

    Toft, Søren; Albo, Maria J

    2016-01-01

    Several not mutually exclusive functions have been ascribed to nuptial gifts across different taxa. Although the idea that a nuptial prey gift may protect the male from pre-copulatory sexual cannibalism is attractive, it has previously been considered of no importance based on indirect evidence and...... rejected by experimental tests. We reinvestigated whether nuptial gifts may function as a shield against female attacks during mating encounters in the spider Pisaura mirabilis and whether female hunger influences the likelihood of cannibalistic attacks. The results showed that pre-copulatory sexual...... cannibalism was enhanced when males courted without a gift and this was independent of female hunger. We propose that the nuptial gift trait has evolved partly as a counteradaptation to female aggression in this spider species....

  14. Sulphate resistant shielding material

    International Nuclear Information System (INIS)

    The shielding material of the present invention is provided with sulfuric acid resistance and contains bentonite put to ion exchange treatment with barium ions as an effective ingredient. When mortars and concretes are exposed to the circumstance of sulfate, the effective ingredient functions to take place reaction between intruding sulfate and the barium ions to form insoluble barium sulfate thereby reducing chemical corrosion of mortars and concretes caused by sulfate. Cement materials, water and aggregates can optionally be contained in addition to bentonite and bentonite put to ion exchange treatment. Chemical corrosion of concretes and mortars due to intrusion of the sulfate can be prevented, and it is useful as an artificial barrier, for example, in radioactive active waste processing facilities. (T.M.)

  15. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  16. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  17. Testing the integrity of packaging radiation shielding by scanning with radiation source and detector

    International Nuclear Information System (INIS)

    This specification deals with the radiological scanning method of inspection for biological shielding (to be used in transport packaging for gamma emitting sources of radiation), of regular thickness, when the sections are to be checked for integrity and homogeneity; it does not establish the adequacy of design. The shielding materials may be lead, iron, steel, heavy alloy (tungsten), and depleted uranium. (author)

  18. An evaluation of costs for constructing high density concrete shields at 105-K

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H.S.

    1955-11-07

    The primary purpose of this report is to present cost data associated with the recent construction of biological shields at Hanford. These data are useful for analyzing shields which have been built during the past four years and for ascertaining ways to improve future designs. Specifically, the objectives of this study are to: compile and analyze cost data associated with the construction of the high density concrete shields at 105-K and the steel-masonite shields at 105-C; and determine unit costs for erecting steel forms at Hanford and for filling them with high density concrete.

  19. New Materials for EMI Shielding

    Science.gov (United States)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  20. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-08-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  1. Radiation shielding for neutron guides

    Energy Technology Data Exchange (ETDEWEB)

    Ersez, T. [Reactor Operations, ANSTO, PMB 1, Menai, NSW 2234 (Australia)]. E-mail: tez@ansto.gov.au; Braoudakis, G. [Reactor Operations, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Osborn, J.C. [Reactor Operations, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2006-11-15

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  2. Performance test on shielding concrete

    International Nuclear Information System (INIS)

    The cylinder of the shielding concrete is made from common Portland cement and home-made coarse or fine aggregates. Orthogonal design experiment and regression analysis are adopted to study the effects of the water content, sand percentage and water-cement ratio on the property of shielding concrete and the difference between them. The test shows that the tensile strength is in inverse proportion with water-cement ratio, and the influence is quite significant. Another factor is the type of aggregates. The effect of the age on its density is not obvious. Similarly, the concrete shielding γ rays shares the same influencing factors with that shielding neutron rays on density, slump and tensile strength. And both have the same change rules regarding to mechanical property. (authors)

  3. SNF shipping cask shielding analysis

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O.; Pace, J.V. III

    1996-01-01

    The Waste Management and Remedial Action Division has planned a modification sequence for storage facility 7827 in the Solid Waste Storage Area (SWSA). The modification cycle is: (1) modify an empty caisson, (2) transfer the spent nuclear fuel (SNF) of an occupied caisson to a hot cell in building 3525 for inspection and possible repackaging, and (3) return the package to the modified caisson in the SWSA. Although the SNF to be moved is in the solid form, it has different levels of activity. Thus, the following 5 shipping casks will be available for the task: the Loop Transport Carrier, the In- Pile Loop LITR HB-2 Carrier, the 6.5-inch HRLEL Carrier, the HFIR Hot Scrap Carrier, and the 10-inch ORR Experiment Removal Shield Cask. This report describes the shielding tasks for the 5 casks: determination of shielding characteristics, any streaming avenues, estimation of thermal limits, and shielding calculational uncertainty for use in the transportation plan.

  4. Shielding of moving line charges

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Youmei; He, Bingyu [Department of Physics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Yu, Wei [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Yu, M.Y., E-mail: myyu@zju.edu.cn [Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44780 Bochum (Germany)

    2015-07-03

    A charged object moving in plasma can excite plasma waves that inevitably modify its Debye shielding characteristics. When the excited waves propagate sufficiently fast, the shielding can even break down. Here the properties of finite amplitude plasma waves excited by a moving line charge are investigated. It is found that when the speed of the latter is close to but less than the thermal speed of the background plasma electrons, only a localized disturbance in the form of a soliton that moves together with the line charge is excited. That is, the line charge is well shielded even though it is moving at a high speed and has generated a large local electrostatic field. However, for a pair of line charges moving together, such complete shielding behavior could not be found.

  5. Shielding vacuum fluctuations with graphene

    OpenAIRE

    Ribeiro, Sofia; Scheel, Stefan

    2013-01-01

    The Casimir-Polder interaction of ground-state and excited atoms with graphene is investigated with the aim to establish whether graphene systems can be used as a shield for vacuum fluctuations of an underlying substrate. We calculate the zero-temperature Casimir-Polder potential from the reflection coefficients of graphene within the framework of the Dirac model. For both doped and undoped graphene we show limits at which graphene could be used effectively as a shield. Additional results are...

  6. Composite Aerogel Multifoil Protective Shielding

    Science.gov (United States)

    Jones, Steven M.

    2013-01-01

    New technologies are needed to survive the temperatures, radiation, and hypervelocity particles that exploration spacecraft encounter. Multilayer insulations (MLIs) have been used on many spacecraft as thermal insulation. Other materials and composites have been used as micrometeorite shielding or radiation shielding. However, no material composite has been developed and employed as a combined thermal insulation, micrometeorite, and radiation shielding. By replacing the scrims that have been used to separate the foil layers in MLIs with various aerogels, and by using a variety of different metal foils, the overall protective performance of MLIs can be greatly expanded to act as thermal insulation, radiation shielding, and hypervelocity particle shielding. Aerogels are highly porous, low-density solids that are produced by the gelation of metal alkoxides and supercritical drying. Aerogels have been flown in NASA missions as a hypervelocity particle capture medium (Stardust) and as thermal insulation (2003 MER). Composite aerogel multifoil protective shielding would be used to provide thermal insulation, while also shielding spacecraft or components from radiation and hypervelocity particle impacts. Multiple layers of foil separated by aerogel would act as a thermal barrier by preventing the transport of heat energy through the composite. The silica aerogel would act as a convective and conductive thermal barrier, while the titania powder and metal foils would absorb and reflect the radiative heat. It would also capture small hypervelocity particles, such as micrometeorites, since it would be a stuffed, multi-shock Whipple shield. The metal foil layers would slow and break up the impacting particles, while the aerogel layers would convert the kinetic energy of the particles to thermal and mechanical energy and stop the particles.

  7. Optimized shielding for space radiation protection

    Science.gov (United States)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M. H.; Schimmerling, W.

    2001-01-01

    Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  8. Shielding requirements in helical tomotherapy

    International Nuclear Information System (INIS)

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest

  9. The optimum shielding for a power reactor using local components

    International Nuclear Information System (INIS)

    Some local concrete mixtures have been picked out (selected) to be studied as shielding concrete for prospective nuclear power reactor in Syria. This research has interested in the attenuation of gamma radiation and neutron fluxes by these local concretes in the ordinary conditions. In addition to the heat effect on the shielding and physical properties of local concrete. Furthermore the neutron activation of the elements of the local concrete mixtures have been studied that for selection the low-activation materials (low dose rate and short half life radioisotopes). In this way biological shielding for nuclear reactor can be safe during operation of nuclear power reactor, in addition to be low radioactive waste after decommissioning the reactor. (author)

  10. Novel shielding materials for space and air travel

    International Nuclear Information System (INIS)

    The reduction of dose onboard spacecraft and aircraft by appropriate shielding measures plays an essential role in the future development of space exploration and air travel. The design of novel shielding strategies and materials may involve hydrogenous composites, as it is well known that liquid hydrogen is most effective in attenuating charged particle radiation. As precursor for a later flight experiment, the shielding properties of newly developed hydrogen-rich polymers and rare earth-doped high-density rubber were tested in various ground-based neutron and heavy ion fields and compared with aluminium and polyethylene as reference materials. Absorbed dose, average linear energy transfer and gamma-equivalent neutron absorbed dose were determined by means of LiF:Mg,Ti thermoluminescence dosemeters and CR-39 plastic nuclear track detectors. First results for samples of equal aerial density indicate that selected hydrogen-rich plastics and rare-earth-doped rubber may be more effective in attenuating cosmic rays by up to 10% compared with conventional aluminium shielding. The appropriate adaptation of shielding thicknesses may thus allow reducing the biologically relevant dose. Owing to the lower density of the plastic composites, mass savings shall result in a significant reduction of launch costs. The experiment was flown as part of the European Space Agency's Biopan-5 mission in May 2005. (authors)

  11. Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics

    Science.gov (United States)

    de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.

    A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.

  12. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  13. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  14. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  15. A Novel Radiation Shielding Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation shielding simulations showed that epoxy loaded with 10-70% polyethylene would be an excellent shielding material against GCRs and SEPs. Milling produced...

  16. Effect of cosmic-ray shielding on the ultraweak bioluminescence emitted by cultures of Escherichia coli

    International Nuclear Information System (INIS)

    Neither the growth of Escherichia coli nor its associated luminescence was significantly affected when cultures were shielded from the soft component of cosmic rays. The study included experiments in which the cultures were shielded intermittently during their two periods of luminescence emission and experiments in which the cultures were continuously shielded throughout their entire growth cycle. These results do not support previous suggestions that the ultraweak bioluminescences from living organisms might be cosmic-ray-excited fluorescences induced in certain biological molecules synthesized during the various stages of growth

  17. A new radiation shielding material: Amethyst ore

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Turgay, E-mail: turgaykorkut@hotmail.co [Faculty of Science and Art, Department of Physics, Ibrahim Cecen University, Agri (Turkey); Korkut, Hatun [Faculty of Science and Art, Department of Physics, Ibrahim Cecen University, Agri (Turkey); Karabulut, Abdulhalik; Budak, Goekhan [Faculty of Science, Department of Physics, Atatuerk University, Erzurum (Turkey)

    2011-01-15

    This paper describes a new radiation shielding material, amethyst ore. We have determined the elemental composition of amethyst using WDXRF spectroscopy technique. To see the shielding capability of amethyst for several photon energies, these results have been used in simulation process by FLUKA Monte Carlo radiation transport code. Linear attenuation coefficients have been calculated according to the simulation results. Then, these values have been compared to a fine shielding concrete material. The results show that amethyst shields more gamma beams than concrete. This investigation is the first study about the radiation shielding properties of amethyst ore.

  18. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  19. New facility shield design criteria

    International Nuclear Information System (INIS)

    The purpose of the criteria presented here is to provide standard guidance for the design of nuclear radiation shields thoughout new facilities. These criteria are required to assure a consistent and integrated design that can be operated safely and economically within the DOE standards. The scope of this report is confined to the consideration of radiation shielding for contained sources. The whole body dose limit established by the DOE applies to all doses which are generally distributed throughout the trunk of the body. Therefore, where the whole body is the critical organ for an internally deposited radionuclide, the whole body dose limit applies to the sum of doses received must assure control of the concentration of radionuclides in the building atmosphere and thereby limit the dose from internal sources

  20. Shielding calculational system for plutonium

    International Nuclear Information System (INIS)

    A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)

  1. Stellar activity and magnetic shielding

    CERN Document Server

    Grießmeier, J -M; Lammer, H; Grenfell, J L; Stadelmann, A; Motschmann, U; 10.1017/S1743921309992961

    2010-01-01

    Stellar activity has a particularly strong influence on planets at small orbital distances, such as close-in exoplanets. For such planets, we present two extreme cases of stellar variability, namely stellar coronal mass ejections and stellar wind, which both result in the planetary environment being variable on a timescale of billions of years. For both cases, direct interaction of the streaming plasma with the planetary atmosphere would entail servere consequences. In certain cases, however, the planetary atmosphere can be effectively shielded by a strong planetary magnetic field. The efficiency of this shielding is determined by the planetary magnetic dipole moment, which is difficult to constrain by either models or observations. We present different factors which influence the strength of the planetary magnetic dipole moment. Implications are discussed, including nonthermal atmospheric loss, atmospheric biomarkers, and planetary habitability.

  2. Paramagnetism shielding in drilling fluid

    OpenAIRE

    Li, Zhuo

    2013-01-01

    In drilling operations, drilling fluid containing magnetic materials is used when drilling a well. The materials can significantly shield the Earth’s magnetic field as measured by magnetic sensors inside the drilling strings. The magnetic property of the drilling fluid is one of the substantial error sources for the determination of magnetic azimuth for wellbores. Both the weight material, cuttings, clay and other formation material plus metal filings from the tubular wear m...

  3. Design of ITER shielding blanket

    International Nuclear Information System (INIS)

    A mechanical configuration of ITER integrated primary first wall/shield blanket module were developed focusing on the welded attachment of its support leg to the back plate. A 100 mm x 150 mm space between the legs of adjacent modules was incorporated for the working space of welding/cutting tools. A concept of coolant branch pipe connection to accommodate deformation due to the leg welding and differential displacement of the module and the manifold/back plate during operation was introduced. Two-dimensional FEM analyses showed that thermal stresses in Cu-alloy (first wall) and stainless steel (first wall coolant tube and shield block) satisfied the stress criteria following ASME code for ITER BPP operation. On the other hand, three-dimensional FEM analyses for overall in-vessel structures exhibited excessive primary stresses in the back plate and its support structure to the vacuum vessel under VDE disruption load and marginal stresses in the support leg of module No.4. Fabrication procedure of the integrated primary first wall/shield blanket module was developed based on single step solid HIP for the joining of Cu-alloy/Cu-alloy, Cu-alloy/stainless steel, and stainless steel/stainless steel. (author)

  4. Photonic Bandgap (PBG) Shielding Technology

    Science.gov (United States)

    Bastin, Gary L.

    2007-01-01

    Photonic Bandgap (PBG) shielding technology is a new approach to designing electromagnetic shielding materials for mitigating Electromagnetic Interference (EM!) with small, light-weight shielding materials. It focuses on ground planes of printed wiring boards (PWBs), rather than on components. Modem PSG materials also are emerging based on planar materials, in place of earlier, bulkier, 3-dimensional PBG structures. Planar PBG designs especially show great promise in mitigating and suppressing EMI and crosstalk for aerospace designs, such as needed for NASA's Constellation Program, for returning humans to the moon and for use by our first human visitors traveling to and from Mars. Photonic Bandgap (PBG) materials are also known as artificial dielectrics, meta-materials, and photonic crystals. General PBG materials are fundamentally periodic slow-wave structures in I, 2, or 3 dimensions. By adjusting the choice of structure periodicities in terms of size and recurring structure spacings, multiple scatterings of surface waves can be created that act as a forbidden energy gap (i.e., a range of frequencies) over which nominally-conductive metallic conductors cease to be a conductor and become dielectrics. Equivalently, PBG materials can be regarded as giving rise to forbidden energy gaps in metals without chemical doping, analogous to electron bandgap properties that previously gave rise to the modem semiconductor industry 60 years ago. Electromagnetic waves cannot propagate over bandgap regions that are created with PBG materials, that is, over frequencies for which a bandgap is artificially created through introducing periodic defects

  5. Steam generator hand hole shielding.

    Science.gov (United States)

    Cox, W E

    2000-05-01

    Seabrook Station is an 1198 MWE Pressurized Water Reactor (PWR) that began commercial operation in 1990. Expensive and dose intensive Steam Generator Replacement Projects among PWR operators have led to an increase in steam generator preventative maintenance. Most of this preventative maintenance is performed through access ports in the shell of the steam generator just above the tube sheet known as secondary side hand holes. Secondary side work activities performed through the hand holes are typically performed without the shielding benefit of water in the secondary side of the steam generator. An increase in cleaning and inspection work scope has led to an increase in dose attributed to steam generator secondary side maintenance. This increased work scope and the station goal of maintaining personnel radiation dose ALARA led to the development of the shielding concept described in this article. This shield design saved an estimated 2.5 person-rem (25 person-Smv) the first time it was deployed and is expected to save an additional 50 person-rem (500 person-mSv) over the remaining life of the plant. PMID:10770158

  6. ATLAS Award for Shield Supplier

    CERN Multimedia

    2004-01-01

    ATLAS technical coordinator Dr. Marzio Nessi presents the ATLAS supplier award to Vojtech Novotny, Director General of Skoda Hute.On 3 November, the ATLAS experiment honoured one of its suppliers, Skoda Hute s.r.o., of Plzen, Czech Republic, for their work on the detector's forward shielding elements. These huge and very massive cylinders surround the beampipe at either end of the detector to block stray particles from interfering with the ATLAS's muon chambers. For the shields, Skoda Hute produced 10 cast iron pieces with a total weight of 780 tonnes at a cost of 1.4 million CHF. Although there are many iron foundries in the CERN member states, there are only a limited number that can produce castings of the necessary size: the large pieces range in weight from 59 to 89 tonnes and are up to 1.5 metres thick.The forward shielding was designed by the ATLAS Technical Coordination in close collaboration with the ATLAS groups from the Czech Technical University and Charles University in Prague. The Czech groups a...

  7. Water shielding nuclear reactor container

    International Nuclear Information System (INIS)

    The reactor container of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevated inner pressure and keeping airtightness, and shielding water is filled inside from a water injection port. It is endurable to a great inner pressure satisfactorily and keep airtightness by the two spaced relatively thin steel plates. It exhibits radiation shielding effect by filling water substantially the same as that of a conventional reactor container made of iron reinforced concretes. Then, it is no more necessary to use concretes for the construction of the reactor container, which shortens the term of the construction, and saves the construction cost. In addition, a cooling effect for the reactor container is provided. Syphons are disposed contiguously to a water injection port and the top end of the syphon is immersed in an equipment temporarily storage pool, and further, pipelines are connected to the double steel plate walls or the syphons for supplying shielding water to enhance the cooling effect. (N.H.)

  8. RF-transparent solar shield

    International Nuclear Information System (INIS)

    By combining durable Kapton films with quartz fibers, an effective solar shield or blanket is produced which also serves as an efficient RF-transparent window. The window consists of a series of Kapton film envelopes sandwiching thin quartz paper. Not only must the window prevent the sun from overheating the electronics and distorting mechanically aligned antennas, it must also prevent radiant heat loss from inside the satellite when it is in shadow and radiating to space at approx. 40K. The guidelines for achieving an effective high-frequency RF window are a low dielectric constant to keep reflections down, a low loss tangent so RF absorption and molecular movement will be minimal, and low mass with tin and lightweight materials. Because these guidelines were followed, the RF insertion loss of the multiple envelope shield is less than 1/4 dB at high frequency. This paper concentrates on the material and processing aspects of an RF-transparent solar shield

  9. EMI Shields made from intercalated graphite composites

    Science.gov (United States)

    Gaier, James R.; Terry, Jennifer

    1995-01-01

    Electromagnetic interference (EMI) shielding typically makes up about twenty percent of the mass of a spacecraft power system. Graphite fiber/polymer composites have significantly lower densities and higher strengths than aluminum, the present material of choice for EMI shields, but they lack the electrical conductivity that enables acceptable shielding effectiveness. Bromine intercalated pitch-based graphite/epoxy composites have conductivities fifty times higher than conventional structural graphite fibers. Calculations are presented which indicate that EMI shields made from such composites can have sufficient shielding at less than 20% of the mass of conventional aluminum shields. EMI shields provide many functions other than EMI shielding including physical protection, thermal management, and shielding from ionizing radiation. Intercalated graphite composites perform well in these areas also. Mechanically, they have much higher specific strength and modulus than aluminum. They also have shorter half thicknesses for x-rays and gamma radiation than aluminum. Thermally, they distribute infra-red radiation by absorbing and re-radiating it rather than concentrating it by reflection as aluminum does. The prospects for intercalated graphite fiber/polymer composites for EMI shielding are encouraging.

  10. Highly heat-removing radiation shielding material

    International Nuclear Information System (INIS)

    Highly heat-removing radiation shielding material is constituted with fine particles prepared by coating metals of high heat conductivity to fine particles comprising materials having excellent radiation shielding performance. Then, the fine particles applied with the coating are mixed and filled in a shielding container or applied with hot press into a layerous form and used as a shielding member. In view of the above, since the coated fine particles provide the shielding performance against radiation such as neutrons and gamma rays, and the coating metals provide the heat removing performance, they act as a shielding material having heat removing performance as a whole. The combination of the coated fine particles and the coating metals are selected depending on the respective conditions for use. With such a constitution, radioactive wastes involving a problem of heat generation can be transported or stored safely. (T.M.)

  11. VAPOR SHIELD FOR INDUCTION FURNACE

    Science.gov (United States)

    Reese, S.L.; Samoriga, S.A.

    1958-03-11

    This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

  12. Radiation shielding concrete made of Basalt aggregates.

    Science.gov (United States)

    Alhajali, S; Yousef, S; Kanbour, M; Naoum, B

    2013-04-01

    In spite of the fact that Basalt is a widespread type of rock, there is very little available information on using it as aggregates for concrete radiation shielding. This paper investigates the possibility of using Basalt for the aforementioned purpose. The results have shown that Basalt could be used successfully for preparing radiation shielding concrete, but some attention should be paid to the choice of the suitable types of Basalt and for the neutron activation problem that could arise in the concrete shield.

  13. Shielding for thermoacoustic tomography with RF excitation

    Science.gov (United States)

    Mitchell, M.; Becker, G.; Dey, P.; Generotzky, J.; Patch, S. K.

    2008-02-01

    Radiofrequency (RF) pulses used to generate thermoacoustic computerized tomography (TCT) signal couple directly into the pulser-receiver and oscilloscope, swamping true TCT signal. We use a standard RF enclosure housing both RF amplifier and object being imaged. This is similar to RF shielding of magnetic resonance imaging (MRI) suites and protects electronics outside from stray RF. Unlike MRI, TCT receivers are ultrasound transducers, which must also be shielded from RF. A transducer housing that simultaneously shields RF and permits acoustic transmission was developed specifically for TCT. We compare TCT signals measured with and without RF shielding.

  14. TPX remote maintenance and shielding

    International Nuclear Information System (INIS)

    The Tokamak Physics Experiment machine design incorporates comprehensive planning for efficient and safe component maintenance. Three programmatic decisions have been made to insure the successful implementation of this objective. First, the tokamak incorporates radiation shielding to reduce activation of components and limit the dose rate to personnel working on the outside of the machine. This allows most of the ex-vessel equipment to be maintained through conventional ''hands-on'' procedures. Second, to the maximum extent possible, low activation materials will be used inside the shielding volume. This resulted in the selection of Titanium (Ti-6Al-4V) for the vacuum vessel and PFC structures. The third decision stipulated that the primary in-vessel components will be replaced or repaired via remote maintenance tools specifically provided for the task. The component designers have been given the responsibility of incorporating maintenance design and for proving the maintainability of the design concepts in full-scale mockup tests prior to the initiation of final fabrication. Remote maintenance of the TPX machine is facilitated by general purpose tools provided by a special purpose design team. Major tools will include an in-vessel transporter, a vessel transfer system and a large component transfer container. In addition, tools such as manipulators and remotely operable impact wrenches will be made available to the component designers by this group. Maintenance systems will also provide the necessary controls for this equipment

  15. TPX remote maintenance and shielding

    International Nuclear Information System (INIS)

    The Tokamak Physics Experiment (TPX) machine design incorporates comprehensive planning for efficient and safe component maintenance. Three programmatic decisions have been made to insure the successful implementation of this objective. First, the tokamak incorporates radiation shielding to reduce activation of components and limit the dose rate to personnel working on the outside of the machine. This allows most of the ex-vessel equipment to be maintained through conventional open-quotes hands-onclose quotes procedures. Second, to the maximum extent possible, low activation materials will be used inside the shielding volume. This resulted in the selection of Titanium (Ti-6Al-4V) for the vacuum vessel and Plasma Facing Components (PFC) structures. The third decision stipulated that the primary in-vessel components will be replaced or repaired via remote maintenance tools specifically provided for the task. The component designers have been given the responsibility of incorporating maintenance design and for proving the maintainability of the design concepts in full-scale mockup tests prior to the initiation of final fabrication. Remote maintenance of the TPX machine is facilitated by general purpose tools provided by a special purpose design team. Major tools will include an in-vessel transporter, a vessel transfer system and a large component transfer container. In addition, tools such as manipulators and remotely operable impact wrenches will be made available to the component designers by this group. Maintenance systems will also provide the necessary controls for this equipment

  16. Flexible shielding system for radiation protection

    Science.gov (United States)

    Babin, A.

    1972-01-01

    Modular construction of low cost flexible radiation shielding panels consists of water filled steels cans, zinc bromide windows, turntable unit, master-slave manipulators, and interlocking lead bricks. Easy modifications of shielding wall thicknesses are obtained by rearranging overall geometry of portable components.

  17. Neutron shielding heat insulation material

    International Nuclear Information System (INIS)

    Purpose: To improve decceleration and absorption of neutrons by incorporating neutron moderators and neutron absorbers in asbestos to thereby increase hydrogen concentration. Constitution: A mixture consisting of crysotile asbestos, surface active agent and water is well stirred and compounded to open the crysotile asbestos filaments and prepare a high viscosity slurry. After adding hydroxides such as magnesium hydroxide, hydrated salts such as magnesium borate hydrate or water containing minerals such as alumina cement hydrate, or boron compound to the slurry, the slurry is charged in a predetermined die, and dried and compressed to prepare shielding heat insulation products. The crysotile asbestos has 18 - 15 wt.% of water of crystallinity in the structure and contains a considerably high hydrogen concentration that acts as neutron moderators. (Kawakami, Y.)

  18. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  19. Radiation Shielding Systems Using Nanotechnology

    Science.gov (United States)

    Chen, Bin (Inventor); McKay, Christoper P. (Inventor)

    2011-01-01

    A system for shielding personnel and/or equipment from radiation particles. In one embodiment, a first substrate is connected to a first array or perpendicularly oriented metal-like fingers, and a second, electrically conducting substrate has an array of carbon nanostructure (CNS) fingers, coated with an electro-active polymer extending toward, but spaced apart from, the first substrate fingers. An electric current and electric charge discharge and dissipation system, connected to the second substrate, receives a current and/or voltage pulse initially generated when the first substrate receives incident radiation. In another embodiment, an array of CNSs is immersed in a first layer of hydrogen-rich polymers and in a second layer of metal-like material. In another embodiment, a one- or two-dimensional assembly of fibers containing CNSs embedded in a metal-like matrix serves as a radiation-protective fabric or body covering.

  20. Shield verification and validation action matrix summary

    Energy Technology Data Exchange (ETDEWEB)

    Boman, C.

    1992-02-01

    WSRC-RP-90-26, Certification Plan for Reactor Analysis Computer Codes, describes a series of action items to be completed for certification of reactor analysis computer codes used in Technical Specifications development and for other safety and production support calculations. Validation and verification are integral part of the certification process. This document identifies the work performed and documentation generated to satisfy these action items for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system, it is not certification of the complete SHIELD system. Complete certification will follow at a later date. Each action item is discussed with the justification for its completion. Specific details of the work performed are not included in this document but can be found in the references. The validation and verification effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system computer code is completed.

  1. Electromagnetic interference shielding effectiveness of monolayer graphene.

    Science.gov (United States)

    Hong, Seul Ki; Kim, Ki Yeong; Kim, Taek Yong; Kim, Jong Hoon; Park, Seong Wook; Kim, Joung Ho; Cho, Byung Jin

    2012-11-16

    We report the first experimental results on the electromagnetic interference (EMI) shielding effectiveness (SE) of monolayer graphene. The monolayer CVD graphene has an average SE value of 2.27 dB, corresponding to ~40% shielding of incident waves. CVD graphene shows more than seven times (in terms of dB) greater SE than gold film. The dominant mechanism is absorption rather than reflection, and the portion of absorption decreases with an increase in the number of graphene layers. Our modeling work shows that plane-wave theory for metal shielding is also applicable to graphene. The model predicts that ideal monolayer graphene can shield as much as 97.8% of EMI. This suggests the feasibility of manufacturing an ultrathin, transparent, and flexible EMI shield by single or few-layer graphene. PMID:23085718

  2. Results of shielding characteristics tests in Monju

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Shin; Suzuoki, Zenro; Deshimaru, Takehide; Nakashima, Fumiaki [Japan Nuclear Cycle Development Inst., Tsuruga, Fukui (Japan)

    2001-06-01

    In the prototype fast breeder reactor Monju, the shielding characteristics tests were made around the reactor core, the primary heat transport system, and the fuel handling and storage system as a part of the system start-up tests from 0% to 45% of rated power from October 1993 through December 1995. The results of the measurements, analyses and evaluations in these tests validated the FBR shielding analysis methods and demonstrated that there was a safe shielding design margin in Monju. The important basic data for use in future FBR shielding design were successfully acquired. In order to obtain more substantial basic data and to improve the accuracy of the analyses, the next shielding measurements are planned for the period of the system start-up tests at the restart of Monju. (author)

  3. Radiation Shielding for Nuclear Thermal Propulsion

    Science.gov (United States)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  4. The use of nipple shields: A review

    Directory of Open Access Journals (Sweden)

    Selina eChow

    2015-10-01

    Full Text Available A nipple shield is a breastfeeding aid with a nipple-shaped shield that is positioned over the nipple and areola prior to nursing. Nipple shields are usually recommended to mothers with flat nipples or in cases in which there is a failure of the baby to effectively latch onto the breast within the first two days postpartum. The use of nipple shields is a controversial topic in the field of lactation. Its use has been an issue in the clinical literature since some older studies discovered reduced breast milk transfer when using nipple shields, while more recent studies reported successful breastfeeding outcomes. The purpose of this review was to examine the evidence and outcomes with nipple shield use. Methods: A literature search was conducted in Ovid MEDLINE, OLDMEDLINE, EMBASE Classic, EMBASE, Cochrane Central Register of Controlled Trials and CINAHL. The primary endpoint was any breastfeeding outcome following nipple shield use. Secondary endpoints included the reasons for nipple shield use and the average/median length of use. For the analysis, we examined the effect of nipple shield use on physiological responses, premature infants, mothers’ experiences, and health professionals’ experiences. Results: The literature search yielded 261 articles, 14 of which were included in this review. Of these 14 articles, three reported on physiological responses, two reported on premature infants, eight reported on mothers’ experiences, and one reported on health professionals’ experiences. Conclusion: Through examining the use of nipple shields, further insight is provided on the advantages and disadvantages of this practice, thus allowing clinicians and researchers to address improvements on areas that will benefit mothers and infants the most.

  5. Effects of shielding on the induction of 53BP1 foci and micronuclei after Fe ion exposures.

    Science.gov (United States)

    Hu, Wentao; Pei, Hailong; Li, He; Ding, Nan; He, Jinpeng; Wang, Jufang; Furusawa, Yoshiya; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Liu, Cuihua; Li, Yinghui; Kawata, Tetsuya; Zhou, Guangming

    2014-01-01

    High atomic number and high-energy (HZE) particles in deep space are of low abundance but substantially contribute to the biological effects of space radiation. Shielding is so far the most effective way to partially protect astronauts from these highly penetrating particles. However, simulated calculations and measurements have predicted that secondary particles resulting from the shielding of cosmic rays produce a significant fraction of the total dose and dose equivalent. In this study, we investigated the biological effects of secondary radiation with two cell types, and with cells exposed in different phases of the cell cycle, by comparing the biological effects of a 200 MeV/u iron beam with a shielded beam in which the energy of the iron ion beam was decreased from 500 MeV/u to 200 MeV/u with PMMA, polyethylene (PE), or aluminum. We found that beam shielding resulted in increased induction of 53BP1 foci and micronuclei in a cell-type-dependent manner compared with the unshielded 200 MeV/u Fe ion beam. These findings provide experimental proof that the biological effects of secondary particles resulting from the interaction between HZE particles and shielding materials should be considered in shielding design. PMID:23728321

  6. Foam-Reinforced Polymer Matrix Composite Radiation Shields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New and innovative lightweight radiation shielding materials are needed to protect humans in future manned exploration vehicles. Radiation shielding materials are...

  7. Improved Metal-Polymeric Laminate Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed Phase I program, a multifunctional lightweight radiation shield composite will be developed and fabricated. This structural radiation shielding...

  8. Extraterrestrial Regolith Derived Atmospheric Entry Heat Shields

    Science.gov (United States)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2016-01-01

    High-mass planetary surface access is one of NASAs technical challenges involving entry, descent and landing (EDL). During the entry and descent phase, frictional interaction with the planetary atmosphere causes a heat build-up to occur on the spacecraft, which will rapidly destroy it if a heat shield is not used. However, the heat shield incurs a mass penalty because it must be launched from Earth with the spacecraft, thus consuming a lot of precious propellant. This NASA Innovative Advanced Concept (NIAC) project investigated an approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. In this paper, we will describe three types of in situ fabrication methods for heat shields and the testing performed to determine feasibility of this approach.

  9. Molecular biology. Shielding broken DNA for a quick fix

    DEFF Research Database (Denmark)

    Lukas, Jiri; Lukas, Claudia

    2013-01-01

    A fast-acting DNA repair mechanism involves a protein complex that blocks an alternative process that requires a cell to wait for repair.......A fast-acting DNA repair mechanism involves a protein complex that blocks an alternative process that requires a cell to wait for repair....

  10. The removal of concrete layers from biological shields by microwaves

    International Nuclear Information System (INIS)

    Concrete blocks reinforced with steel bars have been subjected to microwave attack at a frequency of 896 MHz at power levels up to 25 kW. The surface concrete has been explosively removed to the depth of the reinforcement, 10 cm, at a rate of about 2 litres per kWh. Heating was localized around the point of attack, with temperatures up to 3000C at the fractured face being attained. A simple mathematical model of the propagation and absorption of micro-waves was used to estimate the temperature rise of concrete at microwave frequencies of 896 wand 2450 MHz, at different power levels with and without the presence of reinforcing bars. This demonstrated that reinforcement is expected to significantly increase the temperature rise in the concrete between the irradiated surface and the reinforcement, and that near-surface heating should be more rapid at the higher frequency. There was reasonable agreement between predicted and observed temperature at the higher power levels. Further desk and laboratory studies are proposed before proceeding to a fullscale practical demolition machine and the requirements for a prototype remotely-operated demonstration system have been identified. This consists of a static generator of high power (at least 50 kW) transmitting microwaves via a steerable waveguide to a remote applicator mounted on a simple three-axis manipulator capable of traversing realistically large concrete test panels

  11. MFTF-α + T shield design

    International Nuclear Information System (INIS)

    MFTF-α+T is a DT upgrade option of the Tandem Mirror Fusion Test Facility (MFTF-B) to study better plasma performance, and test tritium breeding blankets in an actual fusion reactor environment. The central cell insert, designated DT axicell, has a 2-MW/m2 neutron wall loading at the first wall for blanket testing. This upgrade is completely shielded to protect the reactor components, the workers, and the general public from the radiation environment during operation and after shutdown. The shield design for this upgrade is the subject of this paper including the design criteria and the tradeoff studies to reduce the shield cost

  12. Carbon nanostructure composite for electromagnetic interference shielding

    Indian Academy of Sciences (India)

    Anupama Joshi; Suwarna Datar

    2015-06-01

    This communication reviews current developments in carbon nanostructure-based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference. Conventionally, metal-based shielding materials have been used. But due to the requirement of light weight, corrosion resistive materials, lot of work is being done on composite materials. In this research the forerunner is the nanocarbon-based composite material whose different forms add different characteristics to the composite. The article focusses on composites based on graphene, graphene oxide, carbon nanotubes, and several other novel forms of carbon.

  13. Effects of shielding on the induction of 53BP1 foci and micronuclei after Fe ion exposures

    OpenAIRE

    Hu, Wentao; Pei, Hailong; Li, He; Ding, Nan; HE, JINPENG; Wang, Jufang; Furusawa, Yoshiya; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Liu, Cuihua; Li, Yinghui; Kawata, Tetsuya; Zhou,Guangming

    2013-01-01

    High atomic number and high-energy (HZE) particles in deep space are of low abundance but substantially contribute to the biological effects of space radiation. Shielding is so far the most effective way to partially protect astronauts from these highly penetrating particles. However, simulated calculations and measurements have predicted that secondary particles resulting from the shielding of cosmic rays produce a significant fraction of the total dose and dose equivalent. In this study, we...

  14. Shielding design for better plant availability

    International Nuclear Information System (INIS)

    Design methods are described for providing a shield system for nuclear power plants that will facilitate maintenance and inspection, increase overall plant availability, and ensure that man-rem exposures are as low as practicable

  15. Shielded ADR Magnets For Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II program will concentrate on manufacturing of qualified low-current, light-weight, 10K ADR magnets for space application. Shielded ADR solenoidal...

  16. Long Duration Space Shelter Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed fiber reinforced ceramic composites for radiation shielding that can be used for external walls in long duration manned...

  17. Long Duration Space Shelter Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed a ceramic composite material system that is more effective for shielding both GCR and SPE than aluminum. The composite...

  18. Passive Magnetic Shielding in Gradient Fields

    CERN Document Server

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  19. Materials for Shielding Astronauts from the Hazards of Space Radiations

    Science.gov (United States)

    Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.

    1997-01-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Because cancer induction rates increase behind low to rather large thickness of aluminum shielding according to available biological data on mammalian exposures to GCR like ions, the shield requirements for a Mars mission are prohibitively expensive in terms of mission launch costs. Preliminary studies indicate that materials with high hydrogen content and low atomic number constituents are most efficient in protecting the astronauts. This occurs for two reasons: the hydrogen is efficient in breaking up the heavy GCR ions into smaller less damaging fragments and the light constituents produce few secondary radiations (especially few biologically damaging neutrons). An overview of the materials related issues and their impact on human space exploration will be given.

  20. Shield structure for a nuclear reactor

    International Nuclear Information System (INIS)

    An improved nuclear reactor shield structure is described for use where there are significant amounts of fast neutron flux above an energy level of approximately 70 keV. The shield includes structural supports and neutron moderator and absorber systems. A portion at least of the neutron moderator material is magnesium oxide either alone or in combination with other moderator materials such as graphite and iron. (U.K.)

  1. Electromagnetic shielding with polypyrrole-coated fabrics

    OpenAIRE

    Avloni, J.; L. De Florio; Henn, A. R.; R. Lau; Ouyang, M.; Sparavigna, A.

    2006-01-01

    Several shielding applications, to protect human health and electronic devices against dangerous effects of electromagnetic radiation, require solutions that fabrics can suitably fulfill. Here, we will investigate the electromagnetic interference shielding effectiveness of polypyrrole-coated polyester textiles, in the frequency range 100-1000 MHz. Insertion losses for several conductive fabrics with different surface resistivity ranging from 40 Ohm till the very low value of 3 Ohm were evalua...

  2. Shielding Design for a Medical Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WANG; Feng; SONG; Guo-fang; GUAN; Feng-ping; LV; Yin-long; ZHANG; Xing-zhi

    2012-01-01

    <正>A 10 MeV 100 μA medical cyclotron is constructed at CIAE which is used in the production of FDG. The energy of the cyclotron can reach 14 MeV by adjusting the magnetic field and RF system parameters, and the shielding design is in accordance with the 14 MeV beam energy. In this shielding design only neutron is considered, and the neutron source is produced by proton

  3. APOLLO2 code self-shielding formalism

    International Nuclear Information System (INIS)

    This report describes the various self-shielding methods used in the APOLLO2 code for treating one resonant nucleus or a mixture of resonant nuclei. The methods are expounded in chronological order. First of all, the methods dealing with one resonant isotope are explained. Then an original method dealing directly with a resonant mixture is detailed. This new method is also convenient for one resonant nucleus and leads, in that case, to interesting improvements in the self-shielding modeling. (author)

  4. Foamed Nanocomposites for EMI Shielding Applications

    OpenAIRE

    Molenberg, Isabel; Huynen, Isabelle; Baudouin, Anne-Christine; Bailly, Christian; Thomassin, Jean-Michel; Detrembleur, Christophe

    2010-01-01

    Throughout this chapter, we have seen that foamed polymer/CNTs nanocomposites make very good EMI shielding materials. They exhibit a high conductivity and a relatively low dielectric constant, leading to a high Shielding Effectiveness and a relatively low Reflectivity, although a compromise in CNT content must be found between a high SE and a low R. This was confirmed by measurement results and rheological measurements but also using a simple electrical equivalent model.

  5. Evaluation of tube shielding; Utvaerdering av tubskyddsmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Hjoernhede, Anders; Westberg, Stig-Bjoern; Henderson, Pamela; Wetterstroem, Jonas; Jonasson, Anna

    2007-12-15

    Problems with soot-blowing have increased recently because of the poor fuel quality. Studies show that removing all the deposit by soot-blowing increases the metal loss of the superheaters, which drastically shortens component lifetimes. A simple, effective and common way of increasing the lifetime is to use tube shielding. Austenitic stainless steels seem to be the type of material most commonly used for tube shielding. It is thought that they give better protection against material removal than ferritic steels, but the cost of austenitics is several times greater than ferritic steels. It is clear that there is a significant economic advantage in choosing the right material for tube shielding, even though it might be expected that the cheaper materials do not perform as well as the more expensive ones. The reason for the study reported here is that very little material data exists in the literature. Few, if any tests have been performed to study the choice of material for tube shielding. The goal was to compare and evaluate a number of materials in a boiler to see if it is possible to replace the shielding material presently used with cheaper alternatives. About a dozen different shielding materials were installed and exposed for 4000 hours on primary- and secondary superheaters in a waste-fired boiler in Norrkoeping (Haendeloe Boiler 14.75MW). In total, 130 m of test material were installed and measured in several positions: a least 150 thickness measurements, before and after, were made on every tube shield. The results showed that the greatest attack was found on the secondary superheater shielding, where both the gas- and steam temperatures were higher. When considering cost and lifetime Sicromal 10 and 12 (however not Sicromal 8) and 15Mo3 are recommended as being better than 253 MA. The results should be of interest to most plants firing biomass or waste

  6. Influence of Shielding Arrangement on ECT Sensors

    Directory of Open Access Journals (Sweden)

    J. L. Fernandez Marron

    2006-09-01

    Full Text Available This paper presents a full 3D study of a shielded ECT sensor. The spatialresolution and effective sensing field are obtained by means of Finite Element Methodbased simulations and are the compared to a conventional sensor's characteristics. Aneffective improvement was found in the sensitivity in the pipe cross-section, resulting inenhanced quality of the reconstructed image. The sensing field along the axis of the sensoralso presents better behaviour for a shielded sensor.

  7. Measurement accuracy in shielded magnetic fields

    International Nuclear Information System (INIS)

    The measurement error due to both the probe size averaging effect and the coil arrangement is investigated when magnetic field measurements are performed in close proximity to different planar shields. The analysis is carried on through a hybrid FEM/BEM model which employs the 'thin shield' technique. Ferromagnetic, pure conductive and multilayer screens are taken into consideration and an estimation of the errors for concentric and non-concentric coil probes is given. The numerical results are validated by experiments

  8. Shielding Effectiveness of Composites Containing Flaky Inclusions

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; QU Zhaoming; WANG Yilong

    2013-01-01

    To investigate the quantitative relationship between the electromagnetic-shielding property of composites and the distribution of inclusions,a scheme for predicting the shielding effectiveness of composites containing variously-distributed flaky inclusions is proposed.The scheme is based on equivalent parameters of homogeneous comparison materials and the plane-wave shielding theory.It leads to explicit formulas for the shielding effectiveness of multi-layered composites in terms of microstructural parameters that characterize the shape,distribution and orientation of the inclusions.For single layer composite that contains random and aligned flaky silver-coated carbonyl-iron particles with fractions of different volume,the predicted shielding effectiveness agrees well with the experimental data.As for composites containing aligned flaky particles,the shielding effectiveness obtained by the proposed scheme and experiment data is higher than that the random case,e.g.about 20 dB higher at 750 MHz.The proposed scheme is a straightforward method for optimizing future composite designs.

  9. ITER blanket, shield and material data base

    International Nuclear Information System (INIS)

    As part of the summary of the Conceptual Design Activities (CDA) for the International Thermonuclear Experimental Reactor (ITER), this document describes the ITER blanket, shield, and material data base. Part A, ''ITER Blanket and Shield Conceptual Design'', discusses the need for ITER of a tritium breeding blanket to supply most of the tritium for the fuel cycle of the device. Blanket and shield combined must be designed to operate at a neutron wall loading of 1MW/m2, and to provide adequate shielding of the magnets to meet the neutron energy fluence goal of 3MWa/m2 at the first wall. After a summary of the conceptual design, the following topics are elaborated upon: (1) function, design requirement, and critical issues; (2) material selection; (3) blanket and shield segmentation; (4) blanket design description; (5) design analysis; (6) shield; (7) radiation streaming analysis; and (8) a summary of benchmark calculations. Part B, ''ITER Materials Evaluation and Data Base'', treats the compilation and assessment of the available materials data base used for the selection of the appropriate materials for all major components of ITER, including (i) structural materials for the first wall, (ii) Tritium breeding materials for the blanket, (iii) plasma facing materials for the divertor and first wall armor, and (4) electric insulators for use in the blanket and divertor. Refs, figs and tabs

  10. Corrugation Stuffed Shield for Spacecraft and Its Performance

    Institute of Scientific and Technical Information of China (English)

    LIU You-ying; WANG Hai-fu

    2006-01-01

    A corrugation stuffed shield system protecting spacecrafts against meteoroid and orbital debris (M/OD) is presented. The semi-empirical ballistic limit equations (BLEs)defining the protection capability of the shield system are given, an d the shielding performance is also discussed. The corrugation stuffed shield (CSS) is more effective than stuffed Whipple shield for M/OD protection,and its shielding performance will be improved significantly as increasing the impact angle. Orbital debris up to 1cm in diameter can be shielded effectively as increasing the impact angle to 25° at the corrugated angle of 30°. The results are significant to spacecraft design.

  11. Space Shielding Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    R. Lewis

    2006-01-20

    At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower mass than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and

  12. Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

    2008-10-31

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured

  13. Progress and prospects of calculation methods for radiation shielding

    International Nuclear Information System (INIS)

    Progress in calculation methods for radiation shielding are reviewed based on the activities of research committees related to radiation shielding fields established in the Atomic Energy Society of Japan. A technological roadmap for the field of radiation shielding; progress and prospects for specific shielding calculation methods such as the Monte Carlo, discrete ordinate Sn transport, and simplified methods; and shielding experiments used to validate calculation methods are presented in this paper. (author)

  14. Numerical Models for the Study of Electromagnetic Shielding

    Directory of Open Access Journals (Sweden)

    POPA Monica

    2012-10-01

    Full Text Available The paper presents 2D and 3D models for the study of electromagnetic shielding of a coil. The magnetic fields are computed for defining the shielding effectiveness. Parametrized numerical studies were performed in order to established the influence of shield thickness and height on magnetic field in certain points located in the exterior of coil – shield setup and on induced power within the shield.

  15. Shielding integrity testing of radioactive material transport packaging

    International Nuclear Information System (INIS)

    Although this Code of Practice is intended primarily to cover shielding integrity test requirements for off-site shielded radioactive material transport packaging, it may also be partly applicable to containers and specialised handling equipment (e.g. fuelling machines) used only on site, and to radiation shielding generally. The code is not concerned with proving adequacy of shielding design or with its absolute shielding value. (author)

  16. Verification of shielding calculation on the DIII-D facility at La Jolla, California

    International Nuclear Information System (INIS)

    Shielding calculations were performed for the DIII-D facility at La Jolla to independently assess the biological dose from radiation emitted during operation. These calculations for both the fully shielded and bare configurations are in essential agreement with those done by Gulf. In addition to the basic test problems run by Gulf, a bare configuration with additional air outside the facility area was calculated. The addition of air to the bare configuration caused the dose at 100 meters from the DIII-D center-line to increase by fifty five percent. The inclusion of the various elemental constituents in the soil composition may change the calculated dose, but will not change the shielding factor nor invalidate the overall conclusion of this report. The overall conclusion is that Gulf and LLNL results are in general agreement. 5 refs., 11 figs., 5 tabs

  17. Study and installation of concrete shielding in the civil engineering of nuclear construction (1960)

    International Nuclear Information System (INIS)

    The object of this report is to give technical information about high density concretes which have become very important for radiation biological shielding. The most generally used heavy aggregates (barytes, ilmenite, ferrophosphorus, limonite, magnetite and iron punching) to make these concretes are investigated from the point of view prospecting and physical and chemical characteristics. At first, a general survey of shielding concretes is made involving the study of components, mixing and placing methods, then, a detailed investigation of some high density concretes: barytes concrete, with incorporation of iron punching or iron shot, ferrophosphorus concrete, ilmenite concrete and magnetite concrete, more particularly with regard to grading and mix proportions and testing process. To put this survey in concrete form, two practical designs are described such as they have been carried out at the Saclay Nuclear Station. Specifications are given for diverse concretes and for making the proton-synchrotron 'Saturne' shielding blocks. (author)

  18. Shorter Life Span of Microorganisms and Plants as a Consequence of Shielded Magnetic Environment

    Science.gov (United States)

    Dobrota, C.; Piso, I. M.; Bathory, D.

    The geomagnetic field is an essential environmental factor for life and health on this planet. In order to survey how magnetic fields affect the life span and the nitrogenase (an iron-sulphur enzyme) activity of Azotobacter chroococcum as well as the life span, the main organic synthesis and the water balance of plants (22 species), the biological tests were incubated under shielded magnetic field and also in normal geo-magnetic environment. The shielding level was about 10-6 of the terrestrial magnetic field.Life cycles of all organisms require the co-ordinated control of a complex set of interlocked physiological processes and metabolic pathways. Such processes are likely to be regulated by a large number of genes. Our researches suggest that the main point in biological structures, which seems to be affected by the low magnetic environment, is the water molecule. Magnetic field induces a molecular alignment. Under shielded conditions, unstructured water molecules with fewer hydrogen bonds, which are producing a more reactive environment, are occurring. As compared to control, the life span of both microorganisms and plants was shorter in shielded environment. A higher nitrogenase affinity for the substrate was recorded in normal geo-magnetic field compared to low magnetic field. The synthesis of carbohydrates, lipids, proteins and enzymes was modified under experimental conditions. The stomatal conductance was higher between 158 and 300% in shielded environment indicating an important water loss from the plant cells.Our results support the idea that the shielded magnetic environment induces different reactions depending on the time of exposure and on the main metabolic pathways of the cells.

  19. Analytic Ballistic Performance Model of Whipple Shields

    Science.gov (United States)

    Miller, J. E.; Bjorkman, M. D.; Christiansen, E. L.; Ryan, S. J.

    2015-01-01

    The dual-wall, Whipple shield is the shield of choice for lightweight, long-duration flight. The shield uses an initial sacrificial wall to initiate fragmentation and melt an impacting threat that expands over a void before hitting a subsequent shield wall of a critical component. The key parameters to this type of shield are the rear wall and its mass which stops the debris, as well as the minimum shock wave strength generated by the threat particle impact of the sacrificial wall and the amount of room that is available for expansion. Ensuring the shock wave strength is sufficiently high to achieve large scale fragmentation/melt of the threat particle enables the expansion of the threat and reduces the momentum flux of the debris on the rear wall. Three key factors in the shock wave strength achieved are the thickness of the sacrificial wall relative to the characteristic dimension of the impacting particle, the density and material cohesion contrast of the sacrificial wall relative to the threat particle and the impact speed. The mass of the rear wall and the sacrificial wall are desirable to minimize for launch costs making it important to have an understanding of the effects of density contrast and impact speed. An analytic model is developed here, to describe the influence of these three key factors. In addition this paper develops a description of a fourth key parameter related to fragmentation and its role in establishing the onset of projectile expansion.

  20. Shielding design to obtain compact marine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Akio; Sako, Kiyoshi (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)

    1994-06-01

    The marine reactors equipped in previously constructed nuclear ships are in need of the secondary shield which is installed outside the containment vessel. Most of the weight and volume of the reactor plants are occupied by this secondary shield. An advanced marine reactor called MRX (Marine Reactor X) has been designed to obtain a more compact and lightweight marine reactor with enhanced safety. The MRX is a new type of marine reactor which is an integral PWR (The steam generator is installed in the pressure vessel.) with adopting a water-filled containment vessel and a new shielding design method of no installation of the secondary shield. As a result, MRX is considerably lighter in weight and more compact in size as compared with the reactors equipped in previously constructed nuclear ships. For instance, the plant weight and volume of the containment vessel of MRX are about 50% and 70% of those of the Nuclear Ship MUTSU, in spite of the power of MRX is 2.8 times as large as the MUTSU's reactor. The shielding design calculation was made using the ANISN, DOT3.5, QAD-CGGP2 and ORIGEN codes. The computational accuracy was confirmed by experimental analyses. (author).

  1. Preliminary Thermal Design of Cryogenic Radiation Shielding

    Science.gov (United States)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  2. Shielding Development for Nuclear Thermal Propulsion

    Science.gov (United States)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  3. Intercalated graphite fiber composites as EMI shields in aerospace structures

    Science.gov (United States)

    Gaier, James R.

    1992-01-01

    The requirements for electromagnetic interference (EMI) shielding in aerospace structures are more complicated than those for ground structures because of their weight limitations. As a result, the best EMI shielding materials must combine low density, high strength, and high elastic modulus with high shielding ability. EMI shielding characteristics were calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compare to preliminary experimental results for these materials and to the characteristics of shields made from aluminum. Calculations indicate that effective EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding characteristics alone.

  4. Manufacture of blanket shield modules for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetto, P. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: Patrick.Lorenzetto@tech.efda.org; Boireau, B. [AREVA Centre Technique de Framatome, BP181, F-71200 Le Creusot (France); Boudot, C. [AREVA Centre Technique de Framatome, BP181, F-71200 Le Creusot (France); Bucci, P. [CEA, DTEN/S3ME/LMIC, 17 rue des Martyrs, F-38054 Grenoble (France); Furmanek, A. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany); Ioki, K. [ITER IT, Boltzmannstr. 2, D-85748 Garching (Germany); Liimatainen, J. [Metso Powdermet, P.O. Box 306, FIN-33101 Tampere (Finland); Peacock, A. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany); Sherlock, P. [NNC Ltd., Booths Hall, Knutsford, Cheshire WA16 8QZ (United Kingdom); Taehtinen, S. [VTT Industrial Systems, P.O. Box 1704, Espoo, FIN-02044 VTT (Finland)

    2005-11-15

    A research and development programme for the ITER blanket shield modules has been implemented in Europe to provide input for the design and the manufacture of the full-scale production components. It involves in particular the fabrication and testing of mock-ups (small scale and medium scale) and full-scale prototypes of shield blocks (SB) and first wall (FW) panels. The manufacturing feasibility of FW panels has been demonstrated for two copper alloy candidates. Two designs have been developed for the manufacture of the SB, one for a conventional fabrication route and one for a fabrication route based on the hot isostatic press technology. This paper presents the fabrication routes developed in Europe for the manufacture of the ITER Shield modules.

  5. Accelerator shielding experts meet at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Fifteen years after its first CERN edition, the Shielding Aspects of Accelerator, Targets and Irradiation Facility (SATIF) conference was held again here from 2-4 June. Now at its 10th edition, SATIF10 brought together experts from all over the world to discuss issues related to the shielding techniques. They set out the scene for an improved collaboration and discussed novel shielding solutions.   This was the most attended meeting of the series with more than 65 participants from 34 institutions and 14 countries. “We welcomed experts from many different laboratories around the world. We come from different contexts but we face similar problems. In this year’s session, among other things, we discussed ways for improving the effectiveness of calculations versus real data, as well as experimental solutions to investigate the damage that radiation produces on various materials and the electronics”, says Marco Silari, Chair of the conference and member of the DGS/RP gro...

  6. Calculation system analysis for radiation shielding

    International Nuclear Information System (INIS)

    This work consists of the computational system implementation for nuclear reactor shielding analysis. The system has as objectives to facilitate the installation of the calculation framework, problem set-up, and results analysis. Several computational programmes commonly used for cross-section preparation and radiation transport were chosen for the system. This work represents the capacity necessary for nuclear reactor and particle accelerator shielding design, to aid in nuclear experiments and in the utilization of nuclear techniques that require the radiation field calculation. The system was implemented in PC-DOS environment and consists of the necessary and sufficient programs and data for generation of the cross sections, groups constants, self-shielding factors, activation sources, for the calculation of neutron and gamma-ray fluence, dose rates, and other types of response functions. (author). 11 refs., 8 figs

  7. Calculated shielding factors for selected European houses

    International Nuclear Information System (INIS)

    Shielding factors for gamma radiation from activity deposited on structures and ground surfaces have been calculated with the computer model DEPSHIELD for single-family and multi-storey buildings in France, United Kingdom and Denmark. For all three countries it was found that the shielding factors for single-family houses are approximately a factor of 2 - 10 higher that those for buildings with five or more storeys. Away from doors and windows the shielding factors for French, British, and Danish single-family houses are in the range 0.03 - 0.1, 0.06 - 0.4, and 0.07 - 0.3, respectively. The uncertainties of the calculations are discussed and DEPSHIELD-results are compared with other methods as well as with experimental results. (author)

  8. Vehicle drive module having improved EMI shielding

    Science.gov (United States)

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-11-28

    EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  9. Radiation safety shield for a syringe

    International Nuclear Information System (INIS)

    Safety apparatus for use in administering radioactive serums by a syringe, without endangering the health and safety of the medical operators is described. The apparatus consists of a sheath and a shield which can be retracted into the sheath to assay the radioactive serum in an assay well. The shield can be moved from the retracted position into an extended position when the serum is to be injected into the patient. To protect the operator, the shield can be constructed of tantalum or any like high density substance to attenuate the radiation, emanating from the radioactive serums contained in the syringe, from passing to the atmosphere. A lead glass window is provided so that the operator can determine the exact quantity of the radioactive serum which is contained in the syringe

  10. Radiation shielding effectiveness of newly developed superconductors

    Science.gov (United States)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  11. Evaluation of Spacecraft Shielding Effectiveness for Radiation Protection

    Science.gov (United States)

    Cucinotta, Francis A.; Wilson, John W.

    1999-01-01

    The potential for serious health risks from solar particle events (SPE) and galactic cosmic rays (GCR) is a critical issue in the NASA strategic plan for the Human Exploration and Development of Space (HEDS). The excess cost to protect against the GCR and SPE due to current uncertainties in radiation transmission properties and cancer biology could be exceedingly large based on the excess launch costs to shield against uncertainties. The development of advanced shielding concepts is an important risk mitigation area with the potential to significantly reduce risk below conventional mission designs. A key issue in spacecraft material selection is the understanding of nuclear reactions on the transmission properties of materials. High-energy nuclear particles undergo nuclear reactions in passing through materials and tissue altering their composition and producing new radiation types. Spacecraft and planetary habitat designers can utilize radiation transport codes to identify optimal materials for lowering exposures and to optimize spacecraft design to reduce astronaut exposures. To reach these objectives will require providing design engineers with accurate data bases and computationally efficient software for describing the transmission properties of space radiation in materials. Our program will reduce the uncertainty in the transmission properties of space radiation by improving the theoretical description of nuclear reactions and radiation transport, and provide accurate physical descriptions of the track structure of microscopic energy deposition.

  12. Experimental analysis of an MIM capacitor with a concave shield

    Institute of Scientific and Technical Information of China (English)

    Liu Lintao; Yu Mingyan; Wang Jinxiang

    2009-01-01

    A novel shielding scheme is developed by inserting a concave shield between a metal-insulator-metal (MIM) capacitor and the silicon substrate. Chip measurements reveal that the concave shield improves the quality factor by 11 % at 11.8 GHz and 14% at 18.8 GHz compared with an unshielded MIM capacitor. It also alleviates the effect on shunt capacitance between the bottom plate of the MIM capacitor and the shield layer. Moreover, because the concave shields simplify substrate modeling, a simple circuit model of the MIM capacitor with concave shield is presented for radio frequency applications.

  13. Compilation of the computing methods in radiation shielding

    International Nuclear Information System (INIS)

    In order to update the KAERI radiation shielding technology, the calculational shielding methods were surveyed throughly. Computer codes and data libraries for radiation shielding calculation were collected and some model calculations were carried out with them. So far the following materials were ensured for our future use: 23 shielding codes, 7 data libraries, 7 data processing codes and 11 peripheral shielding codes. All of these were compiled again for the CYBER-73 computer system, and will be widely used in shielding analysis of accelerators, shipping casks as well as nuclear power plant. (author)

  14. Novel Concepts for Radiation Shielding Materials

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    It is critical that safety factors be maximized with respect to long duration, extraterrestrial space flight. Any significant improvement in radiation protection will be critical in ensuring the safety of crew and hardware on such missions. The project goal is to study novel concepts for radiation shielding materials that can be used for long-duration space missions. As part of this project we will investigate the use of thin films for the evaluation of a containment system that can retain liquid hydrogen and provide the necessary hydrogen density for effective shielding.

  15. [Electromagnetic Shielding Alters Behaviour of Rats].

    Science.gov (United States)

    Temuryants, N A; Kostyuk, A S; Tumanyants, K N

    2015-01-01

    It has been found that long-term electromagnetic shielding (19 hours per day for 10 days) leads to an increase in the duration of passive swimming time in male rats, decrease the duration of active swimming in the "forced swim" test as well as decrease of libido. On the other hand animals kept under the "open field" conditions do not show significant deviations from their normal behavior. Therefore, one could conclude that moderate electromagnetic shielding causes a depression-like state in rats. PMID:26080600

  16. Scale-PC shielding analysis sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, S.M.

    1996-05-01

    The SCALE computational system is a modular code system for analyses of nuclear fuel facility and package designs. With the release of SCALE-PC Version 4.3, the radiation shielding analysis community now has the capability to execute the SCALE shielding analysis sequences contained in the control modules SAS1, SAS2, SAS3, and SAS4 on a MS- DOS personal computer (PC). In addition, SCALE-PC includes two new sequences, QADS and ORIGEN-ARP. The capabilities of each sequence are presented, along with example applications.

  17. Shielding effectiveness of rectangular cavity made of a new shielding material and resonance suppression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    New shielding material has become an alternative to traditional metal to shield boxes from electromagnetic interferences. This article introduces the theory of transmission line method to study the shield boxes made of a new sort of material, and then expands the fundamental formulas to deal with the cases of multiple holes and polarization with arbitrary angle. By means of genetic algorithms with the aid of a three dimensional simulation tool, the damping of electromagnetic resonances in enclosures is researched.The computation indicates that under resonant frequency, electromagnetic resonance results in low, even negative shielding coefficient; whereas, for the same areas, shielding effectiveness of a single hole is worse than that of multiple holes. Shielding coefficient varies when polarization angle increases, and the coupled field through the rectangular aperture with the long side parallel to the thin wire is much weaker than that with the long side vertical to the thin wire. By using the metallic-loss dielectric layer of optimized calculation on the internal surface of the cavity, the best result of resonance suppression has been realized with the same thickness of coating. Finally, according to the calculation result, suggestions for shielding are proposed.

  18. Botulinum Neurotoxin Is Shielded by NTNHA in an Interlocked Complex

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Shenyan; Rumpel, Sophie; Zhou, Jie; Strotmeier, Jasmin; Bigalke, Hans; Perry, Kay; Shoemaker, Charles B.; Rummel, Andreas; Jin, Rongsheng (Cornell); (Tufts); (Hannover-MED); (Sanford-Burnham)

    2012-03-28

    Botulinum neurotoxins (BoNTs) are highly poisonous substances that are also effective medicines. Accidental BoNT poisoning often occurs through ingestion of Clostridium botulinum-contaminated food. Here, we present the crystal structure of a BoNT in complex with a clostridial nontoxic nonhemagglutinin (NTNHA) protein at 2.7 angstroms. Biochemical and functional studies show that NTNHA provides large and multivalent binding interfaces to protect BoNT from gastrointestinal degradation. Moreover, the structure highlights key residues in BoNT that regulate complex assembly in a pH-dependent manner. Collectively, our findings define the molecular mechanisms by which NTNHA shields BoNT in the hostile gastrointestinal environment and releases it upon entry into the circulation. These results will assist in the design of small molecules for inhibiting oral BoNT intoxication and of delivery vehicles for oral administration of biologics.

  19. Passive magnetic shielding in static gradient fields

    Science.gov (United States)

    Bidinosti, C. P.; Martin, J. W.

    2014-04-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied for two idealized shield models: concentric spherical and infinitely-long cylindrical shells of linear material. It is found that higher-order multipoles of an externally applied magnetic field are always shielded progressively better for either geometry by a factor related to the order of the multipole. In regard to the design of internal coil systems, we determine reaction factors for the general multipole field and provide examples of how one can take advantage of the coupling of the coils to the innermost shell to optimize the uniformity of the field. Furthermore, we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields close to the outermost shell. Overall this work provides a comprehensive framework that is useful for the analysis and optimization of dc magnetic shields, serving as a theoretical and conceptual design guide as well as a starting point and benchmark for finite-element analysis.

  20. MPACT Subgroup Self-Shielding Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Stimpson, Shane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yuxuan [Univ. of Michigan, Ann Arbor, MI (United States); Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clarno, Kevin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-31

    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The next improvement that is covered is what is currently being termed as “Lumped Parameter MOC”. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.

  1. The Tower Shielding Facility: Its glorious past

    Energy Technology Data Exchange (ETDEWEB)

    Muckenthaler, F.J.

    1997-05-07

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

  2. The Tower Shielding Facility: Its glorious past

    International Nuclear Information System (INIS)

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports

  3. EMP coupling to multiconductor shielded cables

    International Nuclear Information System (INIS)

    A method is presented for calculating EMP coupling to multiconductor shielded cables by electromagnetic pulse. The induced voltage of inner conductor of the SYV-50-7 cable and SYVZ-9 cable placed on the ground are computed. The computed results agree with those measured

  4. Oxygen Abundance Measurements of SHIELD Galaxies

    CERN Document Server

    Haurberg, Nathalie C; Cannon, John M; Marshall, Melissa V

    2015-01-01

    We have derived oxygen abundances for 8 galaxies from the Survey of HI in Extremely Low-mass Dwarfs (SHIELD). The SHIELD survey is an ongoing study of very low-mass galaxies, with M$_{\\rm HI}$ between 10$^{6.5}$ and 10$^{7.5}$ M$_{\\odot}$, that were detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. H$\\alpha$ images from the WIYN 3.5m telescope show that these 8 SHIELD galaxies each possess one or two active star-forming regions which were targeted with long-slit spectral observations using the Mayall 4m telescope at KPNO. We obtained a direct measurement of the electron temperature by detection of the weak [O III] $\\lambda$4363 line in 2 of the HII regions. Oxygen abundances for the other HII regions were estimated using a strong-line method. When the SHIELD galaxies are plotted on a B-band luminosity-metallicity diagram they appear to suggest a slightly shallower slope to the relationship than normally seen. However, that offset is systematically reduced when the near-infrared luminosity is used ins...

  5. Bose-Einstein Condensate and Gravitational Shielding

    OpenAIRE

    De Aquino, Fran

    2014-01-01

    In this work we show that when possible transform some types of substance into a Bose-Einstein condensate at room temperature, which exists long enough to be used in practice then will be possible to use these substances in order to create efficient Gravitational Shieldings.

  6. Technical specifications: Tower Shielding Reactor II

    International Nuclear Information System (INIS)

    The technical specifications define the key limitations that must be observed for safe operation of the Tower Shielding Reactor II (TSR-II) and an envelope of operation within which there is reasonable assurance that these limits cannot be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  7. Neutron shielding for particle astrophysics experiments

    CERN Document Server

    McMillan, J E

    2005-01-01

    Particle astrophysics experiments often require large volume neutron shields which are formed from hydrogenous material. This note reviews some of the available materials in an attempt to find the most cost effective solution. Raw polymer pellets and Water Extended Polyester (WEP) ae discussed in detail. Suppliers for some materials are given.

  8. Lightweight concrete with enhanced neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2016-09-13

    A lightweight concrete containing polyethylene terephthalate in an amount of 20% by total volume. The concrete is enriched with hydrogen and is therefore highly effective at thermalizing neutrons. The concrete can be used independently or as a component of an advanced neutron radiation shielding system.

  9. Early test facilities and analytic methods for radiation shielding: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.T. (comp.) (Oak Ridge National Lab., TN (United States)); Ingersoll, J.K. (comp.) (Tec-Com, Knoxville, TN (United States))

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

  10. Summary of Prometheus Radiation Shielding Nuclear Design Analyses , for information

    International Nuclear Information System (INIS)

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL and Bettis) shielding nuclear design analyses done for the project

  11. Early test facilities and analytic methods for radiation shielding: Proceedings

    International Nuclear Information System (INIS)

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone?, a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory

  12. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    Energy Technology Data Exchange (ETDEWEB)

    J. Stephens

    2006-01-13

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  13. Methods for calculating radiation attenuation in shields

    International Nuclear Information System (INIS)

    In recent years the development of high-speed digital computers of large capacity has revolutionized the field of reactor shield design. For compact special-purpose reactor shields, Monte-Carlo codes in two- and three dimensional geometries are now available for the proper treatment of both the neutron and gamma- ray problems. Furthermore, techniques are being developed for the theoretical optimization of minimum-weight shield configurations for this type of reactor system. In the design of land-based power reactors, on the other hand, there is a strong incentive to reduce the capital cost of the plant, and economic considerations are also relevant to reactors designed for merchant ship propulsion. In this context simple methods are needed which are economic in their data input and computing time requirements and which, at the same time, are sufficiently accurate for design work. In general the computing time required for Monte-Carlo calculations in complex geometry is excessive for routine design calculations and the capacity of the present codes is inadequate for the proper treatment of large reactor shield systems in three dimensions. In these circumstances a wide range of simpler techniques are currently being employed for design calculations. The methods of calculation for neutrons in reactor shields fall naturally into four categories: Multigroup diffusion theory; Multigroup diffusion with removal sources; Transport codes; and Monte Carlo methods. In spite of the numerous Monte- Carlo techniques which are available for penetration and back scattering, serious problems are still encountered in practice with the scattering of gamma rays from walls of buildings which contain critical facilities and also concrete-lined discharge shafts containing irradiated fuel elements. The considerable volume of data in the unclassified literature on the solution of problems of this type in civil defence work appears not to have been evaluated for reactor shield design. In

  14. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  15. Flux trapping and shielding in irreversible superconductors

    International Nuclear Information System (INIS)

    Flux trappings and shielding experiments were carried out on Pb, Nb, Pb-Bi, Nb-Sn, and Nb-Ti samples of various shapes. Movable Hall probes were used to measure fields near or inside the samples as a function of position and of applied field. The trapping of transverse multipole magnetic fields in tubular samples was accomplished by cooling the samples in an applied field and then smoothly reducing the applied field to zero. Transverse quadrupole and sextupole fields with gradients of over 2000 G/cm were trapped with typical fidelity to the original impressed field of a few percent. Transverse dipole fields of up to 17 kG were also trapped with similar fidelity. Shielding experiments were carried out by cooling the samples in zero field and then gradually applying an external field. Flux trapping and shielding abilities were found to be limited by two factors, the pinning strength of the material, and the susceptibility of a sample to flux jumping. The trapping and shielding behavior of flat disk samples in axial fields and thin-walled tubular samples in transverse fields was modeled. The models, which were based on the concept of the critical state, allowed a connection to be made between the pinning strength and critical current level, and the flux trapping and shielding abilities. Adiabatic and dynamic stability theories are discussed and applied to the materials tested. Good qualitative, but limited quantitative agreement was obtained between the predictions of the theoretical stability criteria and the observed flux jumping behavior

  16. Updating the theoretical analysis of the weak gravitational shielding experiment

    CERN Document Server

    Modanese, G

    1996-01-01

    The most recent data about the weak gravitational shielding produced recently through a levitating and rotating HTC superconducting disk show a very weak dependence of the shielding value ($\\sim 1 \\%$) on the height above the disk. We show that whilst this behaviour is incompatible with an intuitive vectorial picture of the shielding, it is consistently explained by our theoretical model. The expulsive force observed at the border of the shielded zone is due to energy conservation.

  17. On New Limits of the Coefficient of Gravitation Shielding

    Indian Academy of Sciences (India)

    Michele Caputo

    2006-12-01

    New limits of the shielding coefficients in the supposed phenomenon of gravitation shielding have recently become available. The new values are briefly reviewed and discussed in order to update the state of art since some new limits for gravitation shielding are not necessarily the lowest ones which, instead, are those of interest when planning new experimental research or studying theoretically the possible effects of gravitation shielding.

  18. Development of radiation shielding standards in the American Nuclear Society

    International Nuclear Information System (INIS)

    The American Nuclear Society (ANS) is a standards-writing organization-member of the American National Standards Institute (ANSI). The ANS Standards Committee has a subcommittee denoted ANS-6, Shielding, whose charge is to establish standards in connection with radiation protection and shielding, to provide shielding information to other standards writing groups, and to prepare recommended sets of shielding data and test problems. This paper is a progress report of this subcommittee

  19. Layered shielding design for an active neutron interrogation system

    Science.gov (United States)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  20. Combination of self-shielded and gas-shielded flux-cored arc welding

    OpenAIRE

    Lian, Atle Korsnes

    2011-01-01

    This master thesis have consisted of experimental and theoretical studies of the change in microstructure and mechanical properties in intermixed weld metal from self-shielded and gas-shielded flux-cored welding wires. The main objective of the present thesis has been to do detailed metallographic analysis on different weld metal combinations, and find out and give an explanation why satisfying values were achieved or not achieved.The report is divided into four parts. Part one consists of re...

  1. Electromagnetic shielding. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-06-01

    The bibliography presents research on electromagnetic shielding of electronic and electrical equipment personnel, and ordnance. The shielding effectiveness of materials and structures is covered. Nuclear electromagnetic pulse shielding is included. This updated bibliography contains 301 abstracts, 19 of which are new entries to the previous edition.

  2. Advanced materials and design for electromagnetic interference shielding

    CERN Document Server

    Tong, Xingcun Colin

    2008-01-01

    Exploring the role of EMI shielding in EMC design, this book introduces the design guidelines, materials selection, characterization methodology, manufacturing technology, and future potential of EMI shielding. It covers an array of issues in advanced shielding materials and design solutions, including enclosures and composites.

  3. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous...

  4. 21 CFR 886.4750 - Ophthalmic eye shield.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic eye shield. 886.4750 Section 886.4750...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4750 Ophthalmic eye shield. (a) Identification. An ophthalmic eye shield is a device that consists of a plastic or aluminum eye covering intended...

  5. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  6. How stable are the 'stable ancient shields'?

    Science.gov (United States)

    Viola, Giulio; Mattila, Jussi

    2014-05-01

    "Archean cratons are relatively flat, stable regions of the crust that have remained undeformed since the Precambrian, forming the ancient cores of the continents" (King, EPSL, 2005). While this type of statement is supported by a wealth of constraints in the case of episodes of thoroughgoing ductile deformation affecting shield regions of Archean and also Peleoproterozoic age, a growing amount of research indicates that shields are not nearly as structurally stable within the broad field of environmental conditions leading to brittle deformation. In fact, old crystalline basements usually present compelling evidence of long brittle deformation histories, often very complex and challenging to unfold. Recent structural and geochronological studies point to a significant mechanical instability of the shield areas, wherein large volumes of 'stable' rocks actually can become saturated with fractures and brittle faults soon after regional cooling exhumes them to below c. 300-350° C. How cold, rigid and therefore strong shields respond to applied stresses remains, however, still poorly investigated and understood. This in turn precludes a better definition of the shallow rheological properties of large, old crystalline blocks. In particular, we do not yet have good constraints on the mechanisms of mechanical reactivation that control the partial (if not total) accommodation of new deformational episodes by preexisting structures, which remains a key to untangle brittle histories lasting several hundred Myr. In our analysis, we use the Svecofennian Shield (SS) as an example of a supposedly 'stable' region with Archean nucleii and Paleoproterozoic cratonic areas to show how it is possible to unravel the details of brittle histories spanning more than 1.5 Gyr. New structural and geochronological results from Finland are integrated with a review of existing data from Sweden to explore how the effects of far-field stresses are partitioned within a shield, which was growing

  7. A study on the shielding mechanisms of SOI pixel detector

    CERN Document Server

    Lu, Yunpeng; Wu, Zhigang; Ouyang, Qun; Arai, Yasuo

    2015-01-01

    In order to tackle the charge injection issue that had perplexed the counting type SOI pixel for years, two successive chips CPIXTEG3 and CPIXTEG3b were developed utilizing two shielding mechanisms, Nested-well and Double-SOI, in the LAPIS process. A TCAD simulation showed the shielding effectiveness influenced by the high sheet resistance of shielding layers. Test structures specially designed to measure the crosstalk associated to charge injection were implemented in CPIXTEG3/3b. Measurement results proved that using shielding layer is indispensable for counting type pixel and Double-SOI is superior to Nested-well in terms of shielding effectiveness and design flexibility.

  8. ANS shielding standards for light-water reactors

    International Nuclear Information System (INIS)

    The purpose of the American Nuclear Society Standards Subcommittee, ANS-6, Radiation Protection and Shielding, is to develop standards for radiation protection and shield design, to provide shielding information to other standards-writing groups, and to develop standard reference shielding data and test problems. A total of seven published ANS-6 standards are now current. Additional projects of the subcommittee, now composed of nine working groups, include: standard reference data for multigroup cross sections, gamma-ray absorption coefficients and buildup factors, additional benchwork problems for shielding problems and energy spectrum unfolding, power plant zoning design for normal and accident conditions, process radiation monitors, and design for postaccident radiological conditions

  9. Measurement of shielding characteristics in the prototype FBR Monju

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Shin; Sasaki, Kenji; Deshimaru, Takehide; Nakashima, Fumiaki [Japan Nuclear Cycle Development Institute, Tsuruga, Fukui (Japan)

    2000-03-01

    In the prototype fast breeder reactor Monju, shielding measurements were made around the reactor core, the primary heat transport system (PHTS), and the fuel handling and storage system during the system start-up tests at different power levels between 0% and 45%. The objectives of the tests were to evaluate the margins by which the shielding performance exceeds the original design requirements, to demonstrate the validity of the shielding analysis method, and to acquire basic data for use in future FBR design. This paper summarizes the important features of the Monju shielding structures and the shielding measurement. (author)

  10. Shield Insertion to Minimize Noise Amplitude in Global Interconnects

    Directory of Open Access Journals (Sweden)

    Kalpana.A.B

    2012-09-01

    Full Text Available Shield insertion is an effective technique for minimise crosstalk noise and signal delay uncertainty .To reduce the effects of coupling uniform or simultaneous shielding may be used on either or both sides of a signal line. Shields are ground or power lines placed between two signal wires to prevent direct coupling between them as the shield width increases, the noise amplitude decreases, in this paper inserting a shield line between two coupled interconnects is shown to be more effective in reducing crosstalk noise for different technology nodes .

  11. Shielding performance of metal fiber composites

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; WU Bin; CHEN Ze-fei

    2004-01-01

    Metal fibers have been applied to construct composites with desirable electromagnetic interference shiel ding effectiveness and mechanical properties. Copper and stainless steel fibers were prepared with micro-saw fiberpulling combined cutting method. The cross section of the fibers is hook-like, which is beneficial to the improvement of bonding strength. Cement-based composites with copper and stainless steel fibers were fabricated and their electromagnetic shielding effectiveness was measured in the frequency range of 1 - 5 GHz. The results show that the electromagnetic interference shielding effectiveness of those composites is enhanced by the addition of metal fibers,which functions mainly due to the absorption. At some frequencies, 20 dB or more difference is obtained between the materials with and without metal fibers.

  12. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  13. Operating manual for the Tower Shielding Facility

    International Nuclear Information System (INIS)

    This manual provides information necessary to operate and perform maintenance on the reactor systems and all equipment or systems which can affect their operation or the safety of personnel at the Tower Shielding Facility. The first four chapters consist of introductory and descriptive material of benefit to personnel in training, the qualifications required for training, the responsibilities of the personnel in the organization, and the procedures for reviewing proposed experiments. Chapter 8, Emergency Procedures, is also a necessary part of the indoctrination of personnel. The procedures for operation of the Tower Shielding Reactor (TSR-II), its water cooling system, and the main tower hoists are outlined in Chapters 5, 6, and 7. The Technical Specification surveillance requirements for the TSR-II are summarized in Chapter 9. The maintenance and calibration schedule is spelled out in Chapter 10. The procedures for assembly and disassembly of the TSR-II are outlined in Chapter 11

  14. SHIELD II: WSRT HI Spectral Line Observations

    Science.gov (United States)

    Gordon, Alex Jonah Robert; Cannon, John M.; Adams, Elizabeth A.; SHIELD II Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We present new results from WSRT HI spectral line observations of 22 galaxies in the SHIELD II sample. We explore the morphology and kinematics by comparing images of the HI surface densities and the intensity weighted velocity fields with optical images from HST, SDSS, and WIYN. In most cases the HI and stellar populations are cospatial; projected rotation velocities range from less than 10 km/s to roughly 30 km/s.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College, and by NASA through grant GO-13750 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  15. In-Beam Background Suppression Shield

    CERN Document Server

    Santoro, V; DiJulio, D D; Ansell, S; Bentley, P M

    2015-01-01

    The long (3ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument capabilities will be limited by it's Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks .

  16. SHIELD II: VLA HI Spectral Line Observations

    Science.gov (United States)

    Lee, Eojin; Cannon, John M.; McNichols, Andrew; Teich, Yaron; SHIELD II Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We present new results from low-resolution D-configuration VLA HI spectral line observations of 6 galaxies in the SHIELD II sample. We explore the morphology and kinematics by comparing images of the HI surface densities and the intensity weighted velocity fields with optical images from SDSS and WIYN. These data allow us to localize the HI gas and to study the bulk neutral gas kinematics.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  17. EMC Test Report Electrodynamic Dust Shield

    Science.gov (United States)

    Carmody, Lynne M.; Boyette, Carl B.

    2014-01-01

    This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.

  18. Grounding and shielding circuits and interference

    CERN Document Server

    Morrison, Ralph

    2016-01-01

    Applies basic field behavior in circuit design and demonstrates how it relates to grounding and shielding requirements and techniques in circuit design This book connects the fundamentals of electromagnetic theory to the problems of interference in all types of electronic design. The text covers power distribution in facilities, mixing of analog and digital circuitry, circuit board layout at high clock rates, and meeting radiation and susceptibility standards. The author examines the grounding and shielding requirements and techniques in circuit design and applies basic physics to circuit behavior. The sixth edition of this book has been updated with new material added throughout the chapters where appropriate. The presentation of the book has also been rearranged in order to reflect the current trends in the field.

  19. Radioisotope Power System Facility shielding analysis

    International Nuclear Information System (INIS)

    A series of calculations for the Radioisotope Power System Facility have been performed. These analyses have determined the shielding required for storage, testing, and transport of 238Pu heat source modules using the Monte Carlo code MCNP3B. The source terms and the assumptions used have been verified by comparison of calculated dose rates with measured ones. This paper describes the methodology used for shielding designs and the utilization of available variance reduction techniques to improve the computational efficiency. The new version of MCNP (MCNP3B) with a repeated structure capability was used. It decreased the chance for computer model errors and greatly decreased the model setup time. 2 refs., 3 figs., 2 tabs

  20. Attenuation of X and Gamma Rays in Personal Radiation Shielding Protective Clothing.

    Science.gov (United States)

    Kozlovska, Michaela; Cerny, Radek; Otahal, Petr

    2015-11-01

    A collection of personal radiation shielding protective clothing, suitable for use in case of accidents in nuclear facilities or radiological emergency situations involving radioactive agents, was gathered and tested at the Nuclear Protection Department of the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. Attenuating qualities of shielding layers in individual protective clothing were tested via spectra measurement of x and gamma rays, penetrating them. The rays originated from different radionuclide point sources, the gamma ray energies of which cover a broad energy range. The spectra were measured by handheld spectrometers, both scintillation and High Purity Germanium. Different narrow beam geometries were adjusted using a special testing bench and a set of various collimators. The main experimentally determined quantity for individual samples of personal radiation shielding protective clothing was x and gamma rays attenuation for significant energies of the spectra. The attenuation was assessed comparing net peak areas (after background subtraction) in spectra, where a tested sample was placed between the source and the detector, and corresponding net peak areas in spectra, measured without the sample. Mass attenuation coefficients, which describe attenuating qualities of shielding layers materials in individual samples, together with corresponding lead equivalents, were determined as well. Experimentally assessed mass attenuation coefficients of the samples were compared to the referred ones for individual heavy metals. PMID:26425983

  1. SINBAD: Shielding integral benchmark archive and database

    International Nuclear Information System (INIS)

    SINBAD is a new electronic database developed to store a variety of radiation shielding benchmark data so that users can easily retrieve and incorporate the data into their calculations. SINBAD is an excellent data source for users who require the quality assurance necessary in developing cross-section libraries or radiation transport codes. The future needs of the scientific community are best served by the electronic database format of SINBAD and its user-friendly interface, combined with its data accuracy and integrity

  2. Adopting Number Sequences for Shielding Information

    OpenAIRE

    Mrs. Sandhya Maitra; Manish Bansal; Ms. Preety Gupta

    2014-01-01

    The advancement of technology and global communication networks puts up the question of safety of conveyed data and saved data over these media. Cryptography is the most efficient and feasible mode to transfer security services and also Cryptography is becoming effective tool in numerous applications for information security. This paper studies the shielding of information with the help of cryptographic function and number sequences. The efficiency of the given method is examined,...

  3. Shielding design for PWR in France

    Energy Technology Data Exchange (ETDEWEB)

    Champion, G.; Charransol; Le Dieu de Ville, A.; Nimal, J.C.; Vergnaud, T.

    1983-05-01

    Shielding calculation scheme used in France for PWR is presented here for 900 MWe and 1300 MWe plants built by EDF the French utility giving electricity. Neutron dose rate at areas accessible by personnel during the reactor operation is calculated and compared with the measurements which were carried out in 900 MWe units up to now. Measurements on the first French 1300 MWe reactor are foreseen at the end of 1983.

  4. Shielding calculations for the antiproton target area

    International Nuclear Information System (INIS)

    Shielding calculations performed in conjunction with the design of the Fermilab antiproton target hall are summarized. The following radiological considerations were examined: soil activation, residual activity of components, and beam-on radiation. In addition, at the request of the designers, the energy deposition in the proposed graphite beam dump was examined for several targeting conditions in order to qualitatively determine its ability to survive

  5. Homogeneous Dielectric Equivalents of Composite Material Shields

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper deals with the methodology of replacing complicated parts of an airplane skin by simple homogeneous equivalents, which can exhibit similar shielding efficiency. On one hand, the airplane built from the virtual homogeneous equivalents can be analyzed with significantly reduced CPU-time demands and memory requirements. On the other hand, the equivalent model can estimate the internal fields satisfactory enough to evaluate the electromagnetic immunity of the airplane.

  6. Hydrogen-induced cracking of drip shield

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S C

    1999-08-01

    A simple and conservative model has been developed to evaluate the effects of hydrogen-induced cracking on the drip shield. The basic premise of the model is that failure will occur once the hydrogen content exceeds a certain limit or critical value, HC. This model is very conservative because it assumes that, once the environmental and material conditions can support that particular corrosion process, failure will be effectively instantaneous. In the description of the HIC model presented in Section 6.1, extensive evidence has been provided to support a qualitative assessment of Ti-7 as an excellent choice of material for the drip shield with regard to degradation caused by hydrogen-induced cracking. LTCTF test data observed at LLNL, although unqualified, provides additional indication beyond a qualitative level that hydrogen concentration appears to be low in titanium materials. Quantitative evaluation based on the HIC model described in Section 6.1 indicates that the hydrogen concentration does not exceed the critical value. It is concluded that drip shield material (Ti-7) is able to sustain the effects of hydrogen-induced cracking.

  7. Critical Dimensionless Shields Values for Bankfull Flow

    Science.gov (United States)

    Bunte, K.; Abt, S. R.; Swingle, K. W.

    2009-12-01

    The critical dimensionless shear stress τ*c (depicted in the Shields curve as a function of the Reynolds particle number Rep) quantifies the slope - flow depth product at which particles from a relatively well-sorted bed with a mean particle size Dm visually start to move. Contrary to many applications of the Shields curve, τ*c was not designed to predict the bed particle size becoming mobile at bankfull flow. This study sketches a bankfull and a critical bankfull Shields-type curve needed to predict the bankfull mobile particle size. Most studies on bedmaterial entrainment are performed in streams that are wadeable at low flow, but exceed wadeability around bankfull flow. Within the bounds of these stream dimensions, the study drafts a relationship of τ*bf versus Rep (bankfull Shields curve) for a sequence of stream types (in sensu Montgomery and Buffington 1997) ranging from steep cobble headwater streams to plane-bed and pool-riffle gravel-beds to low gradient valley streams with sand and silt beds. Probable values of stream gradient, bed D50 size, and a (roughness corrected) hydraulic radius can be assigned to each stream type. The resulting bankfull curve takes values of τ*bf near 10 for silt and 1 for sand-bedded streams, drops to around 0.05 - 0.02 for mobile gravel-bed streams and then increases towards 0.1 and 0.2 for the steepest streams. Transforming τ*bf into the critical bankfull curve τ*cbf from which to predict the bankfull entrainable particle size requires information on the bedload particle size that becomes mobile at bankfull flow. To estimate τ*cbf over a variety of coarse gravel- and cobble-bed mountain streams, the authors used flow competence curves measured with bedload traps at 10 sites. Bedload traps have a 0.3 m by 0.2 m opening, and 1-1.6 m long trailing net with a 4 mm mesh; mounting traps onto ground plates anchored to the stream bottom permits 1-hr sampling times; 4 to 6 traps are typically installed across the stream width

  8. Radiation shielding for future space exploration missions

    Science.gov (United States)

    DeWitt, Joel Michael

    Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical

  9. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    Directory of Open Access Journals (Sweden)

    L. Ran

    2014-01-01

    Full Text Available Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented.

  10. Radiation shielding analysis for conceptual design of HIC transport package

    International Nuclear Information System (INIS)

    KHNP(Korea Hydro and Nuclear Power Ltd., Co.) is developing a HIC transport package which is satisfying domestic and IAEA regulations and NETEC(Nuclear Environment Technology Institute) is conducting a conceptual design. In this study, the shielding thickness was calculated using the data from radionuclide assay program which is currently using in nuclear sites and Micro Shield code. Considering the structural safety, carbon steel was chosen as shielding material and the shielding thickness was calculated for 500 R/hr and 100 R/hr at HIC surface, respectively. Through the shielding analysis, it was evaluated that the regulation limit is satisfied when the shielding thickness is 22 cm for 500 R/hr and 17 cm for 100/hr

  11. Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites.

    Science.gov (United States)

    Yang, Yonglai; Guptal, Mool C; Dudley, Kenneth L; Lawrence, Roland W

    2007-02-01

    Electromagnetic interference (EMI) shielding characteristics of carbon nanofiber-polystyrene composites were investigated in the frequency range of 12.4-18 GHz (Ku-band). It was observed that the shielding effectiveness of such composites was frequency independent, and increased with increasing carbon nanofiber loading within Ku-band. The experimental data exhibited that the shielding effectiveness of the polymer composite containing 20 wt% carbon nanofibers could reach more than 36 dB in the measured frequency region, indicating such composites can be applied to the potential EMI shielding materials. In addition, the results showed that the contribution of reflection to the EMI shielding effectiveness was much larger than that of absorption, implying the primary EMI shielding mechanism of such composites was reflection of electromagnetic radiation within Ku-band. PMID:17450793

  12. Radiation shielding properties of barite coated fabric by computer programme

    Energy Technology Data Exchange (ETDEWEB)

    Akarslan, F.; Molla, T. [Suleyman Demirel University, Engineering Fac. Textile Dep., Isparta (Turkey); Üncü, I. S. [Suleyman Demirel University, Technological Fac. Electrical-Electronic Eng. Dep., Isparta (Turkey); Kılıncarslan, S., E-mail: seref@tef.sdu.edu.tr [Suleyman Demirel University, Engineering Fac. Civil Eng. Dep., Isparta (Turkey); Akkurt, I. [Suleyman Demirel University, Art and Science Fac., Physics Dep., Isparta (Turkey)

    2015-03-30

    With the development of technology radiation started to be used in variety of different fields. As the radiation is hazardous for human health, it is important to keep radiation dose as low as possible. This is done mainly using shielding materials. Barite is one of the important materials in this purpose. As the barite is not used directly it can be used in some other materials such as fabric. For this purposes barite has been coated on fabric in order to improve radiation shielding properties of fabric. Determination of radiation shielding properties of coated fabric has been done by using computer program written C# language. With this program the images obtained from digital Rontgen films is used to determine radiation shielding properties in terms of image processing numerical values. Those values define radiation shielding and in this way the coated barite effect on radiation shielding properties of fabric has been obtained.

  13. Nutrient Shielding in Clusters of Cells

    CERN Document Server

    Lavrentovich, Maxim O; Nelson, David R

    2013-01-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells' spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness $\\ell$ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter $\

  14. Self-shielding clumps in starburst clusters

    CERN Document Server

    Palouš, Jan; Ehlerová, Soňa; Tenorio-Tagle, Guillermo

    2016-01-01

    Young and massive star clusters above a critical mass form thermally unstable clumps reducing locally the temperature and pressure of the hot 10$^{7}$~K cluster wind. The matter reinserted by stars, and mass loaded in interactions with pristine gas and from evaporating circumstellar disks, accumulate on clumps that are ionized with photons produced by massive stars. We discuss if they may become self-shielded when they reach the central part of the cluster, or even before it, during their free fall to the cluster center. Here we explore the importance of heating efficiency of stellar winds.

  15. Equivalent-spherical-shield neutron dose calculations

    International Nuclear Information System (INIS)

    Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab

  16. Nuclear data requirements for fusion reactor shielding

    International Nuclear Information System (INIS)

    The nuclear data requirements for experimental, demonstration and commercial fusion reactors are reviewed. Particular emphasis is given to the shield as well as major reactor components of concern to the nuclear performance. The nuclear data requirements are defined as a result of analyzing four key areas. These are the most likely candidate materials, energy range, types of needed nuclear data, and the required accuracy in the data. Deducing the latter from the target goals for the accuracy in prediction is also discussed. A specific proposal of measurements is recommended. Priorities for acquisition of data are also assigned. (author)

  17. Radiation-Shielding Polymer/Soil Composites

    Science.gov (United States)

    Sen, Subhayu

    2007-01-01

    It has been proposed to fabricate polymer/ soil composites primarily from extraterrestrial resources, using relatively low-energy processes, with the original intended application being that habitat structures constructed from such composites would have sufficient structural integrity and also provide adequate radiation shielding for humans and sensitive electronic equipment against the radiation environment on the Moon and Mars. The proposal is a response to the fact that it would be much less expensive to fabricate such structures in situ as opposed to transporting them from Earth.

  18. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Calle, Carlos I.; Pollard, Jacob R. S.

    2016-01-01

    The International Space Exploration Coordination Group (ISECG) has chosen dust mitigation technology as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. NASA has also included Particulate Contamination Prevention and Mitigation as a cross-cutting technology to be developed for contamination prevention, cleaning and protection. This technology has been highlighted due to the detrimental effect of dust on both human and robotic missions. During manned Apollo missions, dust caused issues with both equipment and crew. Contamination of equipment caused many issues including incorrect instrument readings and increased temperatures due to masking of thermal radiators. The astronauts were directly affected by dust that covered space suits, obscured face shields and later propagated to the cabin and into the crew's eyes and lungs. Robotic missions on Mars were affected when solar panels were obscured by dust thereby reducing the effectiveness of the solar panels. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has been developing an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. This technology has been tested in lab environments and has evolved over several years. Tests of the technology include reduced gravity flights (6g) in which Apollo Lunar dust samples were successfully removed from glass shields while under vacuum (1 millipascal). Further development of the technology is underway to reduce the size of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment X (MISSE-X). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the moon

  19. The heterogeneous anti-radiation shield for spacecraft*

    Science.gov (United States)

    Telegin, S. V.; Draganyuk, O. N.

    2016-04-01

    The paper deals with modeling of elemental composition and properties of heterogeneous layers in multilayered shields to protect spacecraft onboard equipment from radiation emitted by the natural Earth’s radiation belt. This radiation causes malfunctioning of semiconductor elements in electronic equipment and may result in a failure of the spacecraft as a whole. We consider four different shield designs and compare them to the most conventional radiation-protective material for spacecraft - aluminum. Out of light and heavy chemical elements we chose the materials with high reaction cross sections and low density. The mass attenuation coefficient of boron- containing compounds is 20% higher than that of aluminum. Heterogeneous shields consist of three layers: a glass cloth, borated material, and nickel. With a protective shield containing heavy metal the output bremsstrahlung can be reduced. The amount of gamma rays that succeed to penetrate the shield is 4 times less compared to aluminum. The shields under study have the thicknesses of 5.95 and 6.2 mm. A comparative analysis of homogeneous and multilayered protective coatings of the same chemical composition has been performed. A heterogeneous protective shield has been found to be advantageous in weight and shielding properties over its homogeneous counterparts and aluminum. The dose characteristics and transmittance were calculated by the Monte Carlo method. The results of our study lead us to conclude that a three-layer boron carbide shield provides the most effective protection from radiation. This shield ensures twice as low absorbed dose and 4 times less the number of penetrated gamma-ray photons compared to its aluminum analogue. Moreover, a heterogeneous shield will have a weight 10% lighter than aluminum, with the same attenuation coefficient of the electron flux. Such heterogeneous shields can be used to protect spacecraft launched to geostationary orbit. Furthermore, a protective boron-containing and

  20. Inner Shielding of the COMET Cosmic Veto System

    OpenAIRE

    Markin, Oleg

    2015-01-01

    A simulation of neutrons traversing a shield beneath the COMET scintillator strip cosmic-veto counter is accomplished using the Geant4 toolkit. A Geant4 application is written with an appropriate detector construction and a possible spectrum of neutron's energy. The response of scintillator strips to neutrons is studied in detail. A design of the shield is optimized to ensure the time loss concerned with fake veto signals caused by neutrons from muon captures is tolerable. Materials of shield...

  1. A study on the shielding mechanisms of SOI pixel detector

    OpenAIRE

    Lu, Yunpeng; Liu, Yi; Wu, Zhigang; Ouyang, Qun; Arai, Yasuo

    2015-01-01

    In order to tackle the charge injection issue that had perplexed the counting type SOI pixel for years, two successive chips CPIXTEG3 and CPIXTEG3b were developed utilizing two shielding mechanisms, Nested-well and Double-SOI, in the LAPIS process. A TCAD simulation showed the shielding effectiveness influenced by the high sheet resistance of shielding layers. Test structures specially designed to measure the crosstalk associated to charge injection were implemented in CPIXTEG3/3b. Measuremen...

  2. Latest experiences in inspecting the inside of BWR vessel shields

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.

    2001-07-01

    In the last few years, the owners of BWR nuclear power plants have been forced to address new fuel shield inspection requirements, TECNATOM has responded to this situation by launching the TEIDE projects, which include development of an inspection machine and the corresponding Non-Destructive Tests to examine the inside of this shield. With these projects, TECNATOM has performed more than 12 fuel shield inspections in different countries. This article describes the experience gained in the last three years. (Author)

  3. Optimal Shielding for Minimum Materials Cost of Mass

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Robert D. [PPPL

    2014-08-01

    Material costs dominate some shielding design problems. This is certainly the case for manned nuclear power space applications for which shielding is essential and the cost of launching by rocket from earth is high. In such situations or in those where shielding volume or mass is constrained, it is important to optimize the design. Although trial and error synthesis methods may succeed a more systematic approach is warranted. Design automation may also potentially reduce engineering costs.

  4. Methods and procedures for shielding analyses for the SNS

    International Nuclear Information System (INIS)

    In order to provide radiologically safe Spallation Neutron Source operation, shielding analyses are performed according to Oak Ridge National Laboratory internal regulations and to comply with the Code of Federal Regulations. An overview of on-going shielding work for the accelerator facility and neutrons beam lines, methods used for the analyses, and associated procedures and regulations are presented. Methods used to perform shielding analyses are described as well. (author)

  5. Multifunctional B/C Fiber Composites for Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation shielding is an enabling technology required for extended manned missions to the Moon, Mars and the planets beyond. Multifunctional structural must...

  6. Dosimetry under pencil eye shields for cobalt-60 radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chenery, S.G.; Leung, P.M.K.

    1981-05-01

    The use of pencil eye shields to reduce the dose to the anterior chamber of the eye during radiotherapy with Cobalt-60 beams has been evaluated. It was found that the optimum shield placement is about 1 cm from the surface. This keeps the size of the penumbra and the effect of electron contamination at a minimum. The dose under such shields is mainly produced by the transmission through the shield and the scattered radiation both from within the phantom and from the collimator. While the scattered component is a function of the beam size and otherwise cannot be altered, the transmission can easily be reduced to a negligible level.

  7. 14-MeV neutron streaming through shield gaps

    International Nuclear Information System (INIS)

    Monte Carlo calculations have been performed to determine the neutron streaming through straight and single-bend gaps for three different shield thicknesses. A uniform plane source emitting 14-MeV neutrons with a cosine angular distribution was used in the analyses. The results obtained are discussed in terms of how they might be used in the early stages of a shield design to obtain approximate solutions to design questions. These results have direct implications regarding neutron-streaming problems that will be encountered in the shielding analyses of tokamak fusion reactors which are constructed from pie-shaped shield/vacuum chamber segments

  8. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  9. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  10. Graphene shield enhanced photocathodes and methods for making the same

    Science.gov (United States)

    Moody, Nathan Andrew

    2014-09-02

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  11. Polyolefin-Nanocrystal Composites for Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — EIC Laboratories Inc. is proposing a lightweight multifunctional polymer/nanoparticle composite for radiation shielding during long-duration lunar missions....

  12. On design for front shield of opening shielding%谈敞口式盾构前盾设计

    Institute of Scientific and Technical Information of China (English)

    杨泽平

    2012-01-01

    According to the use of the opening shielding in China, the paper indicates the technical features and factual implementation for the design of the front shield of the open shielding, and introduces the structural calculating methods and ideas for the main parts of the front shield of the opening shielding, so as to provide some necessary foundation for the general design of the opening shielding.%根据敞口式盾构在我国的实用情况,论述了敞口式盾构前盾设计的技术特点和具体的实施方式,介绍了敞口式盾构前盾主要部件的结构计算方法和思路,为敞口式盾构整体设计提供了必要基础。

  13. MicroShield/ISOCS gamma modeling comparison.

    Energy Technology Data Exchange (ETDEWEB)

    Sansone, Kenneth R

    2013-08-01

    Quantitative radiological analysis attempts to determine the quantity of activity or concentration of specific radionuclide(s) in a sample. Based upon the certified standards that are used to calibrate gamma spectral detectors, geometric similarities between sample shape and the calibration standards determine if the analysis results developed are qualitative or quantitative. A sample analyzed that does not mimic a calibrated sample geometry must be reported as a non-standard geometry and thus the results are considered qualitative and not quantitative. MicroShieldR or ISOCSR calibration software can be used to model non-standard geometric sample shapes in an effort to obtain a quantitative analytical result. MicroShieldR and Canberras ISOCSR software contain several geometry templates that can provide accurate quantitative modeling for a variety of sample configurations. Included in the software are computational algorithms that are used to develop and calculate energy efficiency values for the modeled sample geometry which can then be used with conventional analysis methodology to calculate the result. The response of the analytical method and the sensitivity of the mechanical and electronic equipment to the radionuclide of interest must be calibrated, or standardized, using a calibrated radiological source that contains a known and certified amount of activity.

  14. The AA disappearing under concrete shielding

    CERN Multimedia

    1982-01-01

    When the AA started up in July 1980, the machine stood freely in its hall, providing visitors with a view through the large window in the AA Control Room. The target area, in which the high-intensity 26 GeV/c proton beam from the PS hit the production target, was heavily shielded, not only towards the outside but also towards the AA-Hall. However, electrons and pions emanating from the target with the same momentum as the antiprotons, but much more numerous, accompanied these through the injection line into the AA ring. The pions decayed with a half-time corresponding to approximately a revolution period (540 ns), whereas the electrons lost energy through synchrotron radiation and ended up on the vacuum chamber wall. Electrons and pions produced the dominant component of the radiation level in the hall and the control room. With operation times far exceeding original expectations, the AA had to be buried under concrete shielding in order to reduce the radiation level by an order of magnitude.

  15. Concrete enclosure to shield a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Villagrana M, L. E.; Rivera P, E.; De Leon M, H. A.; Soto B, T. G.; Hernandez D, V. M.; Vega C, H. R., E-mail: emmanuelvillagrana@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    In the aim to design a shielding for a {sup 239}PuBe isotopic neutron source several Monte Carlo calculations were carried out using MCNP5 code. First, a point-like source was modeled in vacuum and the neutron spectrum and the ambient dose equivalent were calculated at several distances ranging from 5 up to 150 cm, these calculations were repeated including air, and a 1 x 1 x 1 m{sup 3} enclosure that was shielded with 5, 15, 20, 25, 30, 50 and 80 cm-thick Portland type concrete walls. At all the points located inside the enclosure neutron spectra from 10{sup -8} up 0.5 MeV were the same regardless the distance from the source showing the room-return effect, for energies larger than 0.5 MeV neutron spectra are diminished as the distance increases. Outside the enclosure it was noticed that neutron spectra becomes -softer- as the concrete thickness increases due to reduction of mean neutron energy. With the ambient dose values the attenuation curve in terms of concrete thickness was calculated. (Author)

  16. A superconducting shield to protect astronauts

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  17. Discussion on variance reduction technique for shielding

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    As the task of the engineering design activity of the international thermonuclear fusion experimental reactor (ITER), on 316 type stainless steel (SS316) and the compound system of SS316 and water, the shielding experiment using the D-T neutron source of FNS in Japan Atomic Energy Research Institute has been carried out. However, in these analyses, enormous working time and computing time were required for determining the Weight Window parameter. Limitation or complication was felt when the variance reduction by Weight Window method of MCNP code was carried out. For the purpose of avoiding this difficulty, investigation was performed on the effectiveness of the variance reduction by cell importance method. The conditions of calculation in all cases are shown. As the results, the distribution of fractional standard deviation (FSD) related to neutrons and gamma-ray flux in the direction of shield depth is reported. There is the optimal importance change, and when importance was increased at the same rate as that of the attenuation of neutron or gamma-ray flux, the optimal variance reduction can be done. (K.I.)

  18. SHIELD: Neutral Gas Kinematics and Dynamics

    Science.gov (United States)

    McNichols, Andrew; Teich, Yaron; Cannon, John M.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we present new results of detailed kinematic analyses of these systems using multi-configuration, high spatial (˜300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array. For each source, we produce velocity fields and dispersion maps using different spatial and spectral resolution representations of the data in order to attempt derivation of an inclination-corrected rotation curve. While both two- and three-dimensional fitting techniques are employed, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make multiple position-velocity cuts across each galaxy to determine the maximum circular rotation velocity (≤ 30 km-1 for the survey population). Baryonic masses are calculated using single-dish H I fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical masses estimated from the position-velocity analysis. The SHIELD galaxies are contextualized on the baryonic Tully-Fisher relation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  19. Earth pressure balance control for EPB shield

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper mainly deals with the critical technology of earth pressure balance (EPB) control in shield tunneling. On the assumption that the conditioned soil in the working chamber of the shield is plasticized, a theoretical principle for EPB control is proposed. Dynamic equilibrium of intake volume and discharge volume generated by thrust and discharge is modeled theoretically to simulate the earth pressure variation during excavating. The thrust system and the screw conveyor system for earth pressure control are developed based on the electro-hydraulic technique. The control models of the thrust speed regulation of the cylinders and the rotating speed adjustment of the screw conveyor are also presented. Simulation for earth pressure control is conducted with software AMESim and MATLAB/Simulink to verify the models. Experiments are carried out with intake control in clay soil and discharge control in sandy gravel section, respectively. The experimental results show that the earth pressure variations in the working chamber can be kept at the expected value with a practically acceptable precision by means of real-time tuning the thrust speed or the revolving speed of discharge system.

  20. Technique and results of cartilage shield tympanoplasty

    Directory of Open Access Journals (Sweden)

    Sohil I Vadiya

    2014-01-01

    Full Text Available Aim: Use of cartilage for repair of tympanic membrane is recommended by many otologists. The current study aims at evaluating results of cartilage shield tympanoplasty in terms of graft take up and hearing outcomes. Material and Methods: In the current study, cartilage shield tympanoplasty(CST is used in ears with high risk perforations of the tympanic membrane. A total of 40 ears were selected where type I CST was done in 30 ears and type III CST was done in 10 ears. Results: An average of 37.08 dB air bone gap(ABG was present in pre operative time and an average of 19.15 dB of ABG was observed at 6 months after the surgery with hearing gain of 17.28 dB on average was observed. Graft take up rate of 97.5% was observed. The technique is modified to make it easier and to minimize chances of lateralization of graft. Conclusion: The hearing results of this technique are comparable to other methods of tympanic membrane repair.

  1. System for imaging plutonium through heavy shielding

    International Nuclear Information System (INIS)

    A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi 57Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% 240Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures

  2. Large scale mechanical metamaterials as seismic shields

    Science.gov (United States)

    Miniaci, Marco; Krushynska, Anastasiia; Bosia, Federico; Pugno, Nicola M.

    2016-08-01

    Earthquakes represent one of the most catastrophic natural events affecting mankind. At present, a universally accepted risk mitigation strategy for seismic events remains to be proposed. Most approaches are based on vibration isolation of structures rather than on the remote shielding of incoming waves. In this work, we propose a novel approach to the problem and discuss the feasibility of a passive isolation strategy for seismic waves based on large-scale mechanical metamaterials, including for the first time numerical analysis of both surface and guided waves, soil dissipation effects, and adopting a full 3D simulations. The study focuses on realistic structures that can be effective in frequency ranges of interest for seismic waves, and optimal design criteria are provided, exploring different metamaterial configurations, combining phononic crystals and locally resonant structures and different ranges of mechanical properties. Dispersion analysis and full-scale 3D transient wave transmission simulations are carried out on finite size systems to assess the seismic wave amplitude attenuation in realistic conditions. Results reveal that both surface and bulk seismic waves can be considerably attenuated, making this strategy viable for the protection of civil structures against seismic risk. The proposed remote shielding approach could open up new perspectives in the field of seismology and in related areas of low-frequency vibration damping or blast protection.

  3. Deoxyribonucleic acid-Ag nanoparticles for EMI Shielding: the effect of nanoparticle size, shape and distribution on the shielding effectiveness

    Science.gov (United States)

    Ouchen, Fahima; Wilson, Benjamin G.; Yaney, Perry P.; Salour, Michael M.; Grote, James G.

    2014-09-01

    This study focuses on the use of silver based nanoparticle as fillers in DNA host materials to form nancomposites for applications in Electro-Magnetic Interferences (EMI) shielding. For relatively low-conductivity EMI shielding nanocomposites, silver-oxide coated cenospheres are investigated as fillers. The filler loadings are varied to determine a percolation threshold for the desired low conductivity and shielding effectiveness. Microwave absorption as well as DC surface resistivity measurements are undertaken to characterize the obtained films.

  4. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  5. Polymer Nanocomposite Based Multi-layer Neutron Shields

    International Nuclear Information System (INIS)

    It is important to shield radiations generated from the various radiation sources including nuclear reactors, transportation and storage systems for the radioactive wastes, accelerator, hospital, and defense systems etc. In this regard, development of efficient, light and durable radiation shielding materials has been an issue for many years. High energy neutrons (fast neutrons) can be thermalized by colliding with the light elements such as hydrogen, and thermalized neutrons can be efficiently captured by neutron absorbers such as boron, lithium, or gadolinium, etc. To shield neutrons, it is common to use hydrogen rich polymer based shields containing thermal neutron absorbers. It is also necessary to shield secondary gamma radiations produced from nuclear reaction of neutrons with various materials. Hence, high density elements such as Fe, Pb, or W might be dispersed in the polymer base as well as with neutron absorbers at the same time. However, the particle sizes of these elements are in the range of several tens and hundreds micrometers causing possible leakage of radiation. To enhance radiation shielding efficiency, it is useful to use ultrafine particles to increase collision probability of radiation with the particles. Furthermore, it is theoretically possible to enhance radiation shielding efficiency by using the multi-layer structured shields whose constituents are different for each layer depending upon the shielding purpose under the same overall density. Also, material properties of the nanocomposites can be enhanced compared to the normal composites. This investigation is focused on characterization of the nanocomposite based multi-layer structured radiation shields compared to the conventional radiation shields

  6. Shielding effect of mineral schungite during electromagnetic irradiation of rats.

    Science.gov (United States)

    Kurotchenko, S P; Subbotina, T I; Tuktamyshev, I I; Tuktamyshev, I Sh; Khadartsev, A A; Yashin, A A

    2003-11-01

    We studied the effect of nonthermal 37-GHz radiation on hemopoiesis in schungite-shielded Wistar rats. Radiation with right-handed or left-handed rotation of the polarization plane of electromagnetic wave was used. Shielding with schungite decreased the severity of damage produced by high-frequency electromagnetic radiation. PMID:14968159

  7. Radiation shielding phenolic fibers and method of producing same

    International Nuclear Information System (INIS)

    A radiation shielding phenolic fiber is described comprising a filamentary phenolic polymer consisting predominantly of a sulfonic acid group-containing cured novolak resin and a metallic atom having a great radiation shielding capacity, the metallic atom being incorporated in the polymer by being chemically bound in the ionic state in the novolak resin. A method for the production of the fiber is discussed

  8. Neutral and plasma shielding model for pellet ablation

    International Nuclear Information System (INIS)

    The neutral gas shielding model for ablation of frozen hydrogenic pellets is extended to include the effects of an initial Maxwelliam distribution of incident electron energies; a cold plasma shield outside the neutral shield and extended along the magnetic field; energetic neutral beam ions and alpha particles; and self-limiting electron ablation in the collisionless plasma limit. Including the full electron distribution increases ablation, but adding the cold ionized shield reduces ablation; the net effect is a modest reduction in pellet penetration compared with the monoenergetic electron neutral shielding model with no plasma shield. Unlike electrons, fast ions can enter the neutral shield directly without passing through the cold ionized shield because their gyro-orbits are typically larger than the diameter of the cold plasma tube. Fast alpha particles should not enhance the ablation rate unless their population exceeds that expected from local classical thermalization. Fast beam ions, however, may enhance ablation in the plasma periphery if their population is high enough. Self-limiting ablation in the collisionless limit leads to a temporary distortion of the original plasma electron Maxwellian distribution function through preferential depopulation of the higher-energy electrons. 23 refs., 9 figs

  9. Late Proterozoic extensional collapse in the Arabian-Nubian Shield

    NARCIS (Netherlands)

    Blasband, B.B.; White, S.H.; Brooijmans, P.; Boorder, H. de; Visser, W.

    2000-01-01

    A structural and petrological study of the Late Proterozoic rocks in the Wadi Kid area, Sinai, Egypt indicates the presence of an extensional metamorphic core complex in the northern Arabian–Nubian Shield. Gneissic domes throughout the Arabian–Nubian Shield resemble the core complex of the Wadi Kid

  10. Optimized Design of the Shielded-Loop Resonator

    DEFF Research Database (Denmark)

    Stensgaard, Anders

    1996-01-01

    The shielded-loop resonator is known to have low capacitive sample loss due to perfect balancing. We present a new analysis of the unbalanced driven shielded-loop resonator that calculates the resonance frequencies and also determines some design considerations. The analysis enables us to optimize...

  11. The sword-shield strategy of the early 1960s

    International Nuclear Information System (INIS)

    The sword and shield strategy of the post WWII German Federal Republic is discussed. The effort to rebuild the German air force following WWII is outlined. This effort was initiated in 1956 with material furnished by the US through the Nash Plan. The debate surrounding the validity of the sword-shield concept is described

  12. Shield-related signal instability in magnetoresistive heads

    Science.gov (United States)

    Nakamoto, K.; Narumi, S.; Kawabe, T.; Kobayashi, T.; Fukui, H.

    1999-04-01

    Magnetoresistive (MR) heads with various upper shield materials were fabricated and their read-write performance was tested to clarify the shield-related effect on the signal instability in MR heads. Comparison of a head with an upper shield layer of higher magnetostriction and one with lower magnetostriction showed that the latter had better stability in the output signal of a repeated read-write test. The output amplitude of a head with an upper shield layer of Co52Ni27Fe21 film, which had a high magnetostriction of about +3×10-6, was varied by applying a low external longitudinal field, which affected just the shield layers. This change in the output corresponded well to the output variation in the repeated read-write test. The spin scanning electron micrograph image of this head revealed a distinct domain wall in the air bearing surface near the MR sensor. These results indicated that instability of the domain structure in a shield layer was one of the causes of the signal instability in MR heads; an unusual bias field from a domain wall of the shield layer, which could be moved easily by a repeated writing operation, caused a variation in the biased state of the MR layer which resulted in the signal variation, and that low magnetostriction was required for a shield material to achieve a stable head.

  13. 30 CFR 57.14213 - Ventilation and shielding for welding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 57.14213... welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to persons. (b) All welding operations shall be well-ventilated....

  14. Optimal shield mass distribution for space radiation protection

    Science.gov (United States)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  15. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  16. Preliminary review of Precambrian Shield rocks for potential waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yardley, D.H.; Goldich, S.S.

    1975-11-01

    This review of the Canadian Shield is primarily concerned with the part (such as in the Lake Superior region) that is seismically the least active of the North American continent. The crystalline metamorphic and igneous rocks of the more stable elements of the shield provide excellent possibilities for dry excavations suitable for long-term storage of radioactive waste materials. (DLC)

  17. Neoproterozoic tectonics of the Arabian-Nubian Shield

    NARCIS (Netherlands)

    Blasband, B.

    2006-01-01

    The Neoproterozoic tectonic development of the Arabian-Nubian Shield (ANS) can be divided in three parts: 1) the oceanic stage; 2) the arc-accretion stage; 3) the extensional stage. Three key-areas in the Arabian-Nubian Shield, namely the Bi'r Umq Complex, The Tabalah and Tarj Complex and the Wadi K

  18. MOSFET Dosimetry for Evaluation of Gonad Shielding during Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwi Young; Choi, Yun Seok; Park, So Yeon; Park, Yang Kyun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of)

    2011-03-15

    In order to confirm feasibility of MOSFET modality in use of in vivo dosimetry, evaluation of gonad shielding in order to minimize gonadal dose of patients undergoing radiotherapy by using MOSFET modality was performed. Gonadal dose of patients undergoing radiotherapy for rectal cancer in the department of radiation oncology of Seoul National University Hospital since 2009 was measured. 6 MV and 15 MV photon beams emitted from Varian 21EX LINAC were used for radiotherapy. In order to minimize exposed dose caused by the scattered ray not only from collimator of LINAC but also from treatment region inside radiation field, we used box.shaped lead shielding material. The shielding material was made of the lead block and consists of 7.5 cm x 9.5 cm x 5.5 cm sized case and 9 cm x 9.5 cm x 1 cm sized cover. Dosimetry for evaluation of gonad shielding was done with MOSFET modality. By protecting with gonad shielding material, average gonadal dose of patients was decreased by 23.07% compared with reference dose outside of the shielding material. Average delivered gonadal dose inside the shielding material was 0.01 Gy. By the result of MOSFET dosimetry, we verified that gonadal dose was decreased by using gonad shielding material. In compare with TLD dosimetry, we could measure the exposed dose easily and precisely with MOSFET modality.

  19. VHF Injector Pumping Slot RF Shielding Effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Staples, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2007-08-08

    The effectiveness of the shielding of the pumping slots is calculated for two radial depths of the slots with Mafia-2 and compared to a simple recipe that calculates the RF attenuation in a slot. CBP Technical Note 378 describes the pumping configuration of the 100 MHz VHF photoinjector. The cavity is surrounded by 36 slots, 4.9 cm wide, separated by bars, also 4.9 cm wide. The radial depth of the bars controls the attenuation of the RF from the cavity proper to the annular plenum outside the bars where the getter pumps are located. This note describes calculations of the level of RF fields in the plenum for two different values of the radial depth of the bars and two different values of the spacing between the outer dimension of the bars and the outer plenum wall.

  20. Thes - Website for Thermal Shields Upgrade Management

    CERN Document Server

    Micula, Adina

    2013-01-01

    There are a total of 1695 thermal shields (TS) in the interconnections between the superconducting magnets. During LHC Long Shutdown 1 (LS1) all of these TS are being upgraded with a new fixation design. This procedure involves the transport of all the TS from LHC to a workshop on the surface where they are being modified and the subsequent transport of the upgraded TS back to the tunnel where they are laid on the cryostats and await the closure of the interconnection. These operations have to be carefully coordinated in order to ensure that there are always enough modified TS to satisfy the demand in the tunnel and respect the time constraint imposed by the schedule of LS1. As part of my summer project, I developed a database driven website whose aim is to enable the TS upgrade monitoring.

  1. On the accuracy of the Debye shielding

    CERN Document Server

    Martínez-Fuentes, M A

    2012-01-01

    The expression for the Debye shielding in plasma physics is usually derived under the assumptions that the plasma particles are weakly coupled, so their kinetic energy is much larger than the potential energy between them, and that the velocity distributions of the plasma species are Maxwellian. The first assumption also establishes that the plasma parameter ND, the number of particles within a sphere with a Debye radius should be greater than 1, and determines the difference between weakly and strongly coupled plasmas. Under such assumptions, Poisson's equation can be linearised, and a simple analytic expression obtained for the electrostatic potential. However, textbooks rarely discuss the accuracy of this approximation. In this work we compare the linearised solution with the exact one, obtained numerically, and show that the linearisation, which underestimates the exact solution, is reasonably good even for ND ~ 40. We give quantitative criteria to set the limit of the approximation when the number of par...

  2. SHIELD: Neutral Gas Kinematics and Dynamics

    CERN Document Server

    McNichols, Andrew T; Nims, Elise; Cannon, John M; Adams, Elizabeth A K; Bernstein-Cooper, Elijah Z; Giovanelli, Riccardo; Haynes, Martha P; Józsa, Gyula I G; McQuinn, Kristen B W; Salzer, John J; Skillman, Evan D; Warren, Steven R; Dolphin, Andrew; Elson, E C; Haurberg, Nathalie; Ott, Jürgen; Saintonge, Amelie; Cave, Ian; Hagen, Cedric; Huang, Shan; Janowiecki, Steven; Marshall, Melissa V; Thomann, Clara M; Van Sistine, Angela

    2016-01-01

    We present kinematic analyses of the 12 galaxies in the "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD). We use multi-configuration interferometric observations of the HI 21cm emission line from the Karl G. Jansky Very Large Array (VLA) to produce image cubes at a variety of spatial and spectral resolutions. Both two- and three-dimensional fitting techniques are employed in an attempt to derive inclination-corrected rotation curves for each galaxy. In most cases, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make spatially resolved position-velocity cuts, corrected for inclination using the stellar components, to estimate the circular rotation velocities. We find circular velocities <30 km/s for the entire survey population. Baryonic masses are calculated using single-dish HI fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical ...

  3. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  4. Design of ITER vacuum vessel in-wall shielding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X., E-mail: xiaoyu.wang@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ioki, K. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Morimoto, M. [Mitsubishi Heavy Industries, 1-1, Wadasaki-cho 1-chome, Hyogo-ku, Kobe (Japan); Choi, C.H.; Utin, Y.; Sborchia, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); TaiLhardat, O. [Assystem EOS, ZAC SAINT MARTIN, 23 rue Benjamin Franklin, 84120 Pertuis (France); Mille, B.; Terasawa, A.; Gribov, Y.; Barabash, V.; Polunovskiy, E.; Dani, S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pathak, H.; Raval, J. [ITER-India, Institute for Plasma Research, Gandhinagar 382025 (India); Liu, S.; Lu, M.; Du, S. [Institute of Plasma Physics, China Academy of Sciences, Shushanhu Road 350, Hefei (China)

    2014-10-15

    The ITER vacuum vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with in-wall shielding (IWS) and cooling water. The main purpose of the in-wall shielding is to provide neutron shielding together with the blanket and VV shells and water during ITER plasma operation and to reduce the ripple of the Toroidal magnetic field. Based on ITER vacuum vessel structure and related requirements, in-wall shielding are designed as about 8900 individual blocks with different sizes and several different materials distributed over nine vessel sectors and nine field joints of vessel sectors. This paper presents the design of the IWS, considering loads, structural stresses and assembly method, and also shows neutron shielding effect and TF ripple reduced by the IWS.

  5. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer

    Directory of Open Access Journals (Sweden)

    Gang Cao

    2016-08-01

    Full Text Available This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation.

  6. Analytic flux formulas and tables of shielding functions

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, O.J.

    1981-06-01

    Hand calculations of radiation flux and dose rates are often useful in evaluating radiation shielding and in determining the scope of a problem. The flux formulas appropriate to such calculations are almost always based on the point kernel and allow for at most the consideration of laminar slab shields. These formulas often require access to tables of values of integral functions for effective use. Flux formulas and function tables appropriate to calculations involving homogeneous source regions with the shapes of lines, disks, slabs, truncated cones, cylinders, and spheres are presented. Slab shields may be included in most of these calculations, and the effect of a cylindrical shield surrounding a cylindrical source may be estimated. Detector points may be located axially, laterally, or interior to a cylindrical source. Line sources may be tilted with respect to a slab shield. All function tables are given for a wide range of arguments.

  7. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    Science.gov (United States)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  8. Shielding body for a ducts through prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    A radiation shielding for breaking-through or taking-out part of a wall in nuclear reactors, in particular in gas-cooled nuclear reactors in prestressed concrete containments is to be developed providing safe shielding of the radiation diffusing through gaps between components. Furthermore, such shielding must be simple in its structure and easy to apply, irrespective of the shape of the gap. This is achieved by providing the gap between the penetration liner covering the lateral sides of the break-through and the component introduced into it with a chase to be filled with shielding matter, and by introducing several bolts into the chase in order to displace the shielding matter. (orig./RW)

  9. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer

    Science.gov (United States)

    Cao, Gang; Wang, Xiaoping; Xu, Yong; Liu, Sheng

    2016-01-01

    This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation. PMID:27529254

  10. Using the shield for thermal energy storage in pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Sager, G.T. [General Atomics, San Diego, CA (United States); Sze, D.K. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Wong, C.P.C. [General Atomics, San Diego, CA (United States); Bathke, C.G. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blanchard, J.P. [University of Wisconsin at Madison, Madison, WI 53706 (United States); Brimer, C. [McDonnell Douglas Aerospace, PO Box 516, Mail Code 3064204, St. Louis, MO 63166-0516 (United States); Cheng, E.T. [TSI Research Inc., 225 Stevens Avenue, Suite 203, Solana Beach, CA 92075 (United States); El-Guebaly, L.A. [University of Wisconsin at Madison, Madison, WI 53706 (United States); Hasan, M.Z. [University of California at Los Angeles, Los Angeles, CA 90024 (United States); Najmabadi, F. [University of California at San Diego, San Diego, CA 92037 (United States); Sharafat, S. [University of California at Los Angeles, Los Angeles, CA 90024 (United States); Sviatoslavski, I.N. [University of Wisconsin at Madison, Madison, WI 53706 (United States); Waganer, L. [McDonnell Douglas Aerospace, PO Box 516, Mail Code 3064204, St. Louis, MO 63166-0516 (United States)

    1995-03-01

    The PULSAR pulsed tokamak power plant design utilizes the outboard shield for thermal energy storage to maintain full 1000MW(e) output during the dwell period of 200s. Thermal energy resulting from direct nuclear heating is accumulated in the shield during the 7200s fusion power production phase. The maximum shield temperature may be much higher than that for the blanket because radiation damage is significantly reduced. During the dwell period, thermal power discharged from the shield and coolant temperature are simultaneously regulated by controlling the coolant mass flow rate at the shield inlet. This is facilitated by throttled coolant bypass. Design concepts using helium and lithium coolant have been developed. Two-dimensional time-dependent thermal hydraulic calculations were performed to confirm performance capabilities required of the design concepts. The results indicate that the system design and performance can accommodate uncertainties in material limits or the length of the dwell period. (orig.).

  11. Shielding of CO from dissociating radiation in interstellar clouds

    Science.gov (United States)

    Glassgold, A. E.; Huggins, P. J.; Langer, W. D.

    1985-01-01

    The paper investigates the photodissociation of CO in interstellar clouds in the light of recent laboratory studies which suggest that line rather than continuum processes dominate its dissociation by ultraviolet radiation. Using a simple radiative transfer model, the shielding of representative dissociating bands is estimated, including self-shielding, mutual shielding between different isotopes, and near coincidences with strong lines of H2. Each of these processes materially affects the photodestruction rates of the various isotopic species in the transition regions of molecular clouds. These results are combined with an appropriate gas phase chemical model to determine how the abundances of the CO isotopes vary with depth into the cloud. It is found that self-shielding and mutual shielding cause significant variations in isotopic ratios. In addition, fractionation enhances species containing C-13. The relationship between the column densities of CO and H2 is found to vary for the different isotopes and to be sensitive to local conditions.

  12. Utilizing electromagnetic shielding textiles in wireless body area networks.

    Science.gov (United States)

    Sung, Grace H H; Aoyagi, Takahiro; Hernandez, Marco; Hamaguchi, Kiyoshi; Kohno, Ryuji

    2010-01-01

    For privacy and radio propagation controls, electromagnetic shielding textile could be adopted in WBANs. The effect of including a commercially available electromagnetic shielding apron in WBANs was examined in this paper. By having both the coordinator and the sensor covered by the shielding apron, signal could be confined around the body; however signal strength can be greatly influenced by body movements. Placing the shielding apron underneath both antennas, the transmission coefficient could be on average enhanced by at least 10dB, with less variation comparing to the case when apron does not exist. Shielding textiles could be utilized in designing a smart suit to enhance WBANs performance, and to prevent signals travelling beyond its intended area. PMID:21095666

  13. Shielding Area Optimization Under the Solution of Interconnect Crosstalk

    Institute of Scientific and Technical Information of China (English)

    Yi-Ci Cai; Xin Zhao; Qiang Zhou; Xian-Long Hong

    2005-01-01

    As the technology advances into deep sub-micron era, crosstalk reduction is of paramount importance for signal integrity. Simultaneous shield insertion and net ordering (SINO) has been shown to be effective to reduce both capacitive and inductive couplings. As it introduces extra shields, area minimization is also critical for an efficient SINO algorithm.In this paper, three novel algorithms using fewer shields to solve crosstalk reduction problem with RLC noise constraint are proposed, namely, net coloring (NC), efficient middle shield insertion (EMSI) and NC+EMSI two-step algorithm. Compared with the corresponding algorithms in previous work, these algorithms can reduce shielding area up to 25.77%, 46.19%, and7.17%, respectively, with short runtime.

  14. Magnetic shielding and exotic spin-dependent interactions

    CERN Document Server

    Kimball, D F Jackson; Li, Y; Thulasi, S; Pustelny, S; Budker, D; Zolotorev, M

    2016-01-01

    Experiments searching for exotic spin-dependent interactions typically employ magnetic shielding between the source of the exotic field and the interrogated spins. We explore the question of what effect magnetic shielding has on detectable signals induced by exotic fields. Our general conclusion is that for common experimental geometries and conditions, magnetic shields should not significantly reduce sensitivity to exotic spin-dependent interactions, especially when the technique of comagnetometry is used. However, exotic fields that couple to electron spin can induce magnetic fields in the interior of shields made of a soft ferro- or ferrimagnetic material. This induced magnetic field must be taken into account in the interpretation of experiments searching for new spin-dependent interactions and raises the possibility of using a flux concentrator inside magnetic shields to amplify exotic spin-dependent signals.

  15. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer.

    Science.gov (United States)

    Cao, Gang; Wang, Xiaoping; Xu, Yong; Liu, Sheng

    2016-08-13

    This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation.

  16. Analytic flux formulas and tables of shielding functions

    International Nuclear Information System (INIS)

    Hand calculations of radiation flux and dose rates are often useful in evaluating radiation shielding and in determining the scope of a problem. The flux formulas appropriate to such calculations are almost always based on the point kernel and allow for at most the consideration of laminar slab shields. These formulas often require access to tables of values of integral functions for effective use. Flux formulas and function tables appropriate to calculations involving homogeneous source regions with the shapes of lines, disks, slabs, truncated cones, cylinders, and spheres are presented. Slab shields may be included in most of these calculations, and the effect of a cylindrical shield surrounding a cylindrical source may be estimated. Detector points may be located axially, laterally, or interior to a cylindrical source. Line sources may be tilted with respect to a slab shield. All function tables are given for a wide range of arguments

  17. Impact of Track Structure Effects on Shielding and Dosimetry

    Science.gov (United States)

    Wilson, J. W.; Cucinotta, F. A.; Schimmerling, W.; Kim, M. Y.

    1999-01-01

    Galactic cosmic rays (GCR) consisting of nuclei of all the known elements with kinetic energies extending from tens to millions of MeV pose a significant health hazard to future deep space operations. Even half of the radiation exposures expected in ISS will result from GCR components. The biological actions of these radiations are known to depend on the details of the energy deposition (not just linear energy transfer, LET, but the lateral dispersion of energy deposition about the particle track). Energy deposits in tissues are dominated by the transfer of tens to hundreds of eV to the tissue's atomic electrons. In the case of low LET radiations, the collisions are separated by large dimensions compared to the size of important biomolecular structures. If such events are also separated in time, then the radiation adds little to the background of radicals occurring from ordinary metabolic processes and causes little or no biological injury. Hence, dose rate is a strong determinant of the action of low LET exposures. The GCR exposures are dominated by ions of high charge and energy (HZE) characterized by many collisions with atomic electrons over biomolecular dimensions, resulting in high radical- density events associated with a few isolated ion paths through the cell and minimal dose rate dependence at ordinary exposure levels. The HZE energy deposit declines quickly laterally and merges with the background radical density in the track periphery for which the exact lateral distribution of the energy deposit is the determinant of the biological injury. Although little data exists on human exposures from HZE radiations, limited studies in mice and mammalian cell cultures allow evaluation of the effects of track structure on shield attenuation properties and evaluation of implications for dosimetry. The most complete mammalian cell HZE exposure data sets have been modeled including the C3H10T1/2 survival and transformation data of Yang et al., the V79 survival and

  18. Overview of the SHIELDS Project at LANL

    Science.gov (United States)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, D.; Vernon, L.; Woodroffe, J. R.; Toth, G.; Welling, D. T.; Yu, Y.; Birn, J.; Thomsen, M. F.; Borovsky, J.; Denton, M.; Albert, J.; Horne, R. B.; Lemon, C. L.; Markidis, S.; Young, S. L.

    2015-12-01

    The near-Earth space environment is a highly dynamic and coupled system through a complex set of physical processes over a large range of scales, which responds nonlinearly to driving by the time-varying solar wind. Predicting variations in this environment that can affect technologies in space and on Earth, i.e. "space weather", remains a big space physics challenge. We present a recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program that is developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to specify the dynamics of the hot (keV) particles (the seed population for the radiation belts) on both macro- and micro-scale, including important physics of rapid particle injection and acceleration associated with magnetospheric storms/substorms and plasma waves. This challenging problem is addressed using a team of world-class experts in the fields of space science and computational plasma physics and state-of-the-art models and computational facilities. New data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed in addition to physics-based models. This research will provide a framework for understanding of key radiation belt drivers that may accelerate particles to relativistic energies and lead to spacecraft damage and failure. The ability to reliably distinguish between various modes of failure is critically important in anomaly resolution and forensics. SHIELDS will enhance our capability to accurately specify and predict the near-Earth space environment where operational satellites reside.

  19. 78 FR 775 - Weather Shield Manufacturing, Inc., Corporate Office, Medford, WI; Notice of Negative...

    Science.gov (United States)

    2013-01-04

    ... Employment and Training Administration Weather Shield Manufacturing, Inc., Corporate Office, Medford, WI... investigation in Former Employees of Weather Shield Manufacturing, Inc. v. United States Secretary of Labor... workers of the Weather Shield Manufacturing, Inc., Corporate Office, Medford, Wisconsin (subject...

  20. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  1. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology; SHIELD 1.0: desenvolvimento de um programa de calculo de blindagem em radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da [Hospital Sao Lucas (PUCRS), Porto Alegre, RS (Brazil); Friedrich, Barbara Q.; Silva, Ana Maria Marques da, E-mail: ana.marques@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)

    2013-08-15

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  2. One-dimensional gamma-ray shielding analysis for EBT-P

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.

    1981-11-01

    A one-dimensional scoping study was performed for the gamma ray shield of the ELMO Bumpy Torus proof-of-principle (EBT-P) device. The objective was to define appropriate shielding material and determine the required shielding thickness for EBT-P. The dose equivalent results as a function of the radiation shield thickness for different shielding options are presented. A sensitivity analysis for the pessimistic case is given. The recommended shielding option based on the performance and cost is discussed.

  3. Modelling human exposure to space radiation with different shielding: the FLUKA code coupled with anthropomorphic phantoms

    International Nuclear Information System (INIS)

    Astronauts' exposure to the various components of the space radiation field is of great concern for long-term missions, especially for those in deep space such as a possible travel to Mars. Simulations based on radiation transport/interaction codes coupled with anthropomorphic model phantoms can be of great help in view of risk evaluation and shielding optimisation, which is therefore a crucial issue. The FLUKA Monte Carlo code can be coupled with two types of anthropomorphic phantom (a mathematical model and a 'voxel' model) to calculate organ-averaged absorbed dose, dose equivalent and 'biological' dose under different shielding conditions. Herein the 'biological dose' is represented by the average number of 'Complex Lesions' (CLs) per cell in a given organ. CLs are clustered DNA breaks previously calculated by means of event-by-event track structure simulations at the nm level and integrated on-line into FLUKA, which adopts a condensed-history approach; such lesions have been shown to play a fundamental role in chromosome aberration induction, which in turn can be correlated with carcinogenesis. Examples of calculation results will be presented relative to Galactic Cosmic Rays, as well as to the August 1972 Solar Particle Event. The contributions from primary ions and secondary particles will be shown separately, thus allowing quantification of the role played by nuclear reactions occurring in the shield and in the human body itself. As expected, the SPE doses decrease dramatically with increasing the Al shielding thickness; nuclear reaction products, essentially due to target fragmentation, are of minor importance. A 10 g/cm2 Al shelter resulted to be sufficient to respect the 30-day limits for deterministic effects recommended for missions in Low Earth Orbit. In contrast with the results obtained for SPEs, the calculated GCR doses are almost independent of the Al shield thickness, and the GCR doses to internal organs are not significantly lower than the skin

  4. Development of Multifunctional Radiation Shielding Materials for Long Duration Human Exploration Beyond the Low Earth Orbit

    Science.gov (United States)

    Sen, S.; Bhattacharya, M.; Schofield, E.; Carranza, S.; O'Dell, S.

    2007-01-01

    One of the major challenges for long duration human exploration beyond the low Earth orbit and sustained human presence on planetary surfaces would be development of materials that would help minimize the radiation exposure to crew and equipment from the interplanetary radiation environment, This radiation environment consists primarily of a continuous flux of galactic cosmic rays (GCR) and transient but intense fluxes of solar energetic particles (SEP). The potential for biological damage by the relatively low percentage of high-energy heavy-ions in the GCR spectrum far outweigh that due to lighter particles because of their ionizing-power and the quality of the resulting biological damage. Although the SEP spectrum does not contain heavy ions and their energy range is much lower than that for GCRs, they however pose serious risks to astronaut health particularly in the event of a bad solar storm The primary purpose of this paper is to discuss our recent efforts in development and evaluation of materials for minimizing the hazards from the interplanetary radiation environment. Traditionally, addition of shielding materials to spacecrafts has invariably resulted in paying a penalty in terms of additional weight. It would therefore be of great benefit if materials could be developed not only with superior shielding effectiveness but also sufficient structural integrity. Such a multifunctional material could then be considered as an integral part of spacecraft structures. Any proposed radiation shielding material for use in outer space should be composed of nuclei that maximize the likelihood of projectile fragmentation while producing the minimum number of target fragments. A modeling based approach will be presented to show that composite materials using hydrogen-rich epoxy matrices reinforced with polyethylene fibers and/or fabrics could effectively meet this requirement. This paper will discuss the fabrication of such a material for a crewed vehicle. Ln addition

  5. Modelling human exposure to space radiation with different shielding: the FLUKA code coupled with anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Ballarini, F [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Alloni, D [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Battistoni, G [INFN - National Institute of Nuclear Physics, (Italy); Cerutti, F [INFN - National Institute of Nuclear Physics (Italy)] (and others)

    2006-05-15

    Astronauts' exposure to the various components of the space radiation field is of great concern for long-term missions, especially for those in deep space such as a possible travel to Mars. Simulations based on radiation transport/interaction codes coupled with anthropomorphic model phantoms can be of great help in view of risk evaluation and shielding optimisation, which is therefore a crucial issue. The FLUKA Monte Carlo code can be coupled with two types of anthropomorphic phantom (a mathematical model and a 'voxel' model) to calculate organ-averaged absorbed dose, dose equivalent and 'biological' dose under different shielding conditions. Herein the 'biological dose' is represented by the average number of 'Complex Lesions' (CLs) per cell in a given organ. CLs are clustered DNA breaks previously calculated by means of event-by-event track structure simulations at the nm level and integrated on-line into FLUKA, which adopts a condensed-history approach; such lesions have been shown to play a fundamental role in chromosome aberration induction, which in turn can be correlated with carcinogenesis. Examples of calculation results will be presented relative to Galactic Cosmic Rays, as well as to the August 1972 Solar Particle Event. The contributions from primary ions and secondary particles will be shown separately, thus allowing quantification of the role played by nuclear reactions occurring in the shield and in the human body itself. As expected, the SPE doses decrease dramatically with increasing the Al shielding thickness; nuclear reaction products, essentially due to target fragmentation, are of minor importance. A 10 g/cm{sup 2} Al shelter resulted to be sufficient to respect the 30-day limits for deterministic effects recommended for missions in Low Earth Orbit. In contrast with the results obtained for SPEs, the calculated GCR doses are almost independent of the Al shield thickness, and the GCR doses to internal

  6. Modelling human exposure to space radiation with different shielding: the FLUKA code coupled with anthropomorphic phantoms

    Science.gov (United States)

    Ballarini, F.; Alloni, D.; Battistoni, G.; Cerutti, F.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.; Liotta, M.; Mairani, A.; Ottolenghi, A.; Paretzke, H. G.; Parini, V.; Pelliccioni, M.; Pinsky, L.; Sala, P.; Scannicchio, D.; Trovati, S.; Zankl, M.

    2006-05-01

    Astronauts' exposure to the various components of the space radiation field is of great concern for long-term missions, especially for those in deep space such as a possible travel to Mars. Simulations based on radiation transport/interaction codes coupled with anthropomorphic model phantoms can be of great help in view of risk evaluation and shielding optimisation, which is therefore a crucial issue. The FLUKA Monte Carlo code can be coupled with two types of anthropomorphic phantom (a mathematical model and a ''voxel'' model) to calculate organ-averaged absorbed dose, dose equivalent and ''biological'' dose under different shielding conditions. Herein the ''biological dose'' is represented by the average number of ''Complex Lesions'' (CLs) per cell in a given organ. CLs are clustered DNA breaks previously calculated by means of event-by-event track structure simulations at the nm level and integrated on-line into FLUKA, which adopts a condensed-history approach; such lesions have been shown to play a fundamental role in chromosome aberration induction, which in turn can be correlated with carcinogenesis. Examples of calculation results will be presented relative to Galactic Cosmic Rays, as well as to the August 1972 Solar Particle Event. The contributions from primary ions and secondary particles will be shown separately, thus allowing quantification of the role played by nuclear reactions occurring in the shield and in the human body itself. As expected, the SPE doses decrease dramatically with increasing the Al shielding thickness; nuclear reaction products, essentially due to target fragmentation, are of minor importance. A 10 g/cm2 Al shelter resulted to be sufficient to respect the 30-day limits for deterministic effects recommended for missions in Low Earth Orbit. In contrast with the results obtained for SPEs, the calculated GCR doses are almost independent of the Al shield thickness, and the GCR doses to internal organs are not significantly lower than

  7. Production of a datolite-based heavy concrete for shielding nuclear reactors and megavoltage radiotherapy rooms

    International Nuclear Information System (INIS)

    Biological shielding of nuclear reactors has always been a great concern and decreasing the complexity and expense of these installations is of great interest. In this study, we used datolite and galena minerals for production of a high performance heavy concrete. Materials and Methods: Datolite and galena minerals which can be found in many parts of Iran were used in the concrete mix design. To measure the gamma radiation attenuation of the Datolite and galena concrete samples, they were exposed to both narrow and wide beams of gamma rays emitted from a cobalt-60 radiotherapy unit. An Am-Be neutron source was used for assessing the shielding properties of the samples against neutrons. To test the compression strengths, both types of concrete mixes (Datolite and galena and ordinary concrete) were investigated. Results: The concrete samples had a density of 4420-4650 kg/m3 compared to that of ordinary concrete (2300-2500 kg/m3) or barite high density concrete (up to 3500 kg/m3). The measured half value layer thickness of the Datolite and galena concrete samples for cobalt-60 gamma rays was much less than that of ordinary concrete (2.56 cm compared to 6.0 cm). Furthermore, the galena concrete samples had a significantly higher compressive strength as well as 20% more neutron absorption. Conclusion: The Datolite and galena concrete samples showed good shielding/engineering properties in comparison with other reported samples made, using high-density materials other than depleted uranium. It is also more economic than the high-density concretes. Datolite and galena concrete may be a suitable option for shielding nuclear reactors and megavoltage radiotherapy rooms.

  8. A Reinforcement for Multifunctional Composites for Non-Parasitic Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative lightweight radiation shielding materials are enabling to shield humans in aerospace transportation vehicles and other human habited spaces....

  9. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    Science.gov (United States)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  10. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    KAUST Repository

    Caputo, Fanny

    2015-08-20

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields. © The Royal Society of Chemistry 2015.

  11. Nuclear shielding of openings in ITER Tokamak building

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Arumugam, A.P.; Beaudoin, V.; Beltran, D.; Benchikhoune, M.; Berruyer, F.; Cortes, P.; Gandini, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ghirelli, N. [ASSYSTEM E.O.S, ZAC Saint Martin, 23, rue Benjamin Franklin, 84120 Pertuis (France); Gray, A.; Hurzlmeier, H.; Le Page, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Lemée, A. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Lentini, G.; Loughlin, M.; Mita, Y.; Patisson, L.; Rigoni, G.; Rathi, D.; Song, I. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Establishment of a methodology to design shielded opening in external wall of the Tokamak building. ► Analysis of the shielding requirement, case by case, depending on the localization and the context. ► Implementation of an integrated solution for shielded opening. -- Abstract: The external walls of the Tokamak building, made of thick concrete, provide the nuclear shielding for operators working in adjacent buildings and for the environment. There are a series of openings to these external walls, devoted to ducts or pipes for ventilation, waveguides and transmission lines for heating systems and diagnostics, cooling pipes, cable trays or busbars. The shielding properties of the wall shall be preserved by adequate design of the openings in order not to affect the radiological zoning in adjacent areas. For some of them, shielding properties of the wall are not affected because the size of the network is quite small or the source is far from the opening. But for most of the openings, specific features shall be considered. Even if the approach is the same and the ways to shield can be standardized, specific analysis is requested in any case because the constraints are different.

  12. Evaluation of syringe shield effectiveness in handling radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Cho Yong-In

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effectiveness of the radiation shield of radionuclide syringes and the personal dose equivalent by performing a simulation of radionuclides used in nuclear medicine diagnosis. In order to evaluate the dose depending on the distance between the radiation source and the ICRU sphere against the thickness of the shielding device, the distance at which a nuclear medicine worker may inadvertently come into contact with radiation from the radiation source was set at 0 cm to 30 cm according to the thickness of the shield, thus fixing the ICRU sphere. For a dose evaluation, Hp(10, Hp(3, and Hp(0.07 measurable in specific depth of the ICRU were evaluated. It was found that a dose measured on skin surface of nuclear medicine workers was relatively higher, that the dose varied in relation to the thickness of the radiation shield, and that the shielding effect decreased for some radiation sources such as 67Ga and 111In. It proved necessary to increase thickness of shielding device to the radiation sources such as 67Ga and 111In. It is also considered that a study of proper shielding thickness will be needed in future.

  13. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data

    Science.gov (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.

    2013-01-01

    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  14. Checklist of the terrestrial vertebrates of the Guiana Shield

    Science.gov (United States)

    2005-01-01

    Distributions are given for 1850 species of terrestrial vertebrates in the Guiana Shield region of northeastern South America, with introductory text by the authors of each section. Distributions cover the three Guianas (Guyana, Surinam, and French Guiana), and the states of the Venezuelan Guayna (Amazonas, Bolivar, and Delta Amacuro), and in some cases the states of the Brazilian portion of the Guiana Shield (Amazonas, Roraima, Para, and Amapa), and the Colombian portion of the Guiana Shield. The first section is a checklist of amphibians of the Guiana Shield, by J. Celsa Sefiaris and Ross MacCulloch, detailing the distribution of 269 species. The second section is a checklist of the reptiles of the Guiana Shield by Teresa C. S. de Avila Pires, detailing the distribution of 295 species. The third section is a checklist of the birds of the Guiana Shield, by Chris Milensky, Wiltshire Hinds, Alexandre Aleixo, and Maria de Fatima C. Lima, detailing the distribution of 1004 species. The fourth section is a checklist of the mammals of the Guiana Shield, by Burton K. Lim, Mark D. Engstrom, and Jose Ochoa G., detailing the distribution of 282 species.

  15. DNA-based nanoparticle composite materials for EMI shielding

    Science.gov (United States)

    Zang, De Yu; Grote, James

    2012-03-01

    Composite materials, such as polymer-matrix containing conductive fillers, are very attractive for shielding electromagnetic interference (EMI) due to their high shielding efficiency and seamlessness, processability, flexibility, light-weight and low-cost. Here, we report a development of novel, DNA-based EMI-shielding materials (DESM), consisting of DNA and metal nanoparticles. It has been shown that a thin DESM layer (typically ~30 - 50 μm) could block EMI radiations up to 60 dB effectively over an RF frequency range from KHz to tens GHz, exhibiting excellent EMI shielding efficiency. A wide selection of metal nanoparticle fillers for DESM has been tested for their performance in EMI shielding efficiency. Among them, silver and carbon-based nanoparticles have demonstrated the best performance and were selected for further investigation. The silver-doped DESM films could be also non-conductive while their EMI shielding efficiency is still well-preserved. The nonconductive DESM could have a great potential in the microelectronics industries for EMI shielding on electronic devices and circuit boards.

  16. Shielding design calculation of a 50 MW research reactor

    International Nuclear Information System (INIS)

    The computer code ANISN/PC has been applied to calculate the group flux distribution across different shield layers of a 50 MW light water research reactor. The code has been run in P3 approximation and S8 discrete ordinates. The calculated group fluxes multiplied by appropriate flux-to-dose rate conversion factors have been used to give the dose distribution across the shield layers. The thickness of the concrete shield has been determined to give the dose rate at the outer surface of the shield as 0.5 nSv/sec. The same calculation have been also performed in axial direction to determine the thickness of water needed above the core to reduce the dose level to 25 nSv/sec. The result of calculation shows that the contribution of capture gamma rays to the total dose at the outer surface of the shield is more than 50 percent. This simplifies the calculations to determine the shield layer thickness, especially in preliminary stages of the shield design. (author)

  17. The assembly of the disk shielding is finished.

    CERN Multimedia

    Vincent Hedberg

    At the end of March, the shielding project engineer, Jan Palla, could draw a sigh of relief when the fourth and final rotation of the disk shielding was carried out without incident. The two 80-ton heavy shielding assemblies were built in a horizontal position and they had to be first turned upside-down and then rotated to a vertical position during the assembly. The relatively thin disk plate with a diameter of 9 meters, made this operation quite delicate and a lot of calculation work and strengthening of the shielding was carried out before the rotations could take place. The disk shielding is being turned upside-down. The stainless steel cylinder in the centre supports the shielding as well as the small muon wheel. The two disk shielding assemblies consist of different materials such as bronze, gray steel, cast iron, stainless steel, boron doped polyethylene and lead. The project is multinational with the major pieces having been made by companies in Armenia, Serbia, Spain, Bulgaria, Italy, Slovaki...

  18. Nuclear shielding of openings in ITER Tokamak building

    International Nuclear Information System (INIS)

    Highlights: ► Establishment of a methodology to design shielded opening in external wall of the Tokamak building. ► Analysis of the shielding requirement, case by case, depending on the localization and the context. ► Implementation of an integrated solution for shielded opening. -- Abstract: The external walls of the Tokamak building, made of thick concrete, provide the nuclear shielding for operators working in adjacent buildings and for the environment. There are a series of openings to these external walls, devoted to ducts or pipes for ventilation, waveguides and transmission lines for heating systems and diagnostics, cooling pipes, cable trays or busbars. The shielding properties of the wall shall be preserved by adequate design of the openings in order not to affect the radiological zoning in adjacent areas. For some of them, shielding properties of the wall are not affected because the size of the network is quite small or the source is far from the opening. But for most of the openings, specific features shall be considered. Even if the approach is the same and the ways to shield can be standardized, specific analysis is requested in any case because the constraints are different

  19. Development of epoxy resin-type neutron shielding materials (I)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Haeng; Kim, Ik Soo; Shin, Young Joon; Do, Jae Bum; Ro, Seung Gy

    1997-12-01

    Because the exposure to radiation in the nuclear facilities can be fatal to human, it is important to reduce the radiation dose level to a tolerable level. The purpose of this study is to develop highly effective neutron shielding materials for the shipping and storage cask of radioactive materials or in the nuclear /radiation facilities. On this study, we developed epoxy resin based neutron shielding materials and their various materials properties, including neutron shielding ability, fire resistance, combustion characteristics, radiation resistance, thermal and mechanical properties were evaluated experimentally. (author). 31 refs., 22 tabs., 17 figs.

  20. Fusion reactor design towards radwaste minimum with advanced shield material

    International Nuclear Information System (INIS)

    A new concept of fusion reactor design is proposed to minimize the radioactive waste of the reactor. The main point of the concept is to clear massive structural components located outside the neutron shield from regulatory control. The concept requires some reinforcement of shielding with an advanced shield material such as a metal hydride, detriation, and tailoring of a detrimental element from the superconductor. Our assessment confirmed a large impact of the concept on radwaste reduction, in that it reduces the radwaste fraction of a fusion reactor A-SSTR2 from 92 wt.% to 17 wt.%. (author)

  1. Capacitive Sensor With Driven Shields And Bridge Circuit

    Science.gov (United States)

    Vranish, John M.

    1994-01-01

    Like other capaciflectors described in prior articles in NASA Tech Briefs, this one includes sensing electrode driven by alternating voltage, giving rise to electric field in vicinity of electrode; object entering electric field detected by its effect on capacitance between sensing electrode and electrical ground. Also includes shielding electrode (in this case, driven shield 1), excited via voltage follower at same voltage as that applied to sensing electrode to concentrate more of electric field outward from sensing electrode, increasing sensitivity and range of sensor. Because shielding electrode driven via voltage follower, it does not present significant electrical load to source of alternating voltage.

  2. Planar quadrature coil design using shielded-loop resonators

    DEFF Research Database (Denmark)

    Stensgaard, A

    1997-01-01

    The shielded-loop resonator is known to have a low capacitive sample loss due to a perfect balancing. In this paper, it is demonstrated that shielded-loop technology also can be used to improve design of planar quadrature coils. Both a dual-loop circuit and especially a dual-mode circuit may...... benefit from use of shielded-loop resonators. Observations in measurements agree with theory for both a dual-loop coil and a dual-mode coil. The coils were designed for use as transmit/receive coil for 1H imaging and spectroscopy at 4.7 T in rat brain....

  3. Radiation shielding of 131I therapeutic ward in department

    International Nuclear Information System (INIS)

    Objective: To rebuild an 131I therapeutic ward of the department of nuclear medicine in the hospital, and design the radiation shielding to make the radiation safety achieve the national standards. Methods: According to the protection demands of national relating standards, the design of the ward was based on the basic principles and methods of radiation shielding of 131I, and combined the distribution of radioactive sources, rooms and people. Results: The design parameters and radioprotection data of the rebuilt ward were obtained and the radiation shielding was safe by monitoring. Conclusion: The design of the 131I therapeutic ward achieved the anticipated target that the radiation safety could be controlled. (authors)

  4. Shielding analysis methods available in the scale computational system

    International Nuclear Information System (INIS)

    Computational tools have been included in the SCALE system to allow shielding analysis to be performed using both discrete-ordinates and Monte Carlo techniques. One-dimensional discrete ordinates analyses are performed with the XSDRNPM-S module, and point dose rates outside the shield are calculated with the XSDOSE module. Multidimensional analyses are performed with the MORSE-SGC/S Monte Carlo module. This paper will review the above modules and the four Shielding Analysis Sequences (SAS) developed for the SCALE system. 7 refs., 8 figs

  5. Isotopic dependence of GCR fluence behind shielding

    International Nuclear Information System (INIS)

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (±100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (∼170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past; however, less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies

  6. Isotopic dependence of GCR fluence behind shielding

    Energy Technology Data Exchange (ETDEWEB)

    Cucinotta, Francis A. [NASA, Lyndon B. Johnson Space Center, Houston, TX 77058 (United States)]. E-mail: Francis.A.Cucinotta@nasa.gov; Wilson, John W. [NASA, Langley Research Center, Hampton, VA 23664 (United States); Saganti, Premkumar [Prairie View A and M, Prairie View, TX 94720 (United States); Hu, Xiaodong [NASA, Lyndon B. Johnson Space Center, Houston, TX 77058 (United States); Kim, Myung-Hee Y. [NASA, Lyndon B. Johnson Space Center, Houston, TX 77058 (United States); Cleghorn, Timothy [NASA, Lyndon B. Johnson Space Center, Houston, TX 77058 (United States); Zeitlin, Cary [Lawrence Berkeley National Laboratory Berkeley, CA 94720 (United States); Tripathi, Ram K. [NASA, Langley Research Center, Hampton, VA 23664 (United States)

    2006-10-15

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors ({+-}100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid ({approx}170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past; however, less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  7. Isotopic Dependence of GCR Fluence behind Shielding

    Science.gov (United States)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  8. Reactor cavity cleanup system shielded filter installation

    International Nuclear Information System (INIS)

    The Seabrook Station reactor cavity cleanup system provides a flow path for refueling pool purification and drain down during plant refueling evolutions. The original system design included refueling pool surface skimmers and drains, a skimmer pump, an unshielded duplex basket type pump suction strainer and interconnecting stainless steel piping. The piping design utilized socket welded joints in small bore pipe with diaphragm values installed in the horizontal pipe runs downstream of the skimmer pump. The previously installed unshielded strainer in addition to the skimmer pump downstream piping components were determined to be inconsistent with Seabrook's proactive approach to dose reduction. To be consistent with ALARA (As Low As Reasonably Achievable) policy, a plant design change was authorized to install a lead shielded filter unit as a replacement for the existing duplex strainer. This filter unit, which utilizes multiple micron rating disposable basket type cartridges, has a threefold function of protecting the skimmer pump from large solids, providing bulk filtration of activated corrosion products from the refueling water in order to minimize CRUD buildup in downstream components, and enabling retrieval of foreign material drawn into the refueling pool drains

  9. Shield Effect Of Functional Interlining Fabric

    Directory of Open Access Journals (Sweden)

    Šaravanja Bosiljka

    2015-06-01

    Full Text Available Electromagnetic interference (EMI have become very serious in a variety of different electronic equipments, such as personal computers (frequency at several GHz, mobile devices (0.9 – 2.4 GHz and similar. This imposes the need for setting boundaries for EM emission of electric and electronic devices in order to minimize the possibility of interference with radio and wireless communications. Functional textiles can offer protective properties against EM radiation. The aim of this study is to investigate the degree of protection against EM radiation provided by polyamide copper-coated interlining fabric before and after dry cleaning treatment. EM protection efficiency of the interlining functional fabric is explored on both sides at the frequencies of 0.9; 1.8; 2.1 and 2.4 GHz. The results obtained have shown that the interlining fabric has good protective properties against EM radiation, but after dry cleaning, treatment reduction is observed. Scanning electron microscopy micrographs of the interlining surface confirms shield effect decline due to degradation and firing of the copper layers during the process of dry cleaning.

  10. Stress shield: a model of police resiliency.

    Science.gov (United States)

    Paton, Douglas; Violanti, John M; Johnston, Peter; Burke, Karena J; Clarke, Joanna; Keenan, Denise

    2008-01-01

    This paper discusses the development of a new model of police officer resiliency. Following Antonovsky's definition of resilience, the model is built on the view that the resilience of a person or group reflects the extent to which they can call upon their psychological and physical resources and competencies in ways that allow them to render challenging events coherent, manageable, and meaningful. The model posits that a police officer's capacity to render challenging experiences meaningful, coherent, and manageable reflects the interaction of person, team, and organizational factors. The paper argues that a model that encompasses these factors can be developed using theories drawn from the literatures of occupational health and empowerment. The development of the model is also informed by the need to ensure that it can accommodate the importance of learning from past experiences to build resilience in ways that increase officers' capacity to adapt to future risk and uncertainty. By building on recent empirical research, this paper outlines a new multi-level model of resilience and adaptive capacity. The Stress Shield model of resilience integrates person, team and organizational factors to provide a proactive framework for developing and sustaining police officer resilience. PMID:18788345

  11. Fusion reactor blanket/shield design study

    International Nuclear Information System (INIS)

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented

  12. Monte Carlo method application to shielding calculations

    International Nuclear Information System (INIS)

    CANDU spent fuel discharged from the reactor core contains Pu, so it must be stressed in two directions: tracing for the fuel reactivity in order to prevent critical mass formation and personnel protection during the spent fuel manipulation. The basic tasks accomplished by the shielding calculations in a nuclear safety analysis consist in dose rates calculations in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. To perform photon dose rates calculations the Monte Carlo MORSE-SGC code incorporated in SAS4 sequence from SCALE system was used. The paper objective was to obtain the photon dose rates to the spent fuel transport cask wall, both in radial and axial directions. As source of radiation one spent CANDU fuel bundle was used. All the geometrical and material data related to the transport cask were considered according to the shipping cask type B model, whose prototype has been realized and tested in the Institute for Nuclear Research Pitesti. (authors)

  13. Meissner Shield as Option of Open Geometry Beam Shielding for ALICE Muon Arm

    CERN Document Server

    Akishin, P; CERN. Geneva; Datskov, V I; Shishov, Yu A; Vodopyanov, A S; Ivanov, A; Khlebnikov, A S; Zhitnik, A; Cussonneau, J P; Gutbrod, H H; Labalme, M; Lautridou, P; Luquin, Lionel; Métivier, V; Rahmani, A; Reposeur, T

    1999-01-01

    Abstract Abstract   An option of background suppression at a rapidity greater than 4.0 for the muon arm area proposed in this report. An open geometry of the beam pipe is used in this option. The Meissner shield of the dipole magnetic field combined with a passive absorber creates softer background environments for the muon spectrometer than in the option presented in the ALICE Technical Proposal (TP) [1] – [2]. First results of this study can be found in Report at ISHEPPXIV, Dubna 1998 [3].

  14. Thyroid shields and neck exposures in cephalometric radiography

    Directory of Open Access Journals (Sweden)

    Cunha-Cruz Joana

    2006-06-01

    Full Text Available Abstract Background The thyroid is among the more radiosensitive organs in the body. The goal of this study was twofold: (1 to evaluate age-related changes in what is exposed to ionizing radiation in the neck area, and (2 to assess thyroid shield presence in cephalometric radiographs Methods Cephalometric radiographs at one academic setting were sampled and neck exposure was related to calendar year and patient's gender and age. Results In the absence of shields, children have more vertebrae exposed than adults (p Conclusion In the absence of a thyroid shield, children have more neck structure exposed to radiation than adults. In agreement with other reports, thyroid shield utilization in this study was low, particularly in children.

  15. Magnetic shielding tests for MFTF-B neutral beamlines

    International Nuclear Information System (INIS)

    A test program to determine the effectiveness of various magnetic shielding designs for MFTF-B beamlines was established at Lawrence Livermore National Laboratory (LLNL). The proposed one-tenth-scale shielding-design models were tested in a uniform field produced by a Helmholtz coil pair. A similar technique was used for the MFTF source-injector assemblies, and the model test results were confirmed during the Technology Demonstration in 1982. The results of these tests on shielding designs for MFTF-B had an impact on the beamline design for MFTF-B. The iron-core magnet and finger assembly originally proposed were replaced by a simple, air-core, race-track-coil, bending magnet. Only the source injector needs to be magnetically shielded from the fields of approximately 400 gauss

  16. Improved Metal-Polymeric Laminate Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed Phase II program, builds on the phase I feaibility where a multifunctional lightweight radiation shield composite was developed and fabricated....

  17. Gamma-ray shielding design and performance test of WASTEF

    International Nuclear Information System (INIS)

    The Waste Safety Testing Facility (WASTEF) was planned in 1978 to test the safety performance of HLW vitrified forms under the simulated conditions of long term storage and disposal, and completed in August 1981. The designed feature of the facility is to treat the vitrified forms contain actual high-level wastes of 5 x 104 Ci in maximum with 5 units of concrete shilded hot cells (3 units : Bate-Gamma cells, 2 units : Alpha-Gamma cells) and one units of Alpha-Gamma lead shielded cell, and to store radioactivity of 106 Ci in maximum. The safety performance of this facility is fundamentally maintained with confinement of radioactivity and shielding of the radiation. This report describes the method of gamma-ray shielding design, evaluation of the shielding test performed by using sealded gamma-ray sources(Co-60). (author)

  18. Multifunctional, Boron-Foam Based Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA vision of Space Exploration requires new approaches to radiation shielding. Both Spiral 2 and Spiral 3 concepts are extremely sensitive to weight...

  19. Application of Advanced Radiation Shielding Materials to Inflatable Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is a weight-optimized, inflatable structure that incorporates radiation shielding materials into its construction, for use as a habitation module or...

  20. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.;

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding...... solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. The same approach is used to study the efficiencies of the steel wall a flat cylinder pierced by the guide...... in the middle and the polyethylene layer. The final model presented here has a 3 cm thick steel shielding around the guide, 30 cm of polyethylene around the shielding, two 5 mm thick B4C layers and a steel wall at position Z = 38 m, being 1 m thick and 10 m in radius. The final model finally proves...

  1. Merits of partial shielding in dumping sediment spoils.

    Science.gov (United States)

    Jensen, Jacob Hjelmager; Saremi, Sina; Jimenez, Carlos; Hadjioannou, Louis

    2015-12-15

    The commonly adopted method of dumping dredge spoil at sea using split-hull barges leads to considerable sediment loss to the water column and a subsequent dispersion of fine material that can pose a risk to sensitive "downstream" habitats such as coral reefs. Containing sediment loads using stitched closed geotextile bags is practiced for minimizing loss of contaminated sediment, but is expensive in terms of operational efficiency. Following promising observations from initial laboratory trials, the plunging of partially shielded sediment loads, released on open sea, was studied. The partial shielding was achieved with rigid, open containers as well as flexible, open bags. The loss of sediment from these modes of shielding was measured, and it was observed that even limited and unstitched shielding can be effective in debilitating the entrainment of water into the descending load. In particular, long-sleeved flexible bags practically self-eliminated the exposure of the load and thus losses. PMID:26597564

  2. Radiation shielding and safety analysis for SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro; Sasamoto, Nobuo [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1998-03-01

    The methods of shielding design and safety analysis applied to SPring-8 are summarized. SPring-8, a third generation synchrotron radiation facility, is the facility with the highest stored electron energy of 8 GeV and very low beam emittance of 5.5 nm{center_dot}rad. Because of these distinguished features, a variety of radiation issues have to be taken up, requiring the latest information for analyses. In this technical report are described the calculational methods and the conditions for the following shielding matters as well as verification of the validity; a bulk shielding, synchrotron radiation beamline shielding, skyshine, streaming through ducts and mazes, induced activities in air, cooling water and targets, and incident analysis due to abnormal beam losses. (author)

  3. Transportation package thermal and shielding response to a regulatory fire

    International Nuclear Information System (INIS)

    The objective of this work is to evaluate the effect of neutron shield charring due to a regulatory fire on the thermal response and shielding effectiveness of a Multi-Purpose Canister (MPC) and transportation cask. A thermal response model which includes the effect of neutron shield charring is developed. The model is solved using a time dependent finite element code. The maximum fuel temperature-time history and the extent of shield charring are determined. This is used to estimate the primary dose rate from the package in the post-fire condition. It is determined that charring has an insignificant effect on the thermal response of the fuel. Furthermore, while charring increases dose rates, these rates remain below Nuclear Regulatory Commission limits for accident conditions

  4. A Radiation shielding study for the Fermilab Linac

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I.; Johnstone, C.; /Fermilab

    2006-02-01

    Radiation shielding calculations are performed for the Fermilab Linac enclosure and gallery. The predicted dose rates around the access labyrinth at normal operation and a comparison to measured dose rates are presented. An accident scenario is considered as well.

  5. Radiation Shielding Utilizing A High Temperature Superconducting Magnet Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to leverage near-term high-temperature superconducting technologies to assess applicability of magnetic shielding for protecting against exposure...

  6. Multigroup albedo method applied to gamma radiation shielding

    International Nuclear Information System (INIS)

    The Albedo method, when applied to shielding calculations, is characterized by following the radiation through the materials, determining the reflected, absorbed and transmitted fractions of the incident current, independently of flux calculations. The excellent results obtained to neutron shielding cases in which the diffusion approximation could be applied motivated this work, where the method was applied in order to develop a multigroup and multilayered algorithm. A gamma radiation shielding simulation was carried out to a system constituted by three infinite slabs of varied materials and six energy groups. The results obtained by Albedo Method were the same generated by ANISN, a consecrated deterministic nuclear code. Concludingly, this work demonstrates the validity of Albedo Method to gamma radiation shielding analysis through its agreement with the full Transport Equation. (author)

  7. Low Cost, Lightweight, Multifunctional Structural Shielding Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR involves the development of a lightweight innovative material for use as structure and radiation shielding in one. APS has assembled a uniquely qualified...

  8. Characterizing and Manufacturing Multifunctional Radiation Shielding Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  9. Detection of shielded nuclear material in a cargo container

    International Nuclear Information System (INIS)

    The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University's Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., 'calibration' pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presented for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration

  10. Genes Might Help Shield Some Black Men from Obesity

    Science.gov (United States)

    ... Genes Might Help Shield Some Black Men From Obesity But these same factors don't appear to ... WEDNESDAY, June 1, 2016 (HealthDay News) -- Though the obesity epidemic affects people of all backgrounds, experts have ...

  11. Neutron shielding and activation of the MASTU device and surrounds

    CERN Document Server

    Taylor, David; Turner, Andrew; Davis, Andrew

    2014-01-01

    A significant functional upgrade is planned for the Mega Ampere Spherical Tokamak (MAST) device, located at Culham in the UK, including the implementation of a notably greater neutral beam injection power. This upgrade will cause the emission of a substantially increased intensity of neutron radiation for a substantially increased amount of time upon operation of the device. Existing shielding and activation precautions are shown to prove insufficient in some regards, and recommendations for improvements are made, including the following areas: shielding doors to MAST shielded facility enclosure (known as "the blockhouse"); north access tunnel; blockhouse roof; west cabling duct. In addition, some specific neutronic dose rate questions are addressed and answered; those discussed here relate to shielding penetrations and dose rate reflected from the air above the device ("skyshine").

  12. Self-shielding Electron Beam Installation for Sterilization

    Institute of Scientific and Technical Information of China (English)

    Linac; Laboratory

    2002-01-01

    China Institute of Atomic Energy (CIAE) has developed a self-shielding electron beam installationfor sterilization as handling letters with anthrax germ or spores which has the least volume and the least

  13. Development of highly effective neutron shields and neutron absorbing materials

    International Nuclear Information System (INIS)

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  14. The blattodeas.s. (Insecta, dictyoptera) of the Guiana shield.

    Science.gov (United States)

    Evangelista, Dominic A; Chan, Kimberly; Kaplan, Kayla L; Wilson, Megan M; Ware, Jessica L

    2015-01-01

    Here we provide a checklist of cockroach species known from areas within the Guiana Shield based on literature records and new field collection. We give records of sixteen species collected in Guyana, eight of which are new records for Guyana and one of which is a new generic record for the entire Guiana Shield. We also provide a description for a geographically disparate species of Calhypnorna Stal, and the new species Xestoblattaberenbaumae. The complete checklist contains 234 species of Blattodeas.s. currently known in the shield. This checklist shows particularly low richness in Guianan Venezuela, Roraima and Amapa Brazil, but this is likely an artifact due to under-sampling. Indeed, based on previously published data and current fieldwork, we believe that most regions of the Guiana Shield are under-sampled for cockroaches. Despite this, French Guiana (151 spp.) and Suriname (136 spp.) rank as the second and sixth most species dense faunas of cockroaches in the neotropics.

  15. Fusion Engineering Device (FED) first wall/shield design

    International Nuclear Information System (INIS)

    The torus of the Fusion Engineering Device (FED) is comprised of the bulk shield and its associated spool lstructure and support system, the first wall water-cooled panel and armor systems, and the pumped limiter. The bulk shielding is provided by ten shield sectors that are installed in the spool structure in such a way as to permit extraction of the sectors through the openings between adjacent toroidal field coils with a direct radial movement. The first wall armor is installed on the inboard and top interior walls of these sectors, and the water-cooled panels are installed on the outboard interior walls and the pumped limiter in the bottom of the sectors. The overall design of the first wall and shield system is described in this paper

  16. RADIO SHIELDING PROPERTIES OF CONCRETE BASED ON SHUNGITE NANOMATERIALS

    OpenAIRE

    BELOUSOVA Elena Sergeevna; LYNKOV Leonid Mihailovich; MAHMOOD Mohammed Shakir; NASONOVA Natalia Viktorovna

    2013-01-01

    Modifications of shielding construction materials based on Portland cement with the addition of powder nanomaterial shungite were developed. Attenuation and re­flection of electromagnetic radiation for obtained materials were studied. Recommen­dations for using are given.

  17. Detection of shielded nuclear material in a cargo container

    Science.gov (United States)

    Jones, James L.; Norman, Daren R.; Haskell, Kevin J.; Sterbentz, James W.; Yoon, Woo Y.; Watson, Scott M.; Johnson, James T.; Zabriskie, John M.; Bennett, Brion D.; Watson, Richard W.; Moss, Cavin E.; Frank Harmon, J.

    2006-06-01

    The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University's Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presented for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration.

  18. Monte Carlo simulations for optimization of neutron shielding concrete

    Science.gov (United States)

    Piotrowski, Tomasz; Tefelski, Dariusz; Polański, Aleksander; Skubalski, Janusz

    2012-06-01

    Concrete is one of the main materials used for gamma and neutron shielding. While in case of gamma rays an increase in density is usually efficient enough, protection against neutrons is more complex. The aim of this paper is to show the possibility of using the Monte Carlo codes for evaluation and optimization of concrete mix to reach better neutron shielding. Two codes (MCNPX and SPOT — written by authors) were used to simulate neutron transport through a wall made of different concretes. It is showed that concrete of higher compressive strength attenuates neutrons more effectively. The advantage of heavyweight concrete (with barite aggregate), usually used for gamma shielding, over the ordinary concrete was not so clear. Neutron shielding depends on many factors e.g. neutron energy, barrier thickness and atomic composition. All this makes a proper design of concrete as a very important issue for nuclear power plant safety assurance.

  19. Radiation Shielding and Hydrogen Storage with Multifunctional Carbon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  20. Optimization of the National Ignition Facility primary shield design

    Energy Technology Data Exchange (ETDEWEB)

    Annese, C.E.; Watkins, E.F.; Greenspan, E.; Miller, W.F. [California Univ., Berkeley, CA (United States). Dept. of Nuclear Engineering; Latkowski, J.; Lee, J.D.; Soran, P.; Tobin, M.L. [Lawrence Livermore National Lab., CA (United States)

    1993-10-01

    Minimum cost design concepts of the primary shield for the National Ignition laser fusion experimental Facility (NIF) are searched with the help of the optimization code SWAN. The computational method developed for this search involves incorporating the time dependence of the delayed photon field within effective delayed photon production cross sections. This method enables one to address the time-dependent problem using relatively simple, time-independent transport calculations, thus significantly simplifying the design process. A novel approach was used for the identification of the optimal combination of constituents that will minimize the shield cost; it involves the generation, with SWAN, of effectiveness functions for replacing materials on an equal cost basis. The minimum cost shield design concept was found to consist of a mixture of polyethylene and low cost, low activation materials such as SiC, with boron added near the shield boundaries.

  1. Test of thermal shields for early warning station detectors

    DEFF Research Database (Denmark)

    Petersen, Jesper

    1997-01-01

    The properties of thermal shields around NaI crystal scintillators for early warning stations have been checked in order to assure that external temperature variations cannot influence the stability of the measurements.......The properties of thermal shields around NaI crystal scintillators for early warning stations have been checked in order to assure that external temperature variations cannot influence the stability of the measurements....

  2. Upgrade of the LHC magnet interconnections thermal shielding

    Science.gov (United States)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  3. Investigation of a jet-noise-shielding methodology

    OpenAIRE

    O'Reilly, Ciarán J.; Rice, Henry J.

    2015-01-01

    Ongoing research toward the reduction of environmental noise from aircraft is investigating the possible shielding of engine-noise sources by novel airframe configurations. To assess the noise-reduction benefits attainable from such configurations, it is necessary to develop appropriate acoustic evaluation tools. In this paper, a jet-noise-shielding- prediction methodology is described. The Tam–Auriault (“Jet Mixing Noise from Fine-Scale Turbulence,” AIAA Journal, Vol. 37, No. 2, 1999, pp. 14...

  4. New gadolinium based glasses for gamma-rays shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaewjang, S.; Maghanemi, U.; Kothan, S. [Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chang Mai University, Chang Mai 50200 (Thailand); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Limkitjaroenporn, P. [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand)

    2014-12-15

    Highlights: • Gd{sub 2}O{sub 3} based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd{sub 2}O{sub 3.} • All the glasses of Gd{sub 2}O{sub 3} compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd{sub 2}O{sub 3} based glass matrices. - Abstract: In this work, Gd{sub 2}O{sub 3} based glasses in compositions (80−x)B{sub 2}O{sub 3}-10SiO{sub 2}-10CaO-xGd{sub 2}O{sub 3} (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd{sub 2}O{sub 3} concentration. The experimental values of mass attenuation coefficients (μ{sub m}), effective atomic number (Z{sub eff}) and effective electron densities (N{sub e}) of the glasses were found to increase with the increasing of Gd{sub 2}O{sub 3} concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd{sub 2}O{sub 3} compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials.

  5. Analysis methods for Kevlar shield response to rotor fragments

    Science.gov (United States)

    Gerstle, J. H.

    1977-01-01

    Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.

  6. The effect of breast shielding during lumbar spine radiography:

    OpenAIRE

    Žontar, Dejan; Škrk, Damijan; Mekiš, Nejc

    2013-01-01

    Background The aim of the study was to determine the influence of lead shielding on the dose to female breasts in conventional x-ray lumbar spine imaging. The correlation between the body mass index and the dose received by the breast was also investigated. Materials and methods Breast surface dose was measured by thermoluminescent dosimeters (TLD). In the first phase measurements of breast dose with and without shielding from lumbar spine imaging in two projections were conducted on an anthr...

  7. The edges of Precambrian shields in Scandinavia and the UK

    Science.gov (United States)

    England, Richard; Ben Mansour, Walid; Moorkamp, Max; Fishwick, Stewart

    2016-04-01

    The process of forming shields and establishing their physical characteristics can be studied by examining their margins. Geological interpretations suggest that in the UK the present day western margin of the Caledonian orogen is exposed along the line of the Moine Thrust in NW Scotland. In Sweden the eastern side of the Caledonian orogen is exposed as a major thrust fault at the base of the lower allochthon. Both sides of the orogen are in contact with shields (in the sense of large areas of Precambrian rock). Geological observations show that at the surface the transition from shield to reworked shield/younger orogenic belt is characterised by a major low angle thrust fault. Thrusting within the orogenic belt exhumes allochthonous slices of basement rock and continental margin sediments (the Moine Supergroup with intercalated slices of Lewisianoid basement in NW Scotland and the lower, and middle allochthons in Scandinavia). However, the results of deep seismic experiments show different deep structures at the transition from shield to the orogenic belt in these two areas. In Scandinavia the crust directly beneath the edge of the orogen is thicker than or as thick as the crust beneath the core of the orogen. In NW Scotland the crust thins westward beneath the edge of the orogen and critically, despite having the same age and origin, it is considerably thinner than the shield beneath Fennoscandia. In simple terms this thinning can be explained by stretching of the Late Archean to Proterozoic Lewisian complex which lies beneath Scotland during the protracted opening of the North Atlantic. This suggests that shields are strong in compression when their edges are reworked by orogenic activity but weak when affected by stretching. This observation has a significant implication. The formation and longevity of shields can be undermined by stretching of the lithosphere.

  8. A versatile composite material for fast neutron shielding

    International Nuclear Information System (INIS)

    Full text: A composite material which consists of polyethelyene granules and borax powder embedded in a polyester resin has been developed for the shielding of fast neutrons. The material is particularly suited to small to medium size installations and is currently being used as a replacement for boronated paraffin wax. Measurements have demonstrated that the shielding is comparable to boronated wax, while at the same time displaying superior mechanical properties

  9. Improvement of the shielding used during the channel replacement tasks

    International Nuclear Information System (INIS)

    The objective of this paper is to make a proposal in order to improve the shielding which is used during the channel replacement tasks. Two options are proposed. The first one on the basis of a moderate increase of the shielding weight (20%) and the second one assuming an important weight increase (68%). The expected result is an average dose reduction of some 8% and 21% respectively. (author). 5 refs., 6 figs

  10. High frequency electromagnetic interference shielding magnetic polymer nanocomposites

    Science.gov (United States)

    He, Qingliang

    Electromagnetic interference is one of the most concerned pollution and problem right now since more and more electronic devices have been extensively utilized in our daily lives. Besides the interference, long time exposure to electromagnetic radiation may also result in severe damage to human body. In order to mitigate the undesirable part of the electromagnetic wave energy and maintain the long term sustainable development of our modern civilized society, new technology development based researches have been made to solve this problem. However, one of the major challenges facing to the electromagnetic interference shielding is the relatively low shielding efficiency and the high cost as well as the complicated shielding material manufacture. From the materials science point of view, the key solutions to these challenges are strongly depended on the breakthrough of the current limit of shielding material design and manufacture (such as hierarchical material design with controllable and predictable arrangement in nanoscale particle configuration via an easy in-situ manner). From the chemical engineering point of view, the upgrading of advanced material shielding performance and the enlarged production scale for shielding materials (for example, configure the effective components in the shielding material in order to lower their usage, eliminate the "rate-limiting" step to enlarge the production scale) are of great importance. In this dissertation, the design and preparation of morphology controlled magnetic nanoparticles and their reinforced polypropylene polymer nanocomposites will be covered first. Then, the functionalities of these polymer nanocomposites will be demonstrated. Based on the innovative materials design and synergistic effect on the performance advancement, the magnetic polypropylene polymer nanocomposites with desired multifunctionalities are designed and produced targeting to the electromagnetic interference shielding application. In addition

  11. Gonad Shielding for Patients Undergoing Conventional Radiological Examinations: Is There Cause for Concern?

    Directory of Open Access Journals (Sweden)

    Karami

    2016-04-01

    Full Text Available Background Gonad shielding is one of the fundamental methods by which to protect reproductive organs in patients undergoing conventional radiological examinations. A lack of or inadequate shielding of the gonads may increase the exposure of these organs and result in malignancies future generations. Objectives The aim of this study is to investigate the prevalence of gonad shielding in patients undergoing conventional radiological examinations and the availability of gonad shields and gonad shielding protocols in radiology departments. Materials and Methods A retrospective, observational cross-sectional study on the application of gonad shielding, the availability of gonad shields and the existence of gonad shielding protocols in radiology departments was performed in five different hospitals in Ahvaz, Iran. Results The highest application of gonad shielding was 6.6% for the pediatric hospital. The prevalence of gonad shielding was less than 0.2%. In 64.3% of the radiography rooms, at least one flat-contact gonad shield of a large size was available. Only large-sized gonad shields were available. Curved-contact and shadow gonad shields did not exist. Gonad shielding protocols were not existence in any of the fourteen radiography rooms investigated. Conclusions Comprehensive protection programs with on-the-job training courses for staff members are strongly recommended, as well as, the provision of radiological shields and gonad shielding protocols in radiology departments to reduce the patient’s radiation dose during radiological examinations.

  12. Noise Modeling From Conductive Shields Using Kirchhoff Equations.

    Science.gov (United States)

    Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J

    2010-10-01

    Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding the magnetic noise of conductive materials, especially of magnetic shields based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have radio frequency shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems with complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies, knowledge of the noise correlation between sensors is as important as knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for arbitrary shaped shields and multiple sensor systems. The approach is efficient enough to be able to run on a single PC system and return results on a minute scale. With a multiple sensor system our approach calculates not only the noise for each sensor but also the noise correlation matrix between sensors. Here we will show how the algorithm can be implemented.

  13. Noise modeling from high-permeability shields using Kirchhoff equations

    Energy Technology Data Exchange (ETDEWEB)

    Sandin, Henrik J [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory; Espy, Michelle A [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Savukov, Igor M [Los Alamos National Laboratory; Schultz, Larry J [Los Alamos National Laboratory

    2010-01-01

    Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding magnetic noise of conductive materials, especially of magnetic shields (DC or rf) based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have rf shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems arbitrary shapes and complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies the knowledge of the noise correlation between sensors is as important as the knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for any geometrically shaped shield and multiple sensor systems. The approach uses a fraction of the processing power of other approaches and with a multiple sensor system our approach not only calculates the noise for each sensor but it also calculates the noise correlation matrix between sensors. Here we will show the algorithm and examples where it can be implemented.

  14. Gravitational Shielding Effect in Gauge Theory of Gravity

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2004-01-01

    In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.

  15. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    Science.gov (United States)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  16. Study of Neutron and Gamma Radiation Protective Shield

    Directory of Open Access Journals (Sweden)

    Eskandar Asadi Amirabadi

    2013-08-01

    Full Text Available Due to the development of nuclear technology and use of these technologies in various fields of industry, medicine, research and etc, protection against radioactive rays is one of the most important topics in this field .The purpose of this is to reduce the dose rate from radioactive sources. The sources in terms of components are emitted various types of nuclear radiation with different energies. These radiations are involving of alpha particles, beta, and neutron and gamma radiation. Given that alpha and beta particles can be fully absorbed by the shield, the main issue in the debate protection radioactive rays is stopping of gamma rays and neutrons. Accordingly in shield design usually two types of radiation should be considered. First, X-rays and gamma rays, which have great influence, and by the mass of any suitable material, can be more efficiently attenuate the higher the density, the better the potential attenuation effect against gamma rays and the required shielding thickness decreases. The second type of radiation is neutrons. Often a combination of three materials is desirable that include heavy metals, light metals, and neutron-absorbing material to omit the slow neutrons through adsorption to the neutron shield. There are different materials that can be used to shielding against radioactive rays. The main materials that are used in protection include: water, lead, graphite, iron, compounds that contains B, concrete, and polyethylene. Accordingly, the main objective of this paper is evaluating the kind of shield against gamma and neutrons rays.

  17. Gravitational Field Shielding by Scalar Field and Type II Superconductors

    Directory of Open Access Journals (Sweden)

    Zhang B. J.

    2013-01-01

    Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.

  18. Radiation Shielding Analysis of Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    The objective of this technical report are to establish the radiation shielding technology of a high-energy electron accelerator to the facilities which utilize with electron beam. The technologies of electron beam irradiation(300 KeV -10 MeV) demand on the diverse areas of material processing, surface treatment, treatments on foods or food processing, improvement of metal properties, semiconductors, and ceramics, sterilization of medical goods and equipment, treatment and control of contamination and pollution, and so on. In order to acquire safety design for the protection of personnel from the radiations produced by electron beam accelerators, it is important to develop the radiation shielding analysis technology. The shielding analysis are carried out by which define source term, calculation modelling and computer calculations for 2 MeV and 10 MeV accelerators. And the shielding analysis for irradiation dump shield with 10 MeV accelerators are also performed by solving the complex 3-D geometry and long computer run time problem. The technology development of shielding analysis will be contributed to extend the further high energy accelerator development

  19. Determination of shielding parameters for different types of resins

    International Nuclear Information System (INIS)

    Highlights: • The gamma and neutron shielding properties of four types of resin have been investigated. • The total mass attenuation coefficients have been calculated using WinXCom computer programs. • The macroscopic fast neutron removal cross-sections have been calculated theoretically. • The total mass attenuation coefficient and the macroscopic fast neutron removal cross-section depend on chemical content. • The resin 250 WD is effective for shielding fast neutrons, and heavy resins are effective for shielding gamma rays. - Abstract: In this paper, the neutron and gamma shielding properties of four types of resin have been studied. The mass attenuation coefficients (μt) have been calculated at the photon energy range of 1 keV–1 GeV by using WinXCom program. The macroscopic fast neutron removal cross-sections (ΣR) have also been calculated. The dependence of mass attenuation coefficients and the macroscopic fast neutron removal cross-sections on chemical composition of the selected polymers has been discussed. Also, the dependence of mass attenuation coefficients on incident photon energy has been studied. The results show that resins with high density is an effective for shielding gamma rays and resin 250WD is effective for shielding fast neutrons

  20. Radiation shielding techniques and applications. 2. Shielding and Mechanical Properties of Nurescell

    International Nuclear Information System (INIS)

    Nurescell is a new, unique composite of materials for radiation applications. Because of its physical properties, it is designed for shielding, storage, and containment of radiation and radioactive material. This paper presents measurements of gamma ray and neutron attenuation, radiation damage resistance, and mechanical properties of initial formulations of the Nurescell material. Nurescell is a polymer-based material. The polymer acts as the binding material for other constituents including oxides of aluminum, iron, bismuth, and/or lead, bismuth metal, and tungsten carbide. Table I gives several of the compositions that have been tested. The first four contain various amounts of aluminum, iron, and lead oxide. Material E contains bismuth oxide, material G contains bismuth metal, and material Nu-G contains tungsten carbide. Gamma-ray and fast neutron shielding characteristics were determined for several Nurescell formulations. Gamma-ray tests included 60Co (average energy 1.25 MeV) and 241Am (60 keV). The high-energy gamma rays emitted by 60Co are typically used as a reference for shielding calculations in the nuclear power industry. The low-energy gamma rays given off by 241Am are used to give an estimate of the equivalent atomic number Z of the material since the mass attenuation coefficient at this energy is highly dependent on Z. A simple, narrow-beam geometry was approximated, and the penetrating radiation was detected with a standard NaI detector and scaler. Results are given in Table I. Fast neutron-removal cross-section (Σr) measurements utilized a PuBe neutron source with an average energy of ∼4 MeV and a Bonner Sphere neutron spectrometer system. To determine the removal cross section, the number of neutrons in the energy range >1 eV was integrated from the Bonner Sphere results. Shielding samples had a cross-sectional area of 30x30 cm. This area may cause some error in this measurement since the neutron mean-free-path length is approaching this

  1. CYLSEC: A three dimensional shield evaluation code

    International Nuclear Information System (INIS)

    Existing point kernel gamma codes are either limited to simple geometry configurations or require rather cumbersome input. These codes also require the user to specify the mesh size used in integrating the kernel. This results in computational inefficiencies since it is difficult to establish criteria for choosing mesh size and because it is generally not possible to assure convergence without solving the problem more than once. The interactive program CYLSEC was recently developed to improve this situation. CYLSEC can be used to evaluate bulk or local shielding for radioactive components, to treat streaming problems and to calculate a variety of gamma ray response functions. It will accept three dimensional geometries that can be described in terms of orthogonal slabs, right cylinders and/or right parallelepipeds. While the problem geometry is specified in rectangular coordinates, the integration of the kernel is performed in spherical coordinates. This allows explicit integration over the radial variable, thus reducing the problem to a double integral. The integral mesh size varies and is internally determined such that a specified convergence criterion is met. CYLSEC is also designed to recognize and take advantage of any problem symmetry in order to maximize efficiency. Program input is through interactive routines that are self checking and permit the user to make corrections. A gamma ray data library is provided, however, alternate data may be specified if desired. Comparisons between CYLSEC and other point kernel codes (QAD, GRACE) show excellent agreement in results and demonstrate that CYLSEC requires significantly less CPU time. Comparisons with the discrete ordinates code ANISN also show good agreement. An additional attraction to CYLSEC is that it is suitable for conversion to mini or personal computers

  2. Shielding design for research and education reactor

    International Nuclear Information System (INIS)

    For the purpose of education and research at the University, 20-KW powered SLOWPOKE-2 research reactor has been chosen as a prototype reactor. In order to study the safety characteristics of the reactor, exposure rate has been estimated at the pool boundary. Reactor core as a radiation source is assumed to be cylindrical volume source. Thus point kernel integration method can be applied to determine the exposure rate. For the sake of simplicity, calculation was done only for the prompt fission gamma rays and fission product gamma rays. As a result, the maximum exposure rate at the pool boundary was estimated to be 18R/min at the same height of the center of the core. In order to examine the accuracy for the point kernel integration method, two shielding experiments were carried out: one for the water tank only and the other for with concrete blocks outside the water tank. Water tank was made of wood pieces which is 13.4cm wide, 1.5cm thick and 2.15m long. Thus the water tank has the total dimension of 1 m radius and 2.1 m height. The experiment was carried out for the radiation source of 0.968 mCi Co-60 at the center of the water tank and the penetrated gamma rays were measured at 5 different detector positions. For the measurement and analysis of the responses, NaI(T1) 3''x3'' detector and 256 channel multichannel analyzer was utilized. To convert pulse height distribution to the exposure rate, Moriuchi conversion factor was adopted. Data from the calculations by point kernel method were well agreed within 10% band with the data from the the experiments. (Author)

  3. X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites

    Science.gov (United States)

    Al-Saleh, Mohammed H.; Sundararaj, Uttandaraman

    2013-01-01

    The electromagnetic interference (EMI) shielding effectiveness (SE) and EMI shielding mechanisms of high structure carbon black (HS-CB)/polypropylene (PP) composites in the X-band frequency range were studied. Composite plates with three different thicknesses and five different electrical conductivities were studied. The reflection loss and absorption loss of the composites were quantified based on the electromagnetic radiation power balance. The results showed that for HS-CB/PP composites, absorption loss contribution to the overall attenuation is more than the contribution of the reflection loss. The ability of the theoretical model to predict the EMI shielding by reflection and absorption was found to be a function of the shielding plate thickness and conductivity.

  4. Calculation of an optimized design of magnetic shields with integrated demagnetization coils

    Science.gov (United States)

    Sun, Z.; Schnabel, A.; Burghoff, M.; Li, L.

    2016-07-01

    Magnetic shielding made from permalloy is frequently used to provide a time-stable magnetic field environment. A low magnetic field and low field gradients inside the shield can be obtained by using demagnetization coils through the walls, encircling edges of the shield. We first introduce and test the computational models to calculate magnetic properties of large size shields with thin shielding walls. We then vary the size, location and shape of the openings for the demagnetization coils at the corners of a cubic shield. It turns out that the effect on the shielding factor and the expected influence on the residual magnetic field homogeneity in the vicinity of the center of the shield is negligible. Thus, a low-cost version for the openings can be chosen and their size could be enlarged to allow for additional cables and easier handling. A construction of a shield with beveled edges and open corners turned out to substantially improve the shielding factor.

  5. Seismic LAB or LID? The Baltic Shield case

    Directory of Open Access Journals (Sweden)

    M. Grad

    2013-05-01

    Full Text Available The problem of the asthenosphere for old Precambrian cratons, including East European Craton and its part – the Baltic Shield, is still discussed. To study the seismic lithosphere-asthenosphere boundary (LAB beneath the Baltic Shield we used records of 9 local events with magnitudes in the range 2.7–5.9. The relatively big number of seismic stations in the Baltic Shield with a station spacing of 30–100 km permits for relatively dense recordings, and is sufficient in lithospheric scale. For modelling of the lower lithosphere and asthenosphere, the original data were corrected for topography and the Moho depth for each event and each station location, using a reference model with a 46 km thick crust. Observed P and S arrivals are significantly earlier than those predicted by the iasp91 model, which clearly indicates that lithospheric P and S velocities beneath the Baltic Shield are higher than in the global iasp91 model. For two northern events at Spitsbergen and Novaya Zemlya we observe a low velocity layer, 60–70 km thick asthenosphere, and the LAB beneath Barents Sea was found at depth of about 200 km. Sections for other events show continous first arrivals of P waves with no evidence for "shadow zone" in the whole range of registration, which could be interpreted as absence of asthenosphere beneath the central part of the Baltic Shield, or that LAB in this area occurs deeper (>200 km. The relatively thin low velocity layer found beneath southern Sweden, 15 km below the Moho, could be interpreted as small scale lithospheric inhomogeneities, rather than asthenosphere. Differentiation of the lid velocity beneath the Baltic Shield could be interpreted as regional inhomogeneity. It could also be interpreted as anisotropy of the Baltic Shield lithosphere, with fast velocity close to the east-west direction, and slow velocity close to the south-north direction.

  6. Hydrogen-Induced Cracking of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-07

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944]).

  7. Geomorphometirc Segmentation of Shield Deserts by Self-Organizing Maps

    Science.gov (United States)

    Foroutan, M.; Kompanizare, M.; Ehsani, A. H.

    2015-12-01

    Shield deserts have developed on ancient crystalline bedrocks and mainly composed of folded and faulted rocks hardened by heat and pressure over millions of years. They were unearthed by erosion and form steep-sided hills and basins filled with sediments. The Sahara, Arabian, southern African, central Kavir and Australian deserts are in this group. Their ranges usually supply groundwater resources or in some regions contain huge oil reservoirs. Geomorphological segmentation of shield deserts is one of the fundamental tools in their land use or site investigation planning as well as in their surface water and groundwater management. In many studies the morphology of shield deserts has been investigated by limited qualitative and subjective methods using limited number of simple parameters such as surface elevation and slope. However the importance of these regions supports the need for their accurate and quantitative morphologic classification. The present study attempts to implement a quantitative method, Self-Organizing Map (SOM), for geomorphological classification of a typical shield desert within Kavir Desert, Iran. The area is tectonically stable and characterized by flat clay pans, playas, well-developed pediments around scattered and low elevation ranges. Twenty-two multi-scale morphometric parameters were derived from the first- to third-orders partial derivatives of the surface elevation. Seven optimized parameters with their proper scales were selected by Artificial Neural Networks, Optimum Index Factor, Davies-Bouldin Index and statistic models. Finally, the area was segmented to seven homogeneous areas by SOM algorithm. The results revealed the most distinguishing parameter set (MDPS) for morphologic segmentation of shield deserts. The same segmentation results through using MDPS for another shield deserts in Australia proves the applicability of MDPS for shield deserts segmentation.

  8. Hydrogen-Induced Cracking of the Drip Shield

    International Nuclear Information System (INIS)

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944])

  9. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  10. Improvement of lateral position total body irradiation with ovarian shielding. Shielding block for the lung of tungsten sheets

    International Nuclear Information System (INIS)

    Bone marrow transplantation requires the prior administration of a large amount of anticancer and total body irradiation (TBI) with 12 Gy, which brings about infertility in females as the dose exceed the threshold of the pregnant function (2.5-6 Gy). This paper reports the preparation of columnar shields for ovaries of low melting point lead (Pb), and of shields of the lung-formed Pb and tungsten (W) sheet for lungs at TBI. Reported cases are from the experience of 11 patients during the period of 2007-2012, Jan. Ordinary old TBI is conducted from right/left and left/right directions at the source-skin distance (SSD) 400 cm with 10 MV X-ray (10 cGy/min) at the supine position with the lung density correction; TBI with ovarian shielding (OS) from anteroposterior and posteroanterior directions, at the lateral position, with the lung shielding (Pb); and TBI-OS, with the lung shielding (W sheet). Ovarian block shield is a Pb column of 5 cm diameter X 8 cm thickness. The Pb lung block with 0.5 cm thickness is made fitted to individual patients' lung form, of which preparation has been time-consuming and has required much labor. The W sheet is a commercially available one with 1 mm thickness, and easily usable with several sheets for shielding after cutting with a scissor so as to be fitted to individual patients' lung form. In contrast to the ordinary supine TBI, lateral TBI with the lung Pb block shielding is found for the lung dose to be reduced from 12 Gy to 10 Gy; and with the W sheet (4 mm thick) shielding, for the transmission coefficient to be virtually similar to that of Pb block (82.6 and 83.4%, respectively). The ovarian shielding is found effective for the organ dose to be reduced to about 2 Gy at 12 Gy irradiation. Preparation of W sheet is easier and more convenient for its fitting to individual patients' lung form than previous Pb block. (T.T.)

  11. Shielding Calculations for Industrial 5/7.5MeV Electron Accelerators Using the MCNP Monte Carlo Code

    International Nuclear Information System (INIS)

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, in order to extend the shelf life of products. High energy photons can cause food activation due to (D3,n) reactions. Until 2004, to eliminate the possibility of food activation, the electron energy was limited to 5 MeV X-rays for food irradiation. In 2004, the FDA approved the usage of up to 7.5 MeV, but only with tantalum and gold targets (1). Higher X-ray energy results an increased flux of X-rays in the forward direction, increased penetration, and higher photon dose rate due to better electron-to-photon conversion. These improvements could decrease the irradiation time and allow irradiation of larger packages, thereby providing higher production rates with lower treatment cost. Medical accelerators usually work with 6-18 MV electron energy with tungsten target to convert the electron beam to X-rays. In order to protect the patients, the accelerator head is protected with a heavy lead shielding; therefore, the bremsstrahlung is emitted only in the forward direction. There are many publications and standards that guide how to design optimal shielding for medical accelerator rooms. The shielding data for medical accelerators is not applicable for industrial accelerators, since the data is for different conversion targets, different X-Ray energies, and only for the forward direction. Collimators are not always in use in industrial accelerators, and therefore bremsstrahlung photons can be emitted in all directions. The bremsstrahlung spectrum and dose rate change as a function of the emission angle. The dose rate decreases from maximum in the forward direction (0°) to minimum at 180° by 1-2 orders of magnitude. In order to design and calculate optimal shielding for food accelerator rooms, there is a need to have the bremsstrahlung spectrum data, dose rates and concrete attenuation data in all emission directions

  12. Shielding of Medical Facilities. Shielding Design Considerations for PET-CT Facilities

    International Nuclear Information System (INIS)

    The radiological evaluation of a Positron Emission Tomography (PET) facility consists of the assessment of the annual effective dose both to workers occupationally exposed, and to members of the public. This assessment takes into account the radionuclides involved, the facility features, the working procedures, the expected number of patients per year, and so on. The evaluation embraces the distributions of rooms, the thickness and physical material of walls, floors and ceilings. This work detail the methodology used for making the assessment of a PET facility design taking into account only radioprotection aspects. The assessment results must be compared to the design requirements established by national regulations in order to determine whether or not, the facility complies with those requirements, both for workers and for members of the public. The analysis presented is useful for both, facility designers and regulators. In addition, some guidelines for improving the shielding design and working procedures are presented in order to help facility designer's job. (authors)

  13. D0 Silicon Upgrade: Muon Shield Conceptual Design Report

    International Nuclear Information System (INIS)

    The nominal overall dimensions are 71-inch high x 71-inch wide x 144-inch long and has a 25-inch square hole throughout. The shield consists of three different materials, steel (inner most section), polycarbonate (central section) and lead (outer most section). The material thicknesses are, steel=15-inch, poly=6-inch and lead=2-inch. The estimated weight is ∼69 tons. The shield is centered about the Tev beam line and the 25-inch square hole provides clearance to the low Beta quad, which is nominally 20-inch square. During beamline operation, the shield is in contact with Samus magnet core at the detector end and with the Main Ring shield wall on the MR side (with some small clearance ∼2-inch-3-inch). The need for the clearance will be discussed later. The shield support structure consists steel structural members appropriately sized for loads encountered in the design. The structure must not only support the shield but, must be designed for rolling the entire assembly into position in the collision hall. It must provide for cylinders to lift the assembly, Hilman rollers and also connections for moving the entire assembly. The movement is considered to be similar to that with which the calorimeters were moved from the clean room to the sidewalk staging area, i.e. hydraulic cylinder and chain (see dwg. 3740.000-ME294017,3 sheets). This method will be used for the East to West motion and a hydraulic scheme will be used for any North-South motion. Since the shield is 144-inch long and the sidewalk structural support is ∼96-inch, there is a section of the shield that is cantilevered (48-inch). Further, the EF toroid must open ∼40+ inch for access to the detector during operations and this requires that the shield or some part of it must also move. This conceptual design suggests that the shield be designed in two pieces axially. These two pieces are identical in cross section but, the lengths are divided into 48-inch nearest EF and 96-inch nearest the MR tunnel

  14. Shielding measurements for a 230 MeV proton beam

    International Nuclear Information System (INIS)

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0 degree, 22 degree, 45 degree, and 90 degree in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm3 to 1000 cm3 were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0 degree, 22 degree, and 45 degree, yet correctly predicted the attenuation length at 90 degree. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations

  15. Magnetic Shielding Studies of the RICH Photon Detectors

    CERN Document Server

    Patel, M; Gys, Thierry

    2006-01-01

    The Hybrid Photon Detectors (HPDs) adopted for LHCb's RICH detectors are required to operate in the fringe field of the 4Tm LHCb dipole magnet. In fields in excess of 15G, photoelectrons are lost from the active area of an HPD. Shielding the HPDs from the fringe field is therefore essential for the efficient operation of the RICH detectors. A primary magnetic shield has been designed that reduces the field at the photon detectors to <20G. This field is to be further reduced by a set of individual secondary magnetic shields around each HPD. This note describes the technique used to calculate the residual field inside these secondary shields. The size of the problem, together with the disparity in the geometric scales involved, make the calculations intractable using a finite element model of the entire magnetic environment. As a result, a sub-modelling method has been used together with a rectangular approximation to the circular cross-section shields. The model indicates that with a 89.5mm HPD pitch, 0.9mm...

  16. Evaluating Shielding Effectiveness for Reducing Space Radiation Cancer Risks

    Science.gov (United States)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2007-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDF s are used in significance tests of the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDF s. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the 95% confidence level (CL) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions (risk, however one that is mitigated effectively by shielding, especially for carbon composites structures with high hydrogen content. In contrast, for long duration lunar (>180 d) or Mars missions, GCR risks may exceed radiation risk limits, with 95% CL s exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding can not be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection.

  17. Superconducting and hybrid systems for magnetic field shielding

    Science.gov (United States)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  18. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  19. Magnetic Field Design by Using Image Effect from Iron Shield

    Institute of Scientific and Technical Information of China (English)

    Quanling PENG; S.M. McMurry; J.M.D.Coey

    2004-01-01

    Permanent magnet rings are presented, which exploit the image effect in the surrounding circular iron shields. The theory is given for a general permanent ring when the magnetization orientation Ψ at each coordinate angle Ψ changes by Ψ=(n+1)Ψ,where n is a positive or negative integer. For the uniformly magnetized case n=-1, the permanent ring produces no field in its bore, and the field is that of a dipole outside. When the ring is surrounded by a soft iron shield, its field becomes uniform in the bore, and zero outside the ring. The field can be varied continuously by moving the iron shield along the magnet axis.A small variable field device was constructed by using NdFeB permanent rings, which produced a field flux density of 0~0.5 T in the central region.

  20. Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?

    DEFF Research Database (Denmark)

    Artemieva, Irina; Shulgin, Alexey

    2015-01-01

    The southern part of the Baltic Shield hosts a series of mafic dykes and sills of Mesoproterozoic ages, including a ca. 1.53-1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally interpre......The southern part of the Baltic Shield hosts a series of mafic dykes and sills of Mesoproterozoic ages, including a ca. 1.53-1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally...... rifts, and provide alternative explanations for Mesoproterozoic geodynamic evolution of the southern Baltic Shield. We propose that Mesoproterozoic mafic intrusions in southern Fennoscandia may be associated with a complex deformation pattern during reconfiguration of (a part of) Nuna (Columbia...

  1. STUDY OF WING SHIELDING EFFECT OF PROPELLER AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The calculation of wing shielding effect starts from solving Ffowcs Williams and Hawkings equation without quadrupole source in time domain. The sound scattering of the wing and fuselage which are surrounded by a multi-propeller sound field is modeled as a second sound source. A program is developed to calculate the acoustical effects of the rigid fuselage as well as wings with arbitrary shape in motion at low Mach number. As an example, the numerical calculation of the wing shielding of Y12 aircraft with an approximate shape is presented. The result manifests clearly the shielding effect of the wing on the fuselage and the approach is more efficient than that published before.

  2. Recent Improvements in the SHIELD-HIT Code

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Lühr, Armin Christian; Herrmann, Rochus;

    2012-01-01

    concentrating on three objectives, namely: Enhanced functionality, improved efficiency, and a modification of employed physical models. Methodological developments: SHIELD-HIT (currently at version ‘10A’) is now equipped with an independent detector geometry, ripple filter implementations, and it is capable...... of using accelerator control files as a basis for the primaries. Furthermore, the code has been parallelized and efficiency is improved. The physical description of inelastic ion collisions has been modified. Results: The simulation of an experimental depth-dose distribution including a ripple filter...... reproduces experimental measurements with high accuracy. Conclusions: SHIELD-HIT is now faster, more user-friendly and accurate, and has an enhanced functionality with some features being currently unique to SHIELD-HIT. The possibility of data file exchange with existing treatment planning software for heavy...

  3. Status of reactor shielding research in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bartine, D.E.

    1983-01-01

    Shielding research in the United States continues to place emphasis on: (1) the development and refinement of shielding design calculational methods and nuclear data; and (2) the performance of confirmation experiments, both to evaluate specific design concepts and to verify specific calculational techniques and input data. The successful prediction of the radiation levels observed within the now-operating Fast Flux Test Facility (FFTF) has demonstrated the validity of this two-pronged approach, which has since been applied to US fast breeder reactor programs and is now being used to determine radiation levels and possible further shielding needs at operating light water reactors, especially under accident conditions. A similar approach is being applied to the back end of the fission fuel cycle to verify that radiation doses at fuel element storage and transportation facilities and within fuel reprocessing plants are kept at acceptable levels without undue economic penalties.

  4. Self-shielding in large cross-section neutron absorbers

    International Nuclear Information System (INIS)

    This study is dealing with finding the effects on neutron regime in several cases, among them a fuel bundle comprised of 16 fuel rods, made of sintered UO2 pellets clad in zircaloy-4 and irradiated in the neutron trap. The variations of the average neutron flux and the effect of self-shielding were studied. Similar calculations were carried out, both theoretically and experimentally for samples of europium oxide. Self-shielding effects were studied, and the variation of the effective multiplication factor was found as function of mass. The isotope generation and depletion code origin was used to compute the radioactivity of fission products from irradiating uranium different enrichments in IRT-5000. The effect of self-shielding on the flux and on the activities were found also. 14 tabs.; 34 figs.; 27 refs

  5. Biasing techniques for gamma rays going around efficient shields

    Energy Technology Data Exchange (ETDEWEB)

    Ghassoun, J.; Jehouani, A. [Nuclear Physics and Techniques Laboratory, Faculty of Sciences Semlalia, Marrakech (Morocco); Ueki, K. [Nuclear Technology Division, Ship Research Institute, Ministry of Transport, Mitaka, Tokyo (Japan)

    2000-03-01

    This paper describes a method based on a combination of the exponential transformation, the angular biasing and the region of imposed collision. This combination can be employed in Multigroup Monte Carlo radiation transport calculations particularly in deep penetration problems for complex geometry. To test the effectiveness of this method, we have applied it to a practical case concerning the evaluation of gamma rays, which skirt a region of perfect shield within a graphite medium and contribute to a finite detector, place behind the perfect shield. An isotropic punctual and mono-energetic gamma source is placed at the other side of the shield. The current obtained for our multigroup Monte Carlo program agrees with MCNP4B code with a high figure of Merit. The gamma ray cross section used was collapsed to 75 groups from ENDF/B-VI library. (author)

  6. Biasing techniques for gamma rays going around efficient shields

    International Nuclear Information System (INIS)

    This paper describes a method based on a combination of the exponential transformation, the angular biasing and the region of imposed collision. This combination can be employed in Multigroup Monte Carlo radiation transport calculations particularly in deep penetration problems for complex geometry. To test the effectiveness of this method, we have applied it to a practical case concerning the evaluation of gamma rays, which skirt a region of perfect shield within a graphite medium and contribute to a finite detector, place behind the perfect shield. An isotropic punctual and mono-energetic gamma source is placed at the other side of the shield. The current obtained for our multigroup Monte Carlo program agrees with MCNP4B code with a high figure of Merit. The gamma ray cross section used was collapsed to 75 groups from ENDF/B-VI library. (author)

  7. Characteristics of Electromagnetic Coupling with A Wire through Shielding Enclosure

    Directory of Open Access Journals (Sweden)

    Yanpeng Sun

    2013-09-01

    Full Text Available The paper presents a numerical method based on Finite Difference Time Domain (FDTD in both frequency and time domain for modeling the coupling of an incident electromagnetic pulse(EMP with a conducting wire through a metallic shielding enclosure with a small aperture. Simulation and analysis are done by radius, length, and number of the wires, the incidence angle of EMP and the polaration angle of electric field in consideration. The simulation result shows that interference of the electromagnetic coupling into the shielding enclosure can be affected in different degrees by above factors. At low frequency, the larger the leakage length, the radius or the number of the wire penetrated into the cavity, the more interference is coupled into the shielding cavity from electromagnetic field. Also, the smaller the incident direction angle of propagation of the electromagnetic pulse or the polarization direction angle of the incident electric field, the more easily the electromagnetic interference is coupled into the cavity.

  8. Tough graphene-polymer microcellular foams for electromagnetic interference shielding.

    Science.gov (United States)

    Zhang, Hao-Bin; Yan, Qing; Zheng, Wen-Ge; He, Zhixian; Yu, Zhong-Zhen

    2011-03-01

    Functional polymethylmethacrylate (PMMA)/graphene nanocomposite microcellular foams were prepared by blending of PMMA with graphene sheets followed by foaming with subcritical CO(2) as an environmentally benign foaming agent. The addition of graphene sheets endows the insulating PMMA foams with high electrical conductivity and improved electromagnetic interference (EMI) shielding efficiency with microwave absorption as the dominant EMI shielding mechanism. Interestingly, because of the presence of the numerous microcellular cells, the graphene-PMMA foam exhibits greatly improved ductility and tensile toughness compared to its bulk counterpart. This work provides a promising methodology to fabricate tough and lightweight graphene-PMMA nanocomposite microcellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells. PMID:21366239

  9. Evaluation of radiation-shielding properties of the composite material

    International Nuclear Information System (INIS)

    The paper presents the evaluation of radiation-shielding properties of composite materials with respect to gamma-radiation. As a binder for the synthesis of radiation-shielding composites we used lead boronsilicate glass matrix. As filler we used nanotubular chrysotile filled with lead tungstate PbWO4. It is shown that all the developed composites have good physical-mechanical characteristics, such as compressive strength, thermal stability and can be used as structural materials. On the basis of theoretical calculation we described the graphs of the gamma-quanta linear attenuation coefficient depending on the emitted energy for all investigated composites. We founded high radiation-shielding properties of all the composites on the basis of theoretical and experimental data compared to materials conventionally used in the nuclear industry - iron, concrete, etc

  10. AA, radiation shielding curtain along the target area

    CERN Multimedia

    1980-01-01

    At the far left is the beam tube for the high-intensity proton beam from the 26 GeV PS. The tube ends in a thin window and the proton beam continues in air through a hole in the shielding blocks (see also 8010308), behind which the target (see 7905091, 7905094)was located. After the target followed the magnetic horn, focusing the antiprotons, and the first part of the injection line with a proton dump. The antiprotons, deflected by a magnet, left the target area through another shielding wall, to make their way to the AA ring. Laterally, this sequence of components was shielded with movable, suspended, concrete blocks: the "curtain". Balasz Szeless, who had constructed it, is standing at its side.

  11. Shielding evaluation by laser compton scattering gamma-ray

    International Nuclear Information System (INIS)

    Laser Compton scattering gamma-ray beam was used for evaluation of gamma ray shield. The gamma source of a NewSUBARU Synchrotron Radiation Facility can generate the quasi-monochromatic gamma ray beam of 0.5-1.7 MeV by combining a carbon dioxide laser and a 0.5-1.0 GeV electron beam. This gamma-ray source has small divergence of 1/γ radian due to the relativistic effect, where γ is relativistic factor of electron. Small diameter test beam of gamma-ray of about 1 mm in diameter is possible to use at the 10 m from the gamma-ray source by combining the small divergence gamma-ray beam with small hole lead collimator. Test sample size used was 2 cm in diameter. Measured shield factor was compared with calculated value using known shield materials such as lead. (author)

  12. Modelling the electrical properties of concrete for shielding effectiveness prediction

    International Nuclear Information System (INIS)

    Concrete is a porous, heterogeneous material whose abundant use in numerous applications demands a detailed understanding of its electrical properties. Besides experimental measurements, material theoretical models can be useful to investigate its behaviour with respect to frequency, moisture content or other factors. These models can be used in electromagnetic compatibility (EMC) to predict the shielding effectiveness of a concrete structure against external electromagnetic waves. This paper presents the development of a dispersive material model for concrete out of experimental measurement data to take account of the frequency dependence of concrete's electrical properties. The model is implemented into a numerical simulator and compared with the classical transmission-line approach in shielding effectiveness calculations of simple concrete walls of different moisture content. The comparative results show good agreement in all cases; a possible relation between shielding effectiveness and the electrical properties of concrete and the limits of the proposed model are discussed

  13. Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material

    Energy Technology Data Exchange (ETDEWEB)

    Verst, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-12

    The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a function of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.

  14. Concrete mix design for X-and gamma shielding

    International Nuclear Information System (INIS)

    The design of X-ray or gamma ray radiographic exposure room requires some calculations on shielding to provide safe operation of the facility and minimum exposure to radiation workers. Careful design can lead to economical installations with minimal barriers. The design depends on such factors as: maximum energy, maximum intensity, permitted full-body dosage, workload, use factor, occupancy factor, maximum dose output and shielding materials. Choice of material for a barrier depends on convenience and cost. The radiographic exposure room is usually made of normal concrete with density of about 2.3 - 2.4 g/ cc. Normal concrete is often used for construction of exposure room because of cheap and ease of construction. This paper explained and discussed the optimum mix design for normal concrete used for X-and gamma shielding. (author)

  15. A current limiter with superconducting coil for magnetic field shielding

    Science.gov (United States)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  16. Tunnel face stability and ground settlement in pressurized shield tunnelling

    Institute of Scientific and Technical Information of China (English)

    苏艺; 汪国锋; 周庆宏

    2014-01-01

    An analysis of the stability of large-diameter circular tunnels and ground settlement during tunnelling by a pressurized shield was presented. An innovative three-dimensional translational multi-block failure mechanism was proposed to determine the face support pressure of large-shield tunnelling. Compared with the currently available mechanisms, the proposed mechanism has two unique features: (1) the supporting pressure applied to the tunnel face is assumed to have a non-uniform rather than uniform distribution, and (2) the method takes into account the entire circular excavation face instead of merely an inscribed ellipse. Based on the discrete element method, a numerical simulation of the Shanghai Yangtze River Tunnel was carried out using the Particle Flow Code in two dimensions. The immediate ground movement during excavation, as well as the behaviour of the excavation face, the shield movement, and the excavated area, was considered before modelling the excavation process.

  17. Evaluation of rubber composites as shielding materials against ionizing radiation

    International Nuclear Information System (INIS)

    Styrene-butadiene rubber/lead oxide composites were prepared as γ-radiation shields.The composites were prepared with different concentration of red lead oxide (Pb3O4) .The assessment of the linear attenuation coefficient of the SBR/lead oxide composites for γ -rays from 137 Cs137 γ-radiation point source was studied . The factors affecting the mechanical properties and shielding capacity of the composites were also studied. These factors include the lead oxide concentration, the type of monomers added and the irradiation dose. The styrene-butadiene rubber/lead oxide composites can attain up to about 43% of the shielding capacity of pure lead. The incorporation of high concentrations of lead oxide and the effect of accumulative irradiation doses up to 3000 kGy on the physico-mechanical properties of the composites were studied . These led to hardening of the SBR rubber/lead oxide composites.

  18. Effect of compositional variation in plutonium on process shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.H.

    1997-11-01

    Radiation dose rate from plutonium with high {sup 239}Pu content varies with initial nuclidic content, radioactive decay time, and impurity elemental content. The two idealized states of old plutonium and clean plutonium, whose initial compositions are given, provide approximate upper and lower bounds on dose rate variation. Whole-body dose rates were calculated for the two composition states, using unshielded and shielded plutonium spheres of varying density. The dose rates from these variable density spheres are similar to those from expanded plutonium configurations encountered during processing. The dose location of 40 cm from the sphere center is representative of operator standoff for direct handling of plutonium inside a glove box. The results have shielding implications for glove boxes with only structurally inherent shielding, especially for processing of old plutonium in an expanded configuration. Further reduction in total dose rate by using lead to reduce photon dose rate is shown for two density cases representing compact and expanded plutonium configurations.

  19. Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang Taoye; Chen Jianfeng [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Isimjan, Tayirjan T; Rohani, Sohrab, E-mail: chenjf@mail.buct.edu.cn, E-mail: srohani@uwo.ca [Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

    2011-07-01

    Visible light transparent, UV-shielding and superhydrophobic nanostructured coatings have been successfully fabricated through a facile layer-by-layer deposition of TiO{sub 2} and SiO{sub 2} nanoparticles. The coatings are composed of an underlying UV-shielding TiO{sub 2} layer and a top fully covered protective SiO{sub 2} layer. The resulting coatings can block 100% of UVB and UVC and almost 85% of UVA. The fabricated surfaces have contact angles exceeding 165 deg. after coating with organic PTES (1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane) molecules. The transparent superhydrophobic surfaces exhibit extremely strong UV stability. All coatings retain the initial UV-shielding and superhydrophobic properties even after exposure to 275 nm UV light with a light intensity of 75 mW cm{sup -2} for 12 h.

  20. Shielding considerations for neutral-beam injection systems

    International Nuclear Information System (INIS)

    Results of a study on the geometry of an FED-A Neutral Beam Injector beamline duct shield are presented. Also included is a calculation of dose rates, as a function of time, from an activated NBI. The shielding investigations consisted of varying the parameters of the geometry and transporting particles through it using the MCNP Monte-Carlo code. The dose rates were calculated by the ACDOS3 code using realistic MCNP results. A final-to-incident flux ratio of 6.5 x 10-7 can be achieved through the use of a 65.5 cm reentry duct. This is for a realistic source and pure water shielding material. The activated NBI produced a dose rate of 15.9 mrem/hr two and a half days after shutdown of the reactor

  1. Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive

    Science.gov (United States)

    Yao, Ya; Zhang, Xiaowen; Li, Mi; Yang, Rong; Jiang, Tianjiao; Lv, Junwen

    2016-10-01

    Concrete has a proven ability to attenuate gamma rays and neutrons without compromising structural property; therefore, it is widely used as the primary shielding material in many nuclear facilities. Recently, there is a tendency toward using various additives to enhance the shielding properties of these concrete mixtures. However, most of these additives being used either pose hygiene hazards or require special handling processes. It would be ideal if environmentally friendly additives were available for use. The bismuth oxide (Bi2O3) additive shows promise in various shielding applications due to its proven radiation attenuation ability and environmentally friendly nature. To the best of our knowledge, however, Bi2O3 has never been used in concrete mixtures. Therefore, for this research, we fabricated the Bi2O3-based concrete mixtures by adding Bi2O3 powder in the ordinary concrete mixture. Concrete mixtures with lead oxide (PbO) additives were used for comparison. Radiation shielding parameters like the linear attenuation coefficients (LAC) of all these concrete mixtures showing the effects of the Bi2O3 additions are presented. The mechanical performances of concrete mixtures incorporated with Bi2O3 additive were also investigated. It suggested that the concrete mixture containing 25% Bi2O3 powder (B5 in this study) provided the best shielding capacity and mechanical performance among other mixes. It has a significant potential for application as a structural concrete where radiological protection capability is required.

  2. Toward a new methodology for measuring the threshold Shields number

    Science.gov (United States)

    Rousseau, Gauthier; Dhont, Blaise; Ancey, Christophe

    2016-04-01

    A number of bedload transport equations involve the threshold Shields number (corresponding to the threshold of incipient motion for particles resting on the streambed). Different methods have been developed for determining this threshold Shields number; they usually assume that the initial streambed is plane prior to sediment transport. Yet, there are many instances in real-world scenarios, in which the initial streambed is not free of bed forms. We are interested in developing a new methodology for determining the threshold of incipient motion in gravel-bed streams in which smooth bed forms (e.g., anti-dunes) develop. Experiments were conducted in a 10-cm wide, 2.5-m long flume, whose initial inclination was 3%. Flows were supercritical and fully turbulent. The flume was supplied with water and sediment at fixed rates. As bed forms developed and migrated, and sediment transport rates exhibited wide fluctuations, measurements had to be taken over long times (typically 10 hr). Using a high-speed camera, we recorded the instantaneous bed load transport rate at the outlet of the flume by taking top-view images. In parallel, we measured the evolution of the bed slope, water depth, and shear stress by filming through a lateral window of the flume. These measurements allowed for the estimation of the space and time-averaged slope, from which we deduced the space and time-averaged Shields number under incipient bed load transport conditions. In our experiments, the threshold Shields number was strongly dependent on streambed morphology. Experiments are under way to determine whether taking the space and time average of incipient motion experiments leads to a more robust definition of the threshold Shields number. If so, this new methodology will perform better than existing approaches at measuring the threshold Shields number.

  3. ZYLIND, Gamma Penetration for Cylindrical Source and Shield Geometry

    International Nuclear Information System (INIS)

    1 - Description of program or function: ZYLIND is a point kernel program to calculate gamma-ray penetration for source/shield configurations with cylindrical symmetry. Dose rates are calculated for axial or radial detector positions behind layered shields of user - specified composition. Input data consist of source dimensions, compositions and thicknesses of shield layers, gamma-ray energies and source strengths. The code includes a data library of mass attenuation coefficients, buildup and dose conversion data. 2 - Method of solution: The three-dimensional point kernel volume integral for a cylindrical homogeneous source is calculated by Gauss integration. From the line-of-sight distance between point of integration and detector, mass attenuation and dose buildup are calculated, depending on the shielding materials characteristics. For each shield layer mass attenuation is determined from the actual elemental composition for the elements included in the built-in data library. Dose buildup factors are calculated recursively for subsequent layers according to Broder's formula. The coefficients for Broder's formula are interpolated in atomic number and energy for values not included in the library (Goldstein's data). The collided transmitted particle flux is multiplied by flux-to-dose conversion factors (interpolated in energy), taken from ESIS-Newsletter 34, July 1980, p.9. 3 - Restrictions on the complexity of the problem: A maximum of 20 energies 0.15 MeV...10 MeV and 8 shield layers can be processed. Mass attenuation coefficients for the following 24 elements and 3 materials are included: H, Be, C, N, O, Na, Mg, Al, Si, P, S, A, K, Ca, Fe, Cu, Mo, Sn, I, W, Pt, Tl, Pb, U, air, water, concrete. A maximum of 5 compositions of up to 10 of these elements may be specified. The number of integration points is fixed to 8 in each dimension and may not be adequate for extreme configurations. The distance from radial detector to source surface must exceed 25% of the

  4. Analyzing the efficiency of the forward radiation shielding for the CMS detector at the LHC

    CERN Document Server

    Azhgirey, L S

    2002-01-01

    The forward radiation shielding of the CMS detector is developed for the LHC by the Institute for High-Energy Physics. The efficiency of this shielding is analyzed on the basis of the results of numerical simulation. The computed particle-flux densities are compared to those of the ideal model of the shielding. The secondary-radiation field near the detector is investigated with different configurations of the shielding. Measures for reinforcing the shielding of the detector's experimental zone are proposed. The possibilities of improving the shielding structure and the composition of its materials are discussed. (13 refs).

  5. A Review on the Production Methods and Testing of Textiles for Electro Magnetic Interference (EMI shielding

    Directory of Open Access Journals (Sweden)

    Bagavathi M,

    2015-02-01

    Full Text Available The need of the present generation to protect themselves from electromagnetic radiation due the various technological developments has paved way to the birth of EMI shielding of textiles. The shielding effectiveness of the developed fabric will vary depending upon the fabric or the coating constituents. The shielding requirements for different applications vary widely which has resulted in the development of wide variety of shielding mechanisms and materials which can be used in the production of shielding equipment and work wear. In addition to their production, testing of shielding gears involves various methods to be adopted depending on the application.

  6. Shielding Performance Measurements of Spent Fuel Transportation Container

    Directory of Open Access Journals (Sweden)

    SUN Hong-chao

    2015-11-01

    Full Text Available The safety supervision of radioactive material transportation package has been further stressed and implemented. The shielding performance measurements of spent fuel transport container is the important content of supervision. However, some of the problems and difficulties reflected in practice need to be solved, such as the neutron dose rate on the surface of package is too difficult to measure exactly, the monitoring results are not always reliable, etc. The monitoring results using different spectrometers were compared and the simulation results of MCNP runs were considered. An improvement was provided to the shielding performance measurements technique and management of spent fuel transport.

  7. Computational methods for high-energy source shielding

    International Nuclear Information System (INIS)

    The computational methods for high-energy radiation transport related to shielding of the SNQ-spallation source are outlined. The basic approach is to couple radiation-transport computer codes which use Monte Carlo methods and discrete ordinates methods. A code system is suggested that incorporates state-of-the-art radiation-transport techniques. The stepwise verification of that system is briefly summarized. The complexity of the resulting code system suggests a more straightforward code specially tailored for thick shield calculations. A short guide line to future development of such a Monte Carlo code is given

  8. The Aztec Feather Shield in Vienna: Problems of Conservation

    OpenAIRE

    Baumgartner, Walter

    2006-01-01

    The 450 year old feather shield “Ahuizotl” , formerly kept as part of the Collections of Ambras Castle, is not only one of the most significant, but also one of the most delicate objects of the Museum of Ethnology in Vienna. In terms of conservation related issues, it is one of the most challenging objects. The shield is made from different types of feathers (blue cotinga, scarlet macaw, yellow oriole and rose roseate spoonbill) which are arranged in rows. It is also made from several sheets ...

  9. Calculation of γ shielding buildup factor for certain light concrete

    International Nuclear Information System (INIS)

    Exposure buildup factors up to 40 mean free paths in ranging from 0.015 MeV to 15 MeV photon energy were calculated by using the Monte Carlo simulation code EGS4 for light concrete used in certain nuclear power plant. The calculation took into account effect of Bremsstrahlung, fluorescence and coherent (Rayleigh) scattering on the buildup factor. Then, the corresponding fitting parameters of the G-P fitting formula were presented by the geometrical progression approximation fitting formula. The method can get the y shielding buildup factors for any shielding thickness of the concrete and any photon energy. (authors)

  10. Methods for the design of shielding concrete mix ratio

    International Nuclear Information System (INIS)

    Guided by general concrete mix principles, we made a comprehensive study on methods for the design of shielding concrete mix ratio as well as its related factors by means of orthogonal design experiments and regression analysis method. Then we put forward the calculating formulae and steps for the design of shielding concrete mix ratio which combined the weight-holding method with the volume method. A series of tests and practical application show that this method of mix design is accurate, efficient and reliable. (authors)

  11. The Magnetic Shielding Effect of a Re-Fuelling Pellet

    DEFF Research Database (Denmark)

    Chang, C. T.

    1975-01-01

    The magnetic shielding effect of a refuelling pellet is considered by first briefly reviewing the existing balloon model. The limitation of the model is pointed out and discussed. Since solid deuterium is an insulator and the ablated plasma is expected to be cold and dense, it is felt that the ex......The magnetic shielding effect of a refuelling pellet is considered by first briefly reviewing the existing balloon model. The limitation of the model is pointed out and discussed. Since solid deuterium is an insulator and the ablated plasma is expected to be cold and dense, it is felt...

  12. Radiation Shielding Design for ISOL System Beam Line

    Institute of Scientific and Technical Information of China (English)

    WANG; Feng; QIN; Jiu-chang

    2013-01-01

    The beam line of the ISOL system passes through the shielding wall and connects the HI-13 tandem accelerator.Neutron produced by tandem accelerator will affect the area of BRIF through the beam line.To protect the staff in BRIF area from radiation a shielding design of the beam line is carried out.The neutron source in the vault of tandem accelerator is the H.E Faraday cup of HI-13 tandem accelerator as showed in Fig.1.The Faraday cup is consisted of 1 mm molybdenum sheet and 10 mm

  13. EFFECTIVE SHIELDING OF UNIDIRECTIONAL CURRENT GENERATED MAGNETIC FIELDS

    Institute of Scientific and Technical Information of China (English)

    徐霖; 傅正财; 杜亚平

    2002-01-01

    This paper presented an effective shielding design of magnetic fields generated by unidirectional current.Theoretical formulas and numerical computation software based on boundary element method (BEM) are employed to evaluate the shielding effectiveness (SE) of cylindrical shell. It is shown that ungrounded or one-end-grounded metal shell is ineffective for such magnetic fields. SE can be obtained by connecting the two ends of the conducting shell with low impedance connector, or alternatively, grounding the two ends. The experimental results also support these conclusions.

  14. Proximity effect in a shielded symmetrical three-phase line

    Directory of Open Access Journals (Sweden)

    Filipović Dragan

    2014-01-01

    Full Text Available In this paper we present an approximate analysis of the proximity effect in a shielded symmetrical three-phase line with conductors of circular cross section. The system of two integral equations for current densities is solved approximately by assuming them in the form of two finite series with properly chosen basic functions. The unknown coefficients in these series are found by applying the point matching procedure. Numerical results are given for the AC to DC resistance ratio of the line conductors and for the power loss in the shield.

  15. Status of multigroup cross-section data for shielding applications

    International Nuclear Information System (INIS)

    Multigroup cross-section libraries for shielding applications in formats for direct use in discrete ordinates or Monte Carlo codes have long been a part of the Data Library Collection (DLC) of the Radiation Shielding Information Center (RSIC). In recent years libraries in more flexible and comprehensive formats, which allow the user to derive his own problem-dependent sets, have been added to the collection. The current status of both types is described, as well as projections for adding data libraries based on ENDF/B-V

  16. Preliminary Design and Analysis of ITER In-Wall Shielding

    Institute of Scientific and Technical Information of China (English)

    LIU Changle; YU Jie; WU Songtao; CAI Yingxiang; PAN Wanjiang

    2007-01-01

    ITER in-wall shielding (IIS) is situated between the doubled shells of the ITER Vacuum Vessel (IVV). Its main functions are applied in shielding neutron, gamma-ray and toroidal field ripple reduction. The structure of IIS has been modelled according to the IVV design criteria which has been updated by the ITER team (IT). Static analysis and thermal expansion analysis were performed for the structure. Thermal-hydraulic analysis verified the heat removal capability and resulting temperature, pressure, and velocity changes in the coolant flow. Consequently, our design work is possibly suitable as a reference for IT's updated or final design in its next step.

  17. γ-ray shielding effect of various building materials

    International Nuclear Information System (INIS)

    It is necessary to know the γ-ray attenuation coefficients and the dose buildup factors for various building materials in order to evaluate the γ-ray shielding factor of the residential houses in the reactor accident. As a matter of fact, however, there is few information about these values. This report describes measurements of the linear attenuation coefficients and dose buildup factors for the typical building materials used in Japan and estimation of the γ-ray shielding effects of these materials. (author)

  18. Parallelizing the MARS15 Code with MPI for shielding applications

    International Nuclear Information System (INIS)

    The MARS15 Monte Carlo code capabilities to deal with time-consuming deep penetration shielding problems and other computationally tough tasks in accelerator, detector and shielding applications, have been enhanced by a parallel processing option. It has been developed, implemented and tested on the Fermilab Accelerator Division Linux cluster and network of Sun workstations. The code uses MPI. It is scalable and demonstrates good performance. The general architecture of the code, specific uses of message passing, and effects of a scheduling on the performance and fault tolerance are described

  19. Neutron shielding evaluation for a small fuel transport case

    CERN Document Server

    Coeck, M; Vanhavere, F

    2002-01-01

    We investigated the effectiveness of a small neutron shield configuration for the transportation of fresh MOX fuel rods in an experimental facility, this in order to reduce the dose received by the personnel. Monte Carlo simulations using the Tripoli and MCNP4B code were applied. Different configurations were studied, starting from the bare fuel rod positioned on an iron plate up to a fuel rod covered by a box-shaped shield made of different materials such as polyethylene, polyethylene with boron and polyethylene with a cadmium layer. We compared the neutron spectra for the different cases and calculated the corresponding ambient equivalent dose rate H*(10).

  20. Description of Transport Codes for Space Radiation Shielding

    Science.gov (United States)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.

    2011-01-01

    This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.

  1. Design and Analysis of the Thermal Shield of EAST Tokamak

    Science.gov (United States)

    Xie, Han; Liao, Ziying

    2008-04-01

    EAST (Experimental Advanced Superconducting Tokamak) is a tokamak with superconducting toroidal and poloidal magnets operated at 4.5 K. In order to reduce the thermal load applied on the surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system at a minimum, a continuous radiation shield system located between the magnet system and warm components is adopted. The main loads to which the thermal shield system is subjected are gravity, seismic, electromagnetic and thermal gradients. This study employed NASTRAN and ANSYS finite element codes to analyze the stress under a spectrum of loading conditions and combinations, providing a theoretical basis for an optimization design of the structure.

  2. Development of ITER shielding blanket prototype mockup by HIP bonding

    International Nuclear Information System (INIS)

    A prototype (∼900H x 1700W x 350T mm) of the ITER shielding blanket module has been fabricated following the previous successful fabrication of a small-scale (∼500H x 400W x 150T mm) and mid-scale (∼800H x 500W x 350T mm) mock-ups. This prototype incorporates most of key design features essential to the fabrication of the ITER shielding blanket module such as 1) the first wall heat sink made of Al2O3 dispersion strengthened Cu (DSCu) with built-in SS316L coolant tubes bonded to a massive SS316LN shield block, 2) toroidally curved first wall with a radius of 5106 mm while straight in poloidal direction, 3) coolant channels oriented in poloidal direction in the first wall and in toroidal direction in the shield block, 4) the first wall coolant channel routing to avoid the interference with the front access holes, 5) coolant channels drilled through the forged SS316LN-IG shield block, and 6) four front access holes of 30 mm in diameter penetrated through the first wall and the shield block. For the joining method, especially for the first wall/side wall parts and the shield block, the solid HIP (Hot Isostatic Pressing) process was applied. It is difficult to apply conventional joining methods such as field welding, brazing, explosion bonding and mechanical one-axial diffusion bonding to a wide area bonding because sufficient mechanical strengths can not be obtained and excessive deformations occurs. In order to solve these fabrication issues, HIP bonding was applied. The first wall stainless steel (SS) coolant tubes of 10 mm in inner diameter and l mm in thickness were sandwiched by semi-circular grooved DSCu plates at the first wall and the front region of the side wall, and by semi-circular grooved SS plates at the back region of the side wall. After assembling of these first wall/side wall parts with the shield block, they were simultaneously bonded by single step HIP in order to minimize thermal effects on the mechanical properties and to reduce the number

  3. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays

    Science.gov (United States)

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-07-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  4. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays.

    Science.gov (United States)

    Kim, Seon Chil; Choi, Jeong Ryeol; Jeon, Byeong Kyou

    2016-01-01

    The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The quality of existing aprons made for protecting our bodies from direct radiation are improved so that they are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce lightweight aprons that are used for the purpose of shielding low dose radiations.

  5. [Breast dose reduction in female CT screening for lung cancer using various metallic shields].

    Science.gov (United States)

    Takada, Kenta; Kaneko, Junichi; Aoki, Kiyoshi

    2009-12-20

    We evaluated the effectiveness of metallic shields that were used for reduction of the breast dose in thoracic computed tomography(CT). For the evaluation, we measured breast surface dose and image standard deviation(SD)in the lung area. The metallic shields were made from bismuth, zinc, copper, and iron. The bismuth shield has been marketed and used for dose reduction. The other three metallic shields were chosen because they have lower atomic numbers and a lower yield of characteristic X-rays. As a result, use of the metallic shields showed a lower breast dose than the decrement of the tube current in the same image SD. The insertion of a thin aluminum sheet between the shield and a phantom was also effective in reducing breast surface dose. We calculated the dose reduction rate to evaluate the effectiveness of these metallic shields. This dose reduction rate was defined as the ratio of the decrease in breast surface dose by metallic shields to the breast surface dose measured with the tube current decrement in the same image SD. The maximum dose reduction rate was 6.4% for the bismuth shield, and 12.0-13.3% for the other shields. These results indicate that the shields made from zinc, copper, and iron are more effective for dose reduction than the shield made form bismuth. The best dose reduction rate, 13.3%, has been achieved when the zinc shield placed 20 mm apart from a phantom with 0.2 mm aluminum was used.

  6. Shielding during x-ray examination of pediatric female patients with developmental dysplasia of the hip

    International Nuclear Information System (INIS)

    Patients with developmental dysplasia of the hip (DDH) generally undergo multiple x-ray examinations of both hip joints. During these examinations, the gonads are completely exposed to radiation, unless shielded. Although many types and sizes of gonad shields exist, they often do not provide adequate protection because of size and placement issues; additionally, these shields are frequently omitted for female patients. Our aim was to assess gonad protection during x-ray examination that is provided by gonad shields designed for individual female patients with DDH. We retrospectively retrieved data from the Picture Archiving and Communication System database; pelvic plain x-ray films from 766 females, 18 years old or younger, were included in our analysis. Based on x-ray measurements of the anterior superior iliac spine, we developed a system of gonad shield design that depended on the distance between anterior superior iliac spine markers. We custom-made shields and then examined shielding rates and shielding accuracy before and after these new shields became available. Standard (general-purpose) shields were used before our custom design project was implemented. The shielding rate and shielding accuracy were, respectively, 14.5% and 8.4% before the project was implemented and 72.7% and 32.2% after it was implemented. A shield that is more anatomically correct and available in several different sizes may increase the likelihood of gonad protection during pelvic x-ray examinations. (paper)

  7. Investigation of the radiation shielding capacity of asphalt and sand for fast neutron sources

    International Nuclear Information System (INIS)

    The internal wall of the cavity of experimental assemblies, involved with high energy fusion neutrons, can be covered by an asphalt-sand layer for radiation protection purposes. The calculations have demonstrated that asphalt has a radiation protection capability superior to that of concrete, on equivalent weight basis. For an experimental cavity using a 10 (12) neutrons/sec neutron generator, the best structure has been found to be a 10% asphalt-90% red sand homogeneous mixture, against neutron + gamma energies, with a protection capability of more than 200% compared to the same thickness of a concrete structure. This work has proved that the local and cheap asphalt and sand can replace the relatively expensive concrete in constructing biological radiation shielding of experimental assemblies on fusion neutronics. 15 refs

  8. IKE-contribution to the NEA PWR shielding benchmark for studying the effect of nuclear data uncertainties

    International Nuclear Information System (INIS)

    The paper presents the IKE contribution to the PWR reactor shield benchmark No. 2. The report documents the results of integral target quantity determination performed with ANISN. The cross sections were taken from the recent multigroup data library VIT-IKE-1 where the group structure is identical with VITAMIN-C. The thermal neutron cross section was taken from the 126 thermal neutron group cross-section library THERM-126. The cross-section data and the covariance data library used for hydrogen and iron, are all based on ENDF/B/V data. For the first time a comprehensive cross section and secondary energy distribution (SED) sensitivity and uncertainly analysis for a PWR (Biblis B, 1300 MWsub(el)) was performed with SWANLAKE and SENSIT. The target quantities considered are th 54Fe(n,p)54Mn activation rate in the barrel material near the surveillance capsules and in the pressure vessel cladding, the iron displacement rate at the inner edge of the pressure vessel, the gamma heating rate at the inner edge of core baffle, at the core barrel, pressure vessel and concrete shield and the biological neutron- and gamma dose rate at the outer side of the concrete shield. (orig./RW)

  9. Theoretical analysis of a reported weak gravitational shielding effect

    OpenAIRE

    Modanese, G.

    1995-01-01

    Under special conditions (Meissner-effect levitation in a high frequency magnetic field and rapid rotation) a disk of high-$T_c$ superconducting material has recently been found to produce a weak shielding of the gravitational field. We show that this phenomenon has no explanation in the standard gravity theories, except possibly in the non-perturbative Euclidean quantum theory.

  10. Shield mining frame piston rod. Schildausbaugestell-Kolbenstange

    Energy Technology Data Exchange (ETDEWEB)

    Schuett, F.

    1981-05-02

    A piston rod for a shield mining frame for coal mining is described. This has radial outward connecting openings at the free end for hydraulic pipes. The plug-in connections are pushed in here and held with clamps. The piston rod part, in which these openings are situated, is made as a bar. The piston rod and bar form one part.

  11. A detector for use in high energy bremsstrahlung shielding studies

    International Nuclear Information System (INIS)

    The design, development and calibration of a detector based on the principle of the Moxon-Rae detector is discussed. It is ideally suited to the measurement of the energy fluence of photons transmitted through a thick shield which has been irradiated with high energy bremsstrahlung. The detection sensitivity is 104 to 105 times that of the P2 ion chamber

  12. Fabrication of Regolith-Derived Radiation Shields: Preliminary Results

    Science.gov (United States)

    Mantovani, James G.; Townsend, Ivan I.; Delgado, Armando; Grossman, Kevin D.; Sibille, Laurent; Hatcher, George W.

    2016-01-01

    Unlike the Earth, Mars and asteroids do not have a magnetosphere to protect humans, mechanisms and electronics from damaging Galactic Cosmic Radiation (GCR) and solar particle events (SPE). This presents one of the highest risks to crew and onboard electronics during interplanetary journeys. The goal of this project is to evaluate the effectiveness of carbonaceous asteroids and other hydrogen-rich materials as potential radiation shielding materials, which ultimately could be tested during planned crewed missions to a captured asteroid fragment (ARM). This type of investigation represents an initial effort to develop radiation shield material compositions, production methods and technologies, and optimization methodology for manufacturing radiation shields in deep space for large exploration human missions or by emerging new industries seeking to stage their spacecraft for the exploitation of the resources of asteroids. Carbonaceous chondrites (C-type) are of particular interest as sources of compounds such as water ice and hydrogen-rich carbon molecules, which can provide sufficient low Z element density to provide radiation protection at adequate shield thicknesses.

  13. Gamma shielding factor for typical houses in Brazil

    International Nuclear Information System (INIS)

    The housing features in a country depend much on its climate. Dwellings in warm countries are much lighter constructions than in cold ones, which will reflect on the amount of shielding against radiation they provide. In addition to that, wealth is another factor that influences the building's finishing. Great effort has been taken to determine parameters to more accurately estimate dose to a population in case of a radioactive or nuclear accident. Nevertheless, most available data are concerned with typical housing in cold climate countries. This study aims to determine shielding factors for typical building materials used in the southeast of Brazil, a warm area, due to radioactive material deposited on the surrounding field, walls and ceiling of the external surfaces. The shielding factors determination was performed by simulation with the MCNP5 Monte Carlo computer code. The air kerma indoors for the 300, 662 and 3000 keV photon energies have been determined for three different housing patterns, ranging from the very simple to a very complex structure. The shielding factor, defined as the ratio of the air kerma indoor to the air kerma in open field, for the most simple house type and 300 keV photon energy was found to be twice of the best finished one for the same energy. (authors)

  14. Advances in shielding calculations for the PEC reactor

    International Nuclear Information System (INIS)

    In this paper calculations of neutron and gamma streaming through various penetrations in the plug and neutron shield of the sodium cooled fast reactor PEC, currently under construction, are described. The object of the calculations has been to verify the accessibility, 3 days after reactor shut-down, of the area directly above the reactor. (author)

  15. SHIELD: Distance Estimates from Hubble Space Telescope Imaging

    Science.gov (United States)

    Cave, Ian; Cannon, J. M.; Larson, E.; Marshall, M.; Moody, S.; Adams, E. A.; Dolphin, A. E.; Elson, E. C.; Giovanelli, R.; Haynes, M. P.; McQuinn, K. B.; Ott, J.; Saintonge, A.; Salzer, J. J.; Skillman, E. D.

    2013-01-01

    The Survey of HI in Extremely Low-mass Dwarfs (SHIELD) is an ongoing study of twelve galaxies with HI masses between 106 and 107 Solar masses, detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. Here we present new Hubble Space Telescope (HST) imaging of the SHIELD galaxies. The primary goal is to determine the distance of each galaxy. We apply two techniques to measure the apparent magnitude of the tip of the red giant branch (TRGB) feature in the HST color magnitude diagrams. First, a custom designed edge detection filter was written to determine the TRGB magnitude based on a user-selected region of the color magnitude diagram. Second, we apply the maximum likelihood technique implemented in the "TRGBtool" software package (Makarov et al. 2006). In addition to the distances based on the TRGB feature, we also use the MATCH software (Dolphin 2002) to determine the best-fit distance based on the overall CMD morphology. We compare these distance estimates for all members of the SHIELD galaxies, and present a final table of distances that is used in each of the companion SHIELD presentations.

  16. On abnormal pectoral shields in Testudo ephippium Gthr

    NARCIS (Netherlands)

    Lidth de Jeude, van Th.W.

    1898-01-01

    In the beginning of this year our herpetological collection was enriched with a specimen of the gigantic landtortoises from the Galapagos-islands. The specimen, a male one, directly struck me by the peculiar arrangement of the pectoral shields, which have a triangular form, and do not meet in the mi

  17. Bulk shielding facility quarterly report, July, August, and September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, S. S.; Lance, E. D.; Thomas, J. R.

    1982-01-01

    The Bulk Shielding Reactor (BSR) operated at an average power level of 1919 kW for 85.74% of the time during July, August, and September. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The Pool Critical Assembly (PCA) was operated on three occasions for the Pressure Vessel Simulator Benchmark experiment.

  18. Capsule shields the function of short bacterial adhesins

    DEFF Research Database (Denmark)

    Schembri, Mark; Dalsgaard, D.; Klemm, Per

    2004-01-01

    Bacterial surface structures such as capsules and adhesins are generally regarded as important virulence factors. Here we demonstrate that capsules block the function of the self-recognizing protein antigen 43 through physical shielding. The phenomenon is not restricted to Escherichia coli but can...

  19. RADIO SHIELDING PROPERTIES OF CONCRETE BASED ON SHUNGITE NANOMATERIALS

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2013-04-01

    Full Text Available Modifications of shielding construction materials based on Portland cement with the addition of powder nanomaterial shungite were developed. Attenuation and re­flection of electromagnetic radiation for obtained materials were studied. Recommen­dations for using are given.

  20. Dynamic Open-Rotor Composite Shield Impact Test Report

    Science.gov (United States)

    Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Carney, Kelly S.; Emmerling, William C.

    2015-01-01

    The Federal Aviation Administration (FAA) is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the aircraft. NASA Glenn and Naval Air Warfare Center (NAWC) China Lake collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test a shield that would protect the aircraft passengers and critical systems from a released blade that could impact the fuselage. This report documents the live-fire test from a full-scale rig at NAWC China Lake. NASA provided manpower and photogrammetry expertise to document the impact and damage to the shields. The test was successful: the blade was stopped from penetrating the shield, which validates the design analysis method and the parameters used in the analysis. Additional work is required to implement the shielding into the aircraft.

  1. Albedo method applied to coupled neutron-gamma shielding radiations

    International Nuclear Information System (INIS)

    The Albedo Theory was applied in order to develop an one-group algorithm for coupled neutron-gamma shielding calculations. The configuration analyzed consists of multilayered plane systems, where a incident neutron current generates gamma radiation through neutron-gamma reactions. The results obtained by Albedo Method and ANISN code have shown excellent agreement. (author)

  2. Sterically shielded diboron-containing metallocene olefin polymerization catalysts

    Science.gov (United States)

    Marks, Tobin J.; Ja, Li; Yang, Xinmin

    1995-09-05

    A non-coordinating anion, preferably containing a sterically shielded diboron hydride, if combined with a cyclopenta-dienyl-substituted metallocene cation component, such as a zirconocene metallocene, is a useful olefin polymerization catalyst component. The anion preferably has the formula ##STR1## where R is branched lower alkyl, such as t-butyl.

  3. Systems for neutronic, thermohydraulic and shielding calculation in personal computers

    International Nuclear Information System (INIS)

    The MTR-PC (Materials Testing Reactors-Personal Computers) system has been developed by the Nuclear Engineering Division of INVAP S.E. with the aim of providing working conditions integrated with personal computers for design and neutronic, thermohydraulic and shielding analysis for reactors employing plate type fuel. (Author)

  4. Non-combustible nuclear radiation shields with high hydrogen content

    International Nuclear Information System (INIS)

    The invention relates to compositions, methods of production, and uses of non-combustible nuclear radiation shields, with particular emphasis on those containing a high concentration of hydrogen atoms, especially effective for moderating neutron energy by elastic scatter, dispersed as a discontinuous phase in a continuous phase of a fire resistant matrix

  5. SHIELD II: TRGB Distance Measurements from HST Imaging

    Science.gov (United States)

    Cannon, John M.; McQuinn, Kristen B.; Skillman, Evan D.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. The observations and science expand on the results from detailed studies of 12 similarly low-mass dwarf galaxies from the original SHIELD campaign. New HST observations of 18 SHIELD II galaxies have allowed us to determine their TRGB distances, thus anchoring the physical scales on which our ongoing analysis is based. Combined with the HST observations of the original 12 SHIELD galaxies presented in McQuinn et al. (2014, 2015), these HST optical images enable a holistic study of the fundamental parameters and characteristics of a statistically robust sample of 30 extremely low-mass galaxies. Additional science goals include an accurate census of the dark matter contents of these galaxies, a spatial and temporal study of star formation within them, and a characterization of the fundamental parameters that change as galaxy masses range from "mini-halo" to star-forming dwarf.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College, and by NASA through grant GO-13750 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  6. Isotopic signatures of lamproite dikes on the eastern Baltic shield

    International Nuclear Information System (INIS)

    The age values, coinciding by Rb-Sr and Sm-Nd, are obtained for lamproits in the eastern party of the Baltic Shield (the Kostamuksha Region): 1230±5 Ma and 1234±80 Ma correspondingly. The magnetic source of lamproites is depletary relative to the Sr isotope composition and enriched relative to the Nd composition

  7. Structure of Self-shielding Electron Beam Installation for Sterilization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to prevent terrorist using letters with anthrax germ or spores to postal route and disturbsociety, and defend the people’s life-safety China Institute of Atomic Energy (CIAE) has developed aself-shielding electron beam installation for sterilization (SEBIS).

  8. The Chemical Effects of Mutual Shielding in Photon Dominated Regions

    CERN Document Server

    Rollins, Richard P

    2012-01-01

    We investigate the importance of the shielding of chemical photorates by molecular hydrogen photodissociation lines and the carbon photoionization continuum deep within models of photon dominated regions. In particular, the photodissociation of N2 and CN are significantly shielded by the H2 photodissociation line spectrum. We model this by switching off the photodissociation channels for these species behind the HI to H2 transition. We also model the shielding effect of the carbon photoionization continuum as an attenuation of the incident radiation field shortwards of 1102\\AA. Using recent line and continuum cross section data, we present calculations of the direct and cosmic ray induced photorates for a range of species, as well as optically thick shielding factors for the carbon continuum. Applying these to a time dependent PDR model we see enrichments in the abundances of N2, N2H+, NH3 and CN by factors of roughly 3-100 in the extinction band Av=2.0 to Av=4.0 for a range of environments. While the precise...

  9. Analysis of a Lunar Base Electrostatic Radiation Shield Concept

    Science.gov (United States)

    Buhler, Charles R.

    2004-01-01

    Space weather can be defined as the total ensemble of radiation in space, as well as on the surface of moons and asteroids. It consists of electromagnetic, charged-particle, and neutral particle radiation. The fundamental goal behind this NIAC Phase I research is to investigate methods of generating a static electric-field potential phi(x, y, z) in the volume above and around a "safe" or protected area on the lunar surface so that trajectories of harmful charged particle radiation are modified (deflected or reflected), thus creating a shadow over that region. Since the charged particles are not neutralized but merely redirected, there will be areas outside of the shadowed protected region that will have a higher flux concentration of radiation. One of the fundamental limitations of the static electric (electrostatic)-field approach to radiation shielding is that complete shadowing is accomplished only by complete reflection, which can only occur for shield voltages greater than or equal to the kinetic energy (in electron volts) of the incoming charged particles. Just as habitats on Earth are protected from severe weather events and conditions, such as extreme temperatures, high winds, and UV radiation, using multiple methods of shielding protection from severe space weather will undoubtedly require multiple strategies. The electrostatic shield concept may be one of many methods employed to protect astronaut habitats on the lunar surface from some of the harmful effects of space weather.

  10. Evaluating shielding effectiveness for reducing space radiation cancer risks

    International Nuclear Information System (INIS)

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDFs are used in significance tests for evaluating the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDFs. Competing mortality risks and functional correlations in radiation quality factor uncertainties are included in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the upper value of 95% confidence interval (CI) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions (180d) or Mars missions, GCR risks may exceed radiation risk limits that are based on acceptable levels of risk. For example, the upper 95% CI exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection

  11. Gamma ray and neutron shielding properties of some concrete materials

    International Nuclear Information System (INIS)

    Highlights: → This study sheds light on the shielding properties of gamma-rays and neutrons for some concrete samples. → The experimental mass attenuation coefficients values were compared with theoretical values obtained using WinXCom. → Moreover, neutron shielding has been treated in terms of macroscopic removal cross-section (ΣR, cm-1) concept. → The NXcom program was employed to calculate the attenuation coefficients values of neutrons. → These values showed a change with energy and composition of the concrete samples. - Abstract: Shielding of gamma-rays and neutrons by 12 concrete samples with and without mineral additives has been studied. The total mass attenuation and linear attenuation coefficients, half-value thicknesses, effective atomic numbers, effective electron densities and atomic cross-sections at photons energies of 59.5 and 661 keV have been measured and calculated. The measured and calculated values were compared and a reasonable agreement has been observed. Also the recorded values showed a change with energy and composition of the concrete samples. In addition, neutron shielding has been treated in terms of macroscopic removal cross-section (ΣR, cm-1) concept. The WinXCom and NXcom programs were employed to calculate the attenuation coefficients of gamma-rays and neutrons, respectively.

  12. Multi electron species and shielding potentials in plasmas

    International Nuclear Information System (INIS)

    The phenomenon of Debye shielding is investigated in electron ion plasmas using the approach of two temperature electrons. We get different profiles of potential for different parameters and observe that the potentials fall very slowly than the standard Coulomb and Debye potentials. The importance of work is pointed out in the introduction.

  13. Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program

    Science.gov (United States)

    Ryan, Shannon

    2013-01-01

    This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks.

  14. Shielding experiments with high-energy heavy ions for spaceflight applications

    Energy Technology Data Exchange (ETDEWEB)

    Zeitlin, C; Guetersloh, S; Heilbronn, L; Miller, J [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Elkhayari, N; Empl, A; LeBourgeois, M; Mayes, B W; Pinsky, L [Physics Department, University of Houston, Houston, TX (United States); Christl, M [NASA Marshall Spaceflight Center, Huntsville, AL (United States); Kuznetsov, E [Physics Department, University of Alabama, Huntsville, AL (United States)], E-mail: cjzeitlin@lbl.gov

    2008-07-15

    Mitigation of radiation exposures received by astronauts on deep-space missions must be considered in the design of future spacecraft. The galactic cosmic rays (GCR) include high-energy heavy ions, many of which have ranges that exceed the depth of shielding that can be launched in realistic scenarios. Some of these ions are highly ionizing (producing a high dose per particle) and for some biological endpoints are more damaging per unit dose than sparsely ionizing radiation. The principal physical mechanism by which the dose and dose equivalent delivered by these particles can be reduced is nuclear fragmentation, the result of inelastic collisions between nuclei in the hull of the spacecraft and/or other materials. These interactions break the incident ions into lighter, less ionizing and less biologically effective particles. We have previously reported the tests of shielding effectiveness using many materials in a 1 GeV nucleon{sup -1} {sup 56}Fe beam, and also reported results using a single polyethylene (CH{sub 2}) target in a variety of beam ions and energies up to 1 GeV nucleon{sup -1}. An important, but tentative, conclusion of those studies was that the average behavior of heavy ions in the GCR would be better simulated by heavy beams at energies above 1 GeV nucleon{sup -1}. Following up on that work, we report new results using beams of {sup 12}C, {sup 28}Si and {sup 56}Fe, each at three energies, 3, 5 and 10 GeV nucleon{sup -1}, on carbon, polyethylene, aluminium and iron targets.

  15. Microprocessor based scanner for scanning of reactor shields (Paper No. 034)

    International Nuclear Information System (INIS)

    A microprocessor based scanner was developed to help the experimental physicists move either a gamma or neutron detector along the shielding surface which is in the inaccessible shielding corner at APSARA. (author). 4 figs

  16. Adjoint Variable Method for the Study of Combined Active and Passive Magnetic Shielding

    Directory of Open Access Journals (Sweden)

    Peter Sergeant

    2008-01-01

    Full Text Available For shielding applications that cannot sufficiently be shielded by only a passive shield, it is useful to combine a passive and an active shield. Indeed, the latter does the “finetuning” of the field reduction that is mainly caused by the passive shield. The design requires the optimization of the geometry of the passive shield, the position of all coils of the active shield, and the real and imaginary components of the currents (when working in the frequency domain. As there are many variables, the computational effort for the optimization becomes huge. An optimization using genetic algorithms is compared with a classical gradient optimization and with a design sensitivity approach that uses an adjoint system. Several types of active and/or passive shields with constraints are designed. For each type, the optimization was carried out by all three techniques in order to compare them concerning CPU time and accuracy.

  17. A high-performance magnetic shield with large length-to-diameter ratio

    Science.gov (United States)

    Dickerson, Susannah; Hogan, Jason M.; Johnson, David M. S.; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-wey; Kasevich, Mark A.

    2012-06-01

    We have demonstrated a 100-fold improvement in the magnetic field uniformity on the axis of a large aspect ratio, cylindrical, mumetal magnetic shield by reducing discontinuities in the material of the shield through the welding and re-annealing of a segmented shield. The three-layer shield reduces Earth's magnetic field along an 8 m region to 420 μG (rms) in the axial direction, and 460 and 730 μG (rms) in the two transverse directions. Each cylindrical shield is a continuous welded tube which has been annealed after manufacture and degaussed in the apparatus. We present both experiments and finite element analysis that show the importance of uniform shield material for large aspect ratio shields, favoring a welded design over a segmented design. In addition, we present finite element results demonstrating the smoothing of spatial variations in the applied magnetic field by cylindrical magnetic shields. Such homogenization is a potentially useful feature for precision atom interferometric measurements.

  18. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of the proposed research are to develop a space radiation shielding material system that has high efficacy for shielding radiation and also has high...

  19. Elrotherm shielding systems. New pioneering material composites; Elrotherm-Abschirmsysteme. Neue Zukunftsweisende Materialkompositionen

    Energy Technology Data Exchange (ETDEWEB)

    Zika-Beyerlein, B. [ElringKlinger (Germany). Geschaeftsbereich Abschirmtechnik

    2004-09-01

    Tightly packed engine compartments put special demands on thermal and acoustic shielding systems. With new material composites allowing for particularly thin-walled and light shielding parts, ElringKlinger is well equipped for the future. (orig.)

  20. Dimmuborgir: a rootless shield complex in northern Iceland

    Science.gov (United States)

    Skelton, Alasdair; Sturkell, Erik; Jakobsson, Martin; Einarsson, Draupnir; Tollefsen, Elin; Orr, Tim

    2016-01-01

    The origin of Dimmuborgir, a shield-like volcanic structure within the Younger Laxá lava flow field near Lake Mývatn, in northern Iceland, has long been questioned. New airborne laser mapping (light detection and ranging (LiDAR)), combined with ground-penetrating radar results and a detailed field study, suggests that Dimmuborgir is a complex of at least two overlapping rootless shields fed by lava erupting from the nearby Lúdentarborgir crater row. This model builds upon previous explanations for the formation of Dimmuborgir and is consistent with observations of rootless shield development at Kīlauea Volcano, Hawaii. The larger rootless shields at Dimmuborgir, 1–1.5 km in diameter, elliptical in plan view, ∼30 m in height, and each with a 500-m-wide summit depression, were capable of storing as much as 2–3 × 106 m3 of lava. They were fed by lava which descended 30–60 m in lava tubes along a distance of 3 km from the crater row. The height difference generated pressure sufficient to build rootless shields at Dimmuborgir in a timescale of weeks. The main summit depressions, inferred to be drained lava ponds, could have emptied via a 30-m-wide × 5-m-deep channel, with estimated effusion rates of 0.7–7 m3 s−1 and minimum flow durations of 5–50 days. We argue that the pillars for which Dimmuborgir is famed are remnants of lava pond rims, at various stages of disintegration that formed during pond drainage.

  1. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  2. Dimmuborgir: a rootless shield complex in northern Iceland

    Science.gov (United States)

    Skelton, Alasdair; Sturkell, Erik; Jakobsson, Martin; Einarsson, Draupnir; Tollefsen, Elin; Orr, Tim

    2016-05-01

    The origin of Dimmuborgir, a shield-like volcanic structure within the Younger Laxá lava flow field near Lake Mývatn, in northern Iceland, has long been questioned. New airborne laser mapping (light detection and ranging (LiDAR)), combined with ground-penetrating radar results and a detailed field study, suggests that Dimmuborgir is a complex of at least two overlapping rootless shields fed by lava erupting from the nearby Lúdentarborgir crater row. This model builds upon previous explanations for the formation of Dimmuborgir and is consistent with observations of rootless shield development at Kīlauea Volcano, Hawaii. The larger rootless shields at Dimmuborgir, 1-1.5 km in diameter, elliptical in plan view, ˜30 m in height, and each with a 500-m-wide summit depression, were capable of storing as much as 2-3 × 106 m3 of lava. They were fed by lava which descended 30-60 m in lava tubes along a distance of 3 km from the crater row. The height difference generated pressure sufficient to build rootless shields at Dimmuborgir in a timescale of weeks. The main summit depressions, inferred to be drained lava ponds, could have emptied via a 30-m-wide × 5-m-deep channel, with estimated effusion rates of 0.7-7 m3 s-1 and minimum flow durations of 5-50 days. We argue that the pillars for which Dimmuborgir is famed are remnants of lava pond rims, at various stages of disintegration that formed during pond drainage.

  3. PMMA/MWCNT nanocomposite for proton radiation shielding applications.

    Science.gov (United States)

    Li, Zhenhao; Chen, Siyuan; Nambiar, Shruti; Sun, Yonghai; Zhang, Mingyu; Zheng, Wanping; Yeow, John T W

    2016-06-10

    Radiation shielding in space missions is critical in order to protect astronauts, spacecraft and payloads from radiation damage. Low atomic-number materials are efficient in shielding particle-radiation, but they have relatively weak material properties compared to alloys that are widely used in space applications as structural materials. However, the issues related to weight and the secondary radiation generation make alloys not suitable for space radiation shielding. Polymers, on the other hand, can be filled with different filler materials for reinforcement of material properties, while at the same time provide sufficient radiation shielding function with lower weight and less secondary radiation generation. In this study, poly(methyl-methacrylate)/multi-walled carbon nanotube (PMMA/MWCNT) nanocomposite was fabricated. The role of MWCNTs embedded in PMMA matrix, in terms of radiation shielding effectiveness, was experimentally evaluated by comparing the proton transmission properties and secondary neutron generation of the PMMA/MWCNT nanocomposite with pure PMMA and aluminum. The results showed that the addition of MWCNTs in PMMA matrix can further reduce the secondary neutron generation of the pure polymer, while no obvious change was found in the proton transmission property. On the other hand, both the pure PMMA and the nanocomposite were 18%-19% lighter in weight than aluminum for stopping the protons with the same energy and generated up to 5% fewer secondary neutrons. Furthermore, the use of MWCNTs showed enhanced thermal stability over the pure polymer, and thus the overall reinforcement effects make MWCNT an effective filler material for applications in the space industry. PMID:27125319

  4. PMMA/MWCNT nanocomposite for proton radiation shielding applications

    Science.gov (United States)

    Li, Zhenhao; Chen, Siyuan; Nambiar, Shruti; Sun, Yonghai; Zhang, Mingyu; Zheng, Wanping; Yeow, John T. W.

    2016-06-01

    Radiation shielding in space missions is critical in order to protect astronauts, spacecraft and payloads from radiation damage. Low atomic-number materials are efficient in shielding particle-radiation, but they have relatively weak material properties compared to alloys that are widely used in space applications as structural materials. However, the issues related to weight and the secondary radiation generation make alloys not suitable for space radiation shielding. Polymers, on the other hand, can be filled with different filler materials for reinforcement of material properties, while at the same time provide sufficient radiation shielding function with lower weight and less secondary radiation generation. In this study, poly(methyl-methacrylate)/multi-walled carbon nanotube (PMMA/MWCNT) nanocomposite was fabricated. The role of MWCNTs embedded in PMMA matrix, in terms of radiation shielding effectiveness, was experimentally evaluated by comparing the proton transmission properties and secondary neutron generation of the PMMA/MWCNT nanocomposite with pure PMMA and aluminum. The results showed that the addition of MWCNTs in PMMA matrix can further reduce the secondary neutron generation of the pure polymer, while no obvious change was found in the proton transmission property. On the other hand, both the pure PMMA and the nanocomposite were 18%–19% lighter in weight than aluminum for stopping the protons with the same energy and generated up to 5% fewer secondary neutrons. Furthermore, the use of MWCNTs showed enhanced thermal stability over the pure polymer, and thus the overall reinforcement effects make MWCNT an effective filler material for applications in the space industry.

  5. On the effects of the TBM-shield body articulation on tunnelling in soft soil

    OpenAIRE

    Festa, D.; Broere, W.; Bosch, J.W.

    2013-01-01

    When a Tunnel Boring Machine (TBM) is driven in soft soil, the TBM-shield constantly interacts with the surrounding soil profile excavated by the cutting wheel. The interaction pattern of shield-soil interface displacements determines compression and extension sectors in the surrounding soil. Soil compression is generated when the shield displaces the excavated profile in outward direction; soil extension happens when the shield fits inside that profile. This aspect of TBM behaviour, referred...

  6. Application of Comb-Type RF-Shield to Bellows Chambers and Gate Valves

    CERN Document Server

    Suetsugu, Yusuke; Ohuchi, Norihito; Shibata, Kyo; Shirai, Mitsuru

    2005-01-01

    A comb-type RF-shield, which was recently proposed for high current accelerators, was experimentally applied to bellows chambers and gate valves. The comb-type RF-shield has a structure of nested comb teeth, and has higher thermal strength and lower impedance than usual finger-type RF shields. The shield is suitable for future high intensity accelerators, such as particle factories aiming a luminosity of 1·1035

  7. A Review on the Production Methods and Testing of Textiles for Electro Magnetic Interference (EMI) shielding

    OpenAIRE

    Bagavathi M,; Dr.-Ing. Priyadarshini R

    2015-01-01

    The need of the present generation to protect themselves from electromagnetic radiation due the various technological developments has paved way to the birth of EMI shielding of textiles. The shielding effectiveness of the developed fabric will vary depending upon the fabric or the coating constituents. The shielding requirements for different applications vary widely which has resulted in the development of wide variety of shielding mechanisms and materials which can be used in t...

  8. Provision Of Carbon Nanotube Bucky Paper Cages For Immune Shielding Of Cells, Tissues, and Medical Devices

    Science.gov (United States)

    Loftus, David J. (Inventor)

    2006-01-01

    System and method for enclosing cells and/or tissue, for purposes of growth, cell differentiation, suppression of cell differentiation, biological processing and/or transplantation of cells and tissues (biological inserts), and for secretion, sensing and monitoring of selected chemical substances and activation of gene expression of biological inserts implanted into a human body. Selected cells and/or tissue are enveloped in a "cage" that is primarily carbon nanotube Bucky paper, with a selected thickness and porosity. Optionally, selected functional groups, proteins and/or peptides are attached to the carbon nanotube cage, or included within the cage, to enhance the growth and/or differentiation of the cells and/or tissue, to select for certain cellular sub-populations, to optimize certain functions of the cells and/or tissue and/or to optimize the passage of chemicals across the cage surface(s). A cage system is also used as an immuns shield and to control operation of a nano-device or macroscopic device, located within the cage, to provide or transform a selected chemical and/or a selected signal.

  9. Guarding embryo development of zebrafish by shell engineering: a strategy to shield life from ozone depletion.

    Directory of Open Access Journals (Sweden)

    Ben Wang

    Full Text Available BACKGROUND: The reduced concentration of stratospheric ozone results in an increased flux of biologically damaging mid-ultraviolet radiation (UVB, 280 to 320 nm reaching earth surfaces. Environmentally relevant levels of UVB negatively impact various natural populations of marine organisms, which is ascribed to suppressed embryonic development by increased radiation. METHODOLOGY/PRINCIPAL FINDINGS: Inspired by strategies in the living systems generated by evolution, we induce an extra UVB-adsorbed coat on the chorion (eggshell surrounding embryo of zebrafish, during the blastula period. Short and long UV exposure experiments show that the artificial mineral-shell reduces the UV radiation effectively and the enclosed embryos become more robust. In contrast, the uncoated embryos cannot survive under the enhanced UVB condition. CONCLUSIONS: We suggest that an engineered shell of functional materials onto biological units can be developed as a strategy to shield lives to counteract negative changes of global environment, or to provide extra protection for the living units in biological research.

  10. Using associated particle technique for detection of shielded nuclear materials (N M). Detection of heavily shielded N M

    International Nuclear Information System (INIS)

    A novel method of simultaneous detection of concealed explosive substances and heavily shielded nuclear materials is described. Experimental setup based on a portable D T neutron generator and detectors of neutrons and γ-rays has been created and tested. The results of tests with real fissioning materials are presented

  11. Electromagnetic Interference Shielding of MWCNT/ Mu-Metal/Polyvinylidene Fluoride Nanocomposite

    Directory of Open Access Journals (Sweden)

    C. Sarala Rubi

    2015-07-01

    Full Text Available Electromagnetic Interference (EMI Shielding material containing a blend of multi walled carbon nano tube (MWCNT and mumetal has been prepared and their electromagnetic shielding capabilities were characterised through XRD, SEM, EDAX, etc. The shielding effectiveness (SE was measured using vector network analyser in X-band frequency range (8-12 GHz.

  12. Electromagnetic Interference Shielding of MWCNT/ Mu-Metal/Polyvinylidene Fluoride Nanocomposite

    OpenAIRE

    C. Sarala Rubi; S. Gowthaman; N. G. Renganathan

    2015-01-01

    Electromagnetic Interference (EMI) Shielding material containing a blend of multi walled carbon nano tube (MWCNT) and mumetal has been prepared and their electromagnetic shielding capabilities were characterised through XRD, SEM, EDAX, etc. The shielding effectiveness (SE) was measured using vector network analyser in X-band frequency range (8-12 GHz).

  13. Testing new types of personal protective shielding equipment against ionizing radiation

    International Nuclear Information System (INIS)

    X and gamma ray attenuation and dose rate caused by the shielding layers of the various items of personal protective shielding equipment (PPSE) were measured by using different radionuclide point sources. Thermoluminescent detectors were installed in the layers of some pieces of the shielding clothing and their response to the radiation of dispersed radioactive aerosols was measured in different experimental conditions. (orig.)

  14. Filling the gap in central shielding: three-dimensional analysis of the EQD2 dose in radiotherapy for cervical cancer with the central shielding technique

    OpenAIRE

    Tamaki, Tomoaki; Ohno, Tatsuya; NODA, SHIN-EI; Kato, Shingo; Nakano, Takashi

    2015-01-01

    This study aimed to provide accurate dose distribution profiles of radiotherapy for cervical cancer when treated with the central shielding technique by analysing the composite 3D EQD2 dose distribution of external beam radiotherapy (EBRT) plus intracavitary brachytherapy (ICBT). On a phantom, four patterns of the combinations of whole pelvis irradiation (WP) (4 fields), pelvis irradiation with central shielding technique (CS) [anterior–posterior/posterior–anterior (AP-PA fields), shielding w...

  15. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  16. Wetting a rail tanker behind a noise shield.

    Science.gov (United States)

    Rosmuller, Nils

    2009-05-30

    In the Netherlands, the Betuweline is a dedicated freight railway. It will, among other things, be used for transportation of all kinds of hazardous materials from the Port of Rotterdam to the German Hinterland and vice versa. The line is approximately 150 km long. Alongside the line, over more than 100 km noise shields are apparent. The question is to what extent this noise shield hinders the cooling of a rail tanker, carrying flammable liquid such as liquefied petroleum gas (LPG)? To answer this question, a full scale test was conducted on an already constructed part of the Betuweline [N. Rosmuller, D.W.G. Arentsen, (2005). Praktijkproeven Betuweroute: Instantane uitstroming en koeling 24 juni 2005, Nibra, Arnhem, The Netherlands]. Two railcars and a rail tanker were placed behind a 3m high noise shield. First, it was tested as to whether firemen or water canons should be used to deliver the water. Water canons were best next, four positions of the water canons to wet the rail tanker were tested. Three camera's and three observers recorded the locations and the extent of water that hit the rail tanker. The results indicate that the noise shield, to a large extent, prevents the water from hitting, and therefore cooling, the rail tanker. The upper parts of the rail tanker were minimally struck by the water canons and the small amount of water flowing down the rail tanker did not reach the lower parts of it because of the armatures at the rail tanker. Also, the amount of water in the ditches to be used for wetting was too small. The ditch nearby ran empty. These insights are both relevant to emergency responders for disaster abatement purposes and to water management organizations. The Ministry of Transport is examining the possible strategies to deal with these findings. The results are based upon one single full scale test near a 3m high noise shield. In addition, it would be valuable to determine what the influence would be of other heights of the noise shields.

  17. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  18. Process for making RF shielded cable connector assemblies and the products formed thereby

    Science.gov (United States)

    Fisher, A.; Clatterbuck, C. H. (Inventor)

    1973-01-01

    A process for making RF shielded cable connector assemblies and the resulting structures is described. The process basically consists of potting wires of a shielded cable between the cable shield and a connector housing to fill in, support, regidize, and insulate the individual wires contained in the cable. The formed potting is coated with an electrically conductive material so as to form an entirely encompassing adhering conductive path between the cable shield and the metallic connector housing. A protective jacket is thereby formed over the conductive coating between the cable shield and the connector housing.

  19. Water-extended polyester neutron shield for a 252Cf neutron source

    International Nuclear Information System (INIS)

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. During calculations, 252Cf and shielding were modelled and the neutron spectra as well as the H*(10) were calculated in four sites. The calculation was extended to include a water shielding, the source in vacuum and in air. Besides neutron shielding characteristics, the Kerma in air due to gammas emitted by 252Cf and due to capture γ rays in the shielding were included. (authors)

  20. SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Lühr, Armin;

    2014-01-01

    Abstract. Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The “-A” fork of SHIELD-HIT also aims to attach SHIELD...... of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More...