WorldWideScience

Sample records for biological sciences undergraduate

  1. Use of Lecture Capture in Undergraduate Biological Science Education

    Science.gov (United States)

    Wiese, Candace; Newton, Genevieve

    2013-01-01

    This study examined the use of lecture capture in students in a large 3rd year undergraduate biological science course at the University of Guelph. Data regarding viewing behaviour, academic performance, and attendance were analyzed in relation to student learning approach (as assessed by the R-SPQ-2F), gender, and year of post-secondary…

  2. Use of Lecture Capture in Undergraduate Biological Science Education

    Directory of Open Access Journals (Sweden)

    Candace Wiese

    2013-12-01

    Full Text Available This study examined the use of lecture capture in students in a large 3rd year undergraduate biological science course at the University of Guelph. Data regarding viewing behaviour, academic performance, and attendance were analyzed in relation to student learning approach (as assessed by the R-SPQ-2F, gender, and year of post-secondary education. It was found that relative to historic controls, students provided lecture capture videos increased their final exam grade by approximately 5%. It was also found that learning approach was significantly related to video viewing behaviour, final exam performance, and attendance, with a deep learning approach being associated with more video views, better performance, and a greater tendency to watch videos to master and review material. A surface approach showed contrasting associations. Moreover, a higher deep approach score was related to fewer absences, while a higher surface approach score was related to more absences and increased the likelihood of a student missing a class. Gender also influenced viewing behaviour, with females being more likely than males to watch videos to generate notes and to review material. This research demonstrates that learning approach and gender are significant predictors of lecture capture behaviour, performance, and/or attendance in biological science education, and provides support for the use of lecture capture as a tool to improve academic performance.

  3. Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences.

    Science.gov (United States)

    Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R

    2013-06-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.

  4. Students' attitudes towards science and science learning in an introductory undergraduate biology course

    Science.gov (United States)

    Floro, Nicole

    Science education strives to cultivate individuals who understand scientific concepts as well as the nature of science and science learning. This study focused on the potential benefits of the flipped classroom on students' attitudes towards science and science learning. Our study investigated changes in and effects of students' attitudes towards science and science learning in a flipped introductory biology course at the University of Massachusetts Boston. We used The Colorado Learning Attitudes about Science Survey for Biology to assess students' attitudes at pre and post-instruction. We investigated the effect of a flipped classroom on students' attitudes towards science and science learning by measuring the impact of different teaching approaches (flipped vs. traditional lecture). Following the prior literature, we hypothesized that there would be a negative shift in students' attitudes over the semester in the traditional classroom and that this negative shift would not occur in the flipped. Our results showed there was no significant difference in the shift of students' attitudes between the traditional and flipped sections. We also examined the relationship between students' attitudes and academic performance. We hypothesized there would be a positive correlation between students' attitudes and their academic performance, as measured by exam average. In support of the prior literature, we found a significant positive correlation. Finally, we examined whether the relationship between students' attitudes and performance was mediated by learning behavior. Specifically, we considered if students with more favorable attitudes solved more on-line problems correctly and whether this aspect of problem solving was associated with greater achievement. We hypothesized there would be a positive correlation between attitudes and problem solving behavior as well as problem solving behavior and achievement. We did not find a significant correlation between attitudes and

  5. Science Café Course: An Innovative Means of Improving Communication Skills of Undergraduate Biology Majors

    Directory of Open Access Journals (Sweden)

    Anna Goldina

    2013-12-01

    Full Text Available To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course, called Science Café. In this course undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Cafe course emphasizes development of science communication skills early, at the undergraduate level and empowers students to use their science knowledge in every day interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.

  6. Practicing biology: Undergraduate laboratory research, persistence in science, and the impact of self-efficacy beliefs

    Science.gov (United States)

    Berkes, Elizabeth

    As undergraduate laboratory research internships become more popular and universities devote considerable resources towards promoting them, it is important to clarify what students specifically gain through involvement in these experiences and it is important to understand their impact on the science pipeline. By examining recent findings describing the primary benefits of undergraduate research participation, along with self-efficacy theory, this study aims to provide more explanatory power to the anecdotal and descriptive accounts regarding the relationship between undergraduate research experiences and interest in continuing in science. Furthermore, this study characterizes practices that foster students' confidence in doing scientific work with detailed description and analysis of the interactions of researchers in a laboratory. Phase 1 of the study, a survey of undergraduate biology majors (n=71) at a major research university, investigates the relationships among participation in biology laboratory research internships, biology laboratory self-efficacy strength, and interest in persisting in science. Phase 2 of the study, a two-year investigation of a university biology research laboratory, investigates how scientific communities of practice develop self-efficacy beliefs. The findings suggest that participation in lab internships results in increased interest in continuing in life science/biology graduate school and careers. They also suggest that a significant proportion of that interest is related to the students' biology laboratory self-efficacy. The findings of this study point to two primary ways that undergraduate research participation might work to raise self-efficacy strength. First, university research laboratory communities can provide students with a variety of resources that scaffold them into biology laboratory mastery experiences. Second, university research laboratory communities can provide students with coping and mastery Discourse models

  7. [Undergraduate and postgraduate studies in the biological sciences in Chile (1985)].

    Science.gov (United States)

    Niemeyer, H

    1986-01-01

    A study group of scientists was convened by the Sociedad de Biología de Chile (Biological Society of Chile) and the Regional Program for Graduate Training in Biological Sciences, PNUD-Unesco, RLA 78/024, to assess undergraduate and graduate studies in life sciences in Chile. The group presented this report at the 28th Annual Meeting of the Society. Discussion centered on the features that should characterize the studies leading to the academic degrees of Licenciado (Licenciate), Magíster (Master) and Doctor (Ph. D) in Sciences, and also on the qualifications that the universities should satisfy in order to grant them. After analyzing the present situation of undergraduate and graduate studies in Biological Sciences in Chilean universities, the group made the following main suggestions: 1. It is recommended that Chilean universities agree on a 4-year plan for the Licenciado degree, without the requirement of a thesis. The importance of providing the students with good laboratory exercises and field experience and with the opportunity to perform short research projects is stressed. In addition, a sound theoretical training on mathematics, physics and chemistry in the education of a modern Biologist is important. Licenciate studies ought to be the basis for professional careers and the universities should offer to the Licenciados free access to their professional schools. 2. It is considered appropriate for Chile and its universities to develop graduate programs in those disciplines that have reached a level of excellence. To accomplish this aim, adequate finance of the universities is necessary to permit them to provide the essential facilities for doing research, and to create a wide system of fellowships for graduate students. Direct government support for research and graduate student fellowships is requested. 3. Research experience of the kind needed for the preparation of a doctoral thesis is recommended as the academic level appropriate for those engaged in

  8. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics.

    Science.gov (United States)

    Wachsmuth, Lucas P; Runyon, Christopher R; Drake, John M; Dolan, Erin L

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students' emotional satisfaction with math. We then compared life science and non-life science majors and found that major had a small to moderate relationship with students' responses. Gender also had a small relationship with students' responses, while students' race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups-students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates' emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors' attitudes toward math. © 2017 L.P. Wachsmuth et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Conceptions of the Nature of Science Held by Undergraduate Pre-Service Biology Teachers in South-West Nigeria

    Science.gov (United States)

    Adedoyin, A. O.; Bello, G.

    2017-01-01

    This study investigated the conceptions of the nature of science held by pre-service undergraduate biology teachers in South-West, Nigeria. Specifically, the study examined the influence of their gender on their conceptions of the nature of science. The study was a descriptive research of the survey method. The population for the study comprised…

  10. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science

    Science.gov (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  11. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  12. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors’ Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students’ emotional satisfaction with math. We then compared life science and non–life science majors and found that major had a small to moderate relationship with students’ responses. Gender also had a small relationship with students’ responses, while students’ race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups—students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates’ emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors’ attitudes toward math. PMID:28798211

  13. A writing-intensive course improves biology undergraduates' perception and confidence of their abilities to read scientific literature and communicate science.

    Science.gov (United States)

    Brownell, Sara E; Price, Jordan V; Steinman, Lawrence

    2013-03-01

    Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of primary literature, writing assignments directed toward a layperson and scientist audience, and in-class discussions, we aimed to improve the ability of students to 1) comprehend primary scientific papers, 2) communicate science to a scientific audience, and 3) communicate science to a layperson audience. We offered the course for three consecutive years and evaluated its impact on student perception and confidence using a combination of pre- and postcourse survey questions and coded open-ended responses. Students showed gains in both the perception of their understanding of primary scientific papers and of their abilities to communicate science to scientific and layperson audiences. These results indicate that this unique format can teach both communication skills and basic science to undergraduate biology students. We urge others to adopt a similar format for undergraduate biology courses to teach process skills in addition to content, thus broadening and strengthening the impact of undergraduate courses.

  14. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of…

  15. The experimental teaching reform in biochemistry and molecular biology for undergraduate students in Peking University Health Science Center.

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and participated in some original research work. There is a critical educational need to prepare these students for the increasing accessibility of research experience. The redesigned experimental curriculum of biochemistry and molecular biology was developed to fulfill such a requirement, which keeps two original biochemistry experiments (Gel filtration and Enzyme kinetics) and adds a new two-experiment component called "Analysis of anti-tumor drug induced apoptosis." The additional component, also known as the "project-oriented experiment" or the "comprehensive experiment," consists of Western blotting and a DNA laddering assay to assess the effects of etoposide (VP16) on the apoptosis signaling pathways. This reformed laboratory teaching system aims to enhance the participating students overall understanding of important biological research techniques and the instrumentation involved, and to foster a better understanding of the research process all within a classroom setting. Student feedback indicated that the updated curriculum helped them improve their operational and self-learning capability, and helped to increase their understanding of theoretical knowledge and actual research processes, which laid the groundwork for their future research work. © 2015 The International Union of Biochemistry and Molecular Biology.

  16. Researching Undergraduate Social Science Research

    Science.gov (United States)

    Rand, Jane

    2016-01-01

    The experience(s) of undergraduate research students in the social sciences is under-represented in the literature in comparison to the natural sciences or science, technology, engineering and maths (STEM). The strength of STEM undergraduate research learning environments is understood to be related to an apprenticeship-mode of learning supported…

  17. The Experimental Teaching Reform in Biochemistry and Molecular Biology for Undergraduate Students in Peking University Health Science Center

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and…

  18. The Student Writing Toolkit: Enhancing Undergraduate Teaching of Scientific Writing in the Biological Sciences

    Science.gov (United States)

    Dirrigl, Frank J., Jr.; Noe, Mark

    2014-01-01

    Teaching scientific writing in biology classes is challenging for both students and instructors. This article offers and reviews several useful "toolkit" items that improve student writing. These include sentence and paper-length templates, funnelling and compartmentalisation, and preparing compendiums of corrections. In addition,…

  19. Learning physical biology via modeling and simulation: A new course and textbook for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    To a large extent, undergraduate physical-science curricula remain firmly rooted in pencil-and-paper calculation, despite the fact that most research is done with computers. To a large extent, undergraduate life-science curricula remain firmly rooted in descriptive approaches, despite the fact that much current research involves quantitative modeling. Not only does our pedagogy not reflect current reality; it also creates a spurious barrier between the fields, reinforcing the narrow silos that prevent students from connecting them. I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional undergraduate courses: •Basic modeling skills; •Probabilistic modeling skills; •Data analysis methods; •Computer programming using a general-purpose platform like MATLAB or Python; •Pulling datasets from the Web for analysis; •Data visualization; •Dynamical systems, particularly feedback control. Partially supported by the NSF under Grants EF-0928048 and DMR-0832802.

  20. Life Science Professional Societies Expand Undergraduate Education Efforts

    Science.gov (United States)

    Matyas, Marsha Lakes; Ruedi, Elizabeth A.; Engen, Katie; Chang, Amy L.

    2017-01-01

    The "Vision and Change in Undergraduate Biology Education" reports cite the critical role of professional societies in undergraduate life science education and, since 2008, have called for the increased involvement of professional societies in support of undergraduate education. Our study explored the level of support being provided by…

  1. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates' Attitudes toward Science in Inquiry-Based Biology Laboratory Classes

    Science.gov (United States)

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes…

  2. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates' Attitudes toward Science in Inquiry-Based Biology Laboratory Classes.

    Science.gov (United States)

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students' attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students' characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. © 2017 C. Gormally. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  4. A Writing-Intensive Course Improves Biology Undergraduates' Perception and Confidence of Their Abilities to Read Scientific Literature and Communicate Science

    Science.gov (United States)

    Brownell, Sara E.; Price, Jordan V.; Steinman, Lawrence

    2013-01-01

    Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of…

  5. Interdisciplinary Biomathematics: Engaging Undergraduates in Research on the Fringe of Mathematical Biology

    Science.gov (United States)

    Fowler, Kathleen; Luttman, Aaron; Mondal, Sumona

    2013-01-01

    The US National Science Foundation's (NSF's) Undergraduate Biology and Mathematics (UBM) program significantly increased undergraduate research in the biomathematical sciences. We discuss three UBM-funded student research projects at Clarkson University that lie at the intersection of not just mathematics and biology, but also other fields. The…

  6. Undergraduate Laboratory for Surface Science

    Science.gov (United States)

    Okumura, Mitchio; Beauchamp, Jesse L.; Dickert, Jeffrey M.; Essy, Blair R.; Claypool, Christopher L.

    1996-02-01

    Surface science has developed into a multidisciplinary field of research with applications ranging from heterogeneous catalysis to semiconductor etching (1). Aspects of surface chemistry are now included in physical chemistry textbooks (2) and undergraduate curricula (3), but the perceived cost and complexity of equipment has deterred the introduction of surface science methods in undergraduate laboratories (4). Efforts to expose chemistry undergraduates to state-of-the-art surface instrumentation have just begun (5). To provide our undergraduates with hands-on experience in using standard techniques for characterizing surface morphology, adsorbates, kinetics, and reaction mechanisms, we have developed a set of surface science experiments for our physical chemistry laboratory sequence. The centerpiece of the laboratory is an ultrahigh vacuum (UHV) chamber for studies of single crystal surfaces. This instrument, shown in the figure, has surface analysis capabilities including low energy electron diffraction (LEED), Auger spectroscopy, and temperature-programmed desorption (TPD). The laboratory exercises involve experiments on the well-studied Pt(111) surface. Students prepare a previously mounted single crystal sample by sputtering it with an argon ion gun and heating it under O2. Electron diffraction patterns from the cleaned surface are then obtained with a reverse view LEED apparatus (Princeton Instruments). Images are captured by a charge-coupled device (CCD) camera interfaced to a personal computer for easy downloading and subsequent analysis. Although the LEED images from a Pt(111) surface can be readily interpreted using simple diffraction arguments, this lab provides an excellent context for introducing Miller indices and reciprocal lattices (6). The surface chemical composition can be investigated by Auger spectroscopy, using the LEED apparatus as a simple energy analyzer. The temperature programmed desorption experiment, which is nearly complete, will be

  7. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification.

    Science.gov (United States)

    Danielson, Kathryn I; Tanner, Kimberly D

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. © 2015 K. I. Danielson and K. D. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Education Improves Plagiarism Detection by Biology Undergraduates

    Science.gov (United States)

    Holt, Emily A.

    2012-01-01

    Regrettably, the sciences are not untouched by the plagiarism affliction that threatens the integrity of budding professionals in classrooms around the world. My research, however, suggests that plagiarism training can improve students' recognition of plagiarism. I found that 148 undergraduate ecology students successfully identified plagiarized…

  9. Accreditation standards for undergraduate forensic science programs

    Science.gov (United States)

    Miller, Marilyn Tebbs

    Undergraduate forensic science programs are experiencing unprecedented growth in numbers of programs offered and, as a result, student enrollments are increasing. Currently, however, these programs are not subject to professional specialized accreditation. This study sought to identify desirable student outcome measures for undergraduate forensic science programs that should be incorporated into such an accreditation process. To determine desirable student outcomes, three types of data were collected and analyzed. All the existing undergraduate forensic science programs in the United States were examined with regard to the input measures of degree requirements and curriculum content, and for the output measures of mission statements and student competencies. Accreditation procedures and guidelines for three other science-based disciplines, computer science, dietetics, and nursing, were examined to provide guidance on accreditation processes for forensic science education programs. Expert opinion on outcomes for program graduates was solicited from the major stakeholders of undergraduate forensic science programs-forensic science educators, crime laboratory directors, and recent graduates. Opinions were gathered by using a structured Internet-based survey; the total response rate was 48%. Examination of the existing undergraduate forensic science programs revealed that these programs do not use outcome measures. Of the accreditation processes for other science-based programs, nursing education provided the best model for forensic science education, due primarily to the balance between the generality and the specificity of the outcome measures. From the analysis of the questionnaire data, preliminary student outcomes, both general and discipline-specific, suitable for use in the accreditation of undergraduate forensic science programs were determined. The preliminary results were reviewed by a panel of experts and, based on their recommendations, the outcomes

  10. Undergraduate Women's Persistence in the Sciences

    Science.gov (United States)

    George-Jackson, Casey E.

    2014-01-01

    This study uses longitudinal data of undergraduate students from five public land-grant universities to better understand undergraduate students' persistence in and switching of majors, with particular attention given to women's participation in science, technology, engineering, and mathematics (STEM) fields. Specifically, the study examines…

  11. “Biotecnological War” - A Conceptual And Perceptual Assessment Tool For Teaching Biotechnology And Protein Chemistry For Undergraduate Students In Biological Sciences.

    Directory of Open Access Journals (Sweden)

    C. R. C. Cruz et al.

    2017-07-01

    Full Text Available "Biotecnological War" board game, a conceptual and perceptual assessment tool for biotechnology and protein chemistry teaching for undergraduate students in biological sciences and related areas. It is a proposal initially conceived as an alternative complementary tool for biochemistry teaching of proteins and peptides, challenging students, aiming to review concepts transmitted in classroom, stimulating diverse student’s abilities, such as their creativity, competitiveness and resource management. OBJECTIVES. Correlate biochemistry importance of proteins and peptides with the development of new products. MATERIAL AND METHODS. Firstly, theoretical-practical classes were given with seminars to be presented by the groups, including topics that will be addressed in game. Groups of 5 students, with previously viewed themes drawn a goal to be achieved. There are two drawn goals variations: Academic or Commercial. Board is divided into provinces, which must be bought with an initial resource to complete the goal. Before the beginning each group will have 15 minutes to plan their actions. The objective is to develop the entire objective drawn with appropriate methodology, having at least 1 territory in each province. RESULTS. This game proved to be an excellent tool for complementary evaluation of students, which stimulated teamwork and a strong competitive spirit within classroom, which allowed to analyze students' perception regarding the protein subject and team work. On the other hand, for teacher and students participating in compulsory traineeship program this game demonstrated new ways to approach complex subjects in biochemistry using creativity with the development of new activities such as this board game. CONCLUSION: Overall, students had a good impression of “Biotecnological war” game since it helped to secure and administer the protein and peptides biochemical subject in a competitive and team work way.

  12. Introducing Science to undergraduate students

    Directory of Open Access Journals (Sweden)

    P. Avila Jr

    2006-07-01

    Full Text Available The knowledge of scientific method provides stimulus and development of critical thinking and logical analysis of information besides the training of continuous formulation of hypothesis to be applied in formal scientific issues as well as in everyday facts. The scientific education, useful for all people, is indispensable for the experimental science students. Aiming at the possibility to offer a systematic learning of the scientific principles, we developed a undergraduate course designed to approximate the students to the procedures of scientific production and publication. The course was developed in a 40 hours, containing two modules: I. Introducing Scientific Articles (papers and II. Writing Research Project. The first module deals with: (1 the difference between scientific knowledge and common sense; (2 scientific methodology; (3 scientific publishing categories; (4 logical principles; (5 deduction and induction approach and (6 paper analysis. The second module includes (1 selection of problem to be solved by experimental procedures; (2 bibliography revision; (3 support agencies; (4 project writing and presentation and (5 critical analysis of experimental results. The course used a Collaborative Learning strategy with each topic being developed through activities performed by the students. Qualitative and quantitative (through Likert questionnaires evaluation were carried out in each step of the course, the results showing great appreciation by the students. This is also the opinion of the staff responsible for the planning and development of the course, which is now in its second and improved version.

  13. Bringing Nuclear Science into the Undergraduate Curriculum

    Science.gov (United States)

    Peaslee, Graham

    2006-04-01

    Think about the first time you encountered nuclear science in your formal curriculum. For most nuclear scientists this experience occurred as an undergraduate in an upper-level course in a traditional four-year institution. Because of changing student demographics, an explosion of interest in the life sciences, the end of the cold war and a variety of other factors, fewer undergraduates are encountering a traditional nuclear science course at all. For the field to remain vital, we suggest that educators in nuclear science will have to adapt to the changes in student populations and interests. To this end we now offer a variety of experiences to our undergraduate students that incorporate fundamental nuclear science. One component to our approach is to create exciting opportunities in undergraduate research, and another component involves creation of nuclear science modules that can fit within other courses. In recent years both of these components have evolved with an interdisciplinary flavor, but continue to yield students that become interested in pursuing nuclear science careers. We will discuss research opportunities offered to undergraduates at Hope College, and our success with collaborative research opportunities at a variety of extramural laboratories, as well as with our in-house research program with a low-energy accelerator. An overview of several pedagogical approaches we have adopted will also be presented, and there is clearly opportunity to pursue this approach much further. Although the examples are specific to Hope College, both components can clearly be adopted at a variety of other institutions.

  14. Undergraduate Training in Nutritional Science

    Science.gov (United States)

    Briggs, George M.

    1972-01-01

    Discusses need to establish minimum standards of training for nutrition educators,'' and standardized curricula at the undergraduate level. Gives attention to definitions, adequate training, and suggested guidelines as a starting point for further discussion. (LK)

  15. Innovations in teaching undergraduate biology and why we need them.

    Science.gov (United States)

    Wood, William B

    2009-01-01

    A growing revolution is under way in the teaching of introductory science to undergraduates. It is driven by concerns about American competitiveness as well as results from recent educational research, which explains why traditional teaching approaches in large classes fail to reach many students and provides a basis for designing improved methods of instruction. Discipline-based educational research in the life sciences and other areas has identified several innovative promising practices and demonstrated their effectiveness for increasing student learning. Their widespread adoption could have a major impact on the introductory training of biology students.

  16. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  17. Permanent foresty plots: a potentially valuable teaching resource in undergraduate biology porgrams for the Caribbean

    Science.gov (United States)

    H. Valles; C.M.S. Carrington

    2016-01-01

    There has been a recent proposal to change the way that biology is taught and learned in undergraduate biology programs in the USA so that students develop a better understanding of science and the natural world. Here, we use this new, recommended teaching– learning framework to assert that permanent forestry plots could be a valuable tool to help develop biology...

  18. Do Gender-Science Stereotypes Predict Science Identification and Science Career Aspirations among Undergraduate Science Majors?

    Science.gov (United States)

    Cundiff, Jessica L.; Vescio, Theresa K.; Loken, Eric; Lo, Lawrence

    2013-01-01

    The present research examined whether gender-science stereotypes were associated with science identification and, in turn, science career aspirations among women and men undergraduate science majors. More than 1,700 students enrolled in introductory science courses completed measures of gender-science stereotypes (implicit associations and…

  19. Internet Use Among Science Undergraduate Students: A ...

    African Journals Online (AJOL)

    The objective of this study was to identify and determine the extent of students\\' access to, and use of the Internet using the Science Undergraduate Students of University of Ibadan and University of Lagos as a case study. The study also aimed at comparing the rate of use among this group of students and determine which ...

  20. Epistemologies and scientific reasoning skills among undergraduate science students

    Science.gov (United States)

    Mollohan, Katherine N.

    Non-cognitive factors such as students' attitudes and beliefs toward a subject and their proficiency in scientific reasoning are important aspects of learning within science disciplines. Both factors have been studied in relation to science education in various discplines. This dissertation presents three studies that investigate student epistemologies and scientific reasoning in the domain of biology education. The first study investigated students' epistemic viewpoints in two introductory biology courses, one for science majors and one for non-science majors. This quantitative investigation revealed that the majors exhibited a negative shift in their attitudes and beliefs about biology and learning biology during a semester of introductory instruction. However, the non-science majors did not exhibit a similar shift. If fact, the non-science majors improved in their attitudes and beliefs during a semester of instruction, though not significantly so. The second study expands epistemological research to a population that has often been left out of this work, that is, intermediate-level biology majors. Quantitative and qualitative data was collected to reveal that junior and senior ranked students for the most part were able to characterize their views about biology and learning biology, and were able to associate factors with their epistemic improvement. Finally, the third study expands epistemology research further to determine if scientific reasoning and student attitudes and beliefs about learning science (specifically biology) are related. After a description of how various science and engineering majors compare in their scientific reasoning skills, this study indicated that among intermediate level biology majors there is no relationship between scientific reasoning skills and epistemologies, nor is there a relationship with other educational factors, including the number of courses taken during an undergraduate career, cumulative GPA, and standardized test

  1. Biology undergraduates' misconceptions about genetic drift.

    Science.gov (United States)

    Andrews, T M; Price, R M; Mead, L S; McElhinny, T L; Thanukos, A; Perez, K E; Herreid, C F; Terry, D R; Lemons, P P

    2012-01-01

    This study explores biology undergraduates' misconceptions about genetic drift. We use qualitative and quantitative methods to describe students' definitions, identify common misconceptions, and examine differences before and after instruction on genetic drift. We identify and describe five overarching categories that include 16 distinct misconceptions about genetic drift. The accuracy of students' conceptions ranges considerably, from responses indicating only superficial, if any, knowledge of any aspect of evolution to responses indicating knowledge of genetic drift but confusion about the nuances of genetic drift. After instruction, a significantly greater number of responses indicate some knowledge of genetic drift (p = 0.005), but 74.6% of responses still contain at least one misconception. We conclude by presenting a framework that organizes how students' conceptions of genetic drift change with instruction. We also articulate three hypotheses regarding undergraduates' conceptions of evolution in general and genetic drift in particular. We propose that: 1) students begin with undeveloped conceptions of evolution that do not recognize different mechanisms of change; 2) students develop more complex, but still inaccurate, conceptual frameworks that reflect experience with vocabulary but still lack deep understanding; and 3) some new misconceptions about genetic drift emerge as students comprehend more about evolution.

  2. Finding Clarity by Fostering Confusion: Reflections on Teaching an Undergraduate Integrated Biological Systems Course

    Science.gov (United States)

    Martin, Kirsten H.

    2015-01-01

    Undergraduate biology programs in smaller liberal arts colleges are increasingly becoming focused on health science fields. This narrowing of focus potentially decreases opportunities for these students to explore other sub-fields of biology. This perspectives article highlights how one small university in Connecticut decided to institute a…

  3. Measuring Science Literacy in College Undergraduates

    Science.gov (United States)

    Impey, Chris David; Buxner, S. R.; Antonellis, J.; King, C.; Johnson, E.; CATS

    2010-01-01

    Initial results from a major study of scientific literacy are presented, involving nearly 10,000 undergraduates in science classes at a large Southwestern Land Grant public university over a 20-year period. The science content questions overlap with those in the NSF's Science Indicators series. About 10% of all undergraduates in the US take a General Education astronomy course, and NSF data and the work of Jon Miller show that the number of college science courses taken is the strongest predictor of civic scientific literacy. Our data show that gains in knowledge on any particular item through the time students graduate are only 10-15%. Among students who have taken most or all of their science requirements, one-in-three think that antibiotics kill viruses as well as bacteria, one-in-four think lasers work by focusing sound waves, one-in-five think atoms are smaller than electrons, and the same fraction is unaware that humans evolved from earlier species of animals and that the Earth takes a year to go around the Sun. The fraction of undergraduates saying that astrology is "not at all” scientific increases from 17% to a still-low 34% as they move through the university. Equally worrying, half of all science majors say that astrology is "sort of” or "very” scientific. Education majors - the cohort of future teachers - perform worse than average on most individual questions and in terms of their overall scientific literacy. Assuming the study institution is representative of the nation's higher education institutions, our instruction is not raising students to the level we would expect for educated citizens who must vote on many issues that relate to science and technology. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  4. A Community College Instructor's Reflective Journey Toward Developing Pedagogical Content Knowledge for Nature of Science in a Non-majors Undergraduate Biology Course

    Science.gov (United States)

    Krajewski, Sarah J.; Schwartz, Renee

    2014-08-01

    Research supports an explicit-reflective approach to teaching about nature of science (NOS), but little is reported on teachers' journeys as they attempt to integrate NOS into everyday lessons. This participatory action research paper reports the challenges and successes encountered by an in-service teacher, Sarah, implementing NOS for the first time throughout four units of a community college biology course (genetics, molecular biology, evolution, and ecology). Through the action research cycles of planning, implementing, and reflecting, Sarah identified areas of challenge and success. This paper reports emergent themes that assisted her in successfully embedding NOS within the science content. Data include weekly lesson plans and pre/post reflective journaling before and after each lesson of this lecture/lab combination class that met twice a week. This course was taught back to back semesters, and this study is based on the results of a year-long process. Developing pedagogical content knowledge (PCK) for NOS involves coming to understand the overlaps and connections between NOS, other science subject matter, pedagogical strategies, and student learning. Sarah found that through action research she was able to grow and assimilate her understanding of NOS within the biology content she was teaching. A shift in orientation toward teaching products of science to teaching science processes was a necessary shift for NOS pedagogical success. This process enabled Sarah's development of PCK for NOS. As a practical example of putting research-based instructional recommendations into practice, this study may be very useful for other teachers who are learning to teach NOS.

  5. Experiences of Judeo-Christian Students in Undergraduate Biology

    Science.gov (United States)

    Barnes, M. Elizabeth; Truong, Jasmine M.; Brownell, Sara E.

    2017-01-01

    A major research thrust in science, technology, engineering, and mathematics (STEM) education is focused on how to retain students as STEM majors. The accumulation of seemingly insignificant negative experiences in STEM classes can, over time, lead STEM students to have a low sense of belonging in their disciplines, and this can lead to lower retention. In this paper, we explore how Judeo-Christian students in biology have experiences related to their religious identities that could impact their retention in biology. In 28 interviews with Judeo-Christian students taking undergraduate biology classes, students reported a religious identity that can conflict with the secular culture and content of biology. Some students felt that, because they are religious, they fall within a minority in their classes and would not be seen as credible within the biology community. Students reported adverse experiences when instructors had negative dispositions toward religion and when instructors were rigid in their instructional practices when teaching evolution. These data suggest that this may be a population susceptible to experiences of cultural conflict between their religious identities and their STEM identities, which could have implications for retention. We argue that more research should explore how Judeo-Christian students’ experiences in biology classes influence their sense of belonging and retention. PMID:28232586

  6. Biological science in conservation

    Science.gov (United States)

    David M. Johns

    2000-01-01

    Large-scale wildlands reserve systems offer one of the best hopes for slowing, if not reversing, the loss of biodiversity and wilderness. Establishing such reserves requires both sound biology and effective advocacy. Attempts by The Wildlands Project and its cooperators to meld science and advocacy in the service of conservation is working, but is not without some...

  7. Positioning Genomics in Biology Education: Content Mapping of Undergraduate Biology Textbooks

    Directory of Open Access Journals (Sweden)

    Naomi L. B. Wernick

    2014-07-01

    Full Text Available Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.

  8. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  9. The relevance of basic sciences in undergraduate medical education.

    Science.gov (United States)

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  10. Monitoring undergraduate student needs and activities at Experimental Biology: APS pilot survey.

    Science.gov (United States)

    Nichols, Nicole L; Ilatovskaya, Daria V; Matyas, Marsha L

    2017-06-01

    Life science professional societies play important roles for undergraduates in their fields and increasingly offer membership, fellowships, and awards for undergraduate students. However, the overall impacts of society-student interactions have not been well studied. Here, we sought to develop and test a pilot survey of undergraduate students to determine how they got involved in research and in presenting at the Experimental Biology (EB) meeting, what they gained from the scientific and career development sessions at the meeting, and how the American Physiological Society (APS) can best support and engage undergraduate students. This survey was administered in 2014 and 2015 to undergraduate students who submitted physiology abstracts for and attended EB. More than 150 students responded (38% response rate). Respondents were demographically representative of undergraduate students majoring in life sciences in the United States. Most students (72%) became involved in research through a summer research program or college course. They attended a variety of EB sessions, including poster sessions and symposia, and found them useful. Undergraduate students interacted with established researchers at multiple venues. Students recommended that APS provide more research fellowships (25%) and keep in touch with students via both e-mail (46%) and social media (37%). Our results indicate that APS' EB undergraduate activities are valued by students and are effective in helping them have a positive scientific meeting experience. These results also guided the development of a more streamlined survey for use in future years. Copyright © 2017 the American Physiological Society.

  11. Undergraduate Origins of Recent Science and Engineering Doctorate Recipients.

    Science.gov (United States)

    Hill, Susan T.; And Others

    Because undergraduate education is the foundation for graduate studies, it is important to know where our Nation's science and engineering (S&E) doctorate recipients are receiving their undergraduate training. Specifically, this report addresses the following broad questions: (1) What are the undergraduate origins of S&E doctorate holders? (2)…

  12. Integration of Bioinformatics into an Undergraduate Biology Curriculum and the Impact on Development of Mathematical Skills

    Science.gov (United States)

    Wightman, Bruce; Hark, Amy T.

    2012-01-01

    The development of fields such as bioinformatics and genomics has created new challenges and opportunities for undergraduate biology curricula. Students preparing for careers in science, technology, and medicine need more intensive study of bioinformatics and more sophisticated training in the mathematics on which this field is based. In this…

  13. A Portable Bioinformatics Course for Upper-Division Undergraduate Curriculum in Sciences

    Science.gov (United States)

    Floraino, Wely B.

    2008-01-01

    This article discusses the challenges that bioinformatics education is facing and describes a bioinformatics course that is successfully taught at the California State Polytechnic University, Pomona, to the fourth year undergraduate students in biological sciences, chemistry, and computer science. Information on lecture and computer practice…

  14. Analysis of undergraduate cell biology contents in Brazilian public universities.

    Science.gov (United States)

    Mermelstein, Claudia; Costa, Manoel Luis

    2017-04-01

    The enormous amount of information available in cell biology has created a challenge in selecting the core concepts we should be teaching our undergraduates. One way to define a set of essential core ideas in cell biology is to analyze what a specific cell biology community is teaching their students. Our main objective was to analyze the cell biology content currently being taught in Brazilian universities. We collected the syllabi of cell biology courses from public universities in Brazil and analyzed the frequency of cell biology topics in each course. We also compared the Brazilian data with the contents of a major cell biology textbook. Our analysis showed that while some cell biology topics such as plasma membrane and cytoskeleton was present in ∼100% of the Brazilian curricula analyzed others such as cell signaling and cell differentiation were present in only ∼35%. The average cell biology content taught in the Brazilian universities is quite different from what is presented in the textbook. We discuss several possible explanations for these observations. We also suggest a list with essential cell biology topics for any biological or biomedical undergraduate course. The comparative discussion of cell biology topics presented here could be valuable in other educational contexts. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  15. BURECS: An Interdisciplinary Undergraduate Climate Science Program

    Science.gov (United States)

    Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.

    2017-12-01

    The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.

  16. Systems biology in animal sciences

    NARCIS (Netherlands)

    Woelders, H.; Pas, te M.F.W.; Bannink, A.; Veerkamp, R.F.; Smits, M.A.

    2011-01-01

    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes

  17. Development and Evaluation of an Undergraduate Science Communication Module

    Science.gov (United States)

    Yeoman, Kay H.; James, Helen A.; Bowater, Laura

    2011-01-01

    This paper describes the design and evaluation of an undergraduate final year science communication module for the Science Faculty at the University of East Anglia. The module focuses specifically on science communication and aims to bring an understanding of how science is disseminated to the public. Students on the module are made aware of the…

  18. Crossing Boundaries in Undergraduate Biology Education

    Science.gov (United States)

    Vanderklein, Dirk; Munakata, Mika; McManus, Jason

    2016-01-01

    In an effort to make mathematics relevant to biology students, the authors developed two modules that sought to integrate mathematics and ecology instruction to differing degrees. The modules were developed by a team of biology and mathematics educators and were implemented in an ecology course using three different instructional methods for three…

  19. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    Science.gov (United States)

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  20. A Pharmacology-Based Enrichment Program for Undergraduates Promotes Interest in Science

    Science.gov (United States)

    Godin, Elizabeth A.; Wormington, Stephanie V.; Perez, Tony; Barger, Michael M.; Snyder, Kate E.; Richman, Laura Smart; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa

    2015-01-01

    There is a strong need to increase the number of undergraduate students who pursue careers in science to provide the “fuel” that will power a science and technology–driven U.S. economy. Prior research suggests that both evidence-based teaching methods and early undergraduate research experiences may help to increase retention rates in the sciences. In this study, we examined the effect of a program that included 1) a Summer enrichment 2-wk minicourse and 2) an authentic Fall research course, both of which were designed specifically to support students' science motivation. Undergraduates who participated in the pharmacology-based enrichment program significantly improved their knowledge of basic biology and chemistry concepts; reported high levels of science motivation; and were likely to major in a biological, chemical, or biomedical field. Additionally, program participants who decided to major in biology or chemistry were significantly more likely to choose a pharmacology concentration than those majoring in biology or chemistry who did not participate in the enrichment program. Thus, by supporting students' science motivation, we can increase the number of students who are interested in science and science careers. PMID:26538389

  1. Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-01-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…

  2. A Social Capital Perspective on the Mentoring of Undergraduate Life Science Researchers: An Empirical Study of Undergraduate-Postgraduate-Faculty Triads.

    Science.gov (United States)

    Aikens, Melissa L; Sadselia, Sona; Watkins, Keiana; Evans, Mara; Eby, Lillian T; Dolan, Erin L

    2016-01-01

    Undergraduate researchers at research universities are often mentored by graduate students or postdoctoral researchers (referred to collectively as "postgraduates") and faculty, creating a mentoring triad structure. Triads differ based on whether the undergraduate, postgraduate, and faculty member interact with one another about the undergraduate's research. Using a social capital theory framework, we hypothesized that different triad structures provide undergraduates with varying resources (e.g., information, advice, psychosocial support) from the postgraduates and/or faculty, which would affect the undergraduates' research outcomes. To test this, we collected data from a national sample of undergraduate life science researchers about their mentoring triad structure and a range of outcomes associated with research experiences, such as perceived gains in their abilities to think and work like scientists, science identity, and intentions to enroll in a PhD program. Undergraduates mentored by postgraduates alone reported positive outcomes, indicating that postgraduates can be effective mentors. However, undergraduates who interacted directly with faculty realized greater outcomes, suggesting that faculty interaction is important for undergraduates to realize the full benefits of research. The "closed triad," in which undergraduates, postgraduates, and faculty all interact directly, appeared to be uniquely beneficial; these undergraduates reported the highest gains in thinking and working like a scientist. © 2016 M. L. Aikens et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Advances in Biological Science.

    Science.gov (United States)

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  4. On the Edge of Mathematics and Biology Integration: Improving Quantitative Skills in Undergraduate Biology Education

    Science.gov (United States)

    Feser, Jason; Vasaly, Helen; Herrera, Jose

    2013-01-01

    In this paper, the authors describe how two institutions are helping their undergraduate biology students build quantitative competencies. Incorporation of quantitative skills and reasoning in biology are framed through a discussion of two cases that both concern introductory biology courses, but differ in the complexity of the mathematics and the…

  5. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  6. Field Research in the Teaching of Undergraduate Soil Science

    Science.gov (United States)

    Brevik, Eric C.; Senturklu, Songul; Landblom, Douglas

    2015-04-01

    Several studies have demonstrated that undergraduate students benefit from research experiences. Benefits of undergraduate research include 1) personal and intellectual development, 2) more and closer contact with faculty, 3) the use of active learning techniques, 4) creation of high expectations, 5) development of creative and problem-solving skills, 6) greater independence and intrinsic motivation to learn, and 7) exposure to practical skills. The scientific discipline also benefits, as studies have shown that undergraduates who engage in research experiences are more likely to remain science majors and finish their degree program (Lopatto, 2007). Research experiences come as close as possible to allowing undergraduates to experience what it is like to be an academic or research member of their profession working to advance their discipline. Soils form in the field, therefore, field experiences are very important in developing a complete and holistic understanding of soil science. Combining undergraduate research with field experiences can provide extremely beneficial outcomes to the undergraduate student, including increased understanding of and appreciation for detailed descriptions and data analysis as well as an enhanced ability to see how various parts of their undergraduate education come together to understand a complex problem. The experiences of the authors in working with undergraduate students on field-based research projects will be discussed, along with examples of some of the undergraduate research projects that have been undertaken. In addition, student impressions of their research experiences will be presented. Reference Lopatto, D. 2007. Undergraduate research experiences support science career decisions and active learning. CBE -- Life Sciences Education 6:297-306.

  7. Impact of Interdisciplinary Undergraduate Research in Mathematics and Biology on the Development of a New Course Integrating Five STEM Disciplines

    OpenAIRE

    Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu

    2010-01-01

    Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research proj...

  8. Preparing minority undergraduate students for successful science careers.

    Science.gov (United States)

    Akundi, Murty

    2008-03-01

    Xavier University of Louisiana is well known for being number one in graduating the most minority students in physical and biological sciences. The reason for this success is built on the concept of Standards with Sympathy in the Sciences (Triple S). This is an outgrowth of over twenty years of planning and development by the Xavier science faculty to devise a program for preparing and retaining students in the sciences and engineering. Xavier has been successfully conducting for over ten years, Summer Science Academy (SSA) for middle and high school students; Science Technology, Engineering and Mathematics (STEM) Scholars and Howard Hughes Biomedical programs for in-coming freshmen. Recently, through a grant from NSF, we have developed the Experiential Problem-solving and Analytical Reasoning (EPsAR) summer bridge program for in-coming freshmen who were given conditional admission to the university (i.e., those students who scored below the acceptable range for placement into degree mathematics courses). In this program, EPsAR participants will be engaged in problem-solving and critical thinking activities for eight hours per day, five days per week, for six weeks. Additionally, an interdisciplinary approach is taken to convey the mathematical skills learned to relate to physics, chemistry, biology, and computer science. Sixty-six students have participated in the last two years in the EPsAR program. During the first year 23 of 28 students successfully bi-passed the algebra review course and were placed into a degree credit course in mathematics. In the second year, thirty-one (31) of the 38 were advanced to a higher-level mathematics course. Twenty-three (23) out of 38 went on to degree credit math course. To retain students in the sciences peer tutoring in all the science disciplines are made available to students throughout the day for 5 days per week. Faculty and students are available to give guidance to the needed students. The University has established a

  9. Infusing Quantitative Approaches throughout the Biological Sciences Curriculum

    Science.gov (United States)

    Thompson, Katerina V.; Cooke, Todd J.; Fagan, William F.; Gulick, Denny; Levy, Doron; Nelson, Kären C.; Redish, Edward F.; Smith, Robert F.; Presson, Joelle

    2013-01-01

    A major curriculum redesign effort at the University of Maryland is infusing all levels of our undergraduate biological sciences curriculum with increased emphasis on interdisciplinary connections and quantitative approaches. The curriculum development efforts have largely been guided by recommendations in the National Research Council's "Bio…

  10. Learning physical biology via modeling/simulation: An interdisciplinary undergraduate course

    Science.gov (United States)

    Nelson, Philip

    Undergraduate life-science curricula remain largely rooted in descriptive approaches, even though much current research involves quantitative modeling. Not only does our pedagogy not reflect current reality; it also reinforces the silos that prevent students from connecting disciplines. I'll describe a course that has attracted undergraduates in several science and engineering majors. Students acquire research skills that are often not addressed in traditional undergraduate courses, using a general-purpose platform like MATLAB or Python. The combination of experimental data, modeling, and physical reasoning used in this course represents an entirely new mode of ''how to learn'' for most of the students. These basic skills are presented in the context of case studies from cell biology, specifically control theory and its applications to synthetic biology. Documented outcomes include student reports of improved ability to gain research positions as undergraduates, and greater effectiveness in such positions, as well as students enrolling in more challenging later courses than they would otherwise have chosen. Work supported by NSF under Grants EF 0928048 and DMR 0832802.

  11. A Transformative Model for Undergraduate Quantitative Biology Education

    OpenAIRE

    Usher, David C.; Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.

    2010-01-01

    The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematic...

  12. The essence of student visual-spatial literacy and higher order thinking skills in undergraduate biology.

    Science.gov (United States)

    Milner-Bolotin, Marina; Nashon, Samson Madera

    2012-02-01

    Science, engineering and mathematics-related disciplines have relied heavily on a researcher's ability to visualize phenomena under study and being able to link and superimpose various abstract and concrete representations including visual, spatial, and temporal. The spatial representations are especially important in all branches of biology (in developmental biology time becomes an important dimension), where 3D and often 4D representations are crucial for understanding the phenomena. By the time biology students get to undergraduate education, they are supposed to have acquired visual-spatial thinking skills, yet it has been documented that very few undergraduates and a small percentage of graduate students have had a chance to develop these skills to a sufficient degree. The current paper discusses the literature that highlights the essence of visual-spatial thinking and the development of visual-spatial literacy, considers the application of the visual-spatial thinking to biology education, and proposes how modern technology can help to promote visual-spatial literacy and higher order thinking among undergraduate students of biology.

  13. Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary Build-a-Genome course.

    Science.gov (United States)

    Dymond, Jessica S; Scheifele, Lisa Z; Richardson, Sarah; Lee, Pablo; Chandrasegaran, Srinivasan; Bader, Joel S; Boeke, Jef D

    2009-01-01

    A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into approximately 750-bp fragments. Once trained in assembly of such DNA "building blocks" by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular "lab meeting" sessions help prepare them for future roles in laboratory science.

  14. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  15. Indian Institute of Science-Undergraduate Programme: Admissions ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Indian Institute of Science - Undergraduate Programme: Admissions for 2015. Information and Announcements Volume 20 Issue 2 February 2015 pp 186-186. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  17. Connecting undergraduate science education with the needs of today's graduates.

    Science.gov (United States)

    Callier, Viviane; Singiser, Richard H; Vanderford, Nathan L

    2014-01-01

    Undergraduate science programs are not providing graduates with the knowledgebase and skills they need to be successful on today's job market. Curricular changes relevant to today's marketplace and more opportunities for internships and work experience during students' secondary education would facilitate a smoother transition to the working world and help employers find graduates that possess both the hard and soft skills needed in the workplace. In this article, we discuss these issues and offer solutions that would generate more marketplace-ready undergraduates.

  18. A Transformative Model for Undergraduate Quantitative Biology Education

    Science.gov (United States)

    Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.

    2010-01-01

    The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions. PMID:20810949

  19. A transformative model for undergraduate quantitative biology education.

    Science.gov (United States)

    Usher, David C; Driscoll, Tobin A; Dhurjati, Prasad; Pelesko, John A; Rossi, Louis F; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B

    2010-01-01

    The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions.

  20. 76 FR 72724 - Advisory Committee For Biological Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-25

    ... Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230. Type of Meeting: Open. Contact Person: Chuck... research that is the basis for the 21st century bio-economy and the undergraduate and graduate biology...

  1. Assessing an effective undergraduate module teaching applied bioinformatics to biology students.

    Science.gov (United States)

    Madlung, Andreas

    2018-01-01

    Applied bioinformatics skills are becoming ever more indispensable for biologists, yet incorporation of these skills into the undergraduate biology curriculum is lagging behind, in part due to a lack of instructors willing and able to teach basic bioinformatics in classes that don't specifically focus on quantitative skill development, such as statistics or computer sciences. To help undergraduate course instructors who themselves did not learn bioinformatics as part of their own education and are hesitant to plunge into teaching big data analysis, a module was developed that is written in plain-enough language, using publicly available computing tools and data, to allow novice instructors to teach next-generation sequence analysis to upper-level undergraduate students. To determine if the module allowed students to develop a better understanding of and appreciation for applied bioinformatics, various tools were developed and employed to assess the impact of the module. This article describes both the module and its assessment. Students found the activity valuable for their education and, in focus group discussions, emphasized that they saw a need for more and earlier instruction of big data analysis as part of the undergraduate biology curriculum.

  2. Women, Men, and Academic Performance in Science and Engineering: The Gender Difference in Undergraduate Grade Point Averages

    Science.gov (United States)

    Sonnert, Gerhard; Fox, Mary Frank

    2012-01-01

    Using longitudinal and multi-institutional data, this article takes an innovative approach in its analyses of gender differences in grade point averages (GPA) among undergraduate students in biology, the physical sciences, and engineering over a 16-year period. Assessed are hypotheses about (a) the gender ecology of science/engineering and (b) the…

  3. Desegregating undergraduate mathematics and biology--interdisciplinary instruction with emphasis on ongoing biomedical research.

    Science.gov (United States)

    Robeva, Raina

    2009-01-01

    The remarkable advances in the field of biology in the last decade, specifically in the areas of biochemistry, genetics, genomics, proteomics, and systems biology, have demonstrated how critically important mathematical models and methods are in addressing questions of vital importance for these disciplines. There is little doubt that the need for utilizing and developing mathematical methods for biology research will only grow in the future. The rapidly increasing demand for scientists with appropriate interdisciplinary skills and knowledge, however, is not being reflected in the way undergraduate mathematics and biology courses are structured and taught in most colleges and universities nationwide. While a number of institutions have stepped forward and addressed this need by creating and offering interdisciplinary courses at the juncture of mathematics and biology, there are still many others at which there is little, if any, interdisciplinary interaction between the curricula. This chapter describes an interdisciplinary course and a textbook in mathematical biology developed collaboratively by faculty from Sweet Briar College and the University of Virginia School of Medicine. The course and textbook are designed to provide a bridge between the mathematical and biological sciences at the lower undergraduate level. The course is developed for and is being taught in a liberal arts setting at Sweet Briar College, Virginia, but some of the advanced modules are used in a course at the University of Virginia for advanced undergraduate and beginning graduate students. The individual modules are relatively independent and can be used as stand-alone projects in conventional mathematics and biology courses. Except for the introductory material, the course and textbook topics are based on current biomedical research.

  4. Toward a Conceptual Framework for Measuring the Effectiveness of Course-Based Undergraduate Research Experiences in Undergraduate Biology

    Science.gov (United States)

    Brownell, Sara E.; Kloser, Matthew J.

    2015-01-01

    Recent calls for reform have advocated for extensive changes to undergraduate science lab experiences, namely providing more authentic research experiences for students. Course-based Undergraduate Research Experiences (CUREs) have attempted to eschew the limitations of traditional "cookbook" laboratory exercises and have received…

  5. A Transformative Model for Undergraduate Quantitative Biology Education

    Science.gov (United States)

    Usher, David C.; Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.

    2010-01-01

    The "BIO2010" report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3)…

  6. The effect of graphic organizers on students' attitudes and academic performance in undergraduate general biology

    Science.gov (United States)

    Cleveland, Lacy

    High attrition among undergraduate Science Technology Engineering and Mathematics (STEM) majors has led national and business leaders in the United States to call for both research and educational reform within the collegiate STEM classrooms. Included among suggestions for reform are ideas to improve retention of first-year students and to improve critical thinking and depth of knowledge, instead of covering large quantities of materials. Past research on graphic organizers suggest these tools assist students in learning information and facilitate conceptual and critical thinking. Despite their widespread use in high school science departments, collegiate humanities departments, and even medical schools, their use is considerably less prevalent in the undergraduate biology classroom. In addition to their lack of use, little research has been conducted on their academic benefits in the collegiate classroom. Based on national calls for improving retention among undergraduate STEM majors and research suggesting that academic success during an individual first major's related course highly determine if that individual will continue on in their intended major, the researcher of this dissertation chose to conduct research on an introductory general biology class. Using both quantitative and qualitative methods, the research in this dissertation examines the effectiveness of graphic organizers in promoting academic success and also examines their influence on student attitudes. This research is grounded in the theories of constructivism and cognitive load theory. Constructivism suggests that individuals must build their knowledge from their personal experiences, while the cognitive load theory recognizes the limited nature of one's working memory and suggests that instructional practices minimize cognitive overload. The results of this dissertation suggest that the use of graphic organizers in an undergraduate general biology classroom can increase students' academic

  7. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  8. Matrices to Revise Crop, Soil, and Environmental Sciences Undergraduate Curricula

    Science.gov (United States)

    Savin, Mary C.; Longer, David; Miller, David M.

    2005-01-01

    Undergraduate curricula for natural resource and agronomic programs have been introduced and revised during the past several decades with a desire to stay current with emerging issues and technologies relevant to constituents. For the past decade, the Department of Crop, Soil, and Environmental Sciences (CSES) faculty at the University of Arkansas…

  9. Teaching Basic Probability in Undergraduate Statistics or Management Science Courses

    Science.gov (United States)

    Naidu, Jaideep T.; Sanford, John F.

    2017-01-01

    Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…

  10. Cultivating Citizen Scientists in the Undergraduate Science Classroom

    Science.gov (United States)

    Egger, A. E.

    2007-12-01

    Several studies indicate a strong correlation between the number of college science courses and science literacy. It is not surprising, then, that the majority of participants in citizen science projects are college graduates who enrolled in at least two science courses. If one goal of citizen science projects is to increase civic science literacy, research suggests that most are preaching to the choir. Attracting a wider audience to citizen science is, therefore, a key challenge. One way to address this challenge is to attract students to enroll and succeed in science courses in college, even if they do not pursue a major in the science, technology, engineering, and mathematics (STEM) disciplines. In fact, only 20% of students receive a degree in STEM, yet virtually all undergraduates are required to take at least one science course. Introductory science courses are therefore critical to cultivating citizen scientists, as they include a large proportion of non- STEM majors. Indeed, a major thrust of recent undergraduate STEM educational reform has been the promotion of 'science for all'. The science for all concept goes beyond recruiting students into the STEM disciplines to promoting a level of scientific literacy necessary to make informed decisions. A clear implication of this inclusive attitude is the need to redesign introductory science courses to make them accessible and explicitly related to scientific literacy. This does not mean dumbing down courses; on the contrary, it means engaging students in real scientific investigations and incorporating explicit teaching about the process of science, thus fostering a lifelong appreciation for (and, hopefully, participation in) science. Unfortunately, many students enter college with minimal understanding of the process of science. And when they arrive in their introductory classes, science is presented to them as a system of facts to be memorized - comparable to memorizing a poem in a foreign language without

  11. Undergraduate Research in Quantum Information Science

    Science.gov (United States)

    Lyons, David W.

    2017-01-01

    Quantum Information Science (QIS) is an interdisciplinary field involving mathematics, computer science, and physics. Appealing aspects include an abundance of accessible open problems, active interest and support from government and industry, and an energetic, open, and collaborative international research culture. We describe our student-faculty…

  12. Undergraduate students' earth science learning: relationships among conceptions, approaches, and learning self-efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-06-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to explore the relationships among undergraduates' conceptions of, approaches to, and self-efficacy for learning earth science by adopting the structural equation modeling technique. A total of 268 Taiwanese undergraduates (144 females) participated in this study. Three instruments were modified to assess the students' conceptions of, approaches to, and self-efficacy for learning earth science. The results indicated that students' conceptions of learning made a significant contribution to their approaches to learning, which were consequently correlated with their learning self-efficacy. More specifically, students with stronger agreement that learning earth science involves applying the knowledge and skills learned to unknown problems were prone to possess higher confidence in learning earth science. Moreover, students viewing earth science learning as understanding earth science knowledge were more likely to adopt meaningful strategies to learn earth science, and hence expressed a higher sense of self-efficacy. Based on the results, practical implications and suggestions for future research are discussed.

  13. Integration of physics and biology: synergistic undergraduate education for the 21st century.

    Science.gov (United States)

    Woodin, Terry; Vasaly, Helen; McBride, Duncan; White, Gary

    2013-06-01

    This is an exciting time to be a biologist. The advances in our field and the many opportunities to expand our horizons through interaction with other disciplines are intellectually stimulating. This is as true for people tasked with helping the field move forward through support of research and education projects that serve the nation's needs as for those carrying out that research and educating the next generation of biologists. So, it is a pleasure to contribute to this edition of CBE-Life Sciences Education. This column will cover three aspects of the interactions of physics and biology as seen from the viewpoint of four members of the Division of Undergraduate Education of the National Science Foundation. The first section places the material to follow in context. The second reviews some of the many interdisciplinary physics-biology projects we support. The third highlights mechanisms available for supporting new physics-biology undergraduate education projects based on ideas that arise, focusing on those needing and warranting outside support to come to fruition.

  14. Anticipation of Personal Genomics Data Enhances Interest and Learning Environment in Genomics and Molecular Biology Undergraduate Courses.

    Science.gov (United States)

    Weber, K Scott; Jensen, Jamie L; Johnson, Steven M

    2015-01-01

    An important discussion at colleges is centered on determining more effective models for teaching undergraduates. As personalized genomics has become more common, we hypothesized it could be a valuable tool to make science education more hands on, personal, and engaging for college undergraduates. We hypothesized that providing students with personal genome testing kits would enhance the learning experience of students in two undergraduate courses at Brigham Young University: Advanced Molecular Biology and Genomics. These courses have an emphasis on personal genomics the last two weeks of the semester. Students taking these courses were given the option to receive personal genomics kits in 2014, whereas in 2015 they were not. Students sent their personal genomics samples in on their own and received the data after the course ended. We surveyed students in these courses before and after the two-week emphasis on personal genomics to collect data on whether anticipation of obtaining their own personal genomic data impacted undergraduate student learning. We also tested to see if specific personal genomic assignments improved the learning experience by analyzing the data from the undergraduate students who completed both the pre- and post-course surveys. Anticipation of personal genomic data significantly enhanced student interest and the learning environment based on the time students spent researching personal genomic material and their self-reported attitudes compared to those who did not anticipate getting their own data. Personal genomics homework assignments significantly enhanced the undergraduate student interest and learning based on the same criteria and a personal genomics quiz. We found that for the undergraduate students in both molecular biology and genomics courses, incorporation of personal genomic testing can be an effective educational tool in undergraduate science education.

  15. Vision and change in biology undergraduate education: Vision and change from the funding front.

    Science.gov (United States)

    Holm, Bethany; Carter, Virginia Celeste; Woodin, Terry

    2011-01-01

    The purpose of this short article is to (a) briefly summarize the findings of two important recent resources concerning the future of biology in the 21(st) century; one, Vision and Change, A Call to Action [AAAS, 2009. AAAS, Washington, DC], concerned with undergraduate education in biology, the other, A New Biology for the 21st Century [National Research Council, 2009. National Academies Press, Washington, DC], concerned with advances within the discipline itself; (b) urge you, the reader of BAMBED, to review the material on the Vision and Change website [AAAS, 2009. AAAS: Washington, DC] and then to think how you might change things at your own institution and within your courses, and; (c) make readers aware of the programs at the National Science Foundation (NSF) that might support change efforts, as well as refer you to efforts other funding agencies are making to help biology undergraduate education respond to the challenges and opportunities chronicled in these two reports. Although NSF funding opportunities are specifically available to US investigators, the recommendations of the two reports should be of interest to a wide spectrum of international researchers. Copyright © 2011 Wiley Periodicals, Inc.

  16. Ethiopian Journal of Biological Sciences: Journal Sponsorship

    African Journals Online (AJOL)

    Ethiopian Journal of Biological Sciences: Journal Sponsorship. Journal Home > About the Journal > Ethiopian Journal of Biological Sciences: Journal Sponsorship. Log in or Register to get access to full text downloads.

  17. Of responsible research-Exploring the science-society dialogue in undergraduate training within the life sciences.

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-02

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in the scientific agenda. Developing abilities in this regard seems particularly relevant to training in the life sciences, as new developments in this area somehow evoke the involvement of all of us citizens, our engagement to debate and take part in processes of change. The present analysis draws from the implementation of a curricular unit focused on science-society dialogue, an optional course included in the Biochemistry Degree study plan offered at the University of Porto. This curricular unit was designed to be mostly an exploratory activity for the students, enabling them to undertake in-depth study in areas/topics of their specific interest. Mapping topics from students' final papers provided a means of analysis and became a useful tool in the exploratory collaborative construction of the course. We discuss both the relevance and the opportunity of thinking and questioning the science-society dialogue. As part of undergraduate training, this pedagogical practice was deemed successful. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):46-52, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  18. Science Literacy of Undergraduates in the United States

    Science.gov (United States)

    Impey, Chris

    2013-01-01

    Science literacy is a matter of broad concern among scientists, educators, and many policy-makers. National Science Foundation surveys of the general public for biannual Science Indicators series show that respondents on average score less than 2/3 correct on a series of science knowledge questions, and less than half display an understanding of the process of scientific inquiry. Both measures are essentially unchanged over two decades. At the University of Arizona, we have gathered over 11,000 undergraduate student responses to a survey of knowledge and beliefs that is tethered in the NSF survey. This non-science major population demographically represents ten million students nationwide. There is a less than 10% gain in performance in the science knowledge score between the incoming freshmen and seniors who graduate having completed their requirement of three science classes. Belief levels in pseudoscience and supernatural phenomena are disconcertingly high, mostly resistant to college science instruction, and weakly correlated with performance on the science knowledge questions. The Internet is rapidly becoming the primary information source for anyone interested in science so students may not get most of their information from the classroom. Educators and policy makers need to decide what aspects of science knowledge and process are important for adults to know. College science educators have major challenges in better in preparing graduates for participation in a civic society largely driven by science and technology.

  19. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  20. Journal of Undergraduate Research, Volume VIII, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Stiner, K. S.; Graham, S.; Khan, M.; Dilks, J.; Mayer, D.

    2008-01-01

    Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.

  1. Options for Online Undergraduate Courses in Biology at American Colleges and Universities.

    Science.gov (United States)

    Varty, Alison K

    I aimed to document the online undergraduate course supply in biology to evaluate how well biology educators are serving the diverse and growing population of online students. I documented online biology course offerings in the 2015-2016 academic year at 96 American colleges and universities. I quantified differences in variety, extent, and availability of courses offered by different kinds of academic institutions and characterized 149 online biology courses offered. Although there was no relationship between an institution's enrollment size and any measure of its online biology offerings, I found significantly more online biology course options at 2-year public compared with 4-year public and 4-year private schools. Courses offered for nonmajors, including students pursuing healthcare-related degrees, were three times as common as those intended for biology majors, who were more likely to be offered hybrid courses with face-to-face laboratories. These data indicate some deficiencies in online biology course options; options for students majoring in biology are limited at all types of institutions examined with a minority of 4-year institutions having any online options in biology. Significant investment of institutional resources in faculty training and technological support are necessary to develop online biology courses that will benefit a larger student population. © 2016 A. K. Varty. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Undergraduate Computer Science and Engineering Curriculum in India

    OpenAIRE

    Rajaraman, Vaidyeswaran

    1993-01-01

    The undergraduate computer science and engineering degree in India is a professional engineering degree and follows the general structure of other engineering degree programs. It aims to provide a good breadth in basic engineering and 50% of the curriculum in common with all engineering disciplines. The curriculum has a strong electrical engineering bias. At present there is no formal accreditation of engineering programs in India and each university is expected to maintain their own standard...

  3. Effects of a Research-Infused Botanical Curriculum on Undergraduates' Content Knowledge, STEM Competencies, and Attitudes toward Plant Sciences

    Science.gov (United States)

    Ward, Jennifer Rhode; Clarke, H. David; Horton, Jonathan L.

    2014-01-01

    In response to the American Association for the Advancement of Science's Vision and Change in Undergraduate Biology Education initiative, we infused authentic, plant-based research into majors' courses at a public liberal arts university. Faculty members designed a financially sustainable pedagogical approach, utilizing vertically integrated…

  4. Biomaterial science meets computational biology.

    Science.gov (United States)

    Hutmacher, Dietmar W; Little, J Paige; Pettet, Graeme J; Loessner, Daniela

    2015-05-01

    There is a pressing need for a predictive tool capable of revealing a holistic understanding of fundamental elements in the normal and pathological cell physiology of organoids in order to decipher the mechanoresponse of cells. Therefore, the integration of a systems bioengineering approach into a validated mathematical model is necessary to develop a new simulation tool. This tool can only be innovative by combining biomaterials science with computational biology. Systems-level and multi-scale experimental data are incorporated into a single framework, thus representing both single cells and collective cell behaviour. Such a computational platform needs to be validated in order to discover key mechano-biological factors associated with cell-cell and cell-niche interactions.

  5. Examining the Role of Leadership in an Undergraduate Biology Institutional Reform Initiative

    Science.gov (United States)

    Matz, Rebecca L.; Jardeleza, Sarah E.

    2016-01-01

    Undergraduate science, technology, engineering, and mathematics (STEM) education reform continues to be a national priority. We studied a reform process in undergraduate biology at a research-intensive university to explore what leadership issues arose in implementation of the initiative when characterized with a descriptive case study method. The data were drawn from transcripts of meetings that occurred over the first 2 years of the reform process. Two literature-based models of change were used as lenses through which to view the data. We find that easing the burden of an undergraduate education reform initiative on faculty through articulating clear outcomes, developing shared vision across stakeholders on how to achieve those outcomes, providing appropriate reward systems, and ensuring faculty have ample opportunity to influence the initiative all appear to increase the success of reform. The two literature-based models were assessed, and an extended model of change is presented that moves from change in STEM instructional strategies to STEM organizational change strategies. These lessons may be transferable to other institutions engaging in education reform. PMID:27856545

  6. Biological Course-Based Undergraduate Research Experiences: An Examination of an Introductory Level Implementation

    Science.gov (United States)

    Knoth, Kenneth Charles

    Course-based undergraduate research experiences (CUREs) provide authentic research benefits to an entire laboratory course population. CURE experiences are proposed to enhance research skills, critical thinking, productivity, and retention in science. CURE curriculum developers face numerous obstacles, such as the logistics and time commitment involved in bringing a CURE to larger student populations. In addition, an ideal CURE topic requires affordable resources, lab techniques that can be quickly mastered, time for multiple iterations within one semester, and the opportunity to generate new data. This study identifies some of the CURE activities that lead to proposed participant outcomes. Introductory Biology I CURE lab students at Southern Illinois University Edwardsville completed research related to the process of converting storage lipids in microalgae into biodiesel. Data collected from CURE and traditional lab student participants indicate increased CURE student reports of project ownership, scientific self-efficacy, identification as a scientist, and sense of belonging to a science community. Study limitations and unanticipated benefits are discussed.

  7. Core Skills for Effective Science Communication: A Teaching Resource for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2017-01-01

    Science communication is a diverse and transdisciplinary field and is taught most effectively when the skills involved are tailored to specific educational contexts. Few academic resources exist to guide the teaching of communication with non-scientific audiences for an undergraduate science context. This mixed methods study aimed to explore what…

  8. Astrobites: Engaging Undergraduate Science Majors with Current Astrophysical Research

    Science.gov (United States)

    Zevin, Michael; Astrobites

    2017-01-01

    Astrobites is a graduate-student organization that publishes an online astrophysical literature blog (astrobites.com). The purpose of the site is to make current astrophysical research accessible to and exciting for undergraduate physical science majors and astronomy enthusiasts, and the site now hosts an archive of over 1300 posts summarizing recent astrophysical research. In addition, Astrobites presents posts on career guidance, practical 'how-to' articles, conference summaries, and astronomy news. Astrobites has an average of more than 1000 pageviews per day and reaches not only its target audience of undergraduates, but also graduate students and professionals within astronomy, astronomy enthusiasts, and educators. As we enter our seventh year of successful blogging, we share here the most up-to-date summary of our organization, readership, and growth.

  9. Advantages and challenges of using physics curricula as a model for reforming an undergraduate biology course.

    Science.gov (United States)

    Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D

    2013-06-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.

  10. Science and ecological literacy in undergraduate field studies education

    Science.gov (United States)

    Mapp, Kim J.

    There is an ever-increasing number of issues that face our world today; from climate change, water and food scarcity, to pollution and resource extraction. Science and ecology play fundamental roles in these problems, and yet the understanding of these fields is limited in our society (Miller, 2002; McBride, Brewer, Berkowitz, and Borrie, 2013). Across the nation students are finishing their undergraduate degrees and are expected to enter the workforce and society with the skills needed to succeed. The deficit of science and ecological literacy in these students has been recognized and a call for reform begun (D'Avanzo, 2003 and NRC, 2009). This mixed-methods study looked at how a field studies course could fill the gap of science and ecological literacy in undergraduates. Using grounded theory, five key themes were data-derived; definitions, systems thinking, human's role in the environment, impetus for change and transference. These themes where then triangulated for validity and reliability through qualitative and quantitative assessments. A sixth theme was also identified, the learning environment. Due to limited data to support this themes' development and reliability it is discussed in Chapter 5 to provide recommendations for further research. Key findings show that this field studies program influenced students' science and ecological literacy through educational theory and practice.

  11. International Journal of Biological and Chemical Sciences

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG). It is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, biochemistry, biophysics, molecular biology, physiology, pathology, health sciences, ...

  12. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    Author Guidelines. The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG), and is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, molecular biology, physiology, pathology, health sciences, ...

  13. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    Science.gov (United States)

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  14. Undergraduate space science program at Alabama A&M University

    Science.gov (United States)

    Lal, R.; Tan, A.; Lyatsky, W.

    A new undergraduate Physics Program with Space Science as the major concentration area has been initiated at Alabama A&M University (AAMU) in 2001. This program is funded by NASAÆs OSS and OEOP Offices under the NRA 00-OSS-02 Minority University Education and Research Partnership Initiative in Space Science-2000. The partner institutions are NASA Marshall Space Flight Center (MSFC) and Goddard Space Flight Center (GSFC), Lawrence Livermore National Laboratory (LLNL) and The University of Alabama in Huntsville (UAH). A primary objective of this Program is to train undergraduate and graduate minority (principally African-American) students in the extremely underrepresented areas of Space Science and to prepare them for eventual teaching and/or research careers in this increasingly important field. The best way to achieve this is to recruit students early from high school, and not wait until they have already selected their specialty in college. Also, a student with a BS degree in Physics with specialization in Space Science will have a decisive advantage in pursuing graduate studies in Space Science than the others. The BS degree requires a student to take 30 credit hours of Physics courses and an additional 18 hours in the chosen area of concentration. Several basic traditional courses in Lower Atmosphere, Aeronomy, the Solar System and Orbital Mechanics have been developed. Additional courses in Plasma Physics, Solar Physics and Astronomy will be taught by NASA-MSFC scientists and UAH faculty. A parallel objective is to expose the student to research experience early in their ca- reers. Each student is required to complete a one semester Undergraduate Research Opportunity Project (UROP) on a relevant topic from Space Science. The students will be guided in research by AAMU and UAH faculty and MSFC scientists. Each student will be required to write a term paper and make an oral presentation before a committee of advisors. This experience will enhance the Space

  15. Biology and the space sciences.

    Science.gov (United States)

    Klein, H. P.

    The intellectual content in the field of exobiology goes far beyond attempts to detect life on another planet. Thus, while exobiology has historically been narrowly viewed as the search for extraterrestrial life, in point of fact, the field today is better described as an interdisciplinary science devoted to the study of evolutionary biology. As such, it encompasses the origins and history of the major elements required for life; their processing in the interstellar medium and in protostellar systems; their incorporation into organic compounds on the primitive Earth and on other celestial objects; the interactions of an evolving planet with the evolution of complex organic compounds; the conditions under which chemical evolution resulted in replicating molecules; and the subsequent interactions between an evolving biota and further planetary evolution.

  16. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  17. Ethiopian Journal of Biological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. The Ethiopian Journal of Biological Sciences publishes scholarly featured articels, short communications and review articles in the various basic and applied biological disciplines to biologists and other workers in related fields of study.

  18. Science Academies' Refresher Course on Experimental Biology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Science Academies' Refresher Course on Experimental Biology: Orthodox to Modern. Information and Announcements Volume 21 Issue 9 September 2016 pp 858-858 ...

  19. The Polaris Project: Undergraduate Research Catalyzing Advances in Arctic Science

    Science.gov (United States)

    Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Bunn, A. G.; Frey, K. E.

    2017-12-01

    With guidance and sufficient resources, undergraduates can drive the exploration of new research directions, lead high impact scientific products, and effectively communicate the value of science to the public. As mentors, we must recognize the strong contribution undergraduates make to the advancement of scientific understanding and their unique ability and desire to be transdisciplinary and to translate ideas into action. Our job is to be sure students have the resources and tools to successfully explore questions that they care about, not to provide or lead them towards answers we already have. The central goal of the Polaris Project is to advance understanding of climate change in the Arctic through an integrated research, training, and outreach program that has at its heart a research expedition for undergraduates to a remote field station in the Arctic. Our integrative approach to training provides undergraduates with strong intellectual development and they bring fresh perspectives, creativity, and a unique willingness to take risks on new ideas that have an energizing effect on research and outreach. Since the projects inception in summer 2008, we have had >90 undergraduates participate in high-impact field expeditions and outreach activities. Over the years, we have also been fortunate enough to attract an ethnically, racially, and culturally diverse group of students, including students from Puerto Rico, Hispanic-, African- and Native-Americans, members of the LGBT community, and first-generation college students. Most of these students have since pursued graduate degrees in ecology, and many have received NSF fellowships and Fulbright scholarships. One of our major goals is to increase the diversity of the scientific community, and we have been successful in our short-term goal of recruiting and retaining a diverse group of students. The goal of this presentation is to provide a description of the mentoring model at the heart of the Polaris Project

  20. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Determination of Rate Constants for Ouabain Inhibition of Adenosine Triphosphatase: An Undergraduate Biological Chemistry Laboratory Experiment

    Science.gov (United States)

    Sall, Eri; And Others

    1978-01-01

    Describes an undergraduate biological chemistry laboratory experiment which provides students with an example of pseudo-first-order kinetics with the cardiac glycoside inhibition of mammalism sodium and potassium transport. (SL)

  2. A flexible e-learning resource promoting the critical reading of scientific papers for science undergraduates.

    Science.gov (United States)

    Letchford, Julie; Corradi, Hazel; Day, Trevor

    2017-11-01

    An important aim of undergraduate science education is to develop student skills in reading and evaluating research papers. We have designed, developed, and implemented an on-line interactive resource entitled "Evaluating Scientific Research literature" (ESRL) aimed at students from the first 2 years of the undergraduate program. In this article, we describe the resource, then use student data collected from questionnaire surveys to evaluate the resource within 2 years of its launch. Our results add to those reported previously and indicate that ESRL can enable students to start evaluating research articles when used during their undergraduate program. We conclude maximal learning is likely to occur when the resource can be embedded in the curriculum such that students have a clearly articulated context for the resource's activities, can see their relevance in relation to assessed assignments and can be encouraged to think deeply about the activities in conversation with one another and/or with staff. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):483-490, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  3. Can a tablet device alter undergraduate science students' study behavior and use of technology?

    Science.gov (United States)

    Morris, Neil P; Ramsay, Luke; Chauhan, Vikesh

    2012-06-01

    This article reports findings from a study investigating undergraduate biological sciences students' use of technology and computer devices for learning and the effect of providing students with a tablet device. A controlled study was conducted to collect quantitative and qualitative data on the impact of a tablet device on students' use of devices and technology for learning. Overall, we found that students made extensive use of the tablet device for learning, using it in preference to laptop computers to retrieve information, record lectures, and access learning resources. In line with other studies, we found that undergraduate students only use familiar Web 2.0 technologies and that the tablet device did not alter this behavior for the majority of tools. We conclude that undergraduate science students can make extensive use of a tablet device to enhance their learning opportunities without institutions changing their teaching methods or computer systems, but that institutional intervention may be needed to drive changes in student behavior toward the use of novel Web 2.0 technologies.

  4. Options for Online Undergraduate Courses in Biology at American Colleges and Universities

    Science.gov (United States)

    Varty, Alison K.

    2016-01-01

    I aimed to document the online undergraduate course supply in biology to evaluate how well biology educators are serving the diverse and growing population of online students. I documented online biology course offerings in the 2015-2016 academic year at 96 American colleges and universities. I quantified differences in variety, extent, and…

  5. Six Classroom Exercises to Teach Natural Selection to Undergraduate Biology Students

    Science.gov (United States)

    Kalinowski, Steven T.; Leonard, Mary J.; Andrews, Tessa M.; Litt, Andrea R.

    2013-01-01

    Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural…

  6. Central Dog-ma Disease Detectives: A Molecular Biology Inquiry Activity for Undergraduates

    Science.gov (United States)

    Quan, T. K.; Yuh, P.; Black, F.

    2010-12-01

    The Minority Access to Research Careers (MARC) and Minority Biomedical Research Support (MBRS) are programs at the University of California at Santa Cruz designed to support minority undergraduate students majoring in the sciences. Each summer MARC/MBRS sponsors a Summer Institute that involves week long "rotations" with different faculty mentors. In 2008, the Center for Adaptive Optics (CfAO) Professional Development Program (PDP) was responsible for overseeing one week of the Summer Institute, and designed it to be a Biomedical Short Course. As part of this short course, we designed a four-hour activity in which students collected their own data and explored relationships between the basic biomolecules DNA, RNA, and protein. The goal was to have the students use experimental data to support their explanation of the "Central Dogma" of molecular biology. Here we describe details of our activity and provide a post-teaching reflection on its success.

  7. [The undergraduate program in forensic science: a national challenge].

    Science.gov (United States)

    García Castillo, Zoraida; Graue Wiechers, Enrique; Durante Montiel, Irene; Herrera Saint Leu, Patricia

    2014-01-01

    The challenge in achieving an ideal state of justice is that each "proof" has the highest degree of reliability. This is the main responsibility of the forensic scientist. Up to now, criminal investigations in Mexico have been supported by forensic work from a wide variety of disciplinary backgrounds that give testimony in a particular area, even though they may have become forensic witnesses in a complementary and experiential manner. In January 2013, the Universidad Nacional Autónoma de México (UNAM) approved the "Forensic Science" undergraduate program that, in collaboration with various academic entities and government institutions, will develop forensic scientists trained in science, law, and criminology. This is focused on contributing to the national demand that the justice system has more elements to procure and administer justice in dealing with crime.

  8. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    Science.gov (United States)

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  9. Science Academies' Refresher Course on Experimental Biology ...

    Indian Academy of Sciences (India)

    IAS Admin

    2012-10-28

    Oct 28, 2012 ... A Refresher Course in Experimental Biology for college and university teachers will be organized at the. Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata at. Mohanpur, Nadia, West Bengal during 19–31 December 2012. The Course will consist of stimulating ...

  10. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  11. Development and evaluation of an active instructional framework for undergraduate biology education

    Science.gov (United States)

    Lysne, Steven John

    The practice of science education in American colleges and universities is changing and the role of faculty is changing as well. There is momentum in higher education to transform our instruction and do a better job at supporting more students' success in science and engineering programs. New teaching approaches are transforming undergraduate science instruction and new research demonstrates that these new approaches are more engaging for students, result in greater achievement, and create more positive attitudes toward science careers. Additionally, teaching scholars have described a paradigm shift toward placing the burden of content coverage on students which allows more time for in-class activities such as discussion and problem solving. Teaching faculty have been asked to redesign their courses and rebrand themselves as facilitators of student learning, rather than purveyors of information, to improve student engagement, achievement, and attitudes. This dissertation is a critical evaluation of both the assumption that active learning improves student achievement and knowledge retention and my own assumptions regarding science education research and my students' resiliency. This dissertation is a collection of research articles, published or in preparation, presenting the chronological development (Chapters 2 and 3) and evaluation (Chapters 4 and 5) of an active instructional model for undergraduate biology instruction. Chapters 1 and 6.provide a broad introduction and summary, respectively. Chapter 2 is an exploration of student engagement through interviews with a variety of students. From these interviews I identified several themes that students felt were important, and science instructors need to address, including the place where learning happens and strategies for better engaging students. Chapter 3 presents a review of the science education literature broadly and more focused review on the how students learn and how faculty teach. Consistent with what

  12. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  13. Memorable Exemplification in Undergraduate Biology: Instructor Strategies and Student Perceptions

    Science.gov (United States)

    Oliveira, Alandeom W.; Bretzlaff, Tiffany; Brown, Adam O.

    2018-03-01

    The present study examines the exemplification practices of a university biology instructor during a semester-long course. Attention is given specifically to how the instructor approaches memorable exemplification—classroom episodes identified by students as a source of memorable learning experiences. A mixed-method research approach is adopted wherein descriptive statistics is combined with qualitative multimodal analysis of video recordings and survey data. Our findings show that memorable experiencing of examples may depend on a multiplicity of factors, including whether students can relate to the example, how unique and extreme the example is, how much detail is provided, whether the example is enacted rather than told, and whether the example makes students feel sad, surprised, shocked, and/or amused. It is argued that, rather than simply assuming that all examples are equally effective, careful consideration needs be given to how exemplification can serve as an important source of memorable science learning experiences.

  14. Influencing attitudes toward science through field experiences in biology

    Science.gov (United States)

    Carpenter, Deborah Mcintyre

    The purpose of this study was to determine how student attitudes toward science are influenced by field experiences in undergraduate biology courses. The study was conducted using two institutions of higher education including a 2-year lower-level and a 2-year upper-level institution. Data were collected through interviews with student participants, focus group discussions, students' journal entries, and field notes recorded by the researcher during the field activities. Photographs and video recordings were also used as documentation sources. Data were collected over a period of 34 weeks. Themes that emerged from the qualitative data included students' beliefs that field experiences (a) positively influence student motivation to learn, (b) increase student ability to learn the concepts being taught, and (c) provide opportunities for building relationships and for personal growth. The findings of the study reinforce the importance of offering field-study programs at the undergraduate level to allow undergraduate students the opportunity to experience science activities in a field setting. The research study was framed by the behavioral and developmental theories of attitude and experience including the Theory of Planned Behavior (Ajzen, 1991) and the Theory of Experiential Learning (Kolb, 1984).

  15. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    Science.gov (United States)

    Shaw, Lawton; Kennepohl, Dietmar

    2013-01-01

    Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU) science project courses allow distance education students to complete research project courses by working with research supervisors in their…

  16. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    Science.gov (United States)

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  17. Engaging Undergraduates in Social Science Research: The Taking the Pulse of Saskatchewan Project

    Science.gov (United States)

    Berdahl, Loleen

    2014-01-01

    Although student involvement in research and inquiry can advance undergraduate learning, there are limited opportunities for undergraduate students to be directly involved in social science research. Social science faculty members typically work outside of laboratory settings, with the limited research assistance work being completed by graduate…

  18. American Institute of Biological Sciences

    Science.gov (United States)

    ... Biology Classifieds Get Involved AIBS on Diversity Diversity Diversity Leadership Award Diversity Scholars Outreach Directory News Newsroom Peer ... Biology Classifieds Get Involved AIBS on Diversity Diversity Diversity Leadership Award Diversity Scholars Outreach Directory News Newsroom Contact ...

  19. Undergraduate-driven interventions to increase representation in science classrooms

    Science.gov (United States)

    Freilich, M.; Aluthge, D.; Bryant, R. M.; Knox, B.; McAdams, J.; Plummer, A.; Schlottman, N.; Stanley, Z.; Suglia, E.; Watson-Daniels, J.

    2014-12-01

    Recognizing that racial, ethnic, and gender underrepresentation in science classrooms persists despite intervention programs and institutional commitments to diversity, a group of undergraduates from a variety of backgrounds and academic disciplines came together for a group independent study to (a) study the theoretical foundations of the current practice of science and of programs meant to increase diversity, (b) utilize the experiences of course participants and our peers to better understand the drivers of underrepresentation, and (c) design and implement interventions at Brown University. We will present on individual and small group projects designed by course members in collaboration with faculty. The projects emerged from an exploration of literature in history, philosophy, and sociology of science, as well as an examination of anthropological and psychological studies. We also evaluated the effectiveness of top-down and bottom-up approaches that have already been attempted in developing our projects. They focus on the specific problems faced by underrepresented minorities, women, LGBTQ+ people, and well-represented minorities. We will share experiences of faculty-student collaboration and engaged scholarship focused on representation in science and discuss student-designed interventions.

  20. Undergraduate Research Involving Deaf and Hard-of-Hearing Students in Interdisciplinary Science Projects

    Directory of Open Access Journals (Sweden)

    Todd Pagano

    2015-05-01

    Full Text Available Scientific undergraduate research in higher education often yields positive outcomes for student and faculty member participants alike, with underrepresented students often showing even more substantial gains (academic, professional, and personal as a result of the experience. Significant success can be realized when involving deaf and hard-of-hearing (d/hh undergraduate students, who are also vastly underrepresented in the sciences, in interdisciplinary research projects. Even d/hh Associate degree level students and those in the first two years of their postsecondary careers can contribute to, and benefit from, the research process when faculty mentors properly plan/design projects. We discuss strategies, including the dissemination/communication of research results, for involving these students in research groups with different communication dynamics and share both findings of our research program and examples of successful chemical and biological research projects that have involved d/hh undergraduate students. We hope to stimulate a renewed interest in encouraging diversity and involving students with disabilities into higher education research experiences globally and across multiple scientific disciplines, thus strengthening the education and career pipeline of these students.

  1. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  2. Connecting Undergraduate Plant Cell Biology Students with the Scientists about Whom They Learn: A Bibliography.

    Science.gov (United States)

    Wayne, Randy; Staves, Mark P.

    1998-01-01

    Details the teaching of an undergraduate plant-cell biology class in the manner proposed by Jean Baptiste Carnoy when he established the first institute of cellular biology. Integrates mathematics, astronomy, physics, chemistry, anatomy, physiology, and ecology. Contains 226 references. (DDR)

  3. Campus Eco Tours: An Integrative & Interactive Field Project for Undergraduate Biology Students

    Science.gov (United States)

    Boes, Katie E.

    2013-01-01

    Outdoor areas within or near college campuses offer an opportunity for biology students to observe the natural world and apply concepts from class. Here, I describe an engaging and integrative project where undergraduate non-major biology students work in teams to develop and present professional "eco tours." This project takes place over multiple…

  4. Evolutionary Theory in Undergraduate Biology Programs at Lebanese Universities: A Comparative Study

    Science.gov (United States)

    Vlaardingerbroek, Barend; Hachem-El-Masri, Yasmine

    2006-01-01

    The purpose of this study was to gauge the profile of evolutionary theory in Lebanese undergraduate biology programs. The research focused mainly on the views of university biology department heads, given that they are the people who exercise the most direct influence over their departments' ethos. An Australasian sample was chosen as a reference…

  5. Experiential Engineering through iGEM--An Undergraduate Summer Competition in Synthetic Biology

    Science.gov (United States)

    Mitchell, Rudolph; Dori, Yehudit Judy; Kuldell, Natalie H.

    2011-01-01

    Unlike students in other engineering disciplines, undergraduates in biological engineering typically have limited opportunity to develop design competencies, and even fewer chances to implement their designed projects. The international Genetically Engineered Machines (iGEM) competition is a student Synthetic Biology competition that, in 2009,…

  6. Systems Biology and Livestock Science

    NARCIS (Netherlands)

    Pas, te M.F.W.; Woelders, H.; Bannink, A.

    2011-01-01

    Systems Biology is an interdisciplinary approach to the study of life made possible through the explosion of molecular data made available through the genome revolution and the simultaneous development of computational technologies that allow us to interpret these large data sets. Systems Biology

  7. Beyond the Cell: Using Multiscalar Topics to Bring Interdisciplinarity into Undergraduate Cellular Biology Courses

    Science.gov (United States)

    Weber, Carolyn F.

    2016-01-01

    Western science has grown increasingly reductionistic and, in parallel, the undergraduate life sciences curriculum has become disciplinarily fragmented. While reductionistic approaches have led to landmark discoveries, many of the most exciting scientific advances in the late 20th century have occurred at disciplinary interfaces; work at these…

  8. Comparison of Career Concerns among College Women and Men Enrolled in Biological and Physical Sciences

    Science.gov (United States)

    Dodson, Maria

    The underrepresentation of women enrolled in the physical sciences continues to challenge academic leaders despite over 40 years of programming to promote gender equity within these curricula. This study employed a quantitative, causal comparative method to explore if and to what extent career concerns differed among female and male undergraduate physical and biological science students. The theory of planned behavior and life-span, life-space theory served as the theoretical framework for the study. Quantitative survey data were collected from 43 students at four institutions across the United States. The findings indicated that undergraduate women in physical science programs of study had a significantly different level of concern about the Innovating sub-category of the third stage of career development, Maintenance, as compared to undergraduate women in biological science curricula [F(1,33) = 6.244, p = 0.018]. Additionally, there was a statistically significant difference between female undergraduate physical science students and undergraduate male science students in the sub-categories of Implementation [F(1,19) = 7.228, p = 0.015], Advancing [F(1,19) = 11.877, p = 0.003], and Innovating [F(1,19) = 11.782, p = 0.003] within the first three stages of career development (Exploration, Establishment, and Maintenance). The comparative differences among the study groups offers new information about undergraduate career concerns that may contribute to the underrepresentation of women enrolled in the physical sciences. Suggestions for future research and programs within higher education targeted at reducing the career concerns of current and prospective female students in physical science curricula are discussed.

  9. Using Primary Literature for Teaching Undergraduate Planetary Sciences

    Science.gov (United States)

    Levine, J.

    2013-05-01

    Articles from the primary scientific literature can be a valuable teaching tool in undergraduate classrooms. At Colgate University, I emphasize selected research articles in an upper-level undergraduate course in planetary sciences. In addition to their value for conveying specific scientific content, I find that they also impart larger lessons which are especially apt in planetary sciences and allied fields. First, because of the interdisciplinary nature of planetary sciences, students discover that contributions to outstanding problems may arrive from unexpected directions, so they need to be aware of the multi-faceted nature of scientific problems. For instance, after millennia of astrometric attempts, the scale of the Solar System was determined with extraordinary precision with emerging radar technology in the 1960's. Second, students learn the importance of careful work, with due attention to detail. After all, the timescales of planetary formation are encoded in systematic isotopic variations of a few parts in 10,000; in students' own experiences with laboratory data they might well overlook such a small effect. Third, students identify the often-tortuous connections between measured and inferred quantities, which corrects a common student misconception that all quantities of interest (e.g., the age of a meteorite) can be measured directly. Fourth, research articles provide opportunities for students to practice the interpretation of graphical data, since figures often represent a large volume of data in succinct form. Fifth, and perhaps of greatest importance, by considering the uncertainties inherent in reported data, students come to recognize the limits of scientific understanding, the extent to which scientific conclusions are justified (or not), and the lengths to which working scientists go to mitigate their uncertainties. These larger lessons are best mediated by students' own encounters with the articles they read, but require instructors to make

  10. Explorations: A Research-Based Program Introducing Undergraduates to Diverse Biology Research Topics Taught by Grad Students and Postdocs

    Science.gov (United States)

    Brownell, Sara E.; Khalfan, Waheeda; Bergmann, Dominique; Simoni, Robert

    2013-01-01

    Undergraduate biology majors are often overwhelmed by and underinformed about the diversity and complexity of biological research that is conducted on research-intensive campuses. We present a program that introduces undergraduates to the diversity and scope of biological research and also provides unique teaching opportunities for graduate…

  11. Engaging Undergraduates in Science Research: Not Just About Faculty Willingness

    OpenAIRE

    Eagan, M. Kevin; Sharkness, Jessica; Hurtado, Sylvia; Mosqueda, Cynthia M.; Chang, Mitchell J.

    2010-01-01

    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members’ decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members’ likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute’s 2007–2008 Facu...

  12. Engaging Undergraduates in Science Research: Not Just about Faculty Willingness

    Science.gov (United States)

    Eagan, M. Kevin, Jr.; Sharkness, Jessica; Hurtado, Sylvia; Mosqueda, Cynthia M.; Chang, Mitchell J.

    2011-01-01

    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty…

  13. Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers.

    Science.gov (United States)

    Dowd, Jason E; Thompson, Robert J; Schiff, Leslie A; Reynolds, Julie A

    2018-01-01

    Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students' development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference , while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc.) are not significantly related to critical-thinking skills. Science reasoning in writing is not merely a proxy for critical thinking. In linking features of students' writing to their critical-thinking skills, this study 1) provides a bridge to prior work suggesting that engagement in science writing enhances critical thinking and 2) serves as a foundational step for subsequently determining whether instruction focused explicitly on developing critical-thinking skills (particularly inference ) can actually improve students' scientific reasoning in their writing. © 2018 J. E. Dowd et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. An analysis of undergraduate exercise science programs: an exercise science curriculum survey.

    Science.gov (United States)

    Elder, Craig L; Pujol, Thomas J; Barnes, Jeremy T

    2003-08-01

    Undergraduate exercise science programs develop curricula by referring to standards set by professional organizations. A web-based survey was administered to 235 institutions with exercise science undergraduate programs to evaluate their adherence to stated curricular guidelines. Results indicate that 29% of institutions considered American College of Sports Medicine (ACSM) Knowledge, skills, and abilities (KSAs); 33% both ACSM and National Association for Sport and Physical Education (NASPE) guidelines; 6% ACSM, NASPE, and National Strength and Conditioning Association (NSCA); 8% ACSM, NASPE, NSCA, and American Society of Exercise Physiologists, and 5% NASPE. The two largest subgroups had good compliance with the areas of exercise physiology, biomechanics, and human anatomy and physiology. However, neither subgroup adhered to the areas of exercise prescription, testing, and implementation; exercise and aging; or exercise with special populations. Regardless of the implemented guideline(s), most institutions placed minimal emphasis on areas related to health promotion and many curricula did not require any field experience.

  15. Research and Teaching: Encouraging Science Communication in an Undergraduate Curriculum Improves Students' Perceptions and Confidence

    Science.gov (United States)

    Train, Tonya Laakko; Miyamoto, Yuko J.

    2017-01-01

    The ability to effectively communicate science is a skill sought after by graduate and professional schools as well as by employers in science-related fields. Are content-heavy undergraduate science curricula able to incorporate opportunities to develop science communication skills, and is promoting these skills worth the time and effort? The…

  16. Bringing Space Science to the Undergraduate Classroom: NASA's USIP Mission

    Science.gov (United States)

    Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Spencer, E. A.; Gross, J.; Lusk, G. D.

    2015-12-01

    As part of its participation in NASA's Undergraduate Student Instrument Project (USIP), a team of engineering and physics students at West Virginia University (WVU) built a series of sounding rocket and balloon missions. The first rocket and balloon missions were flown near-simultaneously in a campaign on June 26, 2014 (image). The second sounding rocket mission is scheduled for October 5, 2015. Students took a course on space science in spring 2014, and followup courses in physics and aerospace engineering departments have been developed since then. Guest payloads were flown from students affiliated with WV Wesleyan College, NASA's IV&V Facility, and the University of South Alabama. Students specialized in electrical and aerospace engineering, and space physics topics. They interacted regularly with NASA engineers, presented at telecons, and prepared reports. A number of students decided to pursue internships and/or jobs related to space science and technology. Outreach to the campus and broader community included demos and flight projects. The physics payload includes plasma density and temperature measurements using a Langmuir and a triple probe; plasma frequency measurements using a radio sounder (WVU) and an impedance probe (U.S.A); and a magnetometer (WVWC). The aerospace payload includes an IMU swarm, a GPS experiment (with TEC capability); a cubesat communications module (NASA IV&V), and basic flight dynamics. Acknowledgments: staff members at NASA Wallops Flight Facility, and at the Orbital-ATK Rocket Center, WV.

  17. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  18. Public Science Education and Outreach as a Modality for Teaching Science Communication Skills to Undergraduates

    Science.gov (United States)

    Arion, Douglas; OConnell, Christine; Lowenthal, James; Hickox, Ryan C.; Lyons, Daniel

    2018-01-01

    The Alan Alda Center for Communicating Science at Stony Brook University is working with Carthage College, Dartmouth College, and Smith College, in partnership with the Appalachian Mountain Club, to develop and disseminate curriculum to incorporate science communication education into undergraduate science programs. The public science education and outreach program operating since 2012 as a partnership between Carthage and the Appalachian Mountain Club is being used as the testbed for evaluating the training methods. This talk will review the processes that have been developed and the results from the first cohort of students trained in these methods and tested during the summer 2017 education and outreach efforts, which reached some 12,000 members of the public. A variety of evaluation and assessment tools were utilized, including surveys of public participants and video recording of the interactions of the students with the public. This work was supported by the National Science Foundation under grant number 1625316.

  19. 77 FR 19740 - Biological Sciences Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-02

    ... NATIONAL SCIENCE FOUNDATION Biological Sciences Advisory Committee; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L., 92- 463, as amended), the National Science Foundation announces the following meeting: Name: Biological Sciences Advisory Committee ( 1110). Date and...

  20. Ethiopian Journal of Biological Sciences: Submissions

    African Journals Online (AJOL)

    Author Guidelines. 1. GENERAL a) The Ethiopian Journal of Biological Sciences (Ethiop. J. Biol. Sci.) publishes scholarly standard (full length) articles in the various basic and applied biological disciplines. b) It also publishes feature articles, short communications, review articles, book reviews and dissertation abstracts. 2.

  1. Six Classroom Exercises to Teach Natural Selection to Undergraduate Biology Students

    OpenAIRE

    Kalinowski, Steven T.; Leonard, Mary J.; Andrews, Tessa M.; Litt, Andrea R.

    2013-01-01

    Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural selection and also include discussions on sexual selection, molecular evolution, evolution of complex traits, and the evolution of behavior. The set...

  2. Science Academies' Refresher Course in Developmental Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Science Academies' Refresher Course in Developmental Biology. Information and Announcements Volume 20 Issue 8 August 2015 pp 756-756. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Science Academies' Refresher Course on Experimental Biology ...

    Indian Academy of Sciences (India)

    IAS Admin

    advanced laboratory techniques in life sciences including cell and molecular biology. The resource persons will be eminent scientists working in these fields who are distinguished Fellows of the National Science Academies. The participants of the refresher course will have hands-on experience with all of the advanced ...

  4. Increasing persistence in undergraduate science majors: a model for institutional support of underrepresented students.

    Science.gov (United States)

    Toven-Lindsey, Brit; Levis-Fitzgerald, Marc; Barber, Paul H; Hasson, Tama

    2015-01-01

    The 6-yr degree-completion rate of undergraduate science, technology, engineering, and mathematics (STEM) majors at U.S. colleges and universities is less than 40%. Persistence among women and underrepresented minorities (URMs), including African-American, Latino/a, Native American, and Pacific Islander students, is even more troubling, as these students leave STEM majors at significantly higher rates than their non-URM peers. This study utilizes a matched comparison group design to examine the academic achievement and persistence of students enrolled in the Program for Excellence in Education and Research in the Sciences (PEERS), an academic support program at the University of California, Los Angeles, for first- and second-year science majors from underrepresented backgrounds. Results indicate that PEERS students, on average, earned higher grades in most "gatekeeper" chemistry and math courses, had a higher cumulative grade point average, completed more science courses, and persisted in a science major at significantly higher rates than the comparison group. With its holistic approach focused on academics, counseling, creating a supportive community, and exposure to research, the PEERS program serves as an excellent model for universities interested in and committed to improving persistence of underrepresented science majors and closing the achievement gap. © 2015 B. Toven-Lindsey et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Introducing systems biology for nursing science.

    Science.gov (United States)

    Founds, Sandra A

    2009-07-01

    Systems biology expands on general systems theory as the "omics'' era rapidly progresses. Although systems biology has been institutionalized as an interdisciplinary framework in the biosciences, it is not yet apparent in nursing. This article introduces systems biology for nursing science by presenting an overview of the theory. This framework for the study of organisms from molecular to environmental levels includes iterations of computational modeling, experimentation, and theory building. Synthesis of complex biological processes as whole systems rather than isolated parts is emphasized. Pros and cons of systems biology are discussed, and relevance of systems biology to nursing is described. Nursing research involving molecular, physiological, or biobehavioral questions may be guided by and contribute to the developing science of systems biology. Nurse scientists can proactively incorporate systems biology into their investigations as a framework for advancing the interdisciplinary science of human health care. Systems biology has the potential to advance the research and practice goals of the National Institute for Nursing Research in the National Institutes of Health Roadmap initiative.

  6. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    Science.gov (United States)

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members’ research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students’ experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. PMID:27810870

  7. A Flexible e-Learning Resource Promoting the Critical Reading of Scientific Papers for Science Undergraduates

    Science.gov (United States)

    Letchford, Julie; Corradi, Hazel; Day, Trevor

    2017-01-01

    An important aim of undergraduate science education is to develop student skills in reading and evaluating research papers. We have designed, developed, and implemented an on-line interactive resource entitled "Evaluating Scientific Research literature" (ESRL) aimed at students from the first 2 years of the undergraduate program. In this…

  8. Science Ideals and Science Careers in a University Biology Department

    Science.gov (United States)

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  9. Online citizen science games: Opportunities for the biological sciences.

    Science.gov (United States)

    Curtis, Vickie

    2014-12-01

    Recent developments in digital technologies and the rise of the Internet have created new opportunities for citizen science. One of these has been the development of online citizen science games where complex research problems have been re-imagined as online multiplayer computer games. Some of the most successful examples of these can be found within the biological sciences, for example, Foldit, Phylo and EteRNA. These games offer scientists the opportunity to crowdsource research problems, and to engage with those outside the research community. Games also enable those without a background in science to make a valid contribution to research, and may also offer opportunities for informal science learning.

  10. Introducing an Undergraduate Degree of Cosmetic Science and Formulation Design within a College of Pharmacy

    Directory of Open Access Journals (Sweden)

    Gabriella Baki

    2017-01-01

    Full Text Available As a unique and versatile undergraduate degree program, a Bachelor of Science in Pharmaceutical Sciences (BSPS is offered by a number of colleges/schools of pharmacy. These provide a bachelor's degree concentrated in pharmaceutical sciences, and can be a non-Doctor of Pharmacy option, possibly before progressing to graduate degree studies. Recently implemented at the University of Toledo College of Pharmacy and Pharmaceutical Sciences (UTCPPS, one such BSPS major is Cosmetic Science and Formulation Design. This new undergraduate major was created to serve the needs of the cosmetic and personal care industry, with a great need identified for well-trained new professionals with basic knowledge in the sciences and business. This Cosmetic Science and Formulation Design major was added to four other BSPS majors at UTCPPS. Introduced in 2013, this major is the only functioning undergraduate degree in Cosmetic Science and Formulation Design in the United States. Preliminary job placement data provides promising evidence that this undergraduate major has helped graduates launch a career in the cosmetic and personal care, or pharmaceutical industries. Based on our experience from the past three years, we believe that this cosmetic science major has been worth its resource investment. We hope others designing new undergraduate pharmaceutical sciences programs might integrate advice from this experience into their impending programs.   Type: Idea Paper

  11. Evaluation of the Redesign of an Undergraduate Cell Biology Course

    Science.gov (United States)

    McEwen, Laura April; Harris, dik; Schmid, Richard F.; Vogel, Jackie; Western, Tamara; Harrison, Paul

    2009-01-01

    This article offers a case study of the evaluation of a redesigned and redeveloped laboratory-based cell biology course. The course was a compulsory element of the biology program, but the laboratory had become outdated and was inadequately equipped. With the support of a faculty-based teaching improvement project, the teaching team redesigned the…

  12. How Do People Think about the Science They Encounter in Fiction? Undergraduates Investigate Responses to Science in "The Simpsons"

    Science.gov (United States)

    Orthia, Lindy A.; Dobos, Amy R.; Guy, Tristan; Kan, Shanan Z.; Keys, Siân E.; Nekvapil, Stefan; Ngu, Dalton H. Y.

    2012-01-01

    In this study, students and staff involved in an undergraduate science communication course investigated people's responses to a science-rich episode of the animated sitcom "The Simpsons". Using focus groups, we sought to find out if and how the episode influenced our 34 participants' perceptions of science, but our results problematised…

  13. Of Responsible Research--Exploring the Science-Society Dialogue in Undergraduate Training within the Life Sciences

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-01

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in…

  14. Gender, Math Confidence, and Grit: Relationships with Quantitative Skills and Performance in an Undergraduate Biology Course.

    Science.gov (United States)

    Flanagan, K M; Einarson, J

    2017-01-01

    In a world filled with big data, mathematical models, and statistics, the development of strong quantitative skills is becoming increasingly critical for modern biologists. Teachers in this field must understand how students acquire quantitative skills and explore barriers experienced by students when developing these skills. In this study, we examine the interrelationships among gender, grit, and math confidence for student performance on a pre-post quantitative skills assessment and overall performance in an undergraduate biology course. Here, we show that females significantly underperformed relative to males on a quantitative skills assessment at the start of term. However, females showed significantly higher gains over the semester, such that the gender gap in performance was nearly eliminated by the end of the semester. Math confidence plays an important role in the performance on both the pre and post quantitative skills assessments and overall performance in the course. The effect of grit on student performance, however, is mediated by a student's math confidence; as math confidence increases, the positive effect of grit decreases. Consequently, the positive impact of a student's grittiness is observed most strongly for those students with low math confidence. We also found grit to be positively associated with the midterm score and the final grade in the course. Given the relationships established in this study among gender, grit, and math confidence, we provide "instructor actions" from the literature that can be applied in the classroom to promote the development of quantitative skills in light of our findings. © 2017 K. M. Flanagan and J. Einarson. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  15. Integration of bioinformatics into an undergraduate biology curriculum and the impact on development of mathematical skills.

    Science.gov (United States)

    Wightman, Bruce; Hark, Amy T

    2012-01-01

    The development of fields such as bioinformatics and genomics has created new challenges and opportunities for undergraduate biology curricula. Students preparing for careers in science, technology, and medicine need more intensive study of bioinformatics and more sophisticated training in the mathematics on which this field is based. In this study, we deliberately integrated bioinformatics instruction at multiple course levels into an existing biology curriculum. Students in an introductory biology course, intermediate lab courses, and advanced project-oriented courses all participated in new course components designed to sequentially introduce bioinformatics skills and knowledge, as well as computational approaches that are common to many bioinformatics applications. In each course, bioinformatics learning was embedded in an existing disciplinary instructional sequence, as opposed to having a single course where all bioinformatics learning occurs. We designed direct and indirect assessment tools to follow student progress through the course sequence. Our data show significant gains in both student confidence and ability in bioinformatics during individual courses and as course level increases. Despite evidence of substantial student learning in both bioinformatics and mathematics, students were skeptical about the link between learning bioinformatics and learning mathematics. While our approach resulted in substantial learning gains, student "buy-in" and engagement might be better in longer project-based activities that demand application of skills to research problems. Nevertheless, in situations where a concentrated focus on project-oriented bioinformatics is not possible or desirable, our approach of integrating multiple smaller components into an existing curriculum provides an alternative. Copyright © 2012 Wiley Periodicals, Inc.

  16. Psychological Distress and Sources of Stressors amongst Medical and Science Undergraduate Students in Malaysia

    OpenAIRE

    Ali S Radeef; Ghasak G Faisal

    2017-01-01

    Background: This study aims to compare the prevalence of psychological distress between medical and science undergraduate students and to assess the sources of stressors that are attributing to it. Methods: A sample of 697 undergraduate students participated in this study, in which 501 were medical students and the remaining 196 were Science students. Psychological distress was assessed using the 12-item General Health Questionnaire. The students were given a list of possible sources of stres...

  17. Introducing Taiwanese Undergraduate Students to the Nature of Science through Nobel Prize Stories

    Science.gov (United States)

    Eshach, Haim; Hwang, Fu-Kwun; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-01-01

    Although there is a broad agreement among scientists and science educators that students should not only learn science, but also acquire some sense of its nature, it has been reported that undergraduate students possess an inadequate grasp of the nature of science (NOS). The study presented here examined the potential and effectiveness of Nobel…

  18. Undergraduate Research-Methods Training in Political Science: A Comparative Perspective

    Science.gov (United States)

    Parker, Jonathan

    2010-01-01

    Unlike other disciplines in the social sciences, there has been relatively little attention paid to the structure of the undergraduate political science curriculum. This article reports the results of a representative survey of 200 political science programs in the United States, examining requirements for quantitative methods, research methods,…

  19. Internet use by library and information science undergraduates in ...

    African Journals Online (AJOL)

    The study recommended that undergraduates should be trained to be ICT literate as well as be given increased access to internet facilities to enable them maximize the benefits of internet use. The study concluded that although there is a rise in the use of internet by undergraduates, they primarily use the internet for social ...

  20. Glucose Transport in Cultured Animal Cells: An Exercise for the Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Ledbetter, Mary Lee S.; Lippert, Malcolm J.

    2002-01-01

    Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient…

  1. What are undergraduates doing at biological field stations and marine laboratories?

    Science.gov (United States)

    Janet Hodder

    2009-01-01

    Biological field stations and marine laboratories (FSMLs) serve as places to study the natural environment in a variety of ways, from the level of the molecule to the globe. Undergraduate opportunities at FSMLs reflect the diversity of study options -- formal courses, research and service internships, and field-trip experiences -- and students are responding to those...

  2. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    Science.gov (United States)

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life…

  3. Writing toward a Scientific Identity: Shifting from Prescriptive to Reflective Writing in Undergraduate Biology

    Science.gov (United States)

    Otfinowski, Rafael; Silva-Opps, Marina

    2015-01-01

    Analytical writing enhances retention of science learning and is integral to student-centered classrooms. Despite this, scientific writing in undergraduate programs is often presented as a series of sentence-level conventions of grammar, syntax, and citation formats, reinforcing students' perceptions of its highly prescriptive nature. The authors…

  4. Structural Biology of Tumor Necrosis Factor Demonstrated for Undergraduates Instruction by Computer Simulation

    Science.gov (United States)

    Roy, Urmi

    2016-01-01

    This work presents a three-dimensional (3D) modeling exercise for undergraduate students in chemistry and health sciences disciplines, focusing on a protein-group linked to immune system regulation. Specifically, the exercise involves molecular modeling and structural analysis of tumor necrosis factor (TNF) proteins, both wild type and mutant. The…

  5. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  6. Teaching microbiology to undergraduate students in the humanities and the social sciences.

    Science.gov (United States)

    Oren, Aharon

    2015-10-01

    This paper summarizes my experiences teaching a 28-hour course on the bacterial world for undergraduate students in the humanities and the social sciences at the Hebrew University of Jerusalem. This course was offered in the framework of a program in which students must obtain credit points for courses offered by other faculties to broaden their education. Most students had little biology in high school and had never been exposed to the basics of chemistry. Using a historical approach, highlighting the work of pioneers such as van Leeuwenhoek, Koch, Fleming, Pasteur, Winogradsky and Woese, I covered a broad area of general, medical, environmental and evolutionary microbiology. The lectures included basic concepts of organic and inorganic chemistry necessary to understand the principles of fermentations and chemoautotrophy, and basic molecular biology to explain biotechnology using transgenic microorganisms and molecular phylogeny. Teaching the basics of microbiology to intelligent students lacking any background in the natural sciences was a rewarding experience. Some students complained that, in spite of my efforts, basic concepts of chemistry remained beyond their understanding. But overall the students' evaluation showed that the course had achieved its goal. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Effects of a research-infused botanical curriculum on undergraduates' content knowledge, STEM competencies, and attitudes toward plant sciences.

    Science.gov (United States)

    Ward, Jennifer Rhode; Clarke, H David; Horton, Jonathan L

    2014-01-01

    In response to the American Association for the Advancement of Science's Vision and Change in Undergraduate Biology Education initiative, we infused authentic, plant-based research into majors' courses at a public liberal arts university. Faculty members designed a financially sustainable pedagogical approach, utilizing vertically integrated curricular modules based on undergraduate researchers' field and laboratory projects. Our goals were to 1) teach botanical concepts, from cells to ecosystems; 2) strengthen competencies in statistical analysis and scientific writing; 3) pique plant science interest; and 4) allow all undergraduates to contribute to genuine research. Our series of inquiry-centered exercises mitigated potential faculty barriers to adopting research-rich curricula, facilitating teaching/research balance by gathering publishable scholarly data during laboratory class periods. Student competencies were assessed with pre- and postcourse quizzes and rubric-graded papers, and attitudes were evaluated with pre- and postcourse surveys. Our revised curriculum increased students' knowledge and awareness of plant science topics, improved scientific writing, enhanced statistical knowledge, and boosted interest in conducting research. More than 300 classroom students have participated in our program, and data generated from these modules' assessment allowed faculty and students to present 28 contributed talks or posters and publish three papers in 4 yr. Future steps include analyzing the effects of repeated module exposure on student learning and creating a regional consortium to increase our project's pedagogical impact. © 2014 J. R. Ward et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  8. Assessing Practical Laboratory Skills in Undergraduate Molecular Biology Courses

    Science.gov (United States)

    Hunt, Lynne; Koenders, Annette; Gynnild, Vidar

    2012-01-01

    This study explored a new strategy of assessing laboratory skills in a molecular biology course to improve: student effort in preparation for and participation in laboratory work; valid evaluation of learning outcomes; and students' employment prospects through provision of evidence of their skills. Previously, assessment was based on written…

  9. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  10. How our biology constrains our science

    NARCIS (Netherlands)

    Vlerick, Michael

    2017-01-01

    Reasoning from a naturalistic perspective, viewing the mind as an evolved biological organ with a particular structure and function, a number of influential philosophers and cognitive scientists claim that science is constrained by human nature. How exactly our genetic constitution constrains

  11. Nanobiotechnology: synthetic biology meets materials science.

    Science.gov (United States)

    Jewett, Michael C; Patolsky, Fernando

    2013-08-01

    Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology.

    Science.gov (United States)

    Kowalski, Jennifer R; Hoops, Geoffrey C; Johnson, R Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members' research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students' experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. © 2016 J. R. Kowalski et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Using Assessments to Investigate and Compare the Nature of Learning in Undergraduate Science Courses

    Science.gov (United States)

    Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Montplaisir, Lisa; Anderson, Elizabeth; Grosz, Nate

    2013-01-01

    Assessments and student expectations can drive learning: students selectively study and learn the content and skills they believe critical to passing an exam in a given subject. Evaluating the nature of assessments in undergraduate science education can, therefore, provide substantial insight into student learning. We characterized and compared the cognitive skills routinely assessed by introductory biology and calculus-based physics sequences, using the cognitive domain of Bloom's taxonomy of educational objectives. Our results indicate that both introductory sequences overwhelmingly assess lower-order cognitive skills (e.g., knowledge recall, algorithmic problem solving), but the distribution of items across cognitive skill levels differs between introductory biology and physics, which reflects and may even reinforce student perceptions typical of those courses: biology is memorization, and physics is solving problems. We also probed the relationship between level of difficulty of exam questions, as measured by student performance and cognitive skill level as measured by Bloom's taxonomy. Our analyses of both disciplines do not indicate the presence of a strong relationship. Thus, regardless of discipline, more cognitively demanding tasks do not necessarily equate to increased difficulty. We recognize the limitations associated with this approach; however, we believe this research underscores the utility of evaluating the nature of our assessments. PMID:23737631

  14. Using assessments to investigate and compare the nature of learning in undergraduate science courses.

    Science.gov (United States)

    Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Montplaisir, Lisa; Anderson, Elizabeth; Grosz, Nate

    2013-06-01

    Assessments and student expectations can drive learning: students selectively study and learn the content and skills they believe critical to passing an exam in a given subject. Evaluating the nature of assessments in undergraduate science education can, therefore, provide substantial insight into student learning. We characterized and compared the cognitive skills routinely assessed by introductory biology and calculus-based physics sequences, using the cognitive domain of Bloom's taxonomy of educational objectives. Our results indicate that both introductory sequences overwhelmingly assess lower-order cognitive skills (e.g., knowledge recall, algorithmic problem solving), but the distribution of items across cognitive skill levels differs between introductory biology and physics, which reflects and may even reinforce student perceptions typical of those courses: biology is memorization, and physics is solving problems. We also probed the relationship between level of difficulty of exam questions, as measured by student performance and cognitive skill level as measured by Bloom's taxonomy. Our analyses of both disciplines do not indicate the presence of a strong relationship. Thus, regardless of discipline, more cognitively demanding tasks do not necessarily equate to increased difficulty. We recognize the limitations associated with this approach; however, we believe this research underscores the utility of evaluating the nature of our assessments.

  15. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    Science.gov (United States)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated

  16. e-Science and biological pathway semantics

    Directory of Open Access Journals (Sweden)

    Luciano Joanne S

    2007-05-01

    Full Text Available Abstract Background The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science. Results We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs. Conclusion Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science.

  17. Undergraduate Neuroscience Education in the U.S.: Quantitative Comparisons of Programs and Graduates in the Broader Context of Undergraduate Life Sciences Education.

    Science.gov (United States)

    Ramos, Raddy L; Esposito, Anthony W; O'Malley, Shannon; Smith, Phoebe T; Grisham, William

    2016-01-01

    The impact of undergraduate neuroscience programs on the broader landscape of life sciences education has not been described. Using data from the National Center for Education Statistics, we found that the number of undergraduate neuroscience programs in the U.S. continues to grow. Within any given institution, neuroscience programs exist alongside a small number of other life sciences undergraduate programs, suggesting that neuroscience is one of few major options from which students can choose from at many institutions. Neuroscience majors constitute a substantial proportion of all life sciences graduates at many institutions, and in several cases, neuroscience majors were the majority of life sciences graduates. Thus, neuroscience programs contribute substantially to life sciences education, and neuroscience is a highly attractive major among undergraduate students where these programs are available. These data have implications for institutions with existing neuroscience programs as well as for institutions seeking to establish a new program.

  18. 77 FR 50174 - Biological Sciences Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-08-20

    ... NATIONAL SCIENCE FOUNDATION Biological Sciences Advisory Committee; Notice of Meeting In... Foundation announces the following meeting: Name: Biological Sciences Advisory Committee ( 1110). Date and... Biological Sciences [call 703-292-8400 or send an email message to [email protected] ] at least 24 hours prior...

  19. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    Science.gov (United States)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  20. Downscaling Climate Science to the Classroom: Diverse Opportunities for Teaching Climate Science in Diverse Ways to Diverse Undergraduate Populations

    Science.gov (United States)

    Jones, R. M.; Gill, T. E.; Quesada, D.; Hedquist, B. C.

    2015-12-01

    Climate literacy and climate education are important topics in current socio-political debate. Despite numerous scientific findings supporting global climate changes and accelerated greenhouse warming, there is a social inertia resisting and slowing the rate at which many of our students understand and absorb these facts. A variety of reasons, including: socio-economic interests, political and ideological biases, misinformation from mass media, inappropriate preparation of science teachers, and lack of numancy have created serious challenges for public awareness of such an important issue. Different agencies and organizations (NASA, NOAA, EPA, AGU, APS, AMS and others) have created training programs for educators, not involved directly in climatology research, in order to learn climate science in a consistent way and then communicate it to the public and students. Different approaches on how to deliver such information to undergraduate students in diverse environments is discussed based on the author's experiences working in different minority-serving institutions across the nation and who have attended AMS Weather and Climate Studies training workshops, MSI-REACH, and the School of Ice. Different parameters are included in the analysis: demographics of students, size of the institutions, geographical locations, target audience, programs students are enrolled in, conceptual units covered, and availability of climate-related courses in the curricula. Additionally, the feasibility of incorporating a laboratory and quantitative analysis is analyzed. As a result of these comparisons it seems that downscaling of climate education experiences do not always work as expected in every institution regardless of the student body demographics. Different geographical areas, student body characteristics and type of institution determine the approach to be adopted as well as the feasibility to introduce different components for weather and climate studies. Some ideas are shared

  1. Undergraduate Research in Physics as a course for Engineering and Computer Science Majors

    Science.gov (United States)

    O'Brien, James; Rueckert, Franz; Sirokman, Greg

    2017-01-01

    Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.

  2. To Stay or Leave: Factors That Impact Undergraduate Women's Persistence in Science Majors

    Science.gov (United States)

    Gayles, Joy Gaston; Ampaw, Frim

    2016-01-01

    This study examined factors that influenced undergraduates' decision to enter, leave, or stay within science majors. In addition, we sought to understand if such decisions differed by gender and type of science major. Using Beginning Postsecondary Students (BPS) longitudinal survey data, we found that women were less likely to select a science…

  3. Teaching Scientists to Communicate: Evidence-Based Assessment for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2015-01-01

    Communication skills are one of five nationally recognised learning outcomes for an Australian Bachelor of Science (BSc) degree. Previous evidence indicates that communication skills taught in Australian undergraduate science degrees are not developed sufficiently to meet the requirements of the modern-day workplace--a problem faced in the UK and…

  4. Informal Learning in Science, Math, and Engineering Majors for African American Female Undergraduates

    Science.gov (United States)

    McPherson, Ezella

    2014-01-01

    This research investigates how eight undergraduate African American women in science, math, and engineering (SME) majors accessed cultural capital and informal science learning opportunities from preschool to college. It uses the multiple case study methodological approach and cultural capital as frameworks to better understand the participants'…

  5. Student Perceptions of Communication Skills in Undergraduate Science at an Australian Research-Intensive University

    Science.gov (United States)

    Mercer-Mapstone, Lucy D.; Matthews, Kelly E.

    2017-01-01

    Higher education institutions globally are acknowledging the need to teach communication skills. This study used the Science Student Skills Inventory to gain insight into how science students perceive the development of communication skills across the degree programme. Responses were obtained from 635 undergraduate students enrolled in a Bachelor…

  6. Successful Programs for Undergraduate Women in Science and Engineering: "Adapting" versus "Adopting" the Institutional Environment

    Science.gov (United States)

    Fox, Mary Frank; Sonnert, Gerhard; Nikiforova, Irina

    2009-01-01

    This article focuses upon programs for undergraduate women in science and engineering, which are a strategic research site in the study of gender, science, and higher education. The design involves both quantitative and qualitative approaches, linking theory, method, questions, and analyses in ways not undertaken previously. Using a comprehensive,…

  7. Using Mobile Devices to Facilitate Student Questioning in a Large Undergraduate Science Class

    Science.gov (United States)

    Crompton, Helen; Burgin, Stephen R.; De Paor, Declan G.; Gregory, Kristen

    2018-01-01

    Asking scientific questions is the first practice of science and engineering listed in the Next Generation Science Standards. However, getting students to ask unsolicited questions in a large class can be difficult. In this qualitative study, undergraduate students sent SMS text messages to the instructor who received them on his mobile phone and…

  8. Anthropogenic Climate Change in Undergraduate Marine and Environmental Science Programs in the United States

    Science.gov (United States)

    Vlietstra, Lucy S.; Mrakovcich, Karina L.; Futch, Victoria C.; Stutzman, Brooke S.

    2016-01-01

    To develop a context for program-level design decisions pertaining to anthropogenic climate change, the authors studied the prevalence of courses focused on human-induced climate change in undergraduate marine science and environmental science degree programs in the United States. Of the 86 institutions and 125 programs the authors examined, 37%…

  9. Using Zebrafish to Implement a Course-Based Undergraduate Research Experience to Study Teratogenesis in Two Biology Laboratory Courses

    Science.gov (United States)

    Chism, Grady W.; Vaughan, Martin A.; Muralidharan, Pooja; Marrs, Jim A.

    2016-01-01

    Abstract A course-based undergraduate research experience (CURE) spanning three semesters was introduced into freshman and sophomore biology classes, with the hypothesis that participation in a CURE affects skills in research, communication, and collaboration, which may help students persist in science. Student research projects were centered on the hypothesis that nicotine and caffeine exposure during early development affects gastrulation and heart development in zebrafish. First, freshmen generated original data showing distinct effects of embryonic nicotine and caffeine exposure on zebrafish heart development and function. Next, Cell Biology laboratory students continued the CURE studies and identified novel teratogenic effects of nicotine and caffeine during gastrulation. Finally, new freshmen continued the CURE research, examining additional toxicant effects on development. Students designed new protocols, made measurements, presented results, and generated high-quality preliminary data that were studied in successive semesters. By implementing this project, the CURE extended faculty research and provided a scalable model to address national goals to involve more undergraduates in authentic scientific research. In addition, student survey results support the hypothesis that CUREs provide significant gains in student ability to (1) design experiments, (2) analyze data, and (3) make scientific presentations, translating into high student satisfaction and enhanced learning. PMID:26829498

  10. An investigation of information seeking behaviour of Computer Science and Information Technology undergraduates: a qualitative approach

    OpenAIRE

    Saad, M. S. M.; Zainab, A. N.

    2009-01-01

    It is a common fallacy to assume that undergraduates are skilled in finding and evaluating resources for their various learning needs. Information professionals need to find out strategies and courses of action undertaken by undergraduate students in order to perhaps improve information literacy skills or user education programmes. This qualitative study uses the diary, emails interaction and in depth face to face interview approach involving 14 final year Computer Science and Information Tec...

  11. Using Analogy Role-Play Activity in an Undergraduate Biology Classroom to Show Central Dogma Revision

    Science.gov (United States)

    Takemura, Masaharu; Kurabayashi, Mario

    2014-01-01

    For the study of biology in an undergraduate classroom, a classroom exercise was developed: an analogy role-play to learn mechanisms of gene transcription and protein translation (central dogma). To develop the central dogma role-play exercise, we made DNA and mRNA using paper sheets, tRNA using a wire dress hanger, and amino acids using Lego®…

  12. What is the perception of biological risk by undergraduate nursing students?

    Science.gov (United States)

    Moreno-Arroyo, Mª Carmen; Puig-Llobet, Montserrat; Falco-Pegueroles, Anna; Lluch-Canut, Maria Teresa; García, Irma Casas; Roldán-Merino, Juan

    2016-01-01

    Abstract Objective: to analyze undergraduate nursing students' perception of biological risk and its relationship with their prior practical training. Method: a descriptive cross-sectional study was conducted among undergraduate nursing students enrolled in clinical practice courses in the academic year 2013-2014 at the School of Nursing at the University of Barcelona. Variables: sociodemographic variables, employment, training, clinical experience and other variables related to the assessment of perceived biological risk were collected. Both a newly developed tool and the Dimensional Assessment of Risk Perception at the worker level scale (Escala de Evaluación Dimensional del Riesgo Percibido por el Trabajador, EDRP-T) were used. Statistical analysis: descriptive and univariate analysis were used to identify differences between the perception of biological risk of the EDRP-T scale items and sociodemographic variables. Results: students without prior practical training had weaker perceptions of biological risk compared to students with prior practical training (p=0.05 and p=0.04, respectively). Weaker perceptions of biological risk were found among students with prior work experience. Conclusion: practical training and work experience influence the perception of biological risk among nursing students. PMID:27384468

  13. DATABASES DEVELOPED IN INDIA FOR BIOLOGICAL SCIENCES

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    2017-09-01

    databases have also helped in development of novel data mining methods, prediction strategies and data driven application software or web servers. In this article, we give an overview of biological databases developed in India and their impact on data driven research in biology. We also provide some suggestions for planning training programs in biological data science for making transitions to big data revolution in biology by combining advanced techniques like Deep Learning with biological big data.

  14. A Computer Security Course in the Undergraduate Computer Science Curriculum.

    Science.gov (United States)

    Spillman, Richard

    1992-01-01

    Discusses the importance of computer security and considers criminal, national security, and personal privacy threats posed by security breakdown. Several examples are given, including incidents involving computer viruses. Objectives, content, instructional strategies, resources, and a sample examination for an experimental undergraduate computer…

  15. Group processing in an undergraduate biology course for preservice teachers: Experiences and attitudes

    Science.gov (United States)

    Schellenberger, Lauren Brownback

    Group processing is a key principle of cooperative learning in which small groups discuss their strengths and weaknesses and set group goals or norms. However, group processing has not been well-studied at the post-secondary level or from a qualitative or mixed methods perspective. This mixed methods study uses a phenomenological framework to examine the experience of group processing for students in an undergraduate biology course for preservice teachers. The effect of group processing on students' attitudes toward future group work and group processing is also examined. Additionally, this research investigated preservice teachers' plans for incorporating group processing into future lessons. Students primarily experienced group processing as a time to reflect on past performance. Also, students experienced group processing as a time to increase communication among group members and become motivated for future group assignments. Three factors directly influenced students' experiences with group processing: (1) previous experience with group work, (2) instructor interaction, and (3) gender. Survey data indicated that group processing had a slight positive effect on students' attitudes toward future group work and group processing. Participants who were interviewed felt that group processing was an important part of group work and that it had increased their group's effectiveness as well as their ability to work effectively with other people. Participants held positive views on group work prior to engaging in group processing, and group processing did not alter their atittude toward group work. Preservice teachers who were interviewed planned to use group work and a modified group processing protocol in their future classrooms. They also felt that group processing had prepared them for their future professions by modeling effective collaboration and group skills. Based on this research, a new model for group processing has been created which includes extensive

  16. Practicing the triad teaching-research- extension in supervised internship of licentiateship in biological sciences

    Directory of Open Access Journals (Sweden)

    Lilliane Miranda Freitas

    2012-06-01

    Full Text Available In this paper we report an educational experience based on the triad teaching-research-extension occurred in the supervised internship in licentiateship in Biological Sciences. In this experiment, the students made a transposition of the scientific knowledge produced in their course conclusion work to the knowledge of basic education curriculum. We analyze in this article the impressions of undergraduates after completion of pedagogical actions. We discuss, based on the reports, how the knowledge that is constructed and reconstructed in academic research can contribute directly to the improvement of the science education quality through science literacy and also in teacher training of undergraduates, through the reflection on their own practice. Therefore, we consider that, with the practice of the inseparability of teaching-research-extension, there will be more return for academic research and also for the school community, generating significant changes in educational practices in schools

  17. International Journal of Biological and Chemical Sciences: Contact

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: Contact. Journal Home > About the Journal > International Journal of Biological and Chemical Sciences: Contact. Log in or Register to get access to full text downloads.

  18. Archives: International Journal of Biological and Chemical Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 61 ... Archives: International Journal of Biological and Chemical Sciences. Journal Home > Archives: International Journal of Biological and Chemical Sciences. Log in or Register to get access to full text downloads.

  19. International Journal of Biological and Chemical Sciences: About ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: About this journal. Journal Home > International Journal of Biological and Chemical Sciences: About this journal. Log in or Register to get access to full text downloads.

  20. How to engage undergraduate students in Soil Science: some strategies to enhance their motivation

    Science.gov (United States)

    Zornoza, Raúl; Lozano-García, Beatriz; Acosta, Jose A.; Martínez-Martínez, Silvia; Parras-Alcántara, Luis; Faz, Angel

    2017-04-01

    Teaching soil science can be a challenge in those degrees where students are not familiar with the soil system and do not understand the importance of soil science for their future career. This is the case of students of Biology, Agronomy or Environmental Science, who normally consider soil as a mere substrate for vegetation development, with no interest about how soil determines productivity and quality of terrestrial ecosystems. Thus, students lack of initial motivation to study Soil Science, and just attend lectures and practical lessons as mandatory procedure to get the degree. To engage undergraduate students from Biology, Agronomy and Environmental Sciences in Soil Science, we developed a strategy to enhance their motivation by means of making them participants of the selection of the soils and analyses used for their training. By means of dichotomous keys, students, grouped in pairs, first select the main purpose of their study from different options (land productivity, soil biodiversity, soil fertility, effectiveness of restoration, effect of land use, effect of management, etc). Once objective is decided, we give them some information about sampling strategies, so that they select how soil sampling is going to be performed, and the number of samples to be taken. In terms of the initial objective, they also decide from a given list the properties they should measure. In a practical basis, from the list of selected properties to be measured, professors decide the ones they can really develop in terms of timing, resources and space demand. After that, they are aware about the fact that they have an experimental design developed by them to achieve the goal they meant. Under this perspective, their motivation is enhanced since students are the ones deciding what to study in terms of their personal and professional interests, so that learning is more effective. The negative aspect of this strategy is that it involves many hours of tutorials for the professor

  1. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences

    Science.gov (United States)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.

    2000-01-01

    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  2. Utilization of Electronic Information Resources by Undergraduate Students of University of Ibadan: A Case Study of Social Sciences and Education

    Science.gov (United States)

    Owolabi, Sola; Idowu, Oluwafemi A.; Okocha, Foluke; Ogundare, Atinuke Omotayo

    2016-01-01

    The study evaluated utilization of electronic information resources by undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan. The study adopted a descriptive survey design with a study population of 1872 undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan, from which a…

  3. How Our Biology Constrains Our Science

    Directory of Open Access Journals (Sweden)

    Vlerick Michael

    2017-04-01

    Full Text Available Reasoning from a naturalistic perspective, viewing the mind as an evolved biological organ with a particular structure and function, a number of influential philosophers and cognitive scientists claim that science is constrained by human nature. How exactly our genetic constitution constrains scientific representations of the world remains unclear. This is problematic for two reasons. Firstly, it often leads to the unwarranted conclusion that we are cognitively closed to certain aspects or properties of the world. Secondly, it stands in the way of a nuanced account of the relationship between our cognitive and perceptual wiring and scientific theory. In response, I propose a typology or classification of the different kinds of biological constraints and their sources on science. Using Boden’s (1990 notion of a conceptual space, I distinguish between constraints relating to the ease with which we can reach representations within our conceptual space (which I call ‘biases’ and constraints causing possible representations to fall outside of our conceptual space. This last kind of constraints does not entail that some aspects or properties of the world cannot be represented by us – as argued by advocates of ‘cognitive closure’ – merely that some ways of representing the world are inaccessible to us. It relates to what Clark (1986 and Rescher (1990 have framed as ‘the alien scientist hypothesis’ (the possibility that alien scientists, endowed with radically different cognitive abilities, could produce representations of the world that are unintelligible to us. The purpose of this typology is to provide some much needed clarity and structure to the debate about biological constraints on science.

  4. Russian science readings (chemistry, physics, biology)

    CERN Document Server

    Light, L

    1949-01-01

    Some years' experience in teaching Russian to working scientists who had already acquired the rudiments of the grammar convinced me of the need for a reader of the present type that would smooth the path of those wishing to study Russian scientific literature in the original. Although the subject matter comprises what I have described for convenience as chemistry, physics and biology, it could be read with equal profit by those engaged in any branch of pure or applied science. All the passages are taken from school textbooks, and acknowledgements are due to the authors of the works listed at the foot of the contents page.

  5. Green Chemistry and Sustainability: An Undergraduate Course for Science and Nonscience Majors

    Science.gov (United States)

    Gross, Erin M.

    2013-01-01

    An undergraduate lecture course in Green Chemistry and Sustainability has been developed and taught to a "multidisciplinary" group of science and nonscience majors. The course introduced students to the topics of green chemistry and sustainability and also immersed them in usage of the scientific literature. Through literature…

  6. Management Science in U.S. AACSB International-Accredited Core Undergraduate Business School Curricula

    Science.gov (United States)

    Palocsay, Susan W.; Markham, Ina S.

    2014-01-01

    In 2003, accreditation standards were revised to require coverage of management science (MS) after previously removing it in 1991. Meanwhile, increasing awareness of the value of business analytics stimulated a renewed interest in MS. To examine its present status in undergraduate core business curricula, the authors conducted two studies to…

  7. Broadening the voice of science: Promoting scientific communication in the undergraduate classroom.

    Science.gov (United States)

    Cirino, Lauren A; Emberts, Zachary; Joseph, Paul N; Allen, Pablo E; Lopatto, David; Miller, Christine W

    2017-12-01

    Effective and accurate communication of scientific findings is essential. Unfortunately, scientists are not always well trained in how to best communicate their results with other scientists nor do all appreciate the importance of speaking with the public. Here, we provide an example of how the development of oral communication skills can be integrated with research experiences at the undergraduate level. We describe our experiences developing, running, and evaluating a course for undergraduates that complemented their existing undergraduate research experiences with instruction on the nature of science and intensive training on the development of science communication skills. Students delivered science talks, research monologues, and poster presentations about the ecological and evolutionary research in which they were involved. We evaluated the effectiveness of our approach using the CURE survey and a focus group. As expected, undergraduates reported strong benefits to communication skills and confidence. We provide guidance for college researchers, instructors, and administrators interested in motivating and equipping the next generation of scientists to be excellent science communicators.

  8. Lessons Learned from Undergraduate Students in Designing a Science-Based Course in Bioethics

    Science.gov (United States)

    Loike, John D.; Rush, Brittany S.; Schweber, Adam; Fischbach, Ruth L.

    2013-01-01

    Columbia University offers two innovative undergraduate science-based bioethics courses for student majoring in biosciences and pre-health studies. The goals of these courses are to introduce future scientists and healthcare professionals to the ethical questions they will confront in their professional lives, thus enabling them to strategically…

  9. Factors Influencing Achievement in Undergraduate Social Science Research Methods Courses: A Mixed Methods Analysis

    Science.gov (United States)

    Markle, Gail

    2017-01-01

    Undergraduate social science research methods courses tend to have higher than average rates of failure and withdrawal. Lack of success in these courses impedes students' progression through their degree programs and negatively impacts institutional retention and graduation rates. Grounded in adult learning theory, this mixed methods study…

  10. Factors Contributing to the Success of Undergraduate Business Students in Management Science Courses

    Science.gov (United States)

    Brookshire, Robert G.; Palocsay, Susan W.

    2005-01-01

    The introductory management science (MS) course has historically been recognized as one of the most difficult core courses in the business school curriculum. This study uses multiple regression to examine the factors that contribute to the success of undergraduate business students in an MS course, based on data gathered from the college…

  11. Citation Behavior of Undergraduate Students: A Study of History, Political Science, and Sociology Papers

    Science.gov (United States)

    Hendley, Michelle

    2012-01-01

    The goal of this analysis was to obtain local citation behavior data on undergraduates researching history, political science, and sociology papers. The study found that students cited books and journals even with the availability of web sources; however, usage varied by subject. References to specific websites' domains also varied across subject…

  12. Cross-Disciplinary Thermoregulation and Sweat Analysis Laboratory Experiences for Undergraduate Chemistry and Exercise Science Students

    Science.gov (United States)

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A.

    2011-01-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two…

  13. A Photovoltaics Module for Incoming Science, Technology, Engineering and Mathematics Undergraduates

    Science.gov (United States)

    Dark, Marta L.

    2011-01-01

    Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and…

  14. Exploring Undergraduates' Perceptions of the Use of Active Learning Techniques in Science Lectures

    Science.gov (United States)

    Welsh, Ashley J.

    2012-01-01

    This paper examines students' mixed perceptions of the use of active learning techniques in undergraduate science lectures. Written comments from over 250 students offered an in-depth view of why students perceive these techniques as helping or hindering their learning and experience. Fourth- and fifth-year students were more likely to view…

  15. Connecting Self-Efficacy and Views about the Nature of Science in Undergraduate Research Experiences

    Science.gov (United States)

    Quan, Gina M.; Elby, Andrew

    2016-01-01

    Undergraduate research can support students' more central participation in physics. We analyze markers of two coupled shifts in participation: changes in students' views about the nature of science coupled to shifts in self-efficacy toward physics research. Students in the study worked with faculty and graduate student mentors on research projects…

  16. Undergraduate Involvement in Extracurricular Activities and Leadership Development in College of Agriculture and Life Sciences Students

    Science.gov (United States)

    Foreman, Elizabeth A.; Retallick, Michael S.

    2012-01-01

    The purpose of this study was to identify and describe experiences of undergraduate extracurricular involvement that result in increased leadership development. Senior students in the College of Agriculture and Life Sciences at Iowa State University completed an online questionnaire about their extracurricular experiences. Leadership development…

  17. Tiered Internship Model for Undergraduate Students in Geospatial Science and Technology

    Science.gov (United States)

    Kopteva, Irina A.; Arkowski, Donna; Craft, Elaine L.

    2015-01-01

    This article discusses the development, implementation, and evaluation of a tiered internship program for undergraduate students in geospatial science and technology (TIMSGeoTech). The internship program assists education programs in providing skill development that is relevant and useful, and it aligns graduates and their skills with industry…

  18. Six classroom exercises to teach natural selection to undergraduate biology students.

    Science.gov (United States)

    Kalinowski, Steven T; Leonard, Mary J; Andrews, Tessa M; Litt, Andrea R

    2013-01-01

    Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural selection and also include discussions on sexual selection, molecular evolution, evolution of complex traits, and the evolution of behavior. The set of six topics gives students the opportunity to see how natural selection operates in a variety of contexts. Pre- and postinstruction testing showed students' understanding of natural selection increased substantially after completing this series of learning activities. Testing throughout this unit showed steadily increasing student understanding, and surveys indicated students enjoyed the activities.

  19. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    Hennie

    South African Journal of Education, Volume 35, Number 1, February 2015. 1 ... Department of Science and Technology Education, Faculty of Education, University of Johannesburg, South Africa ... Keywords: Biology textbooks; Life Sciences textbooks; nature of science; school science curriculum; science textbook analysis.

  20. Are UK undergraduate Forensic Science degrees fit for purpose?

    Science.gov (United States)

    Welsh, Charles; Hannis, Marc

    2011-09-01

    In October 2009 Skills for Justice published the social research paper 'Fit for purpose?: Research into the provision of Forensic Science degree programmes in UK Higher Education Institutions.' The research engaged employers representing 95% of UK Forensic Science providers and 79% of UK universities offering Forensic Science or Crime Scene degree programmes. In addition to this, the research collected the views of 430 students studying these degrees. In 2008 there were approximately 9000 people working in the Forensic Science sector in the UK. The research found that the numbers of students studying Forensic Science or Crime Scene degrees in the UK have more than doubled since 2002-03, from 2191 in to 5664 in 2007-08. Over the same period there were twice as many females as males studying for these degrees. The research concluded that Forensic Science degree programmes offered by UK universities were of a good quality and they provided the student with a positive learning experience but the content was not relevant for Forensic Science employers. This echoed similar research by the former Government Department for Innovation, Universities and Skills on graduates from wider science, technology, engineering and mathematics degree programmes. The research also found that 75% of students studying Forensic Science or Crime Scene degrees expected to have a career in the Forensic Science sector, meaning that ensuring these courses are relevant for employers is a key challenge for universities. This paper reflects on the original research and discusses the implications in light of recent government policy. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Mutualism in museums: A model for engaging undergraduates in biodiversity science.

    Science.gov (United States)

    Hiller, Anna E; Cicero, Carla; Albe, Monica J; Barclay, Theresa L W; Spencer, Carol L; Koo, Michelle S; Bowie, Rauri C K; Lacey, Eileen A

    2017-11-01

    Museums have an untapped potential to engage students in hands-on learning. Here, we describe the development of a tiered museum-based program at the University of California, Berkeley as a model for engaging undergraduates in biodiversity science. This decade-long effort to increase student participation in collections demonstrates the mutual benefits of undergraduate involvement. Museums benefit from critical help in collections care and an increased intellectual vitality, while students simultaneously gain essential research skills and an unparalleled exposure to biodiversity. Five first steps to creating a program are: dedicate a coordinator, offer credit, diversify participation, create a tiered structure, and build community.

  2. Mutualism in museums: A model for engaging undergraduates in biodiversity science

    Science.gov (United States)

    Cicero, Carla; Albe, Monica J.; Barclay, Theresa L. W.; Spencer, Carol L.; Koo, Michelle S.; Bowie, Rauri C. K.; Lacey, Eileen A.

    2017-01-01

    Museums have an untapped potential to engage students in hands-on learning. Here, we describe the development of a tiered museum-based program at the University of California, Berkeley as a model for engaging undergraduates in biodiversity science. This decade-long effort to increase student participation in collections demonstrates the mutual benefits of undergraduate involvement. Museums benefit from critical help in collections care and an increased intellectual vitality, while students simultaneously gain essential research skills and an unparalleled exposure to biodiversity. Five first steps to creating a program are: dedicate a coordinator, offer credit, diversify participation, create a tiered structure, and build community. PMID:29161253

  3. Kimchi: Spicy Science for the Undergraduate Microbiology Laboratory

    Directory of Open Access Journals (Sweden)

    Virginia A. Young

    2014-02-01

    Full Text Available Undergraduate microbiology courses offer a perfect opportunity to introduce students to historical food preservation processes that are still in use today. The fermentation of vegetables, as occurs in the preparation of sauerkraut and kimchi, uses an enrichment step to select for the growth of naturally occurring lactic acid bacteria (LAB.  This is an active learning exercise in which students learn a food preparation skill and basic microbiological terms such as selection and enrichment.  When performed in conjunction with cultured fermentations, such as yogurt making, students can see the difference between fermentations by naturally occurring microorganisms versus inoculated microorganisms. Additionally, this exercise introduces students to concepts of food safety, intrinsic factors influencing microbial growth such as pH, and cultural uses of fermentation to preserve locally available foods.

  4. Exploring the MACH Model's Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of…

  5. Undergraduate female science-related career choices: A phenomenological study

    Science.gov (United States)

    Curry, Kathy S.

    This qualitative phenomenological study used a modified Groenewald's five steps method with semi-structured, recorded, and transcribed interviews to focus on the underrepresentation of females in science-related careers. The study explored the lived experiences of a purposive sample of 25 senior female college students attending a college in Macon, Georgia. Ten major themes emerged from the research study that included (a) journey to a science-related career; (b) realization of career interest; (c) family support (d) society's role; (e) professors' treatment of students; (f) lack of mentors and models; (g) gender and career success; (h) females and other disadvantages in science-related careers; (i) rewards of the journey; and (j) advice for the journey. The three minor themes identified were (a) decision-making; (b) career awareness; and (c) guidance. The key findings revealed that females pursuing a science degree or subsequent science-related career, shared their experience with other females interested in science as a career choice, dealt with barriers standing in the way of their personal goals, lack role models, and received little or no support from family and friends. The study findings may offer information to female college students interested in pursuing science-related careers and further foundational research on gender disparities in career choice.

  6. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology ...

  7. Self Reflections of Undergraduate Students on Using Web-Supported Counterintuitive Science Demonstrations

    Science.gov (United States)

    Kumar, David Devraj; Dunn, Jessica

    2018-03-01

    Analysis of self-reflections of undergraduate education students in a project involving web-supported counterintuitive science demonstrations is reported in this paper. Participating students (N = 19) taught science with counterintuitive demonstrations in local elementary school classrooms and used web-based resources accessed via wireless USB adapters. Student reflections to seven questions were analyzed qualitatively using four components of reflection (meeting objectives/perception of learning, dynamics of pedagogy, special needs accommodations, improving teaching) deriving 27 initial data categories and 12 emergent themes. Overall the undergraduates reported meeting objectives, engaging students in pedagogically relevant learning tasks including, providing accommodations to students with special needs, and gaining practice and insight to improve their own teaching. Additional research is needed to arrive at generalizable findings concerning teaching with web-supported counterintuitive science demonstrations in elementary classrooms.

  8. Methods used for Undergraduate Education at the University of Alaska Southeast Environmental Sciences Program

    Science.gov (United States)

    Heavner, M. J.; Hood, E. W.; Connor, C. L.

    2004-12-01

    The Environmental Science Program at the University of Alaska Southeast in Juneau, Alaska utilizes our unique outdoor field experience opportunities as part of both the classroom experience and our undergraduate research component. This presentation focuses on our successes in taking advantage of our surrounding environment in the maritime rainforest of the Alaska panhandle to enhance our undergraduate program. We will highlight some of our most successful undergraduate experiences, which include a snow pack monitoring site at our local ski area, glacier mass balance studies on the Mendenhall Glacier, glacial geology studies in Glacier Bay National Park, and the development of wireless networks to monitor bats. We will describe methods we have used to integrate the field opportunities into our program.

  9. Undergraduate Research or Research-Based Courses: Which Is Most Beneficial for Science Students?

    Science.gov (United States)

    Olivares-Donoso, Ruby; González, Carlos

    2017-06-01

    Over the last 25 years, both research literature and practice-oriented reports have claimed the need for improving the quality of undergraduate science education through linking research and teaching. Two manners of doing this are reported: undergraduate research and research-based courses. Although there are studies reporting benefits of participating in these experiences, few synthesize their findings. In this article, we present a literature review aimed at synthesizing and comparing results of the impact of participating in these research experiences to establish which approach is most beneficial for students to develop as scientists. Twenty studies on student participation in undergraduate research and research-based courses were reviewed. Results show that both types of experiences have positive effects on students. These results have implications for both practice and research. Regarding practice, we propose ideas for designing and implementing experiences that combine both types of experiences. Concerning research, we identify some methodological limitations that should be addressed in further studies.

  10. Is Reintroduction Biology an Effective Applied Science?

    Science.gov (United States)

    Taylor, Gemma; Canessa, Stefano; Clarke, Rohan H; Ingwersen, Dean; Armstrong, Doug P; Seddon, Philip J; Ewen, John G

    2017-11-01

    Reintroduction biology is a field of scientific research that aims to inform translocations of endangered species. We review two decades of published literature to evaluate whether reintroduction science is evolving in its decision-support role, as called for by advocates of evidence-based conservation. Reintroduction research increasingly addresses a priori hypotheses, but remains largely focused on short-term population establishment. Similarly, studies that directly assist decisions by explicitly comparing alternative management actions remain a minority. A small set of case studies demonstrate full integration of research in the reintroduction decision process. We encourage the use of tools that embed research in decision-making, particularly the explicit consideration of multiple management alternatives because this is the crux of any management decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  12. Science as a general education: Conceptual science should constitute the compulsory core of multi-disciplinary undergraduate degrees.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    It is plausible to assume that in the future science will form the compulsory core element both of school curricula and multi-disciplinary undergraduate degrees. But for this to happen entails a shift in the emphasis and methods of science teaching, away from the traditional concern with educating specialists and professionals. Traditional science teaching was essentially vocational, designed to provide precise and comprehensive scientific knowledge for practical application. By contrast, future science teaching will be a general education, hence primarily conceptual. Its aim should be to provide an education in flexible rationality. Vocational science teaching was focused on a single-discipline undergraduate degree, but a general education in abstract systematic thinking is best inculcated by studying several scientific disciplines. In this sense, 'science' is understood as mathematics and the natural sciences, but also the abstract and systematic aspects of disciplines such as economics, linguistics, music theory, history, sociology, political science and management science. Such a wide variety of science options in a multi-disciplinary degree will increase the possibility of student motivation and aptitude. Specialist vocational science education will progressively be shifted to post-graduate level, in Masters and Doctoral programs. A multi-disciplinary and conceptually-based science core curriculum should provide an appropriate preparation for dealing with the demands of modern societies; their complex and rapidly changing social systems; and the need for individual social and professional mobility. Training in rational conceptual thinking also has potential benefits to human health and happiness, since it allows people to over-ride inappropriate instincts, integrate conflicting desires and pursue long-term goals.

  13. Minimum Learning Essentials: Science. Chemistry, Earth Science, Biology, Physics, General Science. Experimental Edition 0/4.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This guide presents the "minimum teaching essentials" published by the New York City Board of Education, for science education in grades 9-12. Covered are: biology, physics, earth science, and chemistry. Work study skills for all subjects are given with content areas, performance objectives, and suggested classroom activities. (APM)

  14. Opportunities in Biological Sciences; [VGM Career Horizons Series].

    Science.gov (United States)

    Winter, Charles A.

    This book provides job descriptions and discusses career opportunities in various fields of the biological sciences. These fields include: (1) biotechnology, genetics, biomedical engineering, microbiology, mycology, systematic biology, marine and aquatic biology, botany, plant physiology, plant pathology, ecology, and wildlife biology; (2) the…

  15. Impact of Undergraduate Research Mentorship Affects on Student Desire, Confidence and Motivation to Continue Work in Science

    Science.gov (United States)

    Salm, Ann E.

    2015-01-01

    The quantitative Undergraduate Research Questionnaire (URQ) is used to assess the impact of undergraduate research mentorship affects, such as informal conversations, supportive faculty and/or peer interactions, on student confidence and motivation to continue working, learning or researching in the sciences (Taraban & Logue, 2012). Research…

  16. A Blueprint for Expanding the Mentoring Networks of Undergraduate Women in the Earth and Environmental Sciences

    Science.gov (United States)

    Fischer, E. V.; Adams, A. S.; Barnes, R.; Bloodhart, B.; Burt, M. A.; Clinton, S. M.; Godfrey, E. S.; Pollack, I. B.; Hernandez, P. R.

    2017-12-01

    Women are substantially underrepresented in the earth and environmental sciences, and that underrepresentation begins at the undergraduate level. In fall 2015, an interdisciplinary team including expertise in the broader geosciences as well as gender and quantitative educational psychology began a project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in the geosciences. The program focuses on mentoring 1st and 2nd year female undergraduate students from five universities in Colorado and Wyoming and four universities in North and South Carolina. The mentoring program includes a weekend workshop, access to professional women across geoscience fields, and both in-person and virtual peer networks. We have found that undergraduate women with large mentoring networks, that include faculty mentors, are more likely to identify as scientists and are more committed to pursuing the geosciences. Our presentation will provide an overview of the major components of our effective and scalable program. We will include a discussion of our first published results in the context of larger social science research on how to foster effective mentoring relationships. We will offer a list of successes and challenges, and we will provide the audience with online links to the materials needed to adopt our model (https://geosciencewomen.org/materials/).

  17. Persistence of deaf students in science, technology, engineering, and mathematics undergraduate programs

    Science.gov (United States)

    Marchut, Amber E.

    Diversifying the student population and workforce under science, technology, engineering, and mathematics (STEM) is a necessity if innovations and creativity are to expand. There has not been a lot of literature regarding Deaf students in STEM especially regarding understanding how they persist in STEM undergraduate programs to successfully become STEM Bachelor of Science degree recipients. This study addresses the literature gap by investigating six students' experiences as they navigate their STEM undergraduate programs. The investigation uses narrative inquiry methodology and grounded theory method through the lens of Critical Race Theory and Critical Deaf Theory. Using videotaped interviews and observations, their experiences are highlighted using narratives portraying them as individuals surviving in a society that tends to perceive being deaf as a deficit that needs to be treated or cured. The data analysis also resulted in a conceptual model providing a description of how they persist. The crucial aspect of the conceptual model is the participants learned how to manage being deaf in a hearing-dominated society so they can reach their aspirations. The essential blocks for the persistence and managing their identities as deaf undergraduate STEMs include working harder, relying on familial support, and affirming themselves. Through the narratives and conceptual model of the six Deaf STEM undergraduates, the goal is to contribute to literature to promote a better understanding of the persistence of Deaf students, members of a marginalized group, as they pursue their dreams.

  18. Social Networking among Library and Information Science Undergraduate Students

    Science.gov (United States)

    Alakpodia, Onome Norah

    2015-01-01

    The purpose of this study was to examine social networking use among Library and Information Science students of the Delta State University, Abraka. In this study, students completed a questionnaire which assessed their familiarity with social networking sites, the purpose for which they use social networking site and their most preferred sites to…

  19. Epistemological Predictors of Prospective Biology Teachers' Nature of Science Understandings

    Science.gov (United States)

    Köseoglu, Pinar; Köksal, Mustafa Serdar

    2015-01-01

    The purpose of this study was to investigate epistemological predictors of nature of science understandings of 281 prospective biology teachers surveyed using the Epistemological Beliefs Scale Regarding Science and the Nature of Science Scale. The findings on multiple linear regression showed that understandings about definition of science and…

  20. Longitudinal effects of college type and selectivity on degrees conferred upon undergraduate females in physical science, life science, math and computer science, and social science

    Science.gov (United States)

    Stevens, Stacy Mckimm

    There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.

  1. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students’ outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from “knowledge transmitters” to “role model scientists.” PMID:23222836

  2. Peer learning and support of technology in an undergraduate biology course to enhance deep learning.

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students' outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from "knowledge transmitters" to "role model scientists."

  3. Facilitating awareness of philosophy of science, ethics and communication through manual skills training in undergraduate education.

    Science.gov (United States)

    Kordahl, Hilde Lund; Fougner, Marit

    2017-03-01

    Professional health science education includes a common theoretical basis concerning the theory of science, ethics and communication. Former evaluations by first-year students of the bachelor physiotherapy program at Oslo and Akershus University College of Applied Sciences (HiOA) show that they find it hard to understand the relation between these particular topics and future professional practice. This challenge is the starting point for a pedagogical development project that aims to develop learning contexts that highlight the relevance of these theoretical concepts. The aim of the study is to explore and present findings on the value of using Sykegrep manual skills classes as an arena in which students can be encouraged to think about, reflect on and appreciate the role and value of the philosophical perspectives that inform their practice and contributes to practise knowledge. A qualitative study with data collection through focus groups was performed and analyzed using thematic content analysis. Eighteen first-year undergraduate students, who had completed the manual skills course, participated in the study. Analysis of the data yielded three categories of findings that can be associated with aspects of philosophy of science, ethics and communication. These are as follows: 1) preconceived understanding of physiotherapy; 2) body knowledge perspectives; and 3) relational aspects of interactions. Undergraduate students' understanding and experience of philosophy of science, ethics and communication may be facilitated by peer collaboration, reflection on intimacy and touch and the ethical aspects of interaction during manual skills training. Practical classes in Sykegrep provide a basis for students' discussions about the body as well as their experiences with the body in the collaborative learning context. The students' reflections on their expectations of manual skills in physiotherapy and experiences of touch and being touched can facilitate an awareness of

  4. Development of research paper writing skills of poultry science undergraduate students studying food microbiology.

    Science.gov (United States)

    Howard, Z R; Donalson, L M; Kim, W K; Li, X; Zabala Díaz, I; Landers, K L; Maciorowski, K G; Ricke, S C

    2006-02-01

    Because food and poultry industries are demanding an improvement in written communication skills among graduates, research paper writing should be an integral part of a senior undergraduate class. However, scientific writing assignments are often treated as secondary to developing the technical skills of the students. Scientific research paper writing has been emphasized in an undergraduate course on advanced food microbiology taught in the Poultry Science Department at Texas A& M University (College Station, TX). Students' opinions suggest that research paper writing as part of a senior course in Poultry Science provides students with scientific communication skills and useful training for their career, but more emphasis on reading and understanding scientific literature may be required.

  5. An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors

    Science.gov (United States)

    Cade, W. B., III

    2016-12-01

    Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.

  6. Radiochemistry course in the undergraduate nuclear science program at Universiti Kebangsaan Malaysia

    International Nuclear Information System (INIS)

    Sarmani, S.B.; Yahaya, R.B.; Yasir, M.S.; Majid, A.Ab.; Khoo, K.S.; Rahman, I.A.; Mohamed, F.

    2015-01-01

    Universiti Kebangsaan Malaysia offered an undergraduate degree program in Nuclear Science since 1980 and the programme has undergone several modifications due to changes in national policy and priority. The programme covers nuclear sub-disciplines such as nuclear physics, radiobiology, radiochemistry, radiation chemistry and radiation safety. The radiochemistry component consists of radiochemistry, chemistry in nuclear industry, radiochemical analysis laboratory, radiopharmaceutical chemistry subjects and mini research project in radiochemistry. (author)

  7. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  8. Benefits and Limitations of Online Instruction in Natural Science Undergraduate Liberal Arts Courses

    Science.gov (United States)

    Liddicoat, Joseph; Roberts, Godfrey; Liddicoat, Kendra; Porzecanski, Ana Luz; Mendez, Martin; McMullen, David

    2013-04-01

    Online courses in the Natural Sciences are taught three ways at New York University to undergraduate students majoring in the liberal arts and professional programs - synchronous courses in which students communicate online with the instructor and classmates in real time, asynchronous courses when faculty present course material for students to access and learn at their leisure, and hybrid or blended courses when part is taught asynchronously and part is taught face-to-face in a classroom with all students present. We have done online courses each way - Global Ecology (synchronous); Stars, Planets, and Life (synchronous and asynchronous); Darwin to DNA: An Overview of Evolution (asynchronous); Biodiversity Conservation (asynchronous); and Biology of Hunger and Population (blended). We will present the advantages and challenges we experienced teaching courses online in this fashion. Besides the advantages listed in the description for this session, another can be programmed learning that allows a set of sequential steps or a more complex branching of steps that allows students to repeat lessons multiple times to master the material. And from an academic standpoint, course content and assessment can be standardized, making it possible for each student to learn the same material. Challenges include resistance to online learning by a host of stakeholders who might be educators, students, parents, and the community. Equally challenging might be the readiness of instructors and students to teach and learn online. Student integrity issues such as plagiarism and cheating are a concern in a course taught online (Thormann and Zimmerman, 2012), so we will discuss our strategies to mitigate them.

  9. INTRODUCING SCIENCE BY DISTANCE EDUCATION TO UNDERGRADUATE STUDENTS

    Directory of Open Access Journals (Sweden)

    P. Avila Jr.

    2007-05-01

    Full Text Available Exponential growing of scientific and technological knowledge of nowadayssociety demands new abilities and competences of theirs citizens. In the otherhand, the development of Information and Communication Technologies (ICTsand the low cost of equipments provide a new teaching strategy, namely distanceeducation, through intranet or internet. The familiarity with of scientific methodstimulates autonomy in obtaining information, critical thinking and logical analysisof data. These are useful abilities for science students as well as for commoncitizens. Aiming the development of such abilities a distance course wasdeveloped in 45 hours, using mainly forum and chat in the Claroline platform withtechnical support of the Centro Nacional de Supercomputação da UFRGS. All thestudents attending the course were from Fundação Faculdade Federal deCiências Médicas de Porto Alegre. In this course the following topics wereexplored: (1 scientific knowledge x common sense, (2 different conceptions ofscience, (3 scientific method, (4 different categories of science publications, (5principles of Logic, (6 deduction x induction (7 paper analysis simulation.Scientific project writing was taught/learned through the following items: (1 choiceof a problem, (2 bibliography revision, (3 agencies for funding, (4 projectpresentation by videoconference and (5 analysis of results.The course was evaluated by Likert-type questionnaire and the results fromstudents and teachers indicate a very successful outcome.

  10. Experiences of undergraduate African health sciences students: A hermeneutic inquiry.

    Science.gov (United States)

    Inyama, Davis; Williams, Allison; McCauley, Kay

    2015-06-01

    While efforts have been made to understand the experiences of African students in predominantly white environments, the experiences of African students in clinical placement areas have rarely been explored. This paper is a report on a study designed to address the gap in educational research on the experiences of African health sciences students in clinical placements in predominantly white environments. Interviews adopting an open approach to conversations were conducted with nine African students from three health disciplines at one metropolitan university in Australia between 2012 and 2013. Interview transcripts were analyzed using philosophical hermeneutics, where shared meanings were arrived at by employing key Gadamerian hermeneutic components. Findings revealed a number of factors that had a direct effect on the meaning students derived from their clinical placement experiences. These, as revealed in the interlinked domains of body, space, relationships, and time included difference, acceptance, resilience, and cultural sensitivity. Insights from this study may lead to the adoption of strategies designed to improve the experiences of African students studying health sciences in predominantly white environments. © 2014 Wiley Publishing Asia Pty Ltd.

  11. Network science of biological systems at different scales: A review

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present

  12. Biology as an Integrating Natural Science Domain A Proposal for ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  13. The Genome Solver Website: A Virtual Space Fostering High Impact Practices for Undergraduate Biology

    Directory of Open Access Journals (Sweden)

    Anne G. Rosenwald

    2012-08-01

    Full Text Available While the tools for analysis of prokaryotic genomes are available on the internet and are relatively easy for undergraduates to master, the challenge lies with faculty inexperienced in teaching bioinformatics. To meet this challenge we developed the Genome Solver (GS website, a community of practice for faculty support and student learning. At the GS site, faculty can learn about face-to-face training opportunities or use the virtual training materials such as primers on the pertinent science, tools, and techniques. Faculty can also find colleagues engaged in similar work as well as relevant curricular materials. The GS site also helps facilitate sharing of student work, so that students can engage in peer-to-peer review. Finally, genomics experts also have a presence on GS and can weigh in on problems or discuss methods.  

  14. A look at spatial abilities in undergraduate women science majors

    Science.gov (United States)

    Lord, Thomas R.

    Contemporary investigations indicate that men generally perform significantly better in tasks involving visuo-spatial awareness than do women. Researchers have attempted to explain this difference through several hypotheses but as yet the reason for the dimorphism has not been established. Further, contemporary studies have indicated that enhancement of mental image formation and manipulation is possible when students are subjected to carefully designed spatial interventions. Present research was conducted to see if women in the sciences were as spatial perceptively accurate as their male counterparts. The researcher also was interested to find if the women that received the intervention excercises improved in their visuo-spatial awareness as rapidly as their male counterparts.The study was conducted on science majors at a suburban two year college. The population was randomly divided into groups (experimental, placebo, and control) each containing approximately the same number of men and women. All groups were given a battery of spatial perception tests (Ekstrom et al, 1976) at the onset of the winter semester and a second version of the battery at the conclusion of the semester. An analysis of variance followed by Scheffe contrasts were run on the results. The statistics revealed that the experimental group significantly outperformed the nonexperimental groups on the tests. When the differences between the mean scores for the women in the experimental group were statistically compared to those of the men in the experimental group the women were improving at a more rapid rate. Many women have the capacity to develop visuo-spatial aptitude and although they may start out behind men in spatial ability, they learn quickly and often catch up to the men's level when given meaningful visuo-spatial interventions.

  15. Undergraduates' Attitudes Toward Science and Their Epistemological Beliefs: Positive Effects of Certainty and Authority Beliefs

    Science.gov (United States)

    Fulmer, Gavin W.

    2013-08-01

    Attitudes toward science are an important aspect of students' persistence in school science and interest in pursuing future science careers, but students' attitudes typically decline over the course of formal schooling. This study examines relationships of students' attitudes toward science with their perceptions of science as inclusive or non-religious, and their epistemological beliefs about epistemic authority and certainty. Data were collected using an online survey system among undergraduates at a large, public US university (n = 582). Data were prepared using a Rasch rating scale model and then analyzed using multiple-regression analysis. Gender and number of science and mathematics courses were included as control variables, followed by perceptions of science, then epistemological beliefs. Findings show that respondents have more positive attitudes when they perceive science to be inclusive of women and minorities, and when they perceive science to be incompatible with religion. Respondents also have more positive attitudes toward science when they believe scientific knowledge is uncertain, and when they believe knowledge derives from authority. Interpretations of these findings and implications for future research are discussed.

  16. Undergraduates' Attitudes Toward Science and Their Epistemological Beliefs: Positive Effects of Certainty and Authority Beliefs

    Science.gov (United States)

    Fulmer, Gavin W.

    2014-02-01

    Attitudes toward science are an important aspect of students' persistence in school science and interest in pursuing future science careers, but students' attitudes typically decline over the course of formal schooling. This study examines relationships of students' attitudes toward science with their perceptions of science as inclusive or non-religious, and their epistemological beliefs about epistemic authority and certainty. Data were collected using an online survey system among undergraduates at a large, public US university (n = 582). Data were prepared using a Rasch rating scale model and then analyzed using multiple-regression analysis. Gender and number of science and mathematics courses were included as control variables, followed by perceptions of science, then epistemological beliefs. Findings show that respondents have more positive attitudes when they perceive science to be inclusive of women and minorities, and when they perceive science to be incompatible with religion. Respondents also have more positive attitudes toward science when they believe scientific knowledge is uncertain, and when they believe knowledge derives from authority. Interpretations of these findings and implications for future research are discussed.

  17. Introducing Taiwanese undergraduate students to the nature of science through Nobel Prize stories

    Directory of Open Access Journals (Sweden)

    Haim Eshach

    2013-04-01

    Full Text Available Although there is a broad agreement among scientists and science educators that students should not only learn science, but also acquire some sense of its nature, it has been reported that undergraduate students possess an inadequate grasp of the nature of science (NOS. The study presented here examined the potential and effectiveness of Nobel Prize stories as a vehicle for teaching NOS. For this purpose, a 36-hour course, “Albert Einstein’s Nobel Prize and the Nature of Science,” was developed and conducted in Taiwan Normal University. Ten undergraduate physics students participated in the course. Analysis of the Views of Nature of Science questionnaires completed by the students before and after the course, as well as the students’ own presentations of Nobel Prize stories (with an emphasis on how NOS characteristics are reflected in the story, showed that the students who participated in the course enriched their views concerning all aspects of NOS. The paper concludes with some suggestions for applying the novel idea of using Nobel Prize stories in physics classrooms.

  18. Science Instructors' Views of Science and Nature of Science

    Science.gov (United States)

    Karakas, Mehmet

    2011-01-01

    This qualitative study examined how college science faculty who teach introductory level undergraduate science courses including the fields of chemistry, biology, physics, and earth science, understand and define science and nature of science (NOS). Participants were seventeen science instructors from five different institutions in the…

  19. Engaging Undergraduate Education Majors in the Practice of Astronomy through a Coherent Science Content Storyline Course

    Science.gov (United States)

    Plummer, Julia; Palma, Christopher

    2015-08-01

    For the next generation of students to learn astronomy as both a body of knowledge and a process of continually extending, refining, and revising that knowledge, teachers at all levels must learn how to engage their students in the practices of astronomy. This begins by designing science coursework for undergraduate education majors in ways that reflect how we hope they will teach their own future students. We have designed an undergraduate astronomy course for elementary education majors around a coherent science content storyline (CSCS) framework in order to investigate methods that support education majors’ uptake of astronomy practices. CSCS instruction purposefully sequences lessons in ways that make explicit the connections between science ideas in order to move students towards increasingly sophisticated explanations for a single big idea in science. We used this framework to organize our course around a series of astronomical investigations that build towards a big idea in astronomy: how the formation model explains current patterns observed in the Solar System. Each investigation helps students begin to explain observations of the Solar System from a coherent, systems-based perspective as they make choices on how to design their own data collection and analysis strategies. Through these investigations, future teachers begin to view astronomy as a process of answering scientific questions using evidence-based explanations and model-based reasoning. The course design builds on our prior research into students’ ideas about Solar System phenomena and its formation as well as students’ ideas about how astronomers carry out investigations. Preliminary results, based on analysis of student conversations during in-class investigations, science notebook entries, and scientific reports, suggest that the course helps students learn to construct evidence-based explanations while also increasing the accuracy of the explanations for astronomical phenomena. We will

  20. Lecturing undergraduate science in Danish and in English

    DEFF Research Database (Denmark)

    Thøgersen, Jacob; Airey, John

    2011-01-01

    , and that the lecturer speaks 23% more slowly in L2 than in L1. In the second part of the paper these differences are investigated through a qualitative analysis of parallel extracts from the same data set. Here it is found that when teaching in English the lecturer uses a higher degree of repetition and adopts a more......This paper investigates the consequences of L2 use in university lectures. Data in the study stem from parallel lectures held by the same experienced lecturer in Danish (L1) and English (L2). It is found that the lecturer takes 22% longer to present the same content in L2 compared to L1...... formal and condensed style as compared to the rhetorical style in L1. Finally, the potential consequences of these quantitative and qualitative differences for student learning are discussed. Research highlights ¿ We analyse five science lectures: three in Danish (L1) and two in English (L2). ¿ The same...

  1. Lecturing undergraduate science in Danish and in English

    DEFF Research Database (Denmark)

    Thøgersen, Jacob; Airey, John

    2011-01-01

    formal and condensed style as compared to the rhetorical style in L1. Finally, the potential consequences of these quantitative and qualitative differences for student learning are discussed. Research highlights ¿ We analyse five science lectures: three in Danish (L1) and two in English (L2). ¿ The same......This paper investigates the consequences of L2 use in university lectures. Data in the study stem from parallel lectures held by the same experienced lecturer in Danish (L1) and English (L2). It is found that the lecturer takes 22% longer to present the same content in L2 compared to L1......, and that the lecturer speaks 23% more slowly in L2 than in L1. In the second part of the paper these differences are investigated through a qualitative analysis of parallel extracts from the same data set. Here it is found that when teaching in English the lecturer uses a higher degree of repetition and adopts a more...

  2. International Journal of Biological and Chemical Sciences: Editorial ...

    African Journals Online (AJOL)

    Focus and Scope. The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG). It is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, biochemistry, biophysics, molecular biology, physiology, ...

  3. Launching and Undergraduate Earth System Science Curriculum with a Focus on Global Sustainability: the Loma Linda University Experience

    Science.gov (United States)

    Ford, R. E.; Dunbar, S. G.; Soret, S.; Wiafe, S.; Gonzalez, D.; Rossi, T.

    2004-12-01

    The vision of the School of Science and Technology (SST) at Loma Linda University (LLU) is to develop an interdisciplinary approach to doing science that bridges the social, biological, earth, and health sciences. It will provide opportunities for undergraduate, graduate, and professional students to apply new tools and concepts to the promotion of global service and citizenship while addressing issues of global poverty, health and disease, environmental degradation, poverty, and social inequality. A primary teaching strategy will be to involve students with faculty in applied field social and science policy research on "global sustainability" issues and problems in real places such as Fiji, Jamaica, Honduras, Bahamas, East Africa, and the US southwest (Great Basin, Salton Sea, coastal California, southern Utah). Recently we became a partner in the NASA/USRA ESSE21 Project (Earth System Science Education for the 21st Century). We bring to that consortium strengths and experience in areas such as social policy, sustainable development, medicine, environmental health, disaster mitigation, humanitarian relief, geoinformatics and bioinformatics. This can benefit ESSE21, the NASA Earth Enterprise Mission, and the wider geosciences education community by demonstrating the relevance of such tools, and methods outside the geosciences. Many of the graduate and undergraduate students who will participate in the new program come from around the world while many others represent underserved populations in the United States. The PI and Co-PIs have strong global as well as domestic experience serving underrepresented communities, e.g. Seth Wiafe from Ghana, Sam Soret from Spain, Stephen Dunbar from the South Pacific, and Robert Ford from Latin America and Africa. Our partnership in implementation will include other institutions such as: La Sierra University, the California State University, Pomona, Center for Geographic Information Science Research, ESRI, Inc., the University of

  4. 78 FR 33115 - Biological Sciences Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-06-03

    ... education and CAREER programs, data management and access, and the draft NSF strategic plan for 2014-2018... NATIONAL SCIENCE FOUNDATION Biological Sciences Advisory Committee; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L., 92- 463, as amended), the National Science...

  5. This is Biology: The Science of the Living World

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 7. This is Biology: The Science of the Living World. S Mahadevan. Book Review ... Author Affiliations. S Mahadevan1. Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.

  6. Adherence and perceptions regarding simulation training in undergraduate health Sciences

    Directory of Open Access Journals (Sweden)

    Fernando Perpétuo Elias

    Full Text Available BACKGROUND: Simulation techniques are spreading rapidly in medicine. Suc h resources are increasingly concentrated in Simulation Laboratories. The MSRP-USP is structuring such a laboratory and is interested in the prevalence of individual initiatives that could be centralized there. The MSRP-USP currently has five full-curriculum courses in the health sciences: Medicine, Speech Therapy, Physical Therapy, Nutrition, and Occupational Therapy, all consisting of core disciplines. GOAL: To determine the prevalence of simulation techniques in the regular courses at MSRP-USP. METHODS: Coordinators of disciplines in the various courses were interviewed using a specifically designed semi-structured questionnaire, and all the collected data were stored in a dedicated database. The disciplines were grouped according to whether they used (GI or did not use (GII simulation resources. RESULTS AND DISCUSSION: 256 disciplines were analyzed, of which only 18.3% used simulation techniques, varying according to course: Medicine (24.7.3%, Occupational Therapy (23.0%, Nutrition (15.9%, Physical Therapy (9.8%, and Speech Therapy (9.1%. Computer simulation programs predominated (42.5% in all five courses. The resources were provided mainly by MSRP-USP (56.3%, with additional funding coming from other sources based on individual initiatives. The same pattern was observed for maintenance. There was great interest in centralizing the resources in the new Simulation Laboratory in order to facilitate maintenance, but there was concern about training and access to the material. CONCLUSIONS: 1 The MSRP-USP simulation resources show low complexity and are mainly limited to computer programs; 2 Use of simulation varies according to course, and is most prevalent in Medicine; 3 Resources are scattered across several locations, and their acquisition and maintenance depend on individual initiatives rather than central coordination or curricular guidelines

  7. Clinical medical sciences for undergraduate dental students in the United Kingdom and Ireland - a curriculum.

    LENUS (Irish Health Repository)

    Mighell, A J

    2011-08-01

    The technical aspects of dentistry need to be practised with insight into the spectrum of human diseases and illnesses and how these impact upon individuals and society. Application of this insight is critical to decision-making related to the planning and delivery of safe and appropriate patient-centred healthcare tailored to the needs of the individual. Provision for the necessary training is included in undergraduate programmes, but in the United Kingdom and Ireland there is considerable variation between centres without common outcomes. In 2009 representatives from 17 undergraduate dental schools in the United Kingdom and Ireland agreed to move towards a common, shared approach to meet their own immediate needs and that might also be of value to others in keeping with the Bologna Process. To provide a clear identity the term \\'Clinical Medical Sciences in Dentistry\\' was agreed in preference to other names such as \\'Human Disease\\' or \\'Medicine and Surgery\\'. The group was challenged to define consensus outcomes. Contemporary dental education documents informed, but did not drive the process. The consensus curriculum for undergraduate Clinical Medical Sciences in Dentistry teaching agreed by the participating centres is reported. Many of the issues are generic and it includes elements that are likely to be applicable to others. This document will act as a focus for a more unified approach to the outcomes required by graduates of the participating centres and act as a catalyst for future developments that ultimately aim to enhance the quality of patient care.

  8. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages...

  9. Improving Undergraduate STEM Education: Pathways into Geoscience (IUSE: GEOPATHS) - A National Science Foundation Initiative

    Science.gov (United States)

    Jones, B.; Patino, L. C.

    2016-12-01

    Preparation of the future professional geoscience workforce includes increasing numbers as well as providing adequate education, exposure and training for undergraduates once they enter geoscience pathways. It is important to consider potential career trajectories for geoscience students, as these inform the types of education and skill-learning required. Recent reports have highlighted that critical thinking and problem-solving skills, spatial and temporal abilities, strong quantitative skills, and the ability to work in teams are among the priorities for many geoscience work environments. The increasing focus of geoscience work on societal issues (e.g., climate change impacts) opens the door to engaging a diverse population of students. In light of this, one challenge is to find effective strategies for "opening the world of possibilities" in the geosciences for these students and supporting them at the critical junctures where they might choose an alternative pathway to geosciences or otherwise leave altogether. To address these and related matters, The National Science Foundation's (NSF) Directorate for Geosciences (GEO) has supported two rounds of the IUSE: GEOPATHS Program, to create and support innovative and inclusive projects to build the future geoscience workforce. This program is one component in NSF's Improving Undergraduate STEM Education (IUSE) initiative, which is a comprehensive, Foundation-wide effort to accelerate the quality and effectiveness of the education of undergraduates in all of the STEM fields. The two tracks of IUSE: GEOPATHS (EXTRA and IMPACT) seek to broaden and strengthen connections and activities that will engage and retain undergraduate students in geoscience education and career pathways, and help prepare them for a variety of careers. The long-term goal of this program is to dramatically increase the number and diversity of students earning undergraduate degrees or enrolling in graduate programs in geoscience fields, as well as

  10. Interdisciplinary Undergraduate Research Experiences in Geosciences for Physical Science and Engineering Students

    Science.gov (United States)

    Bililign, S.; Schimmel, K.; Lin, Y. L.; Germuth, A.

    2014-12-01

    The recruitment of undergraduate students, especially minorities, into geoscience career paths continues to be a challenge. One approach for addressing this issue involves providing geoscience research experiences. Therefore, the outcomes of an undergraduate research program (REU) focused on recruiting science (physics, mathematics, chemistry) and engineering (electrical) students for an interdisciplinary research experience in geosciences will be presented. The program design has several unique features that include: (1) projects with clear societal implications, (2) projects involve multiple faculty members (at least two) and expose students to interdisciplinary approaches and thinking, (3) partnerships between national labs and universities to provide cutting-edge research, educational, and professional development opportunities for students, (4) student engagement in the creation of personalized professional development plans, (5) combined summer and academic year research experiences. Pre- and post-assessment results, successes, and challenges will be presented.

  11. Psychological Distress and Sources of Stressors amongst Medical and Science Undergraduate Students in Malaysia

    Directory of Open Access Journals (Sweden)

    Ali S Radeef

    2017-08-01

    Full Text Available Background: This study aims to compare the prevalence of psychological distress between medical and science undergraduate students and to assess the sources of stressors that are attributing to it. Methods: A sample of 697 undergraduate students participated in this study, in which 501 were medical students and the remaining 196 were Science students. Psychological distress was assessed using the 12-item General Health Questionnaire. The students were given a list of possible sources of stress which were chosen depending on previous studies. Results: The overall prevalence of psychological distress was 32.6%. Science students showed a significantly higher rate and mean score of psychological distress than medical students, and the mean score was significantly higher during the clinical phase rather than the pre-clinical phase in medical students. Overall, female students had a significantly higher mean score than males, however although the mean score was higher in females it was only significant in the pre-clinical phase. In addition to academic and psychological stressors, factors such as reduced holidays, lack of time for relaxation, and limitation of leisure/entertainment time were among the top ten stressors reported by the students. Conclusions: Psychological distress is common among university students, and it is higher among science students than medical students. Academic and psychological factors can be considered as sources of stressors which may precipitate psychological distress among college students.

  12. Teaching Spatial Thinking in Undergraduate Geology Courses Using Tools and Strategies from Cognitive Science Research

    Science.gov (United States)

    Ormand, C. J.; Shipley, T. F.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T. A.; Tikoff, B.; Atit, K.; Gagnier, K. M.; Resnick, I.

    2015-12-01

    Spatial visualization is an essential skill in the STEM disciplines, including the geological sciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may struggle to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. Using strategies that have emerged from cognitive science research, we developed a set of curricular materials that improve undergraduate geology majors' abilities to reason about 3D concepts and to solve spatially complex geological problems. Cognitive science research on spatial thinking demonstrates that predictive sketching, making visual comparisons, gesturing, and the use of analogy can be used to develop students' spatial thinking skills. We conducted a three-year study of the efficacy of these strategies in strengthening the spatial skills of students in core geology courses at three universities. Our methodology is a quasi-experimental quantitative design, utilizing pre- and post-tests of spatial thinking skills, assessments of spatial problem-solving skills, and a control group comprised of students not exposed to our new curricular materials. Students taught using the new curricular materials show improvement in spatial thinking skills. Further analysis of our data, to be completed prior to AGU, will answer additional questions about the relationship between spatial skills and academic performance, spatial skills and gender, spatial skills and confidence, and the impact of our curricular materials on students who are struggling academically. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate education in the geological sciences by removing one significant barrier to success.

  13. Collaborative, Early-undergraduate-focused REU Programs at Savannah State University have been Vital to Growing a Demographically Diverse Ocean Science Community

    Science.gov (United States)

    Gilligan, M. R.; Cox, T. M.; Hintz, C. J.

    2011-12-01

    and contracts totaling 11.7 million. HBCUs are disproportionately more effective in training significant numbers of African American students in the sciences. Although they enrolled only 11.1% of African-American undergraduates and 9.4% of African American graduate students in fall 2007 in the U.S., they awarded 33.3% of undergraduate and 24% of master's degrees earned by African-Americans in Biological, biomedical and, physical sciences, and science technologies in 2006 and 2007. Commitments to the development of non-traditional academic and research programs at HBCUs and other minority serving institutions should be expanded to increase demographic diversity in the ocean sciences.

  14. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  15. Geography, Resources, and Environment of Latin America: An Undergraduate Science Course focused on Attracting Hispanic students to Science and on Educating Non-Hispanics about Latin America.

    Science.gov (United States)

    Pujana, I.; Stern, R. J.; Ledbetter, C. E.

    2004-12-01

    With NSF-CCLI funding, we have developed, taught, and evaluated a new lower-division science course for non-majors, entitled "Geography, Resources, and Environment of Hispanic America" (GRELA). This is an adaptation of a similar course, "Geology and Development of Modern Africa" developed by Barbara Tewksbury (Hamilton College), to attract African American students to science by highlighting cultural ties with their ancestral lands. We think that a similar approach focusing on Latin America may attract Hispanic undergraduates, at the same time that it increases awareness among non-Hispanic students about challenges facing our neighbors to the south. GRELA is an interdisciplinary exploration of how the physical and biological environment of Mexico, Central America, and South America have influenced the people who live there. The course consists of 20 lectures and requires the student to present a report partnering with correspondents in Latin American universities. GRELA begins with an overview of Latin American physical and cultural geography and geologic evolution followed by a series of modules that relate the natural resources and environment of Latin America to the history, economy, and culture of the region. This is followed by an exploration of pre-Columbian cultures. The use of metals by pre-Columbian, colonial, and modern cultures is presented next. We then discuss hydrocarbon resources, geothermal energy, and natural hazards of volcanoes and earthquakes. The last half of the course focuses on Earth System Science themes, including El Nino, glaciers, the Amazon river and rainforest, and coral reefs. The final presentation concerns population growth and water resources along the US-Mexico border. Grades are based on two midterms, one final, and a project which requires that groups of students communicate with scientists in Latin America to explore some aspect of geography, natural resources, or the environment of a Latin American region of common interest

  16. Science teachers and docents as mentors to science and mathematics undergraduates in formal and information settings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koran, J.J. Jr. [Florida Museum of Natural History, Gainesville, FL (United States)

    1993-10-15

    Twenty-four undergraduate science and mathematics majors who were juniors and seniors in the colleges of Liberal Arts and Sciences and Engineering were recruited, and paid, to participate in an orientation seminar and act as teacher aides in regional schools and the Florida Museum of Natural History. Aides worked with teachers in the schools one semester and as docents in the natural history museum a second semester. Mentoring took place by the principal investigator and participating teachers and docents throughout the program. Success of the program was measured by a specially prepared attitude instrument which was administered to participants before the mentoring started and when it ended each semester. Written logs (field notes) were also prepared and submitted by participants at the end of each semester. Further, a tally was kept of the number of participants who decided to go into science or mathematics teaching as a result of the experience.

  17. Stem Cells and Society: An Undergraduate Course Exploring the Intersections among Science, Religion, and Law

    Science.gov (United States)

    Pierret, Chris; Friedrichsen, Patricia

    2009-01-01

    The intersection of science and our society has led to legal and ethical issues in which we all play a part. To support development of scientific literacy, college science courses need to engage students in difficult dialogues around ethical issues. We describe a new course, Stem Cells and Society, in which students explore the basic biology of…

  18. What Skills Should Students of Undergraduate Biochemistry and Molecular Biology Programs Have Upon Graduation?

    Science.gov (United States)

    White, Harold B.; Benore, Marilee A.; Sumter, Takita F.; Caldwell, Benjamin D.; Bell, Ellis

    2014-01-01

    Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of clearly articulating the skills required. The results of these discussions highlight the critical importance of experimental, mathematical, and interpersonal skills including collaboration, teamwork, safety, and ethics. The groups also found experimental design, data interpretation and analysiand the ability to communicate findings to diverse audience to be essential skills. To aid in the development of appropriate assessments these skills are grouped into three categories, 1) Process of Science, 2) Communication and Comprehension of Science, and 3) Community of Practice Aspects of Science. Finally, the groups worked to align these competencies with the best practices in both teaching and in skills assessment. PMID:24019246

  19. A unique large-scale undergraduate research experience in molecular systems biology for non-mathematics majors.

    Science.gov (United States)

    Kappler, Ulrike; Rowland, Susan L; Pedwell, Rhianna K

    2017-05-01

    Systems biology is frequently taught with an emphasis on mathematical modeling approaches. This focus effectively excludes most biology, biochemistry, and molecular biology students, who are not mathematics majors. The mathematical focus can also present a misleading picture of systems biology, which is a multi-disciplinary pursuit requiring collaboration between biochemists, bioinformaticians, and mathematicians. This article describes an authentic large-scale undergraduate research experience (ALURE) in systems biology that incorporates proteomics, bacterial genomics, and bioinformatics in the one exercise. This project is designed to engage students who have a basic grounding in protein chemistry and metabolism and no mathematical modeling skills. The pedagogy around the research experience is designed to help students attack complex datasets and use their emergent metabolic knowledge to make meaning from large amounts of raw data. On completing the ALURE, participants reported a significant increase in their confidence around analyzing large datasets, while the majority of the cohort reported good or great gains in a variety of skills including "analysing data for patterns" and "conducting database or internet searches." An environmental scan shows that this ALURE is the only undergraduate-level system-biology research project offered on a large-scale in Australia; this speaks to the perceived difficulty of implementing such an opportunity for students. We argue however, that based on the student feedback, allowing undergraduate students to complete a systems-biology project is both feasible and desirable, even if the students are not maths and computing majors. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):235-248, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  20. Uncovering the lived experiences of junior and senior undergraduate female science majors

    Science.gov (United States)

    Adornato, Philip

    The following dissertation focuses on a case study that uses critical theory, social learning theory, identity theory, liberal feminine theory, and motivation theory to conduct a narrative describing the lived experience of females and their performance in two highly selective private university, where students can cross-register between school, while majoring in science, technology, engineering and mathematics (STEM). Through the use of narratives, the research attempts to shed additional light on the informal and formal science learning experiences that motivates young females to major in STEM in order to help increase the number of women entering STEM careers and retaining women in STEM majors. In the addition to the narratives, surveys were performed to encompass a larger audience while looking for themes and phenomena which explore what captivates and motivates young females' interests in science and continues to nurture and facilitate their growth throughout high school and college, and propel them into a major in STEM in college. The purpose of this study was to uncover the lived experiences of junior and senior undergraduate female science majors during their formal and informal education, their science motivation to learn science, their science identities, and any experiences in gender inequity they may have encountered. The findings have implications for young women deciding on future careers and majors through early exposure and guidance, understanding and recognizing what gender discrimination, and the positive effects of mentorships.

  1. Network biology methods integrating biological data for translational science.

    Science.gov (United States)

    Bebek, Gurkan; Koyutürk, Mehmet; Price, Nathan D; Chance, Mark R

    2012-07-01

    The explosion of biomedical data, both on the genomic and proteomic side as well as clinical data, will require complex integration and analysis to provide new molecular variables to better understand the molecular basis of phenotype. Currently, much data exist in silos and is not analyzed in frameworks where all data are brought to bear in the development of biomarkers and novel functional targets. This is beginning to change. Network biology approaches, which emphasize the interactions between genes, proteins and metabolites provide a framework for data integration such that genome, proteome, metabolome and other -omics data can be jointly analyzed to understand and predict disease phenotypes. In this review, recent advances in network biology approaches and results are identified. A common theme is the potential for network analysis to provide multiplexed and functionally connected biomarkers for analyzing the molecular basis of disease, thus changing our approaches to analyzing and modeling genome- and proteome-wide data.

  2. Targeting Future Customers: An Introductory Biobanking Course for Undergraduate Students of Life Sciences.

    Science.gov (United States)

    Abdelhafiz, Ahmed Samir; Fouda, Merhan Ahmed; El-Jaafary, Shaimaa Ibrahim; Farghly, Maysa Ibrahim; Salem, Mazen; Tammam, Ahmed; Gabr, Hala

    2017-08-01

    Biobanking is a relatively new concept in the Arab region. Targeting different stakeholders to introduce the concept of biobanking and develop an acceptance of it among them is important for the growth of biobanking in the region. Undergraduate students of life sciences represent an important segment of stakeholders, since they constitute potential future biobank customers. Limited funding, lack of awareness of the existence of the term "biobanking" itself among these students, and questions regarding best marketing strategies presented challenges to planning for the most effective message delivery to this target group. A specific course was designed for undergraduate students of life sciences, which was conducted at the Faculty of Medicine, Cairo University, Egypt. The course was conducted twice in 2016 and included lectures covering biobanking, quality, ethics, information technology, and translational research. Facebook and word-of-mouth were used for marketing and advertising. A total number of 125 participants attended both courses cumulatively. Facebook appeared to have been an effective marketing outlet, especially when paid advertisements were used. Evaluation of knowledge, measured using a pretest and posttest, demonstrated some improvement in knowledge of participants. Evaluation forms filled after the course showed positive attitude toward content and message delivery by a majority of participants. Facebook was also used as an evaluation method through analysis of engagement with posts created after course completion. Biobanking education can be carried out effectively with limited resources. Understanding the needs of the target group and using appropriate methods of communication are essential prerequisites to a well-tailored curriculum and effective message delivery. Using Facebook appears to be an effective and affordable method of communication and advertising. Targeting undergraduate students of life sciences interested in research is a good

  3. Peer Feedback Enhances a "Journal Club" for Undergraduate Science Students That Develops Oral Communication and Critical Evaluation Skills

    Science.gov (United States)

    Colthorpe, Kay; Chen, Xuebin; Zimbardi, Kirsten

    2014-01-01

    Effective science communication is one of the key skills undergraduates must achieve and is one of the threshold learning outcomes for Science (TLO 4.1). In addition, presenting published research to their peers allows students to critically evaluate scientific research (TLO 3.1) and develop a deeper appreciation for the link between experimental…

  4. Using a Scientific Paper Format to Foster Problem-Based, Cohort-Learning in Undergraduate Environmental Science

    Science.gov (United States)

    Wagner, T.; Langley-Turnbaugh, S. J.; Sanford, R.

    2006-01-01

    The Department of Environmental Science at the University of Southern Maine implemented a problem-based, cohort-learning curriculum for undergraduate environmental science majors. The curriculum was based on a five-course sequence patterned after the outline of a scientific paper. Under faculty guidance, students select local environmental…

  5. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  6. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  7. Insights for undergraduates seeking an advanced degree in wildlife and fisheries sciences

    Science.gov (United States)

    Kaemingk, Mark A.; Dembkowski, Daniel J.; Meyer, Hilary A.; Gigliotti, Larry M.

    2013-01-01

    In today's job market, having a successful career in the fisheries and wildlife sciences is becoming more dependent on obtaining an advanced degree. As a result, competition for getting accepted into a graduate program is fierce. Our objective for this study was to provide prospective graduate students some insights as to what qualifications or attributes would best prepare them for obtaining a graduate position (M.S.) and to excel once they are enrolled in a graduate program. A survey was sent to 50 universities within the National Association of University Fisheries and Wildlife Programs (NAUFWP) where both faculty and undergraduate students were asked questions relating to graduate school. Faculty rated the importance of various criteria and attributes of graduate school, and students answered the questions according to how they believed faculty members would respond. Overall, undergraduate students shared many of the same graduate school viewpoints as those held by faculty members. However, viewpoints differed on some topics related to admittance and the most important accomplishment of a graduate student while enrolled in a graduate program. These results indicate that undergraduate students may be better prepared for graduate school—and they may understand how to be successful once they are enrolled in a program—than was initially thought.

  8. 5. Conference cycle. The radiations and the Biological Sciences

    International Nuclear Information System (INIS)

    Balcazar G, M.; Chavez B, A.

    1991-06-01

    Nuclear technologies and their development have influenced many aspects of modern life. Besides used for electricity production nuclear technologies are applied in many other fields, especially in biological sciences. In genetics and molecular biology they enable research resulting in increased food production and better food preservation. Usage in material sciences lead to new varieties of plastics or improved characteristics. Nuclear applications are used in pe troleum industries and in forecasting geothermic power. Radiobiology and radiotherapy enable diagnosis and therapy of several diseases, e.g. cancer. Nuclear technologies also contribute to preserve the environment. They offer methods to analyse as well as decrease the environmental impacts. The 5. conference cyle entitled 'The Radiations and the Biological Sciences' aims to inform students of biological sciences about new nuclear technologies applied in their field of interest

  9. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students

    Directory of Open Access Journals (Sweden)

    Dale L. Beach

    2015-08-01

    Full Text Available Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic “parts,” students construct a “reporter plasmid” expressing a reporter gene (GFP controlled by a hybrid promoter regulated by the lac-repressor protein (lacI. In combination with a “sensor plasmid,” the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey and end (post-survey of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p < 0.05 for all learning outcomes. Ninety percent of students indicated that the Synthetic Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe

  10. iBiology: communicating the process of science.

    Science.gov (United States)

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Basic mathematics for the biological and social sciences

    CERN Document Server

    Marriott, F H C

    2013-01-01

    Basic Mathematics for the Biological and Social Sciences deals with the applications of basic mathematics in the biological and social sciences. Mathematical concepts that are discussed in this book include graphical methods, differentiation, trigonometrical or circular functions, limits and convergence, integration, vectors, and differential equations. The exponential function and related functions are also considered. This monograph is comprised of 11 chapters and begins with an overview of basic algebra, followed by an introduction to infinitesimal calculus, scalar and vector quantities, co

  12. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  13. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  14. 77 FR 40090 - Proposed Collection of Information; Comment Request: Biological Sciences Proposal Classification...

    Science.gov (United States)

    2012-07-06

    ... NATIONAL SCIENCE FOUNDATION Proposed Collection of Information; Comment Request: Biological Sciences Proposal Classification Form AGENCY: National Science Foundation. ACTION: Notice. SUMMARY: The... Biological Sciences has a continuing commitment to monitor its information collection in order to preserve...

  15. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  16. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Impact of Theoretical Chemistry on Chemical and Biological Sciences: Chemistry Nobel Prize – 2013. Saraswathi Vishveshwara. General Article Volume 19 Issue 4 April 2014 pp 347-367 ...

  17. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. The use of writing assignments to help students synthesize content in upper-level undergraduate biology courses.

    Science.gov (United States)

    Sparks-Thissen, Rebecca L

    2017-02-01

    Biology education is undergoing a transformation toward a more student-centered, inquiry-driven classroom. Many educators have designed engaging assignments that are designed to help undergraduate students gain exposure to the scientific process and data analysis. One of these types of assignments is use of a grant proposal assignment. Many instructors have used these assignments in lecture-based courses to help students process information in the literature and apply that information to a novel problem such as design of an antiviral drug or a vaccine. These assignments have been helpful in engaging students in the scientific process in the absence of an inquiry-driven laboratory. This commentary discusses the application of these grant proposal writing assignments to undergraduate biology courses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Validation and Application of the Survey of Teaching Beliefs and Practices for Undergraduates (STEP-U): Identifying Factors Associated with Valuing Important Workplace Skills among Biology Students

    Science.gov (United States)

    Marbach-Ad, Gili; Rietschel, Carly; Thompson, Katerina V.

    2016-01-01

    We present a novel assessment tool for measuring biology students' values and experiences across their undergraduate degree program. Our Survey of Teaching Beliefs and Practices for Undergraduates (STEP-U) assesses the extent to which students value skills needed for the workplace (e.g., ability to work in groups) and their experiences with…

  20. Source of stressors and emotional disturbances among undergraduate science students in Malaysia

    Directory of Open Access Journals (Sweden)

    Ali Sabri Radeef, Ghasak Ghazi Faisal, Syed Masroor Ali, MaungKoHajee Mohamed Ismail

    2014-04-01

    Full Text Available Introduction: Higher education is considered as a stressful period in students’ life which they have to cope with since they are facing a variety of demands such as living away from their families, a heavily loaded curriculum, and inefficiency in both mentor- mentee and health education programs. This will make them more vulnerable to emotional disturbances such as stress, anxiety and depression. Methodology: A total of 194 undergraduate students from Kulliyyah (Faculty of Science, International Islamic University Malaysia participated in questionnaire-based study using the Depression Anxiety, Stress Scale (DASS-21 to assess the severity of emotional disturbances Results: The overall prevalence of depression, anxiety and stress was 64.4%, 84.5% and 56.7% respectively. Regarding the severity of the symptoms, it was found that 13.9%, 51.5 % and 12.9% of the students have clinically significant depression, anxiety and stress respectively. Young students aged 21 years and below had a statistically significant association with depression, anxiety and stress. While first year students had significant association with depression. Regarding the source of stressors, the top ten stressors decided by the students were mainly academic and personal factors. Conclusion: Emotional disturbances in the form of depression, anxiety and stress are existing in high rate among undergraduate science students that require early intervention. Factors including feeling of incompetence, lack of motivation to learn and difficulty of class work can be considered as source of stressors that may precipitate for depression anxiety and stress.

  1. The use of simulation as a novel experiential learning module in undergraduate science pathophysiology education.

    Science.gov (United States)

    Chen, Hui; Kelly, Michelle; Hayes, Carolyn; van Reyk, David; Herok, George

    2016-09-01

    Teaching of pathophysiology concepts is a core feature in health professional programs, but it can be challenging in undergraduate medical/biomedical science education, which is often highly theoretical when delivered by lectures and pen-and-paper tutorials. Authentic case studies allow students to apply their theoretical knowledge but still require good imagination on the part of the students. Lecture content can be reinforced through practical learning experiences in clinical environments. In this study, we report a new approach using clinical simulation within a Human Pathophysiology course to enable undergraduate science students to see "pathophysiology in action" in a clinical setting. Students role played health professionals, and, in these roles, they were able to interact with each other and the manikin "patient," take a medical history, perform a physical examination and consider relevant treatments. Evaluation of students' experiences suggests that using clinical simulation to deliver case studies is more effective than traditional paper-based case studies by encouraging active learning and improving the understanding of physiological concepts. Copyright © 2016 The American Physiological Society.

  2. The use of appetite suppressants among health sciences undergraduate students in Southern Brazil.

    Science.gov (United States)

    Zubaran, Carlos; Lazzaretti, Rubia

    2013-01-01

    To investigate the prevalence of appetite suppressant use among health sciences students in Southern Brazil. Undergraduate students (n=300) from seven health science undergraduate courses of the Universidade de Caxias do Sul completed a questionnaire about the use of substances to suppress appetite. A significant percentage (15%; n=45) of research participants used appetite suppressants at least once in their lives. The most commonly used substances were sympathomimetic stimulant drugs (5%), including amfepramone (3.3%) and fenproporex (1.7%). The lifetime use of appetite suppressants was more prevalent among Nursing (26.7%) and Nutrition (24.4%%) students. There was no reported use of appetite suppressants among medical students. The use of appetite suppressants was significantly more prevalent among women. The majority of those who used these substances did so under medical recommendation. Most of users took appetite suppressants for more than 3 months. Lifetime use of appetite suppressants was substantial, being sympathomimetic stimulant drugs the most commonly used agents. Students enrolled in Nursing and Nutrition courses presented a significantly higher prevalence of lifetime use of appetite suppressants.

  3. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences.

    Science.gov (United States)

    Clarkston, B. E.; Garza, C.

    2016-02-01

    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two

  4. Saving our science from ourselves: the plight of biological classification

    Directory of Open Access Journals (Sweden)

    Malte C. Ebach

    2011-06-01

    Full Text Available Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.

  5. Science Academies' Refresher Course on Environmental Biology

    Indian Academy of Sciences (India)

    IAS Admin

    This two-week refresher course on environmental biology will cover recent advances in fields such as RNAi technology, soil and rhizosphere health, biogeochemistry, environmental pollution, functional genomics, plant genomics and biochemis- try, and molecular medicine. All resource persons will be eminent scientists ...

  6. Science Academies' Refresher Course on Experimental Biology ...

    Indian Academy of Sciences (India)

    IAS Admin

    A refresher course on 'Experimental Biology: Orthodox to Modern' will be held at PG and Research Department of Botany, St.Joseph's College, Tiruchirappalli , Tamil Nadu for two weeks from 07 November to 19 November. 2016. The objective of this course is to improvise on teaching methodologies and also get familiar ...

  7. Science Academies' Refresher Course on Environmental Biology

    Indian Academy of Sciences (India)

    IAS Admin

    GCMS, Gradient PCR and RT-PCR machines, Automatic karyotyping workstation and so on. The UGC has notified (F-3/1-2009) that teachers in Universities and Colleges attending two-week. Refresher Courses are entitled to be considered for promotion. This two-week refresher course on environmental biology will cover ...

  8. Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates.

    Science.gov (United States)

    Thurtle-Schmidt, Deborah M; Lo, Te-Wen

    2018-03-01

    Disrupting a gene to determine its effect on an organism's phenotype is an indispensable tool in molecular biology. Such techniques are critical for understanding how a gene product contributes to the development and cellular identity of organisms. The explosion of genomic sequencing technologies combined with recent advances in genome-editing techniques has elevated the possibilities of genetic manipulations in numerous organisms in which these experiments were previously not readily accessible or possible. Introducing the next generation of molecular biologists to these emerging techniques is key in the modern biology classroom. This comprehensive review introduces undergraduates to CRISPR/Cas9 editing and its uses in genetic studies. The goals of this review are to explain how CRISPR functions as a prokaryotic immune system, describe how researchers generate mutations with CRISPR/Cas9, highlight how Cas9 has been adapted for new functions, and discuss ethical considerations of genome editing. Additionally, anticipatory guides and questions for discussion are posed throughout the review to encourage active exploration of these topics in the classroom. Finally, the supplement includes a study guide and practical suggestions to incorporate CRISPR/Cas9 experiments into lab courses at the undergraduate level. © 2018 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 46(2):195-205, 2018. © 2018 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  9. Toward an integration of evolutionary biology and ecosystem science.

    Science.gov (United States)

    Matthews, Blake; Narwani, Anita; Hausch, Stephen; Nonaka, Etsuko; Peter, Hannes; Yamamichi, Masato; Sullam, Karen E; Bird, Kali C; Thomas, Mridul K; Hanley, Torrance C; Turner, Caroline B

    2011-07-01

    At present, the disciplines of evolutionary biology and ecosystem science are weakly integrated. As a result, we have a poor understanding of how the ecological and evolutionary processes that create, maintain, and change biological diversity affect the flux of energy and materials in global biogeochemical cycles. The goal of this article was to review several research fields at the interfaces between ecosystem science, community ecology and evolutionary biology, and suggest new ways to integrate evolutionary biology and ecosystem science. In particular, we focus on how phenotypic evolution by natural selection can influence ecosystem functions by affecting processes at the environmental, population and community scale of ecosystem organization. We develop an eco-evolutionary model to illustrate linkages between evolutionary change (e.g. phenotypic evolution of producer), ecological interactions (e.g. consumer grazing) and ecosystem processes (e.g. nutrient cycling). We conclude by proposing experiments to test the ecosystem consequences of evolutionary changes. © 2011 Blackwell Publishing Ltd/CNRS.

  10. African Journals Online: Biology & Life Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 71 ... African Journal for Physical Activity and Health Sciences. AJPHES publishes research papers that contribute to knowledge and practice, and also develops theory either as new information, reviews, confirmation of previous findings, application of new teaching/coaching techniques and research notes.

  11. Biology Grade 10, Science Curriculum Materials.

    Science.gov (United States)

    Bloom, Samuel W.

    This teaching guide and syllabus outline is intended for use with pupils whose primary interests are in non-science fields, or who do not intend to enter college. The guide contains suggested activities, both laboratory and discussion, for a course containing the following sections: Introduction to Cells and Life; Animal Physiology; Plant…

  12. Interdisciplinary Team Science in Cell Biology.

    Science.gov (United States)

    Horwitz, Rick

    2016-11-01

    The cell is complex. With its multitude of components, spatial-temporal character, and gene expression diversity, it is challenging to comprehend the cell as an integrated system and to develop models that predict its behaviors. I suggest an approach to address this issue, involving system level data analysis, large scale team science, and philanthropy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. New Measures Assessing Predictors of Academic Persistence for Historically Underrepresented Racial/Ethnic Undergraduates in Science

    Science.gov (United States)

    Byars-Winston, Angela; Rogers, Jenna; Branchaw, Janet; Pribbenow, Christine; Hanke, Ryan; Pfund, Christine

    2016-01-01

    An important step in broadening participation of historically underrepresented (HU) racial/ethnic groups in the sciences is the creation of measures validated with these groups that will allow for greater confidence in the results of investigations into factors that predict their persistence. This study introduces new measures of theoretically derived factors emanating from social cognitive and social identity theories associated with persistence for HU racial/ethnic groups in science disciplines. The purpose of this study was to investigate: 1) the internal reliability and factor analyses for measures of research-related self-efficacy beliefs, sources of self-efficacy, outcome expectations, and science identity; and 2) potential group differences in responses to the measures, examining the main and interaction effects of gender and race/ethnicity. Survey data came from a national sample of 688 undergraduate students in science majors who were primarily black/African American and Hispanic/Latino/a with a 2:1 ratio of females to males. Analyses yielded acceptable validity statistics and race × gender group differences were observed in mean responses to several measures. Implications for broadening participation of HU groups in the sciences are discussed regarding future tests of predictive models of student persistence and training programs to consider cultural diversity factors in their design. PMID:27521235

  14. Evidence of The Importance of Philosophy of Science Course On Undergraduate Level

    Science.gov (United States)

    Suyono

    2018-01-01

    This study aimed to describe academic impact of Philosophy of Science course in change of students’ conceptions on the Nature of science (NOS) before and after attending the course. This study followed one group pretest-posttest design. Treatment in this study was Philosophy of Science course for one semester. Misconception diagnostic tests of the NOS had been developed by Suyono et al. (2015) equipped with Certainty of Response Index (CRI). It consists of 15 concept questions about the NOS. The number of students who were tested on Chemistry Education Program (CEP) and Chemistry Program (CP) respectively 42 and 45 students. This study shows that after the learning of Philosophy of Science course happened: (1) the decrease of the number of misconception students on the NOS from 47.47 to 19.20% in CEP and from 47.47 to 18.18% in CP and (2) the decrease in the number of concepts that understood as misconception by the large number of students from 11 to 2 concepts on the CEP and from 10 to 2 concepts on CP. Therefore, the existence of Philosophy of Science course has a positive academic impact on students from both programs on undergraduate level.

  15. Undergraduate science research: a comparison of influences and experiences between premed and non-premed students.

    Science.gov (United States)

    Pacifici, Lara Brongo; Thomson, Norman

    2011-01-01

    Most students participating in science undergraduate research (UR) plan to attend either medical school or graduate school. This study examines possible differences between premed and non-premed students in their influences to do research and expectations of research. Questionnaire responses from 55 premed students and 80 non-premed students were analyzed. No differences existed in the expectations of research between the two groups, but attitudes toward science and intrinsic motivation to learn more about science were significantly higher for non-premed students. Follow-up interviews with 11 of the students, including a case study with one premed student, provided explanation for the observed differences. Premed students, while not motivated to learn more about science, were motivated to help people, which is why most of them are pursuing medicine. They viewed research as a way to help them become doctors and to rule out the possibility of research as a career. Non-premed students participated in research to learn more about a specific science topic and gain experience that may be helpful in graduate school research. The difference in the reasons students want to do UR may be used to tailor UR experiences for students planning to go to graduate school or medical school.

  16. Undergraduate Science Research: A Comparison of Influences and Experiences between Premed and Non–Premed Students

    Science.gov (United States)

    Pacifici, Lara Brongo; Thomson, Norman

    2011-01-01

    Most students participating in science undergraduate research (UR) plan to attend either medical school or graduate school. This study examines possible differences between premed and non–premed students in their influences to do research and expectations of research. Questionnaire responses from 55 premed students and 80 non–premed students were analyzed. No differences existed in the expectations of research between the two groups, but attitudes toward science and intrinsic motivation to learn more about science were significantly higher for non–premed students. Follow-up interviews with 11 of the students, including a case study with one premed student, provided explanation for the observed differences. Premed students, while not motivated to learn more about science, were motivated to help people, which is why most of them are pursuing medicine. They viewed research as a way to help them become doctors and to rule out the possibility of research as a career. Non–premed students participated in research to learn more about a specific science topic and gain experience that may be helpful in graduate school research. The difference in the reasons students want to do UR may be used to tailor UR experiences for students planning to go to graduate school or medical school. PMID:21633068

  17. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  18. You get what you need: an examination of purpose- based inheritance reasoning in undergraduates, preschoolers, and biological experts.

    Science.gov (United States)

    Ware, Elizabeth A; Gelman, Susan A

    2014-03-01

    This set of seven experiments examines reasoning about the inheritance and acquisition of physical properties in preschoolers, undergraduates, and biology experts. Participants (N = 390) received adoption vignettes in which a baby animal was born to one parent but raised by a biologically unrelated parent, and they judged whether the offspring would have the same property as the birth or rearing parent. For each vignette, the animal parents had contrasting values on a physical property dimension (e.g., the birth parent had a short tail; the rearing parent had a long tail). Depending on the condition, the distinct properties had distinct functions (“function-predictive”) were associated with distinct habitats (“habitat-predictive”), or had no implications (“non-predictive”). Undergraduates' bias to view properties as inherited from the birth parent was reduced in the function- and habitat-predictive conditions. This result indicates a purpose-based view of inheritance, whereby animals can acquire properties that serve a purpose in their environment. This stance was not found in experts or preschoolers. We discuss the results in terms of how undergraduates' purpose-based inheritance reasoning develops and relates to larger-scale misconceptions about Darwinian evolutionary processes, and implications for biology education.

  19. Undergraduate honors students' images of science: Nature of scientific work and scientific knowledge

    Science.gov (United States)

    Wallace, Michael L.

    This exploratory study assessed the influence of an implicit, inquiry-oriented nature of science (NOS) instructional approach undertaken in an interdisciplinary college science course on undergraduate honor students' (UHS) understanding of the aspects of NOS for scientific work and scientific knowledge. In this study, the nature of scientific work concentrated upon the delineation of science from pseudoscience and the value scientists place on reproducibility. The nature of scientific knowledge concentrated upon how UHS view scientific theories and how they believe scientists utilize scientific theories in their research. The 39 UHS who participated in the study were non-science majors enrolled in a Honors College sponsored interdisciplinary science course where the instructors took an implicit NOS instructional approach. An open-ended assessment instrument, the UFO Scenario, was designed for the course and used to assess UHS' images of science at the beginning and end of the semester. The mixed-design study employed both qualitative and quantitative techniques to analyze the open-ended responses. The qualitative techniques of open and axial coding were utilized to find recurring themes within UHS' responses. McNemar's chi-square test for two dependent samples was used to identify whether any statistically significant changes occurred within responses from the beginning to the end of the semester. At the start of the study, the majority of UHS held mixed NOS views, but were able to accurately define what a scientific theory is and explicate how scientists utilize theories within scientific research. Postinstruction assessment indicated that UHS did not make significant gains in their understanding of the nature of scientific work or scientific knowledge and their overall images of science remained static. The results of the present study found implicit NOS instruction even with an extensive inquiry-oriented component was an ineffective approach for modifying UHS

  20. Validation and Application of the Survey of Teaching Beliefs and Practices for Undergraduates (STEP-U): Identifying Factors Associated with Valuing Important Workplace Skills among Biology Students.

    Science.gov (United States)

    Marbach-Ad, Gili; Rietschel, Carly; Thompson, Katerina V

    2016-01-01

    We present a novel assessment tool for measuring biology students' values and experiences across their undergraduate degree program. Our Survey of Teaching Beliefs and Practices for Undergraduates (STEP-U) assesses the extent to which students value skills needed for the workplace (e.g., ability to work in groups) and their experiences with teaching practices purported to promote such skills (e.g., group work). The survey was validated through factor analyses in a large sample of biology seniors (n = 1389) and through response process analyses (five interviewees). The STEP-U skills items were characterized by two underlying factors: retention (e.g., memorization) and transfer (e.g., knowledge application). Multiple linear regression models were used to examine relationships between classroom experiences, values, and student characteristics (e.g., gender, cumulative grade point average [GPA], and research experience). Student demographic and experiential factors predicted the extent to which students valued particular skills. Students with lower GPAs valued retention skills more than those with higher GPAs. Students with research experience placed greater value on scientific writing and interdisciplinary understanding. Greater experience with specific teaching practices was associated with valuing the corresponding skills more highly. The STEP-U can provide feedback vital for designing curricula that better prepare students for their intended postgraduate careers. © 2016 G. Marbach-Ad et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  2. Structural biology computing: Lessons for the biomedical research sciences.

    Science.gov (United States)

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields. Copyright © 2013 Wiley Periodicals, Inc.

  3. An Evaluation of Research Ethics in Undergraduate Health Science Research Methodology Programs at a South African University.

    Science.gov (United States)

    Coetzee, Tanya; Hoffmann, Willem A; de Roubaix, Malcolm

    2015-10-01

    The amended research ethics policy at a South African University required the ethics review of undergraduate research projects, prompting the need to explore the content and teaching approach of research ethics education in health science undergraduate programs. Two qualitative data collection strategies were used: document analysis (syllabi and study guides) and semi-structured interviews with research methodology coordinators. Five main themes emerged: (a) timing of research ethics courses, (b) research ethics course content, (c) sub-optimal use of creative classroom activities to facilitate research ethics lectures, (d) understanding the need for undergraduate project research ethics review, and (e) research ethics capacity training for research methodology lecturers and undergraduate project supervisors. © The Author(s) 2015.

  4. Bioinformatics and the Undergraduate Curriculum

    Science.gov (United States)

    Maloney, Mark; Parker, Jeffrey; LeBlanc, Mark; Woodard, Craig T.; Glackin, Mary; Hanrahan, Michael

    2010-01-01

    Recent advances involving high-throughput techniques for data generation and analysis have made familiarity with basic bioinformatics concepts and programs a necessity in the biological sciences. Undergraduate students increasingly need training in methods related to finding and retrieving information stored in vast databases. The rapid rise of…

  5. The influences and experiences of African American undergraduate science majors at predominately White universities

    Science.gov (United States)

    Blockus, Linda Helen

    The purpose of this study is to describe and explore some of the social and academic experiences of successful African American undergraduate science majors at predominately White universities with the expectation of conceptualizing emerging patterns for future study. The study surveyed 80 upperclass African Americans at 11 public research universities about their perceptions of the influences that affect their educational experiences and career interests in science. The mailed survey included the Persistence/ voluntary Dropout Decision Scale, the Cultural Congruity Scale and the University Environment Scale. A variety of potential influences were considered including family background, career goals, psychosocial development, academic and social connections with the university, faculty relationships, environmental fit, retention factors, validation, participation in mentored research projects and other experiences. The students' sources of influences, opportunities for connection, and cultural values were considered in the context of a research university environment and investigated for emerging themes and direction for future research. Results indicate that performance in coursework appears to be the most salient factor in African American students' experience as science majors. The mean college gpa was 3.01 for students in this study. Challenging content, time demands, study habits and concern with poor grades all serve to discourage students; however, for most of the students in this study, it has not dissuaded them from their educational and career plans. Positive course performance provided encouragement. Science faculty provide less influence than family members, and more students find faculty members discouraging than supportive. Measures of faculty relations were not associated with academic success. No evidence was provided to confirm the disadvantages of being female in a scientific discipline. Students were concerned with lack of minority role models

  6. Science Grade 7, Chemistry, Physics, Earth Science, Biology. Curriculum Bulletin, 1968-69 Series, No. 15.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    This publication is a teacher's guide for teaching seventh grade science in New York City Schools. Activities for four areas -- physics, chemistry, earth science, and biology -- are included. This particular edition is a reprint of Science: Grade 7, Curriculum Bulletin Nos 9a--9d, 1962-1963 Series, which were originally produced in four separate…

  7. The Value of Understanding Students’ Prior Writing Experience in Teaching Undergraduate Science Writing

    Directory of Open Access Journals (Sweden)

    Jumani Clarke

    2015-06-01

    Full Text Available How should undergraduate science students’ writing be understood when it does not meet the conventions of scientific writing? Studies have shown that the writing that students produce in their course work on tasks that imitate authentic scientific writing practices often do not match the tone, vocabulary and grammatical choices made by professional scientists. However, from the perspective of looking at the students’ word and grammar choices alone, it is not easy to understand why students make their particular and varied word and grammar choices and how those choices can be related to their understanding of the goals and discourses that are typical of science practices. Studying the writing of four first year earth and geographical sciences students on a science faculty’s alternative access program, from an assignment in a course that introduced them to the research article, it seems that the students persist with the social purposes of their various school writing practices in attempting their new university writing tasks. It is this variety in the social purposes of the writing that the students continue to draw on in university that can explain some of the ways in which student writing does not meet even the broadest writing conventions of the discourses of science. Yet it seems that some of the social purposes and the related writing practices of some students can help them transition their writing more easily into a form that has the usual characteristics of a typical science genre. Therefore, understanding the social purposes that students bring with them can be crucial to successfully introducing them to the discourses of science and showing them how the social purposes of scientific practice can be served in a genre such as the research article.

  8. Understanding the Views of the Nature of Science of Undergraduate Science, Technology, Engineering, and Mathematics Students

    Science.gov (United States)

    Hypolite, Karen L.

    2012-01-01

    Much of the nature of science research has been focused on high school students. High school students are primarily the target of such research to aid and to guide them in making informed decisions about possible career choices in the sciences (Bell, Blair, Crawford, & Lederman, 2002). Moreover, during review of the literature, little to no…

  9. Brownfield Action Online - An Interactive Undergraduate Science Course in Environmental Forensics

    Science.gov (United States)

    Liddicoat, Joseph; Bower, Peter

    2014-05-01

    Brownfield Action (BA) is a web-based, interactive, three dimensional digital space and learning simulation in which students form geotechnical consulting companies and work collectively to explore problems in environmental forensics. Created at Barnard College (BC) in conjunction with the Center for New Media Teaching and Learning at Columbia University, BA has a 12-year history at BC of use in one semester of a two-semester Introduction to Environmental Science course that is taken by more than 100 female undergraduate non-science majors to satisfy their science requirement. The pedagogical methods and design of the BA model are grounded in a substantial research literature focused on the design, use, and effectiveness of games and simulation in education. The successful use of the BA simulation at BC and 14 other institutions in the U.S. is described in Bower et al. (2011 and 2014). Soon to be taught online to non-traditional undergraduate students, BA has 15 modules that include a reconnaissance survey; scale; topographic, bedrock, and water table maps; oral and written reports from residents and the municipal government; porosity and permeability measurements of the regolith (sand) in the area of interest; hydrocarbon chemistry; direction and velocity of groundwater flow; and methods of geophysical exploration (soil gas, ground penetrating radar, magnetic metal detection, excavation, and drilling). Student performance is assessed by weekly exercises and a semester ending Environmental Site Assessment Phase I Report that summarizes the individual and collective discoveries about a contaminated subsurface plume that emanates from a leaking underground storage tank at a gasoline station upgrade from the water well that serves the surrounding community. Texts for the course are Jonathan Harr's A Civil Action and Rachel Carson's Silent Spring, which are accompanied by questions that direct the reading.

  10. Males Under-Estimate Academic Performance of Their Female Peers in Undergraduate Biology Classrooms.

    Directory of Open Access Journals (Sweden)

    Daniel Z Grunspan

    Full Text Available Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other's mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

  11. Males Under-Estimate Academic Performance of Their Female Peers in Undergraduate Biology Classrooms.

    Science.gov (United States)

    Grunspan, Daniel Z; Eddy, Sarah L; Brownell, Sara E; Wiggins, Benjamin L; Crowe, Alison J; Goodreau, Steven M

    2016-01-01

    Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other's mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

  12. An integrated undergraduate pain curriculum, based on IASP curricula, for six health science faculties.

    Science.gov (United States)

    Watt-Watson, Judy; Hunter, Judi; Pennefather, Peter; Librach, Larry; Raman-Wilms, Lalitha; Schreiber, Martin; Lax, Leila; Stinson, Jennifer; Dao, Thuan; Gordon, Allan; Mock, David; Salter, Michael

    2004-07-01

    Pain education, especially for undergraduates, has been identified as important to changing problematic pain practices, yet, no published data were found describing an integrated, interprofessional pain curriculum for undergraduate students. Therefore, this project aimed to develop, implement, and evaluate an integrated pain curriculum, based on the International Association for the Study of Pain curricula [http://www.iasp-pain.org/curropen.html], for 540 students from six Health Science Faculties/Departments. Over an 18-month period, the University of Toronto Centre for the Study of Pain's Interfaculty Pain Education Committee developed a 20-h undergraduate pain curriculum to be delivered during a 1-week period. Students from Dentistry, Medicine, Nursing, Pharmacy, Physical Therapy, and Occupational Therapy participated as part of their 2nd or 3rd year program. Teaching strategies included large and small groups, Standardized Patients, and 63 facilitators. Evaluation methods included: (a) pre- and post-tests of the Pain Knowledge and Beliefs Questionnaire (PKBQ) and (b) Daily Content and Process Questionnaire (DCPQ) to obtain feedback about process, content, and format across the curriculum's 5 days. A significant improvement in pain knowledge and beliefs was demonstrated (t = 181.28, P < 0.001), although non-responders were problematic at the post-test. DCPQ overall ratings of 'exceeding or meeting expectations' ranged from 74 to 92%. Ratings were highest for the patient-related content and panel, and the small-group discussions with Standardized Patients. Overall evaluations were positive, and statistically significant changes were demonstrated in students' pain knowledge and beliefs. This unique and valuable learning opportunity will be repeated with some modifications next year.

  13. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  14. Journal of Undergraduate Research, Volume IX, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Stiner, K. S.; Graham, S.; Khan, M.; Dilks, J.; Mayer, D.

    2009-01-01

    Each year more than 600 undergraduate students are awarded paid internships at the Department of Energy’s (DOE) National Laboratories. Th ese interns are paired with research scientists who serve as mentors in authentic research projects. All participants write a research abstract and present at a poster session and/or complete a fulllength research paper. Abstracts and selected papers from our 2007–2008 interns that represent the breadth and depth of undergraduate research performed each year at our National Laboratories are published here in the Journal of Undergraduate Research. The fields in which these students worked included: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Science; Materials Science; Medical and Health Sciences; Nuclear Science; Physics; Science Policy; and Waste Management.

  15. Pilot study of a budget-tailored culinary nutrition education program for undergraduate food science students

    Science.gov (United States)

    Kerrison, Dorothy Adair

    The primary objective of this pilot study is to provide evidence that a budget-tailored culinary nutrition program is both appropriate and applicable to undergraduate food science students both in everyday life as well as their future health careers. Two validated programs were combined into one program in order to evaluate their combined effects: Cooking With a Chef and Cooking Matters at the Store. The secondary objective of this pilot study is to evaluate the components and reliability of a questionnaire created specifically for this pilot study. A review of past literature was written, which included culinary nutrition as a source of primary prevention, the importance of incorporating cost with culinary nutrition, and the importance of incorporating cost with culinary nutrition. Based on the literature review, it was determined that a budget-tailored culinary nutrition program was appropriate and applicable to undergraduate food science students interested in pursuing health-related careers. The pilot study design was a semi-crossover study: all four groups received the program, however, two groups were first treated as the control groups. All fifty-four participants received 5 sessions of culinary nutrition information from Cooking With a Chef, collaboratively delivered by a nutrition educator and a chef, and one session of information about shopping healthy on a budget from Cooking Matters at the Store in the form of a grocery store tour led by the nutrition educator. Three questionnaires were administered to the participants that evaluated culinary nutrition and price knowledge, cooking attitudes, and opinions of the programs' relevance to participants' everyday lives and careers. Two of the questionnaires, including a questionnaire developed specifically for the pilot study, were delivered as a pre- and post-test while the third questionnaire was delivered as a post-test. Eight random participants also partook in a focus group session led by the nutrition

  16. Practice education learning environments: the mismatch between perceived and preferred expectations of undergraduate health science students.

    Science.gov (United States)

    Brown, Ted; Williams, Brett; McKenna, Lisa; Palermo, Claire; McCall, Louise; Roller, Louis; Hewitt, Lesley; Molloy, Liz; Baird, Marilyn; Aldabah, Ligal

    2011-11-01

    Practical hands-on learning opportunities are viewed as a vital component of the education of health science students, but there is a critical shortage of fieldwork placement experiences. It is therefore important that these clinical learning environments are well suited to students' perceptions and expectations. To investigate how undergraduate students enrolled in health-related education programs view their clinical learning environments and specifically to compare students' perception of their 'actual' clinical learning environment to that of their 'preferred/ideal' clinical learning environment. The Clinical Learning Environment Inventory (CLEI) was used to collect data from 548 undergraduate students (55% response rate) enrolled in all year levels of paramedics, midwifery, radiography and medical imaging, occupational therapy, pharmacy, nutrition and dietetics, physiotherapy and social work at Monash University via convenience sampling. Students were asked to rate their perception of the clinical learning environment at the completion of their placements using the CLEI. Satisfaction of the students enrolled in the health-related disciplines was closely linked with the five constructs measured by the CLEI: Personalization, Student Involvement, Task Orientation, Innovation, and Individualization. Significant differences were found between the student's perception of their 'actual' clinical learning environment and their 'ideal' clinical learning environment. The study highlights the importance of a supportive clinical learning environment that places emphasis on effective two-way communication. A thorough understanding of students' perceptions of their clinical learning environments is essential. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Making Bioinformatics Projects a Meaningful Experience in an Undergraduate Biotechnology or Biomedical Science Programme

    Science.gov (United States)

    Sutcliffe, Iain C.; Cummings, Stephen P.

    2007-01-01

    Bioinformatics has emerged as an important discipline within the biological sciences that allows scientists to decipher and manage the vast quantities of data (such as genome sequences) that are now available. Consequently, there is an obvious need to provide graduates in biosciences with generic, transferable skills in bioinformatics. We present…

  18. SMASH: A Diagnostic Tool to Monitor Student Metacognition, Affect, and Study Habits in an Undergraduate Science Course

    Science.gov (United States)

    Metzger, Kelsey J.; Smith, Brittany A.; Brown, Ethan; Soneral, Paula A. G.

    2018-01-01

    This study describes the development and implementation of an iterative diagnostic and intervention routine designed to elicit and quantitatively describe aspects of student metacognition, affect, and study habits in a first-year undergraduate biology course. The Student Metacognition, Affect, and Study Habits (SMASH) inventory is a…

  19. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  20. Engaging Women in Computer Science and Engineering: Promising Practices for Promoting Gender Equity in Undergraduate Research Experiences

    Science.gov (United States)

    Kim, Karen A.; Fann, Amy J.; Misa-Escalante, Kimberly O.

    2011-01-01

    Building on research that identifies and addresses issues of women's underrepresentation in computing, this article describes promising practices in undergraduate research experiences that promote women's long-term interest in computer science and engineering. Specifically, this article explores whether and how REU programs include programmatic…

  1. A Report from the Higher Education Review Board (HERB): Assessment of Undergraduate Student Learning Outcomes in Food Science

    Science.gov (United States)

    Hartel, R. W.; Iwaoka, W. T.

    2016-01-01

    For the past 15 years, Institute of Food Technologists (IFT) has mandated assessment of undergraduate student learning outcomes as the basis for approving food science (FS) programs. No longer is a check-off course system sufficient to be an IFT-approved program. The 4 steps to gaining IFT approval include developing learning outcomes for all…

  2. Nutritional biology: a neglected basic discipline of nutritional science.

    Science.gov (United States)

    Döring, Frank; Ströhle, Alexander

    2015-11-01

    On the basis of a scientific-philosophical analysis, this paper tries to show that the approaches in current nutritional science-including its subdisciplines which focus on molecular aspects-are predominantly application-oriented. This becomes particularly evident through a number of conceptual problems characterized by the triad of 'dearth of theoretical foundation,' 'particularist research questions,' and 'reductionist understanding of nutrition.' The thesis presented here is that an interpretive framework based on nutritional biology is able to shed constructive light on the fundamental problems of nutritional science. In this context, the establishment of 'nutritional biology' as a basic discipline in research and education would be a first step toward recognizing the phenomenon of 'nutrition' as an oecic process as a special case of an organism-environment interaction. Modern nutritional science should be substantively grounded on ecological-and therefore systems biology as well as organismic-principles. The aim of nutritional biology, then, should be to develop near-universal 'law statements' in nutritional science-a task which presents a major challenge for the current science system.

  3. Undergraduate Research Experiences in Geosciences for Physical Science and Engineering Students

    Science.gov (United States)

    Bililign, S.; Schimmel, K.; Lin, Y. L.; Germuth, A.

    2015-12-01

    The recruitment of undergraduate students, especially minorities, into geoscience career paths continues to be a challenge. An REU program that focused on recruiting students majoring in physical sciences and engineering from HBCU's within North Carolina started in 2012. The program offers an academic year REU for North Carolina A&T State University (NCA&T) students (8 students), summer research for non-NCA&T students (18 students), and field experiences in national labs for selected students. In this REU, the design of projects involves several faculty members (at least two from different disciplines) that expose students to interdisciplinary research approaches. The outcomes of this program, challenges, opportunities and lessons learned will be presented.

  4. From Mentoring to Collaborating: Fostering Undergraduate Research in History

    Science.gov (United States)

    History Teacher, 2013

    2013-01-01

    The author of this essay argues that historians should join their colleagues in the sciences in creating supportive environments for undergraduate research. Despite the apparent hurdles to overcome, historians can devise effective undergraduate research experiences that mimic those occurring in the chemistry, biology, and psychology labs across…

  5. Challenges of medical and biological engineering and science

    International Nuclear Information System (INIS)

    Magjarevic, R.

    2004-01-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science

  6. So much more than just a list: exploring the nature of critical questioning in undergraduate sciences

    Science.gov (United States)

    Pedrosa-de-Jesus, Helena; Moreira, Aurora; Lopes, Betina; Watts, Mike

    2014-05-01

    Background: Critical thinking is one of the very highest orders of cognitive abilities and a key competency in higher education. Asking questions is an important component of rich learning experiences, structurally embedded in the operations of critical thinking. Our clear sense is that critical thinking and, within that, critical questioning, is heavily context dependent, in the sense that is applied, used by critical learners in a contextualised way. Purpose: Our research deals with enhancing science undergraduates' critical questioning. We are interested in understanding and describing the nature and development of students' critical questioning. The purpose is to conceptualise critical questioning as a competency, into three domains - knowledge, skills and attitudes/dispositions. We have no interest in a taxonomic category of context-free question-types called 'critical questions'. In contrast, our view is that 'being a critical questioner' trades heavily on context. Sources of evidence: Four cases are considered as illuminative of the dimensions of science undergraduates' critical questioning. Data were collected in natural learning environments through non-participant observation, audio-taping teacher-students interactions and semi-structured interviews. Students' written material resulting from diverse learning tasks was also collected. Main argument: Our supposition is that one vehicle for achieving university students as critical thinkers is to enable them not just to ask critical questions, but to be critical questioners. We relate critical questioning to three domains: (1) context, (2) competency and (3) delivery, and propose a model based on illuminating examples of the in-classroom action. Conclusions: The dimensions of the competency-context-delivery model provide a framework for describing successful student critical questioning, showing that students' capacity to be critical can be developed. It is possible, in our view, to generate critical

  7. Absenteeism among medical and health science undergraduate students at Hawassa University, Ethiopia.

    Science.gov (United States)

    Desalegn, Anteneh Assefa; Berhan, Asres; Berhan, Yifru

    2014-04-14

    Student absenteeism is a major concern for university education worldwide. This study was conducted to determine the prevalence and causes of absenteeism among undergraduate medical and health sciences students at Hawassa University. We conducted a cross-sectional study using a pretested self-administered structured questionnaire from May-June 2013. The primary outcome indicator was self-reported absenteeism from lectures in the semester preceding the study period. The study included all regular undergraduate students who were enrolled in the University for at least one semester. The data was entered and analyzed using SPSS version 20. The association between class absenteeism and socio-demographic and behavioral correlates of absenteeism was determined by bivariate and multivariate analyses. Results were reported as crude odds ratios (COR), adjusted odds ratios (AOR) and 95% confidence intervals (CI). 1200 students consented and filled the questionnaire. Of these students, 43.7% had missed three or more lectures and 14.1% (95% CI = 12.2-16.2) missed more than 8 lectures in the preceding semester. There was a significant association between missing more than 8 lectures and age of students, chosen discipline (medicine), and social drug use. The main reasons reported for missing lectures were preparing for another examination, lack of interest, lecturer's teaching style, and availability of lecture material. At Hawassa University College of Medicine and Health Science student habits and teacher performance play a role in absenteeism from lectures. A university culture that promotes discipline and integrity especially among medical and older students discourages social drug use will likely improve motivation and attendance. Training in teaching methodologies to improve the quality and delivery of lectures should also help increase attendance.

  8. POULTRY SCIENCEBIOLOGICAL AND ZOOTECHNICAL PRINCIPLES

    Directory of Open Access Journals (Sweden)

    Gordana Kralik

    2010-06-01

    Full Text Available The academic textbook Poultry Breeding – Biological and Zootechnical Principles presents up-to-date trends and knowledge on selection, breeding, nutrition and production technology in intensive exploitation of different types of poultry, i.e. hens, turkeys, geese and ducks. A special emphasis is put on presentation of poultry meat and egg quality indicators, as well as on modification of their nutritive composition for the purpose of production of functional food. In order to make advantage of the poultry genetic potential, it is necessary to understand anatomy and functioning of the animal organ system. With this respect, this handbook presents the poultry skeleton in detail, as it differs from skeleton of other vertebrates. Furthermore, the following organ systems: respiratory, circulatory and lymphatic, digestive, excretory, reproductive and endocrine, as well as sensory system, are elaborated in the handbook. Along with metabolic processes that all vertebrates have in common, additional attention has been given to specific metabolic adjustments of vertebrates that have the ability to fly, like poultry. This handbook also presents modern technology that is applied in poultry production. Modern poultry production is completely automated process that requires minimum physical engagement of zootechnicians. At the same time, it is also a very complex process that demands professional and scientific knowledge of breeders, as zootechnical conditions need to be adjusted to genetic potential of contemporary poultry breeds and hybrids, as well as to attain high standards of environment protection.

  9. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    Science.gov (United States)

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  10. Cross-Cultural Comparisons of Undergraduate Student Views of the Nature of Science

    Science.gov (United States)

    Arino de la Rubia, Leigh S.; Lin, Tzung-Jin; Tsai, Chin-Chung

    2014-07-01

    Past studies investigating university level students' views of nature of science (NOS) were relatively few and most of them were conducted in Western countries. This paper focuses upon comparing the quantitative patterns in Western (US Caucasian and African-American) and non-Western (Taiwanese) students' views of NOS (VNOS) by adopting a survey instrument. This analysis combined with qualitative data begin to uncover details of potential cultural differences in patterns specifically in the US educational context by comparing Caucasian and African-American student responses to a question from a commonly used assessment of VNOS. Results show different patterns of views along the four dimensions of NOS (social negotiation, invented/creative NOS, cultural impacts, and changing/tentative feature of science) according to student major, student gender, and student ethnicity. These differences and similarities have the potential to impact undergraduate education and underrepresentation of cultural minorities in science careers and call for further research into NOS views in the context of diverse student groups.

  11. Improving scientific learning and supporting civic engagement for undergraduate non-science majors

    Science.gov (United States)

    Taylor, Alana Presley

    In prior research focusing on teaching and learning science, a definitive trend toward a new approach for undergraduate non-major science courses has emerged. Instruction should be refocused from information-transfer to giving students experiences that allow them to explore and engage in their new knowledge and find ways to integrate it into their everyday lives. One technique is to focus class material on real issues of interest and relevance. Course development that allows for civic engagement and self discovery connects learning to the lives of students and their communities. This study used a quasi-- experimental design to see if students who engaged in their learning had improved learning gains, increased motivation, and ability to relate it to their lives. The results showed that students were more motivated to connect the subject to their lives when they engaged through civic engagement projects. Techniques used in this research can be used in the future to develop science courses that focus on the needs of 21st century learners.

  12. Coordinating the undergraduate medical (MBBS basic sciences programme in a Nepalese medical school

    Directory of Open Access Journals (Sweden)

    Shankar PR

    2011-06-01

    Full Text Available KIST Medical College follows the curriculum of the Institute ofMedicine, Tribhuvan University. The programme aims toproduce socially responsible and competent physicians whoare willing and able to meet the existing and emergingchallenges of the national and international healthcaresystem. The first cohort of undergraduate medical students(MBBS students was admitted in November 2008 and threecohorts including the one admitted in 2008 have beenadmitted at the time of writing. The basic science subjects aretaught in an integrated, organ-system-based manner withcommunity medicine during the first two years. I wasappointed as the MBBS Phase I programme coordinator inSeptember 2008 and in this article I share my experiences ofrunning the basic sciences programme and also offersuggestions for running an efficient academic programme. Themanuscript will be of special interest to readers runningundergraduate medical programmes. The reader canunderstand our experiences in running the programme inadverse circumstances, learning to achieve greater integrationamong basic science, community medicine and clinicaldepartments, obtain information about a communitydiagnosis programme and know about running specialmodules on the medical humanities and pharmaceuticalpromotion.

  13. Value Added: History of Physics in a ``Science, Technology, and Society'' General Education Undergraduate Course

    Science.gov (United States)

    Neuenschwander, Dwight

    2016-03-01

    In thirty years of teaching a capstone ``Science, Technology, and Society'' course to undergraduate students of all majors, I have found that, upon entering STS, to most of them the Manhattan Project seems about as remote as the Civil War; few can describe the difference between nuclear and large non-nuclear weapons. With similar lack of awareness, many students seem to think the Big Bang was dreamed up by science sorcerers. One might suppose that a basic mental picture of weapons that held entire populations hostage should be part of informed citizenship. One might also suppose that questions about origins, as they are put to nature through evidence-based reasoning, should be integral to a culture's identity. Over the years I have found the history of physics to be an effective tool for bringing such subjects to life for STS students. Upon hearing some of the history behind (for example) nuclear weapons and big bang cosmology, these students can better imagine themselves called upon to help in a Manhattan Project, or see themselves sleuthing about in a forensic science like cosmology. In this talk I share sample student responses to our class discussions on nuclear weapons, and on cosmology. The history of physics is too engaging to be appreciated only by physicists.

  14. Factor structure of the Communicator Styles Measure (CSM) when used with undergraduate health science students.

    Science.gov (United States)

    Brown, Ted; Boyle, Malcolm; Williams, Brett; Molloy, Andrew; McKenna, Lisa; Palermo, Claire; Molloy, Liz

    2013-06-01

    It is important for educators to consider the communication skills of students enrolled in health science programmes. To date, research into this area is limited, and having measures that are valid and reliable would assist educators and researchers to complete high-quality investigations. The purpose of this study was to investigate the factor structure of Communicator Styles Measure. Data from the Communicator Styles Measure completed by 860 undergraduate health science students enrolled in eight different courses at an Australian university (response rate of 59%) were analysed using principal component analysis with varimax rotation and a cluster analysis using elementary linkage analysis. The Communicator Styles Measure is a self-report scale consisting of 40 items designed to assess ten communication styles and one's perception of his/her ability to communicate. Communicator Styles Measure items loaded onto five new viable factors labelled personable, energetic, confident, open and confronting. Six items of the original 40 from the Communicator Styles Measure did not load onto any factor and were therefore considered redundant. The original factor structure proposed by the Communicator Styles Measure's author was not supported, which calls into question its construct validity. However, the five new factors identified in this study may be useful for researchers and educators when assessing the communication skills of students and practitioners. Further investigation into the construct validity and reliability of the five new Communicator Styles Measure factors is recommended. © 2012 Nordic College of Caring Science.

  15. Connecting self-efficacy and views about the nature of science in undergraduate research experiences

    Science.gov (United States)

    Quan, Gina M.; Elby, Andrew

    2016-12-01

    Undergraduate research can support students' more central participation in physics. We analyze markers of two coupled shifts in participation: changes in students' views about the nature of science coupled to shifts in self-efficacy toward physics research. Students in the study worked with faculty and graduate student mentors on research projects while also participating in a seminar where they learned about research and reflected on their experiences. In classroom discussions and in clinical interviews, students described gaining more nuanced views about the nature of science, specifically related to who can participate in research and what participation in research looks like. This shift was coupled to gains in self-efficacy toward their ability to contribute to research; they felt like their contributions as novices mattered. We present two case studies of students who experienced coupled shifts in self-efficacy and views about nature-of-science shifts, and a case study of a student for whom we did not see either shift, to illustrate both the existence of the coupling and the different ways it can play out. After making the case that this coupling occurs, we discuss some potential underlying mechanisms. Finally, we use these results to argue for more nuanced interpretations of self-efficacy measurements.

  16. A Data-enhanced On-line Learning Environment for Undergraduate Earth System Science Education

    Science.gov (United States)

    di, L.; Deng, M.

    2004-12-01

    Earth system science (ESS) research often requires integrating, analyzing, and modeling with large amount of multi-disciplinary, multi-source geospatial data. Satellite remote sensing is one of the major sources of such data. Currently, NASA EOSDIS has archived more than three petabytes of Earth remote sensing data. Those data are essential for conducting ESS research. Therefore, training students on how to effectively use large amount of remote sensing data in ESS research is the essential part of their ESS education. However, currently most of undergraduate students have never been trained to handle the huge volume of available data because of lack of resources and suitable teaching technology at ESS colleges. In order to reduce this problem, we are developing a web-based geospatial information system, called GeoBrain, for providing a data-enhanced on-line learning and research environment for ESS education and research. The system makes petabytes of NASA EOS data and information easily accessible to higher-education users. The system allows users to dynamically and collaboratively develop interoperable, web-executable geospatial process and analysis modules and models, and run them on-line against any part of the peta-byte archives for getting back the customized information products rather than raw data. The system makes a data-enhanced ESS learning and research environment, backed by petabytes of NASA EOS data and unavailable to students and professors before, available to them at their desktops. In order to integrate this new learning environment into the undergraduate ESS teaching and research, a NASA EOS Higher Education Alliance (NEHEA), consisting of the GeoBrain development team led by GMU and a group of Earth science educators selected from an open RFP process, has been formed. NEHEA members are incorporating the data enhanced learning environment into their teaching and on-going research and will develop new courses for taking advantages of the

  17. Biomedical Science Undergraduate Major: A New Pathway to Advance Research and the Health Professions.

    Science.gov (United States)

    Gunn, John S; Ledford, Cynthia H; Mousetes, Steven J; Grever, Michael R

    2018-01-01

    Many students entering professional degree programs, particularly M.D., Ph.D., and M.D./Ph.D., are not well prepared regarding the breadth of scientific knowledge required, communication skills, research experience, reading and understanding the scientific literature, and significant shadowing (for M.D.-related professions). In addition, physician scientists are a needed and necessary part of the academic research environment but are dwindling in numbers. In response to predictions of critical shortages of clinician investigators and the lack of proper preparation as undergraduates for these professions, the Biomedical Science (BMS) undergraduate major was created at The Ohio State University to attract incoming college freshmen with interests in scientific research and the healthcare professions. The intent of this major was to graduate an elite cohort of highly talented individuals who would pursue careers in the healthcare professions, biomedical research, or both. Students were admitted to the BMS major through an application and interview process. Admitted cohorts were small, comprising 22 to 26 students, and received a high degree of individualized professional academic advising and mentoring. The curriculum included a minimum of 4 semesters (or 2 years) of supervised research experience designed to enable students to gain skills in clinical and basic science investigation. In addition to covering the prerequisites for medicine and advanced degrees in health professions, the integrated BMS coursework emphasized research literacy as well as skills related to work as a healthcare professional, with additional emphasis on independent learning, teamwork to solve complex problems, and both oral and written communication skills. Supported by Ohio State's Department of Internal Medicine, a unique clinical internship provided selected students with insights into potential careers as physician scientists. In this educational case report, we describe the BMS

  18. Bringing the physical sciences into your cell biology research.

    Science.gov (United States)

    Robinson, Douglas N; Iglesias, Pablo A

    2012-11-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences.

  19. Debates of science vs. religion in undergraduate general education cosmology courses

    Science.gov (United States)

    Lopez-Aleman, Ramon

    2015-04-01

    Recent advances in theoretical physics such as the discovery of the Higgs boson or the BICEP2 data supporting inflation can be part of the general science curriculum of non-science majors in a cosmology course designed as part of the General Education component. Yet to be a truly interdisciplinary experience one must deal with the religious background and faith of most of our students. Religious faith seems to be important in their lives, but the philosophical outlook of sciences like cosmology or evolutionary biology is one in which God is an unnecessary component in explaining the nature and origin of the universe. We will review recent advances in cosmology and suggestions on how to establish a respectful and intelligent science vs. religion debate in a transdisciplinary general education setting.

  20. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  1. Gross's Anatomy: Textual Politics in Science/Biology Education Research

    Science.gov (United States)

    Reis, Giuliano

    2009-01-01

    In approaching how the grotesque is--or should be--situated within contemporary science (biology) education practices, Weinstein and Broda undertake a passionate reclaim of an education that is at the same time scientific, critical, and liberatory. However legitimate, their work offers more than they probably could have anticipated: It exemplifies…

  2. Biotechniques Laboratory: An Enabling Course in the Biological Sciences

    Science.gov (United States)

    Di Trapani, Giovanna; Clarke, Frank

    2012-01-01

    Practical skills and competencies are critical to student engagement and effective learning in laboratory courses. This article describes the design of a yearlong, stand-alone laboratory course--the Biotechniques Laboratory--a common core course in the second year of all our degree programs in the biological sciences. It is an enabling,…

  3. Impact of Interdisciplinary Undergraduate Research in Mathematics and Biology on the Development of a New Course Integrating Five STEM Disciplines

    Science.gov (United States)

    Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu

    2010-01-01

    Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was…

  4. Finding the key - cell biology and science education.

    Science.gov (United States)

    Miller, Kenneth R

    2010-12-01

    No international research community, cell biology included, can exist without an educational community to renew and replenish it. Unfortunately, cell biology researchers frequently regard their work as independent of the process of education and see little reason to reach out to science teachers. For cell biology to continue to prosper, I argue that researchers must support education in at least three ways. First, we must view education and research as part of a single scientific community. Second, we should take advantage of new technologies to connect the research laboratory to the classroom. Finally, we must take the initiative in defending the integrity of science teaching, particularly when education is under attack for political or religious reasons. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    Science.gov (United States)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  6. The ASSURE Summer REU Program: Introducing research to first-generation and underserved undergraduates through space sciences and engineering projects

    Science.gov (United States)

    Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab

    2018-01-01

    The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.

  7. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Science.gov (United States)

    Bonham, Kevin S; Stefan, Melanie I

    2017-10-01

    While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  8. First Experiences with Reading Primary Literature by Undergraduate Life Science Students

    Science.gov (United States)

    van Lacum, Edwin; Ossevoort, Miriam; Buikema, Hendrik; Goedhart, Martin

    2012-08-01

    Learning to read and understand research articles (primary literature) is an important step in the enculturation of higher education students into the scientific community. We presume, based on ideas from the field of genre analysis, that it is important for the development of reading skills to become conscious of the rhetorical structures in research articles. So, we determined how well science students are able to identify 2 important elements of this rhetorical structure: conclusions and grounds. First-year undergraduate life science students who followed a course called 'Biomedical Research' made assignments in which they had to identify these 2 elements. We analysed the answers of 20 students in detail and compared their answers with 2 expert readers. Furthermore, we conducted task-based interviews with 4 students to gain more insight into their reading strategies and to determine how they identify conclusions and grounds. Our results show that students and experts defined conclusions and grounds in different ways. Students and experts agreed on the most important conclusion of the articles. However, students identified a wide range of sentences which were not seen as conclusions by the experts. The grounds students mentioned mostly matched their conclusions. Students sometimes failed to mention important grounds for a particular conclusion. In conclusion, our study shows the differences between student and expert readers of primary literature. Based on our results, we formulated criteria for the design of a teaching strategy that aims to improve students' skills for reading primary literature.

  9. Brownfield Action: An education through an environmental science simulation experience for undergraduates

    Science.gov (United States)

    Kelsey, Ryan Daniel

    Brownfield Action is a computer simulation experience used by undergraduates in an Introduction to Environmental Science course for non-science majors at Barnard College. Students play the role of environmental consultants given the semester-long task of investigating a potentially contaminated landsite in a simulated town. The simulation serves as the integration mechanism for the entire course. The project is a collaboration between Professor Bower and the Columbia University Center for New Media Teaching and Learning (CCNMTL). This study chronicles the discovery, design, development, implementation, and evaluation of this project over its four-year history from prototype to full-fledged semester-long integrated lecture and lab experience. The complete project history serves as a model for the development of best practices in contributing to the field of educational technology in higher education through the study of fully designed and implemented projects in real classrooms. Recommendations from the project focus on linking the laboratory and lecture portions of a course, the use of simulations (especially for novice students), instructor adaptation to the use of technology, general educational technology project development, and design research, among others. Findings from the study also emphasize the uniqueness of individual student's growth through the experience, and the depth of understanding that can be gained from embracing the complexity of studying sophisticated learning environments in real classrooms.

  10. Developing Leaders: Implementation of a Peer Advising Program for a Public Health Sciences Undergraduate Program

    Directory of Open Access Journals (Sweden)

    Megan eGriffin

    2015-01-01

    Full Text Available Peer advising is an integral part of our undergraduate advising system in the Public Health Sciences major at the University of Massachusetts Amherst. The program was developed in 2009 to address the advising needs of a rapidly growing major that went from 25 to over 530 majors between 2007 and 2014. Each year, 9-12 top performing upper-level students are chosen through an intensive application process. A major goal of the program is to provide curriculum and career guidance to students in the major and empower students in their academic and professional pursuits. The year-long program involves several components, including: staffing the drop-in advising center, attending training seminars, developing and presenting workshops for students, meeting prospective students and families, evaluating ways to improve the program, and collaborating on self-directed projects. The peer advisors also provide program staff insight into the needs and perspectives of students in the major. In turn, peer advisors gain valuable leadership and communication skills, and learn strategies for improving student success. The Peer Advising Program builds community and fosters personal and professional development for the peer advisors. In this paper, we will discuss the undergraduate peer advising model, the benefits and challenges of the program, and lessons learned. Several methods were used to understand the perceived benefits and challenges of the program and experiences of students who utilized the Peer Advising Center. The data for this evaluation were drawn from three sources: 1 archival records from the Peer Advising Center; 2 feedback from peer advisors who completed the year-long internship; and 3 a survey of students who utilized the Peer Advising Center. Results of this preliminary evaluation indicate that peer advisors gain valuable skills that they can carry into their professional world. The program is also a way to engage students in building community

  11. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning.

    Science.gov (United States)

    Ballen, Cissy J; Wieman, Carl; Salehi, Shima; Searle, Jeremy B; Zamudio, Kelly R

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self-efficacy, and sense of social belonging in a large (more than 250 students) introductory STEM course. A transition to active learning closed the gap in learning gains between non-URM and URM students and led to an increase in science self-efficacy for all students. Sense of social belonging also increased significantly with active learning, but only for non-URM students. Through structural equation modeling, we demonstrate that, for URM students, the increase in self-efficacy mediated the positive effect of active-learning pedagogy on two metrics of student performance. Our results add to a growing body of research that supports varied and inclusive teaching as one pathway to a diversified STEM workforce. © 2017 C. J. Ballen et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. The genesis of craniofacial biology as a health science discipline.

    Science.gov (United States)

    Sperber, G H; Sperber, S M

    2014-06-01

    The craniofacial complex encapsulates the brain and contains the organs for key functions of the body, including sight, hearing and balance, smell, taste, respiration and mastication. All these systems are intimately integrated within the head. The combination of these diverse systems into a new field was dictated by the dental profession's desire for a research branch of basic science devoted and attuned to its specific needs. The traditional subjects of genetics, embryology, anatomy, physiology, biochemistry, dental materials, odontology, molecular biology and palaeoanthropology pertaining to dentistry have been drawn together by many newly emerging technologies. These new technologies include gene sequencing, CAT scanning, MRI imaging, laser scanning, image analysis, ultrasonography, spectroscopy and visualosonics. A vibrant unitary discipline of investigation, craniofacial biology, has emerged that builds on the original concept of 'oral biology' that began in the 1960s. This paper reviews some of the developments that have led to the genesis of craniofacial biology as a fully-fledged health science discipline of significance in the advancement of clinical dental practice. Some of the key figures and milestones in craniofacial biology are identified. © 2014 Australian Dental Association.

  13. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    Science.gov (United States)

    Campbell, A. Malcolm; Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The "Vision and Change" report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area…

  14. Excel 2013 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach biological and life sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand science problems.  Practice problems are provided at the end of each chapter with their solutions in an appendix.  Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned.  Includes 164 illustrations in color Suitable for undergraduates or graduate student Prof. Tom Quirk is currently a Professor of Marketing at The Walker School of Business and Technology at Webster University in St....

  15. Development and Evaluation of the Tigriopus Course-Based Undergraduate Research Experience: Impacts on Students' Content Knowledge, Attitudes, and Motivation in a Majors Introductory Biology Course.

    Science.gov (United States)

    Olimpo, Jeffrey T; Fisher, Ginger R; DeChenne-Peters, Sue Ellen

    2016-01-01

    Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices' development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in such experiences not only increases their appreciation for and interest in scientific research but also enhances their ability to "think like a scientist." Despite these critical outcomes, few studies have objectively explored CURE versus non-CURE students' development of content knowledge, attitudes, and motivation in the discipline, particularly among nonvolunteer samples. To address these concerns, we adopted a mixed-methods approach to evaluate the aforementioned outcomes following implementation of a novel CURE in an introductory cell/molecular biology course. Results indicate that CURE participants exhibited more expert-like outcomes on these constructs relative to their non-CURE counterparts, including in those areas related to self-efficacy, self-determination, and problem-solving strategies. Furthermore, analysis of end-of-term survey data suggests that select features of the CURE, such as increased student autonomy and collaboration, mediate student learning and enjoyment. Collectively, this research provides novel insights into the benefits achieved as a result of CURE participation and can be used to guide future development and evaluation of authentic research opportunities. © 2016 J. T. Olimpo et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  17. An investigation of communication patterns and strategies between international teaching assistants and undergraduate students in university-level science labs

    Science.gov (United States)

    Gourlay, Barbara Elas

    This research project investigates communication between international teaching assistants and their undergraduate students in university-level chemistry labs. During the fall semester, introductory-level chemistry lab sections of three experienced non-native speaking teaching assistants and their undergraduate students were observed. Digital audio and video recordings documented fifteen hours of lab communication, focusing on the activities and interactions in the first hour of the chemistry laboratory sessions. In follow-up one-on-one semi-structured interviews, the participants (undergraduates, teaching assistants, and faculty member) reviewed interactions and responded to a 10-item, 7-point Likert-scaled interview. Interactions were classified into success categories based on participants' opinions. Quantitative and qualitative data from the observations and interviews guided the analysis of the laboratory interactions, which examined patterns of conversational listening. Analysis of laboratory communication reveals that undergraduates initiated nearly two-thirds of laboratory communication, with three-fourths of interactions less than 30 seconds in duration. Issues of gender and topics of interaction activity were also explored. Interview data identified that successful undergraduate-teaching assistant communication in interactive science labs depends on teaching assistant listening comprehension skills to interpret and respond successfully to undergraduate questions. Successful communication in the chemistry lab depended on the coordination of visual and verbal sources of information. Teaching assistant responses that included explanations and elaborations were also seen as positive features in the communicative exchanges. Interaction analysis focusing on the listening comprehension demands placed on international teaching assistants revealed that undergraduate-initiated questions often employ deixis (exophoric reference), requiring teaching assistants to

  18. Sustaining biological welfare for our future through consistent science

    Directory of Open Access Journals (Sweden)

    Shimomura Yoshihiro

    2013-01-01

    Full Text Available Abstract Physiological anthropology presently covers a very broad range of human knowledge and engineering technologies. This study reviews scientific inconsistencies within a variety of areas: sitting posture; negative air ions; oxygen inhalation; alpha brain waves induced by music and ultrasound; 1/f fluctuations; the evaluation of feelings using surface electroencephalography; Kansei; universal design; and anti-stress issues. We found that the inconsistencies within these areas indicate the importance of integrative thinking and the need to maintain the perspective on the biological benefit to humanity. Analytical science divides human physiological functions into discrete details, although individuals comprise a unified collection of whole-body functions. Such disparate considerations contribute to the misunderstanding of physiological functions and the misevaluation of positive and negative values for humankind. Research related to human health will, in future, depend on the concept of maintaining physiological functions based on consistent science and on sustaining human health to maintain biological welfare in future generations.

  19. Introduction to nonparametric statistics for the biological sciences using R

    CERN Document Server

    MacFarland, Thomas W

    2016-01-01

    This book contains a rich set of tools for nonparametric analyses, and the purpose of this supplemental text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses a...

  20. Scanning probe microscopy in material science and biology

    International Nuclear Information System (INIS)

    Cricenti, A; Colonna, S; Girasole, M; Gori, P; Ronci, F; Longo, G; Dinarelli, S; Luce, M; Rinaldi, M; Ortenzi, M

    2011-01-01

    A review of the activity of scanning probe microscopy at our Institute is presented, going from instrumentation to software development of scanning tunnelling microscopy, atomic force microscopy and scanning near-field optical microscopy (SNOM). Some of the most important experiments in material science and biology performed by our group through the years with these SPM techniques will be presented. Finally, infrared applications by coupling a SNOM with a free electron laser will also be presented.

  1. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  2. A Social Capital Perspective on the Mentoring of Undergraduate Life Science Researchers: An Empirical Study of Undergraduate–Postgraduate–Faculty Triads

    Science.gov (United States)

    Aikens, Melissa L.; Sadselia, Sona; Watkins, Keiana; Evans, Mara; Eby, Lillian T.; Dolan, Erin L.

    2016-01-01

    Undergraduate researchers at research universities are often mentored by graduate students or postdoctoral researchers (referred to collectively as “postgraduates”) and faculty, creating a mentoring triad structure. Triads differ based on whether the undergraduate, postgraduate, and faculty member interact with one another about the undergraduate’s research. Using a social capital theory framework, we hypothesized that different triad structures provide undergraduates with varying resources (e.g., information, advice, psychosocial support) from the postgraduates and/or faculty, which would affect the undergraduates’ research outcomes. To test this, we collected data from a national sample of undergraduate life science researchers about their mentoring triad structure and a range of outcomes associated with research experiences, such as perceived gains in their abilities to think and work like scientists, science identity, and intentions to enroll in a PhD program. Undergraduates mentored by postgraduates alone reported positive outcomes, indicating that postgraduates can be effective mentors. However, undergraduates who interacted directly with faculty realized greater outcomes, suggesting that faculty interaction is important for undergraduates to realize the full benefits of research. The “closed triad,” in which undergraduates, postgraduates, and faculty all interact directly, appeared to be uniquely beneficial; these undergraduates reported the highest gains in thinking and working like a scientist. PMID:27174583

  3. Assessing predictors of science grades and career goals in university undergraduates

    Science.gov (United States)

    Patanella, Daniel Francis

    The utility of traditional predictors of both science grades and career goals (SAT and GPA) was compared to psychological predictors such as Piagetian stage (as measured by the Group Assessment of Logical Thinking), sex-role schema (as measured by the Bem Sex-Role Inventory, and self-schema in students enrolled in either psychology classes (n = 123) or biology classes (n = 56). While the overall predictive ability of the model was high (R = .73), the strongest predictors of grade in science class were traditional variables and not psychological ones as predicted. Prediction of career goal, while more modest (R = .19), was best served by the psychological variable of self-schema. Subsequent analyses indicated that Piagetian stage was best conceptualized as a mediating variable and that sex-role schema as measured played almost no role in either grade or career goal, as well as verifying the internal validity of the self-schema measure used. Biology students were more likely to possess a science self-schema than psychology students (chi2 (1,179) = 7.34, p < .01) and outperformed psychology students on the Piagetian questions (t(177) = 3.01, p < .01). Response latency was recorded for all participants' answer to the Piagetian questions; contrary to prediction however, the inclusion of response latency did not add to the predictive ability of the Piagetian measure used.

  4. Test-enhanced learning: the potential for testing to promote greater learning in undergraduate science courses.

    Science.gov (United States)

    Brame, Cynthia J; Biel, Rachel

    2015-01-01

    Testing within the science classroom is commonly used for both formative and summative assessment purposes to let the student and the instructor gauge progress toward learning goals. Research within cognitive science suggests, however, that testing can also be a learning event. We present summaries of studies that suggest that repeated retrieval can enhance long-term learning in a laboratory setting; various testing formats can promote learning; feedback enhances the benefits of testing; testing can potentiate further study; and benefits of testing are not limited to rote memory. Most of these studies were performed in a laboratory environment, so we also present summaries of experiments suggesting that the benefits of testing can extend to the classroom. Finally, we suggest opportunities that these observations raise for the classroom and for further research. © 2015 C. J. Brame and R. Biel. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. An analysis of the information technology discipline in archival sciences undergraduate courses of universities from the south of Brazil

    Directory of Open Access Journals (Sweden)

    Nelma Camêlo Araujo

    2009-10-01

    Full Text Available The present article is part of a research conducted at universities of the south of Brazil that offers disciplines of Information Technology in Archival Sciences undergraduate courses. The research objective to identify through the educational project of these courses the subjects which have emphasis in the Information Technology, as well as to identify the teachers’ perception about the condition of these subjects in enabling the student for the challenges of the work market

  6. Mapping the level of scientific reasoning skills to instructional methodologies among Malaysian science-mathematics-engineering undergraduates

    Science.gov (United States)

    Tajudin, Nor'ain Mohd.; Saad, Noor Shah; Rahman, Nurulhuda Abd; Yahaya, Asmayati; Alimon, Hasimah; Dollah, Mohd. Uzi; Abd Karim, Mohd. Mustaman

    2012-05-01

    The objectives of this quantitative survey research were (1) to establish the level of scientific reasoning (SR) skills among science, mathematics and engineering (SME) undergraduates in Malaysian Institute of Higher Learning (IHL); (b) to identify the types of instructional methods in teaching SME at universities; and (c) to map instructional methods employed to the level of SR skills among the undergraduates. There were six universities according to zone involved in this study using the stratification random sampling technique. For each university, the faculties that involved were faculties which have degree students in science, mathematics and engineering programme. A total of 975 students were participated in this study. There were two instruments used in this study namely, the Lawson Scientific Reasoning Skills Test and the Lecturers' Teaching Style Survey. The descriptive statistics and the inferential statistics such as mean, t-test and Pearson correlation were used to analyze the data. Findings of the study showed that most students had concrete level of scientific reasoning skills where the overall mean was 3.23. The expert and delegator were dominant lecturers' teaching styles according to students' perception. In addition, there was no correlation between lecturers' teaching style and the level of scientific reasoning skills. Thus, this study cannot map the dominant lecturers' teaching style to the level of scientific reasoning skills of Science, Mathematics and Engineering undergraduates in Malaysian Public Institute of Higher Learning. Nevertheless, this study gave some indications that the expert and delegator teaching styles were not contributed to the development of students' scientific reasoning skills. This study can be used as a baseline for Science, Mathematics and Engineering undergraduates' level of scientific reasoning skills in Malaysian Public Institute of Higher Learning. Overall, this study also opens an endless source of other

  7. Practising Conservation Biology in a Virtual Rainforest World

    Science.gov (United States)

    Schedlbauer, Jessica L.; Nadolny, Larysa; Woolfrey, Joan

    2016-01-01

    The interdisciplinary science of conservation biology provides undergraduate biology students with the opportunity to connect the biological sciences with disciplines including economics, social science and philosophy to address challenging conservation issues. Because of its complexity, students do not often have the opportunity to practise…

  8. Teaching Map Concepts in Social Science Education; an Evaluation with Undergraduate Students

    Science.gov (United States)

    Bugdayci, Ilkay; Zahit Selvi, H.

    2017-12-01

    One of the most important aim of the geography and social science courses is to gain the ability of reading, analysing and understanding maps. There are a lot of themes related with maps and map concepts in social studies education. Geographical location is one of the most important theme. Geographical location is specified by geographical coordinates called latitude and longitude. The geographical coordinate system is the primary spatial reference system of the earth. It is always used in cartography, in geography, in basic location calculations such as navigation and surveying. It’s important to support teacher candidates, to teach maps and related concepts. Cartographers also have important missions and responsibilities in this context. The purpose of this study is to evaluate the knowledge of undergraduate students, about the geographical location. For this purpose, a research has been carried out on questions and activities related to geographical location and related concepts. The details and results of the research conducted by the students in the study are explained.

  9. Lunar and Planetary Science XXXV: Undergraduate Education and Research Programs, Facilities, and Information Access

    Science.gov (United States)

    2004-01-01

    The titles in this section include: 1) GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography; 2) Software and Hardware Upgrades for the University of North Dakota Asteroid and Comet Internet Telescope (ACIT); 3) Web-based Program for Calculating Effects of an Earth Impact; 4) On-Line Education, Web- and Virtual-Classes in an Urban University: A Preliminary Overview; 5) Modelling Planetary Material's Structures: From Quasicrystalline Microstructure to Crystallographic Materials by Use of Mathematica; 6) How We Used NASA Lunar Set in Planetary and Material Science Studies: Textural and Cooling Sequences in Sections of Lava Column from a Thin and a Thick Lava-Flow, from the Moon and Mars with Terrestrial Analogue and Chondrule Textural Comparisons; 7) Classroom Teaching of Space Technology and Simulations by the Husar Rover Model; 8) New Experiments (In Meteorology, Aerosols, Soil Moisture and Ice) on the New Hunveyor Educational Planetary Landers of Universities and Colleges in Hungary; 9) Teaching Planetary GIS by Constructing Its Model for the Test Terrain of the Hunveyor and Husar; 10) Undergraduate Students: An Untapped Resource for Planetary Researchers; 11) Analog Sites in Field Work of Petrology: Rock Assembly Delivered to a Plain by Floods on Earth and Mars; 12) RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility; 13) Full Text Searching and Customization in the NASA ADS Abstract Service.

  10. Human sciences in the first semester of the dental undergraduate course at the Karolinska Institute, Stockholm.

    Science.gov (United States)

    Röding, K

    1999-08-01

    The first 9 weeks of the dental undergraduate education at the Karolinska Institutet comprises a transition course, designed to introduce students to university studies leading to professional qualifications in patient-related health sciences. 1 week has been set aside for the theme Man and Society, highlighting the importance of the human sciences for the development of behavioural skills necessary for achieving professionalism and a holistic patient concept. Some essential ethical questions are addressed: intercultural communication, empathy, professional demeanour and the development of professional competence, and group dynamics. In this context, more specific subjects are considered, such as the emergence of the multicultural society and its implications for health services, interpersonal skills and patient communication in the health and medical fields. There are several reasons for including this theme, which forms the basis for the ethical and communicative strands throughout the entire curriculum. As 30-40% of freshmen dental students are of non-Swedish origin, it is essential to include cultural awareness seminars. Another reason is that within the EU, cultural and communicative skills are recognised proficiencies for health professionals; it is also acknowledged that effective delivery of health care may be impeded by misunderstandings in communication and conflict in ethical beliefs. Group discussions are scheduled during the week in order to allow the students to discuss their own experiences related to the theme. The students are also given a written assignment in relation to one of the seminars; the report is assessed as a part of the examination. The week is concluded by a plenum discussion summarising the group discussions. To date, 4 course evaluations, with a response rate of 92.5%, show that 97.3% of the students were positive to the theme as a whole or to specific seminars held during the week, especially intercultural communication, ethics and

  11. Knowledge of healthy foods does not translate to healthy snack consumption among exercise science undergraduates.

    Science.gov (United States)

    McArthur, Laura H; Valentino, Antonette; Holbert, Donald

    2017-06-01

    This cross-sectional survey study compared the on- and off-campus snack choices and related correlates of convenience samples of exercise science (ES) ( n = 165, M = 45%, F = 55%) and non-exercise science (NES) ( n =160, M = 43%, F = 57%) undergraduates. The hypothesis posed was that knowledge of healthy foods will not translate to healthier snack consumption by the ES students, and that the snack choices and related correlates of ES and NES students will be similar. Data were collected using self-administered questionnaires completed in classrooms (ES sample) and at high-traffic locations on-campus (NES sample). Chi-square and t-test analyses compared ES and NES students on snack correlates. Snacks consumed most often by the ES and NES students on-campus were health bars/squares ( n = 56 vs. n = 48) and savory snacks ( n = 55 vs. n = 71), and off-campus were savory snacks ( n = 60 vs. n = 71) and fruits ( n = 41 vs. n = 34). Over half of both samples believed their snack choices were a mix of unhealthy and healthy. Fruits were considered healthier snacks and chips less healthy by both samples, and fruits were the most often recommended snack. About 20% believed these choices would impact their health unfavorably, and about two thirds self-classified in the action stages for healthy snacking. Since knowledge about healthy food choices did not translate to healthy snack selection, these students would benefit from interventions that teach selection and preparation of healthy snacks on a restricted budget.

  12. Assessing Attitudes Towards Science During an Adaptive Online Astrobiology Course: Comparing Online and On-Campus Undergraduates

    Science.gov (United States)

    Perera, Viranga; Mead, Chris; Buxner, Sanlyn; Horodyskyj, Lev; Semken, Steven; Lopatto, David; Anbar, Ariel

    2016-10-01

    General-education Science, Technology, Engineering, and Mathematics (STEM) courses are accepted as essential to a college education. An often cited reason is to train a scientifically literate populace who can think critically and make informed decisions about complex issues such as climate change, health care, and atomic energy. Goals of these STEM courses, therefore, go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life and understanding the nature of science. To gauge if such non-content learning outcomes are being met in our course, an online astrobiology course called Habitable Worlds, we administered the Classroom Undergraduate Research Experience (CURE) survey to students. The survey was administered before and after completion of the course for three semesters starting with the Fall 2014 semester and ending with the Fall 2015 semester (N = 774). A factor analysis indicated three factors on attitudes: toward science education, toward the interconnectedness of science with non-science fields, and toward the nature of science. Here we present some differences between students enrolled in online degree programs (o-course) and those enrolled in traditional undergraduate programs (i-course). While mean course grades were similar, changes in attitudes toward science differ significantly between o-course and i-course students. The o-course students began the course with more positive attitudes across all three factors than the i-course students. Their attitudes toward science education improved during the course, while the i-course students showed no change. Attitudes toward the other two factors declined in both populations during the course, but declines were smaller among o-course students. These differences may indicate lesser intrinsic motivation among the i-course students. The CURE survey has not been used before in an online course; therefore, we will

  13. Referencing Science: Teaching Undergraduates to Identify, Validate, and Utilize Peer-Reviewed Online Literature

    Science.gov (United States)

    Berzonsky, William A.; Richardson, Katherine D.

    2008-01-01

    Accessibility of online scientific literature continues to expand due to the advent of scholarly databases and search engines. Studies have shown that undergraduates favor using online scientific literature to address research questions, but they often do not have the skills to assess the validity of research articles. Undergraduates generally are…

  14. Evaluating an Instrument to Quantify Attitude to the Subject of Physiology in Undergraduate Health Science Students

    Science.gov (United States)

    Brown, Stephen; White, Sue; Bowmar, Alex; Power, Nicola

    2017-01-01

    The attitude toward a subject contributes to both academic engagement and success at university, yet it is not routinely measured in undergraduate students. Therefore, in two consecutive introductory courses in Human anatomy and physiology (HAP 1, n = 239, and HAP 2, n = 329), an instrument to quantify undergraduate students' attitude to the…

  15. Ideas and Approaches for Teaching Undergraduate Research Methods in the Health Sciences

    Science.gov (United States)

    Peachey, Andrew A.; Baller, Stephanie L.

    2015-01-01

    Training in research methodology is becoming more commonly expected within undergraduate curricula designed to prepare students for entry into graduate allied health programs. Little information is currently available about pedagogical strategies to promote undergraduate students' learning of research methods, and less yet is available discussing…

  16. United States Naval Academy Polar Science Program; Undergraduate Research and Outreach in Polar Environments

    Science.gov (United States)

    Woods, J. E.

    2013-12-01

    The United States Naval Academy (USNA) Polar Science Program (PSP), has been very active completing its own field campaign out of Barrow, AK, sent students to the South Pole, participated in STEM activities and educated over 100 future Naval Officers about the Polar Regions. Each activity is uniquely different, but has the similar undertone of sharing the recent rapid changes in the Cryosphere to a wide range of audiences. There is further room for development and growth through future field campaigns and new collaborations. The Naval Academy Ice Experiment (NAICEX) 2013 was based out of the old Naval Arctic Research Laboratory (NARL) in Barrow, AK. In joint collaboration with the University of Delaware, University of Washington, and Naval Research Laboratory we successfully took multiple measurements for over a week on the fast ice just offshore. Five undergraduate students from USNA, as well as 3 graduate students from University of Delaware participated, as well as multiple professors and instructors from each institution. Data collected during the experiment will be used in capstone courses and thesis research. There was also an outreach component to the experiment, where local students from Barrow H.S. have been assigned to the USNA ice observations project for their own high school course work. Local students will be analyzing data that will contribute into the larger research effort at USNA through coordinated remote efforts and participation in future field experiments. The USNA STEM office is one of the most robust in the entire country. The USNA PSP is active within this program by developing polar specific modules that are integrated varying length outreach opportunities from a few hours to week long camps. USNA PSP also engages in educator training that is held at the Naval Academy each summer. Through this program of educating the educators, the far reaching levels of awareness are multiplied exponentially. Also, the USNA Oceanography Department has

  17. Mentoring for Inclusion: The Impact of Mentoring on Undergraduate Researchers in the Sciences.

    Science.gov (United States)

    Haeger, Heather; Fresquez, Carla

    Increasing inclusion of underrepresented minority and first-generation students in mentored research experiences both increases diversity in the life sciences research community and prepares students for successful careers in these fields. However, analyses of the impact of mentoring approaches on specific student gains are limited. This study addresses the impact of mentoring strategies within research experiences on broadening access to the life sciences by examining both how these experiences impacted student success and how the quality of mentorship affected the development of research and academic skills for a diverse population of students at a public, minority-serving institution. Institutional data on student grades and graduation rates (n = 348) along with postresearch experience surveys (n = 138) found that students mentored in research had significantly higher cumulative grade point averages and similar graduation rates as a matched set of peers. Examination of the relationships between student-reported gains and mentoring strategies demonstrated that socioemotional and culturally relevant mentoring impacted student development during mentored research experiences. Additionally, extended engagement in research yielded significantly higher development of research-related skills and level of independence in research. Recommendations are provided for using mentoring to support traditionally underrepresented students in the sciences. © 2016 H. Haeger and C. Fresquez. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Broad Collaboration to Improve Biological Sciences Students' Writing and Research Skills

    Science.gov (United States)

    Brancato, Lisa; Chan, Tina; Contento, Anthony

    2016-01-01

    At the State University of New York at Oswego (SUNY Oswego), a faculty member and advisement coordinator, both of the biological sciences department, and the biological sciences librarian have worked together since 2013 to present a workshop called Writing for the Biological Sciences. Offered once per semester, the workshop is sponsored by the…

  19. Biological inquiry: a new course and assessment plan in response to the call to transform undergraduate biology.

    Science.gov (United States)

    Goldey, Ellen S; Abercrombie, Clarence L; Ivy, Tracie M; Kusher, Dave I; Moeller, John F; Rayner, Doug A; Smith, Charles F; Spivey, Natalie W

    2012-01-01

    We transformed our first-year curriculum in biology with a new course, Biological Inquiry, in which >50% of all incoming, first-year students enroll. The course replaced a traditional, content-driven course that relied on outdated approaches to teaching and learning. We diversified pedagogical practices by adopting guided inquiry in class and in labs, which are devoted to building authentic research skills through open-ended experiments. Students develop core biological knowledge, from the ecosystem to molecular level, and core skills through regular practice in hypothesis testing, reading primary literature, analyzing data, interpreting results, writing in disciplinary style, and working in teams. Assignments and exams require higher-order cognitive processes, and students build new knowledge and skills through investigation of real-world problems (e.g., malaria), which engages students' interest. Evidence from direct and indirect assessment has guided continuous course revision and has revealed that compared with the course it replaced, Biological Inquiry produces significant learning gains in all targeted areas. It also retains 94% of students (both BA and BS track) compared with 79% in the majors-only course it replaced. The project has had broad impact across the entire college and reflects the input of numerous constituencies and close collaboration among biology professors and students.

  20. "The impossible made possible": A method for measuring change in conceptual understanding in undergraduate science students

    Science.gov (United States)

    Himangshu, Sumitra

    This study examined change in conceptual knowledge of scientific concepts at the undergraduate level by using concept mapping to assess student understanding. Recent reports from science educators and researchers indicate an acute need to enhance student conceptual understanding in science. This suggests that faculty need to investigate whether actual student learning matches their goals for enhancing conceptual understanding. The study design incorporated the use of both qualitative and quantitative methods to analyze change in student conceptual understanding. The sample population consisted of a total of 61 students, 47 science majors and 14 non-majors from ten different classrooms at seven separate institutions of higher education across the United States. Student concept maps were constructed, by the researcher, from the transcripts of structured interviews with the student participants. Analysis of the concept maps was correlated with other quantitative data, such as course grades and the Learning and Studying Questionnaire (LSQ). The LSQ is a well-established survey instrument that measures student learning based on the use of rote and/or conceptual learning techniques. Results indicate that concept maps provide more information than grades alone because they represented individual understanding, in terms of depth of understanding, relationships between concepts, quality of knowledge organization and identification of misconceptions. Thus, differences in student comprehension of course material, with respect to critical concepts, could be analyzed. The greatest determinant of increased conceptual understanding over the course of a semester was the student's self-report of approaches to learning and studying. The quality of the student maps, in turn, was reflective of differences in student approaches to learning. Concomitantly, the concept maps reflected student gains in content and depth over a semester with respect to an expert map. The results also

  1. A Comparative Analysis of South African Life Sciences and Biology Textbooks for Inclusion of the Nature of Science

    Science.gov (United States)

    Ramnarain, Umesh; Padayachee, Keshni

    2015-01-01

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology textbooks that were written…

  2. How does undergraduate college biology students' level of understanding, in regard to the role of the seed plant root system, relate to their level of understanding of photosynthesis?

    Science.gov (United States)

    Njeng'ere, James Gicheha

    This research study investigated how undergraduate college biology students' level of understanding of the role of the seed plant root system relates to their level of understanding of photosynthesis. This research was conducted with 65 undergraduate non-majors biology who had completed 1 year of biology at Louisiana State University in Baton Rouge and Southeastern Louisiana University in Hammond. A root probe instrument was developed from some scientifically acceptable propositional statements about the root system, the process of photosynthesis, as well as the holistic nature of the tree. These were derived from research reviews of the science education and the arboriculture literature. This was administered to 65 students selected randomly from class lists of the two institutions. Most of the root probe's items were based on the Live Oak tree. An in-depth, clinical interview-based analysis was conducted with 12 of those tested students. A team of root experts participated by designing, validating and answering the same questions that the students were asked. A "systems" lens as defined by a team of college instructors, root experts (Shigo, 1991), and this researcher was used to interpret the results. A correlational coefficient determining students' level of understanding of the root system and their level of understanding of the process of photosynthesis was established by means of Pearson's r correlation (r = 0.328) using the SAS statistical analysis (SAS, 1987). From this a coefficient of determination (r2 = 0.104) was determined. Students' level of understanding of the Live Oak root system (mean score 5.94) was not statistically different from their level of understanding of the process of photosynthesis (mean score 5.54) as assessed by the root probe, t (129) = 0.137, p > 0.05 one tailed-test. This suggests that, to some degree, level of the root system limits level of understanding of photosynthesis and vice versa. Analysis of quantitative and qualitative

  3. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  4. 75 FR 10507 - Advisory Committee for Biological Sciences; Notice of Meeting

    Science.gov (United States)

    2010-03-08

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Biological Sciences; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended), the National Science Foundation announces the following meeting: Name: Advisory Committee for Biological Sciences (1110). Date/Time: March...

  5. 77 FR 21812 - Biological Science Advisory Committee; Notice of Meeting: Correction

    Science.gov (United States)

    2012-04-11

    ... NATIONAL SCIENCE FOUNDATION Biological Science Advisory Committee; Notice of Meeting: Correction Summary: The National Science Foundation (NSF) published in the Federal Register on April 2, 2012, a notice of an open meeting for the Biological Sciences Advisory Committee, 1110. This notice is to correct...

  6. 76 FR 12996 - Advisory Committee for Biological Sciences; Notice of Meeting

    Science.gov (United States)

    2011-03-09

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Biological Sciences; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L., 92- 463, as amended), the National Science Foundation announces the following meeting: Name: Biological Sciences Advisory Committee ( 1110). Date and...

  7. 75 FR 55617 - Advisory Committee for Biological Sciences; Notice of Meeting

    Science.gov (United States)

    2010-09-13

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Biological Sciences; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as amended), the National Science Foundation announces the following meeting: Name: Advisory Committee for Biological Sciences ( 1110). Date...

  8. Examining the effects of students' classroom expectations on undergraduate biology course reform

    Science.gov (United States)

    Hall, Kristi Lyn

    In this dissertation, I perform and compare three studies of introductory biology students' classroom expectations -- what students expect to be the nature of the knowledge that they are learning, what they think they should be (or are) doing in order to learn, and what they think they should be (or are) doing in order to be successful. Previous work has shown that expectations can impact how students approach learning, yet biology education researchers have been reluctant to acknowledge or address the effects of student expectations on curricular reform (NRC, 2012). Most research in biology education reform has focused on students' conceptual understandings of biology and the efficacy of specific changes to content and pedagogy. The current research is lacking a deeper understanding of how students perceive the classroom environment and how those perceptions can shape students' interactions with the content and pedagogy. For present and future reforms in biology to reach their full potential, I argue that biology education should actively address the different ways students think about and approach learning in biology classes. The first study uses a Likert-scale instrument, adapted from the Maryland Physics Expectations Survey (Redish, Saul, & Steinberg, 1998). This new survey, the Maryland Biology Expectations Survey (MBEX) documents two critical results in biology classrooms: (i) certain student-centered pedagogical contexts can produce favorable changes in students' expectations, and (ii) more traditional classroom contexts appear to produce negative epistemological effects. The second study utilizes a modified version of the MBEX and focuses on students' interdisciplinary views. This study documents that: (i) biology students have both discipline-specific and context-specific classroom expectations, (ii) students respond more favorably to interdisciplinary content in the biology courses we surveyed (as opposed to biology content introduced into the physics

  9. B. F. Skinner and G. H. Mead: on biological science and social science.

    Science.gov (United States)

    Blackman, D E

    1991-01-01

    Skinner's contributions to psychology provide a unique bridge between psychology conceptualized as a biological science and psychology conceptualized as a social science. Skinner focused on behavior as a naturally occurring biological phenomenon of interest in its own right, functionally related to surrounding events and, in particular (like phylogenesis), subject to selection by its consequences. This essentially biological orientation was further enhanced by Skinner's emphasis on the empirical foundations provided by laboratory-based experimental analyses of behavior, often with nonhuman subjects. Skinner's theoretical writings, however, also have affinity with the traditions of constructionist social science. The verbal behavior of humans is said to be subject, like other behavior, to functional analyses in terms of its environment, in this case its social context. Verbal behavior in turn makes it possible for us to relate to private events, a process that ultimately allows for the development of consciousness, which is thus said to be a social product. Such ideas make contact with aspects of G. H. Mead's social behaviorism and, perhaps of more contemporary impact in psychology, L. Vygotsky's general genetic law of cultural development. Failure to articulate both the biological and the social science aspects of Skinner's theoretical approach to psychology does a disservice to his unique contribution to a discipline that remains fragmented between two intellectual traditions. PMID:2037828

  10. Science for Survival: The Modern Synthesis of Evolution and the Biological Sciences Curriculum Study

    Science.gov (United States)

    Green, Lisa Anne

    2012-01-01

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called…

  11. Using Yeast to Determine the Functional Consequences of Mutations in the Human p53 Tumor Suppressor Gene: An Introductory Course-Based Undergraduate Research Experience in Molecular and Cell Biology

    Science.gov (United States)

    Hekmat-Scafe, Daria S.; Brownell, Sara E.; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F. Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S.; Stearns, Tim

    2017-01-01

    The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course-based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students' high…

  12. Multicultural science education in Lesotho high school biology classrooms

    Science.gov (United States)

    Nthathakane, Malefu Christina

    2001-12-01

    This study investigated how Basotho high school biology students responded to a multicultural science education (MCSE) approach. Students' home language---Sesotho---and cultural experiences were integrated into the teaching of a unit on alcohol, tobacco and other drugs (ATOD) abuse. The focus was on students whose cultural background is African and who are English second language users. The study was conducted in three high school biology classrooms in Lesotho where the ATOD unit was taught using MCSE. A fourth biology classroom was observed for comparison purposes. In this classroom the regular biology teacher taught ATOD using typical instructional strategies. The study was framed by the general question: How does a multicultural science education approach affect Basotho high school biology students? More specifically: How does the use of Sesotho (or code-switching between Sesotho and English) and integration of Basotho students' cultural knowledge and experiences with respect to ATOD affect students' learning? In particular how does the approach affect students' participation and academic performance? A qualitative research method was used in this study. Data were drawn from a number of different sources and analyzed inductively. The data sources included field-notes, transcripts of ATOD lessons, research assistant lesson observation notes and interviews, regular biology teachers' interviews and notes from observing a few of their lessons, students' interviews and pre and posttest scripts, and other school documents that recorded students' performance throughout the year. Using the students' home language---Sesotho---was beneficial in that it enabled them to share ideas, communicate better and understand each other, the teacher and the material that was taught. Integrating students' cultural and everyday experiences was beneficial because it enabled students to anchor the new ATOD ideas in what was familiar and helped them find the relevance of the unit by

  13. Cross-disciplinary thermoregulation and sweat analysis laboratory experiences for undergraduate Chemistry and Exercise Science students.

    Science.gov (United States)

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A

    2011-06-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two distinct disciplines [chemistry (CHEM) and exercise physiology (EPHE)] combined to study exercise thermoregulation and sweat analysis. Twenty-eight senior BSc Kinesiology (EPHE) students and 42 senior BSc CHEM students participated as part of their mutually exclusive, respective courses. The effectiveness of this laboratory environment was evaluated qualitatively using written comments collected from all students as well as from formal focus groups conducted after the CD laboratory with a representative cohort from each class (n = 16 CHEM students and 9 EPHE students). An open coding strategy was used to analyze the data from written feedback and focus group transcripts. Coding topics were generated and used to develop five themes found to be consistent for both groups of students. These themes reflected the common student perceptions that the CD experience was valuable and that students enjoyed being able to apply academic concepts to practical situations as well as the opportunity to interact with students from another discipline of study. However, students also reported some challenges throughout this experience that stemmed from the combination of laboratory groups from different disciplines with limited modification to the design of the original, pre-CD, learning environments. The results indicate that this laboratory created an effective learning opportunity that fostered student interest and enthusiasm for learning. The findings also provide information that could inform subsequent design and implementation of similar CD experiences to enhance engagement of all students and improve instructor efficacy.

  14. An Examination of Science High School Students' Motivation towards Learning Biology and Their Attitude towards Biology Lessons

    Science.gov (United States)

    Kisoglu, Mustafa

    2018-01-01

    The purpose of this study is to examine motivation of science high school students towards learning biology and their attitude towards biology lessons. The sample of the study consists of 564 high school students (308 females, 256 males) studying at two science high schools in Aksaray, Turkey. In the study, the relational scanning method, which is…

  15. A Western Blot-based Investigation of the Yeast Secretory Pathway Designed for an Intermediate-Level Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Hood-DeGrenier, Jennifer K.

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…

  16. When Do Students "Learn-to-Comprehend" Scientific Sources?: Evaluation of a Critical Skill in Undergraduates Progressing through a Science Major.

    Science.gov (United States)

    Marsh, Tamara L; Guenther, Merrilee F; Raimondi, Stacey L

    2015-05-01

    In response to the publication of Vision and Change, the biology department at Elmhurst College revised our curriculum to better prepare students for a career in science with the addition of various writing assignments in every course. One commonality among all of the assignments is the ability to comprehend and critically evaluate scientific literature to determine relevancy and possible future research. Several previous reports have analyzed specific methodologies to improve student comprehension of scientific writing and critical thinking skills, yet none of these examined student growth over an undergraduate career. In this study, we hypothesized upper-level students would be better able to comprehend and critically analyze scientific literature than introductory biology majors. Biology students enrolled in an introductory (200-level), mid- (300-level), or late-career (400-level) course were tasked with reading and responding to questions regarding a common scientific article and rating their comfort and confidence in reading published literature. As predicted, upper-level (mid- and late-career) students showed increases in comprehension and critical analysis relative to their first-year peers. Interestingly, we observed that upper-level students read articles differently than introductory students, leading to significant gains in understanding and confidence. However, the observed gains were modest overall, indicating that further pedagogical change is necessary to improve student skills and confidence in reading scientific articles while fulfilling the Vision and Change recommendations.

  17. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory,…

  18. Undergraduate Convexity

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimin...

  19. Development and Evaluation of the Tigriopus Course-Based Undergraduate Research Experience: Impacts on Students’ Content Knowledge, Attitudes, and Motivation in a Majors Introductory Biology Course

    Science.gov (United States)

    Olimpo, Jeffrey T.; Fisher, Ginger R.; DeChenne-Peters, Sue Ellen

    2016-01-01

    Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices’ development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in such experiences not only increases their appreciation for and interest in scientific research but also enhances their ability to “think like a scientist.” Despite these critical outcomes, few studies have objectively explored CURE versus non-CURE students’ development of content knowledge, attitudes, and motivation in the discipline, particularly among nonvolunteer samples. To address these concerns, we adopted a mixed-methods approach to evaluate the aforementioned outcomes following implementation of a novel CURE in an introductory cell/molecular biology course. Results indicate that CURE participants exhibited more expert-like outcomes on these constructs relative to their non-CURE counterparts, including in those areas related to self-efficacy, self-determination, and problem-solving strategies. Furthermore, analysis of end-of-term survey data suggests that select features of the CURE, such as increased student autonomy and collaboration, mediate student learning and enjoyment. Collectively, this research provides novel insights into the benefits achieved as a result of CURE participation and can be used to guide future development and evaluation of authentic research opportunities. PMID:27909022

  20. A semester-long project for teaching basic techniques in molecular biology such as restriction fragment length polymorphism analysis to undergraduate and graduate students.

    Science.gov (United States)

    DiBartolomeis, Susan M

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky(73). Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers.

  1. A Semester-Long Project for Teaching Basic Techniques in Molecular Biology Such as Restriction Fragment Length Polymorphism Analysis to Undergraduate and Graduate Students

    Science.gov (United States)

    DiBartolomeis, Susan M.

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky73. Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers. PMID:21364104

  2. Effects of Web Based Inquiry Science Environment on Cognitive Outcomes in Biological Science in Correlation to Emotional Intelligence

    Science.gov (United States)

    Manoj, T. I.; Devanathan, S.

    2010-01-01

    This research study is the report of an experiment conducted to find out the effects of web based inquiry science environment on cognitive outcomes in Biological science in correlation to Emotional intelligence. Web based inquiry science environment (WISE) provides a platform for creating inquiry-based science projects for students to work…

  3. Investigating the Role of an Inquiry-Based Biology Lab Course on Student Attitudes and Views toward Science.

    Science.gov (United States)

    Jeffery, Erica; Nomme, Kathy; Deane, Thomas; Pollock, Carol; Birol, Gülnur

    2016-01-01

    Students' academic experiences can influence their conceptualization of science. In contrast experts hold particular beliefs, perceptions, opinions, and attitudes about science that are often absent in first-year undergraduate students. Shifts toward more expert-like attitudes and views have been linked to improved student engagement, critical-thinking ability, conceptual understanding, and academic performance. In this study, we investigate shifts in attitudes and views toward science by students in four biology classes with differences in student enrollment, academic support, and instruction. We observe significant, positive effects of enrollment in a guided-inquiry lab course and academic performance on the percentage of expert-like student attitudes and views at the end of term. We also identify variation in two aspects of student attitudes and views: 1) confidence and interest and 2) understanding and acceptance. In particular, enrollment in the lab course boosts student confidence and interest in scientific inquiry in the short term, even for students with low academic performance or little English-language experience. Our results suggest that low-performing students in particular may require additional opportunities for experiential learning or greater academic support to develop expert-like perceptions of biology as a science. © 2016 E. Jeffery et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Exploring Science in the Studio: NSF-Funded Initiatives to Increase Scientific Literacy in Undergraduate Art and Design Students

    Science.gov (United States)

    Metzger, C. A.

    2015-12-01

    The project Exploring Science in the Studio at California College of the Arts (CCA), one of the oldest and most influential art and design schools in the country, pursues ways to enable undergraduate students to become scientifically literate problem-solvers in a variety of careers and to give content and context to their creative practices. The two main branches of this National Science Foundation-funded project are a series of courses called Science in the Studio (SitS) and the design of the Mobile Units for Science Exploration (MUSE) system, which allow instructors to bring science equipment directly into the studios. Ongoing since 2010, each fall semester a series of interdisciplinary SitS courses are offered in the college's principal areas of study (architecture, design, fine arts, humanities and sciences, and diversity studies) thematically linked by Earth and environmental science topics such as water, waste, and sustainability. Each course receives funding to embed guest scientists from other colleges and universities, industry, or agriculture directly into the studio courses. These scientists worked in tandem with the studio faculty and gave lectures, led field trips, conducted studio visits, and advised the students' creative endeavors, culminating in an annual SitS exhibition of student work. The MUSE system, of fillable carts and a storage and display unit, was designed by undergraduate students in a Furniture studio who explored, experimented, and researched various ways science materials and equipment are stored, collected, and displayed, for use in the current and future science and studio curricula at CCA. Sustainable practices and "smart design" underpinned all of the work completed in the studio. The materials selected for the new Science Collection at CCA include environmental monitoring equipment and test kits, a weather station, a stream table, a rock and fossil collection, and a vertebrate skull collection. The SitS courses and MUSE system

  5. Adapting to Student Learning Styles: Using Cell Phone Technology in Undergraduate Science Instruction

    Directory of Open Access Journals (Sweden)

    Richard Pennington

    2010-10-01

    Full Text Available Students of science traditionally make 3x5 flash cards to assist learning nomenclature, structures, and reactions. Advances in educational technology have enabled flashcards viewed on computers, offering an endless array of drilling and feedback opportunities for students. The current generation of students is less inclined to use computers, but they use their cell phones 24 hours a day. This report outlines these trends and an even more recent educational technology initiative, that of using cell phone flash cards to help students learn biology and chemistry nomenclature, structures, and reactions. Students responded positively to cell phone flash cards in a pilot study and a more detailed study is planned for the coming year.

  6. Investigating the Role of an Inquiry-Based Biology Lab Course on Student Attitudes and Views toward Science

    Science.gov (United States)

    Jeffery, Erica; Nomme, Kathy; Deane, Thomas; Pollock, Carol; Birol, Gülnur

    2016-01-01

    Students’ academic experiences can influence their conceptualization of science. In contrast experts hold particular beliefs, perceptions, opinions, and attitudes about science that are often absent in first-year undergraduate students. Shifts toward more expert-like attitudes and views have been linked to improved student engagement, critical-thinking ability, conceptual understanding, and academic performance. In this study, we investigate shifts in attitudes and views toward science by students in four biology classes with differences in student enrollment, academic support, and instruction. We observe significant, positive effects of enrollment in a guided-inquiry lab course and academic performance on the percentage of expert-like student attitudes and views at the end of term. We also identify variation in two aspects of student attitudes and views: 1) confidence and interest and 2) understanding and acceptance. In particular, enrollment in the lab course boosts student confidence and interest in scientific inquiry in the short term, even for students with low academic performance or little English-language experience. Our results suggest that low-performing students in particular may require additional opportunities for experiential learning or greater academic support to develop expert-like perceptions of biology as a science. PMID:27856549

  7. Climate Literacy: Progress in Climate and Global Change Undergraduate Courses in Meteorology and Earth System Science Programs at Jackson State University

    Science.gov (United States)

    Reddy, S. R.; Tuluri, F.; Fadavi, M.

    2017-12-01

    JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2013. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places strong intellectual demands upon each student, the instructors' objective is to help each student to pass the course with an adequate understanding of the fundamentals and advanced and advanced courses. AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide. The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. This is a content course in Earth Science. It introduces a new concept that views Earth as a synergistic physical system applied concepts of climatology, for him/her to understand basic atmospheric/climate processes, physical and dynamical climatology, regional climatology, past and future climates and statistical analysis using climate data and to be prepared to profit from studying more of interrelated phenomenon governed by complex processes involving the atmosphere, the hydrosphere, the biosphere, and the solid Earth. The course emphasizes that the events that shape the physical, chemical, and biological processes of the Earth do not occur in isolation. Rather, there is a delicate relationship between the events that occur in the ocean, atmosphere, and the solid Earth. The course provides a multidimensional approach in solving scientific issues related to Earth-related sciences,

  8. On making nursing undergraduate human reproductive physiology content meaningful and relevant: discussion of human pleasure in its biological context.

    Science.gov (United States)

    McClusky, Leon Mendel

    2012-01-01

    The traditional presentation of the Reproductive Physiology component in an Anatomy and Physiology course to nursing undergraduates focuses on the broad aspects of hormonal regulation of reproduction and gonadal anatomy, with the role of the higher centres of the brain omitted. An introductory discussion is proposed which could precede the lectures on the reproductive organs. The discussion gives an overview of the biological significance of human pleasure, the involvement of the neurotransmitter dopamine, and the role of pleasure in the survival of the individual and even species. Pleasure stimuli (positive and negative) and the biological significance of naturally-induced pleasurable experiences are briefly discussed in the context of reproduction and the preservation of genetic material with an aim to foster relevancy between subject material and human behaviour in any type of society. The tenderness of this aspect of the human existence is well-understood because of its invariable association with soul-revealing human expressions such as love, infatuation, sexual flirtations, all of which are underpinned by arousal, desire and/or pleasure. Assuming that increased knowledge correlates with increased confidence, the proposed approach may provide the nurse with an adequate knowledge base to overcome well-known barriers in communicating with their patients about matters of sexual health and intimacy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Analysis of a SNP linked to lactase persistence: An exercise for teaching molecular biology techniques to undergraduates.

    Science.gov (United States)

    Schultheis, Patrick J; Bowling, Bethany V

    2011-01-01

    Recent experimental evidence indicates that the ability of adults to tolerate milk, cheese, and other lactose-containing dairy products is an autosomal dominant trait that co-evolved with dairy farming in Central Europe about 7,500 years ago. Among persons of European descent, this trait is strongly associated with a C to T substitution at a polymorphic site 13,910 bp upstream of the lactase gene. This mutation results in the persistent expression of lactase into adulthood enabling individuals carrying a T(-13,910) allele to digest lactose as adults. In this report, we describe a laboratory exercise for an undergraduate molecular biology course in which students determine their own genotype at the -13,910 polymorphic site and correlate this with their ability to tolerate dairy products. The exercise is used as a tool to teach basic molecular biology procedures such as agarose gel electrophoresis, PCR1, and DNA sequencing. Students are actively engaged in the learning process, not only by analyzing their own DNA but also by applying their knowledge and skills to answer an authentic question. The exercise is also integrated with lecture material on the control of gene expression at the transcriptional level, in particular, how transcription factors can influence the activity of a promoter by binding to cis-acting DNA regulatory elements located within the proximal promoter of a gene or distant enhancer regions. Copyright © 2010 Wiley Periodicals, Inc.

  10. The CLEAN Workshop Series: Promoting Effective Pedagogy for Teaching Undergraduate Climate Science

    Science.gov (United States)

    Kirk, K. B.; Bruckner, M. Z.; Manduca, C. A.; Buhr, S. M.

    2012-12-01

    To prepare students to understand a changing climate, it is imperative that we equip educators with the best possible tools and methods for reaching their audience. As part of the Climate Literacy and Energy Awareness Network (CLEAN) professional development efforts, two workshops for undergraduate faculty were held in 2012. These workshops used a variety of activities to help faculty learn about recent climate research, take part in demonstrations of successful activities for teaching climate topics, and collaborate to create new teaching materials. The workshops also facilitated professional networking among participants. Both workshops were held online, eliminating the need for travel, encouraging participants without travel funds to attend, and allowing international collaborations and presentations. To create an authentic experience, the workshop used several technologies such as the Blackboard Collaborate web conferencing platform, SERC's web-based collaboration tools and online discussion threads, and conference calls. The workshop Communicating Climate Science in the Classroom, held in April 2012, explored practices for communicating climate science and policy in the classroom and provided strategies to improve student understanding of this complex and sensitive topic. Workshop presentations featured public opinion research on Americans' perceptions of climate change, tactics for identifying and resolving student misconceptions, and methods to address various "backfire effects" that can result from attempts to correct misinformation. Demonstrations of teaching approaches included a role-playing simulation of emissions negotiations, Princeton's climate stabilization wedges game, and an activity that allows students to use scientific principles to tackle misinformation. The workshop Teaching Climate Complexity was held in May 2012. Teaching the complexities of climate science requires an understanding of many facets of the Earth system and a robust pedagogic

  11. C-MORE Scholars Program: Encouraging Hawaii`s Undergraduates to Explore the Ocean and Earth Sciences

    Science.gov (United States)

    Bruno, B. C.; Gibson, B.

    2008-05-01

    Hawaii residents make up 60% of the undergraduate student body at the University of Hawaii at Manoa (UHM), but they are not studying ocean and earth science. The UHM School of Ocean and Earth Science and Technology offers four undergraduate majors: Geology (22%), Geology & Geophysics (19%), Meteorology (16%), and Global Environmental Science (23%). The numbers in parentheses show the proportion of Hawaii residents in each major, based on 2006 data obtained from the UHM Institutional Research Office. The numbers of Native Hawaiians and Pacific Islanders (NHPI) are considerably smaller. The primary goal of the C-MORE Scholars Program, which will launch in Summer 2008, is to recruit and retain local Hawaii students (esp. NHPI) into earth and ocean science majors. To achieve this goal, the C-MORE Scholars Program will: 1. Actively recruit local students, partly by introducing them and their families to job opportunities in their community. Recruiting will be done in partnership with organizations that have successful track records in working with NHPI students; 2. Retain existing students through proactive counseling and course tutoring. Math and physics courses are stumbling blocks for many ocean and earth science majors, often delaying or even preventing graduation. By offering individual and group tutoring, we hope to help local students succeed in these courses; 3. Provide closely mentored, paid undergraduate research experiences at three different academic levels (trainee, intern, and fellow). This research is the cornerstone of the C-MORE Scholars Program. As students progress through the levels, they conduct higher level research with less supervision. Fellows (the highest level) may serve as peer advisors and tutors to underclassmen and assist with recruitment-related activities; and 4. Create a sense of community among the cohort of C-MORE scholars. A two-day summer residential experience will be instrumental in developing a strong cohort, emphasizing links

  12. A case based- shared teaching approach in undergraduate medical curriculum: the real integration in basic and clinical sciences

    Directory of Open Access Journals (Sweden)

    Soheil Peiman

    2017-05-01

    Full Text Available To present a multiple-instructor, active-learning strategy in the undergraduate medical curriculum. This educational research is a descriptive one. Shared teaching sessions, were designed for undergraduate medical students in six organ-system based courses. Sessions that involved in-class discussions of integrated clinical cases were designed implemented and moderated by at least 3 faculties (clinicians and basic scientists. The participants in this study include the basic sciences medical students of The Tehran University of Medical Sciences. Students’ reactions were assessed using an immediate post-session evaluation form on a 5-point Likert scale. Six two-hour sessions for 2 cohorts of students, 2013 and 2014 medical students during their two first years of study were implemented from April 2014 to March 2015. 17 faculty members participated in the program, 21 cases were designed, and participation average was 60 % at 6 sessions. Students were highly appreciative of this strategy. The majority of students in each course strongly agreed that this learning practice positively contributed to their learning (78% and provided better understanding and application of the material learned in an integrated classroom course (74%. They believed that the sessions affected their view about medicine (73%, and should be continued in future courses (80%. The percentage demonstrates the average of all courses. The program helped the students learn how to apply basic sciences concepts to clinical medicine. Evaluation of the program indicated that students found the sessions beneficial to their learning.

  13. Implementing a Grant Proposal Writing Exercise in Undergraduate Science Courses to Incorporate Real-World Applications and Critical Analysis of Current Literature

    Science.gov (United States)

    Cole, Kathryn E.; Inada, Maki; Smith, Andrew M.; Haaf, Michael P.

    2013-01-01

    Writing is an essential part of a successful career in science. As such, many undergraduate science courses have begun to implement writing assignments that reflect "real-world" applications and focus on a critical analysis of current literature; these assignments are often in the form of a review or a research proposal. The…

  14. Gender and Belonging in Undergraduate Computer Science: A Comparative Case Study of Student Experiences in Gateway Courses. WCER Working Paper No. 2016-2

    Science.gov (United States)

    Benbow, Ross J.; Vivyan, Erika

    2016-01-01

    Building from findings showing that undergraduate computer science continues to have the highest attrition rates proportionally for women within postsecondary science, technology, engineering, and mathematics disciplines--a phenomenon that defies basic social equity goals in a high status field--this paper seeks to better understand how student…

  15. Developing Food Science Core Competencies in Vietnam: The Role of Experience and Problem Solving in an Industry-Based Undergraduate Research Course

    Science.gov (United States)

    LeGrand, Karen; Yamashita, Lina; Trexler, Cary J.; Vu, Thi Lam An; Young, Glenn M.

    2017-01-01

    Although many educators now recognize the value of problem-based learning and experiential learning, undergraduate-level food science courses that reflect these pedagogical approaches are still relatively novel, especially in East and Southeast Asia. Leveraging existing partnerships with farmers in Vietnam, a food science course for students at…

  16. Views on the philosophy of science among undergraduate science students and their tutors at the University of Papua New Guinea: origins, progression, enculturation and destinations

    Science.gov (United States)

    Kichawen, Pongie; Swain, Julian; Monk, Martin

    2004-01-01

    Using a schedule originated by Nott and Wellington to explore science teachers' views on the philosophy of science, data were gathered at the University of Papua New Guinea. Similarities in response were established for successive first year intakes of science undergraduates (1999-2000). Students with experience in national high schools or Australian high schools responded more positively than their provincial secondary school trained peers to items indicating that the findings of scientific enquiry were universally true. A cross-sectional analysis showed the undergraduates in the third and fourth years to be more process orientated than the first or second years. Both the first and second years were different in their views compared with their tutors in the relativism-positivism scale, where they were more positivist, the contextualism-decontextualism scale, where they were less decontextualist, and the process-content scale where they were considerably less process orientated. Those with a preferred career destination of medicine were slightly more decontextualist in outlook while being marginally realist, those with a preferred physical science career being very weakly instrumentalist. The results can be interpreted in terms of respondents' experiences in secondary schooling and on programmes at the University of Papua New Guinea.

  17. Undergraduate Students' Development of Social, Cultural, and Human Capital in a Networked Research Experience

    Science.gov (United States)

    Thompson, Jennifer Jo; Conaway, Evan; Dolan, Erin L.

    2016-01-01

    Recent calls for reform in undergraduate biology education have emphasized integrating research experiences into the learning experiences of all undergraduates. Contemporary science research increasingly demands collaboration across disciplines and institutions to investigate complex research questions, providing new contexts and models for…

  18. Examining the Effects of Students' Classroom Expectations on Undergraduate Biology Course Reform

    Science.gov (United States)

    Hall, Kristi Lyn

    2013-01-01

    In this dissertation, I perform and compare three studies of introductory biology students' classroom expectations--what students expect to be the nature of the knowledge that they are learning, what they think they should be (or are) doing in order to learn, and what they think they should be (or are) doing in order to be successful. Previous…

  19. Using Osteoclast Differentiation as a Model for Gene Discovery in an Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.

    2010-01-01

    A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…

  20. Assessment of Student Learning Associated with Tree Thinking in an Undergraduate Introductory Organismal Biology Course

    Science.gov (United States)

    Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted…

  1. What Skills Should Students of Undergraduate Biochemistry and Molecular Biology Programs Have upon Graduation?

    Science.gov (United States)

    White, Harold B.; Benore, Marilee A.; Sumter, Takita F.; Caldwell, Benjamin D.; Bell, Ellis

    2013-01-01

    Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of…

  2. An Off-the-Shelf, Authentic, and Versatile Undergraduate Molecular Biology Practical Course

    Science.gov (United States)

    Whitworth, David E.

    2015-01-01

    We provide a prepackaged molecular biology course, which has a broad context and is scalable to large numbers of students. It is provided complete with technical setup guidance, a reliable assessment regime, and can be readily implemented without any development necessary. Framed as a forensic examination of blue/white cloning plasmids, the course…

  3. A systematic development and evaluation of an undergraduate course in zoo biology

    Science.gov (United States)

    Burchfield, Patrick Mullen

    The biology curricula offered by most institutions of higher education follow a classic pattern of basic taxonomy, phylogeny, physiology, genetics, molecular biology and biometry. This course regimen certainly provides a knowledge structure within the discipline, but is somewhat lacking in information that is directly applicable within the field of zoo biology. The zoo biology curriculum set forth in this dissertation was designed to offer students immersion into the rapidly evolving field of zoo biology. It also offers insight and perspectives into the zoo profession, encompassing 185 accredited zoological parks and aquariums, which employ numerous biologists. There is not a degree granting college or university in Texas that currently offers coursework in this specialization. In order to determine the merit and worth of a course in zoo biology, a field trial and a revised course were presented and subjected to a systematic evaluation. Four evaluative categories were utilized following Benton's (1992) design: (a) consistency between terminal performance objectives, activities and test instrument items, (b) effect on scientific knowledge, (c) activity usefulness as perceived by course participants and the instructor, (d) course worth. Student (N = 49) and component data were measured using a pre-post-test design, a questionnaire, and other informal instruments during the antecedent, transaction and outcome phases. Data from the pre-post-tests were analyzed using t-tests for correlated means. The analysis of activities and test items indicated that they were consistent with the terminal performance objectives. The pre-post-test results indicated that the course had a positive effect on knowledge gain within the field of study. A significant statistical difference was found between the test means at a probability of p ≤ 0.001. A post course attitudinal questionnaire elicited a rating of 4.65 on a Likert scale of 5.0 on perceived usefulness to the participants. A

  4. Integrating Responsible Conduct of Research Education into Undergraduate Biochemistry and Molecular Biology Laboratory Curricula

    Science.gov (United States)

    Hendrickson, Tamara L.

    2015-01-01

    Recently, a requirement for directed responsible conduct in research (RCR) education has become a priority in the United States and elsewhere. In the US, both the National Institutes of Health and the National Science Foundation require RCR education for all students who are financially supported by federal awards. The guidelines produced by these…

  5. Factors affecting the matriculation of African American undergraduate students in science, mathematics, engineering, and technology

    Science.gov (United States)

    Hall, Alfred L., II

    Previous research studies indicated that African Americans remain severely underrepresented in the field of science, mathematics, engineering, and technology (SMET), making up only 3% of that workforce, while representing 11.1% of all professional and related workers and 12.6% of the general population. As this country moves towards a more culturally diverse population, then representation of African Americans in SMET-related fields must be addressed in order to ensure our nation's competitiveness in a global market. This research study analyzed characteristics of African American undergraduate SMET majors participating in the Alliance for Minority Participation (AMP) program in six different states located in the Southeast region of the United States. These states consisted of Alabama, Florida, Georgia, Mississippi, North Carolina, and South Carolina. AMP program participants completed a survey questionnaire, which collected information about potential factors that could affect their matriculation in SMET programs of studies at their respective institutions. Follow-up interviews and focus group sessions were also conducted with AMP participants to provide supplemental information to the survey data. The results of student responses were analyzed according to the type of institution the students attended (Historically Black College or University and Majority White Institution) as well as by the statewide Alliance program in which the students were involved. The students responded to survey questions that asked for their reasons for majoring in their field of study, their level of satisfaction with their institution, their impressions of student support programs and persons, their impressions of faculty and advisors, their reasons for thinking of switching majors, and their level of high school preparation. Statistical analyses of the student responses found that African American AMP students attending Historically Black Colleges and Universities differed from those

  6. Life in the Universe - Astronomy and Planetary Science Research Experience for Undergraduates at the SETI Institute

    Science.gov (United States)

    Chiar, J.; Phillips, C. B.; Rudolph, A.; Bonaccorsi, R.; Tarter, J.; Harp, G.; Caldwell, D. A.; DeVore, E. K.

    2016-12-01

    The SETI Institute hosts an Astrobiology Research Experience for Undergraduates (REU) program. Beginning in 2013, we partnered with the Physics and Astronomy Dept. at Cal Poly Pomona, a Hispanic-serving university, to recruit underserved students. Over 11 years, we have served 155 students. We focus on Astrobiology since the Institute's mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. Our REU students work with mentors at the Institute - a non-profit organization located in California's Silicon Valley-and at the nearby NASA Ames Research Center. Projects span research on survival of microbes under extreme conditions, planetary geology, astronomy, the Search for Extraterrestrial Intelligence (SETI), extrasolar planets and more. The REU program begins with an introductory lectures by Institute scientists covering the diverse astrobiology subfields. A week-long field trip to the SETI Institute's Allen Telescope Array (Hat Creek Radio Astronomy Observatory in Northern California) and field experiences at hydrothermal systems at nearby Lassen Volcanic National Park immerses students in radio astronomy and SETI, and extremophile environments that are research sites for astrobiologists. Field trips expose students to diverse environments and allow them to investigate planetary analogs as our scientists do. Students also participate in local trips to the California Academy of Sciences and other nearby locations of scientific interest, and attend the weekly scientific colloquium hosted by the SETI Institute at Microsoft, other seminars and lectures at SETI Institute and NASA Ames. The students meet and present at a weekly journal club where they hone their presentation skills, as well as share their research progress. At the end of the summer, the REU interns present their research projects at a session of the Institute's colloquium. As a final project, students prepare a 2-page formal abstract and 15-minute

  7. Exploring face-to-face and Web-based pedagogy in undergraduate natural resource sciences

    Science.gov (United States)

    Mbabaliye, Theogene

    Little has been published about Internet instruction compared to traditional classroom teaching in undergraduate natural resource science (NRS) education. This study hypothesized associations between teaching environments (face-to-face only (FF), Web only (WE), mixed mode (MI)); and teaching philosophy, practices, and perceived course outcomes. A questionnaire was sent to 142 faculty members with experience teaching in these environments in Western US. Sixty percent responded. Data were analyzed using factor analysis and multivariate statistics. Only statistically significant differences are presented. Most respondents were male (68%) 50-59 years old (80%) and tenured (74%). Overall, Web-based instruction was not seen as equivalent to face to face instruction. Adoption of the Internet for teaching was beyond critical mass. Most faculty members ranked their ability to use the Internet as average (27%) or expert (22%). Faculty rarely perceived students' learning experience in a WE course as "better" than FF. Web-based courses were not usually required of majors in the offering department. Faculty age, gender and experience are significant variables in use of some teaching practices. Faculty members who used the Internet favored a constructivist teaching philosophy, while FF and MI instruction tended towards a behaviorist philosophy. Respondents' most frequent teaching practices addressed connections, collaboration, meaning making, and learner autonomy. Collaborative teaching strategies were seldom used in Web-based instruction relative to FF. Learning assessments focused on learner interactions, efforts (individual or groups), and recall. The latter assessment was used less on the Web. Respondents viewed effective teaching in all teaching environments as achieving competency and application of knowledge. Personal experience, resource availability, and feedback were the most important influences on teaching. Resource availability constrained Internet instruction most

  8. A Guided-Inquiry pH Laboratory Exercise for Introductory Biological Science Laboratories

    Science.gov (United States)

    Snodgrass, Meagan A.; Lux, Nicholas; Metz, Anneke M.

    2011-01-01

    There is a continuing need for engaging inquiry-based laboratory experiences for advanced high school and undergraduate biology courses. The authors describe a guided-inquiry exercise investigating the pH-dependence of lactase enzyme that uses an inexpensive, wide-range buffering system, lactase dietary supplement, over-the-counter glucose test…

  9. An Annotated List of Disciplines and Sub-Disciplines in the Biological Sciences

    Science.gov (United States)

    McDonald, Brandon

    2008-01-01

    Biology has become a large and diversified science. Current biological research areas transgress academic and professional boundaries to such a degree that the biological sciences could arguably be referred to as "all encompassing." In this article, the author describes how he compiled information on currently recognised disciplines and…

  10. A Standards-Based Content Analysis of Selected Biological Science Websites

    Science.gov (United States)

    Stewart, Joy E.

    2010-01-01

    The purpose of this study was to analyze the biology content, instructional strategies, and assessment methods of 100 biological science websites that were appropriate for Grade 12 educational purposes. For the analysis of each website, an instrument, developed from the National Science Education Standards (NSES) for Grade 12 Life Science coupled…

  11. Assessing Student Attitudes Towards Science in an Adaptive Online Astrobiology Course: Comparing Online and On-Campus Undergraduates

    Science.gov (United States)

    Buxner, S.; Perera, V.; Mead, C.; Horodyskyj, L.; Semken, S. C.; Lopatto, D.; Anbar, A. D.

    2016-12-01

    General-education Science, Technology, Engineering, and Mathematics (STEM) courses are considered essential to a college education, in part, to train students to think critically and to make informed decisions about complex scientific issues such as climate change and public health. Therefore, the goals of these STEM courses go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life, and understanding the nature of science. The Classroom Undergraduate Research Experience (CURE) survey is frequently used to measure these attitudes, but it has not previously been used in an online, general education course. In this work, we administered the CURE survey for three semesters (N = 774) before and after completion of an online astrobiology course called Habitable Worlds. We compare students taking this course as part of fully-online degree programs (o-course) with those taking it as part of traditional undergraduate programs (i-course). More females and older students were among the o-course group, while overall the course had more white students than the Arizona State University average. Mean course grades were similar between the two groups but attitudes toward science differred significantly. O-course students began the course with more positive attitudes than i-course students, and o-course students also showed more positive changes at the end of the course. These differences suggest lesser intrinsic motivation among the i-course students. Additionally, pre-course attitudes correlated with final course grade for o-course students, but not for i-course students, which implies that success among o-course students is influenced by different factors than i-course students. Thus, effective student support strategies may differ for online-only students. Future work will include student interviews to better calibrate the CURE survey to online science courses.

  12. Mathematical and Computational Challenges in Population Biology and Ecosystems Science

    Science.gov (United States)

    Levin, Simon A.; Grenfell, Bryan; Hastings, Alan; Perelson, Alan S.

    1997-01-01

    Mathematical and computational approaches provide powerful tools in the study of problems in population biology and ecosystems science. The subject has a rich history intertwined with the development of statistics and dynamical systems theory, but recent analytical advances, coupled with the enhanced potential of high-speed computation, have opened up new vistas and presented new challenges. Key challenges involve ways to deal with the collective dynamics of heterogeneous ensembles of individuals, and to scale from small spatial regions to large ones. The central issues-understanding how detail at one scale makes its signature felt at other scales, and how to relate phenomena across scales-cut across scientific disciplines and go to the heart of algorithmic development of approaches to high-speed computation. Examples are given from ecology, genetics, epidemiology, and immunology.

  13. Advising Undergraduates in a Department of Soil Science and/or Agronomy.

    Science.gov (United States)

    Lee, Gerhard B.

    1987-01-01

    Offers suggestions to advisers of undergraduate students in agriculture. Recommends that advisers be competent, concerned, compassionate, and provide an open-door attitude toward their advisees. Suggests that students be guided toward good study habits and participation in intern programs. (TW)

  14. Social Media and Electronic Networking Use and Preferences among Undergraduate Turf Science Students

    Science.gov (United States)

    Bigelow, Cale A.; Kaminski, John E., III

    2016-01-01

    Most undergraduate students arrive on campus fluent in electronic communication methods and social media (SM). This cultural or communication shift presents both opportunities and challenges in pedagogy. Social media allows users to share and network with geographically diverse individuals and has the potential for engaging students both inside…

  15. Undergraduate Research Involving Deaf and Hard-of-Hearing Students in Interdisciplinary Science Projects

    Science.gov (United States)

    Pagano, Todd; Ross, Annemarie; Smith, Susan B.

    2015-01-01

    Scientific undergraduate research in higher education often yields positive outcomes for student and faculty member participants alike, with underrepresented students often showing even more substantial gains (academic, professional, and personal) as a result of the experience. Significant success can be realized when involving deaf and…

  16. The Perceived Undergraduate Classroom Experiences of African American Women in Science, Technology, Engineering, and Mathematics (STEM)

    Science.gov (United States)

    Holmes, Kimberly Monique

    2013-01-01

    The purpose of this dissertation study was to explore African-American women's perceptions of undergraduate STEM classroom experiences, and the ways in which those experiences have supported or hindered their persistence in physics majors. The major research question guiding this study was: How do African-American women perceive the climate and…

  17. Research and Teaching: Blooming, SOLO Taxonomy, and Phenomenography as Assessment Strategies in Undergraduate Science Education

    Science.gov (United States)

    Newton, Genevieve; Martin, Elizabeth

    2013-01-01

    Three alternative approaches to assessment of exam responses were applied in an undergraduate biochemistry course. First, phenomenography was used to categorize written exam responses into an inclusive hierarchy. Second, responses to the same question were similarly categorized according to the Structure of Observed Learning Outcome (SOLO)…

  18. Implementation and Assessment of Undergraduate Experiences in SOAP: An Atmospheric Science Research and Education Program

    Science.gov (United States)

    Hopper, Larry J., Jr.; Schumacher, Courtney; Stachnik, Justin P.

    2013-01-01

    The Student Operational Aggie Doppler Radar Project (SOAP) involved 95 undergraduates in a research and education program to better understand the climatology of storms in southeast Texas from 2006-2010. This paper describes the structure, components, and implementation of the 1-credit-hour research course, comparing first-year participants'…

  19. Providing Research-Focused Work-Integrated Learning for High Achieving Science Undergraduates

    Science.gov (United States)

    Papakonstantinou, Theo; Charlton-Robb, Kate; Reina, Richard D.; Rayner, Gerry

    2013-01-01

    Work-integrated learning has become an integral part of many undergraduate and postgraduate degrees, both in Australia and internationally. Such programs vary in structure, timeframe and discipline type, with concomitant amounts of support, assessment and evaluation. Their value to students, industry partners and higher education institutions,…

  20. How (and Whether) to Teach Undergraduates about the Replication Crisis in Psychological Science

    Science.gov (United States)

    Chopik, William J.; Bremner, Ryan H.; Defever, Andrew M.; Keller, Victor N.

    2018-01-01

    Over the past 10 years, crises surrounding replication, fraud, and best practices in research methods have dominated discussions in the field of psychology. However, no research exists examining how to communicate these issues to undergraduates and what effect this has on their attitudes toward the field. We developed and validated a 1-hr lecture…

  1. Evolution, Science and Society: Evolutionary Biology and the National Research Agenda.

    Science.gov (United States)

    Futuyma, Douglas J.; Meagher, Thomas R.

    2001-01-01

    Discusses ways of advancing understanding of evolutionary biology which seeks to explain all the characteristics of organisms. Describes the goals of evolutionary biology, why it is important, and how it contributes to society and basic science. (ASK)

  2. Extended Abstracts from BioGeo99: Applications of Geospatial Technology to Biological Sciences

    National Research Council Canada - National Science Library

    Handley, Lawrence

    2000-01-01

    ... of Global Positioning System (GPS), aquatic and terrestrial telemetry, national classification systems, remote sensing, metadata, and other geospatial technologies used in biological science applications...

  3. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    Science.gov (United States)

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  4. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    Science.gov (United States)

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  5. Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum

    Science.gov (United States)

    Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.

    2015-01-01

    The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…

  6. Update in Molecular Biology and Biotechnology: providing alternative for Sciences and Biology Teachers

    Directory of Open Access Journals (Sweden)

    M. F. Silva

    2008-05-01

    Full Text Available One of the goals of the Coordination of Education and Dissemination of CBME is to contribute for the dissemination and the learning in Molecular Biology and Biotechnology in  all the educational levels. Thus, composing one of our actions in 2007, a course of update in Molecular Biology and Biotechnology directed to 21 teachers of Sciences and Biology of São Carlos (SP, Brazil was carried through, totalizing 24 hours. In one of the meetings, we presented the techniques involving restriction enzymes, gel electrophoresis and its applications, followed of an experimental activity. Also we constructed and  considered the use, for the teachers, of a macroscopic model of a gel box that would represent the displacement of DNA fragments. After that a written questionnaire was used to evaluate the importance attributed for the teachers to the subject, the possibilities of didactic transposition, as well as their interests for other activities that would deal this thematic at great length. From this,  we registered that the 93% of the teachers showed interest in the subject, considering it important and also, 79% of them affirmed to have possibility of didactic transposition of this subject after they have experienced the course. On the other hand, 86% of the teachers did not work the subject in their classes , amongst which 50% for the lack of time or not enough preparation. Therefore, the data suggest that the course had an impact on the vision of the teachers concerning the alternatives to include the subject Molecular Biology and Biotechnology in their curricular planning.

  7. Resources to Transform Undergraduate Geoscience Education: Activities in Support of Earth, Oceans and Atmospheric Sciences Faculty, and Future Plans

    Science.gov (United States)

    Ryan, J. G.; Singer, J.

    2013-12-01

    The NSF offers funding programs that support geoscience education spanning atmospheric, oceans, and Earth sciences, as well as environmental science, climate change and sustainability, and research on learning. The 'Resources to Transform Undergraduate Geoscience Education' (RTUGeoEd) is an NSF Transforming Undergraduate Education in STEM (TUES) Type 2 special project aimed at supporting college-level geoscience faculty at all types of institutions. The project's goals are to carry out activities and create digital resources that encourage the geoscience community to submit proposals that impact their courses and classroom infrastructure through innovative changes in instructional practice, and contribute to making transformative changes that impact student learning outcomes and lead to other educational benefits. In the past year information sessions were held during several national and regional professional meetings, including the GSA Southeastern and South-Central Section meetings. A three-day proposal-writing workshop for faculty planning to apply to the TUES program was held at the University of South Florida - Tampa. During the workshop, faculty learned about the program and key elements of a proposal, including: the need to demonstrate awareness of prior efforts within and outside the geosciences and how the proposed project builds upon this knowledge base; need to fully justify budget and role of members of the project team; project evaluation and what matters in selecting a project evaluator; and effective dissemination practices. Participants also spent time developing their proposal benefitting from advice and feedback from workshop facilitators. Survey data gathered from workshop participants point to a consistent set of challenges in seeking grant support for a desired educational innovation, including poor understanding of the educational literature, of available funding programs, and of learning assessment and project evaluation. Many also noted

  8. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    Science.gov (United States)

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically,…

  9. Tweets from the forest: using Twitter to increase student engagement in an undergraduate field biology course

    Science.gov (United States)

    Soluk, Lauren; Buddle, Christopher M.

    2015-01-01

    Twitter is a cold medium that allows users to deliver content-rich but small packets of information to other users, and provides an opportunity for active and collaborative communication. In an education setting, this social media tool has potential to increase active learning opportunities, and increase student engagement with course content. The effects of Twitter on learning dynamics was tested in a field biology course offered by a large Canadian University: 29 students agreed to take part in the Twitter project and quantitative and qualitative data were collected, including survey data from 18 students. Students published 200% more public Tweets than what was required, and interacted frequently with the instructor and teaching assistant, their peers, and users external to the course. Almost 80% of students stated that Twitter increased opportunities for among-group communication, and 94% of students felt this kind of collaborative communication was beneficial to their learning. Although students did not think they would use Twitter after the course was over, 77% of the students still felt it was a good learning tool, and 67% of students felt Twitter had a positive impact on how they engaged with course content. These results suggest social media tools such as Twitter can help achieve active and collaborative learning in higher education. PMID:26594328

  10. Tweets from the forest: using Twitter to increase student engagement in an undergraduate field biology course.

    Science.gov (United States)

    Soluk, Lauren; Buddle, Christopher M

    2015-01-01

    Twitter is a cold medium that allows users to deliver content-rich but small packets of information to other users, and provides an opportunity for active and collaborative communication. In an education setting, this social media tool has potential to increase active learning opportunities, and increase student engagement with course content. The effects of Twitter on learning dynamics was tested in a field biology course offered by a large Canadian University: 29 students agreed to take part in the Twitter project and quantitative and qualitative data were collected, including survey data from 18 students. Students published 200% more public Tweets than what was required, and interacted frequently with the instructor and teaching assistant, their peers, and users external to the course. Almost 80% of students stated that Twitter increased opportunities for among-group communication, and 94% of students felt this kind of collaborative communication was beneficial to their learning. Although students did not think they would use Twitter after the course was over, 77% of the students still felt it was a good learning tool, and 67% of students felt Twitter had a positive impact on how they engaged with course content. These results suggest social media tools such as Twitter can help achieve active and collaborative learning in higher education.

  11. Mailing lists are preferred to newsgroups as teaching tools for undergraduate biology classes.

    Science.gov (United States)

    Machart, J M; Silverthorn, D U

    2000-06-01

    Effective communication between instructors and students is a challenge regardless of the instructor-to-student ratio. Instructors of large classes, in particular, have resorted to various forms of Internet communication, such as mailing lists and newsgroups, to supplement class time and office hours. Mailing lists are closed discussions among subscribers who receive and send messages via an electronic mail program (e.g., Eudora). Newsgroups are public discussions to which anyone can gain access and respond via a newsreader program (e.g., Nuntius). Newsgroup messages are posted to a bulletin board that the subscriber must visit to read. Mailing lists and newsgroups share many advantages (convenience, greater anonymity, and speed of communication) and disadvantages (computer access required, impersonal nature, junk mail, and lack of graphics in older programs). However, surveys of both faculty and students in biology indicate that mailing lists are generally favored over newsgroups. Reasons given for mailing list popularity included greater familiarity with the E-mail format and ease of access.

  12. Undergraduate Convexity

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimin......Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier......-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point...... algorithm....

  13. A Semester-Long Project for Teaching Basic Techniques in Molecular Biology Such as Restriction Fragment Length Polymorphism Analysis to Undergraduate and Graduate Students

    OpenAIRE

    DiBartolomeis, Susan M.

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length ...

  14. Enjoy writing your science thesis or dissertation! a step-by-step guide to planning and writing a thesis or dissertation for undergraduate and graduate science students

    CERN Document Server

    Fisher, Elizabeth

    2014-01-01

    This book is a step by step illustrated guide to planning and writing dissertations and theses for undergraduate and graduate science students. Topics covered include advice on writing each section of a thesis as well as general discussions on collecting and organizing references, keeping records, presenting data, interacting with a supervisor and avoiding academic misconduct. Recommendations about how to use word processors and other software packages effectively are included, as well as advice on the use of other resources. A concise summary of important points of English grammar is given, along with appendices listing frequently confused words and wordy phrases to avoid. Further appendices are provided, including one on Si units. The aim is to provide an easy-to-read guide that gives students practical advice about all aspects of writing a science thesis or dissertation, starting from writing a thesis plan and finishing with the viva and corrections to the thesis.

  15. The marine biological week as an approach to science

    Science.gov (United States)

    Ransdorf, Angela; Satzinger, Viktoria

    2017-04-01

    The "Wiedner Gymnasium" is an academic high school with two branches: one focusses on languages and the other one on science. In the language branch the students learn at least three languages; one of which is Latin, whereas the students of the scientific branch can learn geometrical drawing and have to attend a scientific laboratory throughout the last four upper classes. As incentive highlights the language classes have a one week's school trip to France, Italy or Spain at the beginning of their 7th form in order to attend a language school and to practice their language skills. As a counterbalance, there was introduced the "marine biological week" several years ago, in which the students of the scientific branch take part whilst their colleagues have their language trips. The marine biological week takes place in Rovinj, Croatia. A team of biologists and divers leads through a programme, by which the students get an overview of different habitats, their conditions and the different ways of adaptation organisms find. Thus, they also become acquainted with several species of animals and plants which are characteristic for this area. They become familiar with some methods of scientific work and also get to know some of the problems marine ecosystems are confronted with. They also learn a little bit if the Mediterranean history and culture. Back in school all the findings are reviewed and brought into an ecological context. The insights can be used for many other topics, too, such as e.g. evolution. This week has proved to be a good start as well for the topic of ecology as for learning to think scientifically in general. So, you can call it a pivot for the scientific branch of our school.

  16. Integrated Concentration in Science (iCons): Undergraduate Education Through Interdisciplinary, Team-Based, Real-World Problem Solving

    Science.gov (United States)

    Tuominen, Mark

    2013-03-01

    Attitude, Skills, Knowledge (ASK) - In this order, these are fundamental characteristics of scientific innovators. Through first-hand practice in using science to unpack and solve complex real-world problems, students can become self-motivated scientific leaders. This presentation describes the pedagogy of a recently developed interdisciplinary undergraduate science education program at the University of Massachusetts Amherst focused on addressing global challenges with scientific solutions. Integrated Concentration in Science (iCons) is an overarching concentration program that supplements the curricula provided within each student's chosen major. iCons is a platform for students to perform student-led research in interdisciplinary collaborative teams. With a schedule of one course per year over four years, the cohort of students move through case studies, analysis of real-world problems, development of potential solutions, integrative communication, laboratory practice, and capstone research projects. In this presentation, a track emphasizing renewable energy science is used to illustrate the iCons pedagogical methods. This includes discussion of a third-year laboratory course in renewable energy that is educationally scaffolded: beginning with a boot camp in laboratory techniques and culminating with student-designed research projects. Among other objectives, this course emphasizes the practice of using reflection and redesign, as a means of generating better solutions and embedding learning for the long term. This work is supported in part by NSF grant DUE-1140805.

  17. How do the high school biology textbooks introduce the nature of science?

    Science.gov (United States)

    Lee, Young H.

    2007-05-01

    Although helping students to achieve an adequate understanding of the nature of science has been a consistent goal for science education for over half a century, current research reveals that the majority of students and teachers have naive views of the nature of science (Abd-El-khalick & Akerson, 2004; Bianchini & Colburn, 2000). This problem could be attributed not only to the complex nature of science, but also to the way the nature of science is presented to students during instruction. Thus, research must be conducted to examine how the science is taught, especially in science textbooks, which are a major instructional resource for teaching science. The aim of this study was to conduct a content analysis of the first chapter of four high school biology textbooks, which typically discusses "What is science?" and "What is biology?" This research used a content analysis technique to analyze the four high school biology textbooks, using a conceptual framework that has been used often for science textbook analysis. This conceptual framework consists of four themes of the nature of science: (a) science as a body of knowledge, (b) science as a way of thinking, (c) science as a way of investigating, and (d) the interaction of science, technology, and society. For this study, the four-theme-framework was modified to incorporate descriptors from national-level documents, such as Science for All Americans (AAAS, 1990) Benchmarks for Science Literacy (AAAS, 1993) and the National Science Education Standards (NRC, 1996), as well as science education research reports. A scoring procedure was used that resulted in good to excellent intercoder agreement with Cohen's kappa (k) ranging from .63 to .96. The findings show that the patterns of presentation of the four themes of the nature of science in the four high school biology textbooks are similar across the different locations of data, text, figures, and assessments. On the other hand, the pattern of presentation of the four

  18. Computing Technologies for Oriented Education: Applications in Biological Sciences

    Directory of Open Access Journals (Sweden)

    Santiago Jaime Reyes

    2005-12-01

    Full Text Available The experience developing modern digital programs with highly qualified profesoors with several years of teaching postgraduate biological sciences matters is described. A small group of selected professors with a minimum knowledged or basic domain in computer software were invited to develop digital programs in the items of their interest,the purpose is to establish the bases for construction of an available digital library. The products to develop are a series of CD-ROM with program source in HTML format. The didactic strategy responds to a personal tutorship, step by step workshop, to build its own project (without programming languages. The workshop begins generating trust in very simple activities. It is designed to learn building and to advance evaluating the progress. It is fulfilled the necessity to put up-to-date the available material that regularly uses to impart the classes (video, slides, pictures, articles, examples etc. The information and computing technologies ICT are a indispensable tool to diffuse the knowledge to a coarser and more diverse public in the topics of their speciality. The obtained products are 8 CD ROM with didactic programs designed with scientific and technological bases.

  19. Gross's anatomy: textual politics in science/biology education research

    Science.gov (United States)

    Reis, Giuliano

    2009-12-01

    In approaching how the grotesque is—or should be—situated within contemporary science (biology) education practices, Weinstein and Broda undertake a passionate reclaim of an education that is at the same time scientific, critical, and liberatory. However legitimate, their work offers more than they probably could have anticipated: It exemplifies how the textual structure of a research article can be such as to "tip-off" readers about how it is supposed to be understood. In this way, what one learns from reading the manuscript is grounded on the way the authors examine the data presented. That is, the findings are not intrinsic to the materials collected, but constructed within the analyses that precede/follow the account of each one of the four "specimens" reported. Therefore, the present commentary seeks to re-consider the original study from an alternative perspective, one that challenges its seemingly objective (re)construction of facts by placing emphasis on how the text contains instructions for its own interpretation and validation. Ultimately, the purpose here is to describe and discuss the interpretive and validation work that is done by this discursive mechanism of self-appraisal rather than discredit the two authors' initiative.

  20. [Supply and demand of clinical practice fields for training undergraduate health sciences students in Peru, 2005-2009].

    Science.gov (United States)

    Alva, Javier; Verastegui, George; Velasquez, Edgar; Pastor, Reyna; Moscoso, Betsy

    2011-06-01

    To describe the supply and demand of clinical fields for undergraduate students of Peru. A descriptive study was considering as supply of clinical fields the total number of existing hospital beds in Peru. The demand was calculated using the total number of alumni registered in health science carrers following the clinical years or the internship. We calculated the number of beds per student and the coverage of clinical fields nationally and in some selected regions (Lima, Arequipa, La Libertad and Lambayeque). In 2009, Peru had 34,539 hospital beds, 78.5% of which pertained to the public sector and 48.4% are from Lima. We estimated that in 2008 44,032 alumni needed clinical fields, 70% from private universities, which grew 65% since 2005. The coverage of clinical fields, considering only interns from four carreers (medicine, nursery, obstetrics and dentistry) was only 31.5% at the national level. The number of beds per student oscillated between 0.5 in La Libertad to 0.82 in Lima with a national mean of 0.45. The supply of clinical fields for teaching undergraduates is insufficient to satisfy the demand, which continues to grow because of private universities, and hence requires urgent regulation.