WorldWideScience

Sample records for biological sciences regulations

  1. Biological science in conservation

    Science.gov (United States)

    David M. Johns

    2000-01-01

    Large-scale wildlands reserve systems offer one of the best hopes for slowing, if not reversing, the loss of biodiversity and wilderness. Establishing such reserves requires both sound biology and effective advocacy. Attempts by The Wildlands Project and its cooperators to meld science and advocacy in the service of conservation is working, but is not without some...

  2. American Institute of Biological Sciences

    Science.gov (United States)

    ... Staff Issues AIBS Position Statements Funding for the Biological Sciences Supporting Scientific Collections Advocating for Research Policy ... Public Policy Leadership Award Graduate students in the biological sciences who have demonstrated initiative and leadership in ...

  3. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  4. Understanding Biological Regulation Through Synthetic Biology.

    Science.gov (United States)

    Bashor, Caleb J; Collins, James J

    2018-03-16

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  5. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  6. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  7. Biological design in science classrooms

    Science.gov (United States)

    Scott, Eugenie C.; Matzke, Nicholas J.

    2007-01-01

    Although evolutionary biology is replete with explanations for complex biological structures, scientists concerned about evolution education have been forced to confront “intelligent design” (ID), which rejects a natural origin for biological complexity. The content of ID is a subset of the claims made by the older “creation science” movement. Both creationist views contend that highly complex biological adaptations and even organisms categorically cannot result from natural causes but require a supernatural creative agent. Historically, ID arose from efforts to produce a form of creationism that would be less vulnerable to legal challenges and that would not overtly rely upon biblical literalism. Scientists do not use ID to explain nature, but because it has support from outside the scientific community, ID is nonetheless contributing substantially to a long-standing assault on the integrity of science education. PMID:17494747

  8. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: Advanced Search. Journal Home > International Journal of Biological and Chemical Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  9. Biomolecular Sciences: uniting Biology and Chemistry

    NARCIS (Netherlands)

    Vrieling, Engel

    2017-01-01

    Biomolecular Sciences: uniting Biology and Chemistry www.rug.nl/research/gbb The scientific discoveries in biomolecular sciences have benefitted enormously from technological innovations. At the Groningen Biomolecular Science and Biotechnology Institute (GBB) we now sequence a genome in days,

  10. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies...

  11. FDA 101: Regulating Biological Products

    Science.gov (United States)

    ... based and cellular biologics, at the forefront of biomedical research today, may make it possible to treat a ... transplantation vaccines The Center for Drug Evaluation and Research ... as targeted therapies in cancer and other diseases cytokines (types of ...

  12. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  13. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  14. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  15. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal ... c) Short Communication (maximum: 10 pages, 20 references). d) Case ... Abstract: All articles should be provided with an abstract not exceeding 200 words.

  16. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  17. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  18. 77 FR 19740 - Biological Sciences Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-02

    ... NATIONAL SCIENCE FOUNDATION Biological Sciences Advisory Committee; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L., 92- 463, as amended), the National Science Foundation announces the following meeting: Name: Biological Sciences Advisory Committee ( 1110). Date and...

  19. Science Academies' Refresher Course in Developmental Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Science Academies' Refresher Course in Developmental Biology. Information and Announcements Volume 20 Issue 8 August 2015 pp 756-756. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Science Ideals and Science Careers in a University Biology Department

    Science.gov (United States)

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  1. Online citizen science games: Opportunities for the biological sciences.

    Science.gov (United States)

    Curtis, Vickie

    2014-12-01

    Recent developments in digital technologies and the rise of the Internet have created new opportunities for citizen science. One of these has been the development of online citizen science games where complex research problems have been re-imagined as online multiplayer computer games. Some of the most successful examples of these can be found within the biological sciences, for example, Foldit, Phylo and EteRNA. These games offer scientists the opportunity to crowdsource research problems, and to engage with those outside the research community. Games also enable those without a background in science to make a valid contribution to research, and may also offer opportunities for informal science learning.

  2. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  3. Experimental statistics for biological sciences.

    Science.gov (United States)

    Bang, Heejung; Davidian, Marie

    2010-01-01

    In this chapter, we cover basic and fundamental principles and methods in statistics - from "What are Data and Statistics?" to "ANOVA and linear regression," which are the basis of any statistical thinking and undertaking. Readers can easily find the selected topics in most introductory statistics textbooks, but we have tried to assemble and structure them in a succinct and reader-friendly manner in a stand-alone chapter. This text has long been used in real classroom settings for both undergraduate and graduate students who do or do not major in statistical sciences. We hope that from this chapter, readers would understand the key statistical concepts and terminologies, how to design a study (experimental or observational), how to analyze the data (e.g., describe the data and/or estimate the parameter(s) and make inference), and how to interpret the results. This text would be most useful if it is used as a supplemental material, while the readers take their own statistical courses or it would serve as a great reference text associated with a manual for any statistical software as a self-teaching guide.

  4. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  5. Harnessing science for environmental regulation

    International Nuclear Information System (INIS)

    Graham, J.D.

    1991-01-01

    An introductory chapter by Graham frames the issues to be discussed; then the following three chapters describe the formation and character of three organizations. These chapters are written by authors who have each had an active management role in the organization they are writing about: Terry F. Yosie, now at the American Petroleum Institute, who staffed the SAB (Science Advisory Board) while he was at EPA; Robert A. Neal, who headed CIIT (Chemical Industry Institute of Toxicology) before leaving for a position at Vanderbilt University; and Thomas P. Grumbly, former executive director of HEI (Health Effects Institute) now president of Clean Sites, Inc. While these chapters are well written and make a vital contribution to the overall development of the book's themes, the most valuable and enjoyable parts of the book are the succeeding five chapters, which present case studies dealing with EPA's regulatory efforts on unleaded gasoline, perchloroethylene, formaldehyde, nitrates in drinking water, and carbon monoxide. Each of these case studies, nominally historical accounts of how one or more of these (three) organizations participated in the regulatory controversy, offer insight into the broader issues of dealing with, and incorporating into regulations scientific information that has high uncertainty. One of the richest aspects of the five case studies is the extensive use of referenced interviews with identified participants from all aspects of the regulatory process. This material illuminates the motivation, emotions, and goals of the different players, helping the reader to understand their positions and other issues, such as why industry pursues, and EPA and the environmental movement appear to resist, good science; what underlies EPA's preferences for one regulatory option over another; and why scientists are histant to give yes-or-no answers in accord with the real time needs of the regulatory agency

  6. Spatial Structures and Regulation in Biological Systems

    DEFF Research Database (Denmark)

    Yde, Pernille

    , and the other is the spatial regulation of biological systems, here related to different aspects of the inflammatory response. All systems are studied using computational modelling and mathematical analysis. The first part of the thesis explores different protein aggregation scenarios. In Chapter 1, we consider...... a previously studied and very general aggregation model describing frangible linear filaments. This model is especially relevant for the growth of amyloid fibres, that have been related to a number of serious human diseases, and which are known to grow in an accelerated self-enhanced manner.We derive...... model of the tissue and show how coupled cells are able to function as an excitable medium and propagate waves of high cytokine concentration through the tissue. If the internal regulation in the cells is over-productive, the model predicts a continuous amplification of cytokines, which spans the entire...

  7. DATABASES DEVELOPED IN INDIA FOR BIOLOGICAL SCIENCES

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    2017-09-01

    databases have also helped in development of novel data mining methods, prediction strategies and data driven application software or web servers. In this article, we give an overview of biological databases developed in India and their impact on data driven research in biology. We also provide some suggestions for planning training programs in biological data science for making transitions to big data revolution in biology by combining advanced techniques like Deep Learning with biological big data.

  8. International Journal of Biological and Chemical Sciences: Contact

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: Contact. Journal Home > About the Journal > International Journal of Biological and Chemical Sciences: Contact. Log in or Register to get access to full text downloads.

  9. Archives: International Journal of Biological and Chemical Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 61 ... Archives: International Journal of Biological and Chemical Sciences. Journal Home > Archives: International Journal of Biological and Chemical Sciences. Log in or Register to get access to full text downloads.

  10. International Journal of Biological and Chemical Sciences: About ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: About this journal. Journal Home > International Journal of Biological and Chemical Sciences: About this journal. Log in or Register to get access to full text downloads.

  11. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Russian science readings (chemistry, physics, biology)

    CERN Document Server

    Light, L

    1949-01-01

    Some years' experience in teaching Russian to working scientists who had already acquired the rudiments of the grammar convinced me of the need for a reader of the present type that would smooth the path of those wishing to study Russian scientific literature in the original. Although the subject matter comprises what I have described for convenience as chemistry, physics and biology, it could be read with equal profit by those engaged in any branch of pure or applied science. All the passages are taken from school textbooks, and acknowledgements are due to the authors of the works listed at the foot of the contents page.

  13. Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0512 TITLE: Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer PRINCIPAL INVESTIGATOR: Andrew...SUBTITLE 5a. CONTRACT NUMBER Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0512 5c. PROGRAM...blocked by the addition of Pim inhibitors. These results suggest that the Pim protein kinase can regulate stromal cell biology to modulate epithelial

  14. Insurance: Accounting, Regulation, Actuarial Science

    OpenAIRE

    Alain Tosetti; Thomas Behar; Michel Fromenteau; Stéphane Ménart

    2001-01-01

    We shall be examining the following topics: (i) basic frameworks for accounting and for statutory insurance rules; and (ii) actuarial principles of insurance; for both life and nonlife (i.e. casualty and property) insurance.Section 1 introduces insurance terminology, regarding what an operation must include in order to be an insurance operation (the legal, statistical, financial or economic aspects), and introduces the accounting and regulation frameworks and the two actuarial models of insur...

  15. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology ...

  16. FDA Regulation of Follow-On Biologics

    Science.gov (United States)

    2009-02-24

    opening a pathway for the approval of follow-on biologics. A biologic is a preparation, such as a drug or a vaccine , that is made from living...2006 Drug Trend Report, April 2006, p. 38. C Biologic vs. Follow-on Biologic A biologic is a preparation, such as a drug or a vaccine , that is...doc9496/s1695.pdf. 19 Thijs J. Giezen, Aukje K. Mantel-Teeuwisse, and Sabine M. J. M. Straus, et al., “Safety-related regulatory actions for biologicals

  17. Is Reintroduction Biology an Effective Applied Science?

    Science.gov (United States)

    Taylor, Gemma; Canessa, Stefano; Clarke, Rohan H; Ingwersen, Dean; Armstrong, Doug P; Seddon, Philip J; Ewen, John G

    2017-11-01

    Reintroduction biology is a field of scientific research that aims to inform translocations of endangered species. We review two decades of published literature to evaluate whether reintroduction science is evolving in its decision-support role, as called for by advocates of evidence-based conservation. Reintroduction research increasingly addresses a priori hypotheses, but remains largely focused on short-term population establishment. Similarly, studies that directly assist decisions by explicitly comparing alternative management actions remain a minority. A small set of case studies demonstrate full integration of research in the reintroduction decision process. We encourage the use of tools that embed research in decision-making, particularly the explicit consideration of multiple management alternatives because this is the crux of any management decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Regulating chemicals: law, science, and the unbearable burdens of regulation.

    Science.gov (United States)

    Silbergeld, Ellen K; Mandrioli, Daniele; Cranor, Carl F

    2015-03-18

    The challenges of regulating industrial chemicals remain unresolved in the United States. The Toxic Substances Control Act (TSCA) of 1976 was the first legislation to extend coverage to the regulation of industrial chemicals, both existing and newly registered. However, decisions related to both law and science that were made in passing this law inevitably rendered it ineffectual. Attempts to fix these shortcomings have not been successful. In light of the European Union's passage of innovative principles and requirements for chemical regulation, it is no longer possible to deny the opportunity and need for reform in US law and practice.

  19. Opportunities in Biological Sciences; [VGM Career Horizons Series].

    Science.gov (United States)

    Winter, Charles A.

    This book provides job descriptions and discusses career opportunities in various fields of the biological sciences. These fields include: (1) biotechnology, genetics, biomedical engineering, microbiology, mycology, systematic biology, marine and aquatic biology, botany, plant physiology, plant pathology, ecology, and wildlife biology; (2) the…

  20. International Journal of Biological and Chemical Sciences: Editorial ...

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal ... IJBCS publishes original research papers, critical up-to-date and concise ... Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio ...

  1. Epistemological Predictors of Prospective Biology Teachers' Nature of Science Understandings

    Science.gov (United States)

    Köseoglu, Pinar; Köksal, Mustafa Serdar

    2015-01-01

    The purpose of this study was to investigate epistemological predictors of nature of science understandings of 281 prospective biology teachers surveyed using the Epistemological Beliefs Scale Regarding Science and the Nature of Science Scale. The findings on multiple linear regression showed that understandings about definition of science and…

  2. Atmospheric pollution: history, science, and regulation

    National Research Council Canada - National Science Library

    Jacobson, Mark Z

    2002-01-01

    ..., stratospheric ozone reduction, and global climate change - is provided. Each chapter discusses the history and science behind these problems, their consequences, and the effort made through government intervention and regulation to mitigate them. The book contains numerous student examples and problems, more than 200 color illustrations,...

  3. Network science of biological systems at different scales: A review

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present

  4. Understanding Federal regulations as guidelines for classical biological control programs

    Science.gov (United States)

    Michael E. Montgomery

    2011-01-01

    This chapter reviews the legislation and rules that provide the foundation for federal regulation of the introduction of natural enemies of insects as biological control agents. It also outlines the steps for complying with regulatory requirements, using biological control of Adelges tsugae Annand, the hemlock woolly adelgid (HWA), as an example. The...

  5. Chromatin regulation at the frontier of synthetic biology

    Science.gov (United States)

    Keung, Albert J.; Joung, J. Keith; Khalil, Ahmad S.; Collins, James J.

    2016-01-01

    As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including `epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication. PMID:25668787

  6. 5. Conference cycle. The radiations and the Biological Sciences

    International Nuclear Information System (INIS)

    Balcazar G, M.; Chavez B, A.

    1991-06-01

    Nuclear technologies and their development have influenced many aspects of modern life. Besides used for electricity production nuclear technologies are applied in many other fields, especially in biological sciences. In genetics and molecular biology they enable research resulting in increased food production and better food preservation. Usage in material sciences lead to new varieties of plastics or improved characteristics. Nuclear applications are used in pe troleum industries and in forecasting geothermic power. Radiobiology and radiotherapy enable diagnosis and therapy of several diseases, e.g. cancer. Nuclear technologies also contribute to preserve the environment. They offer methods to analyse as well as decrease the environmental impacts. The 5. conference cyle entitled 'The Radiations and the Biological Sciences' aims to inform students of biological sciences about new nuclear technologies applied in their field of interest

  7. Gravitational biology and space life sciences: Current status and ...

    Indian Academy of Sciences (India)

    Gravitational and space biology organizations and journals. American Institute of ... of Scientific Unions (now the International Council for. Science). COSPAR ... Greek Aerospace Medical Association & Space Research. (GASMA). Provides ...

  8. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    IAS Admin

    theory as applied to biological systems. ... methods to follow the course of chemical reactions devised by. K Fukui and R .... optimize the structure of organic molecules using classical-em- pirical potential ..... science or engineering dis- ciplines.

  9. Basic mathematics for the biological and social sciences

    CERN Document Server

    Marriott, F H C

    2013-01-01

    Basic Mathematics for the Biological and Social Sciences deals with the applications of basic mathematics in the biological and social sciences. Mathematical concepts that are discussed in this book include graphical methods, differentiation, trigonometrical or circular functions, limits and convergence, integration, vectors, and differential equations. The exponential function and related functions are also considered. This monograph is comprised of 11 chapters and begins with an overview of basic algebra, followed by an introduction to infinitesimal calculus, scalar and vector quantities, co

  10. iBiology: communicating the process of science.

    Science.gov (United States)

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. International Journal of Biological and Chemical Sciences

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... toxicology, biotechnology, biostatistics, bioinformatics, environmental biology, ... IJBCS publishes original research papers, critical up-to-date and concise ...

  12. African Journals Online: Biology & Life Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 71 ... Anatomy Journal of Africa is the Official Journal for the Association of Anatomical ... It publishes original articles pertaining to various aspects of renal ... in all fields of experimental biology including biochemistry, physiology, ...

  13. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  14. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  15. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  16. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, F.; Bruggeman, F.; Jonker, C.M.; Looren de Jong, H.; Tamminga, A.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between 'completed' sciences, a case is made for the actual study of the way

  17. Inter-level relations in computer science, biology and psychology

    NARCIS (Netherlands)

    Boogerd, F.C.; Bruggeman, F.J.; Jonker, C.M.; Looren De Jong, H.; Tamminga, A.M.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between "completed" sciences, a case is made for the actual study of the way

  18. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, Fred; Bruggeman, Frank; Jonker, Catholijn; Looren de Jong, Huib; Tamminga, Allard; Treur, Jan; Westerhoff, Hans; Wijngaards, Wouter

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an *empirical* turn in the philosophy of mind. Rather than concentrate on *a priori* discussions of inter-level relations between “completed” sciences, a case is made for the actual study of the way

  19. Profile of science process skills of Preservice Biology Teacher in General Biology Course

    Science.gov (United States)

    Susanti, R.; Anwar, Y.; Ermayanti

    2018-04-01

    This study aims to obtain portrayal images of science process skills among preservice biology teacher. This research took place in Sriwijaya University and involved 41 participants. To collect the data, this study used multiple choice test comprising 40 items to measure the mastery of science process skills. The data were then analyzed in descriptive manner. The results showed that communication aspect outperfomed the other skills with that 81%; while the lowest one was identifying variables and predicting (59%). In addition, basic science process skills was 72%; whereas for integrated skills was a bit lower, 67%. In general, the capability of doing science process skills varies among preservice biology teachers.

  20. Saving our science from ourselves: the plight of biological classification

    Directory of Open Access Journals (Sweden)

    Malte C. Ebach

    2011-06-01

    Full Text Available Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.

  1. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  2. Science Curriculum Components Favored by Taiwanese Biology Teachers

    Science.gov (United States)

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-09-01

    The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.

  3. African Journals Online: Biology & Life Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 71 ... African Journal for Physical Activity and Health Sciences ... in the promotion of scientific proceedings and publications in developing countries. ... and proteomics, food and agricultural technologies, and metabolic engineering. ... The African Journal of Chemical Education (AJCE) is a biannual online journal ...

  4. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  5. Material science lesson from the biological photosystem.

    Science.gov (United States)

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-01-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  6. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  7. Challenges of medical and biological engineering and science

    Energy Technology Data Exchange (ETDEWEB)

    Magjarevic, R [University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb (Croatia)

    2004-07-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science.

  8. Challenges of medical and biological engineering and science

    International Nuclear Information System (INIS)

    Magjarevic, R.

    2004-01-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science

  9. Bringing the physical sciences into your cell biology research.

    Science.gov (United States)

    Robinson, Douglas N; Iglesias, Pablo A

    2012-11-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences.

  10. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  11. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Science.gov (United States)

    Bonham, Kevin S; Stefan, Melanie I

    2017-10-01

    While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  12. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Directory of Open Access Journals (Sweden)

    Kevin S Bonham

    2017-10-01

    Full Text Available While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  13. Introduction to nonparametric statistics for the biological sciences using R

    CERN Document Server

    MacFarland, Thomas W

    2016-01-01

    This book contains a rich set of tools for nonparametric analyses, and the purpose of this supplemental text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses a...

  14. Sustaining biological welfare for our future through consistent science

    Directory of Open Access Journals (Sweden)

    Shimomura Yoshihiro

    2013-01-01

    Full Text Available Abstract Physiological anthropology presently covers a very broad range of human knowledge and engineering technologies. This study reviews scientific inconsistencies within a variety of areas: sitting posture; negative air ions; oxygen inhalation; alpha brain waves induced by music and ultrasound; 1/f fluctuations; the evaluation of feelings using surface electroencephalography; Kansei; universal design; and anti-stress issues. We found that the inconsistencies within these areas indicate the importance of integrative thinking and the need to maintain the perspective on the biological benefit to humanity. Analytical science divides human physiological functions into discrete details, although individuals comprise a unified collection of whole-body functions. Such disparate considerations contribute to the misunderstanding of physiological functions and the misevaluation of positive and negative values for humankind. Research related to human health will, in future, depend on the concept of maintaining physiological functions based on consistent science and on sustaining human health to maintain biological welfare in future generations.

  15. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  16. Self-regulated learning and science achievement in a community college

    Science.gov (United States)

    Maslin, (Louisa) Lin-Yi L.

    , accounting for roughly one-third of the variance. The basic skills assessments and self-regulated learning were not significant predictors. English and reading assessments were more highly significant predictors in the biology than in the physical science groups, while math assessment was not related to science achievement.

  17. Scanning probe microscopy in material science and biology

    International Nuclear Information System (INIS)

    Cricenti, A; Colonna, S; Girasole, M; Gori, P; Ronci, F; Longo, G; Dinarelli, S; Luce, M; Rinaldi, M; Ortenzi, M

    2011-01-01

    A review of the activity of scanning probe microscopy at our Institute is presented, going from instrumentation to software development of scanning tunnelling microscopy, atomic force microscopy and scanning near-field optical microscopy (SNOM). Some of the most important experiments in material science and biology performed by our group through the years with these SPM techniques will be presented. Finally, infrared applications by coupling a SNOM with a free electron laser will also be presented.

  18. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  19. Biological sciences teaching undergraduates’ environmental knowledge: a critical analysis

    Directory of Open Access Journals (Sweden)

    Silvana do Nascimento Silva

    2013-12-01

    Full Text Available Nowadays, environmental issues have been addressed in a way that goes beyond the natural impacts, embracing socio-economic, political and cultural aspects. This paper makes a description of the types of environmental conceptions, giving special emphasis to the interactions that permeate it, and develops an empirical work by analyzing the conceptions about the environmental knowledge of students majoring in a teacher preparation course on biological sciences of a university in the State of Bahia, Brazil. In a qualitative research, data were collected by application of a questionnaire with open questions with answers in text and drawings. The results revealed a predominance of naturalistic conceptions, while socio-environmental conceptions of systemic or socio-metabolic characteristics were not found. These findings lead to the need for the integration of these critical approaches about the environmental issue in Sciences and Biology teachers’ training, emphasizing the interactions between work, nature and society. Finally, some suggestions also emerge for future research, among which to analyze the biological sciences university teachers’ environmental conceptions and an action-research with these investigated undergraduates concerning environmental critical approaches.

  20. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  1. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  2. Reproductive science as an essential component of conservation biology.

    Science.gov (United States)

    Holt, William V; Brown, Janine L; Comizzoli, Pierre

    2014-01-01

    In this chapter we argue that reproductive science in its broadest sense has never been more important in terms of its value to conservation biology, which itself is a synthetic and multidisciplinary topic. Over recent years the place of reproductive science in wildlife conservation has developed massively across a wide and integrated range of cutting edge topics. We now have unprecedented insight into the way that environmental change affects basic reproductive functions such as ovulation, sperm production, pregnancy and embryo development through previously unsuspected influences such as epigenetic modulation of the genome. Environmental change in its broadest sense alters the quality of foodstuffs that all animals need for reproductive success, changes the synchrony between breeding seasons and reproductive events, perturbs gonadal and embryo development through the presence of pollutants in the environment and drives species to adapt their behaviour and phenotype. In this book we explore many aspects of reproductive science and present wide ranging and up to date accounts of the scientific and technological advances that are currently enabling reproductive science to support conservation biology.

  3. A Comparative Analysis of South African Life Sciences and Biology Textbooks for Inclusion of the Nature of Science

    Science.gov (United States)

    Ramnarain, Umesh; Padayachee, Keshni

    2015-01-01

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology textbooks that were written…

  4. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  5. Induction, regulation, degradation, and biological significance of mammalian metallothioneins.

    Science.gov (United States)

    Miles, A T; Hawksworth, G M; Beattie, J H; Rodilla, V

    2000-01-01

    MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypeptides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.

  6. Function and regulation of lipid biology in Caenorhabditis elegans aging

    Directory of Open Access Journals (Sweden)

    Nicole Shangming Hou

    2012-05-01

    Full Text Available Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefitting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging.

  7. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  8. Toward a Personalized Science of Emotion Regulation

    Science.gov (United States)

    Doré, Bruce P.; Silvers, Jennifer A.; Ochsner, Kevin N.

    2018-01-01

    The ability to successfully regulate emotion plays a key role in healthy development and the maintenance of psychological well-being. Although great strides have been made in understanding the nature of regulatory processes and the consequences of deploying them, a comprehensive understanding of emotion regulation that can specify what strategies are most beneficial for a given person in a given situation is still a far-off goal. In this review, we argue that moving toward this goal represents a central challenge for the future of the field. As an initial step, we propose a concrete framework that (i) explicitly considers emotion regulation as an interaction of person, situation, and strategy, (ii) assumes that regulatory effects vary according to these factors, and (iii) sets as a primary scientific goal the identification of person-, situation-, and strategy-based contingencies for successful emotion regulation. Guided by this framework, we review current questions facing the field, discuss examples of contextual variation in emotion regulation success, and offer practical suggestions for continued progress in this area. PMID:29750085

  9. An Examination of Science High School Students' Motivation towards Learning Biology and Their Attitude towards Biology Lessons

    Science.gov (United States)

    Kisoglu, Mustafa

    2018-01-01

    The purpose of this study is to examine motivation of science high school students towards learning biology and their attitude towards biology lessons. The sample of the study consists of 564 high school students (308 females, 256 males) studying at two science high schools in Aksaray, Turkey. In the study, the relational scanning method, which is…

  10. Multicultural science education in Lesotho high school biology classrooms

    Science.gov (United States)

    Nthathakane, Malefu Christina

    2001-12-01

    This study investigated how Basotho high school biology students responded to a multicultural science education (MCSE) approach. Students' home language---Sesotho---and cultural experiences were integrated into the teaching of a unit on alcohol, tobacco and other drugs (ATOD) abuse. The focus was on students whose cultural background is African and who are English second language users. The study was conducted in three high school biology classrooms in Lesotho where the ATOD unit was taught using MCSE. A fourth biology classroom was observed for comparison purposes. In this classroom the regular biology teacher taught ATOD using typical instructional strategies. The study was framed by the general question: How does a multicultural science education approach affect Basotho high school biology students? More specifically: How does the use of Sesotho (or code-switching between Sesotho and English) and integration of Basotho students' cultural knowledge and experiences with respect to ATOD affect students' learning? In particular how does the approach affect students' participation and academic performance? A qualitative research method was used in this study. Data were drawn from a number of different sources and analyzed inductively. The data sources included field-notes, transcripts of ATOD lessons, research assistant lesson observation notes and interviews, regular biology teachers' interviews and notes from observing a few of their lessons, students' interviews and pre and posttest scripts, and other school documents that recorded students' performance throughout the year. Using the students' home language---Sesotho---was beneficial in that it enabled them to share ideas, communicate better and understand each other, the teacher and the material that was taught. Integrating students' cultural and everyday experiences was beneficial because it enabled students to anchor the new ATOD ideas in what was familiar and helped them find the relevance of the unit by

  11. Popper, laws, and the exclusion of biology from genuine science.

    Science.gov (United States)

    Stamos, David N

    2007-01-01

    The primary purpose of this paper is to argue that biologists should stop citing Karl Popper on what a genuinely scientific theory is. Various ways in which biologists cite Popper on this matter are surveyed, including the use of Popper to settle debates on methodology in phylogenetic systematics. It is then argued that the received view on Popper--namely, that a genuinely scientific theory is an empirically falsifiable one--is seriously mistaken, that Popper's real view was that genuinely scientific theories have the form of statements of laws of nature. It is then argued that biology arguably has no genuine laws of its own. In place of Popperian falsifiability, it is suggested that a cluster class epistemic values approach (which subsumes empirical falsifiability) is the best solution to the demarcation problem between genuine science and pseudo- or non-science.

  12. FOOD SAFETY REGULATIONS BASED ON REAL SCIENCE

    Directory of Open Access Journals (Sweden)

    Huub LELIEVELD

    2015-10-01

    Full Text Available Differences in regulations result in needless destruction of safe food and hamper food trade. The differences are not just the result of the history of food safety regulations, often developed in times before global cooperation, but are also built in new regulations. It may be responses to media hypes or for other reasons, but in most cases the differences cannot be justified scientifically. A major difficulty is that, due to the developments in analytical techniques the number of chemicals that are found in food is increasing rapidly and chemicals are always suspected to be a safety risk. By far most chemicals are of natural origin but could not be detected in the past because the methods available in the past were not sensitive enough. Demanding the absence of chemicals because the risk they present is unknown, however, would eventually make all food unacceptable. The general public should be shown that everything they eat is chemical, and all food components will be toxic if the amount is too high. It should also be shown that many of these chemicals will also cause illness and death if there is not enough of it as is the case with vitamins and minerals.

  13. Atmospheric pollution: history, science and regulation

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, M.Z. [Stanford University, Stanford, CA (USA). Dept. of Civil and Environmental Engineering

    2002-07-01

    The book provides an introduction to the history and science of major air pollution issues. It begins with an introduction to the history of discovery of chemicals in the atmosphere, and moves on to a discussion of the evolution of the earth's atmosphere. It then discusses five major atmospheric pollution topics: urban outdoor air pollution, indoor air pollution, acid deposition, stratospheric ozone depletion, and global climate change. The book contains numerous student examples and problems and over 200 color illustrations and photographs.

  14. EMMPRIN, an upstream regulator of MMPs, in CNS biology.

    Science.gov (United States)

    Kaushik, Deepak Kumar; Hahn, Jennifer Nancy; Yong, V Wee

    2015-01-01

    Matrix metalloproteinases (MMPs) are engaged in pathologies associated with infections, tumors, autoimmune disorders and neurological dysfunctions. With the identification of an upstream regulator of MMPs, EMMPRIN (Extracellular matrix metalloproteinase inducer, CD147), it is relevant to address if EMMPRIN plays a role in the pathology of central nervous system (CNS) diseases. This would enable the possibility of a more upstream and effective therapeutic target. Indeed, conditions including gliomas, Alzheimer's disease (AD), multiple sclerosis (MS), and other insults such as hypoxia/ischemia show elevated levels of EMMPRIN which correlate with MMP production. In contrast, given EMMPRIN's role in CNS homeostasis with respect to regulation of monocarboxylate transporters (MCTs) and interactions with adhesion molecules including integrins, we need to consider that EMMPRIN may also serve important regulatory or protective functions. This review summarizes the current understanding of EMMPRIN's involvement in CNS homeostasis, its possible roles in escalating or reducing neural injury, and the mechanisms of EMMPRIN including and apart from MMP induction. Copyright © 2015 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  15. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  16. The Relationship in Biology between the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Kremer, Kerstin; Specht, Christiane; Urhahne, Detlef; Mayer, Jürgen

    2014-01-01

    Informed understandings of nature of science and scientific inquiry are generally accepted goals of biology education. This article points out central features of scientific inquiry with relation to biology and the nature of science in general terms and focuses on the relationship of students' inquiry skills in biology and their beliefs on the…

  17. Race categorization and the regulation of business and science.

    Science.gov (United States)

    Lee, Catherine; Skrentny, John D

    2010-01-01

    Despite the lack of consensus regarding the meaning or significance of race or ethnicity amongst scientists and the lay public, there are legal requirements and guidelines that dictate the collection of racial and ethnic data across a range of institutions. Legal regulations are typically created through a political process and then face varying kinds of resistance when the state tries to implement them. We explore the nature of this opposition by comparing responses from businesses, scientists, and science-oriented businesses (pharmaceutical and biotechnology companies) to U.S. state regulations that used politically derived racial categorizations, originally created to pursue civil rights goals. We argue that insights from cultural sociology regarding institutional and cultural boundaries can aid understanding of the nature of resistance to regulation. The Food and Drug Administration's guidelines for research by pharmaceutical companies imposed race categories on science-based businesses, leading to objections that emphasized the autonomy and validity of science. In contrast, similar race categories regulating first business by the Equal Employment Opportunity Commission (EEOC) and later scientific research sponsored by the National Institutes of Health (NIH) encountered little challenge. We argue that pharmaceutical companies had the motive (profit) that NIH-supported scientists lacked and a legitimate discourse (boundary work of science) that businesses regulated by the EEOC did not have. The study suggests the utility of a comparative cultural sociology of the politics of legal regulation, particularly when understanding race-related regulation and the importance of examining legal regulations for exploring how the meaning of race or ethnicity are contested and constructed in law.

  18. The biological sciences in nursing: a developing country perspective.

    Science.gov (United States)

    Kyriacos, Una; Jordan, Sue; van den Heever, Jean

    2005-10-01

    This paper reports a study to inform curriculum development by exploring the contribution of bioscience education programmes to nurses' clinical practice, their understanding of the rationale for practice, and their perceptions of their continuing professional development needs. The future of the health services worldwide depends on nurse education programmes equipping practitioners to deliver safe and effective patient care. In the developed world, the structure and indicative content of nursing curricula have been debated extensively. However, despite the rapid expansion in nursing roles brought about by social change, there is little information on the educational needs of nurses in developing countries. This study was undertaken in government teaching hospitals in Cape Town, South Africa in 2003. A purposive sample of 54 nurses from a range of clinical settings completed questionnaires and described critical incidents where bioscience knowledge had directed practice. Questionnaires were analysed descriptively, in the main. Analysis of critical incident reports was based on Akinsanya's bionursing model. Most nurses felt that their understanding of the biological, but not the physical sciences, was adequate or better: all felt confident with their knowledge of anatomy, compared with 57.4% (31/54) for microbiology. Respondents attributed the successes and failures of their education programmes to their teachers' delivery of content, ability to relate to practice and management of the process of learning. The biological, but not the physical, sciences were universally (96-100%) regarded as relevant to nursing. However, the critical incidents and nurses' own reports indicated a need for further education in pharmacology (40/54, 74.1%) and microbiology (29/54, 53.7%). To meet the needs of nurses in developing countries, and empower them to meet the increasingly complex demands of their expanding roles, nurse educators need to consider increasing the curriculum

  19. Knowledge and Regulation of Cognition in College Science Students

    Science.gov (United States)

    Roshanaei, Mehrnaz

    2014-01-01

    The research focused on three issues in college science students: whether there was empirical support for the two factor (knowledge of cognition and regulation of cognition) view of metacognition, whether the two factors were related to each other, and whether either of the factors was related to empirical measures of cognitive and metacognitive…

  20. Behavioural Sciences and the Regulation of Privacy on the Internet

    NARCIS (Netherlands)

    Zuiderveen Borgesius, F.; Alemanno, A.; Sibony, A.-L.

    2015-01-01

    This chapter examines the policy implications of behavioural sciences insights for the regulation of privacy on the Internet, by focusing in particular on behavioural targeting. This marketing technique involves tracking people’s online behaviour to use the collected information to show people

  1. Influencing attitudes toward science through field experiences in biology

    Science.gov (United States)

    Carpenter, Deborah Mcintyre

    The purpose of this study was to determine how student attitudes toward science are influenced by field experiences in undergraduate biology courses. The study was conducted using two institutions of higher education including a 2-year lower-level and a 2-year upper-level institution. Data were collected through interviews with student participants, focus group discussions, students' journal entries, and field notes recorded by the researcher during the field activities. Photographs and video recordings were also used as documentation sources. Data were collected over a period of 34 weeks. Themes that emerged from the qualitative data included students' beliefs that field experiences (a) positively influence student motivation to learn, (b) increase student ability to learn the concepts being taught, and (c) provide opportunities for building relationships and for personal growth. The findings of the study reinforce the importance of offering field-study programs at the undergraduate level to allow undergraduate students the opportunity to experience science activities in a field setting. The research study was framed by the behavioral and developmental theories of attitude and experience including the Theory of Planned Behavior (Ajzen, 1991) and the Theory of Experiential Learning (Kolb, 1984).

  2. Rhetoric of science in the regulation of medicines in Denmark

    DEFF Research Database (Denmark)

    Møllebæk, Mathias

    the rhetoric of regulatory science in the Danish healthcare system. In Denmark, as in the rest of the EU, policy makers and regulators are met with increasing demands for science-based decisions. As medicines are becoming more complex, regulatory bodies and pharmaceutical companies are increasingly required...... of academic science and the practical policy aims in “real-world” regulation of drugs. The field aims to develop frameworks and values that support decision-makers in managing drug-related uncertainties and risks under strict legal, time and budgetary constraints (Todt et.al, 2010). This requires a thorough...... rhetorical understanding of the establishment of scientific ethos and argumentation practices (Prelli, 1989) in the regulatory circuit of industry, academia and authorities. The paper includes a rhetorical analysis of an example from the Danish healthcare sector. The paper is part of a PhD project about...

  3. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    Science.gov (United States)

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  4. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    Science.gov (United States)

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  5. Physical and Biological Regulation of Carbon Sequestration in Tidal Marshes

    Science.gov (United States)

    Morris, J. T.; Callaway, J.

    2017-12-01

    The rate of carbon sequestration in tidal marshes is regulated by complex feedbacks among biological and physical factors including the rate of sea-level rise (SLR), biomass production, tidal amplitude, and the concentration of suspended sediment. We used the Marsh Equilibrium Model (MEM) to explore the effects on C-sequestration across a wide range of permutations of these variables. C-sequestration increased with the rate of SLR to a maximum, then down to a vanishing point at higher SLR when marshes convert to mudflats. An acceleration in SLR will increase C-sequestration in marshes that can keep pace, but at high rates of SLR this is only possible with high biomass and suspended sediment concentrations. We found that there were no feasible solutions at SLR >13 mm/yr for permutations of variables that characterize the great majority of tidal marshes, i.e., the equilibrium elevation exists below the lower vertical limit for survival of marsh vegetation. The rate of SLR resulting in maximum C-sequestration varies with biomass production. C-sequestration rates at SLR=1 mm/yr averaged only 36 g C m-2 yr-1, but at the highest maximum biomass tested (5000 g/m2) the mean C-sequestration reached 399 g C m-2 yr-1 at SLR = 14 mm/yr. The empirical estimate of C-sequestration in a core dated 50-years overestimates the theoretical long-term rate by 34% for realistic values of decomposition rate and belowground production. The overestimate of the empirical method arises from the live and decaying biomass contained within the carbon inventory above the marker horizon, and overestimates were even greater for shorter surface cores.

  6. The Regulation of Food Science and Technology Professions in Europe

    Directory of Open Access Journals (Sweden)

    Rui Costa

    2014-04-01

    Full Text Available The regulation of a profession is justified when it improves consumer protection and public health. Higher education food science and technology (FST degrees, widely offered in many universities in Europe open to a wide range of jobs in the food sectors where the employees could cover different positions, roles and carry out diverse activities dealing with the food production and the quality and safety of the food products. This work reviews the state of the art of the FST regulated professions requiring higher education qualifications in the European countries. The research was carried out by collecting specific information on regulated professions by contacting unions, professional associations, public servant categories/professions, and by visiting national and EU websites.  The data collected for each regulated profession were: country, training/education required, date of implementation of regulation, professional training (if required, capability test (if required and acts required by law to be signed by a regulated professional. Only professions that required a higher education diploma were included in this search. Few countries were found to have a regulated profession in FST, in particular: Food Engineering (Turkey, Food Technologist (Greece, Iceland, Italy and Slovenia, and Oenologist (Italy, Portugal and Spain. FST regulated professions in Europe are thus scarce and have a rather limited history. The Food Technologist in Italy and the Food Engineer in Turkey were found to be the only completely regulated professions found in Europe. Food and professional regulation have been evolved over the years and raised the debate on the regulation of FST professions. Academia as well as other policymakers has to further contribute to this discussion to keep high the standards for quality of education and training of the qualified workforce and professionals in the food sector.

  7. Biological and Chemical Weapons: Criminal Sanctions and Federal Regulations

    National Research Council Canada - National Science Library

    Garcia, Michael J

    2004-01-01

    .... In accordance with these obligations, the United States has enacted various federal requirements and criminal sanctions applying to biological and chemical weapons, Re cent anti4errorisrn legislation...

  8. The marine biological week as an approach to science

    Science.gov (United States)

    Ransdorf, Angela; Satzinger, Viktoria

    2017-04-01

    The "Wiedner Gymnasium" is an academic high school with two branches: one focusses on languages and the other one on science. In the language branch the students learn at least three languages; one of which is Latin, whereas the students of the scientific branch can learn geometrical drawing and have to attend a scientific laboratory throughout the last four upper classes. As incentive highlights the language classes have a one week's school trip to France, Italy or Spain at the beginning of their 7th form in order to attend a language school and to practice their language skills. As a counterbalance, there was introduced the "marine biological week" several years ago, in which the students of the scientific branch take part whilst their colleagues have their language trips. The marine biological week takes place in Rovinj, Croatia. A team of biologists and divers leads through a programme, by which the students get an overview of different habitats, their conditions and the different ways of adaptation organisms find. Thus, they also become acquainted with several species of animals and plants which are characteristic for this area. They become familiar with some methods of scientific work and also get to know some of the problems marine ecosystems are confronted with. They also learn a little bit if the Mediterranean history and culture. Back in school all the findings are reviewed and brought into an ecological context. The insights can be used for many other topics, too, such as e.g. evolution. This week has proved to be a good start as well for the topic of ecology as for learning to think scientifically in general. So, you can call it a pivot for the scientific branch of our school.

  9. How do the high school biology textbooks introduce the nature of science?

    Science.gov (United States)

    Lee, Young H.

    2007-05-01

    Although helping students to achieve an adequate understanding of the nature of science has been a consistent goal for science education for over half a century, current research reveals that the majority of students and teachers have naive views of the nature of science (Abd-El-khalick & Akerson, 2004; Bianchini & Colburn, 2000). This problem could be attributed not only to the complex nature of science, but also to the way the nature of science is presented to students during instruction. Thus, research must be conducted to examine how the science is taught, especially in science textbooks, which are a major instructional resource for teaching science. The aim of this study was to conduct a content analysis of the first chapter of four high school biology textbooks, which typically discusses "What is science?" and "What is biology?" This research used a content analysis technique to analyze the four high school biology textbooks, using a conceptual framework that has been used often for science textbook analysis. This conceptual framework consists of four themes of the nature of science: (a) science as a body of knowledge, (b) science as a way of thinking, (c) science as a way of investigating, and (d) the interaction of science, technology, and society. For this study, the four-theme-framework was modified to incorporate descriptors from national-level documents, such as Science for All Americans (AAAS, 1990) Benchmarks for Science Literacy (AAAS, 1993) and the National Science Education Standards (NRC, 1996), as well as science education research reports. A scoring procedure was used that resulted in good to excellent intercoder agreement with Cohen's kappa (k) ranging from .63 to .96. The findings show that the patterns of presentation of the four themes of the nature of science in the four high school biology textbooks are similar across the different locations of data, text, figures, and assessments. On the other hand, the pattern of presentation of the four

  10. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  11. Book Review: Signs of Science - Linguistics meets Biology

    Directory of Open Access Journals (Sweden)

    Robert Prinz

    2011-06-01

    Full Text Available „Biosemiotics“ is an integrative and interdisciplinary research effort that investigates living systems with concepts borrowed from linguistics and the communication sciences. Life is seen as an entanglement of communicative processes relating entities with each other by defined rules. Those “rules” are the very heart of (biosemiotic analysis. A hallmark of life is the existence of rules that are very different from natural laws. We can find such rules embedded in the genetic code, for example, where a transfer RNA relates a codon in mRNA to an amino acid. Nevertheless, it could have evolved in another way as well as genetic code engineering shows. Apparently arbitrary relationships are inherent to all levels of biological organization: from cells to organisms. Parts are connected in ways that can hardly be inferred from physical (thermodynamic principles and still await reconciliation in a reasonable manner.   Essential Readings in Biosemiotics Anthology and Commentary Series: Biosemiotics, Vol. 3 Favareau, Donald (editor 1st Edition., 2010, 880 p., 219,94 €, Hardcover ISBN: 978-1-4020-9649-5

  12. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    Science.gov (United States)

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  13. Science Seeker: A New Model for Teaching Information Literacy to Entry-Level Biology Undergraduates

    Science.gov (United States)

    Petzold, Jacquelyn; Winterman, Brian; Montooth, Kristi

    2010-01-01

    In order to integrate library instruction seamlessly into an introductory biology course, two librarians collaborated with a biology faculty member to create a three-part series of instruction sessions known as the Science Seeker. The Science Seeker taught students about the structure of scientific information by tracing the path that discoveries…

  14. Test of Science Process Skills of Biology Students towards Developing of Learning Exercises

    Directory of Open Access Journals (Sweden)

    Judith S. Rabacal

    2016-11-01

    Full Text Available This is a descriptive study aimed to determine the academic achievement on science process skills of the BS Biology Students of Northern Negros State College of Science and Technology, Philippines with the end view of developing learning exercises which will enhance their academic achievement on basic and integrated science process skills. The data in this study were obtained using a validated questionnaire. Mean was the statistical tool used to determine the academic achievement on the above mentioned science process skills; t-test for independent means was used to determine significant difference on the academic achievement of science process skills of BS Biology students while Pearson Product Moment of Correlation Coefficient was used to determine the significant relationship between basic and integrated science process skills of the BS Biology students. A 0.05 level of significance was used to determine whether the hypothesis set in the study will be rejected or accepted. Findings revealed that the academic achievement on basic and integrated science process skills of the BS Biology students was average. Findings revealed that there are no significant differences on the academic performance of the BS Biology students when grouped according to year level and gender. Findings also revealed that there is a significant difference on the academic achievement between basic and integrated science process skills of the BS Biology students. Findings revealed that there is a significant relationship between academic achievement on the basic and integrated science process skills of the BS Biology students.

  15. Biological and Chemical Weapons: Criminal Sanctions and Federal Regulations

    National Research Council Canada - National Science Library

    Garcia, Michael J

    2004-01-01

    The Biological Weapons Convention and the Chemical Weapons Convention, both of which have been signed and ratified by the United States, obligate signatory parties to enact legislation or otherwise...

  16. 75 FR 40754 - Government in the Sunshine Act Regulations of the National Science Board

    Science.gov (United States)

    2010-07-14

    ... NATIONAL SCIENCE FOUNDATION 45 CFR Part 614 RIN 3145-AA53 Government in the Sunshine Act Regulations of the National Science Board AGENCY: National Science Board (NSB), National Science Foundation (NSF). ACTION: Direct final rule. SUMMARY: The National Science Board (NSB) National Science Foundation...

  17. Regulating interface science healthcare products: myths and uncertainties.

    Science.gov (United States)

    Bravery, Christopher A

    2010-12-06

    Whenever new technology emerges it brings with it concerns and uncertainties about whether or how it will need to be regulated, particularly when it is applied to human healthcare. Drawing on the recent history in the European Union (EU) of the regulation of cell-based medicinal products, and in particular tissue-engineered products, this paper explores the myths that persist around their regulation and speculates on whether the existing regulatory landscape in the EU is flexible enough to incorporate nanotechnology and other new technologies into healthcare products. By untangling these myths a number of clear conclusions are revealed that, when considered in the context of risk-benefit, make it clear that what hinders the uptake of new technology is not regulatory process but basic science.

  18. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  19. Butterflies & Wild Bees: Biology Teachers' PCK Development through Citizen Science

    Science.gov (United States)

    Scheuch, Martin; Panhuber, Tanja; Winter, Silvia; Kelemen-Finan, Julia; Bardy-Durchhalter, Manfred; Kapelari, Suzanne

    2018-01-01

    Citizen science is a rapidly growing emerging field in science and it is gaining importance in education. Therefore, this study was conducted to document the pedagogical content knowledge (PCK) of biology teachers who participated in a citizen science project involving observation of wild bees and identification of butterflies. In this paper,…

  20. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    Science.gov (United States)

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  1. Mentoring Women in the Biological Sciences: Is Informatics Leading ...

    Indian Academy of Sciences (India)

    Yet mathematics, science, and high technology—the building blocks of informatics—are not typically consid- ... rior scientific skills but also highly ana- lytic modeling and computer science skills? The answer is twofold: ... Training, and Mentoring of Science. Communities.” Pennington, the pri- mary investigator for this project, ...

  2. Relevant Features of Science: Values in Conservation Biology

    Science.gov (United States)

    van Dijk, Esther M.

    2013-01-01

    The development of an understanding of the nature of science is generally assumed to be an important aspect of science communication with respect to the enhancement of scientific literacy. At present, a general characterization of the nature of science is still lacking and probably such a characterization will not be achievable. The overall aim of…

  3. The Next Generation of Science Standards: Implications for Biology Education

    Science.gov (United States)

    Bybee, Rodger W.

    2012-01-01

    The release of A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (NRC, 2012) provides the basis for the next generation of science standards. This article first describes that foundation for the life sciences; it then presents a draft standard for natural selection and evolution. Finally, there is a…

  4. Cell Science and Cell Biology Research at MSFC: Summary

    Science.gov (United States)

    2003-01-01

    The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.

  5. A Thai pre-service teacher's understanding of nature of science in biology teaching

    Science.gov (United States)

    Srisawat, Akkarawat; Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This study was conducted on the effect of understanding and instruction of the nature of science of Ms. Wanida, a pre-service student under science education program in biology, Faculty of Education, Khon Kaen University. Wanida was a teaching practicum student majoring in biology at Khon Kaen University Demonstration School (Modindaeng). She was teaching biology for 38 Grade 10 students. Methodology regarded interpretive paradigm. The study aimed to examine 1) Wanida's understanding of the nature of science, 2) Wanida's instruction of the nature of science, 3 students' understanding of the nature of science from Wanida's instruction, and 4) the effects of Wanida's understanding and instruction of the nature of science on students' understanding of the nature of science from Wanida's instruction. Tools of interpretation included teaching observation, a semi-structured interview, open-ended questionnaire, and an observation record form for the instruction of the nature of science. The data obtained was interpreted, encoded, and classified, using the descriptive statistics. The findings indicated that Wanida held good understanding of the nature of science. She could apply the deficient nature of science approach mostly, followed by the implicit nature of science approach. Unfortunately, she could not show her teaching as explicit nature of science. However, her students' the understanding of the nature of science was good.

  6. Scientific foundation of regulating ionizing radiation: application of metrics for evaluation of regulatory science information.

    Science.gov (United States)

    Moghissi, A Alan; Gerraa, Vikrham Kumar; McBride, Dennis K; Swetnam, Michael

    2014-11-01

    This paper starts by describing the historical evolution of assessment of biologic effects of ionizing radiation leading to the linear non-threshold (LNT) system currently used to regulate exposure to ionizing radiation. The paper describes briefly the concept of Best Available Science (BAS) and Metrics for Evaluation of Scientific Claims (MESC) derived for BAS. It identifies three phases of regulatory science consisting of the initial phase, when the regulators had to develop regulations without having the needed scientific information; the exploratory phase, when relevant tools were developed; and the standard operating phase, when the tools were applied to regulations. Subsequently, an attempt is made to apply the BAS/MESC system to various stages of LNT. This paper then compares the exposure limits imposed by regulatory agencies and also compares them with naturally occurring radiation at several cities. Controversies about LNT are addressed, including judgments of the U.S. National Academies and their French counterpart. The paper concludes that, based on the BAS/MESC system, there is no disagreement between the two academies on the scientific foundation of LNT; instead, the disagreement is based on their judgment or speculation.

  7. Science for Survival: The Modern Synthesis of Evolution and The Biological Sciences Curriculum Study

    Science.gov (United States)

    Green, Lisa Anne

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called "the modern synthesis of evolution." Building primarily on the work of historians Vassiliki Smocovitis and John L. Rudolph, I used the archival papers and published writings of the four architects of the modern synthesis and the four most influential leaders of the BSCS in regards to evolution to investigate how the modern synthetic theory of evolution shaped the BSCS curriculum. The central question was "Why was evolution so important to the BSCS to make it the central theme of the texts?" Important answers to this question had already been offered in the historiography, but it was still not clear why every citizen in the world needed to understand evolution. I found that the emphasis on natural selection in the modern synthesis shifted the focus away from humans as passive participants to the recognition that humans are active agents in their own cultural and biological evolution. This required re-education of the world citizenry, which was accomplished in part by the BSCS textbooks. I also found that BSCS leaders Grobman, Glass, and Muller had serious concerns regarding the effects of nuclear radiation on the human gene pool, and were actively involved in informing th public. Lastly, I found that concerns of 1950s reform eugenicists were addressed in the BSCS textbooks, without mentioning eugenics by name. I suggest that the leaders of the BSCS, especially Bentley Glass and Hermann J. Muller, thought that students needed to understand genetics and evolution to be able to make some of the tough choices they might be called on to make as the dominant species on earth and the next reproductive generation in the nuclear age. This

  8. Changes in regulation at the science and technology agency

    International Nuclear Information System (INIS)

    Hioki, K.

    1998-01-01

    This paper summarizes recent changes in the regulation at the Science and Technology Agency (STA) of Japan. The changes are based on the lessons learned from the series of incidents at the nuclear facilities of Power Reactor and Nuclear Fuel Development Corporation (PNC). It is considered that the safety culture was missing in the organization, which was reflected in the rating of the International Nuclear Event Scale (INES) level of the incidents. The PNC is going to be reorganized in October 1997, and the outline of the reorganization is also presented. (author)

  9. The Impact of Agricultural Science Education on Performance in a Biology Course

    Science.gov (United States)

    Ernest, Byron L.

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.

  10. The regulation of agricultural biotechnology: science shows a better way.

    Science.gov (United States)

    Miller, Henry I

    2010-11-30

    National and international regulation of recombinant DNA-modified, or 'genetically engineered' (also referred to as 'genetically modified' or GM), organisms is unscientific and illogical, a lamentable illustration of the maxim that bad science makes bad law. Instead of regulatory scrutiny that is proportional to risk, the degree of oversight is actually inversely proportional to risk. The current approach to regulation, which captures for case-by-case review organisms to be field tested or commercialized according to the techniques used to construct them rather than their properties, flies in the face of scientific consensus. This approach has been costly in terms of economic losses and human suffering. The poorest of the poor have suffered the most because of hugely inflated development costs of genetically engineered plants and food. A model for regulation of field trials known as the 'Stanford Model' is designed to assess risks of new agricultural introductions - whether or not the organisms are genetically engineered, and independent of the genetic modification techniques employed. It offers a scientific, rational, risk-based basis for field trial regulations. Using this sort of model for regulatory review would not only better protect human health and the environment, but would also permit more expeditious development and more widespread use of new plants and seeds. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. 75 FR 6401 - Medical Devices Regulated by the Center for Biologics Evaluation and Research; Availability of...

    Science.gov (United States)

    2010-02-09

    ... Biologics Evaluation and Research (HFM-17), Food and Drug Administration, suite 200N, 1401 Rockville Pike... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2009-M-0513] Medical Devices Regulated by the Center for Biologics Evaluation and Research; Availability of Summaries...

  12. Science Identity's Influence on Community College Students' Engagement, Persistence, and Performance in Biology

    Science.gov (United States)

    Riccitelli, Melinda

    In the United States (U.S.), student engagement, persistence, and academic performance levels in college science, technology, engineering, and mathematics (STEM) programs have been unsatisfactory over the last decade. Low student engagement, persistence, and academic performance in STEM disciplines have been identified as major obstacles to U.S. economic goals and U.S. science education objectives. The central and salient science identity a college student claims can influence his engagement, persistence, and academic achievement in college science. While science identity studies have been conducted on four-year college populations there is a gap in the literature concerning community college students' science identity and science performance. The purpose of this quantitative correlational study was to examine the relationship between community college students claimed science identities and engagement, persistence, and academic performance. A census sample of 264 community college students enrolled in biology during the summer of 2015 was used to study this relationship. Science identity and engagement levels were calculated using the Science Identity Centrality Scale and the Biology Motivation Questionnaire II, respectively. Persistence and final grade data were collected from institutional and instructor records. Engagement significantly correlated to, r =.534, p = .01, and varied by science identity, p < .001. Percent final grade also varied by science identity (p < .005), but this relationship was weaker (r = .208, p = .01). Results for science identity and engagement and final grade were consistent with the identity literature. Persistence did not vary by science identity in this student sample (chi2 =2.815, p = .421). This result was inconsistent with the literature on science identity and persistence. Quantitative results from this study present a mixed picture of science identity status at the community college level. It is suggested, based on the findings

  13. From darwin to the census of marine life: marine biology as big science.

    Directory of Open Access Journals (Sweden)

    Niki Vermeulen

    Full Text Available With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  14. From darwin to the census of marine life: marine biology as big science.

    Science.gov (United States)

    Vermeulen, Niki

    2013-01-01

    With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  15. The impact of an introductory college-level biology class on biology self-efficacy and attitude towards science

    Science.gov (United States)

    Thomas, Megan Elizabeth

    Self-efficacy theory was first introduced in a seminal article by Albert Bandura in 1977 entitled "Self-efficacy: Toward a unifying theory of behavioral change". Since its original introduction, self-efficacy has been a major focus of academic performance, anxiety, career development, and teacher retention research. Self-efficacy can be defined as the belief an individual possesses about their ability to perform a given task. Bandura proposed that self-efficacy should be measured at the highest level of specificity due to the fact that different people are efficacious in different areas. Interested in students' efficacy toward biology, Ebert-May, Baldwin, & Allred (1997) created and validated a survey to measure students' biology self-efficacy. Their survey was modeled after the guidelines for science literacy, and loaded to three sub-factors; methods of biology, generalization to other science courses, and application of the concepts. As self-efficacy theory has been related to effort expenditure and persistence (Bandura, 1977; 1997), one might think it would have some effect on students' attitudes toward the topic at hand. The current research investigated what changes in biology self-efficacy occurred after an introductory biology course with an inquiry based laboratory learning environment. In addition, changes in students' attitudes towards science were explored and how self-efficacy might affect them.

  16. "Do as I say!" : parenting and the biology of child self-regulation

    NARCIS (Netherlands)

    Kok, Rianne

    2013-01-01

    The development of self-regulation is one of the major challenges of a child’s healthy development. In the current thesis, the contribution and interplay of parental and biological factors in the development of self-regulation in preschoolers are studied in a large population-based cohort, the

  17. Life sciences: Nuclear medicine, radiation biology, medical physics, 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1994-11-01

    The catalogue lists all sales publications of the IAEA dealing with Life Sciences issued during the period 1980-1994. The publications are grouped in the following chapters: Nuclear Medicine (including Radiopharmaceuticals), Radiation Biology and Medical Physics (including Dosimetry)

  18. 76 FR 72724 - Advisory Committee For Biological Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-25

    ... Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230. Type of Meeting: Open. Contact Person: Chuck... research that is the basis for the 21st century bio-economy and the undergraduate and graduate biology...

  19. Proceedings of Twentieth Forum for Biological Sciences : The Fifth congress of biotechnology

    International Nuclear Information System (INIS)

    2009-01-01

    This is a book of abstracts of the oral presentations and posters that were presented during Twentieth Forum for Biological Sciences : The fifth congress of biotechnology that was held in Hammamet from 22 to 25 mars 2009

  20. Building confidence: an exploration of nurses undertaking a postgraduate biological science course.

    Science.gov (United States)

    Van Wissen, Kim; McBride-Henry, Karen

    2010-01-01

    This study aimed to explore the impact of studying biological science at a postgraduate level and how this impacted on nursing practice. The term biological sciences in this research encompasses elements of physiology, genetics, biochemistry and pathophysiology. A qualitative research study was designed, that involved the dissemination of a pre- and post-course semi-structured questionnaire for a biological science course, as part of a Master of Nursing programme at a New Zealand University, thus exploring the impact of undertaking a postgraduate biological sciences course. The responses were analysed into themes, based on interpretive concepts. The primary themes revealed improvement in confidence as: confidence in communication, confidence in linking nursing theoretical knowledge to practice and confidence in clinical nursing knowledge. This study highlights the need to privilege clinically-derived nursing knowledge, and that confidence in this nursing knowledge and clinical practice can be instilled through employing the model of theory-guided practice.

  1. Excel 2016 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical biological and life science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in biological and life sciences courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand biological and life science problems. Practice problems are provided...

  2. Introduction to bioengineering: melding of engineering and biological sciences.

    Science.gov (United States)

    Shoureshi, Rahmat A

    2005-04-01

    Engineering has traditionally focused on the external extensions of organisms, such as transportation systems, high-rise buildings, and entertainment systems. In contrast, bioengineering is concerned with inward processes of biologic organisms. Utilization of engineering principles and techniques in the analysis and solution of problems in medicine and biology is the basis for bioengineering. This article discusses subspecialties in bioengineering and presents examples of projects in this discipline.

  3. Prostaglandins - universal biological regulators in the human body (literature review

    Directory of Open Access Journals (Sweden)

    О. V. Tymoshchuk

    2018-02-01

    Full Text Available Recently, researchers of different industries pay great attention to the problem of prostaglandins. Objective: to study and systematize the basic questions of structure, biological action and metabolism of prostaglandins in the human body and using their analogues in pharmacy through the domestic and foreign literature data analysis. Prostaglandins – biologically active substances which are similar in effect to hormones, but are synthesized in cells of different tissues. Prostaglandins as universal cellular mediators are widely distributed in the body, synthesized in small amounts in almost all tissues, have both local and systemic effects. For each prostaglandin there is a target organ. On chemical structure they are small molecules related to eicosanoids - a group of fat-like substances (lipids. Depending on the chemical structure prostaglandins are divided into series (A, B, C, D, E, F, G, H, I and J and three groups (1–3; type F isomers are to be indicated by additional letters α and β. Prostaglandins have an extremely wide range of physiological effects in the body and have three main functions: supporting, molecular, neurotransmitter. Most prostaglandins interact with specific receptors of plasma membranes, but some prostaglandins (group A can act without receptors. There is no stock of prostaglandins in the body, their life cycle is short, and they are quickly produced in response to biological stimulants exposure, have their effect in extremely small quantity and are rapidly inactivated in the bloodstream. Due to the extremely rapid breakdown of prostaglandins in the body they work near their place of secretion. Preparations of prostaglandins and their derivatives are used in experimental and clinical medicine for abortion and induction of labor, treatment of stomach ulcers, asthma, certain heart diseases, congenital heart defects in newborns, glaucoma, atherosclerosis, rheumatic and neurological diseases, kidney diseases, diabetes

  4. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    Science.gov (United States)

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  5. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    Hennie

    curriculum and the new Life Sciences textbooks that are in accord with the National Curriculum Statement. The analysis .... lems and generate new ideas for improvement. (Castells, 2005). ... Accordingly, the following research questions were.

  6. The contributions of biological science to national development ...

    African Journals Online (AJOL)

    ... and prosperity, and on human physical well being in societies around the world. ... Some science questions have immediate goals, clearly directed towards ... such as TV transmission, power distribution, or computer chip manufacture.

  7. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    Jung, T.

    2000-01-01

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.) [de

  8. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering...

  9. Development of a Biological Science Quantitative Reasoning Exam (BioSQuaRE)

    Science.gov (United States)

    Stanhope, Liz; Ziegler, Laura; Haque, Tabassum; Le, Laura; Vinces, Marcelo; Davis, Gregory K.; Zieffler, Andrew; Brodfuehrer, Peter; Preest, Marion; Belitsky, Jason M.; Umbanhowar, Charles, Jr.; Overvoorde, Paul J.

    2017-01-01

    Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative…

  10. The Relevance of Biological Sciences in the 21st Century | Onyeka ...

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives ... Biological Sciences, as the name implies, is a group of sciences, rather than a ... knowledge is better assessed by the various problems of modern civilization ... in the improvement of food supply and elimination of hereditary diseases.

  11. Taiwan High School Biology Teachers' Acceptance and Understanding of Evolution and the Nature of Science

    Science.gov (United States)

    Chen, Li-Hua

    2015-01-01

    Evolution is the cornerstone of biological sciences, but anti-evolution teaching has become a global controversy since the introduction of evolutionary ideas into the United States high school science curricula in 1914. It is suggested that teachers' attitude toward and acceptance of the theory of evolution will influence their effect of teaching…

  12. Computer Literacy for Life Sciences: Helping the Digital-Era Biology Undergraduates Face Today's Research

    Science.gov (United States)

    Smolinski, Tomasz G.

    2010-01-01

    Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of…

  13. The Use of Ethical Frameworks for Implementing Science as a Human Endeavour in Year 10 Biology

    Science.gov (United States)

    Yap, Siew Fong; Dawson, Vaille

    2014-01-01

    This research focuses on the use of ethical frameworks as a pedagogical model for socio-scientific education in implementing the "Science as a Human Endeavour" (SHE) strand of the Australian Curriculum: Science in a Year 10 biology class in a Christian college in metropolitan Perth, Western Australia. Using a case study approach, a mixed…

  14. Genomic science provides new insights into the biology of forest trees

    Science.gov (United States)

    Andrew Groover

    2015-01-01

    Forest biology is undergoing a fundamental change fostered by the application of genomic science to longstanding questions surrounding the evolution, adaptive traits, development, and environmental interactions of tree species. Genomic science has made major technical leaps in recent years, most notably with the advent of 'next generation sequencing' but...

  15. Investigation of Pre-Service Science Teachers' Academic Self-Efficacy and Academic Motivation toward Biology

    Science.gov (United States)

    Ates, Hüseyin; Saylan, Asli

    2015-01-01

    The purpose of this research was to examine pre-service science teachers' academic motivation and academic self-efficacy toward biology. The sample consisted of 369 pre-service science teachers who enrolled in the faculty of education of two universities in Turkey. Data were collected through Academic Motivation Scale (AMS) (Glynn & Koballa,…

  16. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  17. Interferon Lambda Genetics and Biology in Regulation of Viral Control

    Directory of Open Access Journals (Sweden)

    Emily A. Hemann

    2017-12-01

    Full Text Available Type III interferons, also known as interferon lambdas (IFNλs, are the most recent addition to the IFN family following their discovery in 2003. Initially, IFNλ was demonstrated to induce expression of interferon-stimulated genes and exert antiviral properties in a similar manner to type I IFNs. However, while IFNλ has been described to have largely overlapping expression and function with type I IFNs, it has become increasingly clear that type III IFNs also have distinct functions from type I IFNs. In contrast to type I IFNs, whose receptor is ubiquitously expressed, type III IFNs signal and function largely at barrier epithelial surfaces, such as the respiratory and gastrointestinal tracts, as well as the blood–brain barrier. In further support of unique functions for type III IFNs, single nucleotide polymorphisms in IFNL genes in humans are strongly associated with outcomes to viral infection. These biological linkages have also been more directly supported by studies in mice highlighting roles of IFNλ in promoting antiviral immune responses. In this review, we discuss the current understanding of type III IFNs, and how their functions are similar to, and different from, type I IFN in various immune cell subtypes and viral infections.

  18. Evolving political science. Biological adaptation, rational action, and symbolism.

    Science.gov (United States)

    Tingley, Dustin

    2006-01-01

    Political science, as a discipline, has been reluctant to adopt theories and methodologies developed in fields studying human behavior from an evolutionary standpoint. I ask whether evolutionary concepts are reconcilable with standard political-science theories and whether those concepts help solve puzzles to which these theories classically are applied. I find that evolutionary concepts readily and simultaneously accommodate theories of rational choice, symbolism, interpretation, and acculturation. Moreover, phenomena perennially hard to explain in standard political science become clearer when human interactions are understood in light of natural selection and evolutionary psychology. These phenomena include the political and economic effects of emotion, status, personal attractiveness, and variations in information-processing and decision-making under uncertainty; exemplary is the use of "focal points" in multiple-equilibrium games. I conclude with an overview of recent research by, and ongoing debates among, scholars analyzing politics in evolutionarily sophisticated terms.

  19. Biological Evolution and the History of the Earth Are Foundations of Science

    Science.gov (United States)

    2008-01-01

    AGU affirms the central importance of including scientific theories of Earth history and biological evolution in science education. Within the scientific community, the theory of biological evolution is not controversial, nor have ``alternative explanations'' been found. This is why no competing theories are required by the U.S. National Science Education Standards. Explanations of natural phenomena that appeal to the supernatural or are based on religious doctrine-and therefore cannot be tested through scientific inquiry-are not scientific, and have no place in the science classroom.

  20. An Unprecedented Revolution in Medicinal Chemistry Driven by the Progress of Biological Science.

    Science.gov (United States)

    Chou, Kuo-Chen

    2017-01-01

    The eternal or ultimate goal of medicinal chemistry is to find most effective ways to treat various diseases and extend human beings' life as long as possible. Human being is a biological entity. To realize such an ultimate goal, the inputs or breakthroughs from the advances in biological science are no doubt most important that may even drive medicinal science into a revolution. In this review article, we are to address this from several different angles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. The role of analytical sciences in medical systems biology

    NARCIS (Netherlands)

    Greef, J. van der; Stroobant, P.; Heijden, R. van der

    2004-01-01

    Medical systems biology has generated widespread interest because of its bold conception and exciting potential, but the field is still in its infancy. Although there has been tremendous progress achieved recently in generating, integrating and analysing data in the medical and pharmaceutical field,

  2. Filling the gap between biology and computer science.

    Science.gov (United States)

    Aguilar-Ruiz, Jesús S; Moore, Jason H; Ritchie, Marylyn D

    2008-07-17

    This editorial introduces BioData Mining, a new journal which publishes research articles related to advances in computational methods and techniques for the extraction of useful knowledge from heterogeneous biological data. We outline the aims and scope of the journal, introduce the publishing model and describe the open peer review policy, which fosters interaction within the research community.

  3. Science Academies' Refresher Course in Developmental Biology 16 ...

    Indian Academy of Sciences (India)

    IAS Admin

    The objectives of this Refresher Course are to update the participants about the advances in the field of Developmental Biology; various small animal models used and give hands-on training on some modern biotechnological practices. A variety of teaching methods like lectures, discussion and laboratory work shall ...

  4. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Science.gov (United States)

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg. Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  5. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 3 · Current Issue Volume 23 | Issue 3. March 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  6. Incorporating Environmental Regulation and Litigation in Earth Science Curriculum

    Science.gov (United States)

    Flegal, A. R.

    2004-12-01

    Fundamental knowledge of geological processes is not only needed for effective environmental regulation and litigation, but Earth Science students find that relevance motivating in their studies of those processes. Crustal abundance and redox reactions suddenly become personally meaningful when they are used to account for the presence of high levels of carcinogenic Cr(VI) in the students' drinking water. Similarly, epithermal mercury deposits and the element's speciation gain new importance when they are related to the warning signs on the consumption of fish that the students catch and eat. And even those students that are not motivated by these, and many other, applications of geology find solace in learning that anthropogenic perturbations of the global lead cycle may partially account for their short attention span, lack of interest, and inability to learn the material. Consequently, a number of courses in environmental toxicology and ground water contamination have been developed that are based on (1) case studies in environmental regulation and litigation and (2) active student participation as "expert witnesses" opining on the scientific basis of environmental decisions.

  7. Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.

    Science.gov (United States)

    Lightfoot, J Timothy; DE Geus, Eco J C; Booth, Frank W; Bray, Molly S; DEN Hoed, Marcel; Kaprio, Jaakko; Kelly, Scott A; Pomp, Daniel; Saul, Michael C; Thomis, Martine A; Garland, Theodore; Bouchard, Claude

    2018-04-01

    Physical activity unquestionably maintains and improves health; however, physical activity levels globally are low and not rising despite all the resources devoted to this goal. Attention in both the research literature and the public policy domain has focused on social-behavioral factors; however, a growing body of literature suggests that biological determinants play a significant role in regulating physical activity levels. For instance, physical activity level, measured in various manners, has a genetic component in both humans and nonhuman animal models. This consensus article, developed as a result of an American College of Sports Medicine-sponsored round table, provides a brief review of the theoretical concepts and existing literature that supports a significant role of genetic and other biological factors in the regulation of physical activity. Future research on physical activity regulation should incorporate genetics and other biological determinants of physical activity instead of a sole reliance on social and other environmental determinants.

  8. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  9. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  10. Thai in-service teacher understanding of nature of science in biology teaching: Case of Mali

    Science.gov (United States)

    Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This paper aimed to investigate the existing ideas of nature of science (NOS) teaching in Thailand biology classroom. The study reported the existing ideas of nature of science (NOS) teaching of one biology teacher Mrs. Mali who had been teaching for 6 years at in a school in Khon Kaen city. Methodology regarded interpretive paradigm. Tools of interpretation included 2 months of classroom observation, interviewing, and questionnaire of NOS. The findings revealed Mali held good understanding of the nature of science in the aspect of the use of evidence, the aspect of knowledge inquiry through different observation and deduction, the aspect of creativity and imagination influencing science knowledge inquiry, and the aspect of changeable scientific knowledge. Her biology teaching indicated that she used both the deficient nature of science approach and the implicit nature of science approach. The implicit nature of science approach was applied mostly in 7 periods and only 2 periods were arranged using the deficient nature of science approach. The paper has implication for professional development and pre-service program on NOS teaching in Thailand.

  11. Proceedings of the DAE-BRNS life sciences symposium on current trends in biology and medicine

    International Nuclear Information System (INIS)

    2010-01-01

    This year's Life Sciences Symposium is focused on Health Sciences. It will provide an interactive platform for deliberations on current developments in basic research on cancer, diabetes, infectious diseases, reproduction, stem cells and degenerative diseases. Several aspects like metabolism, use of biophysical techniques, detection methods, micro RNA based regulation, assisted reproductive technologies etc. are covered. Papers relevant to INIS are indexed separately

  12. Science literacy about biological influence of the radioactivity

    International Nuclear Information System (INIS)

    Sano, Kazumi

    2012-01-01

    After the accident of the Fukushima Daiichi Nuclear Power Plant, people needed to learn the scientific knowledge including technical terms and the numerical value about radioactive material and the radioactivity. Most of us learn them from the media such as TV, newspaper or weekly magazine and so on. However, scientifically wrong stories have been spread by magazines. We think that it is one of the reasons why risk communication does not go well and some people believe such false information. In this talk, I introduce false information about health or biological influences found in the Internet and a magazine, and discuss the need of the scientific literacy. (author)

  13. Biology, politics, and the emerging science of human nature.

    Science.gov (United States)

    Fowler, James H; Schreiber, Darren

    2008-11-07

    In the past 50 years, biologists have learned a tremendous amount about human brain function and its genetic basis. At the same time, political scientists have been intensively studying the effect of the social and institutional environment on mass political attitudes and behaviors. However, these separate fields of inquiry are subject to inherent limitations that may only be resolved through collaboration across disciplines. We describe recent advances and argue that biologists and political scientists must work together to advance a new science of human nature.

  14. Qualities of effective secondary science teachers: Perspectives of university biology students

    Science.gov (United States)

    McCall, Madelon J.

    This research was an attempt to hear the student voice concerning secondary science teacher effectiveness and to share that voice with those who impact the educational process. It was a snapshot of university freshmen biology students' opinions of the qualities of effective secondary science teachers based on their high school science experiences. The purpose of this study was to compile a list of effective secondary science teacher qualities as determined through a purposeful sampling of university second semester biology students and determine the role of the secondary science teacher in promoting interest and achievement in science, as well as the teacher's influence on a students' choice of a science career. The research was a mixed methods design using both quantitative and qualitative data obtained through the use of a 24 question electronic survey. There were 125 participants who provided information concerning their high school science teachers. Respondents provided information concerning the qualities of effective secondary science teachers and influences on the students' present career choice. The quantitative data was used to construct a hierarchy of qualities of effective secondary science teachers, divided into personal, professional, and classroom management qualities. The qualitative data was used to examine individual student responses to questions concerning secondary science teacher effectiveness and student career choice. The results of the research indicated that students highly value teachers who are both passionate about the subject taught and passionate about their students. High school science students prefer teachers who teach science in a way that is both interesting and relevant to the student. It was determined that the greatest influence on a secondary student's career choice came from family members and not from teachers. The secondary teacher's role was to recognize the student's interest in the career and provide encouragement

  15. Systems biology studies of Aspergilli - from sequence to science

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam

    2008-01-01

    sequenced Aspergilli are a known human pathogen (Aspergillus fumigatus), a model organism for cellular mechanisms (Aspergillus nidulans) and two industrial workhorses (Aspergillus niger and Aspergillus oryzae). In the presented work, new analytical and computational tools have been designed and a systems......-evolved and not as a haphazardly compiled list of parts. This has been made possible by the socalled genomic revolution — the sequencing of the genomic DNA of a rapidly increasing number of organisms — and the “omic” tecniques following in the wake of the genome projects: metabolomic, proteomic, and transcriptomic to mention...... a few. The recent publication of the genome sequences of several filamentous fungi of the Aspergillus species (Aspergilli), has, along with the accumulation of years of reductionist studies, been a catalyst for the application of systems biology to this interesting group of fungi. Among the genome...

  16. Biological warfare warriors, secrecy and pure science in the Cold War: how to understand dialogue and the classifications of science.

    Science.gov (United States)

    Bud, Robert

    2014-01-01

    This paper uses a case study from the Cold War to reflect on the meaning at the time of the term 'Pure Science'. In 1961, four senior scientists from Britain's biological warfare centre at Porton Down visited Moscow both attending an International Congress and visiting Russian microbiological and biochemical laboratories. The reports of the British scientists in talking about a limited range of topics encountered in the Soviet Union expressed qualities of openness, sociologists of the time associated with pure science. The paper reflects on the discourses of "Pure Science", secrecy and security in the Cold War. Using Bakhtin's approach, I suggest the cordial communication between scientists from opposing sides can be seen in terms of the performance, or speaking, of one language among several at their disposal. Pure science was the language they were allowed to share outside their institutions, and indeed political blocs.

  17. Semester-Long Inquiry-Based Molecular Biology Laboratory: Transcriptional Regulation in Yeast

    Science.gov (United States)

    Oelkers, Peter M.

    2017-01-01

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in "Saccharomyces cerevisiae." Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a…

  18. Biological mechanisms beyond network analysis via mathematical modeling. Comment on "Network science of biological systems at different scales: A review" by Marko Gosak et al.

    Science.gov (United States)

    Pedersen, Morten Gram

    2018-03-01

    Methods from network theory are increasingly used in research spanning from engineering and computer science to psychology and the social sciences. In this issue, Gosak et al. [1] provide a thorough review of network science applications to biological systems ranging from the subcellular world via neuroscience to ecosystems, with special attention to the insulin-secreting beta-cells in pancreatic islets.

  19. Science Café Course: An Innovative Means of Improving Communication Skills of Undergraduate Biology Majors

    Directory of Open Access Journals (Sweden)

    Anna Goldina

    2013-12-01

    Full Text Available To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course, called Science Café. In this course undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Cafe course emphasizes development of science communication skills early, at the undergraduate level and empowers students to use their science knowledge in every day interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.

  20. How Should I Study for the Exam? Self-Regulated Learning Strategies and Achievement in Introductory Biology.

    Science.gov (United States)

    Sebesta, Amanda J; Bray Speth, Elena

    2017-01-01

    In college introductory science courses, students are challenged with mastering large amounts of disciplinary content while developing as autonomous and effective learners. Self-regulated learning (SRL) is the process of setting learning goals, monitoring progress toward them, and applying appropriate study strategies. SRL characterizes successful, "expert" learners, and develops with time and practice. In a large, undergraduate introductory biology course, we investigated: 1) what SRL strategies students reported using the most when studying for exams, 2) which strategies were associated with higher achievement and with grade improvement on exams, and 3) what study approaches students proposed to use for future exams. Higher-achieving students, and students whose exam grades improved in the first half of the semester, reported using specific cognitive and metacognitive strategies significantly more frequently than their lower-achieving peers. Lower-achieving students more frequently reported that they did not implement their planned strategies or, if they did, still did not improve their outcomes. These results suggest that many students entering introductory biology have limited knowledge of SRL strategies and/or limited ability to implement them, which can impact their achievement. Course-specific interventions that promote SRL development should be considered as integral pedagogical tools, aimed at fostering development of students' lifelong learning skills. © 2017 A. J. Sebesta and E. Bray Speth. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Controversy in Biology Classrooms—Citizen Science Approaches to Evolution and Applications to Climate Change Discussions

    Directory of Open Access Journals (Sweden)

    Rachel A. Yoho

    2015-11-01

    Full Text Available The biological sciences encompass topics considered controversial by the American public, such as evolution and climate change. We believe that the development of climate change education in the biology classroom is better informed by an understanding of the history of the teaching of evolution. A common goal for science educators should be to engender a greater respect for and appreciation of science among students while teaching specific content knowledge. Citizen science has emerged as a viable yet underdeveloped method for engaging students of all ages in key scientific issues that impact society through authentic data-driven scientific research. Where successful, citizen science may open avenues of communication and engagement with the scientific process that would otherwise be more difficult to achieve. Citizen science projects demonstrate versatility in education and the ability to test hypotheses by collecting large amounts of often publishable data. We find a great possibility for science education research in the incorporation of citizen science projects in curriculum, especially with respect to “hot topics” of socioscientific debate based on our review of the findings of other authors.

  2. Calculus, Biology and Medicine: A Case Study in Quantitative Literacy for Science Students

    Directory of Open Access Journals (Sweden)

    Kim Rheinlander

    2011-01-01

    Full Text Available This paper describes a course designed to enhance the numeracy of biology and pre-medical students. The course introduces students with the background of one semester of calculus to systems of nonlinear ordinary differential equations as they appear in the mathematical biology literature. Evaluation of the course showed increased enjoyment and confidence in doing mathematics, and an increased appreciation of the utility of mathematics to science. Students who complete this course are better able to read the research literature in mathematical biology and carry out research problems of their own.

  3. Modelling, abstraction, and computation in systems biology: A view from computer science.

    Science.gov (United States)

    Melham, Tom

    2013-04-01

    Systems biology is centrally engaged with computational modelling across multiple scales and at many levels of abstraction. Formal modelling, precise and formalised abstraction relationships, and computation also lie at the heart of computer science--and over the past decade a growing number of computer scientists have been bringing their discipline's core intellectual and computational tools to bear on biology in fascinating new ways. This paper explores some of the apparent points of contact between the two fields, in the context of a multi-disciplinary discussion on conceptual foundations of systems biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology.

    Science.gov (United States)

    Blount, Benjamin A; Weenink, Tim; Vasylechko, Serge; Ellis, Tom

    2012-01-01

    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex "multi-wire" logic functions.

  5. Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology

    Science.gov (United States)

    Blount, Benjamin A.; Weenink, Tim; Vasylechko, Serge; Ellis, Tom

    2012-01-01

    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex “multi-wire” logic functions. PMID:22442681

  6. Education Catching up with Science: Preparing Students for Three-Dimensional Literacy in Cell Biology

    Science.gov (United States)

    Kramer, IJsbrand M.; Dahmani, Hassen-Reda; Delouche, Pamina; Bidabe, Marissa; Schneeberger, Patricia

    2012-01-01

    The large number of experimentally determined molecular structures has led to the development of a new semiotic system in the life sciences, with increasing use of accurate molecular representations. To determine how this change impacts students' learning, we incorporated image tests into our introductory cell biology course. Groups of students…

  7. Science and Biology Assessment in Hong Kong--Progress and Developments

    Science.gov (United States)

    Cheng, May Hung; Cheung, Wing Ming Francis

    2005-01-01

    A paper was published in JBE in 2001 which examined the background of the education reform launched in 2000 in Hong Kong, and reviewed existing practices as well as beliefs in science and biology assessment among secondary teachers in Hong Kong. The direction of the reform was to take the emphasis away from public examinations as the sole…

  8. Learning Achievement Packages in Sciences-Biology: Cell Theory, Mitosis, Magnification, Wounds.

    Science.gov (United States)

    Solis, Juan D.

    This publication presents four science curriculum units designed to meet the learning problems of students with special language handicaps. The materials are written in both English and Spanish, and deal with topics in biology suitable for students in grades 7 through 11. All four units were classroom tested during 1970-1972 in the Calexico…

  9. Reducing Unintentional Plagiarism amongst International Students in the Biological Sciences: An Embedded Academic Writing Development Programme

    Science.gov (United States)

    Divan, Aysha; Bowman, Marion; Seabourne, Anna

    2015-01-01

    There is general agreement in the literature that international students are more likely to plagiarise compared to their native speaker peers and, in many instances, plagiarism is unintentional. In this article we describe the effectiveness of an academic writing development programme embedded into a Biological Sciences Taught Masters course…

  10. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  11. Advancing the science of forest hydrology A challenge to agricultural and biological engineers

    Science.gov (United States)

    Devendra Amatya; Wayne Skaggs; Carl Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has originated largely from forested lands, which have experienced dramatic declines over the...

  12. Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins.

    Science.gov (United States)

    Sakai, Miho; Sakamoto, Tomoaki; Saito, Tamio; Matsuoka, Makoto; Tanaka, Hiroshi; Kobayashi, Masatomo

    2003-04-01

    We have cloned two genes for gibberellin (GA) 2-oxidase from rice ( Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA(1) to GA(8) and GA(20) to GA(29)-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice.

  13. From bioavailability science to regulation of organic chemicals

    NARCIS (Netherlands)

    Ortega-Calvo, J.J.; Harmsen, J.; Parsons, J.R.; Semple, K.T.; Aitkin, M.D.; Ajao, C.; Eadsforth, C.; Galay-Burgos, M.; Naidu, R.; Oliver, R.; Peijnenburg, W.J.G.M.; Römbke, J.; Streck, G.; Versonnen, B.

    2015-01-01

    The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently

  14. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  15. Regulation of Spatiotemporal Patterns by Biological Variability: General Principles and Applications to Dictyostelium discoideum.

    Directory of Open Access Journals (Sweden)

    Miriam Grace

    2015-11-01

    Full Text Available Spatiotemporal patterns often emerge from local interactions in a self-organizing fashion. In biology, the resulting patterns are also subject to the influence of the systematic differences between the system's constituents (biological variability. This regulation of spatiotemporal patterns by biological variability is the topic of our review. We discuss several examples of correlations between cell properties and the self-organized spatiotemporal patterns, together with their relevance for biology. Our guiding, illustrative example will be spiral waves of cAMP in a colony of Dictyostelium discoideum cells. Analogous processes take place in diverse situations (such as cardiac tissue, where spiral waves occur in potentially fatal ventricular fibrillation so a deeper understanding of this additional layer of self-organized pattern formation would be beneficial to a wide range of applications. One of the most striking differences between pattern-forming systems in physics or chemistry and those in biology is the potential importance of variability. In the former, system components are essentially identical with random fluctuations determining the details of the self-organization process and the resulting patterns. In biology, due to variability, the properties of potentially very few cells can have a driving influence on the resulting asymptotic collective state of the colony. Variability is one means of implementing a few-element control on the collective mode. Regulatory architectures, parameters of signaling cascades, and properties of structure formation processes can be "reverse-engineered" from observed spatiotemporal patterns, as different types of regulation and forms of interactions between the constituents can lead to markedly different correlations. The power of this biology-inspired view of pattern formation lies in building a bridge between two scales: the patterns as a collective state of a very large number of cells on the one hand

  16. Systems biology for molecular life sciences and its impact in biomedicine.

    Science.gov (United States)

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  17. Air quality in natural areas: Interface between the public, science and regulation

    International Nuclear Information System (INIS)

    Percy, K.E.; Karnosky, D.F.

    2007-01-01

    Natural areas are important interfaces between air quality, the public, science and regulation. In the United States and Canada, national parks received over 315 million visits during 2004. Many natural areas have been experiencing decreased visibility, increased ozone (O 3 ) levels and elevated nitrogen deposition. Ozone is the most pervasive air pollutant in North American natural areas. There is an extensive scientific literature on O 3 exposure-tree response in chambered environments and, lately, free-air exposure systems. Yet, less is known about O 3 impacts on natural terrestrial ecosystems. To advance scientifically defensible O 3 risk assessment for natural forest areas, species-level measurement endpoints must be socially, economically and ecologically relevant. Exposure-based indices, based on appropriate final endpoints, present an underused opportunity to meet this need. Exposure-plant indices should have a high degree of statistical significance, have high goodness of fit, be biologically plausible and include confidence intervals to define uncertainty. They must be supported by exposure-response functions and be easy to use within an air quality regulation context. Ozone exposure-response indices developed within an ambient air context have great potential for improving risk assessment in natural forest areas and enhancing scientific literacy. - Appropriate endpoints and exposure-response indices can improve assessment of air pollutant risk to forests in natural areas

  18. Air quality in natural areas: Interface between the public, science and regulation

    Energy Technology Data Exchange (ETDEWEB)

    Percy, K.E. [Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre, 1350 Regent Street, Fredericton, New Brunswick E3B 5P7 (Canada)], E-mail: kpercy@nrcan.gc.ca; Karnosky, D.F. [School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2007-10-15

    Natural areas are important interfaces between air quality, the public, science and regulation. In the United States and Canada, national parks received over 315 million visits during 2004. Many natural areas have been experiencing decreased visibility, increased ozone (O{sub 3}) levels and elevated nitrogen deposition. Ozone is the most pervasive air pollutant in North American natural areas. There is an extensive scientific literature on O{sub 3} exposure-tree response in chambered environments and, lately, free-air exposure systems. Yet, less is known about O{sub 3} impacts on natural terrestrial ecosystems. To advance scientifically defensible O{sub 3} risk assessment for natural forest areas, species-level measurement endpoints must be socially, economically and ecologically relevant. Exposure-based indices, based on appropriate final endpoints, present an underused opportunity to meet this need. Exposure-plant indices should have a high degree of statistical significance, have high goodness of fit, be biologically plausible and include confidence intervals to define uncertainty. They must be supported by exposure-response functions and be easy to use within an air quality regulation context. Ozone exposure-response indices developed within an ambient air context have great potential for improving risk assessment in natural forest areas and enhancing scientific literacy. - Appropriate endpoints and exposure-response indices can improve assessment of air pollutant risk to forests in natural areas.

  19. Students' Regulation of Their Emotions in a Science Classroom

    Science.gov (United States)

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  20. Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences

    Science.gov (United States)

    Hoehler, Tori M.

    2010-01-01

    The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in a fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space sciences by the challenge of mounting a well-constrained yet sufficiently adaptive and inclusive search for life beyond Earth. Our understanding of the life-planet interaction is still, however, largely empirical. A variety of approaches seek to move from empirical to mechanistic descriptions. One approach focuses on the relationship between biology and energy, which is at once universal (all life requires energy), unique (life manages energy flow in a fashion not seen in abiotic systems), and amenable to characterization and quantification in thermodynamic terms. Simultaneously, a focus on energy flow addresses a critical point of interface between life and its geological, chemical, and physical environment. Characterizing and quantifying this relationship for life on Earth will support the development of integrative and predictive models for biology-environment dynamics. Understanding this relationship at its most fundamental level holds potential for developing concepts of habitability and biosignatures that can optimize astrobiological exploration strategies and are extensible to all life.

  1. Ethical and philosophical consideration of the dual-use dilemma in the biological sciences.

    Science.gov (United States)

    Miller, Seumas; Selgelid, Michael J

    2007-12-01

    The dual-use dilemma arises in the context of research in the biological and other sciences as a consequence of the fact that one and the same piece of scientific research sometimes has the potential to be used for bad as well as good purposes. It is an ethical dilemma since it is about promoting good in the context of the potential for also causing harm, e.g., the promotion of health in the context of providing the wherewithal for the killing of innocents. It is an ethical dilemma for the researcher because of the potential actions of others, e.g., malevolent non-researchers who might steal dangerous biological agents, or make use of the original researcher's work. And it is a dilemma for governments concerned with the security of their citizens, as well as their health. In this article we construct a taxonomy of types of "experiments of concern" in the biological sciences, and thereby map the terrain of ethical risk. We then provide a series of analyses of the ethical problems and considerations at issue in the dual-use dilemma, including the impermissibility of certain kinds of research and possible restrictions on dissemination of research results given the risks to health and security. Finally, we explore the main available institutional responses to some of the specific ethical problems posed by the dual-use dilemma in the biological sciences.

  2. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  3. Analogical reflection as a source for the science of life: Kant and the possibility of the biological sciences.

    Science.gov (United States)

    Nassar, Dalia

    2016-08-01

    In contrast to the previously widespread view that Kant's work was largely in dialogue with the physical sciences, recent scholarship has highlighted Kant's interest in and contributions to the life sciences. Scholars are now investigating the extent to which Kant appealed to and incorporated insights from the life sciences and considering the ways he may have contributed to a new conception of living beings. The scholarship remains, however, divided in its interest: historians of science are concerned with the content of Kant's claims, and the ways in which they may or may not have contributed to the emerging science of life, while historians of philosophy focus on the systematic justifications for Kant's claims, e.g., the methodological and theoretical underpinnings of Kant's statement that living beings are mechanically inexplicable. My aim in this paper is to bring together these two strands of scholarship into dialogue by showing how Kant's methodological concerns (specifically, his notion of reflective judgment) contributed to his conception of living beings and to the ontological concern with life as a distinctive object of study. I argue that although Kant's explicit statement was that biology could not be a science, his implicit and more fundamental claim was that the study of living beings necessitates a distinctive mode of thought, a mode that is essentially analogical. I consider the implications of this view, and argue that it is by developing a new methodology for grasping organized beings that Kant makes his most important contribution to the new science of life. Copyright © 2016. Published by Elsevier Ltd.

  4. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics.

    Science.gov (United States)

    Wachsmuth, Lucas P; Runyon, Christopher R; Drake, John M; Dolan, Erin L

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students' emotional satisfaction with math. We then compared life science and non-life science majors and found that major had a small to moderate relationship with students' responses. Gender also had a small relationship with students' responses, while students' race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups-students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates' emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors' attitudes toward math. © 2017 L.P. Wachsmuth et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  6. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  7. Developing "Green" Business Plans: Using Entrepreneurship to Teach Science to Business Administration Majors and Business to Biology Majors

    Science.gov (United States)

    Letovsky, Robert; Banschbach, Valerie S.

    2011-01-01

    Biology majors team with business administration majors to develop proposals for "green" enterprise for a business plan competition. The course begins with a series of student presentations so that science students learn about the fundamentals of business, and business students learn about environmental biology. Then mixed biology-business student…

  8. MP-GeneticSynth: inferring biological network regulations from time series.

    Science.gov (United States)

    Castellini, Alberto; Paltrinieri, Daniele; Manca, Vincenzo

    2015-03-01

    MP-GeneticSynth is a Java tool for discovering the logic and regulation mechanisms responsible for observed biological dynamics in terms of finite difference recurrent equations. The software makes use of: (i) metabolic P systems as a modeling framework, (ii) an evolutionary approach to discover flux regulation functions as linear combinations of given primitive functions, (iii) a suitable reformulation of the least squares method to estimate function parameters considering simultaneously all the reactions involved in complex dynamics. The tool is available as a plugin for the virtual laboratory MetaPlab. It has graphical and interactive interfaces for data preparation, a priori knowledge integration, and flux regulator analysis. Availability and implementation: Source code, binaries, documentation (including quick start guide and videos) and case studies are freely available at http://mplab.sci.univr.it/plugins/mpgs/index.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. [Undergraduate and postgraduate studies in the biological sciences in Chile (1985)].

    Science.gov (United States)

    Niemeyer, H

    1986-01-01

    A study group of scientists was convened by the Sociedad de Biología de Chile (Biological Society of Chile) and the Regional Program for Graduate Training in Biological Sciences, PNUD-Unesco, RLA 78/024, to assess undergraduate and graduate studies in life sciences in Chile. The group presented this report at the 28th Annual Meeting of the Society. Discussion centered on the features that should characterize the studies leading to the academic degrees of Licenciado (Licenciate), Magíster (Master) and Doctor (Ph. D) in Sciences, and also on the qualifications that the universities should satisfy in order to grant them. After analyzing the present situation of undergraduate and graduate studies in Biological Sciences in Chilean universities, the group made the following main suggestions: 1. It is recommended that Chilean universities agree on a 4-year plan for the Licenciado degree, without the requirement of a thesis. The importance of providing the students with good laboratory exercises and field experience and with the opportunity to perform short research projects is stressed. In addition, a sound theoretical training on mathematics, physics and chemistry in the education of a modern Biologist is important. Licenciate studies ought to be the basis for professional careers and the universities should offer to the Licenciados free access to their professional schools. 2. It is considered appropriate for Chile and its universities to develop graduate programs in those disciplines that have reached a level of excellence. To accomplish this aim, adequate finance of the universities is necessary to permit them to provide the essential facilities for doing research, and to create a wide system of fellowships for graduate students. Direct government support for research and graduate student fellowships is requested. 3. Research experience of the kind needed for the preparation of a doctoral thesis is recommended as the academic level appropriate for those engaged in

  10. Ted Hall and the science of biological microprobe X-ray analysis: a historical perspective of methodology and biological dividends.

    Science.gov (United States)

    Gupta, B L

    1991-06-01

    This review surveys the emergence of electron probe X-ray microanalysis as a quantitative method for measuring the chemical elements in situ. The extension of the method to the biological sciences under the influence of Ted Hall is reviewed. Some classical experiments by Hall and his colleagues in Cambridge, UK, previously unpublished, are described; as are some of the earliest quantitative results from the cryo-sections obtained in Cambridge and elsewhere. The progress of the methodology is critically evaluated from the earliest starts to the present state of the art. Particular attention has been focused on the application of the method in providing fresh insights into the role of ions in cell and tissue physiology and pathology. A comprehensive list of references is included for a further pursuit of the topics by the interested reader.

  11. Towards a cyberinfrastructure for the biological sciences: progress, visions and challenges.

    Science.gov (United States)

    Stein, Lincoln D

    2008-09-01

    Biology is an information-driven science. Large-scale data sets from genomics, physiology, population genetics and imaging are driving research at a dizzying rate. Simultaneously, interdisciplinary collaborations among experimental biologists, theorists, statisticians and computer scientists have become the key to making effective use of these data sets. However, too many biologists have trouble accessing and using these electronic data sets and tools effectively. A 'cyberinfrastructure' is a combination of databases, network protocols and computational services that brings people, information and computational tools together to perform science in this information-driven world. This article reviews the components of a biological cyberinfrastructure, discusses current and pending implementations, and notes the many challenges that lie ahead.

  12. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  13. International institute for collaborative cell biology and biochemistry--history and memoirs from an international network for biological sciences.

    Science.gov (United States)

    Cameron, L C

    2013-01-01

    I was invited to write this essay on the occasion of my selection as the recipient of the 2012 Bruce Alberts Award for Excellence in Science Education from the American Society for Cell Biology (ASCB). Receiving this award is an enormous honor. When I read the email announcement for the first time, it was more than a surprise to me, it was unbelievable. I joined ASCB in 1996, when I presented a poster and received a travel award. Since then, I have attended almost every ASCB meeting. I will try to use this essay to share with readers one of the best experiences in my life. Because this is an essay, I take the liberty of mixing some of my thoughts with data in a way that it not usual in scientific writing. I hope that this sacrifice of the format will achieve the goal of conveying what I have learned over the past 20 yr, during which time a group of colleagues and friends created a nexus of knowledge and wisdom. We have worked together to build a network capable of sharing and inspiring science all over the world.

  14. International Institute for Collaborative Cell Biology and Biochemistry—History and Memoirs from an International Network for Biological Sciences

    Science.gov (United States)

    Cameron, L. C.

    2013-01-01

    I was invited to write this essay on the occasion of my selection as the recipient of the 2012 Bruce Alberts Award for Excellence in Science Education from the American Society for Cell Biology (ASCB). Receiving this award is an enormous honor. When I read the email announcement for the first time, it was more than a surprise to me, it was unbelievable. I joined ASCB in 1996, when I presented a poster and received a travel award. Since then, I have attended almost every ASCB meeting. I will try to use this essay to share with readers one of the best experiences in my life. Because this is an essay, I take the liberty of mixing some of my thoughts with data in a way that it not usual in scientific writing. I hope that this sacrifice of the format will achieve the goal of conveying what I have learned over the past 20 yr, during which time a group of colleagues and friends created a nexus of knowledge and wisdom. We have worked together to build a network capable of sharing and inspiring science all over the world. PMID:24006381

  15. Semester-long inquiry-based molecular biology laboratory: Transcriptional regulation in yeast.

    Science.gov (United States)

    Oelkers, Peter M

    2017-03-04

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in Saccharomyces cerevisiae. Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a cell process and how three genes that encode for proteins involved in that process are transcriptionally regulated in response to changing environmental conditions. Planning includes designing oligonucleotides to amplify the putative promoters of the three genes of interest. After the PCR, each product is cloned proximal to β-galactosidase in a yeast reporter plasmid. Techniques used include agarose electrophoresis, extraction of DNA from agarose, plasmid purification from bacteria, restriction digestion, ligation, and bacterial transformation. This promoter/reporter plasmid is then transformed into yeast. Transformed yeast are cultured in conditions prescribed in the experimental design, lysed and β-galactosidase activity is measured. The course provides an independent research experience in a group setting. Notebooks are maintained on-line with regular feedback. Projects culminate with the presentation of a poster worth 60% of the grade. Over the last three years, about 65% of students met expectations for experimental design, data acquisition, and analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):145-151, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  16. Dialectics of nature: Temporal and spatial regulation in material sciences

    Institute of Scientific and Technical Information of China (English)

    Jianlong Xia; Lei Jiang

    2017-01-01

    The cooperative interaction distance measure has been proposed as a novel law pertaining to dialectics of nature,and has been extensively carried out in the design of functional nanomaterials.However,the temporal and spatial dimensions are akin to yin and yang,and thus temporal regulation needs to be accounted for when implementing the above-mentioned principle.Here,we summarize recent advances in temporally and spatially regulated materials and devices.We showcase the temporal regulation of organic semiconductors for organic photovoltaics (OPVs) using the example of exciton lifetime manipulation.As an example of spatial regulation,we consider the distribution of charge carriers in core-shell quantum dot (QD) nanocrystals for modulating their optical properties.Long exciton lifetime can in principle increase the exciton diffussion length,which is desiable for high-efficiency large-area OPV devices.Spatially regulated QDs are highly valuable emitters for light-emitting applications.We aim to show that cooperative spatio-temporal regulation of nanomaterils is of vital importance to the development of functional devices.

  17. Local Ecological Knowledge and Biological Conservation: Post-normal Science as an Intercultural Field

    Directory of Open Access Journals (Sweden)

    Jorje Ignacio Zalles

    2017-09-01

    Full Text Available From a natural sciences perspective, efforts directed at the conservation of biodiversity are based upon what is known as conservation biology. Given its epistemological assumptions, conservation biology faces obstacles in the incorporation of wisdom originating in local ecological knowledge, that which a local population has gained about the local environment which it is surrounded by and due to its direct contact with this local environment, instead of the result of a product of a positivist scientific inquiry. Post-normal science has emerged in recent decades as an alternative for public management that aims to complement the search for knowledge by means of empirical approaches through the inclusion of understandings based on the everyday experiences and the subjective interpretation of natural phenomena, transcending the compartmentalization associated with scientific traditions born out of modernity. This article discusses the integration of local ecological knowledge and conservation biology from the perspective of post normal science, illustrating different forms of intercultural communication that would make the requisite dialogue of knowledges possible.

  18. The Use of Didactic Resources as a Strategy in Sciences and Biology Teaching

    Directory of Open Access Journals (Sweden)

    Mario Marcos Lopes

    2013-06-01

    Full Text Available The teaching of Science and Biology at school is recent, and has been practiced according to the different educational proposals, that have been developed along the last decades. The LDB (Lei nº 9.394, December, 20, 1996 proposes a pedagogical project that goes beyond the blackboard, chalk and teacher's talk in order to better prepare the students for the challenges of the labor market. Thus, this paper aims at contributing to the discussion on the teaching practice and teaching resources that can help the teaching and learning process, especially in the disciplines of Science and Biology. Based on a qualitative approach, this research aims at contributing to the construction of new knowledge that can be generated from a careful and critical look at the documentary sources. Finally, the great challenge of the educator is to make the teaching of Science and Biology pleasurable and exciting, being able to develop in students the scientific knowledge and the taste for these school subjects.

  19. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    Science.gov (United States)

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  1. Modeling biological problems in computer science: a case study in genome assembly.

    Science.gov (United States)

    Medvedev, Paul

    2018-01-30

    As computer scientists working in bioinformatics/computational biology, we often face the challenge of coming up with an algorithm to answer a biological question. This occurs in many areas, such as variant calling, alignment and assembly. In this tutorial, we use the example of the genome assembly problem to demonstrate how to go from a question in the biological realm to a solution in the computer science realm. We show the modeling process step-by-step, including all the intermediate failed attempts. Please note this is not an introduction to how genome assembly algorithms work and, if treated as such, would be incomplete and unnecessarily long-winded. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Examining Middle School Science Student Self-Regulated Learning in a Hypermedia Learning Environment through Microanalysis

    Science.gov (United States)

    Mandell, Brian E.

    The purpose of the present embedded mixed method study was to examine the self-regulatory processes used by high, average, and low achieving seventh grade students as they learned about a complex science topic from a hypermedia learning environment. Thirty participants were sampled. Participants were administered a number of measures to assess their achievement and self-efficacy. In addition, a microanalytic methodology, grounded in Zimmerman's cyclical model of self-regulated learning, was used to assess student self-regulated learning. It was hypothesized that there would be modest positive correlations between Zimmerman's three phases of self-regulated learning, that high achieving science students would deploy more self-regulatory subprocesses than average and low achieving science students, that high achieving science students would have higher self-efficacy beliefs to engage in self-regulated learning than average and low achieving science students, and that low achieving science students would over-estimate their self-efficacy for performance beliefs, average achieving science students would slightly overestimate their self-efficacy for performance beliefs, and high achieving science students would under-estimate their self-efficacy for performance beliefs. All hypotheses were supported except for the high achieving science students who under-estimated their self-efficacy for performance beliefs on the Declarative Knowledge Measure and slightly overestimated their self-efficacy for performance beliefs on the Conceptual Knowledge Measure. Finally, all measures of self-regulated learning were combined and entered into a regression formula to predict the students' scores on the two science tests, and it was revealed that the combined measure predicted 91% of the variance on the Declarative Knowledge Measure and 92% of the variance on the Conceptual Knowledge Measure. This study adds hypermedia learning environments to the contexts that the microanalytic

  4. [Problems of world outlook and methodology of science integration in biological studies].

    Science.gov (United States)

    Khododova, Iu D

    1981-01-01

    Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.

  5. Practicing the triad teaching-research- extension in supervised internship of licentiateship in biological sciences

    Directory of Open Access Journals (Sweden)

    Lilliane Miranda Freitas

    2012-06-01

    Full Text Available In this paper we report an educational experience based on the triad teaching-research-extension occurred in the supervised internship in licentiateship in Biological Sciences. In this experiment, the students made a transposition of the scientific knowledge produced in their course conclusion work to the knowledge of basic education curriculum. We analyze in this article the impressions of undergraduates after completion of pedagogical actions. We discuss, based on the reports, how the knowledge that is constructed and reconstructed in academic research can contribute directly to the improvement of the science education quality through science literacy and also in teacher training of undergraduates, through the reflection on their own practice. Therefore, we consider that, with the practice of the inseparability of teaching-research-extension, there will be more return for academic research and also for the school community, generating significant changes in educational practices in schools

  6. Biosafety regulations in Brazil | Sampaio | African Crop Science ...

    African Journals Online (AJOL)

    African Crop Science Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 3 (1995) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Download this PDF file. The PDF file you selected should ...

  7. Laws and regulations associated with ownership of human biological material in South Africa

    Directory of Open Access Journals (Sweden)

    Kishen Mahesh

    2015-05-01

    Full Text Available Ownership with regard to human biological material (HBM is addressed to some extent within South African law, specifically in chapter eight of the National Health Act (NHA and its associated regulations. However, members of the legal fraternity struggle to conceptualise ownership of such materials without objectifying a person or people and risking reducing such individuals to a state of property. This then infers a reduction in human dignity by rendering one-self or parts of that same self as a commodity. The complexity of the issue raises much debate both legally as well as ethically. 

  8. Upholding science in health, safety and environmental risk assessments and regulations

    International Nuclear Information System (INIS)

    Aschner, Michael; Autrup, Herman N.; Berry, Sir Colin L.; Boobis, Alan R.; Cohen, Samuel M.; Creppy, Edmond E.; Dekant, Wolfgang; Doull, John; Galli, Corrado L.; Goodman, Jay I.; Gori, Gio B.; Greim, Helmut A.; Joudrier, Philippe

    2016-01-01

    A public appeal has been advanced by a large group of scientists, concerned that science has been misused in attempting to quantify and regulate unmeasurable hazards and risks. The appeal recalls that science is unable to evaluate hazards that cannot be measured, and that science in such cases should not be invoked to justify risk assessments in health, safety and environmental regulations. The appeal also notes that most national and international statutes delineating the discretion of regulators are ambiguous about what rules of evidence ought to apply. Those statutes should be revised to ensure that the evidence for regulatory action is grounded on the standards of the scientific method, whenever feasible. When independent scientific evidence is not possible, policies and regulations should be informed by publicly debated trade-offs between socially desirable uses and social perceptions of affordable precaution. This article explores the premises, implications and actions supporting the appeal and its objectives.

  9. Variations in criteria regulating treatment with reimbursed biologic DMARDs across European countries. Are differences related to country's wealth?

    DEFF Research Database (Denmark)

    Putrik, Polina; Ramiro, Sofia; Kvien, Tore K

    2014-01-01

    To explore criteria regulating treatment with reimbursed biologic disease-modifying antirheumatic drugs (bDMARDs) in patients with rheumatoid arthritis (RA) across Europe and to relate criteria to indicators of national socioeconomic welfare.......To explore criteria regulating treatment with reimbursed biologic disease-modifying antirheumatic drugs (bDMARDs) in patients with rheumatoid arthritis (RA) across Europe and to relate criteria to indicators of national socioeconomic welfare....

  10. Biosafety regulations in Brazil | Sampaio | African Crop Science ...

    African Journals Online (AJOL)

    Journal Home > Vol 3, No 3 (1995) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Biosafety regulations in Brazil. MJA Sampaio. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL ...

  11. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    Science.gov (United States)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of

  12. Does the nature of science influence college students' learning of biological evolution?

    Science.gov (United States)

    Butler, Wilbert, Jr.

    This quasi-experimental, mixed-methods study assessed the influence of the nature of science (NOS) instruction on college students' learning of biological evolution. In this research, conducted in two introductory biology courses, in each course the same instruction was employed, with one important exception: in the experimental section students were involved in an explicit, reflective treatment of the nature of science (Explicit, reflective NOS), in the traditional treatment section, NOS was implicitly addressed (traditional treatment). In both sections, NOS aspects of science addressed included is tentative, empirically based, subjective, inferential, and based on relationship between scientific theories and laws. Students understanding of evolution, acceptance of evolution, and understanding of the nature of science were assessed before, during and after instruction. Data collection entailed qualitative and quantitative methods including Concept Inventory for Natural Selection (CINS), Measure of Acceptance of the Theory of Evolution (MATE) survey, Views of nature of Science (VNOS-B survey), as well as interviews, classroom observations, and journal writing to address understand students' views of science and understanding and acceptance of evolution. The quantitative data were analyzed via inferential statistics and the qualitative data were analyzed using grounded theory. The data analysis allowed for the construction and support for four assertions: Assertion 1: Students engaged in explicit and reflective NOS specific instruction significantly improved their understanding of the nature of science concepts. Alternatively, students engaged in instruction using an implicit approach to the nature of science did not improve their understanding of the nature of science to the same degree. The VNOS-B results indicated that students in the explicit, reflective NOS class showed the better understanding of the NOS after the course than students in the implicit NOS class

  13. Should We Add History of Science to Provide Nature of Science into Vietnamese Biology Textbook: A Case of Evolution and Genetics Teaching?

    Science.gov (United States)

    Diem, Huynh Thi Thuy; Yuenyong, Chokchai

    2018-01-01

    History of science (HOS) plays a substantial role in the enhancement of rooted understanding in science teaching and learning. HOS of evolution and genetics has not been included in Vietnamese biology textbooks. This study aims to investigate the necessity of introducing evolution and genetics HOS into Vietnamese textbooks. A case study approach…

  14. 5. Conference cycle. The radiations and the Biological Sciences; 5. Ciclo de conferencias. Las radiaciones y las Ciencias Biologicas

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar G, M.; Chavez B, A

    1991-06-15

    Nuclear technologies and their development have influenced many aspects of modern life. Besides used for electricity production nuclear technologies are applied in many other fields, especially in biological sciences. In genetics and molecular biology they enable research resulting in increased food production and better food preservation. Usage in material sciences lead to new varieties of plastics or improved characteristics. Nuclear applications are used in pe troleum industries and in forecasting geothermic power. Radiobiology and radiotherapy enable diagnosis and therapy of several diseases, e.g. cancer. Nuclear technologies also contribute to preserve the environment. They offer methods to analyse as well as decrease the environmental impacts. The 5. conference cyle entitled 'The Radiations and the Biological Sciences' aims to inform students of biological sciences about new nuclear technologies applied in their field of interest.

  15. 5. Conference cycle. The radiations and the Biological Sciences; 5. Ciclo de conferencias. Las radiaciones y las Ciencias Biologicas

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar G, M; Chavez B, A

    1991-06-15

    Nuclear technologies and their development have influenced many aspects of modern life. Besides used for electricity production nuclear technologies are applied in many other fields, especially in biological sciences. In genetics and molecular biology they enable research resulting in increased food production and better food preservation. Usage in material sciences lead to new varieties of plastics or improved characteristics. Nuclear applications are used in pe troleum industries and in forecasting geothermic power. Radiobiology and radiotherapy enable diagnosis and therapy of several diseases, e.g. cancer. Nuclear technologies also contribute to preserve the environment. They offer methods to analyse as well as decrease the environmental impacts. The 5. conference cyle entitled 'The Radiations and the Biological Sciences' aims to inform students of biological sciences about new nuclear technologies applied in their field of interest.

  16. Significant Down-Regulation of “Biological Adhesion” Genes in Porcine Oocytes after IVM

    Directory of Open Access Journals (Sweden)

    Joanna Budna

    2017-12-01

    Full Text Available Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes’ maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB+ oocytes were directly exposed to microarray assays and RT-qPCR (“before IVM” group, or first in vitro matured and then if classified as BCB+ passed to molecular analyses (“after IVM” group. As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes’ successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte’s achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.

  17. Student-generated illustrations and written narratives of biological science concepts: The effect on community college life science students' achievement in and attitudes toward science

    Science.gov (United States)

    Harvey, Robert Christopher

    The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1

  18. Tracing "Ethical Subjectivities" in Science Education: How Biology Textbooks Can Frame Ethico-Political Choices for Students

    Science.gov (United States)

    Bazzul, Jesse

    2015-02-01

    This article describes how biology textbooks can work to discursively constitute a particular kind of "ethical subjectivity." Not only do textbooks constrain the possibilities for thought and action regarding ethical issues, they also require a certain kind of "subject" to partake in ethical exercises and questions. This study looks at how ethical questions/exercises found in four Ontario textbooks require students and teachers to think and act along specific lines. These include making ethical decisions within a legal-juridical frame; deciding what kinds of research should be publically funded; optimizing personal and population health; and regulation through policy and legislation. While engaging ethical issues in these ways is useful, educators should also question the kinds of (ethical) subjectivities that are partially constituted by discourses of science education. If science education is going to address twenty-first century problems such as climate change and social inequality, educators need to address how the possibilities for ethical engagement afforded to students work to constitute specific kinds of "ethical actors."

  19. Loosening the shackles of scientific disciplines with network science. Reply to comments on "Network science of biological systems at different scales: A review"

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Rupnik, Marjan Slak; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    We would like to thank all the experts for their insightful and very interesting comments that have been submitted in response to our review "Network science of biological systems at different scales" [1]. We are delighted with the number of comments that have been written, and even more so with the positive opinions that these comments communicate to the wider audience [2-9]. Although methods of network science have long proven their value in relevantly addressing various challenges in the biological sciences, such interdisciplinary research often still struggles for funding and recognition at many academic levels.

  20. Students' self-regulation and teachers' influences in science: interplay between ethnicity and gender

    Science.gov (United States)

    Elstad, Eyvind; Turmo, Are

    2010-11-01

    The purpose of this study is to explore students' self-regulation and teachers' influence in science and to examine interplay between ethnicity and gender. Analysis of data from seven Oslo schools (1112 sampled students in the first year of high school) shows that the ethnic minority students reported using learning strategies in science more intensively than ethnic majority students and they had a stronger motivation to learn science. Ethnic majority students are defined here as students who were born in Norway and have at least one parent born in Norway. The study also shows that minority students generally evaluate their science teacher's influence on their learning more positively than the majority. The strongest interplay effects between gender and ethnicity are found in students' perceptions of the relevance of science, as well as their degree of negative responses to the pressure to learn science.

  1. [Effectiveness of three biological larvicides and of an insect growth regulator against Anopheles arabiensis in Senegal].

    Science.gov (United States)

    Diédhiou, S M; Konaté, L; Doucouré, S; Samb, B; Niang, E A; Sy, O; Thiaw, O; Konaté, A; Wotodjo, A N; Diallo, M; Gadiaga, L; Sokhna, C; Faye, O

    2017-05-01

    Urban malaria is a major public health problem in Africa. In Senegal, the environmental changes seem to favor the persistence of malaria transmission in Dakar suburbs by creating, throughout the year, potential breeding sites of malaria vectors. In such a situation and in a context of a growing threat of insecticide resistance in anopheline vectors, the larval control making use of products from biological origin or growth regulators could represent an additional tool to the current strategies developed against anophelines. In this study conducted in 2012, the efficiency and residual effect of three biological larvicides (VectoBac ® WG, Vecto-Max ® CG, and VectoBac ® GR) and an insect growth regulator (MetaLarv™) were evaluated on Anopheles gambiae s.l. larvae in seminatural conditions (experimental station) and natural breeding sites in the suburbs of Dakar. The formulations were tested according to the manufacturer recommendations, namely 0.03 g/m 2 for VectoBac ® WG, 0.5 g/m 2 for VectoBac ® GR, 0.75 g/m 2 for VectoMax ® CG, and 0.5 g/m 2 for MetaLarv™. In experimental station, the treatment with larvicides was effective over a period of 14 days with a mortality ranging between 92% and 100%. The insect growth regulator remained effective up to 55 days with a single emergence recorded in the 27th day after treatment. In natural conditions, a total effectiveness (100% mortality) of larvicides was obtained 48 hours after treatment, then a gradual recolonization of breeding sites was noted. However, the insect growth regulator has reduced adult emergence higher than 80% until the end of follow-up (J28). This study showed a good efficiency of the larvicides and of the growth regulator tested. These works provide current data on potential candidates for the implementation of larval control interventions in addition to that of chemical adulticide for control of urban malaria.

  2. Evolutionary biology: a basic science for medicine in the 21st century.

    Science.gov (United States)

    Perlman, Robert L

    2011-01-01

    Evolutionary biology was a poorly developed discipline at the time of the Flexner Report and was not included in Flexner's recommendations for premedical or medical education. Since that time, however, the value of an evolutionary approach to medicine has become increasingly recognized. There are several ways in which an evolutionary perspective can enrich medical education and improve medical practice. Evolutionary considerations rationalize our continued susceptibility or vulnerability to disease; they call attention to the idea that the signs and symptoms of disease may be adaptations that prevent or limit the severity of disease; they help us understand the ways in which our interventions may affect the evolution of microbial pathogens and of cancer cells; and they provide a framework for thinking about population variation and risk factors for disease. Evolutionary biology should become a foundational science for the medical education of the future.

  3. Bodies of science and law: forensic DNA profiling, biological bodies, and biopower.

    Science.gov (United States)

    Toom, Victor

    2012-01-01

    How is jurisdiction transferred from an individual's biological body to agents of power such as the police, public prosecutors, and the judiciary, and what happens to these biological bodies when transformed from private into public objects? These questions are examined by analysing bodies situated at the intersection of science and law. More specifically, the transformation of ‘private bodies’ into ‘public bodies’ is analysed by going into the details of forensic DNA profiling in the Dutch jurisdiction. It will be argued that various ‘forensic genetic practices’ enact different forensic genetic bodies'. These enacted forensic genetic bodies are connected with various infringements of civil rights, which become articulated in exploring these forensic genetic bodies’‘normative registers’.

  4. The beginning of Space Life Science in China exploration rockets for biological experiment during 1960's

    Science.gov (United States)

    Jiang, Peidong; Zhang, Jingxue

    The first step of space biological experiment in China was a set of five exploration rockets launched during 1964 to 1966, by Shanghai Institute of Machine and Electricity, and Institute of Biophysics of The Chinese Academy of Sciences. Three T-7AS1rockets for rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1964 and June of 1965. Two T-7AS2rockets for dog, rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1966. Institute of Biophysics in charged of the general design of biological experiments, telemetry of physiological parameters, and selection and training of experiment animals. The samples on-board were: rats, mice, dogs, and test tubes with fruit fly, enzyme, bacteria, E. Coli., lysozyme, bacteriaphage, RNAase, DNAase, crystals of enzyme, etc. Physiological, biochemical, bacte-riological, immunological, genetic, histochemical studies had been conducted, in cellular and sub cellular level. The postures of rat and dog were monitored during flight and under weight-lessness. Physiological parameters of ECG, blood pressure, respiration rate, body temperature were recorded. A dog named"Xiao Bao"was flight in 1966 with video monitor, life support system and conditioned reflex equipment. It flighted for more than 20 minutes and about 70km high. After 40 years, the experimental data recorded of its four physiological parameters during the flight process was reviewed. The change of 4 parameters during various phase of total flight process were compared, analyzed and discussed.

  5. Preventing biological weapon development through the governance of life science research.

    Science.gov (United States)

    Epstein, Gerald L

    2012-03-01

    The dual-use dilemma in the life sciences-that illicit applications draw on the same science and technology base as legitimate applications-makes it inherently difficult to control one without inhibiting the other. Since before the September 11 attacks, the science and security communities in the United States have struggled to develop governance processes that can simultaneously minimize the risk of misuse of the life sciences, promote their beneficial applications, and protect the public trust. What has become clear over that time is that while procedural steps can be specified for assessing and managing dual-use risks in the review of research proposals, oversight of ongoing research, and communication of research results, the actions or decisions to be taken at each of these steps to mitigate dual-use risk defy codification. Yet the stakes are too high to do nothing, or to be seen as doing nothing. The U.S. government should therefore adopt an oversight framework largely along the lines recommended by the National Science Advisory Board for Biosecurity almost 5 years ago-one that builds on existing processes, can gain buy-in from the scientific community, and can be implemented at modest cost (both direct and opportunity), while providing assurance that a considered and independent examination of dual-use risks is being applied. Without extraordinary visibility into the actions of those who would misuse biology, it may be impossible to know how well such an oversight system will actually succeed at mitigating misuse. But maintaining the public trust will require a system to be established in which reasonably foreseeable dual-use consequences of life science research are anticipated, evaluated, and addressed.

  6. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Science.gov (United States)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  7. Conceptions of the Nature of Science Held by Undergraduate Pre-Service Biology Teachers in South-West Nigeria

    Science.gov (United States)

    Adedoyin, A. O.; Bello, G.

    2017-01-01

    This study investigated the conceptions of the nature of science held by pre-service undergraduate biology teachers in South-West, Nigeria. Specifically, the study examined the influence of their gender on their conceptions of the nature of science. The study was a descriptive research of the survey method. The population for the study comprised…

  8. Relationships among constructivist learning environment perceptions, motivational beliefs, self-regulation and science achievement

    Science.gov (United States)

    Kingir, Sevgi; Tas, Yasemin; Gok, Gulsum; Sungur Vural, Semra

    2013-11-01

    Background. There are attempts to integrate learning environment research with motivation and self-regulation research that considers social context influences an individual's motivation, self-regulation and, in turn, academic performance. Purpose. This study explored the relationships among constructivist learning environment perception variables (personal relevance, uncertainty, shared control, critical voice, student negotiation), motivational beliefs (self-efficacy, intrinsic interest, goal orientation), self-regulation, and science achievement. Sample. The sample for this study comprised 802 Grade 8 students from 14 public middle schools in a district of Ankara in Turkey. Design and methods. Students were administered 4 instruments: Constructivist Learning Environment Survey, Goal Achievement Questionnaire, Motivated Strategies for Learning Questionnaire, and Science Achievement Test. LISREL 8.7 program with SIMPLIS programming language was used to test the conceptual model. Providing appropriate fit indices for the proposed model, the standardized path coefficients for direct effects were examined. Results. At least one dimension of the constructivist learning environment was associated with students' intrinsic interest, goal orientation, self-efficacy, self-regulation, and science achievement. Self-efficacy emerged as the strongest predictor of both mastery and performance avoidance goals rather than the approach goals. Intrinsic value was found to be significantly linked to science achievement through its effect on self-regulation. The relationships between self-efficacy and self-regulation and between goal orientation and science achievement were not significant. Conclusion. In a classroom environment supporting student autonomy and control, students tend to develop higher interest in tasks, use more self-regulatory strategies, and demonstrate higher academic performance. Science teachers are highly recommended to consider these findings when designing

  9. Teleology and its constitutive role for biology as the science of organized systems in nature.

    Science.gov (United States)

    Toepfer, Georg

    2012-03-01

    'Nothing in biology makes sense, except in the light of teleology'. This could be the first sentence in a textbook about the methodology of biology. The fundamental concepts in biology, e.g. 'organism' and 'ecosystem', are only intelligible given a teleological framework. Since early modern times, teleology has often been considered methodologically unscientific. With the acceptance of evolutionary theory, one popular strategy for accommodating teleological reasoning was to explain it by reference to selection in the past: functions were reconstructed as 'selected effects'. But the theory of evolution obviously presupposes the existence of organisms as organized and regulated, i.e. functional systems. Therefore, evolutionary theory cannot provide the foundation for teleology. The underlying reason for the central methodological role of teleology in biology is not its potential to offer particular forms of (evolutionary) explanations for the presence of parts, but rather an ontological one: organisms and other basic biological entities do not exist as physical bodies do, as amounts of matter with a definite form. Rather, they are dynamic systems in stable equilibrium; despite changes of their matter and form (in metabolism and metamorphosis) they maintain their identity. What remains constant in these kinds of systems is their 'organization', i.e. the causal pattern of interdependence of parts with certain effects of each part being relevant for the working of the system. Teleological analysis consists in the identification of these system-relevant effects and at the same time of the system as a whole. Therefore, the identity of biological systems cannot be specified without teleological reasoning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Carbon Cycling and Biosequestration Integrating Biology and Climate Through Systems Science Report from the March 2008 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Graber, J.; Amthor, J.; Dahlman, R.; Drell, D.; Weatherwax, S.

    2008-12-01

    One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biological components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.

  11. The regulation of diffuse pollution in the European Union: science, governance and water resource management

    Directory of Open Access Journals (Sweden)

    Sarah Hendry

    2012-11-01

    Full Text Available Reducing diffuse pollution is a perpetuating problem for environmental regulators. This paper will consider novel ways to regulate its impacts on the aquatic environment, with particular reference to rural landuse. It will look at the relationship between science, policy and law, and the contributions of integrated water resources management and governance at regional, national and river basin scales. Regulatory frameworks for water in the European Union will be explored, along with their implementation nationally in Scotland and at catchment scale in the Tweed river basin. It will conclude that regulation has a role to play, but that it is necessary to take a visionary holistic and integrated approach, nesting regulation within a governance framework that involves all stakeholders and takes full account of developing science and socio-economic drivers to meet environmental objectives.

  12. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.

    Science.gov (United States)

    Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum

    2013-01-01

    Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  13. [THE INCONSISTENCIES OF REGULATION OF METABOLISM IN PHYLOGENESIS AT THREE LEVELS OF "RELATIVE BIOLOGICAL PERFECTION": ETIOLOGY OF METABOLIC PANDEMICS].

    Science.gov (United States)

    Titov, V N

    2015-11-01

    The regulation of metabolism in vivo can be comprehended by considering stages of becoming inphylogenesis of humoral, hormonal, vegetative regulators separately: at the level of cells; in paracrin-regulated cenosises of cells; organs and systems under open blood circulation and closed system of blood flow. The levels of regulations formed at different stages of phylogenesis. Their completion occurred at achievement of "relative biological perfection". Only this way need of cells in functional, structural interaction and forming of multicellular developed. The development of organs and systems of organs also completed at the level of "relative biological perfection". From the same level the third stage of becoming of regulation of metabolism at the level of organism started. When three conditions of "relative biological perfection" achieved consequently at level in vivo are considered in species Homo sapiens using system approach it is detected that "relative biological perfection" in vivo is accompanied by different inconsistencies of regulation of metabolism. They are etiologic factors of "metabolic pandemics ". The inconsistencies (etiological factors) are consider as exemplified by local (at the level of paracrin-regulated cenosises of cells) and system (at the level of organism) regulation of biological reaction metabolism-microcirculation that results in dysfunction of target organs and development of pathogenesis of essential metabolic arterial hypertension. The article describes phylogenetic difference between visceral fatty cells and adpocytes, regulation of metabolism by phylogenetically late insulin, reaction of albumin at increasing of content of unesterified fatty acids in blood plasma, difference of function of resident macrophage and monocytes-macrophages in pathogenesis of atherosclerosis, metabolic syndrome, insulin resistance, obesity, under diabetes mellitus and essential metabolic arterial hypertension.

  14. Spatial diversification of agroecosystems to enhance biological control and other regulating services: An agroecological perspective.

    Science.gov (United States)

    Hatt, Séverin; Boeraeve, Fanny; Artru, Sidonie; Dufrêne, Marc; Francis, Frédéric

    2018-04-15

    Spatial diversification of crop and non-crop habitats in farming systems is promising for enhancing natural regulation of insect pests. Nevertheless, results from recent syntheses show variable effects. One explanation is that the abundance and diversity of pests and natural enemies are affected by the composition, design and management of crop and non-crop habitats. Moreover, interactions between both local and landscape elements and practices carried out at different spatial scales may affect the regulation of insect pests. Hence, research is being conducted to understand these interdependencies. However, insects are not the only pests and pests are not the only elements to regulate in agroecosystems. Broadening the scope could allow addressing multiple issues simultaneously, but also solving them together by enhancing synergies. Indeed, spatial diversification of crop and non-crop habitats can allow addressing the issues of weeds and pathogens, along with being beneficial to several other regulating services like pollination, soil conservation and nutrient cycling. Although calls rise to develop multifunctional landscapes that optimize the delivery of multiple ecosystem services, it still represents a scientific challenge today. Enhancing interdisciplinarity in research institutions and building interrelations between scientists and stakeholders may help reach this goal. Despite obstacles, positive results from research based on such innovative approaches are encouraging for engaging science in this path. Hence, the aim of the present paper is to offer an update on these issues by exploring the most recent findings and discussing these results to highlight needs for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The 2014 Greeley, Colorado Earthquakes: Science, Industry, Regulation, and Media

    Science.gov (United States)

    Yeck, W. L.; Sheehan, A. F.; Weingarten, M.; Nakai, J.; Ge, S.

    2014-12-01

    On June 1, 2014 (UTC) a magnitude 3.2 earthquake occurred east of the town of Greeley, Colorado. The earthquake was widely felt, with reports from Boulder and Golden, over 60 miles away from the epicenter. The location of the earthquake in a region long considered aseismic but now the locus of active oil and gas production prompted the question of whether this was a natural or induced earthquake. Several classic induced seismicity cases hail from Colorado, including the Rocky Mountain Arsenal earthquakes in the 1960s and the Paradox Valley earthquakes in western Colorado. In both cases the earthquakes were linked to wastewater injection. The Greeley earthquake epicenter was close to a Class II well that had been injecting waste fluid into the deepest sedimentary formation of the Denver Basin at rates as high as 350,000 barrels/month for less than a year. The closest seismometers to the June 1 event were more than 100 km away, necessitating deployment of a local seismic network for detailed study. IRIS provided six seismometers to the University of Colorado which were deployed starting within 3 days of the mainshock. Telemetry at one site allowed for real time monitoring of the ongoing seismic sequence. Local media interest was extremely high with speculation that the earthquake was linked to the oil and gas industry. The timetable of media demand for information provided some challenges given the time needed for data collection and analysis. We adopted a policy of open data and open communication with all interested parties, and made proactive attempts to provide information to industry and regulators. After 3 weeks of data collection and analysis, the proximity and timing of the mainshock and aftershocks to the C4A injection well, along with a sharp increase in seismicity culminating in an M 2.6 aftershock, led to a decision by the Colorado Oil and Gas Corporation Commission (COGCC) to recommend a temporary halt to injection at the C4A injection well. This was the

  16. The scientific production in health and biological sciences of the top 20 Brazilian universities

    Directory of Open Access Journals (Sweden)

    R. Zorzetto

    2006-12-01

    Full Text Available Brazilian scientific output exhibited a 4-fold increase in the last two decades because of the stability of the investment in research and development activities and of changes in the policies of the main funding agencies. Most of this production is concentrated in public universities and research institutes located in the richest part of the country. Among all areas of knowledge, the most productive are Health and Biological Sciences. During the 1998-2002 period these areas presented heterogeneous growth ranging from 4.5% (Pharmacology to 191% (Psychiatry, with a median growth rate of 47.2%. In order to identify and rank the 20 most prolific institutions in these areas, searches were made in three databases (DataCAPES, ISI and MEDLINE which permitted the identification of 109,507 original articles produced by the 592 Graduate Programs in Health and Biological Sciences offered by 118 public universities and research institutes. The 20 most productive centers, ranked according to the total number of ISI-indexed articles published during the 1998-2003 period, produced 78.7% of the papers in these areas and are strongly concentrated in the Southern part of the country, mainly in São Paulo State.

  17. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Science.gov (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  18. Pannus growth regulators as potential targets for biological therapy in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    A. S. Mikhaylova

    2018-01-01

    Full Text Available The main goal of treatment for rheumatoid arthritis (RA is to suppress inflammation using basic and symptomatic therapies. At the same time, the above strategy does not significantly stop joint  destruction that leads to disability in patients. The review analyzes  publications dealing with a search for intercellular interaction  regulators among the main effector cells in the pannus – fibroblast- like synoviocytes (FLSs. It assesses the influence of FLS aggression  factors on invasive pannus behavior, the possibility of their targeted deactivation during biological therapy, and the preliminary  results of similar treatment by the examples of animal models. It is  shown that the most promising targets for biological therapy may be FLS adhesion molecules, such as transmembrane receptor cadherin  11, integrins α5/β1, and VCAM1, ICAM1, which actively participate in the attachment of FLSs to the cartilage surface and activate their production of cytokines, growth factors and aggression factors.

  19. Childhood exposure to violence and lifelong health: Clinical intervention science and stress biology research join forces

    Science.gov (United States)

    Moffitt, Terrie E.

    2013-01-01

    Many young people who are mistreated by an adult, victimized by bullies, criminally assaulted, or who witness domestic violence react to this violence exposure by developing behavioral, emotional, or learning problems. What is less well known is that adverse experiences like violence exposure can lead to hidden physical alterations inside a child’s body, alterations which may have adverse effects on life-long health. We discuss why this is important for the field of developmental psychopathology and for society, and we recommend that stress-biology research and intervention science join forces to tackle the problem. We examine the evidence base in relation to stress-sensitive measures for the body (inflammatory reactions, telomere erosion, epigenetic methylation, and gene expression) and brain (mental disorders, neuroimaging, and neuropsychological testing). We also review promising interventions for families, couples, and children that have been designed to reduce the effects of childhood violence exposure. We invite intervention scientists and stress-biology researchers to collaborate in adding stress-biology measures to randomized clinical trials of interventions intended to reduce effects of violence exposure and other traumas on young people. PMID:24342859

  20. Bim: guardian of tissue homeostasis and critical regulator of the immune system, tumorigenesis and bone biology.

    Science.gov (United States)

    Akiyama, Toru; Tanaka, Sakae

    2011-08-01

    One of the most important roles of apoptosis is the maintenance of tissue homeostasis. Impairment of apoptosis leads to a number of pathological conditions. In response to apoptotic signals, various proteins are activated in a pathway and signal-specific manner. Recently, the pro-apoptotic molecule Bim has attracted increasing attention as a pivotal regulator of tissue homeostasis. The Bim expression level is strictly controlled in both transcriptional and post-transcriptional levels. This control is dependent on cell, tissue and apoptotic stimuli. The phenotype of Bim-deficient mice is a systemic lupus erythematosus-like autoimmune disease with an abnormal accumulation of hematopoietic cells. Bim is thus a critical regulator of hematopoietic cells and immune system. Further studies have revealed the critical roles of Bim in various normal and pathological conditions, including bone homeostasis and tumorigenesis. The current understanding of Bim signaling and roles in the maintenance of tissue homeostasis is reviewed in this paper, focusing on the immune system, bone biology and tumorigenesis to illustrate the diversified role of Bim.

  1. Excel 2013 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach biological and life sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand science problems.  Practice problems are provided at the end of each chapter with their solutions in an appendix.  Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned.  Includes 164 illustrations in color Suitable for undergraduates or graduate student Prof. Tom Quirk is currently a Professor of Marketing at The Walker School of Business and Technology at Webster University in St....

  2. The Acid Test for Biological Science: STAP Cells, Trust, and Replication.

    Science.gov (United States)

    Lancaster, Cheryl

    2016-02-01

    In January 2014, a letter and original research article were published in Nature describing a process whereby somatic mouse cells could be converted into stem cells by subjecting them to stress. These "stimulus-triggered acquisition of pluripotency" (STAP) cells were shown to be capable of contributing to all cell types of a developing embryo, and extra-embryonic tissues. The lead author of the publications, Haruko Obokata, became an overnight celebrity in Japan, where she was dubbed the new face of Japanese science. However, in the weeks that followed publication of the research, issues arose. Other laboratories and researchers (including authors on the original papers) found that they were unable to replicate Obokata et al.'s work. Closer scrutiny of the papers by the scientific community also suggested that there was manipulation of images that had been published, and Obokata was accused of misconduct. Those who should have been supervising her work (also her co-authors on the publications) were also heavily criticised. The STAP cell saga of 2014 is used as an example to highlight the importance of trust and replication in twenty-first century biological science. The role of trust in the scientific community is highlighted, and the effects on interactions between science and the public examined. Similarly, this essay aims to highlight the importance of replication, and how this is understood by researchers, the media, and the public. The expected behaviour of scientists in the twenty-first century is now more closely scrutinised.

  3. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions.

    Science.gov (United States)

    Mallick, Pankajini; Taneja, Guncha; Moorthy, Bhagavatula; Ghose, Romi

    2017-06-01

    Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.

  4. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso

    2013-05-15

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies. © 2013 Springer-Verlag Berlin Heidelberg.

  5. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach.

    Science.gov (United States)

    Bueno-Orovio, Alfonso; Sánchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2014-02-01

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies.

  6. The Effect of Reflective Science Journal Writing on Students' Self-Regulated Learning Strategies

    Science.gov (United States)

    Al-Rawahi, Nawar M.; Al-Balushi, Sulaiman M.

    2015-01-01

    The current study investigates the effectiveness of grade-ten students' reflective science journal writing on their self-regulated learning strategies. We used a pre-post control group quasi-experimental design. The sample consisted of 62 tenth-grade students (15 years old) in Oman, comprising 32 students in the experimental group and 30 students…

  7. Development of biology student worksheets to facilitate science process skills of student

    Science.gov (United States)

    Rahayu, Y. S.; Pratiwi, R.; Indana, S.

    2018-01-01

    This research aims to describe development of Biology student worksheets to facilitate science process skills of student, at the same time to facilitate thinking skills of students in senior high school are equipped with Assesment Sheets. The worksheets development refers to cycle which includes phase analysis (analysis), planning (planning), design (design), development (development), implementation (implementation), evaluation and revision (evaluation and revision). Phase evaluation and revision is an ongoing activity conducted in each phase of the development cycle. That is, after the evaluation of the results of these activities and make revisions at any phase, then continue to the next phase. Based on the test results for grade X, XI, and XII in St. Agnes Surabaya high school, obtained some important findings. The findings are as follows. (1) Developed biology student worksheets could be used to facilitate thinking ability of students in particular skills integrated process that includes components to formulate the problem, formulate hypotheses, determine the study variables, formulate an operational definition of variables, determine the steps in the research, planning data tables, organizing Data in the form of tables/charts, drawing conclusions, (2) Developed biology student worksheets could also facilitate the development of social interaction of students such as working together, listening/respect the opinions of others, assembling equipment and materials, discuss and share information and facilitate the upgrading of skills hands-on student activity. (3) Developed biology worksheets basically could be implemented with the guidance of the teacher step by step, especially for students who have never used a similar worksheet. Guidance at the beginning of this need, especially for worksheets that require special skills or understanding of specific concepts as a prerequisite, such as using a microscope, determine the heart rate, understand the mechanism of

  8. Biological Sciences for the 21st Century: Meeting the Challenges of Sustainable Development in an Era of Global Change

    Energy Technology Data Exchange (ETDEWEB)

    Joel Cracraft; Richard O' Grady

    2007-05-12

    The symposium was held 10-12 May, 2007 at the Capitol Hilton Hotel in Washington, D. C. The 30 talks explored how some of today's key biological research developments (such as biocomplexity and complex systems analysis, bioinformatics and computational biology, the expansion of molecular and genomics research, and the emergence of other comprehensive or system wide analyses, such as proteomics) contribute to sustainability science. The symposium therefore emphasized the challenges facing agriculture, human health, sustainable energy, and the maintenance of ecosystems and their services, so as to provide a focus and a suite of examples of the enormous potential contributions arising from these new developments in the biological sciences. This symposium was the first to provide a venue for exploring how the ongoing advances in the biological sciences together with new approaches for improving knowledge integration and institutional science capacity address key global challenges to sustainability. The speakers presented new research findings, and identified new approaches and needs in biological research that can be expected to have substantial impacts on sustainability science.

  9. Testing a model of science process skills acquisition: An interaction with parents' education, preferred language, gender, science attitude, cognitive development, academic ability, and biology knowledge

    Science.gov (United States)

    Germann, Paul J.

    Path analysis techniques were used to test a hypothesized structural model of direct and indirect causal effects of student variables on science process skills. The model was tested twice using data collected at the beginning and end of the school year from 67 9th- and 10th-grade biology students who lived in a rural Franco-American community in New England. Each student variable was found to have significant effects, accounting for approximately 80% of the variance in science process skills achievement. Academic ability, biology knowledge, and language preference had significant direct effects. There were significant mediated effects by cognitive development, parents' education, and attitude toward science in school. The variables of cognitive development and academic ability had the greatest total effects on science process skills. Implications for practitioners and researchers are discussed.

  10. Improved wound management by regulated negative pressure-assisted wound therapy and regulated, oxygen- enriched negative pressure-assisted wound therapy through basic science research and clinical assessment

    Directory of Open Access Journals (Sweden)

    Moris Topaz

    2012-01-01

    Full Text Available Regulated negative pressure-assisted wound therapy (RNPT should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound′s environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review.

  11. Redox and Ionic Homeostasis Regulations against Oxidative, Salinity and Drought Stress in Wheat (A Systems Biology Approach

    Directory of Open Access Journals (Sweden)

    Zahid Hussain Shah

    2017-10-01

    Full Text Available Systems biology and omics has provided a comprehensive understanding about the dynamics of the genome, metabolome, transcriptome, and proteome under stress. In wheat, abiotic stresses trigger specific networks of pathways involved in redox and ionic homeostasis as well as osmotic balance. These networks are considerably more complicated than those in model plants, and therefore, counter models are proposed by unifying the approaches of omics and stress systems biology. Furthermore, crosstalk among these pathways is monitored by the regulation and streaming of transcripts and genes. In this review, we discuss systems biology and omics as a promising tool to study responses to oxidative, salinity, and drought stress in wheat.

  12. Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)

    Science.gov (United States)

    Pounds, Andrew

    2001-05-01

    This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.

  13. Converging biology, economics and social science in fisheries research –lessons learned

    DEFF Research Database (Denmark)

    Haapasaari, Päivi Elisabet; Kulmala, Soile; Kuikka, Sakari

    2011-01-01

    of the Baltic salmon stocks, using the Bayesian networks. It enabled the analysis of the outcomes of different management measures from biological, social and economic perspectives. The synthesis was the final output of a learning process of eight years. We reflect how and what kind of interdisciplinarity...... between natural scientists, economists and social scientists grew from the need to better understand complexity related to the salmon fisheries in the Baltic Sea, what we learned about the fishery, and what we learned about interdisciplinary collaboration.......It has been acknowledged that natural sciences cannot provide an adequate basis for the management of complex environmental problems. The scientific knowledge base has to be expanded towards a more holistic direction by incorporating social and economic issues. Besides this, the multifaceted...

  14. Primate enamel evinces long period biological timing and regulation of life history.

    Science.gov (United States)

    Bromage, Timothy G; Hogg, Russell T; Lacruz, Rodrigo S; Hou, Chen

    2012-07-21

    The factor(s) regulating the combination of traits that define the overall life history matrix of mammalian species, comprising attributes such as brain and body weight, age at sexual maturity, lifespan and others, remains a complete mystery. The principal objectives of the present research are (1) to provide evidence for a key variable effecting life history integration and (2) to provide a model for how one would go about investigating the metabolic mechanisms responsible for this rhythm. We suggest here that a biological rhythm with a period greater than the circadian rhythm is responsible for observed variation in primate life history. Evidence for this rhythm derives from studies of tooth enamel formation. Enamel contains an enigmatic periodicity in its microstructure called the striae of Retzius, which develops at species specific intervals in units of whole days. We refer to this enamel rhythm as the repeat interval (RI). For primates, we identify statistically significant relationships between RI and all common life history traits. Importantly, RI also correlates with basal and specific metabolic rates. With the exception of estrous cyclicity, all relationships share a dependence upon body mass. This dependence on body mass informs us that some aspect of metabolism is responsible for periodic energy allocations at RI timescales, regulating cell proliferation rates and growth, thus controlling the pace, patterning, and co-variation of life history traits. Estrous cyclicity relates to the long period rhythm in a body mass-independent manner. The mass-dependency and -independency of life history relationships with RI periodicity align with hypothalamic-mediated neurosecretory anterior and posterior pituitary outputs. We term this period the Havers-Halberg Oscillation (HHO), in reference to Clopton Havers, a 17th Century hard tissue anatomist, and Franz Halberg, a long-time explorer of long-period rhythms. We propose a mathematical model that may help elucidate

  15. Regulation of Early Steps of GPVI Signal Transduction by Phosphatases: A Systems Biology Approach.

    Directory of Open Access Journals (Sweden)

    Joanne L Dunster

    2015-11-01

    Full Text Available We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2, provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in

  16. Images as tools. On visual epistemic practices in the biological sciences.

    Science.gov (United States)

    Samuel, Nina

    2013-06-01

    Contemporary visual epistemic practices in the biological sciences raise new questions of how to transform an iconic data measurements into images, and how the process of an imaging technique may change the material it is 'depicting'. This case-oriented study investigates microscopic imagery, which is used by system and synthetic biologists alike. The core argument is developed around the analysis of two recent methods, developed between 2003 and 2006: localization microscopy and photo-induced cell death. Far from functioning merely as illustrations of work done by other means, images can be determined as tools for discovery in their own right and as objects of investigation. Both methods deploy different constellations of intended and unintended interactions between visual appearance and underlying biological materiality. To characterize these new ways of interaction, the article introduces the notions of 'operational images' and 'operational agency'. Despite all their novelty, operational images are still subject to conventions of seeing and depicting: Phenomena emerging with the new method of localization microscopy have to be designed according to image traditions of older, conventional fluorescence microscopy to function properly as devices for communication between physicists and biologists. The article emerged from a laboratory study based on interviews conducted with researchers from the Kirchhoff-Institute for Physics and German Cancer Research Center (DKFZ) at Bioquant, Heidelberg, in 2011. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Influence of Psychosocial Classroom Environment on Students' Motivation and Self-Regulation in Science Learning: A Structural Equation Modeling Approach

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill M.

    2013-01-01

    The primary aim of this study was two-fold: 1) to identify salient psychosocial features of the classroom environment that influence students' motivation and self-regulation in science learning; and 2) to examine the effect of the motivational constructs of learning goal orientation, science task value and self-efficacy in science learning on…

  18. ADAPTATION OF THE STUDENTS' MOTIVATION TOWARDS SCIENCE LEARNING QUESTIONNAIRE TO MEASURE GREEK STUDENTS’ MOTIVATION TOWARDS BIOLOGY LEARNING

    OpenAIRE

    Andressa, Helen; Mavrikaki, Evangelia; Dermitzaki, Irini

    2015-01-01

    The purpose of this study was to investigate students’ motivation towards biology learning and to determine the factors that are related to it: students’ gender and their parents’ occupation (relevant with biology or not) were investigated. The sample of the study consisted of 360 Greek high school students of the 10th grade (178 boys and 182 girls). The data were collected through Students’ Motivation Toward Science Learning (SMTSL) questionnaire. It was found that it was a valid and reliabl...

  19. Anti-reductionism at the confluence of philosophy and science: Arthur Koestler and the biological periphery

    Science.gov (United States)

    Stark, James F.

    2016-01-01

    The Hungarian-born intellectual Arthur Koestler produced a wide-ranging corpus of written work throughout the mid twentieth century. Despite being the subject of two huge biographies in recent years, his long-standing engagement with numerous scientific disciplines remains unexplored. This paper situates Koestler's scientific philosophy within the context of mid-twentieth-century science and explores his relationship with key figures, including Dennis Gábor, C. H. Waddington, Ludwig von Bertalanffy and J. R. Smythies. The argument presented is threefold. First, surprisingly, serious scientists, particularly in the biological sciences, took Koestler's scientific work seriously; second, despite Koestler's best efforts, his allies could not agree on a single articulation of anti-reductionism; and third, the reductionist/anti-reductionist debates of the mid twentieth century constituted a battle for the authority to speak on behalf of ‘science’ that led Koestler into direct conflict with figures including Peter Medawar. By exploring the community associated with Koestler, the paper sheds new light on the status of scientific authority and the relationship between scientists’ metaphysical beliefs and their practices.

  20. Self-expression assignment as a teaching approach to enhance the interest of Kuwaiti women in biological sciences.

    Science.gov (United States)

    El-Sabban, Farouk

    2008-06-01

    Stimulating the interest of students in biological sciences necessitates the use of new teaching methods and motivating approaches. The idea of the self-expression assignment (SEA) has evolved from the prevalent environment at the College for Women of Kuwait University (Safat, State of Kuwait), a newly established college where the number of students is low and where students have varied backgrounds and interests and are being instructed biological sciences in English for the first time. This SEA requires each student to choose a topic among a long list of topics and interact with it in any way to produce a finished product without the interference of the course instructor. Students are told that the SEA will be graded based on their commitment, creative thinking, innovation in developing the idea, and finishing up of the chosen assignment. The SEA has been implemented in three introductory courses, namely, Biology, Introduction to Human Nutrition and Food Science, and The Human Body. Many interesting projects resulted from the SEA, and, based on an administered survey, students assessed this assignment very favorably. Students expressed their pleasure of experiencing freedom in choosing their own topics, interacting with such topics, learning more about them, and finishing up their projects. Students appreciated this type of exposure to biological sciences and expressed that such an experience enhanced their interest in such sciences.

  1. Maximising Students' Progress and Engagement in Science through the Use of the Biological Sciences Curriculum Study (BSCS) 5E Instructional Model

    Science.gov (United States)

    Hoskins, Peter

    2013-01-01

    The Biological Sciences Curriculum Studies (BSCS) 5E Instructional Model (often referred to as the 5Es) consists of five phases. Each phase has a specific function and contributes both to teachers' coherent instruction and to students' formulation of a better understanding of scientific knowledge, attitudes and skills. Evidence indicates that the…

  2. SR ( Science and Religion SEBAGAI PENDEKATAN PEMBELAJARAN BIOLOGI PADA KURIKULUM 2013 UNTUK MENINGKATKAN KARAKTER SISWA

    Directory of Open Access Journals (Sweden)

    Nur Khasanah

    2017-10-01

    Full Text Available  ABSTRACTThe learning activities is a process of discovery and experience so that the knowledge can improve students' understanding and the character. Science is often identified with the West. The Islamic education is often oriented to the future life tend to be defensive. Approach of Science and Religion (SR is a combination of approaches concepts, process skills, inquiry, and discovery and approaches to religious values. The philosophy underlying the approach is a constructivist approach behavioristik SR, learners formulate their own concepts in cognitive structure based on their knowledge then implement the values that exist in the community surrounding and religious values. Subject of this research was a 45 students of MAN 1 Semarang academic year 2015-2016 Research was conducted in odd semester of 2015, include: 1 planning, 2 implementation, 3 observation,   and4 evaluation. The results showed a good indicator of student activity in the learning lab and discussions has been reached on the completeness of classical study on lab activities amounted to 82.44% with an average value of 81.48 liveliness, and discussions 81.86% with an average value of 82, 10 (criteria very well. Indicators student's character visits of religious attitudes, responsibility, honesty, respect, discipline, and self-contained. The conclusion were a. SR approach seeks to provide an understanding of How teach science by providing a vision of Islam in the classroom. b. SR approach applied to the learning process Biology can apply knowledge and improve the character of the students.

  3. SR ( Science and Religion SEBAGAI PENDEKATAN PEMBELAJARAN BIOLOGI PADA KURIKULUM 2013 UNTUK MENINGKATKAN KARAKTER SISWA

    Directory of Open Access Journals (Sweden)

    Nur Khasanah

    2017-05-01

    Full Text Available  ABSTRACTThe learning activities is a process of discovery and experience so that the knowledge can improve students' understanding and the character. Science is often identified with the West. The Islamic education is often oriented to the future life tend to be defensive. Approach of Science and Religion (SR is a combination of approaches concepts, process skills, inquiry, and discovery and approaches to religious values. The philosophy underlying the approach is a constructivist approach behavioristik SR, learners formulate their own concepts in cognitive structure based on their knowledge then implement the values that exist in the community surrounding and religious values. Subject of this research was a 45 students of MAN 1 Semarang academic year 2015-2016 Research was conducted in odd semester of 2015, include: 1 planning, 2 implementation, 3 observation,   and4 evaluation. The results showed a good indicator of student activity in the learning lab and discussions has been reached on the completeness of classical study on lab activities amounted to 82.44% with an average value of 81.48 liveliness, and discussions 81.86% with an average value of 82, 10 (criteria very well. Indicators student's character visits of religious attitudes, responsibility, honesty, respect, discipline, and self-contained. The conclusion were a. SR approach seeks to provide an understanding of How teach science by providing a vision of Islam in the classroom. b. SR approach applied to the learning process Biology can apply knowledge and improve the character of the students.

  4. Space Shuttle 750 psi Helium Regulator Application on Mars Science Laboratory Propulsion

    Science.gov (United States)

    Mizukami, Masashi; Yankura, George; Rust, Thomas; Anderson, John R.; Dien, Anthony; Garda, Hoshang; Bezer, Mary Ann; Johnson, David; Arndt, Scott

    2009-01-01

    The Mars Science Laboratory (MSL) is NASA's next major mission to Mars, to be launched in September 2009. It is a nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. The descent and landing uses a unique 'skycrane' concept, where a rocket-powered descent stage decelerates the vehicle, hovers over the ground, lowers the rover to the ground on a bridle, then flies a safe distance away for disposal. This descent stage uses a regulated hydrazine propulsion system. Performance requirements for the pressure regulator were very demanding, with a wide range of flow rates and tight regulated pressure band. These indicated that a piloted regulator would be needed, which are notoriously complex, and time available for development was short. Coincidentally, it was found that the helium regulator used in the Space Shuttle Orbiter main propulsion system came very close to meeting MSL requirements. However, the type was out of production, and fabricating new units would incur long lead times and technical risk. Therefore, the Space Shuttle program graciously furnished three units for use by MSL. Minor modifications were made, and the units were carefully tuned to MSL requirements. Some of the personnel involved had built and tested the original shuttle units. Delta qualification for MSL application was successfully conducted on one of the units. A pyrovalve slam start and shock test was conducted. Dynamic performance analyses for the new application were conducted, using sophisticated tools developed for Shuttle. Because the MSL regulator is a refurbished Shuttle flight regulator, it will be the only part of MSL which has physically already been in space.

  5. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science

    Science.gov (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  6. A Programme-Wide Training Framework to Facilitate Scientific Communication Skills Development amongst Biological Sciences Masters Students

    Science.gov (United States)

    Divan, Aysha; Mason, Sam

    2016-01-01

    In this article we describe the effectiveness of a programme-wide communication skills training framework incorporated within a one-year biological sciences taught Masters course designed to enhance the competency of students in communicating scientific research principally to a scientific audience. In one class we analysed the numerical marks…

  7. Proceedings of the 42nd basic science seminar. (The 7th workshop on neutron crystallography in biology)

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1996-02-01

    42nd advanced science seminar (the 7th workshop on neutron crystallography in biology) was held on October, 25-26, 1995 at Tokai. Forty three participants from university, research institute and private company took part in the workshop and there were 17 lectures given. The proceedings collect the figures and tables which the speakers used in their lectures. (author)

  8. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective.

    Science.gov (United States)

    Wang, Ting; Garcia, Joe Gn; Zhang, Wei

    2012-12-01

    Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.

  9. Investigating Flipped Learning: Student Self-Regulated Learning, Perceptions, and Achievement in an Introductory Biology Course

    Science.gov (United States)

    Sletten, Sarah Rae

    2017-06-01

    In flipped classrooms, lectures, which are normally delivered in-class, are assigned as homework in the form of videos, and assignments that were traditionally assigned as homework, are done as learning activities in class. It was hypothesized that the effectiveness of the flipped model hinges on a student's desire and ability to adopt a self-directed learning style. The purpose of this study was twofold; it aimed at examining the relationship between two variables—students' perceptions of the flipped model and their self-regulated learning (SRL) behaviors—and the impact that these variables have on achievement in a flipped class. For the study, 76 participants from a flipped introductory biology course were asked about their SRL strategy use and perceptions of the flipped model. SRL strategy use was measured using a modified version of the Motivated Strategies for Learning Questionnaire (MSLQ; Wolters et al. 2005), while the flipped perceptions survey was newly derived. Student letter grades were collected as a measure of achievement. Through regression analysis, it was found that students' perceptions of the flipped model positively predict students' use of several types of SRL strategies. However, the data did not indicate a relationship between student perceptions and achievement, neither directly nor indirectly, through SRL strategy use. Results suggest that flipped classrooms demonstrate their successes in the active learning sessions through constructivist teaching methods. Video lectures hold an important role in flipped classes, however, students may need to practice SRL skills to become more self-directed and effectively learn from them.

  10. The Science and Issues of Human DNA Polymoprhisms: A Training Workshop for High School Biology Teachers

    Energy Technology Data Exchange (ETDEWEB)

    David. A Micklos

    2006-10-30

    This project achieved its goal of implementing a nationwide training program to introduce high school biology teachers to the key uses and societal implications of human DNA polymorphisms. The 2.5-day workshop introduced high school biology faculty to a laboratory-based unit on human DNA polymorphisms – which provides a uniquely personal perspective on the science and Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. As proposed, 12 workshops were conducted at venues across the United States. The workshops were attended by 256 high school faculty, exceeding proposed attendance of 240 by 7%. Each workshop mixed theoretical, laboratory, and computer work with practical and ethical implications. Program participants learned simplified lab techniques for amplifying three types of chromosomal polymorphisms: an Alu insertion (PV92), a VNTR (pMCT118/D1S80), and single nucleotide polymorphisms (SNPs) in the mitochondrial control region. These polymorphisms illustrate the use of DNA variations in disease diagnosis, forensic biology, and identity testing - and provide a starting point for discussing the uses and potential abuses of genetic technology. Participants also learned how to use their Alu and mitochondrial data as an entrée to human population genetics and evolution. Our work to simplify lab techniques for amplifying human DNA polymorphisms in educational settings culminated with the release in 1998 of three Advanced Technology (AT) PCR kits by Carolina Biological Supply Company, the nation’s oldest educational science supplier. The kits use a simple 30-minute method to isolate template DNA from hair sheaths or buccal cells and streamlined PCR chemistry based on Pharmacia Ready-To-Go Beads, which incorporate Taq polymerase, deoxynucleotide triphosphates, and buffer in a freeze-dried pellet. These kits have greatly simplified teacher implementation of human PCR labs, and their use is growing at a rapid pace. Sales of human polymorphism

  11. The Science and Issues of Human DNA Polymorphisms: A Training Workshop for High School Biology Teachers

    Energy Technology Data Exchange (ETDEWEB)

    Micklos, David A.

    2006-10-30

    This project achieved its goal of implementing a nationwide training program to introduce high school biology teachers to the key uses and societal implications of human DNA polymorphisms. The 2.5-day workshop introduced high school biology faculty to a laboratory-based unit on human DNA polymorphisms â which provides a uniquely personal perspective on the science and Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. As proposed, 12 workshops were conducted at venues across the United States. The workshops were attended by 256 high school faculty, exceeding proposed attendance of 240 by 7%. Each workshop mixed theoretical, laboratory, and computer work with practical and ethical implications. Program participants learned simplified lab techniques for amplifying three types of chromosomal polymorphisms: an Alu insertion (PV92), a VNTR (pMCT118/D1S80), and single nucleotide polymorphisms (SNPs) in the mitochondrial control region. These polymorphisms illustrate the use of DNA variations in disease diagnosis, forensic biology, and identity testing - and provide a starting point for discussing the uses and potential abuses of genetic technology. Participants also learned how to use their Alu and mitochondrial data as an entrée to human population genetics and evolution. Our work to simplify lab techniques for amplifying human DNA polymorphisms in educational settings culminated with the release in 1998 of three Advanced Technology (AT) PCR kits by Carolina Biological Supply Company, the nationâÂÂs oldest educational science supplier. The kits use a simple 30-minute method to isolate template DNA from hair sheaths or buccal cells and streamlined PCR chemistry based on Pharmacia Ready-To-Go Beads, which incorporate Taq polymerase, deoxynucleotide triphosphates, and buffer in a freeze-dried pellet. These kits have greatly simplified teacher implementation of human PCR labs, and their use is growing at a rapid pace. Sales of human

  12. Influence of Psychosocial Classroom Environment on Students' Motivation and Self-Regulation in Science Learning: A Structural Equation Modeling Approach

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill M.

    2013-04-01

    The primary aim of this study was two-fold: 1) to identify salient psychosocial features of the classroom environment that influence students' motivation and self-regulation in science learning; and 2) to examine the effect of the motivational constructs of learning goal orientation, science task value and self-efficacy in science learning on students' self-regulation in science classrooms. Data collected from 1360 science students in grades 8, 9 and 10 in five public schools in Perth, Western Australia were utilized to validate the questionnaires and to investigate the hypothesized relationships. Structural Equation Modeling analysis suggested that student cohesiveness, investigation and task orientation were the most influential predictors of student motivation and self-regulation in science learning. In addition, learning goal orientation, task value and self-efficacy significantly influenced students' self-regulation in science. The findings offer potential opportunities for educators to plan and implement effective pedagogical strategies aimed at increasing students' motivation and self-regulation in science learning.

  13. Scales and scaling in turbulent ocean sciences; physics-biology coupling

    Science.gov (United States)

    Schmitt, Francois

    2015-04-01

    Geophysical fields possess huge fluctuations over many spatial and temporal scales. In the ocean, such property at smaller scales is closely linked to marine turbulence. The velocity field is varying from large scales to the Kolmogorov scale (mm) and scalar fields from large scales to the Batchelor scale, which is often much smaller. As a consequence, it is not always simple to determine at which scale a process should be considered. The scale question is hence fundamental in marine sciences, especially when dealing with physics-biology coupling. For example, marine dynamical models have typically a grid size of hundred meters or more, which is more than 105 times larger than the smallest turbulence scales (Kolmogorov scale). Such scale is fine for the dynamics of a whale (around 100 m) but for a fish larvae (1 cm) or a copepod (1 mm) a description at smaller scales is needed, due to the nonlinear nature of turbulence. The same is verified also for biogeochemical fields such as passive and actives tracers (oxygen, fluorescence, nutrients, pH, turbidity, temperature, salinity...) In this framework, we will discuss the scale problem in turbulence modeling in the ocean, and the relation of Kolmogorov's and Batchelor's scales of turbulence in the ocean, with the size of marine animals. We will also consider scaling laws for organism-particle Reynolds numbers (from whales to bacteria), and possible scaling laws for organism's accelerations.

  14. Bridging gaps in discovery and development: chemical and biological sciences for affordable health, wellness and sustainability.

    Science.gov (United States)

    Chauhan, Prem Man Singh

    2011-05-01

    To commemorate 2011 as the International Year of Chemistry, the Indian Society of Chemists and Biologists organized its 15th International Conference on 'Bridging Gaps in Discovery and Development: Chemical and Biological Sciences for Affordable Health, Wellness and Sustainability' at Hotel Grand Bhagwati, in association with Saurashtra University, Rajkot, India. Anamik Shah, President of the Indian Society of Chemists and Biologists, was organizing secretary of the conference. Nicole Moreau, President of the International Union of Pure and Applied Chemistry and Secretary General of the Comité National de la Chimie, National Centre for Scientific Research France, was chief guest of the function. The four-day scientific program included 52 plenary lectures, 24 invited lectures by eminent scientists in the field and 12 oral presentations. A total of 317 posters were presented by young scientists and PhD students in three different poster sessions. Approximately 750 delegates from India, the USA, UK, France, Switzerland, Germany, Austria, Belgium, Sweden, Japan and other countries attended the conference. The majority of the speakers gave presentations related to their current projects and areas of interest and many of the talks covered synthesis, structure-activity relationships, current trends in medicinal chemistry and drug research.

  15. The European Research Infrastructures of the ESFRI Roadmap in Biological and Medical Sciences: status and perspectives

    Directory of Open Access Journals (Sweden)

    Alessia Calzolari

    2014-06-01

    Full Text Available INTRODUCTION. Since 2002, the European Strategy Forum on Research Infrastructures identified the needs for Research Infrastructures (RIs in Europe in priority fields of scientific research and drafted a strategic document, the ESFRI Roadmap, defining the specific RIs essential to foster European research and economy. The Biological and Medical Sciences RIs (BMS RIs were developed thanks to the active participation of many institutions in different European member states associated to address the emerging needs in biomedicine and, among these, the Italian National Institute of Health (ISS, in virtue of its role in public health and research, has been specifically involved in the national development and implementation of three RIs: the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI, the European Advanced Translational Research Infrastructure in Medicine (EATRIS and the European Clinical Research Infrastructures Network (ECRIN. AIM. This article outlines the design and development of these RIs up to the recent achievement of the ERIC status, their importance in the Horizon 2020 programme and their societal and economic potential impact, with special attention to their development and significance in Italy. CONCLUSIONS. The ISS plays a unique role in fostering a coordinated participation of excellence Italian institutes/facilities to different European biomedical RIs, thus contributing to health innovation, healthcare optimization, and healthcare cost containment.

  16. Education catching up with science: preparing students for three-dimensional literacy in cell biology.

    Science.gov (United States)

    Kramer, Ijsbrand M; Dahmani, Hassen-Reda; Delouche, Pamina; Bidabe, Marissa; Schneeberger, Patricia

    2012-01-01

    The large number of experimentally determined molecular structures has led to the development of a new semiotic system in the life sciences, with increasing use of accurate molecular representations. To determine how this change impacts students' learning, we incorporated image tests into our introductory cell biology course. Groups of students used a single text dealing with signal transduction, which was supplemented with images made in one of three iconographic styles. Typically, we employed realistic renderings, using computer-generated Protein Data Bank (PDB) structures; realistic-schematic renderings, using shapes inspired by PDB structures; or schematic renderings, using simple geometric shapes to represent cellular components. The control group received a list of keywords. When students were asked to draw and describe the process in their own style and to reply to multiple-choice questions, the three iconographic approaches equally improved the overall outcome of the tests (relative to keywords). Students found the three approaches equally useful but, when asked to select a preferred style, they largely favored a realistic-schematic style. When students were asked to annotate "raw" realistic images, both keywords and schematic representations failed to prepare them for this task. We conclude that supplementary images facilitate the comprehension process and despite their visual clutter, realistic representations do not hinder learning in an introductory course.

  17. Using Primary Literature to Teach Science Literacy to Introductory Biology Students

    OpenAIRE

    Johanna Krontiris-Litowitz

    2013-01-01

    Undergraduate students struggle to read the scientific literature and educators have suggested that this may reflect deficiencies in their science literacy skills. In this two-year study we develop and test a strategy for using the scientific literature to teach science literacy skills to novice life science majors. The first year of the project served as a preliminary investigation in which we evaluated student science literacy skills, created a set of science literacy learning objectives al...

  18. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment

    OpenAIRE

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A.; Roland, Kenneth L.; Curtiss, Roy

    2008-01-01

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain χ8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis a...

  19. Emotion malleability beliefs, emotion regulation, and psychopathology: Integrating affective and clinical science.

    Science.gov (United States)

    Kneeland, Elizabeth T; Dovidio, John F; Joormann, Jutta; Clark, Margaret S

    2016-04-01

    Beliefs that individuals hold about whether emotions are malleable or fixed, also referred to as emotion malleability beliefs, may play a crucial role in individuals' emotional experiences and their engagement in changing their emotions. The current review integrates affective science and clinical science perspectives to provide a comprehensive review of how emotion malleability beliefs relate to emotionality, emotion regulation, and specific clinical disorders and treatment. Specifically, we discuss how holding more malleable views of emotion could be associated with more active emotion regulation efforts, greater motivation to engage in active regulatory efforts, more effort expended regulating emotions, and lower levels of pathological distress. In addition, we explain how extending emotion malleability beliefs into the clinical domain can complement and extend current conceptualizations of major depressive disorder, social anxiety disorder, and generalized anxiety disorder. This may prove important given the increasingly central role emotion dysregulation has been given in conceptualization and intervention for these psychiatric conditions. Additionally, discussion focuses on how emotion beliefs could be more explicitly addressed in existing cognitive therapies. Promising future directions for research are identified throughout the review. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Proceedings of the 182nd basic science seminar (The workshop on neutron structural biology ) 'New frontiers of structural biology advanced by solution scattering'

    International Nuclear Information System (INIS)

    Fujiwara, Satoru

    2001-03-01

    182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)

  1. Proceedings of the 182nd basic science seminar (The workshop on neutron structural biology ) 'New frontiers of structural biology advanced by solution scattering'

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Satoru (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)

  2. Graphical methods and Cold War scientific practice: the Stommel Diagram's intriguing journey from the physical to the biological environmental sciences.

    Science.gov (United States)

    Vance, Tiffany C; Doel, Ronald E

    2010-01-01

    In the last quarter of the twentieth century, an innovative three-dimensional graphical technique was introduced into biological oceanography and ecology, where it spread rapidly. Used to improve scientists' understanding of the importance of scale within oceanic ecosystems, this influential diagram addressed biological scales from phytoplankton to fish, physical scales from diurnal tides to ocean currents, and temporal scales from hours to ice ages. Yet the Stommel Diagram (named for physical oceanographer Henry Stommel, who created it in 1963) had not been devised to aid ecological investigations. Rather, Stommel intended it to help plan large-scale research programs in physical oceanography, particularly as Cold War research funding enabled a dramatic expansion of physical oceanography in the 1960s. Marine ecologists utilized the Stommel Diagram to enhance research on biological production in ocean environments, a key concern by the 1970s amid growing alarm about overfishing and ocean pollution. Before the end of the twentieth century, the diagram had become a significant tool within the discipline of ecology. Tracing the path that Stommel's graphical techniques traveled from the physical to the biological environmental sciences reveals a great deal about practices in these distinct research communities and their relative professional and institutional standings in the Cold War era. Crucial to appreciating the course of that path is an understanding of the divergent intellectual and social contexts of the physical versus the biological environmental sciences.

  3. Giant Ants and Walking Plants: Using Science Fiction to Teach a Writing-Intensive, Lab-Based Biology Class for Nonmajors

    Science.gov (United States)

    Firooznia, Fardad

    2006-01-01

    This writing-intensive, lab-based, nonmajor biology course explores scientific inquiry and biological concepts through specific topics illustrated or inaccurately depicted in works of science fiction. The laboratory emphasizes the scientific method and introduces several techniques used in biological research related to the works we study.…

  4. An evaluation of community college student perceptions of the science laboratory and attitudes towards science in an introductory biology course

    Science.gov (United States)

    Robinson, Nakia Rae

    The science laboratory is an integral component of science education. However, the academic value of student participation in the laboratory is not clearly understood. One way to discern student perceptions of the science laboratory is by exploring their views of the classroom environment. The classroom environment is one determinant that can directly influence student learning and affective outcomes. Therefore, this study sought to examine community college students' perceptions of the laboratory classroom environment and their attitudes toward science. Quantitative methods using two survey instruments, the Science Laboratory Environment Instrument (SLEI) and the Test of Science Related Attitudes (TORSA) were administered to measure laboratory perceptions and attitudes, respectively. A determination of differences among males and females as well as three academic streams were examined. Findings indicated that overall community college students had positive views of the laboratory environment regardless of gender of academic major. However, the results indicated that the opportunity to pursue open-ended activities in the laboratory was not prevalent. Additionally, females viewed the laboratory material environment more favorably than their male classmates did. Students' attitudes toward science ranged from favorable to undecided and no significant gender differences were present. However, there were significantly statistical differences between the attitudes of nonscience majors compared to both allied health and STEM majors. Nonscience majors had less positive attitudes toward scientific inquiry, adoption of scientific attitudes, and enjoyment of science lessons. Results also indicated that collectively, students' experiences in the laboratory were positive predicators of their attitudes toward science. However, no laboratory environment scale was a significant independent predictor of student attitudes. .A students' academic streams was the only significant

  5. The science and regulations of probiotic food and supplement product labeling.

    Science.gov (United States)

    Sanders, Mary Ellen; Levy, Dan D

    2011-02-01

    Presented by the New York Academy of Sciences, the U.S. Food and Drug Administration (FDA), and the U.S. Office of Dietary Supplements of the National Institutes of Health, the symposium "Probiotic Foods and Supplements: The Science and Regulations of Labeling," was held on June 12, 2010 at the New York Academy of Sciences, New York, NY, the goals of which were to facilitate the exchange of ideas regarding labeling and substantiation of claims for probiotics among academic, industry, and regulatory professionals, and to discuss ways to translate and communicate research results in a truthful way to the consumer and to such health professionals as physicians, pharmacists, and dieticians. The target audience for this symposium included academicians interested in conducting research on the health benefits of probiotics; scientists; communications personnel, and regulatory specialists from companies involved in, or interested in, the marketing of probiotics; U.S. government regulatory experts tasked with oversight of probiotic foods and dietary supplement products; and other experts in the field interested in the development of probiotics for the U.S. market. © 2011 New York Academy of Sciences.

  6. Investigating Relationships among Pre-Service Science Teachers' Conceptual Knowledge of Electric Current, Motivational Beliefs and Self-Regulation

    Science.gov (United States)

    Inaltun, Hüseyin; Ates, Salih

    2015-01-01

    The purpose of this study is to examine relationships among pre-service science teachers' conceptual knowledge of electric current, motivational beliefs, and self-regulation. One hundred and twenty-seven students (female = 107, male = 20) enrolled in the science education program of a public university in Ankara participated the study. A concept…

  7. A chemical biology approach to interrogate quorum-sensing regulated behaviors at the molecular and cellular level.

    Science.gov (United States)

    Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D

    2013-07-25

    Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    Science.gov (United States)

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  9. Tritium in the Physical and Biological Sciences. Vol. II. Proceedings of the Symposium on the Detection and Use of Tritium in the Physical and Biological Sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-02-15

    The use of tritium for research in physics, chemistry, biology and hydrology has in recent years become increasingly important. It was for this reason that the first international conference to discuss the progress of new developments was organized by the IAEA in conjunction with the Joint Commission on Applied Radioactivity and held from 3 - 10 May 1961, in Vienna. The first five sessions of the Symposium were devoted to the use of tritium in hydrology, physics and chemistry. Special emphasis was laid on the role of tritium as a tracer in hydrology, especially in the study of water movement. The establishment and improvement of counting and detection techniques to facilitate the application of tritium as a tracer was another aspect discussed in this part of the proceedings. Papers were read on the preparation of tritiated compounds and it was generally agreed that further clarification of the mechanism of various techniques, and of the Wilzbach gas exposure technique in particular, would lead to further developments in the synthesis of a number of tritium compounds important in biology. Other papers were concerned with tritium applications to studies of the mechanism of some chemical reactions together with the effects of tritium isotopes. During the second part of the Symposium the biological applications of tritium and tritiated compounds were discussed. These included general problems connected with the biological uses of tritium and the radiation effects of tritium on living organisms such as viruses, bacteria and cancer cells. The value of tritium in biological studies became apparent because of the ease with which a large number of metabolically active compounds such as hormones, vitamins and other important constituents in the body can be labelled with tritium. Tritium is also a weak beta-emitter and autoradiographs of tissues and single cells containing tritium-labelled compounds allow an excellent localization of the tracer. The Symposium was attended by

  10. Tritium in the Physical and Biological Sciences. Vol. II. Proceedings of the Symposium on the Detection and Use of Tritium in the Physical and Biological Sciences

    International Nuclear Information System (INIS)

    1962-01-01

    The use of tritium for research in physics, chemistry, biology and hydrology has in recent years become increasingly important. It was for this reason that the first international conference to discuss the progress of new developments was organized by the IAEA in conjunction with the Joint Commission on Applied Radioactivity and held from 3 — 10 May 1961, in Vienna. The first five sessions of the Symposium were devoted to the use of tritium in hydrology, physics and chemistry. Special emphasis was laid on the role of tritium as a tracer in hydrology, especially in the study of water movement. The establishment and improvement of counting and detection techniques to facilitate the application of tritium as a tracer was another aspect discussed in this part of the proceedings. Papers were read on the preparation of tritiated compounds and it was generally agreed that further clarification of the mechanism of various techniques, and of the Wilzbach gas exposure technique in particular, would lead to further developments in the synthesis of a number of tritium compounds important in biology. Other papers were concerned with tritium applications to studies of the mechanism of some chemical reactions together with the effects of tritium isotopes. During the second part of the Symposium the biological applications of tritium and tritiated compounds were discussed. These included general problems connected with the biological uses of tritium and the radiation effects of tritium on living organisms such as viruses, bacteria and cancer cells. The value of tritium in biological studies became apparent because of the ease with which a large number of metabolically active compounds such as hormones, vitamins and other important constituents in the body can be labelled with tritium. Tritium is also a weak beta-emitter and autoradiographs of tissues and single cells containing tritium-labelled compounds allow an excellent localization of the tracer. The Symposium was attended

  11. Evaluation of the published biological bases for regulations concerning non-coherent light

    International Nuclear Information System (INIS)

    Sykes, S.M.; Bockstahler, L.; Felten, R.; Hellman, K.; Jacobson, E.; Krell, K.; Lytle, C.D.; Waxler, M.; Withrow, T.; Zaremba, T.

    1981-01-01

    The development of an information base of light-induced bioeffects data to support regulatory activities is a continuing process. Though standards covering the three spectral regions of light, ultraviolet (UV), visible, and infrared (IR), currently exist, attempts must regularly be made to assess the adequacy of these standards with respect to currently available biological information. In order to establish a starting point for these reassessments, the biological effects of light considered in establishing the standards must first be determined. Using this information, the strengths and weaknesses of each standard can be evaluated, and particularly important areas of future research can be determined. This document analyzes current standards covering non-coherent light with respect to the biological effects considered in their adoption. The current standards covering non-coherent light are based on few biological endpoints. The ACGIH standard for ultraviolet considers only skin erythema and eye keratitis; the visible light standard considers only retinal damage; and the infrared standard considers only lens cataracts. Clearly, other biological effects need to be considered. But any standard represents a state-of-the-art estimate of maximum allowable exposure levels, and while there is considerable qualitative information on many additional biological effects of light, there is little quantitative information. Without this information it is difficult either to incorporate these effects into the regulatory process or to determine if the current standards are adequate to cover them

  12. The Influence of Pintrich's Self-Regulated Learning Model on Elementary Teacher Candidates in a Life Science Course

    Science.gov (United States)

    Çetin, Baris

    2017-01-01

    The purpose of this research was to determine whether the use of activities based on Pintrich's self-regulated learning model effect the self-regulated learning perceptions of elementary teacher candidates within a Life Science course. The research was organized in accordance with the quasi-experimental designs model. This study was conducted…

  13. Learning Science by Engaging Religion: A Novel Two-Course Approach for Biology Majors

    Science.gov (United States)

    Eisen, Arri; Huang, Junjian

    2014-01-01

    Many issues in science create individual and societal tensions with important implications outside the classroom. We describe one model that directly addresses such tensions by integrating science and religion in two parallel, integrated courses for science majors. Evaluation of the goals of the project--(1) providing students with strategies to…

  14. Visual Representations on High School Biology, Chemistry, Earth Science, and Physics Assessments

    Science.gov (United States)

    LaDue, Nicole D.; Libarkin, Julie C.; Thomas, Stephen R.

    2015-01-01

    The pervasive use of visual representations in textbooks, curricula, and assessments underscores their importance in K-12 science education. For example, visual representations figure prominently in the recent publication of the Next Generation Science Standards (NGSS Lead States in Next generation science standards: for states, by states.…

  15. Two-Dimensional Spectroscopy Is Being Used to Address Core Scientific Questions in Biology and Materials Science.

    Science.gov (United States)

    Petti, Megan K; Lomont, Justin P; Maj, Michał; Zanni, Martin T

    2018-02-15

    Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.

  16. Report of the Defense Science Board Task Force on Department of Defense Biological Safety and Security Program

    Science.gov (United States)

    2009-05-01

    Three (NAMRU-3) - Lima, Peru : Naval Medical Research Center Detachment (NMRCD) *These labs are co-located. To provide some measure of the scope and...Aceh, Indonesia and the more recent earthquakes in central Java and Peru . Edgewood Chemical Biological Center (ECBC) ECBC’s science and technology... diabetes , obesity, cancer, psychiatric disorders, problems of pregnancy, AIDS, hepatitis, malaria, parasitic infections, and a host of other

  17. Current Status and Recommendations for the Future of Research, Teaching, and Testing in the Biological Sciences of Radiation Oncology: Report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Paul E., E-mail: pwallner@theabr.org [21st Century Oncology, LLC, and the American Board of Radiology, Bethesda, Maryland (United States); Anscher, Mitchell S. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Barker, Christopher A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Bassetti, Michael [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin (United States); Bristow, Robert G. [Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Cancer Center/University of Toronto, Toronto, Ontario (Canada); Cha, Yong I. [Department of Radiation Oncology, Norton Cancer Center, Louisville, Kentucky (United States); Dicker, Adam P. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Formenti, Silvia C. [Department of Radiation Oncology, New York University, New York, New York (United States); Graves, Edward E. [Departments of Radiation Oncology and Radiology, Stanford University, Stanford, California (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania (United States); Hei, Tom K. [Center for Radiation Research, Columbia University, New York, New York (United States); Kimmelman, Alec C. [Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Kirsch, David G. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Kozak, Kevin R. [Department of Human Oncology, University of Wisconsin (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan (United States); Marples, Brian [Department of Radiation Oncology, Oakland University, Oakland, California (United States); and others

    2014-01-01

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.

  18. When physics is not "just physics": complexity science invites new measurement frames for exploring the physics of cognitive and biological development.

    Science.gov (United States)

    Kelty-Stephen, Damian; Dixon, James A

    2012-01-01

    The neurobiological sciences have struggled to resolve the physical foundations for biological and cognitive phenomena with a suspicion that biological and cognitive systems, capable of exhibiting and contributing to structure within themselves and through their contexts, are fundamentally distinct or autonomous from purely physical systems. Complexity science offers new physics-based approaches to explaining biological and cognitive phenomena. In response to controversy over whether complexity science might seek to "explain away" biology and cognition as "just physics," we propose that complexity science serves as an application of recent advances in physics to phenomena in biology and cognition without reducing or undermining the integrity of the phenomena to be explained. We highlight that physics is, like the neurobiological sciences, an evolving field and that the threat of reduction is overstated. We propose that distinctions between biological and cognitive systems from physical systems are pretheoretical and thus optional. We review our own work applying insights from post-classical physics regarding turbulence and fractal fluctuations to the problems of developing cognitive structure. Far from hoping to reduce biology and cognition to "nothing but" physics, we present our view that complexity science offers new explanatory frameworks for considering physical foundations of biological and cognitive phenomena.

  19. Learning about Marine Biology. Superific Science Book VI. A Good Apple Science Activity Book for Grades 5-8+.

    Science.gov (United States)

    Conway, Lorraine

    Based on the assumption that most students have a natural curiosity about the plant and animal life residing in the oceans, this document provides students in grades five through eight with activities in marine biology. The book provides illustrated information and learning activities dealing with: (1) diatoms; (2) the life cycle of the jellyfish;…

  20. Factor analysis for instruments of science learning motivation and its implementation for the chemistry and biology teacher candidates

    Science.gov (United States)

    Prasetya, A. T.; Ridlo, S.

    2018-03-01

    The purpose of this study is to test the learning motivation of science instruments and compare the learning motivation of science from chemistry and biology teacher candidates. Kuesioner Motivasi Sains (KMS) in Indonesian adoption of the Science Motivation Questionnaire II (SMQ II) consisting of 25 items with a 5-point Likert scale. The number of respondents for the Exploratory Factor Analysis (EFA) test was 312. The Kaiser-Meyer-Olkin (KMO), determinant, Bartlett’s Sphericity, Measures of Sampling Adequacy (MSA) tests against KMS using SPSS 20.0, and Lisrel 8.51 software indicate eligible indications. However testing of Communalities obtained results that there are 4 items not qualified, so the item is discarded. The second test, all parameters of eligibility and has a magnitude of Root Mean Square Error of Approximation (RMSEA), P-Value for the Test of Close Fit (RMSEA <0.05), Goodness of Fit Index (GFI) was good. The new KMS with 21 valid items and composite reliability of 0.9329 can be used to test the level of learning motivation of science which includes Intrinsic Motivation, Sefl-Efficacy, Self-Determination, Grade Motivation and Career Motivation for students who master the Indonesian language. KMS trials of chemistry and biology teacher candidates obtained no significant difference in the learning motivation between the two groups.

  1. Structural Biology Fact Sheet

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  2. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2013-06-01

    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired." Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. [Collections of human biological resources for research purposes: from regulations to the need of a guide of good collection practices].

    Science.gov (United States)

    Le Roux, N; de Montgolfier, S; di Donato, J-H; Boccon-Gibod, L; Teillac, P; Hervé, C; Berthon, P

    2003-12-01

    In France, collections of human biological resources are regulated by the "Bioethics Law", currently in revision. Hence, we analyse the regulatory and ethical issues of these practices in the context of scientific research. The ultimate aim of such collections is to improve biological and medical knowledge. We think that the French regulatory system is quite complicated and non-explicit for "collection holders". The multiplicity of legal texts concerning this activity has made their application difficult, especially in the absence of application decrees. The project amending the actual law has clarified the legal status of collections but it did not shed light on the status of human body detached parts. Furthermore, the text is still very far from the international bioethical recommendations, and does not reflect the actual collection's implementation. The establishment of a guideline of Good Collection Practices, based on clear principles, should help to simplify the situation, especially when it is imbedded in the regulation and linked to control procedures. It would allow a balance between collective interests and the protection of individuals, taking into account of the international highly competitive scientific and economical constraints. The major issue is to preserve and to perpetuate the existing and future collections because of their precious value as an important tool for biomedical knowledge. The efficiency of a regulation depends on its legibility and accessibility, two requirements that seem to determine the acceptance of the regulatory tool and its application allowing subsequently to reach fairness in proceedings.

  4. Intelligent biology and medicine in 2015: advancing interdisciplinary education, collaboration, and data science.

    Science.gov (United States)

    Huang, Kun; Liu, Yunlong; Huang, Yufei; Li, Lang; Cooper, Lee; Ruan, Jianhua; Zhao, Zhongming

    2016-08-22

    We summarize the 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) and the editorial report of the supplement to BMC Genomics. The supplement includes 20 research articles selected from the manuscripts submitted to ICIBM 2015. The conference was held on November 13-15, 2015 at Indianapolis, Indiana, USA. It included eight scientific sessions, three tutorials, four keynote presentations, three highlight talks, and a poster session that covered current research in bioinformatics, systems biology, computational biology, biotechnologies, and computational medicine.

  5. The Quantified Self: Fundamental Disruption in Big Data Science and Biological Discovery.

    Science.gov (United States)

    Swan, Melanie

    2013-06-01

    A key contemporary trend emerging in big data science is the quantified self (QS)-individuals engaged in the self-tracking of any kind of biological, physical, behavioral, or environmental information as n=1 individuals or in groups. There are opportunities for big data scientists to develop new models to support QS data collection, integration, and analysis, and also to lead in defining open-access database resources and privacy standards for how personal data is used. Next-generation QS applications could include tools for rendering QS data meaningful in behavior change, establishing baselines and variability in objective metrics, applying new kinds of pattern recognition techniques, and aggregating multiple self-tracking data streams from wearable electronics, biosensors, mobile phones, genomic data, and cloud-based services. The long-term vision of QS activity is that of a systemic monitoring approach where an individual's continuous personal information climate provides real-time performance optimization suggestions. There are some potential limitations related to QS activity-barriers to widespread adoption and a critique regarding scientific soundness-but these may be overcome. One interesting aspect of QS activity is that it is fundamentally a quantitative and qualitative phenomenon since it includes both the collection of objective metrics data and the subjective experience of the impact of these data. Some of this dynamic is being explored as the quantified self is becoming the qualified self in two new ways: by applying QS methods to the tracking of qualitative phenomena such as mood, and by understanding that QS data collection is just the first step in creating qualitative feedback loops for behavior change. In the long-term future, the quantified self may become additionally transformed into the extended exoself as data quantification and self-tracking enable the development of new sense capabilities that are not possible with ordinary senses. The

  6. Synthetic biology regulation and governance: Lessons from TAPIC for the United States, European Union, and Singapore.

    Science.gov (United States)

    Trump, Benjamin D

    2017-11-01

    Synthetic biology is an emerging technology with potential benefits to various fields, yet also contains potential risks to human and environmental health. The field remains in an emerging state with limited quantitative guidance and a small but growing population of international researchers that conduct work within this field. Given the uncertain nature of this technology, an adaptive and anticipatory governance framework may be necessary to balance the potential benefits that may accrue from the technology's continued research alongside a desire to reduce or eliminate potential risks that may arise. However, such developments must account for the unique political and institutional factors that form a government's risk culture - something that can facilitate or impede the development of adaptive synthetic biology governance moving forward. The TAPIC framework helps illustrate those factors that are essential to develop good governance for emerging technologies like synthetic biology. Specifically, an application of TAPIC to synthetic biology governance indicates that the factors of accountability, participation, and integrity must be bolstered to improve technology governance in governments like with the United States, European Union, and Singapore. Copyright © 2017. Published by Elsevier B.V.

  7. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  8. Students’ experienced coherence between chemistry and biology in context-based secondary science education

    NARCIS (Netherlands)

    Boer, H.J.; Prins, Gjalt; Goedhart, M.J.; Boersma, Kerst

    2014-01-01

    In current biology and chemistry secondary school practice, coherence between the subjects chemistry and biology is underexposed or even ignored. This is incongruent with the current scientific practice, in which the emphasis is shifting towards inter- and multidisciplinarity. These problems have

  9. EDITORIAL: Nanotechnology at the interface of cell biology, materials science and medicine Nanotechnology at the interface of cell biology, materials science and medicine

    Science.gov (United States)

    Engel, Andreas; Miles, Mervyn

    2008-09-01

    The atomic force microscope (AFM) and related scanning probe microscopes have become resourceful tools to study cells, supramolecular assemblies and single biomolecules, because they allow investigations of such structures in native environments. Quantitative information has been gathered about the surface structure of membrane proteins to lateral and vertical resolutions of 0.5 nm and 0.1 nm, respectively, about the forces that keep protein-protein and protein-nucleic acid assemblies together as well as single proteins in their native conformation, and about the nanomechanical properties of cells in health and disease. Such progress has been achieved mainly because of constant development of AFM instrumentation and sample preparation methods. This special issue of Nanotechnology presents papers from leading laboratories in the field of nanobiology, covering a wide range of topics in the form of original and novel scientific contributions. It addresses achievements in instrumentation, sample preparation, automation and in biological applications. These papers document the creativity and persistence of researchers pursuing the goal to unravel the structure and dynamics of cells, supramolecuar structures and single biomolecules at work. Improved cantilever sensors, novel optical probes, and quantitative data on supports for electrochemical experiments open new avenues for characterizing biological nanomachines down to the single molecule. Comparative measurements of healthy and metastatic cells promise new methods for early detection of tumors, and possible assessments of drug efficacy. High-speed AFMs document possibilities to monitor crystal growth and to observe large structures at video rate. A wealth of information on amyloid-type fibers as well as on membrane proteins has been gathered by single molecule force spectroscopy—a technology now being automated for large-scale data collection. With the progress of basic research and a strong industry supporting

  10. The academic qualification of sexual education in biological science at IFRO Campus Colorado Do Oeste/RO

    Directory of Open Access Journals (Sweden)

    Juliana Negrello Rossarolla

    2018-03-01

    Full Text Available This article gives evidence of results in an initial training offered to the students from the seventh semestre in Biological Sciences course at the Federal Institute in Education, Science and Technology of Rondônia - IFRO - CampusColoradodo Oeste. This activity was developed during the IX Environmental Week, an event that took place at Campus in June, 2016. During the activity, the academics in Biological Sciences course carried out mini-courses in which was approached the subject of human sexuality for four classes from the first year students in Agricultural Technical Course integrated to High School. After completing the activities of Sexual Education that dealt with some topics such as: early sexual initiation, STIs (sexually transmitted infections, homophobia, sexual harassment, media exposure, gender difference, contraceptive methods, among others and after all the data were collected. For that, the students answered a questionnaire about the subject on sexuality, the contributions of this practice is in order to discuss situations related to the subject. After the analysis, was checked a great relevance of the theme proposed for the initial qualification of academics in order to them approach the subject in a significant way to teenagers who attend the schools in which these academics will be able to develop their activities. It was checked out that students from the Agricultural Course integrated to High School who was developing the course have a very restricted index of information about the subject that was handled it. This can be a reality that reaches many young people who attend the Basic Education in many Brazilian schools. On the other hand, the information obtained gave the academics and teachers from the Biological Sciences Course moments of reflection about the inclusion of contents that contemplate this subject in the school curriculum of Basic Education and of the higher course that they attend, as well as the need of a

  11. National Academy of Sciences and Academy of Sciences of the USSR workshop on structure of the eucaryotic genome and regulation of its expression. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report provides a brief overview of the Workshop on Structure of the Eukaryotic Genome and Regulation of its Expression held in Tbilisi, Georgia, USSR. The report describes the presentations made at the meeting but also goes on to describe the state of molecular biology and genetics research in the Soviet Union and makes recommendations on how to improve future such meetings.

  12. National Academy of Sciences and Academy of Sciences of the USSR workshop on structure of the eucaryotic genome and regulation of its expression

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report provides a brief overview of the Workshop on Structure of the Eukaryotic Genome and Regulation of its Expression held in Tbilisi, Georgia, USSR. The report describes the presentations made at the meeting but also goes on to describe the state of molecular biology and genetics research in the Soviet Union and makes recommendations on how to improve future such meetings.

  13. Assessing the Attitudes and Beliefs of Preservice Middle School Science Teachers toward Biologically Diverse Animals

    Science.gov (United States)

    Wagler, Ron; Wagler, Amy

    2015-01-01

    The purpose of this study was to assess the relationship between United States (US) preservice middle school science teacher characteristics, their attitude toward a specific animal and their belief concerning the likelihood of incorporating information about that specific animal into their future science classroom. The study participants…

  14. Nuclear analyses in biology and medical science. Measuring on nucleii in stead of atoms

    International Nuclear Information System (INIS)

    De Goeij, J.J.M.

    1996-01-01

    A brief overview is given of the use of nuclear analyses in life sciences. Features of nuclear analytical methods (NAMs) are grouped into four categories: physical basis, isotopic analyses rather than elemental analyses, no interference of electronic and molecular structure, and penetrating character of nuclear radiation. Obstacles in applying NAMs in the life sciences are outlined. 1 tab

  15. Time on Text and Science Achievement for High School Biology Students

    Science.gov (United States)

    Wyss, Vanessa L.; Dolenc, Nathan; Kong, Xiaoqing; Tai, Robert H.

    2013-01-01

    The conflict between the amount of material to be addressed in high school science classes, the need to prepare students for standardized tests, and the amount of time available forces science educators to make difficult pedagogical decisions on a daily basis. Hands-on and inquiry-based learning offer students more authentic learning experiences…

  16. Relationships between Prospective Elementary Teachers' Classroom Practice and Their Conceptions of Biology and of Teaching Science.

    Science.gov (United States)

    Meyer, Helen; Tabachnick, B. Robert; Hewson, Peter W.; Lemberger, John; Park, Hyun-Ju

    1999-01-01

    Discusses three prospective elementary teachers' conceptions of teaching science and selected portions of their knowledge base in life science. Explores how these teachers' conceptions, along with their teaching actions, developed during the course of a teacher-education program. Contains 21 references. (Author/WRM)

  17. Students' Experienced Coherence Between Chemistry and Biology in Context-Based Secondary Science Education

    NARCIS (Netherlands)

    Boer, Hilde; Prins, Gjalt; Goedhart, M.J.; Boersma, Kerst

    2014-01-01

    Creating coherence between the content of science subjects has been a primary aim of certain reforms in science education and is often proposed in policy documents in various countries (Osborne and Dillon 2008 ; Schmidt et al. 2005 ; Osborne and Collins 2001 ). One of the problems that emerges from

  18. Merton and Ziman's modes of science: the case of biological and similar material transfer agreements

    NARCIS (Netherlands)

    Rodriguez, V.F.

    2007-01-01

    This paper makes a connection between recent studies on research materials exchange and its effect on the progress of science. Academia fears that scientific development could be hampered by the privatised practices of research material exchange. Since post-academic science represents a sufficient

  19. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment.

    Science.gov (United States)

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A; Roland, Kenneth L; Curtiss, Roy

    2008-07-08

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain chi8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 P(R) promoter. An arabinose-regulated c2 gene is present in the chromosome. chi8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of P(R), driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic alpha-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with chi8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable.

  20. Regulation of mutagenesis by exogenous biological factors in the eukaryotic cell systems

    Directory of Open Access Journals (Sweden)

    Lukash L. L.

    2013-07-01

    Full Text Available The representations of the mutations and the nature of spontaneous mutation process and mutagenesis induced by exogenous oncoviruses, DNAs and proteins-mitogens are analysed. Exogenous biological factors induce DNA damages in regulatory-informational way, acting on the cellular systems for maintenance of genetical stability. Molecular mechanisms are the same as at spontaneous mutagenesis but they are realized with the participation of alien genetical material. Among biological mutagens, the oncoviruses and mobile genetic elements (MGEs are distinguished as the strongest destabilizing factors which direct tumor transformation of somatic mammalian cells. Genetical reprogramming or changing the programs of gene expression at the differentiation of stem and progenitor cells under growth factors and citokines is probably followed by mutations and recombinations as well.

  1. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells.

    Science.gov (United States)

    Li, Jinhua; Wang, Guifang; Wang, Donghui; Wu, Qianju; Jiang, Xinquan; Liu, Xuanyong

    2014-12-15

    Many attentions have been paid to the beneficial effect of alkali-treated titanium to bioactivity and osteogenic activity, but few to the other biological effect. In this work, hierarchical micro/nanopore films were prepared on titanium surface by acid etching and alkali treatment and their biological effects on bacteria, cancer cells and mesenchymal stem cells were investigated. Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and human cholangiocarcinoma cell line RBE were used to investigate whether alkali-treated titanium can influence behaviors of bacteria and cancer cells. Responses of bone marrow mesenchymal stem cells (BMMSCs) to alkali-treated titanium were also subsequently investigated. The alkali-treated titanium can potently reduce bacterial adhesion, inhibit RBE and BMMSCs proliferation, while can better promote BMMSCs osteogenesis and angiogenesis than acid-etched titanium. The bacteriostatic ability of the alkali-treated titanium is proposed to result from the joint effect of micro/nanotopography and local pH increase at bacterium/material interface due to the hydrolysis of alkali (earth) metal titanate salts. The inhibitory action of cell proliferation is thought to be the effect of local pH increase at cell/material interface which causes the alkalosis of cells. This alkalosis model reported in this work will help to understand the biologic behaviors of various cells on alkali-treated titanium surface and design the intended biomedical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation.

    Science.gov (United States)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-07-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA-RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners.

  3. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation

    International Nuclear Information System (INIS)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-01-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA–RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners

  4. Source Identification of Human Biological Materials and Its Prospect in Forensic Science.

    Science.gov (United States)

    Zou, K N; Gui, C; Gao, Y; Yang, F; Zhou, H G

    2016-06-01

    Source identification of human biological materials in crime scene plays an important role in reconstructing the crime process. Searching specific genetic markers to identify the source of different human biological materials is the emphasis and difficulty of the research work of legal medical experts in recent years. This paper reviews the genetic markers which are used for identifying the source of human biological materials and studied widely, such as DNA methylation, mRNA, microRNA, microflora and protein, etc. By comparing the principles and methods of source identification of human biological materials using different kinds of genetic markers, different source of human biological material owns suitable marker types and can be identified by detecting single genetic marker or combined multiple genetic markers. Though there is no uniform standard and method for identifying the source of human biological materials in forensic laboratories at present, the research and development of a series of mature and reliable methods for distinguishing different human biological materials play the role as forensic evidence which will be the future development direction. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  5. Pre-service science teachers' teaching self-efficacy in relation to personality traits and academic self-regulation.

    Science.gov (United States)

    Senler, Burcu; Sungur-Vural, Semra

    2013-01-01

    The aim of this study is to examine the relationship among pre-service science teachers' personality traits, academic self-regulation and teaching self-efficacy by proposing and testing a conceptual model. For the specified purpose, 1794 pre-service science teachers participated in the study. The Teachers' Sense of Efficacy Scale, the NEO Five-Factor Inventory, and the Motivated Strategies for Learning Questionnaire were administered to assess pre-service science teachers' teaching self-efficacy, personality, and academic self-regulation respectively. Results showed that agreeableness, neuroticism, performance approach goals, and use of metacognitive strategies are positively linked to different dimensions of teaching self-efficacy, namely self-efficacy for student engagement, instructional strategies, and classroom management. In general, while agreeableness and neuroticism were found to be positively associated with different facets of self-regulation and teaching self-efficacy, openness was found to be negatively linked to these adaptive outcomes.

  6. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors’ Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students’ emotional satisfaction with math. We then compared life science and non–life science majors and found that major had a small to moderate relationship with students’ responses. Gender also had a small relationship with students’ responses, while students’ race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups—students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates’ emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors’ attitudes toward math. PMID:28798211

  7. Modern science for better quality control of medicinal products "Towards global harmonization of 3Rs in biologicals": The report of an EPAA workshop.

    Science.gov (United States)

    Schutte, Katrin; Szczepanska, Anna; Halder, Marlies; Cussler, Klaus; Sauer, Ursula G; Stirling, Catrina; Uhlrich, Sylvie; Wilk-Zasadna, Iwona; John, David; Bopst, Martin; Garbe, Joerg; Glansbeek, Harrie L; Levis, Robin; Serreyn, Pieter-Jan; Smith, Dean; Stickings, Paul

    2017-07-01

    This article summarizes the outcome of an international workshop organized by the European Partnership for Alternative Approaches to Animal Testing (EPAA) on Modern science for better quality control of medicinal products: Towards global harmonization of 3Rs in biologicals. As regards the safety testing of biologicals, the workshop participants agreed to actively encourage the deletion of abnormal toxicity tests and target animal batch safety tests from all relevant legal requirements and guidance documents (country-specific guidelines, pharmacopoeia monographs, WHO recommendations). To facilitate the global regulatory acceptance of non-animal methods for the potency testing of, e.g., human diphtheria and tetanus vaccines and veterinary swine erysipelas vaccines, international convergence on the scientific principles of the use of appropriately validated in vitro assays for replacing in vivo methods was identified as an overarching goal. The establishment of scientific requirements for new assays was recognized as a further means to unify regulatory approaches in different jurisdictions. It was recommended to include key regulators and manufacturers early in the corresponding discussions. Manufacturers and responsible expert groups, e.g. at the European Directorate for the Quality of Medicines and Health Care of the Council of Europe or the European Medicines Agency, were invited to consider leadership for international collaboration. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Game theory and its applications in the social and biological sciences

    CERN Document Server

    Colman, Andrew M; Humphreys, Peter; Negrine, Ralph

    2013-01-01

    Andrew Coleman provides an accessible introduction to the fundamentals of mathematical gaming and other major applications in social psychology, decision theory, economics, politics, evolutionary biology, philosophy, operational research and sociology.

  9. Where mathematics, computer science, linguistics and biology meet essays in honour of Gheorghe Păun

    CERN Document Server

    Mitrana, Victor

    2001-01-01

    In the last years, it was observed an increasing interest of computer scientists in the structure of biological molecules and the way how they can be manipulated in vitro in order to define theoretical models of computation based on genetic engineering tools. Along the same lines, a parallel interest is growing regarding the process of evolution of living organisms. Much of the current data for genomes are expressed in the form of maps which are now becoming available and permit the study of the evolution of organisms at the scale of genome for the first time. On the other hand, there is an active trend nowadays throughout the field of computational biology toward abstracted, hierarchical views of biological sequences, which is very much in the spirit of computational linguistics. In the last decades, results and methods in the field of formal language theory that might be applied to the description of biological sequences were pointed out.

  10. Application of microbeam in bio-science and life science. Biological effects induced in bystander cells by particle microbeams

    International Nuclear Information System (INIS)

    Suzuki, Masao

    2006-01-01

    Biological events occurring in cells directly hit by radiation appear in bystander cells nearby not hit directly, which is called the bystander effect. This review describes the events and mechanisms of biological bystander effect yielded by the low-dose radiation including the microbeam. Bystander effects, particularly by charged particle beams, have been studied by two representative approaches by α-ray from plutonium (stochastic irradiation) and by particle microbeams (targeted irradiation), where a bystander effect like chromosome aberrations is shown to occur by communication between irradiated and non-irradiated cells through gap junction. Bystander effects that do not require the cell contact also occur in the irradiated cell-conditioned medium (ICCM), where, not only the short-life radicals like reactive oxygen species and NO, but also more long-life factors participate. Authors have shown the presence of such bystander-inducing factors in ICCM, producing the aberrations even 48 hr after irradiation of either low or high linear energy transfer (LET) radiation. Bystander effects can be important from the aspect of risk assessments of radiation in the terrestrial/spatial environment involving aircraft as well as in cancer therapy by low-dose heavy particle beams. (T.I)

  11. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    Science.gov (United States)

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  12. Activity-dependent self-regulation of viscous length scales in biological systems

    Science.gov (United States)

    Nandi, Saroj Kumar

    2018-05-01

    The cellular cortex, which is a highly viscous thin cytoplasmic layer just below the cell membrane, controls the cell's mechanical properties, which can be characterized by a hydrodynamic length scale ℓ . Cells actively regulate ℓ via the activity of force-generating molecules, such as myosin II. Here we develop a general theory for such systems through a coarse-grained hydrodynamic approach including activity in the static description of the system providing an experimentally accessible parameter and elucidate the detailed mechanism of how a living system can actively self-regulate its hydrodynamic length scale, controlling the rigidity of the system. Remarkably, we find that ℓ , as a function of activity, behaves universally and roughly inversely proportional to the activity of the system. Our theory rationalizes a number of experimental findings on diverse systems, and comparison of our theory with existing experimental data shows good agreement.

  13. Do-it-yourself biology: challenges and promises for an open science and technology movement.

    Science.gov (United States)

    Landrain, Thomas; Meyer, Morgan; Perez, Ariel Martin; Sussan, Remi

    2013-09-01

    The do-it-yourself biology (DIYbio) community is emerging as a movement that fosters open access to resources permitting modern molecular biology, and synthetic biology among others. It promises in particular to be a source of cheaper and simpler solutions for environmental monitoring, personal diagnostic and the use of biomaterials. The successful growth of a global community of DIYbio practitioners will depend largely on enabling safe access to state-of-the-art molecular biology tools and resources. In this paper we analyze the rise of DIYbio, its community, its material resources and its applications. We look at the current projects developed for the international genetically engineered machine competition in order to get a sense of what amateur biologists can potentially create in their community laboratories over the coming years. We also show why and how the DIYbio community, in the context of a global governance development, is putting in place a safety/ethical framework for guarantying the pursuit of its activity. And finally we argue that the global spread of DIY biology potentially reconfigures and opens up access to biological information and laboratory equipment and that, therefore, it can foster new practices and transversal collaborations between professional scientists and amateurs.

  14. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer.

    Science.gov (United States)

    Roberts, David D; Kaur, Sukhbir; Isenberg, Jeffrey S

    2017-10-20

    In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H 2 S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H 2 S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.

  15. Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator

    OpenAIRE

    Fabian V Filipp

    2013-01-01

    Pyruvate kinase activity is controlled by a tightly woven regulatory network. The oncofetal isoform of pyruvate kinase (PKM2) is a master regulator of cancer metabolism. PKM2 engages in parallel, feed-forward, positive and negative feedback control contributing to cancer progression. Besides its metabolic role, non-metabolic functions of PKM2 as protein kinase and transcriptional coactivator for c-MYC and hypoxia-inducible factor 1-alpha are essential for epidermal growth factor receptor acti...

  16. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle

    OpenAIRE

    Ferrell, James E.

    2013-01-01

    The study of eukaryotic cell cycle regulation over the last several decades has led to a remarkably detailed understanding of the complex regulatory system that drives this fundamental process. This allows us to now look for recurring motifs in the regulatory system. Among these are negative feedback loops, which underpin checkpoints and generate cell cycle oscillations; positive feedback loops, which promote oscillations and make cell cycle transitions switch-like and unidirectional; and rec...

  17. Synthetic Biology between Self-Regulation and Public Discourse: Ethical Issues and the Many Roles of the Ethicist.

    Science.gov (United States)

    Arnason, Gardar

    2017-04-01

    This article discusses the roles of ethicists in the governance of synthetic biology. I am particularly concerned with the idea of self-regulation of bioscience and its relationship to public discourse about ethical issues in bioscience. I will look at the role of philosophical ethicists at different levels and loci, from the "embedded ethicist" in the laboratory or research project, to ethicists' impact on policy and public discourse. In a democratic society, the development of governance frameworks for emerging technologies, such as synthetic biology, needs to be guided by a well-informed public discourse. In the case of synthetic biology, the public discourse has to go further than merely considering technical issues of biosafety and biosecurity, or risk management, to consider more philosophical issues concerning the meaning and value of "life" between the natural and the synthetic. I argue that ethicists have moral expertise to bring to the public arena, which consists not only in guiding the debate but also in evaluating arguments and moral positions and making normative judgments. When ethicists make normative claims or moral judgments, they must be transparent about their theoretical positions and basic moral standpoints.

  18. Microfluidics' great promise for Biology - Microfluidics as a new engine for the molecular sciences

    KAUST Repository

    Kodzius, Rimantas

    2010-06-04

    History of the Life Sciences Origins of life Discoveries and instrumentation The power of genetic variation Diagnostics based on DNA/ protein variation Genomic scanning providers DNA sequencing companies Microfluidics story Commercial products available P

  19. The competing meanings of "biopolitics" in political science. Biological and postmodern approaches to politics.

    Science.gov (United States)

    Liesen, Laurette T; Walsh, Mary Barbara

    2012-01-01

    The term "biopolitics" carries multiple, sometimes competing, meanings in political science. When the term was first used in the United States in the late 1970s, it referred to an emerging subdiscipline that incorporated the theories and data of the life sciences into the study of political behavior and public policy. But by the mid-1990s, biopolitics was adopted by postmodernist scholars at the American Political Science Association's annual meeting who followed Foucault's work in examining the power of the state on individuals. Michel Foucault first used the term biopolitics in the 1970s to denote social and political power over life. Since then, two groups of political scientists have been using this term in very different ways. This paper examines the parallel developments of the term "biopolitics," how two subdisciplines gained (and one lost) control of the term, and what the future holds for its meaning in political science.

  20. 75 FR 55617 - Advisory Committee for Biological Sciences; Notice of Meeting

    Science.gov (United States)

    2010-09-13

    ... Boulderado, 2115 13th Street, Boulder, CO 80302. Type of Meeting: Open. Contact Person: Chuck Liarakos...-- Innovation Experiments; Research Resources. PM: Presentation and Discussion--Science, Arts and Humanities...

  1. Extending Students' Practice of Metacognitive Regulation Skills with the Science Writing Heuristic

    Science.gov (United States)

    van Opstal, Mary T.; Daubenmire, Patrick L.

    2015-05-01

    Metacognition can be described as an internal conversation that seeks to answer the questions, 'how much do I really know about what I am learning' and, 'how am I monitoring what I am learning?' Metacognitive regulation skills are critical to meaningful learning because they facilitate the abilities to recognize the times when one's current level of understanding is insufficient and to identify the needs for closing the gap in understanding. This research explored how using the Science Writing Heuristic (SWH) as an instructional approach in a laboratory classroom affected students' practice of metacognitive skills while solving open-ended laboratory problems. Within our qualitative research design, results demonstrate that students in the SWH environment, compared to non-SWH students, used metacognitive strategies to a different degree and to a different depth when solving open-ended laboratory problems. As students engaged in higher levels of metacognitive regulation, peer collaboration became a prominent path for supporting the use of metacognitive strategies. Students claimed that the structure of the SWH weekly laboratory experiments improved their ability to solve open-ended lab problems. Results from this study suggest that using instruction that encourages practice of metacognitive strategies can improve students' use of these strategies.

  2. Biological Networks Entropies: Examples in Neural Memory Networks, Genetic Regulation Networks and Social Epidemic Networks

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    2018-01-01

    Full Text Available Networks used in biological applications at different scales (molecule, cell and population are of different types: neuronal, genetic, and social, but they share the same dynamical concepts, in their continuous differential versions (e.g., non-linear Wilson-Cowan system as well as in their discrete Boolean versions (e.g., non-linear Hopfield system; in both cases, the notion of interaction graph G(J associated to its Jacobian matrix J, and also the concepts of frustrated nodes, positive or negative circuits of G(J, kinetic energy, entropy, attractors, structural stability, etc., are relevant and useful for studying the dynamics and the robustness of these systems. We will give some general results available for both continuous and discrete biological networks, and then study some specific applications of three new notions of entropy: (i attractor entropy, (ii isochronal entropy and (iii entropy centrality; in three domains: a neural network involved in the memory evocation, a genetic network responsible of the iron control and a social network accounting for the obesity spread in high school environment.

  3. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  4. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  5. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  6. Self-regulated Learning in a Hybrid Science Course at a Community College

    Science.gov (United States)

    Manuelito, Shannon Joy

    Community college students are attracted to courses with alternative delivery formats such as hybrid courses because the more flexible delivery associated with such courses provides convenience for busy students. In a hybrid course, face-to-face, structured seat time is exchanged for online components. In such courses, students take more responsibility for their learning because they assume additional responsibility for learning more of the course material on their own. Thus, self-regulated learning (SRL) behaviors have the potential to be useful for students to successfully navigate hybrid courses because the online components require exercise of more personal control over the autonomous learning situations inherent in hybrid courses. Self-regulated learning theory includes three components: metacognition, motivation, and behavioral actions. In the current study, this theoretical framework is used to examine how inducing self-regulated learning activities among students taking a hybrid course influence performance in a community college science course. The intervention for this action research study consisted of a suite of activities that engage students in self-regulated learning behaviors to foster student performance. The specific SRL activities included predicting grades, reflections on coursework and study efforts in course preparation logs, explanation of SRL procedures in response to a vignette, photo ethnography work on their personal use of SRL approaches, and a personalized study plan. A mixed method approach was employed to gather evidence for the study. Results indicate that community college students use a variety of self-regulated learning strategies to support their learning of course material. Further, engaging community college students in learning reflection activities appears to afford some students with opportunities to refine their SRL skills and influence their learning. The discussion focuses on integrating the quantitative and qualitative

  7. Biology and physics competencies for pre-health and other life sciences students.

    Science.gov (United States)

    Hilborn, Robert C; Friedlander, Michael J

    2013-06-01

    The recent report on the Scientific Foundations for Future Physicians (SFFP) and the revised Medical College Admissions Test (MCAT) reframe the preparation for medical school (and other health professional schools) in terms of competencies: what students should know and be able to do with that knowledge, with a strong emphasis on scientific inquiry and research skills. In this article, we will describe the thinking that went into the SFFP report and what it says about scientific and quantitative reasoning, focusing on biology and physics and the overlap between those fields. We then discuss how the SFFP report set the stage for the discussion of the recommendations for the revised MCAT, which will be implemented in 2015, again focusing the discussion on biology and physics. Based on that framework, we discuss the implications for undergraduate biology and physics education if students are to be prepared to demonstrate these competencies.

  8. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2.

    Science.gov (United States)

    Christofides, Anthos; Karantanos, Theodoros; Bardhan, Kankana; Boussiotis, Vassiliki A

    2016-12-20

    Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity.

  9. Application of expert-notice dialogue (END) method to assess students’ science communication ability on biology

    Science.gov (United States)

    Sriyati, S.; Amelia, D. N.; Soniyana, G. T.

    2018-05-01

    Student’s science communication ability can be assessed by the Expert-Notice Dialogue (END) method which focusing on verbal explanations using graphs or images as a tool. This study aims to apply the END method to assess students’ science communication ability. The study was conducted in two high schools with each sample of one class at each school (A and B). The number of experts in class A is 8 students and 7 in class B, the number of notice in class A 24 students and 30 in class B. The material chosen for explanation by expert is Ecosystem in class A and plant classification in class B. Research instruments are rubric of science communication ability, observation rubric, notice concept test and notice questionnaire. The implementation recorded with a video camera and then transcribed based on rubric science communication ability. The results showed that the average of science communication ability in class A and B was 60% and 61.8%, respectively, in enough categories. Mastery of the notice concept is in good category with 79.10 averages in class A and 94.64 in class B. Through the questionnaire notice it is known that the END method generally helps notice in understanding the concept.

  10. Molecular biology of C4 phosphoenolpyruvate carboxylase: Structure, regulation and genetic engineering.

    Science.gov (United States)

    Rajagopalan, A V; Devi, M T; Raghavendra, A S

    1994-02-01

    Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 (-)-dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His(138), His(579) and Arg(587) in catalysis and/or substrate-binding by the E. coli enzyme, Ser(8) in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during

  11. Growing into interdisciplinarity: how to converge biology, economics and social science in fisheries research?

    DEFF Research Database (Denmark)

    Haapasaari, Päivi Elisabet; Kulmala, Soile; Kuikka, Sakari

    2012-01-01

    It has been acknowledged that natural sciences alone cannot provide an adequate basis for the management of complex environmental problems. The scientific knowledge base has to be expanded in a more holistic direction by incorporating social and economic issues. As well, the multifaceted knowledge...... science-based decision making. The empirical findings suggest that interdisciplinarity is an extensive learning process that takes place on three levels: between individuals, between disciplines, and between types of knowledge. Such a learning process is facilitated by agreeing to a methodological epoch...

  12. Computational biology of genome expression and regulation--a review of microarray bioinformatics.

    Science.gov (United States)

    Wang, Junbai

    2008-01-01

    Microarray technology is being used widely in various biomedical research areas; the corresponding microarray data analysis is an essential step toward the best utilizing of array technologies. Here we review two components of the microarray data analysis: a low level of microarray data analysis that emphasizes the designing, the quality control, and the preprocessing of microarray experiments, then a high level of microarray data analysis that focuses on the domain-specific microarray applications such as tumor classification, biomarker prediction, analyzing array CGH experiments, and reverse engineering of gene expression networks. Additionally, we will review the recent development of building a predictive model in genome expression and regulation studies. This review may help biologists grasp a basic knowledge of microarray bioinformatics as well as its potential impact on the future evolvement of biomedical research fields.

  13. Isolation and biological activity of a new plant growth regulator of Vicia faba L

    International Nuclear Information System (INIS)

    Sembdner, G.; Dathe, W.; Bergner, C.; Roensch, H.

    1983-01-01

    Jasmonic acid was identified as a plant growth inhibitor of the pericarp of Vicia faba by means of gas-liquid chromatography, high resolution mass spectrometry as well as 1 H and 13 C NMR. The highest level of jasmonic acid was reached during intensive pericarp growth. Jasmonic acid is a plant growth inhibitor possessing a relative activity in the wheat seedling bioassay of 1-2.5 % compared to ABA (=100%). Contrary to ABA, jasmonic acid does not cause retardation of leaf emergence. In the dwarf rice gibberellin bioassay relative low concentrations of jasmonic acid inhibit both autonomous and GA 3 -stimulated growth. Jasmonic acid does not influence seed germination of Amaranthus caudatus. The possible physiological role of jasmonic acid in the Vicia pericarp and the distribution in plants of this new plant growth regulator type are discussed. (author)

  14. Isolation and biological activity of a new plant growth regulator of Vicia faba L

    Energy Technology Data Exchange (ETDEWEB)

    Sembdner, G.; Dathe, W.; Bergner, C.; Roensch, H. (Akademie der Wissenschaften der DDR, Halle/Saale. Inst. fuer Biochemie der Pflanzen)

    1983-01-01

    Jasmonic acid was identified as a plant growth inhibitor of the pericarp of Vicia faba by means of gas-liquid chromatography, high resolution mass spectrometry as well as /sup 1/H and /sup 13/C NMR. The highest level of jasmonic acid was reached during intensive pericarp growth. Jasmonic acid is a plant growth inhibitor possessing a relative activity in the wheat seedling bioassay of 1-2.5 % compared to ABA (=100%). Contrary to ABA, jasmonic acid does not cause retardation of leaf emergence. In the dwarf rice gibberellin bioassay relative low concentrations of jasmonic acid inhibit both autonomous and GA/sub 3/-stimulated growth. Jasmonic acid does not influence seed germination of Amaranthus caudatus. The possible physiological role of jasmonic acid in the Vicia pericarp and the distribution in plants of this new plant growth regulator type are discussed.

  15. A Guided-Inquiry pH Laboratory Exercise for Introductory Biological Science Laboratories

    Science.gov (United States)

    Snodgrass, Meagan A.; Lux, Nicholas; Metz, Anneke M.

    2011-01-01

    There is a continuing need for engaging inquiry-based laboratory experiences for advanced high school and undergraduate biology courses. The authors describe a guided-inquiry exercise investigating the pH-dependence of lactase enzyme that uses an inexpensive, wide-range buffering system, lactase dietary supplement, over-the-counter glucose test…

  16. Using Facebook Groups to Encourage Science Discussions in a Large-Enrollment Biology Class

    Science.gov (United States)

    Pai, Aditi; McGinnis, Gene; Bryant, Dana; Cole, Megan; Kovacs, Jennifer; Stovall, Kyndra; Lee, Mark

    2017-01-01

    This case study reports the instructional development, impact, and lessons learned regarding the use of Facebook as an educational tool within a large enrollment Biology class at Spelman College (Atlanta, GA). We describe the use of this social networking site to (a) engage students in active scientific discussions, (b) build community within the…

  17. The Student Writing Toolkit: Enhancing Undergraduate Teaching of Scientific Writing in the Biological Sciences

    Science.gov (United States)

    Dirrigl, Frank J., Jr.; Noe, Mark

    2014-01-01

    Teaching scientific writing in biology classes is challenging for both students and instructors. This article offers and reviews several useful "toolkit" items that improve student writing. These include sentence and paper-length templates, funnelling and compartmentalisation, and preparing compendiums of corrections. In addition,…

  18. Pathways to Aging: The Mitochondrion at the Intersection of Biological and Psychosocial Sciences

    Directory of Open Access Journals (Sweden)

    Martin Picard

    2011-01-01

    Full Text Available Compelling evidence suggests that both biological and psychosocial factors impact the process of aging. However, our understanding of the dynamic interplay among biological and psychosocial factors across the life course is still fragmentary. For example, it needs to be established how the interaction of individual factors (e.g., genetic and epigenetic endowment and personality, behavioral factors (e.g., physical activity, diet, and stress management, and psychosocial experiences (e.g., social support, well-being, socioeconomic status, and marriage in perinatal, childhood, and adulthood influence health across the aging continuum. This paper aims to outline potential intersection points serving as an interface between biological and psychosocial factors, with an emphasis on the mitochondrion. Mitochondria are cellular organelles which play a critical role in cellular senescence. Both chronic exposure to psychosocial stress and genetic-based mitochondrial dysfunction have strikingly similar biological consequences; both predispose individuals to adverse age-related health disorders and early mortality. Exploring the interactive nature of the factors resulting in pathways to normal healthy aging, as well as those leading to morbidity and early mortality, will continue to enhance our ability to translate research into effective practices that can be implemented throughout the life course to optimise the aging process.

  19. Pathways to aging: the mitochondrion at the intersection of biological and psychosocial sciences.

    Science.gov (United States)

    Picard, Martin

    2011-01-01

    Compelling evidence suggests that both biological and psychosocial factors impact the process of aging. However, our understanding of the dynamic interplay among biological and psychosocial factors across the life course is still fragmentary. For example, it needs to be established how the interaction of individual factors (e.g., genetic and epigenetic endowment and personality), behavioral factors (e.g., physical activity, diet, and stress management), and psychosocial experiences (e.g., social support, well-being, socioeconomic status, and marriage) in perinatal, childhood, and adulthood influence health across the aging continuum. This paper aims to outline potential intersection points serving as an interface between biological and psychosocial factors, with an emphasis on the mitochondrion. Mitochondria are cellular organelles which play a critical role in cellular senescence. Both chronic exposure to psychosocial stress and genetic-based mitochondrial dysfunction have strikingly similar biological consequences; both predispose individuals to adverse age-related health disorders and early mortality. Exploring the interactive nature of the factors resulting in pathways to normal healthy aging, as well as those leading to morbidity and early mortality, will continue to enhance our ability to translate research into effective practices that can be implemented throughout the life course to optimise the aging process.

  20. Biological invasions and natural colonisations are different: the need for invasion science

    Czech Academy of Sciences Publication Activity Database

    Wilson, J. R. U.; García-Díaz, P.; Cassey, P.; Richardson, D. M.; Pyšek, Petr; Blackburn, T. M.

    2016-01-01

    Roč. 31, č. 1 (2016), s. 87-98 ISSN 1619-0033 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * species spread * colonization Subject RIV: EH - Ecology, Behaviour

  1. DAE-BRNS life sciences symposium on molecular biology of stress response and its applications

    International Nuclear Information System (INIS)

    2005-01-01

    The world of living organisms is full of challenges from their surroundings and these organisms learn to adapt themselves to the changes - some transient and some permanent - in these surroundings. The demands on adaptability to stress are very strong for extremophiles that live in harsh conditions such as cold or hot temperatures, salinity and hyperbaric habitats. The stress could be biotic (e.g. infection or parasitism) or abiotic (e.g. temperature, light, salinity, heavy metals etc.) Evolutionarily living organisms have developed different shapes, coloration, habits etc. to survive in their habitats. The molecular mechanisms of these biological adaptations have become clearer only in recent years from the studies on the biological responses of an organism to stresses during its life time. Such responses are characterized by activation of certain genes and synthesis of proteins and metabolites, which facilitate amelioration of the stress. The molecular biology (biochemistry and genetics) of stress response is being constantly unravelled thanks to the availability of highly sensitive and high throughput techniques and a plethora of extremophilic experimental systems such as archaebacteria, radio resistant bacteria and midges, plants surviving in cold etc. An interesting outcome of this voluminous research has been the knowledge that responses to a group of stresses share common mechanisms, at least in part. This reflects the biologically conservationist trend among otherwise diverse organisms and stresses. In this symposium several papers and posters in the area of molecular biology of stress are presented in addition to some very interesting and promising-to-be informative and stimulating plenary lectures and invited talks from highly reputed scientists. The papers relevant to INIS are indexed separately

  2. The Effects of Self-Regulation on Science Vocabulary Acquisition of English Language Learners with Learning Difficulties

    Science.gov (United States)

    Kim, Woori; Linan-Thompson, Sylvia

    2013-01-01

    This multiple-probe study examined the effects of self-regulation on the acquisition of science vocabulary by four third-grade English language learners (ELLs) with learning difficulties. The students were provided only direct vocabulary instruction in a baseline phase, followed by intervention and maintenance phases into which self-regulation…

  3. The adaptor protein CrkII regulates IGF-1-induced biological behaviors of pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Liu, Rui; Wang, Qing; Xu, Guangying; Li, Kexin; Zhou, Lingli; Xu, Baofeng

    2016-01-01

    Recently, the adaptor protein CrkII has been proved to function in initiating signals for proliferation and invasion in some malignancies. However, the specific mechanisms underlying insulin-like growth factor 1 (IGF-1)-CrkII signaling-induced proliferation of pancreatic ductal adenocarcinoma (PDAC) were not unraveled. In this work, PDAC tissues and cell lines were subjected to in vitro and in vivo assays. Our findings showed that CrkII was abundantly expressed in PDAC tissues and closely correlated with tumor-node-metastasis (TNM) stage and invasion. When cells were subjected to si-CrkII, si-CrkII inhibited IGF-1-mediated PDAC cell growth. In vitro, we demonstrated the upregulation of CrkII, p-Erk1/2, and p-Akt occurring in IGF-1-treated PDAC cells. Conversely, si-CrkII affected upregulation of CrkII, p-Erk1/2, and p-Akt. In addition, cell cycle and in vivo assay identified that knockdown of CrkII inhibited the entry of G1 into S phase and the increase of PDAC tumor weight. In conclusion, CrkII mediates IGF-1 signaling and further balanced PDAC biological behaviors via Erk1/2 and Akt pathway, which indicates that CrkII gene and protein may act as an effective target for the treatment of PDAC.

  4. Virtual Laboratories in Science Education: Students' Motivation and Experiences in Two Tertiary Biology Courses

    Science.gov (United States)

    Dyrberg, Nadia Rahbek; Treusch, Alexander H.; Wiegand, Claudia

    2017-01-01

    Potential benefits of simulations and virtual laboratory exercises in natural sciences have been both theorised and studied recently. This study reports findings from a pilot study on student attitude, motivation and self-efficacy when using the virtual laboratory programme Labster. The programme allows interactive learning about the workflows and…

  5. Education Policy and Biological Science: Genetics, Eugenics, and the College Textbook, c. 1908-1931.

    Science.gov (United States)

    Selden, Steven

    1985-01-01

    A revolution in genetics is occurring, but when looking ahead, we must not romanticize the past. The social history of genetics, and American education's association with eugenics, make it necessary that we understand that both education and science are informed by social attitudes. (MT)

  6. Nutrition knowledge of young, post-year one, non-biological science ...

    African Journals Online (AJOL)

    Methodology: Data were collected from engineering and computer science students using semi-structured questionnaire. Analysis was by frequency, percentage and SPSS version 20 statistical soft-ware. Results: Students generally had fair nutrition knowledge (59.7%). Further, 10.1% of engineering and 3.2% of computer ...

  7. Development of a Free-Electron Laser Center and Research in Medicine, Biology and Materials Science,

    Science.gov (United States)

    1992-05-14

    the reduced electron- larons cause localized distortions in an ionic lattice lattice coupling strength leads to molecule emission, which are... syndrome . Health Science Center at San Antonio and the University Buerger’s disease, palmar hyperhidrosis, frostbite and of Mi.imi School of Medicine, Miami

  8. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    Science.gov (United States)

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  9. Multimodal Representation Contributes to the Complex Development of Science Literacy in a College Biology Class

    Science.gov (United States)

    Bennett, William Drew

    2011-01-01

    This study is an investigation into the science literacy of college genetics students who were given a modified curriculum to address specific teaching and learning problems from a previous class. This study arose out of an interest by the professor and researcher to determine how well students in the class Human Genetics in the 21st Century…

  10. [The perfection of biology and discrepancies of humoral regulation non-surmounted in phylogenesis. The unified algorithm of pathogenesis of metabolic "pandemics" as diseases of civilization].

    Science.gov (United States)

    Titov, V N

    2014-08-01

    The striving to biological perfection became apparent under becoming of each out of seven biological functions at the consequent stages of phylogenesis: at cellular autocrine level; in paracrin regulated functional cenosis of cells, organs; at the organism level. However, regulative interaction simultaneously on all levels in vivo results in functional incoordination. There are no reasons to name them contradictions. They are targeted to development of organism; they are formed on different levels of regulation and sometimes are not comparable in full measure; incoordinations of regulation are never outdone. The striving of biology to perfection resulted in incoordinations becoming less apparent in conditions of physiological level of physical chemical parameters and concentrations of biochemical analytes staying within strict standard limits. The physiological values "are backed up" from below by realization of biological function of homeostasis. The upper level "is limited" by biological function of endoecology--leanliness of intercellular medium. The incoordinations of humoral and nervous regulation are manifested under impact of unfavorable factors of environment on organism. At that, regulatory incoordinations developed at distantly spaced degrees of phylogenesis came out as pathogenic factors of "metabolic pandemics"--civilization diseases. Ifdisease ofn oninfectious etiology is propagated in population with rate of 5 - 7% its pathogenesis is based on disorder ofb iologicalf unctions and biological reactions, meaning those impacts of environment that Homo sapiens didn't learn to match in phylogenesis. The strict normalization of biological functions and biological reactions can be the only pathogenetically and effective prevention and treatment of this pathology. The application ofp harmaceuticals is the foundation ofs ymptomatic therapy only.

  11. Implementing the Science Assessment Standards: Developing and validating a set of laboratory assessment tasks in high school biology

    Science.gov (United States)

    Saha, Gouranga Chandra

    Very often a number of factors, especially time, space and money, deter many science educators from using inquiry-based, hands-on, laboratory practical tasks as alternative assessment instruments in science. A shortage of valid inquiry-based laboratory tasks for high school biology has been cited. Driven by this need, this study addressed the following three research questions: (1) How can laboratory-based performance tasks be designed and developed that are doable by students for whom they are designed/written? (2) Do student responses to the laboratory-based performance tasks validly represent at least some of the intended process skills that new biology learning goals want students to acquire? (3) Are the laboratory-based performance tasks psychometrically consistent as individual tasks and as a set? To answer these questions, three tasks were used from the six biology tasks initially designed and developed by an iterative process of trial testing. Analyses of data from 224 students showed that performance-based laboratory tasks that are doable by all students require careful and iterative process of development. Although the students demonstrated more skill in performing than planning and reasoning, their performances at the item level were very poor for some items. Possible reasons for the poor performances have been discussed and suggestions on how to remediate the deficiencies have been made. Empirical evidences for validity and reliability of the instrument have been presented both from the classical and the modern validity criteria point of view. Limitations of the study have been identified. Finally implications of the study and directions for further research have been discussed.

  12. Voyageurs National Park: Water-level regulation and effects on water quality and aquatic biology

    Science.gov (United States)

    Christensen, Victoria G.; Maki, Ryan P.; LeDuc, Jaime F.

    2018-01-01

    Following dam installations in the remote Rainy Lake Basin during the early 1900s, water-level fluctuations were considered extreme (1914–1949) compared to more natural conditions. In 1949, the International Joint Commission (IJC), which sets rules governing dam operation on waters shared by the United States and Canada, established the first rule curves to regulate water levels on these waterbodies. However, rule curves established prior to 2000 were determined to be detrimental to the ecosystem. Therefore, the IJC implemented an order in 2000 to change rule curves and to restore a more natural water regime. After 2000, measured chlorophyll-a concentrations in the two most eutrophic water bodies decreased whereas concentrations in oligotrophic lakes did not show significant water-quality differences. Fish mercury data were inconclusive, due to the variation in water levels and fish mercury concentrations, but can be used by the IJC as part of a long term data set.

  13. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer.

    Science.gov (United States)

    Fasano, Alessio

    2011-01-01

    The primary functions of the gastrointestinal tract have traditionally been perceived to be limited to the digestion and absorption of nutrients and to electrolytes and water homeostasis. A more attentive analysis of the anatomic and functional arrangement of the gastrointestinal tract, however, suggests that another extremely important function of this organ is its ability to regulate the trafficking of macromolecules between the environment and the host through a barrier mechanism. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiological modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the finely tuned zonulin pathway is deregulated in genetically susceptible individuals, both intestinal and extraintestinal autoimmune, inflammatory, and neoplastic disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by reestablishing the zonulin-dependent intestinal barrier function. This review is timely given the increased interest in the role of a "leaky gut" in the pathogenesis of several pathological conditions targeting both the intestine and extraintestinal organs.

  14. Development and Validation of an Instrument to Measure Students' Motivation and Self-Regulation in Science Learning

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill; Fraser, Barry

    2011-10-01

    Students' motivational beliefs and self-regulatory practices have been identified as instrumental in influencing the engagement of students in the learning process. An important aim of science education is to empower students by nurturing the belief that they can succeed in science learning and to cultivate the adaptive learning strategies required to help to bring about that success. This article reports the development and validation of an instrument to measure salient factors related to the motivation and self-regulation of students in lower secondary science classrooms. The development of the instrument involved identifying key determinants of students' motivation and self-regulation in science learning based on theoretical and research underpinnings. Once the instrument was developed, a pilot study involving 52 students from two Grade 8 science classes was undertaken. Quantitative data were collected from 1,360 students in 78 classes across Grades 8, 9, and 10, in addition to in-depth qualitative information gathered from 10 experienced science teachers and 12 Grade 8 students. Analyses of the data suggest that the survey has strong construct validity when used with lower secondary students. This survey could be practically valuable as a tool for gathering information that may guide classroom teachers in refocusing their teaching practices and help to evaluate the effectiveness of intervention programmes.

  15. The experimental teaching reform in biochemistry and molecular biology for undergraduate students in Peking University Health Science Center.

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and participated in some original research work. There is a critical educational need to prepare these students for the increasing accessibility of research experience. The redesigned experimental curriculum of biochemistry and molecular biology was developed to fulfill such a requirement, which keeps two original biochemistry experiments (Gel filtration and Enzyme kinetics) and adds a new two-experiment component called "Analysis of anti-tumor drug induced apoptosis." The additional component, also known as the "project-oriented experiment" or the "comprehensive experiment," consists of Western blotting and a DNA laddering assay to assess the effects of etoposide (VP16) on the apoptosis signaling pathways. This reformed laboratory teaching system aims to enhance the participating students overall understanding of important biological research techniques and the instrumentation involved, and to foster a better understanding of the research process all within a classroom setting. Student feedback indicated that the updated curriculum helped them improve their operational and self-learning capability, and helped to increase their understanding of theoretical knowledge and actual research processes, which laid the groundwork for their future research work. © 2015 The International Union of Biochemistry and Molecular Biology.

  16. Childhood exposure to violence and lifelong health: clinical intervention science and stress-biology research join forces.

    Science.gov (United States)

    Moffitt, Terrie E

    2013-11-01

    Many young people who are mistreated by an adult, victimized by bullies, criminally assaulted, or who witness domestic violence react to this violence exposure by developing behavioral, emotional, or learning problems. What is less well known is that adverse experiences like violence exposure can lead to hidden physical alterations inside a child's body, alterations that may have adverse effects on life-long health. We discuss why this is important for the field of developmental psychopathology and for society, and we recommend that stress-biology research and intervention science join forces to tackle the problem. We examine the evidence base in relation to stress-sensitive measures for the body (inflammatory reactions, telomere erosion, epigenetic methylation, and gene expression) and brain (mental disorders, neuroimaging, and neuropsychological testing). We also review promising interventions for families, couples, and children that have been designed to reduce the effects of childhood violence exposure. We invite intervention scientists and stress-biology researchers to collaborate in adding stress-biology measures to randomized clinical trials of interventions intended to reduce effects of violence exposure and other traumas on young people.

  17. Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks

    Science.gov (United States)

    Lapierre, J.-F.; del Giorgio, P. A.

    2014-10-01

    Despite the rapidly increasing volume of research on the biological and photochemical degradation of DOC (dissolved organic carbon) in aquatic environments, little is known of the large-scale patterns in biologically and photochemically degradable DOC (BDOC and PDOC, respectively) in continental watersheds, and on the links that exist between these two key properties that greatly influence the flow of carbon from continents to oceans. Here we explored the patterns in the concentrations and proportions of BDOC and PDOC across hundreds of boreal lakes, rivers and wetlands spanning a large range of system trophic status and terrestrial influence, and compared the drivers of these two reactive pools of DOC at the landscape level. Using standardized incubations of natural waters, we found that the concentrations of BDOC and PDOC covaried across all systems studied but were nevertheless related to different pools of dissolved organic matter (DOM; identified by fluorescence analyses) in ambient waters. Concentrations of nutrients and protein-like fluorescent DOM (FDOM) explained nearly half of the variation in BDOC, whereas PDOC was exclusively predicted by DOM optical properties, consistent with the photochemical degradability of specific FDOM pools that we experimentally determined. The concentrations of colored DOM (CDOM), which we use here as a proxy of terrestrial influence, almost entirely accounted for the observed relationship between FDOM and the concentrations of both BDOC and PDOC. The concentrations of CDOM and of the putative biolabile fluorescence component shifted from complete decoupling in clear-water environments to strong coupling in darker streams and wetlands. This suggests a baseline autochthonous BDOC pool fueled by internal production that is gradually overwhelmed by land-derived BDOC as terrestrial influence increases across landscape gradients. The importance of land as a major source of both biologically and photochemically degradable DOC for

  18. Partial coupling and differential regulation of biologically and photo-chemically labile dissolved organic carbon across boreal aquatic networks

    Science.gov (United States)

    Lapierre, J.-F.; del Giorgio, P. A.

    2014-05-01

    Despite the rapidly increasing volume of research on the biological and photochemical degradation of DOC in aquatic environments, little is known on the large-scale patterns in biologically and photo-chemically degradable DOC (Bd-DOC and Pd-DOC, respectively) in continental watersheds, and on the links that exist between these two key properties that greatly influence the flow of carbon from continents to oceans. Here we explore the patterns of Bd- and Pd-DOC across hundreds of boreal lakes, rivers and wetlands spanning a large range of system trophy and terrestrial influence, and compared the drivers of these two reactive pools of DOC at the landscape level. Using standardized incubations of natural waters, we found that the concentrations of Bd- and Pd-DOC co-varied across all systems studied but were nevertheless related to different pools of dissolved organic matter (DOM, identified by fluorescence analyses) in ambient waters. A combination of nutrients and protein-like DOM explained nearly half of the variation in Bd-DOC, whereas Pd-DOC was exclusively predicted by DOM optical properties, consistent with the photochemical degradability of specific fluorescent DOM (FDOM) pools that we experimentally determined. The concentrations of colored DOM (CDOM), a proxy of terrestrial influence, almost entirely accounted for the observed relationship between FDOM and the concentrations of both Bd- and Pd-DOC. The concentrations of CDOM and of the putative bio-labile fluorescence component shifted from complete decoupling in clear-water environments to strong coupling in browner streams and wetlands. This suggests a baseline autochthonous Bd-DOC pool fuelled by internal production that is gradually overwhelmed by land-derived Bd-DOC as terrestrial influence increases across landscape gradients. The importance of land as a major source of both biologically and photo-chemically degradable DOC for continental watersheds resulted in a partial coupling of those carbon pools in

  19. Can we manage for biological diversity in the absence of science?

    Science.gov (United States)

    Trauger, D.L.; Hall, R.J.

    1995-01-01

    Conservation of biological diversity is dependent on sound scientific information about underlying ecological processes. Current knowledge of the composition, distribution, abundance and life cycles of most species of plants and animals is incomplete, insufficient, unreliable, or nonexistent. Contemporary managers are also confronted with additional levels of complexity related to varying degrees of knowledge and understanding about interactions of species and ecosystems. Consequently, traditional species-oriented management schemes may have unintended consequences and ecosystem-oriented management initiatives may fail in the face of inadequate or fragmentary information on the structure, function, and dynamics of biotic communities and ecological systems. Nevertheless, resource managers must make decisions and manage based on the best biological information currently available. Adaptive resource management may represent a management paradigm that allows managers to learn something about the species or systems that they are managing while they are managing, but potential pitfalls lurk for such approaches. In addition to lack of control over the primary physical, chemical, and ecological processes, managers also lack control over social, economic, and political parameters affecting resource management options. Moreover, appropriate goals may be difficult to identify and criteria for determining success may be elusive. Some management responsibilities do not lend themselves to adaptive strategies. Finally, the lessons learned from adaptive management are usually obtained from a highly situational context that may limit applicability in a wider range of situations or undermine confidence that problems and solutions were properly diagnosed and addressed. Several scenarios are critically examined where adaptive management approaches may be inappropriate or ineffective and where management for biological diversity may be infeasible or inefficient without a sound

  20. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Palanisamy, Giri [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, Thomas A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Voyles, Jimmy W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  1. Citizen Science as a Tool in Biological Recording—A Case Study of Ailanthus altissima (Mill. Swingle

    Directory of Open Access Journals (Sweden)

    Barbara Sladonja

    2018-01-01

    Full Text Available Non-native invasive species frequently appear in urban and non-urban ecosystems and may become a threat to biodiversity. Some of these newcomers are introduced accidentally, and others are introduced through a sequence of events caused by conscious human decisions. Involving the general public in biodiversity preservation activities could prevent the negative consequences of these actions. Accurate and reliable data collecting is the first step in invasive species management, and citizen science can be a useful tool to collect data and engage the public in science. We present a case study of biological recording of tree of heaven (Ailanthus altissima (Mill. Swingle using a participatory citizen model. The first goal in this case study was to develop a cheap, widely accessible, and effective inventory method, and to test it by mapping tree of heaven in Croatia. A total of 90.61 km of roads and trails was mapped; 20 single plants and 19 multi-plant clusters (mapped as polygons were detected. The total infested area was 2610 m2. The second goal was to educate citizens and raise awareness of this invasive species. The developed tool and suggested approach aided in improving invasive risk management in accordance with citizen science principles and can be applied to other species or areas.

  2. Post-genome integrative biology: so that's what they call clinical science.

    Science.gov (United States)

    Rees, J

    2001-01-01

    Medical science is increasingly dominated by slogans, a characteristic reflecting its growing bureaucratic and corporate structure. Chief amongst these slogans is the idea that genomics will transform the public health. I believe this view is mistaken. Using studies of the genetics of skin cancer and the genetics of skin pigmentation, I describe how recent discoveries have contributed to our understanding of these topics and of human evolution. I contrast these discoveries with insights gained from other approaches, particularly those based on clinical studies. The 'IKEA model of medical advance'--you just do the basic science in the laboratory and self-assemble in the clinic--is not only damaging to clinical advance, but reflects a widespread ignorance about the nature of disease and how clinical discovery arises. We need to think more about disease and less about genes; more in the clinic and less in the laboratory.

  3. Tritium in the Physical and Biological Sciences. V. 1. Proceedings of a Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    The use of tritium for research in physics, chemistry, biology and hydrology has in recent years become increasingly important. It was for this reason that the first international conference to discuss the progress of new developments was organized by the IAEA in conjunction with the Joint Commission on Applied Radioactivity and held from 3-10 May 1961, in Vienna. The first five sessions of the Symposium were devoted to the use of tritium in hydrology, physics and chemistry. Special emphasis was laid on the role of tritium as a tracer in hydrology, especially in the study of water movement. The establishment and improvement of counting and detection techniques to facilitate the application of tritium as a tracer was another aspect discussed in this part of the proceedings. Papers were read on the preparation of tritiated compounds and it was generally agreed that further clarification of the mechanism of various techniques, and of the Wilzbach gas exposure technique in particular, would lead to further developments in the synthesis of a number of tritium compounds important in biology. Other papers were concerned with tritium applications to studies of the mechanism of some chemical reactions together with the effects of tritium isotopes. During the second part of the Symposium the biological applications of tritium and tritiated compounds were discussed. These included general problems connected with the biological uses of tritium and the radiation effects of tritium on living organisms such as viruses, bacteria and cancer cells. The value of tritium in biological studies became apparent because of the ease with which a large number of metabolically active compounds such as hormones, vitamins and other important constituents in the body can be labelled with tritium. Tritium is also a weak beta-emitter and autoradiographie s of tissues and single cells containing tritium-labelled compounds allow an excellent localization of the tracer. The Symposium was attended by

  4. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  5. Using Grand Challenges to Teach Science: A Biology-Geology Collaboration

    Science.gov (United States)

    Lyford, M.; Myers, J. D.

    2012-12-01

    Three science courses at the University of Wyoming explore the inextricable connections between science and society by centering on grand challenges. Two of these courses are introductory integrated science courses for non-majors while the third is an upper level course for majors and non-majors. Through collaboration, the authors have developed these courses to explore the grand challenges of energy, water and climate. Each course focuses on the fundamental STEM principles required for a citizen to understand each grand challenge. However, the courses also emphasize the non-STEM perspectives (e.g., economics, politics, human well-being, externalities) that underlie each grand challenge and argue that creating equitable, sustainable and just solutions to the grand challenges hinges on an understanding of STEM and non-STEM perspectives. Moreover, the authors also consider the multitude of personal perspectives individuals bring to the classroom (e.g., values, beliefs, empathy misconceptions) that influence any stakeholder's ability to engage in fruitful discussions about grand challenge solutions. Discovering Science (LIFE 1002) focuses on the grand challenges of energy and climate. Students attend three one-hour lectures, one two-hour lab and a one-hour discussion each week. Lectures emphasize the STEM and non-STEM principles underlying each grand challenge. Laboratory activities are designed to be interdisciplinary and engage students in inquiry-driven activities to reinforce concepts from lecture and to model how science is conducted. Labs also expose students to the difficulties often associated with scientific studies, the limits of science, and the inherent uncertainties associated with scientific findings. Discussion sessions provide an opportunity for students to explore the complexity of the grand challenges from STEM and non-STEM perspectives, and expose the multitude of personal perspectives an individual might harbor related to each grand challenge

  6. ISSEBETS 2009. 7. International Symposium on Speciation of Elements in Biological, Environmental and Toxicological Sciences

    International Nuclear Information System (INIS)

    2009-01-01

    The 7th ISSEBETS was held in August 2009 in city of Eger, Hungary. The main topics were: speciation of essential and toxic elements in food, in traditional drugs, designing functional foods through applied speciation, metallomics and metalloproteomics, metal species in health and disease, cycling of elemental species in the environment, speciation related regulations and legislation, metal environmental, bioremediation, quality assurance of speciation analysis. (S.I.)

  7. Proceedings of DAE-BRNS life sciences symposium 2011 on advances in molecular and cell biology of stress response

    International Nuclear Information System (INIS)

    2011-01-01

    This series of symposia in life sciences was initiated for the purpose of facilitating strong interactions among the national research fraternity working in the areas of bio-medical and agricultural sciences of relevance and interest for the Department of Atomic Energy, Government of India. Dedicated research efforts in the Bhabha Atomic Research Centre and other DAE institutions for nearly four decades have not only resulted in the development of technologies and products to improve the quality of human life, but have made impactful contributions in several contemporary areas in basic biological sciences. It is natural that keep visiting certain themes more than once. Biology of stress response is one such theme. The first symposium in the series was devoted to this field. And six years is long enough a time for catching up with the new developments. Stress to a system at equilibrium induces homeostatic mechanisms that ameliorate the stress. Entire living world, from microbes to man, have evolved such response mechanisms. Often a given battery of responsive genes may take care of more than one stresses and there may also be some redundancy in signalling or effector pathways to a response. Oxidative stress in one of the most common stresses that most living systems have to endure. Such a stress could be induced by a wide variety of insults including ionizing radiation, visible light, antibiotics, xenobiotics, metal ions, environmental pollutants, carcinogens, infectious agents etc. It may contribute to some inflammatory and autoimmune diseases. It also plays an important role in killing of intracellular pathogens. In recent years mechanistic details of body's antioxidant defences are being increasingly revealed. Even more interesting are the new findings that suggest that prooxidants may induce an adaptive response to help cells survive against death induced by higher levels of reactive oxygen species (ROS). The role of prosurvival transcription factors like NRF-2

  8. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  9. Considerations of multicultural science and curriculum reform: A content analysis of state-adopted biology textbooks in Florida

    Science.gov (United States)

    Delgato, Margaret H.

    The purpose of this investigation was to determine the extent to which multicultural science education, including indigenous knowledge representations, had been infused within the content of high school biology textbooks. The study evaluated the textbook as an instructional tool and framework for multicultural science education instruction by comparing the mainstream content to indigenous knowledge perspectives portrayed in the student and teacher editions of 34 textbooks adopted in Florida within the last four adoption cycles occurring from 1990 to 2006. The investigation involved a content analysis framed from a mixed methods approach. Emphasis was placed, in consideration of the research questions and practicality of interpreting text with the potential for multiple meanings, within qualitative methods. The investigation incorporated five strategies to assess the extent of multicultural content: (1) calculation of frequency of indigenous representations through the use of a tally; (2) assessment of content in the teacher editions by coding the degree of incorporation of multicultural content; (3) development of an archaeology of statements to determine the ways in which indigenous representations were incorporated into the content; (4) use of the Evaluation Coefficient Analysis (ECO) to determine extent of multicultural terminologies within content; and (5) analysis of visuals and illustrations to gauge percentages of depictions of minority groups. Results indicated no solid trend in an increase of inclusion of multicultural content over the last four adoption cycles. Efforts at most reduced the inclusion of indigenous representations and other multicultural content to the level of the teacher edition distributed among the teacher-interleafed pages or as annotations in the margins. Degree of support of multicultural content to the specific goals and objectives remained limited across all four of the adoption cycles represented in the study. Emphasis on

  10. Current and emerging basic science concepts in bone biology: implications in craniofacial surgery.

    Science.gov (United States)

    Oppenheimer, Adam J; Mesa, John; Buchman, Steven R

    2012-01-01

    Ongoing research in bone biology has brought cutting-edge technologies into everyday use in craniofacial surgery. Nonetheless, when osseous defects of the craniomaxillofacial skeleton are encountered, autogenous bone grafting remains the criterion standard for reconstruction. Accordingly, the core principles of bone graft physiology continue to be of paramount importance. Bone grafts, however, are not a panacea; donor site morbidity and operative risk are among the limitations of autologous bone graft harvest. Bone graft survival is impaired when irradiation, contamination, and impaired vascularity are encountered. Although the dura can induce calvarial ossification in children younger than 2 years, the repair of critical-size defects in the pediatric population may be hindered by inadequate bone graft donor volume. The novel and emerging field of bone tissue engineering holds great promise as a limitless source of autogenous bone. Three core constituents of bone tissue engineering have been established: scaffolds, signals, and cells. Blood supply is the sine qua non of these components, which are used both individually and concertedly in regenerative craniofacial surgery. The discerning craniofacial surgeon must determine the proper use for these bone graft alternatives, while understanding their concomitant risks. This article presents a review of contemporary and emerging concepts in bone biology and their implications in craniofacial surgery. Current practices, areas of controversy, and near-term future applications are emphasized.

  11. Results of the studies of radiation ecology and radiation biology at the Institute of Biology of Komi Science Centre, Ural Division of Russian Academy of Sciences. (On the 40th anniversary of the radiation ecology department)

    International Nuclear Information System (INIS)

    Taskaev, A.I.; Kudyasheva, A.G.; Popova, O.N.; Materij, L.D.; Shuktomova, I.I.; Frolova, N.P.; Kozubov, G.M.; Zajnullin, V.G.; Ermakova, O.V.; Rakin, A.O.; Bashlykova, L.A.

    2000-01-01

    Materials on the history of foundation of the radiation Ecology Department at the Institute of Biology of the Komi Science Centre of the Russian Academy of Sciences on the occasion of its 40-th anniversary are presented. The results of studies on radiation effects in low doses on the plant and animal populations as well as on radionuclide migration in natural biogeocenoses by increased radiation levels are analyzed. The performed complex studies were used as the basis for developing methodological approaches to the solution of a number of problems on the surface radioecology. Multiyear studies on the biogeocenoses of increased radioactivity of different origin made it possible to obtain multiple materials, indicating high diversity and specificity of reaction of living organisms in response to the background low level chronic irradiation. Attention was paid to studies on the Komi contamination by atmospheric radioactive fall-outs as well as to studies on the consequences of radioactive contamination of the Ukrainian Polesje due to the Chernobyl accident [ru

  12. [Review and analysis of transplant biological research projects funded by National Natural Science Foundation of China].

    Science.gov (United States)

    Gong, Weihua; Sun, Ruijuan; Dong, Erdan

    2015-08-01

    To study the funding and achievements in the field of organ transplantation support by the National Natural Science Foundation of China (NSFC). A search of NSFC database was made by using the key word "transplantation" and excluding "bone marrow transplantation" for the projects funded between 1988 and 2013. SCI indexed publications that marked with NSFC project number were collected by searching each grant number in the database of the Web of Science. Six hundreds fifty-five projects were identified and received about 220 million yuan in grant funding. These funded research projects were distributed among 25 provinces and autonomous regions, however, which were mainly in the developed coastal areas; of them, 43 (6.56%) projects were granted in xenotransplantation and 17 projects (2.60%) were funded in the field of traditional Chinese medicine-related organ transplantation; Transplantation on blood vessels, heart, kidney, liver, lung, small intestine, pancreatic, cornea, trachea, skin, etc. were primarily performed in research. Nine hundreds and sixty-one SCI-indexed publications were achieved. Magnitude and intensity of NSFC funding, output of SCI publications have been increasing, suggesting that NSFC positively promotes the development of organ transplantation. Although a great progress of transplantation has been made, basic and translational studies should be vigorously strengthened.

  13. Practice as source of learning and knowledge that comes from experience: what science and biology teachers say about it

    Directory of Open Access Journals (Sweden)

    Luciana M. Lunardi Campos

    2001-01-01

    Full Text Available This paper is about the possible knowledge that Science and Biology teachers may acquire form their daily work. Fourth three teachers were considered in this research and all belong to the Public School of the city of Botucatu, S.P. All of them were unanimous in stressing the importance of their professional activity as a meaningful aspect. They learned more about themselves, their methods, their employed resources and their pupils through it. Three dimensions can be pointed out here: personal, professional and pedagogical and it can be named nine aspects of the knowledge from experience. An organized and active knowledge may be achieved by reckoning the teacher as the main producer of knowledge about his occupation and assuming as well how important his practice and knowledge from experience are.

  14. A proposal to establish an international network in molecular microbiology and genetic engineering for scientific cooperation and prevention of misuse of biological sciences in the framework of science for peace

    International Nuclear Information System (INIS)

    Becker, Y.

    1998-01-01

    The conference on 'Science and Technology for Construction of Peace' which was organized by the Landau Network Coordination Center and A. Volta Center for Scientific Culture dealt with conversion of military and technological capacities into sustainable civilian application. The ideas regarding the conversion of nuclear warheads into nuclear energy for civilian-use led to the idea that the extension of this trend of thought to molecular biology and genetic engineering, will be a useful contribution to Science for Peace. This idea of developing a Cooperation Network in Molecular Biology and Genetic Engineering that will function parallel to and with the Landau Network Coordination in the 'A. Volta' Center was discussed in the Second International Symposium on Science for Peace, Jerusalem, January 1997. It is the reason for the inclusion of the biological aspects in the deliberations of our Forum. It is hoped that the establishment of an international network in molecular biology and genetic engineering, similar to the Landau Network in physics, will support and achieve the decommissioning of biological weapons. Such a network in microbiology and genetic engineering will contribute to the elimination of biological weapons and to contributions to Science for Peace and to Culture of Peace activities of UNESCO. (author)

  15. From access to success in science: An academic-student affairs intervention for undergraduate freshmen biology students

    Science.gov (United States)

    Aldridge, Jacqueline Nouvelle

    The first year experience is known to present an array of challenges for traditional college students. In particular, freshmen who major in a STEM discipline have their own unique set of challenges when they transition from high school science and math to college science and math; especially chemistry. As a result, students may encounter negative experiences which lower academic and social confidence. This project was designed as a pilot study intervention for a small group of freshmen biology students who were considered academically at-risk due their math SAT scores. The study occurred during the fall semester involving an enhanced active learning component based on the Peer-led Team Learning (PLTL) general chemistry supplemental pedagogy model, and a biology-focused First Year Experience (FYE). PLTL workshops took place in freshmen residence halls, creating a live-n-learn community environment. Mid-term and final chemistry grades and final math grades were collected to measure academic progress. Self-reporting surveys and journals were used to encourage participants to reconstruct their experiences and perceptions of the study. Descriptive analysis was performed to measure statistical significance between midterm and final grade performance, and a general inductive qualitative method was used to determine academic and social confidence as well as experiences and perceptions of the project. Findings of this project revealed a statistically significant improvement between chemistry midterm and final grades of the sample participants. Although academic confidence did not increase, results reveal that social confidence progressed as the majority of students developed a value for studying in groups.

  16. Collaborative Research. Fundamental Science of Low Temperature Plasma-Biological Material Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David Barry [Univ. California, Berkeley, CA (United States); Oehrlein, Gottlieb [Univ. of Maryland, College Park, MD (United States)

    2014-09-01

    Low temperature plasma (LTP) treatment of biological tissue is a promising path toward sterilization of bacteria due to its versatility and ability to operate under well-controlled and relatively mild conditions. The present collaborative research of an interdisciplinary team of investigators at University of Maryland, College Park (UMD), and University of California, Berkeley (UCB) focused on establishing our knowledge based with regard to low temperature plasma-induced chemical modifications in biomolecules that result in inactivation due to various plasma species, including ions, reactive radicals, and UV/VUV photons. The overall goals of the project were to identify and quantify the mechanisms by which low and atmospheric pressure plasma deactivates endotoxic biomolecules. Additionally, we wanted to understand the mechanism by which atmospheric pressure plasmas (APP) modify surfaces and how these modifications depend on the interaction of APP with the environment. Various low pressure plasma sources, a vacuum beam system and several atmospheric pressure plasma sources were used to accomplish this. In our work we elucidated for the first time the role of ions, VUV photons and radicals in biological deactivation of representative biomolecules, both in a UHV beam system and an inductively coupled, low pressure plasma system, and established the associated atomistic biomolecule changes. While we showed that both ions and VUV photons can be very efficient in deactivation of biomolecules, significant etching and/or deep modification (~200 nm) accompanied these biological effects. One of the most important findings in this work is the significant radical-induced deactivation and surface modification can occur with minimal etching. However, if radical fluxes and corresponding etch rates are relatively high, for example at atmospheric pressure, endotoxic biomolecule film inactivation may require near-complete removal of the film. These findings motivated further work at

  17. Applicability of discovery science approach to determine biological effects of mobile phone radiation.

    Science.gov (United States)

    Leszczynski, Dariusz; Nylund, Reetta; Joenväärä, Sakari; Reivinen, Jukka

    2004-02-01

    We argue that the use of high-throughput screening techniques, although expensive and laborious, is justified and necessary in studies that examine biological effects of mobile phone radiation. The "case of hsp27 protein" presented here suggests that even proteins with only modestly altered (by exposure to mobile phone radiation) expression and activity might have an impact on cell physiology. However, this short communication does not attempt to present the full scientific evidence that is far too large to be presented in a single article and that is being prepared for publication in three separate research articles. Examples of the experimental evidence presented here were designed to show the flow of experimental process demonstrating that the use of high-throughput screening techniques might help in rapid identification of the responding proteins. This, in turn, can help in speeding up of the process of determining whether these changes might affect human health.*

  18. The Open Microscopy Environment: open image informatics for the biological sciences

    Science.gov (United States)

    Blackburn, Colin; Allan, Chris; Besson, Sébastien; Burel, Jean-Marie; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gault, David; Gillen, Kenneth; Leigh, Roger; Leo, Simone; Li, Simon; Lindner, Dominik; Linkert, Melissa; Moore, Josh; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Swedlow, Jason R.

    2016-07-01

    Despite significant advances in biological imaging and analysis, major informatics challenges remain unsolved: file formats are proprietary, storage and analysis facilities are lacking, as are standards for sharing image data and results. While the open FITS file format is ubiquitous in astronomy, astronomical imaging shares many challenges with biological imaging, including the need to share large image sets using secure, cross-platform APIs, and the need for scalable applications for processing and visualization. The Open Microscopy Environment (OME) is an open-source software framework developed to address these challenges. OME tools include: an open data model for multidimensional imaging (OME Data Model); an open file format (OME-TIFF) and library (Bio-Formats) enabling free access to images (5D+) written in more than 145 formats from many imaging domains, including FITS; and a data management server (OMERO). The Java-based OMERO client-server platform comprises an image metadata store, an image repository, visualization and analysis by remote access, allowing sharing and publishing of image data. OMERO provides a means to manage the data through a multi-platform API. OMERO's model-based architecture has enabled its extension into a range of imaging domains, including light and electron microscopy, high content screening, digital pathology and recently into applications using non-image data from clinical and genomic studies. This is made possible using the Bio-Formats library. The current release includes a single mechanism for accessing image data of all types, regardless of original file format, via Java, C/C++ and Python and a variety of applications and environments (e.g. ImageJ, Matlab and R).

  19. Space Science and the International Traffic in Arms Regulations: Summary of a Workshop

    Science.gov (United States)

    Finarelli, Margaret G.; Alexander, Joseph K.

    2008-01-01

    The United States seeks to protect its security and foreign-policy interests, in part, by actively controlling the export of goods, technologies, and services that are or may be useful for military development in other nations. "Export" is defined not simply as the sending abroad of hardware but also as the communication of related technology and know-how to foreigners in the United States and overseas. The U.S. government mechanism for controlling dual-use items--items in commerce that have potential military use is the Export Administration Regulations (EAR) administered by the Department of Commerce; items defined in law as defense articles fall under the jurisdiction of the Department of State and the International Traffic in Arms Regulations (ITAR). Because of the potential military implications of the export of defense articles, the ITAR regime imposes much greater burdens (on both the applicant and the government) than does the EAR regime during the process of applying for, and implementing the provisions of, licenses and technical-assistance agreements. Until the early 1990s export control activity related to all space satellites (commercial and scientific) was handled under ITAR. Between 1992 and 1996 the George H.W. Bush and the Clinton administrations transferred jurisdiction over the licensing of civilian communications satellites to the Commerce Department under EAR. In 1999, however, in response to broad concerns about Chinese attempts to acquire U.S. high technology, the U.S. House of Representatives convened the Select Committee on U.S. National Security and Military/Commercial Concerns with the People s Republic of China, also known as the Cox Committee. One of the many consequences of the Cox Committee's report was Congress's mandate that jurisdiction over export and licensing of satellites and related equipment and services, irrespective of military utility, be transferred from the Department of Commerce to the State Department and that such

  20. The Role of Soil Biological Function in Regulating Agroecosystem Services and Sustainability in the Quesungual Agroforestry System

    Science.gov (United States)

    Fonte, S.; Pauli, N.; Rousseau, L.; SIX, J. W. U. A.; Barrios, E.

    2014-12-01

    The Quesungual agroforestry system from western Honduras has been increasingly promoted as a promising alternative to traditional slash-and-burn agriculture in tropical dry forest regions of the Americas. Improved residue management and the lack of burning in this system can greatly impact soil biological functioning and a number of key soil-based ecosystem services, yet our understanding of these processes has not been thoroughly integrated to understand system functionality as a whole that can guide improved management. To address this gap, we present a synthesis of various field studies conducted in Central America aimed at: 1) quantifying the influence of the Quesungual agroforestry practices on soil macrofauna abundance and diversity, and 2) understanding how these organisms influence key soil-based ecosystem services that ultimately drive the success of this system. A first set of studies examined the impact of agroecosystem management on soil macrofauna populations, soil fertility and key soil processes. Results suggest that residue inputs (derived from tree biomass pruning), a lack of burning, and high tree densities, lead to conditions that support abundant, diverse soil macrofauna communities under agroforestry, with soil organic carbon content comparable to adjacent forest. Additionally, there is great potential in working with farmers to develop refined soil quality indicators for improved land management. A second line of research explored interactions between residue management and earthworms in the regulation of soil-based ecosystem services. Earthworms are the most prominent ecosystem engineers in these soils. We found that earthworms are key drivers of soil structure maintenance and the stabilization of soil organic matter within soil aggregates, and also had notable impacts on soil nutrient dynamics. However, the impact of earthworms appears to depend on residue management practices, thus indicating the need for an integrated approach for

  1. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  2. Nanoscience The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine

    CERN Document Server

    Schaefer, Hans-Eckhardt

    2010-01-01

    Nanoscience stands out for its interdisciplinarity. Barriers between disciplines disappear and the fields tend to converge at the very smallest scale, where basic principles and tools are universal. Novel properties are inherent to nanosized systems due to quantum effects and a reduction in dimensionality: nanoscience is likely to continue to revolutionize many areas of human activity, such as materials science, nanoelectronics, information processing, biotechnology and medicine. This textbook spans all fields of nanoscience, covering its basics and broad applications. After an introduction to the physical and chemical principles of nanoscience, coverage moves on to the adjacent fields of microscopy, nanoanalysis, synthesis, nanocrystals, nanowires, nanolayers, carbon nanostructures, bulk nanomaterials, nanomechanics, nanophotonics, nanofluidics, nanomagnetism, nanotechnology for computers, nanochemistry, nanobiology, and nanomedicine. Consequently, this broad yet unified coverage addresses research in academ...

  3. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory,…

  4. Construction of the Cognitive Dimension of the Scientific Literacy in the Students through the Costa Rican Biological Sciences Olympics

    Directory of Open Access Journals (Sweden)

    Shirley Camacho-Vargas

    2012-08-01

    Full Text Available This research recognizes the cognitive contributions to the students participating in the Third Costa Rican Biological Sciences Olympics that will define the advancement and strengthening in the construction of its conceptual dimension in the scientific literacy.  This paper is based, mainly, on qualitative approach techniques (ethnographic design:  case study; however, some data are interpreted through quantitative methodologies (descriptive design with an explanatory and exploratory touch for the analysis of a sample of 54 high school students, finalists in the category A of the Olympics, through the use of tools such as a documentary study and a survey, in July 2009.  The information generated was analyzed using elements of inferential and descriptive statistics, figures and histograms.  It was proved that there is a better cognitive management in the topics assessed, an increase in the students’ academic performance as the tests are applied, a commitment for the academic update supported by the development of several tasks for previous preparation, curriculum contributions unprecedented based on our sample, a consent to optimize student’s knowledge about Biology, which will allow the application of scientific notions to diversify and renew the knowledge, according to what is established in the principles of scientific literacy.

  5. The effects of formative assessment on student self-regulation, motivational beliefs, and achievement in elementary science

    Science.gov (United States)

    King, Melissa Digennaro

    Goals 2000 set forth a bold vision for U.S. students: they would be "first in the world in science and mathematics" by the year 2000. Performance indicators such as the TIMSS-R (1999) and NAEP (2000) reports suggest that U.S. students have not yet reached that goal. This study intended to learn how specific assessment strategies might contribute to improved student performance in science. This quasi-experimental study investigated the effects of formative assessment with reflection on students' motivational beliefs, self-regulatory skills, and achievement in elementary science. The study aimed to find out whether and how classroom applications of formative assessment during science instruction might influence fifth-grade students' attitudes and self-perceptions about science learning, self-regulatory learning behaviors, and achievement. To explore the effects of the assessment intervention, the study utilized a mixed methods approach involving quantitative and qualitative investigations of treatment and control groups during a four-week intervention period. Quantitative measures included student self-report surveys administered pre- and post-treatment and an end-of-unit science test. Qualitative measures included classroom observations, student interviews (post-treatment), and a teacher interview (post-treatment). Findings indicated that the fifth-grade students in this study had positive attitudes toward science and high levels of self-efficacy for science. Results suggested that these elementary students employed a wide variety of cognitive and metacognitive strategies to support science learning. Findings revealed that these fifth graders believed formative assessment with reflection was beneficial for science learning outcomes. Research results did not show that the formative assessment intervention contributed to significant differences between treatment and control groups. However, the data revealed different levels of academic achievement and self-regulation

  6. Multilayer network modeling creates opportunities for novel network statistics. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    Muldoon, Sarah Feldt

    2018-03-01

    As described in the review by Gosak et al., the field of network science has had enormous success in providing new insights into the structure and function of biological systems [1]. In the complex networks framework, system elements are network nodes, and connections between nodes represent some form of interaction between system elements [2]. The flexibility to define network nodes and edges to represent different aspects of biological systems has been employed to model numerous diverse systems at multiple scales.

  7. Science literacy and meaningful learning: status of public high school students from Rio de Janeiro face to molecular biology concepts

    Directory of Open Access Journals (Sweden)

    Daniel Alves Escodino

    2013-12-01

    Full Text Available In this work we aimed to determine the level of Molecular Biology (MB science literacy of students from two Brazilian public schools which do not consider the rogerian theory for class planning and from another institution, Cap UERJ, which favours this theory. We applied semiclosed questionnaires specific to the different groups of science literacy levels. Besides, we have asked them to perform conceptual maps with MB concepts in order to observe if they have experienced meaningful learning. Finally, we prepared MB classes for students of the three schools, considering their conceptual maps and tried to evaluate, through a second map execution, if the use of alternative didactics material, which consider meaningful learning process, would have any effect over the appropriation of new concepts. We observed that most students are placed at Functional literacy level. Nonetheless, several students from CAp were also settled at the higher Conceptual and Procedural levels. We found that most students have not experienced meaningful learning and that the employment of didactic material and implementation of proposals which consider the cognitive structure of the students had a significant effect on the appropriation of several concepts.

  8. Health as science and the biological body as an artifact: the case of Brazil's national TV news program Jornal Nacional.

    Science.gov (United States)

    Caron, Eduardo; Ianni, Aurea Maria Zöllner; Lefevre, Fernando

    2018-04-01

    This article presents the findings of a study of the coverage of health, science and technology during 2012 by the Jornal Nacional, a national television news program in Brazil produced by the Rede Globo de Televisão. A total of 246 news stories addressing health-related topics were analyzed, half of which addressed scientific research, technological innovation and hospital care, and were shown to represent a doctor-centered discourse. The findings also show that 82% of the news stories concerning science and technology advertise products that are about to be introduced onto the market, illustrating the commercial nature of this research. The article discusses two aspects portrayed by these news stories that characterize the biological body as an artifact: the construction of a virtual and fragmented body through the diffusion of images of the inside of the body; and the importance of biotechnological issues, which leaves life processes open to molecular manipulation and alteration. The study also questions the nature-culture hybridization present in biotechnological objects.

  9. Self-Organization of Genome Expression from Embryo to Terminal Cell Fate: Single-Cell Statistical Mechanics of Biological Regulation

    Directory of Open Access Journals (Sweden)

    Alessandro Giuliani

    2017-12-01

    Full Text Available A statistical mechanical mean-field approach to the temporal development of biological regulation provides a phenomenological, but basic description of the dynamical behavior of genome expression in terms of autonomous self-organization with a critical transition (Self-Organized Criticality: SOC. This approach reveals the basis of self-regulation/organization of genome expression, where the extreme complexity of living matter precludes any strict mechanistic approach. The self-organization in SOC involves two critical behaviors: scaling-divergent behavior (genome avalanche and sandpile-type critical behavior. Genome avalanche patterns—competition between order (scaling and disorder (divergence reflect the opposite sequence of events characterizing the self-organization process in embryo development and helper T17 terminal cell differentiation, respectively. On the other hand, the temporal development of sandpile-type criticality (the degree of SOC control in mouse embryo suggests the existence of an SOC control landscape with a critical transition state (i.e., the erasure of zygote-state criticality. This indicates that a phase transition of the mouse genome before and after reprogramming (immediately after the late 2-cell state occurs through a dynamical change in a control parameter. This result provides a quantitative open-thermodynamic appreciation of the still largely qualitative notion of the epigenetic landscape. Our results suggest: (i the existence of coherent waves of condensation/de-condensation in chromatin, which are transmitted across regions of different gene-expression levels along the genome; and (ii essentially the same critical dynamics we observed for cell-differentiation processes exist in overall RNA expression during embryo development, which is particularly relevant because it gives further proof of SOC control of overall expression as a universal feature.

  10. Social Regulation of Learning During Collaborative Inquiry Learning in Science: How does it emerge and what are its functions?

    Science.gov (United States)

    Ucan, Serkan; Webb, Mary

    2015-10-01

    Students' ability to regulate their learning is considered important for the quality of collaborative inquiry learning. However, there is still limited understanding about how students engage in social forms of regulation processes and what roles these regulatory processes may play during collaborative learning. The purpose of this study was to identify when and how co- and shared regulation of metacognitive, emotional and motivational processes emerge and function during collaborative inquiry learning in science. Two groups of three students (aged 12) from a private primary school in Turkey were videotaped during collaborative inquiry activities in a naturalistic classroom setting over a seven-week period, and the transcripts were analysed in order to identify their use of regulation processes. Moreover, this was combined with the analysis of stimulated-recall interviews with the student groups. Results indicated that co- and shared regulation processes were often initiated by particular events and played a crucial role in the success of students' collaborative inquiry learning. Co-regulation of metacognitive processes had the function of stimulating students to reflect upon and clarify their thinking, as well as facilitating the construction of new scientific understanding. Shared regulation of metacognitive processes helped students to build a shared understanding of the task, clarify and justify their shared perspective, and sustain the ongoing knowledge co-construction. Moreover, the use of shared emotional and motivational regulation was identified as important for sustaining reciprocal interactions and creating a positive socio-emotional atmosphere within the groups. In addition, the findings revealed links between the positive quality of group interactions and the emergence of co- and shared regulation of metacognitive processes. This study highlights the importance of fostering students' acquisition and use of regulation processes during collaborative

  11. Characterization of gene expression regulated by human OTK18 ...

    Indian Academy of Sciences (India)

    ing regulated by interactions with the Tat protein (Carlson et al. 2004a). In contrast, OTK18 is ubiquitously expressed in all normal human tissues, and OTK18 expression in HIV-1 ..... and Social Sciences and the UNK Biology Department.

  12. Bioinformatics strategies in life sciences: from data processing and data warehousing to biological knowledge extraction.

    Science.gov (United States)

    Thiele, Herbert; Glandorf, Jörg; Hufnagel, Peter

    2010-05-27

    With the large variety of Proteomics workflows, as well as the large variety of instruments and data-analysis software available, researchers today face major challenges validating and comparing their Proteomics data. Here we present a new generation of the ProteinScape bioinformatics platform, now enabling researchers to manage Proteomics data from the generation and data warehousing to a central data repository with a strong focus on the improved accuracy, reproducibility and comparability demanded by many researchers in the field. It addresses scientists; current needs in proteomics identification, quantification and validation. But producing large protein lists is not the end point in Proteomics, where one ultimately aims to answer specific questions about the biological condition or disease model of the analyzed sample. In this context, a new tool has been developed at the Spanish Centro Nacional de Biotecnologia Proteomics Facility termed PIKE (Protein information and Knowledge Extractor) that allows researchers to control, filter and access specific information from genomics and proteomic databases, to understand the role and relationships of the proteins identified in the experiments. Additionally, an EU funded project, ProDac, has coordinated systematic data collection in public standards-compliant repositories like PRIDE. This will cover all aspects from generating MS data in the laboratory, assembling the whole annotation information and storing it together with identifications in a standardised format.

  13. Bioinformatics Strategies in Life Sciences: From Data Processing and Data Warehousing to Biological Knowledge Extraction

    Directory of Open Access Journals (Sweden)

    Thiele Herbert

    2010-03-01

    Full Text Available With the large variety of Proteomics workflows, as well as the large variety of instruments and data-analysis software available, researchers today face major challenges validating and comparing their Proteomics data. Here we present a new generation of the ProteinScapeTM bioinformatics platform, now enabling researchers to manage Proteomics data from the generation and data warehousing to a central data repository with a strong focus on the improved accuracy, reproducibility and comparability demanded by many researchers in the field. It addresses scientists` current needs in proteomics identification, quantification and validation. But producing large protein lists is not the end point in Proteomics, where one ultimately aims to answer specific questions about the biological condition or disease model of the analyzed sample. In this context, a new tool has been developed at the Spanish Centro Nacional de Biotecnologia Proteomics Facility termed PIKE (Protein information and Knowledge Extractor that allows researchers to control, filter and access specific information from genomics and proteomic databases, to understand the role and relationships of the proteins identified in the experiments. Additionally, an EU funded project, ProDac, has coordinated systematic data collection in public standards-compliant repositories like PRIDE. This will cover all aspects from generating MS data in the laboratory, assembling the whole annotation information and storing it together with identifications in a standardised format.

  14. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology

    Science.gov (United States)

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling—the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field—is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams—which, for instance, may be used in stretchable electronics—we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  15. Integration into plant biology and soil science has provided insights into the total environment.

    Science.gov (United States)

    Shao, Hongbo; Lu, Haiying; Xu, Gang; Marian, Brestic

    2017-02-01

    The total environment includes 5 closely-linking circles, in which biosphere and lithosphere are the active core. As global population increases and urbanization process accelerates, arable land is gradually decreasing under global climate change and the pressure of various types of environmental pollution. This case is especially for China. Land is the most important resources for human beings' survival. How to increase and manage arable land is the key for sustainable agriculture development. China has extensive marshy land that can be reclamated for the better potential land resources under the pre- condition of protecting the environment, which will be a good way for enlarging globally and managing arable land. Related studies have been conducted in China for the past 30years and now many results with obvious practical efficiency have been obtained. For summarizing these results, salt-soil will be the main target and related contents such as nutrient transport, use types, biodiversity and interactions with plants from molecular biology to ecology will be covered, in which the interactions among biosphere, lithosphere, atmosphere and anthroposphere will be focused on. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Profiles of Motivated Self-Regulation in College Computer Science Courses: Differences in Major versus Required Non-Major Courses

    Science.gov (United States)

    Shell, Duane F.; Soh, Leen-Kiat

    2013-12-01

    The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at a large Midwestern state university. Cluster analysis identified five profiles: (1) a strategic profile of a highly motivated by-any-means good strategy user; (2) a knowledge-building profile of an intrinsically motivated autonomous, mastery-oriented student; (3) a surface learning profile of a utility motivated minimally engaged student; (4) an apathetic profile of an amotivational disengaged student; and (5) a learned helpless profile of a motivated but unable to effectively self-regulate student. Among CS majors and students in courses in their major field, the strategic and knowledge-building profiles were the most prevalent. Among non-CS majors and students in required non-major courses, the learned helpless, surface learning, and apathetic profiles were the most prevalent. Students in the strategic and knowledge-building profiles had significantly higher retention of computational thinking knowledge than students in other profiles. Students in the apathetic and surface learning profiles saw little instrumentality of the course for their future academic and career objectives. Findings show that students in STEM fields taking required computer science courses exhibit the same constellation of motivated strategic self-regulation profiles found in other post-secondary and K-12 settings.

  17. Discovery biology of neuropsychiatric syndromes (DBNS): a center for integrating clinical medicine and basic science.

    Science.gov (United States)

    Viswanath, Biju; Rao, Naren P; Narayanaswamy, Janardhanan C; Sivakumar, Palanimuthu T; Kandasamy, Arun; Kesavan, Muralidharan; Mehta, Urvakhsh Meherwan; Venkatasubramanian, Ganesan; John, John P; Mukherjee, Odity; Purushottam, Meera; Kannan, Ramakrishnan; Mehta, Bhupesh; Kandavel, Thennarasu; Binukumar, B; Saini, Jitender; Jayarajan, Deepak; Shyamsundar, A; Moirangthem, Sydney; Vijay Kumar, K G; Thirthalli, Jagadisha; Chandra, Prabha S; Gangadhar, Bangalore N; Murthy, Pratima; Panicker, Mitradas M; Bhalla, Upinder S; Chattarji, Sumantra; Benegal, Vivek; Varghese, Mathew; Reddy, Janardhan Y C; Raghu, Padinjat; Rao, Mahendra; Jain, Sanjeev

    2018-04-18

    There is emerging evidence that there are shared genetic, environmental and developmental risk factors in psychiatry, that cut across traditional diagnostic boundaries. With this background, the Discovery biology of neuropsychiatric syndromes (DBNS) proposes to recruit patients from five different syndromes (schizophrenia, bipolar disorder, obsessive compulsive disorder, Alzheimer's dementia and substance use disorders), identify those with multiple affected relatives, and invite these families to participate in this study. The families will be assessed: 1) To compare neuro-endophenotype measures between patients, first degree relatives (FDR) and healthy controls., 2) To identify cellular phenotypes which differentiate the groups., 3) To examine the longitudinal course of neuro-endophenotype measures., 4) To identify measures which correlate with outcome, and 5) To create a unified digital database and biorepository. The identification of the index participants will occur at well-established specialty clinics. The selected individuals will have a strong family history (with at least another affected FDR) of mental illness. We will also recruit healthy controls without family history of such illness. All recruited individuals (N = 4500) will undergo brief clinical assessments and a blood sample will be drawn for isolation of DNA and peripheral blood mononuclear cells (PBMCs). From among this set, a subset of 1500 individuals (300 families and 300 controls) will be assessed on several additional assessments [detailed clinical assessments, endophenotype measures (neuroimaging- structural and functional, neuropsychology, psychophysics-electroencephalography, functional near infrared spectroscopy, eye movement tracking)], with the intention of conducting repeated measurements every alternate year. PBMCs from this set will be used to generate lymphoblastoid cell lines, and a subset of these would be converted to induced pluripotent stem cell lines and also undergo

  18. Multilayer network modeling of integrated biological systems. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    De Domenico, Manlio

    2018-03-01

    Biological systems, from a cell to the human brain, are inherently complex. A powerful representation of such systems, described by an intricate web of relationships across multiple scales, is provided by complex networks. Recently, several studies are highlighting how simple networks - obtained by aggregating or neglecting temporal or categorical description of biological data - are not able to account for the richness of information characterizing biological systems. More complex models, namely multilayer networks, are needed to account for interdependencies, often varying across time, of biological interacting units within a cell, a tissue or parts of an organism.

  19. Verbal and visual learning of science terminology by high school biology students

    Science.gov (United States)

    Grant, Andrew Morton

    The purpose of this study is to determine whether scientific terms with multiple meanings are more easily learned when taught pictorially or when taught verbally. The question of interference from previously known colloquial meanings is addressed as well. In carrying out this study, an experimental group of 30 students was taught pictorially and a control group of 30 students was taught verbally. Each group was made up of male and female students from the dominant culture (Caucasian) and from alternate cultures (mainly African American and Asian). The age of the participants was between 14 and 17. Students were selected as class groups. There were four class groups in the study. Class groups were assigned to the experimental or control group by random selection. Results were compared by use of a pre-test and post-test procedure. Students were asked to verbally describe 41 terms having scientific and colloquial meanings; they were to give the scientific meaning, if known, the colloquial if not, or leave a question mark if the term was unknown. They were then asked to draw a picture of the meaning of the term, if known. The same instructions were given to both groups. A series of seven hypotheses were identified. These hypotheses considered learning outcomes related to instructional mode as well as outcomes related to gender and cultural differences. An attempt was made to determine the similarity of the experimental and control groups. Student profiles, a learning styles inventory, and an imbedded image test all showed an initial similarity of the two groups. Once the pretest and posttest were given, data were analyzed by the use of the Chi-square of Association, the McNemar Chi-square, and Z scores (at.05 significance level). Results indicated significant differences in outcomes between the experimental group and the control group. The experimental group showed more science vocabulary learning than the control group and experienced more interference from the

  20. Relational Analysis of High School Students' Cognitive Self-Regulated Learning Strategies and Conceptions of Learning Biology

    Science.gov (United States)

    Sadi, Özlem

    2017-01-01

    The purpose of this study was to analyze the relation between students' cognitive learning strategies and conceptions of learning biology. The two scales, "Cognitive Learning Strategies" and "Conceptions of Learning Biology", were revised and adapted to biology in order to measure the students' learning strategies and…

  1. The Relationship between Biology Teachers' Understanding of the Nature of Science and the Understanding and Acceptance of the Theory of Evolution

    Science.gov (United States)

    Cofré, Hernán; Cuevas, Emilia; Becerra, Beatriz

    2017-01-01

    Despite the importance of the theory of evolution (TE) to scientific knowledge, a number of misconceptions continue to be found among biology teachers. In this context, the first objective of this study was to identify the impact of professional development programme (PDP) on teachers' understanding of nature of science (NOS) and evolution and on…

  2. A Case-Based Scenario with Interdisciplinary Guided-Inquiry in Chemistry and Biology: Experiences of First Year Forensic Science Students

    Science.gov (United States)

    Cresswell, Sarah L.; Loughlin, Wendy A.

    2017-01-01

    In this paper, insight into forensic science students' experiences of a case-based scenario with an interdisciplinary guided-inquiry experience in chemistry and biology is presented. Evaluation of student experiences and interest showed that the students were engaged with all aspects of the case-based scenario, including the curriculum theory…

  3. A Longitudinal Analysis of the Extent and Manner of Representations of Nature of Science in U.S. High School Biology and Physics Textbooks

    Science.gov (United States)

    Abd-El-Khalick, Fouad; Myers, John Y.; Summers, Ryan; Brunner, Jeanne; Waight, Noemi; Wahbeh, Nader; Zeineddin, Ava A.; Belarmino, Jeremy

    2017-01-01

    This study assessed the (i) ways in which, and extent to which, several aspects of nature of science (NOS) are represented in high school biology and physics textbooks in the United States (U.S.); (ii) extent to which these representations have changed over the course of several decades; and (iii) relative impact of discipline, and textbook…

  4. The effect of cooperative learning on the attitudes toward science and the achievement of students in a non-science majors' general biology laboratory course at an urban community college

    Science.gov (United States)

    Chung-Schickler, Genevieve C.

    The purpose of this study was to evaluate the effect of cooperative learning strategies on students' attitudes toward science and achievement in BSC 1005L, a non-science majors' general biology laboratory course at an urban community college. Data were gathered on the participants' attitudes toward science and cognitive biology level pre and post treatment in BSC 1005L. Elements of the Learning Together model developed by Johnson and Johnson and the Student Team-Achievement Divisions model created by Slavin were incorporated into the experimental sections of BSC 1005L. Four sections of BSC 1005L participated in this study. Participants were enrolled in the 1998 spring (January) term. Students met weekly in a two hour laboratory session. The treatment was administered to the experimental group over a ten week period. A quasi-experimental pretest-posttest control group design was used. Students in the cooperative learning group (nsb1 = 27) were administered the Test of Science-Related Attitudes (TOSRA) and the cognitive biology test at the same time as the control group (nsb2 = 19) (at the beginning and end of the term). Statistical analyses confirmed that both groups were equivalent regarding ethnicity, gender, college grade point average and number of absences. Independent sample t-tests performed on pretest mean scores indicated no significant differences in the TOSRA scale two or biology knowledge between the cooperative learning group and the control group. The scores of TOSRA scales: one, three, four, five, six, and seven were significantly lower in the cooperative learning group. Independent sample t-tests of the mean score differences did not show any significant differences in posttest attitudes toward science or biology knowledge between the two groups. Paired t-tests did not indicate any significant differences on the TOSRA or biology knowledge within the cooperative learning group. Paired t-tests did show significant differences within the control group

  5. The impact of a Classroom Performance System on learning gains in a biology course for science majors

    Science.gov (United States)

    Marin, Nilo Eric

    This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after

  6. Epidemiological and radio-biological studies in high background radiation areas of Kerala coast: implications in radiation protection science and human health

    International Nuclear Information System (INIS)

    Das, Birajalaxmi

    2018-01-01

    Till date, Linear No Threshold hypothesis (LNT) is well accepted in radiation protection science in spite of its limitations. However, dose response studies using multiple biological end points from high-background radiation areas have challenged the linearity. Radio-biological and epidemiological studies from high level natural radiation areas of Kerala coast showed non-linearity as well as efficient repair of DNA damage in HLNRA indicating that dose limits for public exposure needs to be revisited which may have implications in radiation protection science, human health and low dose radiation biology. However, further studies using high throughput approach is required to identify chronic radiation signatures in human population exposed to elevated level of natural background radiation

  7. Integrative activities content (aic: an auxiliary tool for the teaching of Biochemistry in the course of biological sciences at UFRN

    Directory of Open Access Journals (Sweden)

    F. D. Silva

    2015-08-01

    Full Text Available There are constant changes in the development of science, technology, politics, culture and society; the need for change is also evident in the training of teachers. The ease of access to information makes us realize that traditional teaching needs to be updated.The increasing demotivation of students,followed by high reprobation rates, has become a real challenge to the teaching practice.The objective of this work was to awaken in students enrolled in the discipline of MOLECULAR DIVERSITY (MD, a required curricular component in the Course of Biological Sciences at UFRN, an interest in studying the chemistry and functions of biomolecules, better relating the two to each other, and the content already studied in the course, in order to improve the teaching-learning process. This work was developed in a tutoring project registered at PROGRAD/UFRN. This discipline, MD, addresses chemical and structural features of the main organic molecules.The methodology focused on applying problem integrators called INTEGRATIVE ACTIVITIES OF CONTENT. This refers specifically to the application of problems that integrate the topics taught in the discipline, and also those administered in the disciplines processed in parallel, or even in previous semesters. In this way students realize that molecules relate and interact in all bodies; this gives rise to life through metabolism. The discipline is expected to promote meaningful and inter-related learning. We obtained the following results: greater participation and involvement of students in answering the questions posed; greater interest in the discipline;positive changes regarding the number of students who dropped the class, and in reprobation;and greater integration between teachers, students, and teaching assistants. The methodology used in this work was extremely important to achieve the proposed objectives, helping to facilitate the process of teaching-learning, as also to important relate content.

  8. Professor Veronica (NCBS/ DBS TIFR) Indian Academy of Science ...

    Indian Academy of Sciences (India)

    www.ncbs.res.in. Local and regulated organization of membrane components during stem cell differentiation. Satyajit Mayor. National Centre for Biological Sciences (NCBS),. Bangalore, India in collaboration with. inSTEM, Bangalore ...

  9. Cooperative Project To Develop a Database of Discipline-Specific Workbook Exercises for Agricultural and Biological Engineering, Entomology, and Biological Sciences Courses.

    Science.gov (United States)

    Ellsbury, Susan H.; And Others

    A two-part text, "Science Resources: A Self-Paced Instructional Workbook," was designed to provide science students at Mississippi State University with: (1) instruction on basic library usage and reference tools common to most scientific disciplines; (2) materials adapted to specific disciplines; and (3) services available to them from the…

  10. Hydrology in Lichens: How Biological Architecture is Used to Regulate Water Access to Support Drought Resilience and Nutrient Transport

    Science.gov (United States)

    Ten Veldhuis, M. C.; Dismukes, G. C.; Ananyev, G.

    2017-12-01

    Lichens are Nature's masters at controlling water and air flux within a symbiotic organism comprised of an algal photobiont and its fungal host. Here we investigated the equilibrium partitioning and kinetic transport of water between the symbionts in the lichen flavoparmelia species. Lichens have developed a unique strategy to recover after deep dehydration, that otherwise would kill the majority of free living phototrophs. By measuring both kinetics of water content and chlorophyll fluorescence emission (indicative of algal charge separation and water oxidation) during dehydration, we identified 3 distinct temporal stages and mapped these to physical zones by confocal microscopy using a combination of hydro-philic/-phobic dyes. Below a critical level of water content, controlled by the greater hydrophilicity of fungal tissues, algal photosynthesis rapidly turns off. We show that the distinct stages in dehydration mirror the 3D architecture of lichen tissue (the thallus). We provide evidence that control of water distribution is achieved by capillary forces within ordered zones of physical space possessing different hydro-phobic/-philic characteristics. This strategy ensures that photosynthetic capacity is protected from and can quickly recover after desiccation. The fungal host controls the onset and extent of photosynthesis in the enslaved alga, presumably to ensure transport of algal derived sugars and oxygen (O2) to the fungal host only when sufficient water exists for transport. Lichen architecture provides Nature's solution to gas-water transport that is self-regulated by humidity. It offers novel lessons for designing practical devices such as fuel cell membranes and dialysis membranes. Supported by the US Dept of Energy, Basic Energy Sciences, Physical Biosciences Division.

  11. Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century.

    Science.gov (United States)

    Basheer, Al Arsh

    2018-04-01

    The chiral pollution is a serious issue for our health and environment due to the enantio-selective biodegradation of the chiral pollutants. It has adverse impact on our society and science. There is a big loss of our economy due to the use of racemic agrochemicals. The most notorious chiral pollutants are pesticides, polychloro biphenyls, polyaromatic hydrocarbons, brominated flame retardants, drugs, and pharmaceuticals. More than 1500 chiral pollutants are present in the environment. Unfortunately, there is no regulation and control of the chiral pollutants. Therefore, it is an urgent need of the present 21st century to develop a data bank on the chiral pollutants, guidelines for controlling the production, sale and use of the racemic agrochemicals and the other industrial products. The Governments of the different countries should come forward to initiate the regulations. US, FDA, US EPA, and WHO are the most important regulatory authorities and should think about the chiral pollutants. The present article highlights the impact of the chiral pollution on the society and science. Besides, the efforts have also been made to emphasize the need of the regulations to control the chiral pollution. © 2017 Wiley Periodicals, Inc.

  12. Self-efficacy on Technological, Pedagogical and Content Knowledge (TPACK of Biological Science Pre-Service Teachers

    Directory of Open Access Journals (Sweden)

    Anania B. Aquino

    2015-11-01

    Full Text Available The teachers are the focal figure in education and play vital roles in learning. These roles have served as key point in designing the curriculum and preparing pre-service teachers. Turning students into competent teachers is an interplay of varied factors, one of which is technology. This impact necessitates the utilization of technology in teaching, described as technological pedagogical content knowledge (TPACK. The study aimed to investigate TPACK self-efficacies of pre - service biological science teachers who were enrolled in two academic years at the College of Teacher Education in a state university in the Philippines. It also examined whether the responses of the two groups of respondents on TPACK self – efficacy differ and whether these self-efficacies relate to sex, electronic gadget owned and access to internet. It used the descriptive survey method of research employing a questionnaire on TPACK to collect data. The study found out that there is more female than male. Majority have electronic gadgets but have limited access to internet. Findings showed that respondents have good TPACK self – efficacy. The findings showed that the responses of the two groups of participants on TPACK self – efficacies are statistically different . Further, their self – efficacies is very slightly affected by their sex, electronic gadgets owned and access to internet. The study recommends reviewing and improving instructional practices and curriculum of the college to enhance TPACK of respondents.

  13. Mass digitization of scientific collections: New opportunities to transform the use of biological specimens and underwrite biodiversity science.

    Science.gov (United States)

    Beaman, Reed S; Cellinese, Nico

    2012-01-01

    New information technologies have enabled the scientific collections community and its stakeholders to adapt, adopt, and leverage novel approaches for a nearly 300 years old scientific discipline. Now, few can credibly question the transformational impact of technology on efforts to digitize scientific collections, as IT now reaches into almost every nook and cranny of society. Five to ten years ago this was not the case. Digitization is an activity that museums and academic institutions increasingly recognize, though many still do not embrace, as a means to boost the impact of collections to research and society through improved access. The acquisition and use of scientific collections is a global endeavor, and digitization enhances their value by improved access to core biodiversity information, increases use, relevance and potential downstream value, for example, in the management of natural resources, policy development, food security, and planetary and human health. This paper examines new opportunities to design and implement infrastructure that will support not just mass digitization efforts, but also a broad range of research on biological diversity and physical sciences in order to make scientific collections increasingly relevant to societal needs and interest.

  14. Systematically reviewing the potential of concept mapping technologies to promote self-regulated learning in primary and secondary science education

    DEFF Research Database (Denmark)

    Stevenson, Matt P.; Hartmeyer, Rikke; Bentsen, Peter

    2017-01-01

    We systematically searched five databases to assess the potential of concept mapping-based technologies to promote self-regulated learning in science education. Our search uncovered 17 relevant studies that investigated seven different types of learning technologies. We performed a narrative....... Computer software was particularly useful for developing cognitive strategies through ease of use. Teaching agents were particularly useful for developing metacognitive strategies by coupling visualisation of knowledge patterns with performance monitoring, aided by a teaching metaphor. Finally, mobile...... devices and teaching agents were most effective in enhancing motivation. Effects on knowledge gains remain unclear due to small sample sizes....

  15. Use of a virtual human performance laboratory to improve integration of mathematics and biology in sports science curricula in Sweden and the United States.

    Science.gov (United States)

    Garza, D; Besier, T; Johnston, T; Rolston, B; Schorsch, A; Matheson, G; Annerstedt, C; Lindh, J; Rydmark, M

    2007-01-01

    New fields such as bioengineering are exploring the role of the physical sciences in traditional biological approaches to problems, with exciting results in device innovation, medicine, and research biology. The integration of mathematics, biomechanics, and material sciences into the undergraduate biology curriculum will better prepare students for these opportunities and enhance cooperation among faculty and students at the university level. We propose the study of sports science as the basis for introduction of this interdisciplinary program. This novel integrated approach will require a virtual human performance laboratory dual-hosted in Sweden and the United States. We have designed a course model that involves cooperative learning between students at Göteborg University and Stanford University, utilizes new technologies, encourages development of original research and will rely on frequent self-assessment and reflective learning. We will compare outcomes between this course and a more traditional didactic format as well as assess the effectiveness of multiple web-hosted virtual environments. We anticipate the grant will result in a network of original faculty and student research in exercise science and pedagogy as well as provide the opportunity for implementation of the model in more advance training levels and K-12 programs.

  16. Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.

    Science.gov (United States)

    Eickelberg, Garrett J; Fisher, Alison J

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the FLOWERING LOCUS C gene, a key regulator of floral timing in Arabidopsis thaliana plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate students in biochemistry or molecular biology courses. The project provides students with hands-on experience with RT-qPCR, the current "gold standard" for gene expression analysis, including detailed data analysis using the common 2-ΔΔCT method. Moreover, it provides a convenient starting point for many inquiry-driven projects addressing diverse questions concerning ecological biochemistry, naturally occurring genetic variation, developmental biology, and the regulation of gene expression in nature. Copyright © 2013 Wiley Periodicals, Inc.

  17. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  18. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    Science.gov (United States)

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  19. Investigating the relationship between intelligence quotient and self-regulation in students at Birjand University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Saeid Ghiasi Nadooshan

    2016-04-01

    Full Text Available Aims: Given the importance of IQ and self-monitoring in human behavior and its effects on the individual's life, this study examines the relationship between IQ and self-regulation in students at Birjand University of Medical Sciences. Methods: This study was a descriptive-analytic, cross-sectional study. The population included all the students studying at Birjand University of Medical Sciences (n=2300. According to Cochran’s Formula, the sample was calculated as 171 persons who were selected by random sampling method. To assess IQ, R B Cattell’s standard test 3rd scale, while Snyder’s 25-item standard test was used to assess self-regulation. The validity of self-regulatory questionnaire was approved by experts. Its reliability was calculated by Cronbach's alpha as 85%. For data analysis, Pearson correlation test, ANOVA and independent T-test were used at a significance level p≤0.05. Results: From among the 171 participants, n=91 (53.2% were women. The average age of study participants was 21.3±2.7 years. The average IQ score and scores of self-regulation were 106±10.44 and 12.35±3.20 respectively. IQ scores did not show significant correlation with self-regulation test results (P>0.641. Girls were of a significantly higher mean IQ score (P=0.04. Self-regulatory mean score of men was significantly higher than women (P=0.007. Conclusion: Teaching and learning self-regulatory approach can enhance self-confidence of students during externship, internship and theoretical classes, hence improved academic performance.

  20. Advanced high school biology in an era of rapid change: a summary of the biology panel report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools.

    Science.gov (United States)

    Wood, William B

    2002-01-01

    A recently released National Research Council (NRC) report, Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools, evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study, discipline-specific panels were formed to evaluate advanced programs in biology, chemistry, physics, and mathematics. Among the conclusions of the Content Panel for Biology were that AP courses in particular suffer from inadequate quality control as well as excessive pressure to fulfill their advanced placement function, which encourages teachers to attempt coverage of all areas of biology and emphasize memorization of facts rather than in-depth understanding. In this essay, the Panel's principal findings are discussed, with an emphasis on its recommendation that colleges and universities should be strongly discouraged from using performance on either the AP examination or the IB examination as the sole basis for automatic placement out of required introductory courses for biology majors and distribution requirements for nonmajors.

  1. Nevada Nuclear Waste Storage Investigations: A review of requirements for biological information in federal, state, and local environmental laws and regulations

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.

    1987-01-01

    Biological information concerning Yucca Mountain collected since 1980 is evaluated to determine if it is sufficient to satisfy the requirements of the various federal, state, and local laws and regulations that pertain to environmental protection or to development of waste repositories. The pertinent requirements of each law are summarized, missing information is identified, and recommendations are made for studies to fill these gaps. 11 refs., 2 figs., 1 tab

  2. Biological and Environmental Research Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Biological and Environmental Research, March 28-31, 2016, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Arkin, Adam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bader, David C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aluru, Srinivas [Georgia Inst. of Technology, Atlanta, GA (United States); Andersen, Amity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Aprá, Edoardo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Azad, Ariful [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bates, Susan [National Center for Atmospheric Research, Boulder, CO (United States); Blaby, Ian [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaby-Haas, Crysten [Brookhaven National Lab. (BNL), Upton, NY (United States); Bonneau, Rich [New York Univ. (NYU), NY (United States); Bowen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bradford, Mark A. [Yale Univ., New Haven, CT (United States); Brodie, Eoin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, James (Ben) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bernholdt, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bylaska, Eric [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Calvin, Kate [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cannon, Bill [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, Xingyuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cheng, Xiaolin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheung, Margaret [Univ. of Houston, Houston, TX (United States); Chowdhary, Kenny [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Compo, Gil [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Crowley, Mike [National Renewable Energy Lab. (NREL), Golden, CO (United States); Debusschere, Bert [Sandia National Lab. (SNL-CA), Livermore, CA (United States); D’Imperio, Nicholas [Brookhaven National Lab. (BNL), Upton, NY (United States); Dror, Ron [Stanford Univ., Stanford, CA (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Friedberg, Iddo [Iowa State Univ., Ames, IA (United States); Fyke, Jeremy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Zheng [Stony Brook Univ., Stony Brook, NY (United States); Georganas, Evangelos [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Giraldo, Frank [Naval Postgraduate School, Monterey, CA (United States); Gnanakaran, Gnana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Govind, Niri [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Grandy, Stuart [Univ. of New Hampshire, Durham, NH (United States); Gustafson, Bill [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hammond, Glenn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hargrove, William [USDA Forest Service, Washington, D.C. (United States); Heroux, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Forrest [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hofmeyr, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hunke, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jackson, Charles [Univ. of Texas-Austin, Austin, TX (United States); Jacob, Rob [Argonne National Lab. (ANL), Argonne, IL (United States); Jacobson, Dan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobson, Matt [Univ. of California, San Francisco, CA (United States); Jain, Chirag [Georgia Inst. of Technology, Atlanta, GA (United States); Johansen, Hans [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Johnson, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jones, Andy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jones, Phil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kalyanaraman, Ananth [Washington State Univ., Pullman, WA (United States); Kang, Senghwa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); King, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Koanantakool, Penporn [Univ. of California, Berkeley, CA (United States); Kollias, Pavlos [Stony Brook Univ., Stony Brook, NY (United States); Kopera, Michal [Univ. of California, Santa Cruz, CA (United States); Kotamarthi, Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Karol [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Kumar, Jitendra [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kyrpides, Nikos [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xiaolin [Stony Brook Univ., Stony Brook, NY (United States); Lin, Wuyin [Brookhaven National Lab. (BNL), Upton, NY (United States); Link, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Yangang [Brookhaven National Lab. (BNL), Upton, NY (United States); Loew, Leslie [Univ. of Connecticut, Storrs, CT (United States); Luke, Edward [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, Hsi -Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mahadevan, Radhakrishnan [Univ. of Toronto, Toronto, ON (Canada); Maranas, Costas [Pennsylvania State Univ., University Park, PA (United States); Martin, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States); McCue, Lee Ann [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McInnes, Lois Curfman [Argonne National Lab. (ANL), Argonne, IL (United States); Mills, Richard [Intel Corp., Santa Clara, CA (United States); Molins Rafa, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mostafavi, Sara [Center for Molecular Medicine and Therapeutics, Vancouver, BC (Canada); Moulton, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mourao, Zenaida [Univ. of Cambridge (United Kingdom); Najm, Habib [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ng, Bernard [Center for Molecular Medicine and Therapeutics, Vancouver, BC (Canada); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Norman, Matt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oh, Sang -Yun [Univ. of California, Santa Barbara, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Chongle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pass, Rebecca [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pau, George S. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petridis, Loukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Prakash, Giri [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Price, Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Randall, David [Colorado State Univ., Fort Collins, CO (United States); Renslow, Ryan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riihimaki, Laura [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ringler, Todd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roberts, Andrew [Naval Postgraduate School, Monterey, CA (United States); Rokhsar, Dan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ruebel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Salinger, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheibe, Tim [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schulz, Roland [Intel, Mountain View, CA (United States); Sivaraman, Chitra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sreepathi, Sarat [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Talbot, Jenifer [Boston Univ., Boston, MA (United States); Tantillo, D. J. [Univ. of California, Davis, CA (United States); Tartakovsky, Alex [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taylor, Ronald [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Urban, Nathan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valiev, Marat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Wagner, Allon [Univ. of California, Berkeley, CA (United States); Wainwright, Haruko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wieder, Will [NCAR/Univ. of Colorado, Boulder, CO (United States); Wiley, Steven [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Dean [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Worley, Pat [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xie, Shaocheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yelick, Kathy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yoo, Shinjae [Brookhaven National Lab. (BNL), Upton, NY (United States); Yosef, Niri [Univ. of California, Berkeley, CA (United States); Zhang, Minghua [Stony Brook Univ., Stony Brook, NY (United States)

    2016-03-31

    Understanding the fundamentals of genomic systems or the processes governing impactful weather patterns are examples of the types of simulation and modeling performed on the most advanced computing resources in America. High-performance computing and computational science together provide a necessary platform for the mission science conducted by the Biological and Environmental Research (BER) office at the U.S. Department of Energy (DOE). This report reviews BER’s computing needs and their importance for solving some of the toughest problems in BER’s portfolio. BER’s impact on science has been transformative. Mapping the human genome, including the U.S.-supported international Human Genome Project that DOE began in 1987, initiated the era of modern biotechnology and genomics-based systems biology. And since the 1950s, BER has been a core contributor to atmospheric, environmental, and climate science research, beginning with atmospheric circulation studies that were the forerunners of modern Earth system models (ESMs) and by pioneering the implementation of climate codes onto high-performance computers. See http://exascaleage.org/ber/ for more information.

  3. [Bibliometry of collaboration and impact of the Revista de Biología Tropical (Web of Science 2003-2012)].

    Science.gov (United States)

    De Filippo, Daniela; Córdoba González, Saray; Sanz-Casado, Elías

    2016-03-01

    The activity analysis of a scientific journal is relevant to know the evolution of its characteristics over time. In this paper, results of a bibliometric study of the Revista de Biología Tropical/International Journal of Tropical Biology and Conservation (Costa Rica) are presented. The goal of this study was to describe the main characteristics of its scientific production, and analyze its level of collaboration and its impact between the years 2003-2012. Data was derived from the Web of Science (Thomson-Reuters), and the relationship among authors and coauthors, institutions and countries, and their links with the citations received were analyzed for that period. Descriptive statistics about production (number of documents per year, institution and country), collaboration (authorship index, collaboration among institutions and countries) and impact (IF, position in JCR and number of citations received) were collected. Results showed that the journal has published 1 473 papers in this period, in similar proportions English and Spanish. Mexico, Costa Rica, Venezuela and Colombia are the most common countries of origin, with the Universidad of Costa Rica, Universidad Autónoma de Mexico and the University of Puerto Rico as the most common leader institutions. Collaboration between authors, institutions and countries has shown an increasing trend over the last decade. The co-author index was 3.07 per document, 63 % of publications included 2 or more institutions, and 22 % of the papers were product of international collaboration. The most common collaboration link was between Costa Rica and the United States of America. The impact factor has been oscillating during this last decade, reaching a maximum in 2012 (IF JCR = 0.553). Besides, 10 % of the most cited papers concentrated half of the citations received by the journal, and have a very high number of citations, compared with the journal mean. The main countries that cite the journal were USA, Brazil, Mexico

  4. Technology Integration in Science Education: A Study of How Teachers Use Modern Learning Technologies in Biology Classrooms

    Science.gov (United States)

    Gnanakkan, Dionysius Joseph

    This multiple case-study investigated how high school biology teachers used modern learning technologies (probes, interactive simulations and animations, animated videos) in their classrooms and why they used the learning technologies. Another objective of the study was to assess whether the use of learning technologies alleviated misconceptions in Biology documented by American Association for the Advancement of Science. The sample consisted of eight teachers: four rural public school teachers, two public selective enrollment school teachers, and two private school teachers. Each teacher was followed for two Units of instruction. Data collected included classroom observations, field notes, student assignments and tests, teacher interviews, and pre-and post-misconception assessments. Paired t-tests were done to analyze the pre-post test data at a significance level of 0.05 and the qualitative data was analyzed using the constant comparative method. Each case study was characterized and then a cross-case analyses was done to find common themes across the different cases. Teachers were found to use the learning technologies as a tool to supplement instruction to visualize abstract processes, collect data, and explore abstract concepts and processes. Teachers were found to situate learning, use scaffolding and questioning and make students work in collaborative groups. The genetics, photosynthesis, and evolution misconceptions were better alleviated than cellular respiration. Student work that was collected demonstrated a superficial understanding of the concepts under discussion even when they had misconceptions. The teachers used the learning technologies in their classrooms for a variety of reasons: visual illustrations, time-saving measure to collect data, best way to collect data, engaging and fun for students and the interactive nature of the visualization tools and models. The study's findings had many implications for research, professional development

  5. Sense-antisense (complementary) peptide interactions and the proteomic code; potential opportunities in biology and pharmaceutical science.

    Science.gov (United States)

    Miller, Andrew D

    2015-02-01

    entire genomes to entire proteomes. The possibility that such a proteomic code should exist is discussed. So too the potential implications for biology and pharmaceutical science are also discussed were such a code to exist.

  6. 78 FR 13604 - Defense Federal Acquisition Regulation Supplement: Encouragement of Science, Technology...

    Science.gov (United States)

    2013-02-28

    ..., either formal or informal, that encourage the pursuit of education and experience in the science..., programs or initiatives, either formal or informal, which encourage the pursuit of education and experience... Title I schools in order to enhance STEM education and programs; Making personnel available to advise...

  7. Science Teacher Efficacy and Outcome Expectancy as Predictors of Students' End-of-Instruction (EOI) Biology I Test Scores

    Science.gov (United States)

    Angle, Julie; Moseley, Christine

    2009-01-01

    The purpose of this study was to compare teacher efficacy beliefs of secondary Biology I teachers whose students' mean scores on the statewide End-of-Instruction (EOI) Biology I test met or exceeded the state academic proficiency level (Proficient Group) to teacher efficacy beliefs of secondary Biology I teachers whose students' mean scores on the…

  8. Credibility engineering in the food industry: linking science, regulation, and marketing in a corporate context.

    Science.gov (United States)

    Penders, Bart; Nelis, Annemiek P

    2011-12-01

    We expand upon the notion of the "credibility cycle" through a study of credibility engineering by the food industry. Research and development (R&D) as well as marketing contribute to the credibility of the food company Unilever and its claims. Innovation encompasses the development, marketing, and sales of products. These are directed towards three distinct audiences: scientific peers, regulators, and consumers. R&D uses scientific articles to create credit for itself amongst peers and regulators. These articles are used to support health claims on products. However, R&D, regulation, and marketing are not separate realms. A single strategy of credibility engineering connects health claims to a specific public through linking that public to a health issue and a food product.

  9. The effects of question-generation training on metacognitive knowledge, self regulation and learning approaches in science.

    Science.gov (United States)

    Cano García, Francisco; García, Ángela; Berbén, A B G; Pichardo, M C; Justicia, Fernando

    2014-01-01

    Although much research has examined the impact of question generation on students' reading comprehension and learning from lectures, far less research has analysed its influence on how students learn and study science. The present study aims to bridge this knowledge gap. Using a quasi-experimental design, three complete ninth-grade science classes, with a total of 72 students, were randomly assigned to three conditions (groups): (G1) questioning-training by providing prompts; (G2) question-generation without any explicit instruction; and (G3) no question control. Participants' pre-test and post-test self-reported measures of metacognitive knowledge, self-regulation and learning approaches were collected and data analysed with multivariate and univariate analyses of covariance. (a) MANCOVA revealed a significant effect for group; (b) ANCOVAs showed the highest average gains for G1 and statistically significant between-group differences in the two components of metacognition: metacognitive knowledge and self-regulation; and (c) the direction of these differences seemed to vary in each of these components. Question-generation training influenced how students learned and studied, specifically their metacognition, and it had a medium to large effect size, which was somewhat related to the prompts used.

  10. Regulation

    International Nuclear Information System (INIS)

    Ballereau, P.

    1999-01-01

    The different regulations relative to nuclear energy since the first of January 1999 are given here. Two points deserve to be noticed: the decree of the third august 1999 authorizing the national Agency for the radioactive waste management to install and exploit on the commune of Bures (Meuse) an underground laboratory destined to study the deep geological formations where could be stored the radioactive waste. The second point is about the uranium residues and the waste notion. The judgment of the administrative tribunal of Limoges ( 9. july 1998) forbidding the exploitation of a storage installation of depleted uranium considered as final waste and qualifying it as an industrial waste storage facility has been annulled bu the Court of Appeal. It stipulated that, according to the law number 75663 of the 15. july 1965, no criteria below can be applied to depleted uranium: production residue (possibility of an ulterior enrichment), abandonment of a personal property or simple intention to do it ( future use aimed in the authorization request made in the Prefecture). This judgment has devoted the primacy of the waste notion on this one of final waste. (N.C.)

  11. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype.

    Science.gov (United States)

    Kim, Hong Seok; Asmis, Reto

    2017-08-01

    MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A microanalytic study of self-regulated learning processes of expert, non-expert, and at-risk science students

    Science.gov (United States)

    Dibenedetto, Maria K.

    2009-12-01

    The present investigation sought to examine differences in the self-regulated learning processes and beliefs of students who vary in their level of expertise in science and to investigate if there are gender differences. Participants were 51 ethnically diverse 11th grade students from three parochial high schools consisting of 34 females and 17 males. Students were grouped as either expert, non-expert, or at-risk based on the school's classification. Students were provided with a short passage on tornados to read and study. The two achievement measures obtained were the Tornado Knowledge Test : ten short-answer questions and the Conceptual Model Test : a question which required the students to draw and describe the three sequential images of tornado development from the textual description of the three phases. A microanalytic methodology was used which consists of asking a series of questions aimed at assessing students' psychological behaviors, feelings, and thoughts in each of Zimmerman's three phases of self-regulation: forethought, performance, and reflection. These questions were asked of the students while they were engaged in learning. Two additional measures were obtained: the Rating Student Self-Regulated Learning Outcomes: A Teacher Scale (RSSRL) and the Self-Efficacy for Self-Regulated Learning (SELF). Analysis of variance, chi square analysis, and post hoc test results showed significant expertise differences, large effect sizes, and positive linear trends on most measures. Regarding gender, there were significant differences on only two measures. Correlational analyses also revealed significant relations among the self-regulatory subprocesses across the three phases. The microanalytic measures were combined across the three phases and entered into a regression formula to predict the students' scores on the Tornado Knowledge Test. These self-regulatory processes explained 77% of the variance in the Tornado Knowledge Test, which was a significant and

  13. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  14. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  15. The Effect of Differentiated Science Curriculum on Students' Motivational Regulations

    Science.gov (United States)

    Abu, Nese Kutlu; Gökdere, Murat

    2018-01-01

    The purpose of this study is to examine whether the Grid Model practices affect students' motivation for self-regulation. In the study, quasi-experimental research design with pre-test/post-test control group was used. This study was conducted with a total of 74 students from 4th grade students in different primary schools in Amasya. Motivated…

  16. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of…

  17. Understanding Global Change (UGC) as a Unifying Conceptual Framework for Teaching Ecology: Using UGC in a High School Biology Program to Integrate Earth Science and Biology, and to Demonstrate the Value of Modeling Global Systems in Promoting Conceptual Learning

    Science.gov (United States)

    Levine, J.; Bean, J. R.

    2017-12-01

    Global change science is ideal for NGSS-informed teaching, but presents a serious challenge to K-12 educators because it is complex and interdisciplinary- combining earth science, biology, chemistry, and physics. Global systems are themselves complex. Adding anthropogenic influences on those systems creates a formidable list of topics - greenhouse effect, climate change, nitrogen enrichment, introduced species, land-use change among them - which are often presented as a disconnected "laundry list" of "facts." This complexity, combined with public and mass-media scientific illiteracy, leaves global change science vulnerable to misrepresentation and politicization, creating additional challenges to teachers in public schools. Ample stand-alone, one-off, online resources, many of them excellent, are (to date) underutilized by teachers in the high school science course taken by most students: biology. The Understanding Global Change project (UGC) from the UC Berkeley Museum of Paleontology has created a conceptual framework that organizes, connects, and explains global systems, human and non-human drivers of change in those systems, and measurable changes in those systems. This organization and framework employ core ideas, crosscutting concepts, structure/function relationships, and system models in a unique format that facilitates authentic understanding, rather than memorization. This system serves as an organizing framework for the entire ecology unit of a forthcoming mainstream high school biology program. The UGC system model is introduced up front with its core informational graphic. The model is elaborated, step by step, by adding concepts and processes as they are introduced and explained in each chapter. The informational graphic is thus used in several ways: to organize material as it is presented, to summarize topics in each chapter and put them in perspective, and for review and critical thinking exercises that supplement the usual end-of-chapter lists of

  18. Training in summarizing notes: Effects of teaching students a self-regulation study strategy in science learning

    Science.gov (United States)

    Nebres, Michelle

    The last two decades of national data assessments reveal that there has been a sharp decline in nationwide standardized test scores. International assessment data show that in 2012 a very low amount of American students were performing at proficiency or above in science literacy. Research in science literacy education suggests that students benefit most when they are self-regulated (SR) learners. Unfortunately, SR poses a challenge for many students because students lack these skills. The effects of having learned few SR strategies at an early age may lead to long term learning difficulties--preventing students from achieving academic success in college and beyond. As a result, some researchers have begun to investigate how to best support students' SR skills. In order for studying to be successful, students need to know which SR study strategies to implement. This can be tricky for struggling students because they need study strategies that are well defined. This needs to be addressed through effective classroom instruction, and should be addressed prior to entering high school in order for students to be prepared for higher level learning. In this study, students underwent a treatment in which they were taught a SR study strategy called summarizing notes. A crossover repeated measures design was employed to understand the effectiveness of the treatment. Results indicated a weak, but positive correlation between how well students summarized notes and how well they performed on science tests. Self-regulation skills are needed because these are the types of skills young adults will use as they enter the workforce. As young adults began working in a professional setting, they will be expected to know how to observe and become proficient on their own. This study is pertinent to the educational field because it is an opportunity for students to increase SR, which affords students with the skills needed to be a lifelong learner.

  19. “Biotecnological War” - A Conceptual And Perceptual Assessment Tool For Teaching Biotechnology And Protein Chemistry For Undergraduate Students In Biological Sciences.

    OpenAIRE

    C. R. C. Cruz et al.

    2017-01-01

    "Biotecnological War" board game, a conceptual and perceptual assessment tool for biotechnology and protein chemistry teaching for undergraduate students in biological sciences and related areas. It is a proposal initially conceived as an alternative complementary tool for biochemistry teaching of proteins and peptides, challenging students, aiming to review concepts transmitted in classroom, stimulating diverse student’s abilities, such as their creativity, competitiveness and resource manag...

  20. A Community College Instructor's Reflective Journey Toward Developing Pedagogical Content Knowledge for Nature of Science in a Non-majors Undergraduate Biology Course

    Science.gov (United States)

    Krajewski, Sarah J.; Schwartz, Renee

    2014-08-01

    Research supports an explicit-reflective approach to teaching about nature of science (NOS), but little is reported on teachers' journeys as they attempt to integrate NOS into everyday lessons. This participatory action research paper reports the challenges and successes encountered by an in-service teacher, Sarah, implementing NOS for the first time throughout four units of a community college biology course (genetics, molecular biology, evolution, and ecology). Through the action research cycles of planning, implementing, and reflecting, Sarah identified areas of challenge and success. This paper reports emergent themes that assisted her in successfully embedding NOS within the science content. Data include weekly lesson plans and pre/post reflective journaling before and after each lesson of this lecture/lab combination class that met twice a week. This course was taught back to back semesters, and this study is based on the results of a year-long process. Developing pedagogical content knowledge (PCK) for NOS involves coming to understand the overlaps and connections between NOS, other science subject matter, pedagogical strategies, and student learning. Sarah found that through action research she was able to grow and assimilate her understanding of NOS within the biology content she was teaching. A shift in orientation toward teaching products of science to teaching science processes was a necessary shift for NOS pedagogical success. This process enabled Sarah's development of PCK for NOS. As a practical example of putting research-based instructional recommendations into practice, this study may be very useful for other teachers who are learning to teach NOS.

  1. Stree Shakti Science Samman Awardees | Women in Science ...

    Indian Academy of Sciences (India)

    Stree Shakti Science Samman Awardees. Following is the list of women awardees: Year: 2012. Dr. Jaya S. Tyagi Specialization: Molecular Biology, Mycobacteriology and Gene Regulation. Year: 2012. Telma B. K.. Specialization: Cytogenetics and Human Genetics. Year: 2010. Prof. Shobhana Narasimhan Specialization: ...

  2. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 2. 3. Solid state physics and materials science

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  3. A Tricky Trait: Applying the Fruits of the "Function Debate" in the Philosophy of Biology to the "Venom Debate" in the Science of Toxinology.

    Science.gov (United States)

    Jackson, Timothy N W; Fry, Bryan G

    2016-09-07

    The "function debate" in the philosophy of biology and the "venom debate" in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between "venomous" and "non-venomous" species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology.

  4. A day of systems and synthetic biology for non-experts: reflections on day 1 of the EMBL/EMBO joint conference on Science and Society.

    Science.gov (United States)

    Moore, Andrew

    2009-01-01

    From understanding ageing to the creation of artificial membrane-bounded 'organisms', systems biology and synthetic biology are seen as the latest revolutions in the life sciences. They certainly represent a major change of gear, but paradigm shifts? This is open to debate, to say the least. For scientists they open up exciting ways of studying living systems, of formulating the 'laws of life', and the relationship between the origin of life, evolution and artificial biological systems. However, the ethical and societal considerations are probably indistinguishable from those of human genetics and genetically modified organisms. There are some tangible developments just around the corner for society, and as ever, our ability to understand the consequences of, and manage, our own progress lags far behind our technological abilities. Furthermore our educational systems are doing a bad job of preparing the next generation of scientists and non-scientists.

  5. Using a Professional Development Program for Enhancing Chilean Biology Teachers' Understanding of Nature of Science (NOS) and Their Perceptions about Using History of Science to Teach NOS

    Science.gov (United States)

    Pavez, José M.; Vergara, Claudia A.; Santibañez, David; Cofré, Hernán

    2016-01-01

    A number of authors have recognized the importance of understanding the nature of science (NOS) for scientific literacy. Different instructional strategies such as decontextualized, hands-on inquiry, and history of science (HOS) activities have been proposed for teaching NOS. This article seeks to understand the contribution of HOS in enhancing…

  6. Science and public participation in regulating genetically-engineered food: Franch an American experiences

    OpenAIRE

    Diabanna L. Post; Jérôme M. Da Ros

    2003-01-01

    This paper describes three cases of government-led efforts in France and the United States to bring stakeholders into the regulatory process for genetically-modified food. We analyze how government regulators, scientists, and members of the public interacted in these three different settings, and conclude that public participation is not linked with a regulatory outcome; in other words, for various reasons which we consider, public participation did not have a substantive impact on government...

  7. A Dual Case Study: Students' Perceptions, Self-Efficacy and Understanding of the Nature of Science in Varied Introductory Biology Laboratories

    Science.gov (United States)

    Quigley, Dena Beth Boans

    Since World War II, science education has been at the forefront of curricular reforms. Although the philosophical approach to science education has changed numerous times, the importance of the laboratory has not waned. A laboratory is meant to allow students to encounter scientific concepts in a very real, hands-on way so that they are able to either recreate experiments that have given rise to scientific theories or to use science to understand a new idea. As the interactive portion of science courses, the laboratory should not only reinforce conceptual ideas, but help students to understand the process of science and interest them in learning more about science. However, most laboratories have fallen into a safe pattern having teachers and students follow a scientific recipe, removing the understanding of and interest in science for many participants. In this study, two non-traditional laboratories are evaluated and compared with a traditional laboratory in an effort to measure student satisfaction, self-efficacy, attitudes towards science, and finally their epistemology of the nature of science (NOS). Students in all populations were administered a survey at the beginning and the end of their spring 2016 laboratory, and the survey was a mixture of qualitative questions and quantitative instruments. Overall, students who participated in one of the non-traditional labs rated their satisfaction higher and used affirming supportive statements. They also had significant increases in self-efficacy from pre to post, while the students in the traditional laboratory had a significant decrease. The students in the traditional laboratory had significant changed in attitudes towards science, as did the students in one of the non-traditional laboratories. All students lacked a firm grasp of the tenets of NOS, although one laboratory that includes explicit discussions of NOS saw improvement in at least on tenet. Data for two non-major biology laboratory populations was

  8. The role of biological sciences in understanding the genesis and a new therapeutic approach to Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Eugenia Tęgowska

    2011-01-01

    Full Text Available The paper contrasts the historical view on causal factors in Alzheimer’s disease (AD with the modern concept of the symptoms’ origin. Biological sciences dealing with cell structure and physiology enabled comprehension of the role of mitochondrial defects in the processes of formation of neurofibrillary tangles and β-amyloid, which in turn gives hope for developing a new, more effective therapeutic strategy for AD. It has been established that although mitochondria constantly generate free radicals, from which they are protected by their own defensive systems, in some situations these systems become deregulated, which leads to free radical-based mitochondrial defects. This causes an energetic deficit in neurons and a further increase in the free radical pool. As a result, due to compensation processes, formation of tangles and/or acceleration of β-amyloid production takes place. The nature of these processes is initially a protective one, due to their anti-oxidative action, but as the amount of the formations increases, their beneficial effect wanes. They become a storage place for substances enhancing free radical processes, which makes them toxic themselves. It is such an approach to the primary causal factor for AD which lies at the roots of the new view on AD therapy, suggesting the use of methylene blue-based drugs, laser or intranasally applied insulin. A necessary condition, however, for these methods’ effectiveness is definitely an earlier diagnosis of the disease. Although there are numerous diagnostic methods for AD, their low specificity and high price, often accompanied by a considerable level of patient discomfort, make them unsuitable for early, prodromal screening. In this matter a promising method may be provided using an olfactory test, which is an inexpensive and non-invasive method and thus suitable for screening, although as a test of low specificity, it should be combined with other methods. Introducing new methods

  9. Path from schizophrenia genomics to biology: gene regulation and perturbation in neurons derived from induced pluripotent stem cells and genome editing.

    Science.gov (United States)

    Duan, Jubao

    2015-02-01

    Schizophrenia (SZ) is a devastating mental disorder afflicting 1% of the population. Recent genome-wide association studies (GWASs) of SZ have identified >100 risk loci. However, the causal variants/genes and the causal mechanisms remain largely unknown, which hinders the translation of GWAS findings into disease biology and drug targets. Most risk variants are noncoding, thus likely regulate gene expression. A major mechanism of transcriptional regulation is chromatin remodeling, and open chromatin is a versatile predictor of regulatory sequences. MicroRNA-mediated post-transcriptional regulation plays an important role in SZ pathogenesis. Neurons differentiated from patient-specific induced pluripotent stem cells (iPSCs) provide an experimental model to characterize the genetic perturbation of regulatory variants that are often specific to cell type and/or developmental stage. The emerging genome-editing technology enables the creation of isogenic iPSCs and neurons to efficiently characterize the effects of SZ-associated regulatory variants on SZ-relevant molecular and cellular phenotypes involving dopaminergic, glutamatergic, and GABAergic neurotransmissions. SZ GWAS findings equipped with the emerging functional genomics approaches provide an unprecedented opportunity for understanding new disease biology and identifying novel drug targets.

  10. The International Biological Program in Eastern Europe. Science Diplomacy, Comecon and the Beginnings of Ecology in Czechoslovakia

    Czech Academy of Sciences Publication Activity Database

    Olšáková, Doubravka

    2018-01-01

    Roč. 24, č. 2 (2018), s. 1-25 ISSN 0967-3407 R&D Projects: GA ČR GA15-04902S Institutional support: RVO:68378114 Keywords : cold war * science diplomacy * environmental history Subject RIV: AB - History OBOR OECD: History (history of science and technology to be 6.3, history of specific sciences to be under the respective headings) Impact factor: 0.659, year: 2016

  11. Is economics becoming the Mecca of Biology?: A citation analysis of the relationship between natural and social sciences

    OpenAIRE

    Yalcintas, Altug

    2012-01-01

    This essay argues that articles in economics, especially in the fields of evolutionary and institutional economics, are as much cited in biology as in economics. The citation analysis conducted in the essay suggests that economics is now becoming the Mecca of biology.

  12. "Capping Off" the Development of Graduate Capabilities in the Final Semester Unit for Biological Science Students: Review and Recommendations

    Science.gov (United States)

    Firn, Jennifer

    2015-01-01

    Biology is the most rapidly evolving scientific field of the 21st century. Biology graduates must be able to integrate concepts and collaborate outside their discipline to solve the most pressing questions of our time, e.g. world hunger, malnutrition, climate change, infectious disease and biosecurity. University educators are attempting to…

  13. Science and regulation 50 years hand in hand in radiation safety work in Finland

    International Nuclear Information System (INIS)

    Laaksonen, Jukka; Mustonen, Raimo; Ikaheimonen, Tarja

    2008-01-01

    The first predecessor of the present Nuclear and Radiation Safety Authority of Finland (STUK) was founded in 1958 to regulate the use of radiation and to study artificial radiation in the environment. In those days radiation was used only in medical and industrial applications and there were also first indications that atmospheric nuclear tests might cause significant exposure to radiation, especially in the Northern Finland. Focusing activities of the new Institute of Radiation Physics, as STUK was called in those days, to these two activities laid foundation for the operations culture where regulators and scientists work together to achieve the optimum level of safety. Since those early days STUK has continued this operations model and developed it to include also other activities. Today STUK is the national regulatory body for both radiation protection and nuclear safety, but at the same time it is a research organisation and an expert body, supporting for instance the national emergency preparedness for nuclear and radiation accidents. This has brought great synergy benefits and given STUK an opportunity to use the limited national resources in the most effective way. This paper describes the main functions of STUK in its fifty years' operation and highlights the arguments favouring to keep regulatory and research activities as close to each other as possible. In today's world nuclear safety, radiation protection, and radiological preparedness and security issues are so closely connected with each other that organisations dealing with them should have comprehensive knowledge about all of them. (author)

  14. [Membrane-bound cytokine and feedforward regulation].

    Science.gov (United States)

    Wu, Ke-Fu; Zheng, Guo-Guang; Ma, Xiao-Tong; Song, Yu-Hua

    2013-10-01

    Feedback and feedforward widely exist in life system, both of them are the basic processes of control system. While the concept of feedback has been widely used in life science, feedforward regulation was systematically studied in neurophysiology, awaiting further evidence and mechanism in molecular biology and cell biology. The authors put forward a hypothesis about the feedforward regulation of membrane bound macrophage colony stimulation factor (mM-CSF) on the basis of their previous work. This hypothesis might provide a new direction for the study on the biological effects of mM-CSF on leukemia and solid tumors, and contribute to the study on other membrane bound cytokines.

  15. Reconstructing Anaximander's biological model unveils a theory of evolution akin to Darwin's, though centuries before the birth of science.

    Science.gov (United States)

    Trevisanato, Siro Igino

    2016-08-01

    Anaximander's fragments on biology report a theory of evolution, which, unlike the development of other biological systems in the ancient Aegean, is naturalistic and is not based on metaphysics. According to Anaximander, evolution affected all living beings, including humans. The first biological systems formed in an aquatic environment, and were encased in a rugged and robust envelope. Evolution progressed with modifications that enabled the formation of more dynamic biological systems. For instance, after reaching land, the robust armors around aquatic beings dried up, and became brittle, This led to the loss of the armor and the development of more mobile life forms. Anaximander's theory combines observations of animals with speculations, and as such mirrors the more famous theory of evolution by Charles Darwin expressed 24 centuries later. The poor reception received by Anaximander's model in his time, illustrates a zeitgeist that would explain the contemporary lag phase in the development of biology and, as a result, medicine, in the ancient western world.

  16. Sciences & Nature

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... Sciences & Nature, the Scientific Journal edited by the University of ... Subjects covered include agronomy, sciences of the earth, environment, biological, ...

  17. Relationships among Prior Conceptual Knowledge, Metacognitive Awareness, Metacognitive Self-Management, Cognitive Style, Perception-Judgment Style, Attitude toward School Science, Self-Regulation, and Science Achievement in Grades 6-7 Students.

    Science.gov (United States)

    Holden, Trudy G.; Yore, Larry D.

    This study explores the learner dimension in learning biological science topics in five elementary school classrooms instructed by different teachers using a common course of study and outcome measures. Specifically, the study addressed the associations among conceptual, metacognitive, cognitive, stylistic, and affective characteristics and…

  18. Investigating the Role of an Inquiry-Based Biology Lab Course on Student Attitudes and Views toward Science

    Science.gov (United States)

    Jeffery, Erica; Nomme, Kathy; Deane, Thomas; Pollock, Carol; Birol, Gülnur

    2016-01-01

    Students' academic experiences can influence their conceptualization of science. In contrast experts hold particular beliefs, perceptions, opinions, and attitudes about science that are often absent in first-year undergraduate students. Shifts toward more expert-like attitudes and views have been linked to improved student engagement,…

  19. The self-regulating brain and neurofeedback: Experimental science and clinical promise.

    Science.gov (United States)

    Thibault, Robert T; Lifshitz, Michael; Raz, Amir

    2016-01-01

    Neurofeedback, one of the primary examples of self-regulation, designates a collection of techniques that train the brain and help to improve its function. Since coming on the scene in the 1960s, electroencephalography-neurofeedback has become a treatment vehicle for a host of mental disorders; however, its clinical effectiveness remains controversial. Modern imaging technologies of the living human brain (e.g., real-time functional magnetic resonance imaging) and increasingly rigorous research protocols that utilize such methodologies begin to shed light on the underlying mechanisms that may facilitate more effective clinical applications. In this paper we focus on recent technological advances in the field of human brain imaging and discuss how these modern methods may influence the field of neurofeedback. Toward this end, we outline the state of the evidence and sketch out future directions to further explore the potential merits of this contentious therapeutic prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The effect of student-centered and teacher-centered instruction with and without conceptual advocacy on biology students' misconceptions, achievement, attitudes toward science, and cognitive retention

    Science.gov (United States)

    Gallop, Roger Graham

    The purpose of this study was to investigate the effect of student-centered and teacher-centered instructional strategies with and without conceptual advocacy (CA) on ninth-grade biology students' misconceptions (MIS), biology achievement (ACH), attitudes toward science (ATT), and cognitive retention of scientific method and measurement, spontaneous generation, and characteristics of living things. Students were purposively selected using intact classes and assigned to one of four treatment groups (i.e., student-centered instruction without CA, student-centered instruction with CA, teacher-centered instruction with CA, and teacher-centered instruction without CA). A modified quasi-experimental design was used in which students were not matched in the conventional sense but instead, groups were shown to be equivalent on the dependent measure via a pretest. A 5-day treatment implementation period addressed science conceptions under investigation. The treatment period was based on the number of class periods teachers at the target school actually spend teaching the biological concepts under investigation using traditional instruction. At the end of the treatment period, students were posttested using the Concepts in Biology instrument and Science Questionnaire. Eight weeks after the posttest, these instruments were administered again as a delayed posttest to determine cognitive retention of the correct biological conceptions and attitudes toward science. MANCOVA and follow-up univariate ANCOVA results indicated that student-centered instruction without CA (i.e., Group 1) did not have a significant effect on students' MIS, ACH, and ATT (F = .029, p = .8658; F = .002, p =.9688, F = .292, p = .5897, respectively). On the other hand, student-centered instruction with CA (i.e., Group 2) had a significant effect on students' MIS and ACH (F =10.33, p = .0016 and F = 10.17, p = .0017, respectively), but did not on ATT (F = .433, p = .5117). Teacher-centered instruction with