WorldWideScience

Sample records for biological sciences engineering

  1. Challenges of medical and biological engineering and science

    International Nuclear Information System (INIS)

    Magjarevic, R.

    2004-01-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science

  2. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  3. Engineered Ribosomes for Basic Science and Synthetic Biology.

    Science.gov (United States)

    d'Aquino, Anne E; Kim, Do Soon; Jewett, Michael C

    2018-03-28

    The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discusse Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering Volume 9 is June 7, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  4. Advancing the science of forest hydrology A challenge to agricultural and biological engineers

    Science.gov (United States)

    Devendra Amatya; Wayne Skaggs; Carl Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has originated largely from forested lands, which have experienced dramatic declines over the...

  5. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2013-06-01

    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired." Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  7. A review on biological adaptation: with applications in engineering science

    Directory of Open Access Journals (Sweden)

    LiMin Luo

    2014-06-01

    Full Text Available Biological adaptation refers to that organisms change themselves at morphological, physiological, behavioral and molecular level to better survive in a changing environment. It includes phenotype adaptation and molecular adaptation. Biological adaptation is a driving force of evolution. Biological adaptation was described from Darwinian theory of evolution to the theory of molecular evolution in present paper. Adaptive control and adaptive filtering were briefly described also.

  8. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  9. Multiplexed Engineering in Biology.

    Science.gov (United States)

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  10. Microfluidics' great promise for Biology - Microfluidics as a new engine for the molecular sciences

    KAUST Repository

    Kodzius, Rimantas

    2010-06-04

    History of the Life Sciences Origins of life Discoveries and instrumentation The power of genetic variation Diagnostics based on DNA/ protein variation Genomic scanning providers DNA sequencing companies Microfluidics story Commercial products available P

  11. Enhancing the Internationalisation of Distance Education in the Biological Sciences: The DUNE Project and Genetic Engineering.

    Science.gov (United States)

    Leach, C. K.; And Others

    1997-01-01

    Describes the Distance Educational Network of Europe (DUNE) project that aims at enhancing the development of distance education in an international context. Highlights issues relating to the delivery of distance-learning courses in a transnational forum. Describes the genetic engineering course that aims at explaining the core techniques of…

  12. Nanoscience The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine

    CERN Document Server

    Schaefer, Hans-Eckhardt

    2010-01-01

    Nanoscience stands out for its interdisciplinarity. Barriers between disciplines disappear and the fields tend to converge at the very smallest scale, where basic principles and tools are universal. Novel properties are inherent to nanosized systems due to quantum effects and a reduction in dimensionality: nanoscience is likely to continue to revolutionize many areas of human activity, such as materials science, nanoelectronics, information processing, biotechnology and medicine. This textbook spans all fields of nanoscience, covering its basics and broad applications. After an introduction to the physical and chemical principles of nanoscience, coverage moves on to the adjacent fields of microscopy, nanoanalysis, synthesis, nanocrystals, nanowires, nanolayers, carbon nanostructures, bulk nanomaterials, nanomechanics, nanophotonics, nanofluidics, nanomagnetism, nanotechnology for computers, nanochemistry, nanobiology, and nanomedicine. Consequently, this broad yet unified coverage addresses research in academ...

  13. A proposal to establish an international network in molecular microbiology and genetic engineering for scientific cooperation and prevention of misuse of biological sciences in the framework of science for peace

    International Nuclear Information System (INIS)

    Becker, Y.

    1998-01-01

    The conference on 'Science and Technology for Construction of Peace' which was organized by the Landau Network Coordination Center and A. Volta Center for Scientific Culture dealt with conversion of military and technological capacities into sustainable civilian application. The ideas regarding the conversion of nuclear warheads into nuclear energy for civilian-use led to the idea that the extension of this trend of thought to molecular biology and genetic engineering, will be a useful contribution to Science for Peace. This idea of developing a Cooperation Network in Molecular Biology and Genetic Engineering that will function parallel to and with the Landau Network Coordination in the 'A. Volta' Center was discussed in the Second International Symposium on Science for Peace, Jerusalem, January 1997. It is the reason for the inclusion of the biological aspects in the deliberations of our Forum. It is hoped that the establishment of an international network in molecular biology and genetic engineering, similar to the Landau Network in physics, will support and achieve the decommissioning of biological weapons. Such a network in microbiology and genetic engineering will contribute to the elimination of biological weapons and to contributions to Science for Peace and to Culture of Peace activities of UNESCO. (author)

  14. Biological science in conservation

    Science.gov (United States)

    David M. Johns

    2000-01-01

    Large-scale wildlands reserve systems offer one of the best hopes for slowing, if not reversing, the loss of biodiversity and wilderness. Establishing such reserves requires both sound biology and effective advocacy. Attempts by The Wildlands Project and its cooperators to meld science and advocacy in the service of conservation is working, but is not without some...

  15. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  16. Engineering Science, Skills, and Bildung

    DEFF Research Database (Denmark)

    Christensen, Jens

    The background for the book is a quest for a thorough analysis of engineering, engineering science, and engineering education. Focusing on the concepts of engineering science, skills, and Bildung, the book investigates the real challenges that are confronting engineering today, and discusses how...

  17. How the biodiversity sciences may aid biological tools and ecological engineering to assess the impact of climatic changes.

    Science.gov (United States)

    Morand, S; Guégan, J-F

    2008-08-01

    This paper addresses how climate changes interact with other global changes caused by humans (habitat fragmentation, changes in land use, bioinvasions) to affect biodiversity. Changes in biodiversity at all levels (genetic, population and community) affect the functioning of ecosystems, in particular host-pathogen interactions, with major consequences in health ecology (emergence and re-emergence; the evolution of virulence and resistance). In this paper, the authors demonstrate that the biodiversity sciences, epidemiological theory and evolutionary ecology are indispensable in assessing the impact of climate changes, and also for modelling the evolution of host-pathogen interactions in a changing environment. The next step is to apply health ecology to the science of ecological engineering.

  18. Philosophy of technology and engineering sciences

    CERN Document Server

    2009-01-01

    The Handbook Philosophy of Technology and Engineering Sciences addresses numerous issues in the emerging field of the philosophy of those sciences that are involved in the technological process of designing, developing and making of new technical artifacts and systems. These issues include the nature of design, of technological knowledge, and of technical artifacts, as well as the toolbox of engineers. Most of these have thus far not been analyzed in general philosophy of science, which has traditionally but inadequately regarded technology as mere applied science and focused on physics, biology, mathematics and the social sciences.

  19. Learning physical biology via modeling and simulation: A new course and textbook for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    To a large extent, undergraduate physical-science curricula remain firmly rooted in pencil-and-paper calculation, despite the fact that most research is done with computers. To a large extent, undergraduate life-science curricula remain firmly rooted in descriptive approaches, despite the fact that much current research involves quantitative modeling. Not only does our pedagogy not reflect current reality; it also creates a spurious barrier between the fields, reinforcing the narrow silos that prevent students from connecting them. I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional undergraduate courses: •Basic modeling skills; •Probabilistic modeling skills; •Data analysis methods; •Computer programming using a general-purpose platform like MATLAB or Python; •Pulling datasets from the Web for analysis; •Data visualization; •Dynamical systems, particularly feedback control. Partially supported by the NSF under Grants EF-0928048 and DMR-0832802.

  20. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  1. Systems biology in animal sciences

    NARCIS (Netherlands)

    Woelders, H.; Pas, te M.F.W.; Bannink, A.; Veerkamp, R.F.; Smits, M.A.

    2011-01-01

    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes

  2. Synthetic biology: engineering molecular computers

    CERN Document Server

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  3. Science & Engineering Indicators 2016. National Science Board

    Science.gov (United States)

    National Science Foundation, 2016

    2016-01-01

    "Science and Engineering Indicators" (SEI) is first and foremost a volume of record comprising high-quality quantitative data on the U.S. and international science and engineering enterprise. SEI includes an overview and seven chapters that follow a generally consistent pattern. The chapter titles are as follows: (1) Elementary and…

  4. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  5. Design science, engineering science and requirements engineering

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Heerkens, Johannes M.G.

    2008-01-01

    For several decades there has been a debate in the computing sciences about the relative roles of design and empirical research, and about the contribution of design and research methodology to the relevance of research results. In this minitutorial we review this debate and compare it with evidence

  6. Advances in Biological Science.

    Science.gov (United States)

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  7. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  8. Opportunities in Biological Sciences; [VGM Career Horizons Series].

    Science.gov (United States)

    Winter, Charles A.

    This book provides job descriptions and discusses career opportunities in various fields of the biological sciences. These fields include: (1) biotechnology, genetics, biomedical engineering, microbiology, mycology, systematic biology, marine and aquatic biology, botany, plant physiology, plant pathology, ecology, and wildlife biology; (2) the…

  9. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  10. Science & Engineering Indicators--1989.

    Science.gov (United States)

    National Science Foundation, Washington, DC. National Science Board.

    This volume is the ninth in the biennial "Science Indicators" series initiated by the National Science Board. The series provides a broad base of quantitative information about the structure and function of United States science and technology and comparisons with other advanced industrial countries. An overview of science and technology…

  11. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  12. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  13. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  14. Biology: An Important Agricultural Engineering Mechanism

    Science.gov (United States)

    Henderson, S. M.

    1974-01-01

    Describes the field of bioengineering with particular emphasis on agricultural engineering, and presents the results of a survey of schools that combine biology and engineering in their curricula. (JR)

  15. World Congress on Engineering and Computer Science 2012

    CERN Document Server

    Ao, Sio-Iong; Amouzegar, Mahyar; Rieger, Burghard

    2014-01-01

    IAENG Transactions on Engineering Technologies contains forty-nine revised and extended research articles, written by prominent researchers participating in the conference. Topics covered include circuits, engineering mathematics, control theory, communications systems, systems engineering, manufacture engineering, computational biology, chemical engineering, and industrial applications. This book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent source of reference for researchers and graduate students working with/on engineering technologies and physical science and applications.

  16. Journal of Applied Science, Engineering and Technology

    African Journals Online (AJOL)

    The Journal of Applied Science, Engineering and Technology covers research activities and development in the field of Applied Sciences and Technology as it relates to Agricultural Engineering, Biotechnology, Computer Science and Engineering Computations, Civil Engineering, Food Science and Technology, Electrical ...

  17. Science & Engineering Indicators 1998

    Science.gov (United States)

    1998-01-01

    AMERICA: Canada—UNESCO (1996) and OECD/CERI; Mexico —Asociaciön Nacional de Universidades e Instituciones de Educacion Superior , Anuario Estadistico 1995...1995: Posgrado. Mexico . . 1996b. Anuario Estadistico 1995: Poblacion Esco- lar de Nivel Licenciatura en Universidades e Institutos Technologicos...e Instituciones de Educaciön Superior , Anuario Estadistico 1995: Posgrado ( Mexico : 1996); and United States—National Science Foundation, Science

  18. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  19. Measurement Science for Engineers

    NARCIS (Netherlands)

    Regtien, Paulus P.L.; van der Heijden, Ferdinand; Korsten, Maarten J.; Olthuis, Wouter

    2004-01-01

    This volume, from an international authority on the subject, deals with the physical and instrumentation aspects of measurement science, the availability of major measurement tools, and how to use them. This book not only lays out basic concepts of electronic measurement systems, but also provides

  20. Journal of Applied Science, Engineering and Technology: Editorial ...

    African Journals Online (AJOL)

    ... Computer Science and Engineering Computations, Civil Engineering, Food Science and Technology, Electrical & Electronics Engineering, Energy, Geology, Industrial, Production & Manufacturing Engineering, Mechanical Engineering, Petroleum Engineering, Physics and other related Applied Sciences and Engineering ...

  1. Styles of science and engineering

    DEFF Research Database (Denmark)

    Kragh, Helge

    2009-01-01

    In the historiography of the relationship between technology and theoretical science, electrical communication plays an important role. It was by means of mathematical reasoning based on the new theory of electromagnetism that it was first understood how to extend the range of telephony by insert......In the historiography of the relationship between technology and theoretical science, electrical communication plays an important role. It was by means of mathematical reasoning based on the new theory of electromagnetism that it was first understood how to extend the range of telephony...... different styles of engineering science, on the one hand there was the empirical approach and on the other an approach more mathematical in nature. This paper offers some reflections on the nature of 'counterintuitive technologies' and the general relationship between science, engineering and technology....

  2. Women in science and engineering

    International Nuclear Information System (INIS)

    Gauker, Lynn.

    1991-01-01

    Women constitute nearly half of Canada's graduates in law, medicine and commerce, but only 28% in mathematics and physical sciences, and only 13% in engineering and applied sciences. Reasons may include: a lack of role models, a lack of encouragement and financial assistance, and the prevalence of sexist attitudes. Remedies may include: promotional material, banning of sexual harassment, and the inclusion in coursed of social and ethical issues and of information about women scientists

  3. The science of structural engineering

    CERN Document Server

    Heyman, Jacques

    1999-01-01

    Structures cannot be created without engineering theory, and design rules have existed from the earliest times for building Greek temples, Roman aqueducts and Gothic cathedrals - and later, for steel skyscrapers and the frames for aircraft. This book is, however, not concerned with the description of historical feats, but with the way the structural engineer sets about his business. Galileo, in the seventeenth century, was the first to introduce recognizably modern science into the calculation of structures; he determined the breaking strength of beams. In the eighteenth century engineers move

  4. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  5. Women in science & engineering and minority engineering scholarships : year 4.

    Science.gov (United States)

    2010-04-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  6. Women in science & engineering and minority engineering scholarships : year 5.

    Science.gov (United States)

    2011-06-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  7. Ethiopian Journal of Biological Sciences: Journal Sponsorship

    African Journals Online (AJOL)

    Ethiopian Journal of Biological Sciences: Journal Sponsorship. Journal Home > About the Journal > Ethiopian Journal of Biological Sciences: Journal Sponsorship. Log in or Register to get access to full text downloads.

  8. Synthetic Biological Engineering of Photosynthesis

    Science.gov (United States)

    2015-11-16

    sink’, allowing a greater utilization of solar energy under conditions of excess light. The engineered microalgae exhibit a 25-30% enhancement in...the cellular ‘metabolic sink’, allowing a greater utilization of solar energy under conditions of excess light. The engineered microalgae exhibit a

  9. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Journal Sponsorship. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  10. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: About this journal. Journal Home > International Journal of Engineering, Science and Technology: About this journal. Log in or Register to get access to full text downloads.

  11. Diagrammatic Models in the Engineering Sciences.

    NARCIS (Netherlands)

    Boon, Mieke

    2008-01-01

    This paper is concerned with scientific reasoning in the engineering sciences. Engineering sciences aim at explaining, predicting and describing physical phenomena occurring in technological devices. The focus of this paper is on mathematical description. These mathematical descriptions are

  12. Archives: International Journal of Engineering, Science and ...

    African Journals Online (AJOL)

    Items 1 - 43 of 43 ... Archives: International Journal of Engineering, Science and Technology. Journal Home > Archives: International Journal of Engineering, Science and Technology. Log in or Register to get access to full text downloads.

  13. XIV Mediterranean Conference on Medical and Biological Engineering and Computing

    CERN Document Server

    Christofides, Stelios; Pattichis, Constantinos

    2016-01-01

    This volume presents the proceedings of Medicon 2016, held in Paphos, Cyprus. Medicon 2016 is the XIV in the series of regional meetings of the International Federation of Medical and Biological Engineering (IFMBE) in the Mediterranean. The goal of Medicon 2016 is to provide updated information on the state of the art on Medical and Biological Engineering and Computing under the main theme “Systems Medicine for the Delivery of Better Healthcare Services”. Medical and Biological Engineering and Computing cover complementary disciplines that hold great promise for the advancement of research and development in complex medical and biological systems. Research and development in these areas are impacting the science and technology by advancing fundamental concepts in translational medicine, by helping us understand human physiology and function at multiple levels, by improving tools and techniques for the detection, prevention and treatment of disease. Medicon 2016 provides a common platform for the cross fer...

  14. Synthetic Biology to Engineer Bacteriophage Genomes.

    Science.gov (United States)

    Rita Costa, Ana; Milho, Catarina; Azeredo, Joana; Pires, Diana Priscila

    2018-01-01

    Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

  15. Engineering reduced evolutionary potential for synthetic biology

    Science.gov (United States)

    Renda, Brian A.; Hammerling, Michael J.

    2014-01-01

    The field of synthetic biology seeks to engineer reliable and predictable behaviors in organisms from collections of standardized genetic parts. However, unlike other types of machines, genetically encoded biological systems are prone to changes in their designed sequences due to mutations in their DNA sequences after these devices are constructed and deployed. Thus, biological engineering efforts can be confounded by undesired evolution that rapidly breaks the functions of parts and systems, particularly when they are costly to the host cell to maintain. Here, we explain the fundamental properties that determine the evolvability of biological systems. Then, we use this framework to review current efforts to engineer the DNA sequences that encode synthetic biology devices and the genomes of their microbial hosts to reduce their ability to evolve and therefore increase their genetic reliability so that they maintain their intended functions over longer timescales. PMID:24556867

  16. Biomaterial science meets computational biology.

    Science.gov (United States)

    Hutmacher, Dietmar W; Little, J Paige; Pettet, Graeme J; Loessner, Daniela

    2015-05-01

    There is a pressing need for a predictive tool capable of revealing a holistic understanding of fundamental elements in the normal and pathological cell physiology of organoids in order to decipher the mechanoresponse of cells. Therefore, the integration of a systems bioengineering approach into a validated mathematical model is necessary to develop a new simulation tool. This tool can only be innovative by combining biomaterials science with computational biology. Systems-level and multi-scale experimental data are incorporated into a single framework, thus representing both single cells and collective cell behaviour. Such a computational platform needs to be validated in order to discover key mechano-biological factors associated with cell-cell and cell-niche interactions.

  17. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  19. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  20. Innovations in Computing Sciences and Software Engineering

    CERN Document Server

    Sobh, Tarek

    2010-01-01

    "Innovations in Computing Sciences and Software Engineering" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Software Engineering, Computer Engineering, and Systems Engineering and Sciences. The topics covered include: Image and Pattern Recognition: Compression, Image processing, Signal Processing Architectures, Signal Processing for Communication, Signal Processing Implementation, Speech Compression, and Video Coding Architectures; Languages and Systems: Algorithms, Databases,

  1. SIAM Conference on Computational Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-29

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

  2. International Journal of Biological and Chemical Sciences

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG). It is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, biochemistry, biophysics, molecular biology, physiology, pathology, health sciences, ...

  3. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    Author Guidelines. The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG), and is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, molecular biology, physiology, pathology, health sciences, ...

  4. The metallurgy, science and engineering

    International Nuclear Information System (INIS)

    Pineau, A.; Quere, Y.

    2011-01-01

    Metallurgy, the science of metals and the technical discipline concerned with the production, shaping and assembling of metals, is one of the major assets of European economy. The French metallurgy industry - from producers (steel, light alloys, ...) to users (car, aviation, nuclear industries, ...) -- has achieved in many of its sectors a world-class level of excellence, based on high-quality research centres that are recognized both for their theoretical and experimental academic work. By contrast, public research is insufficiently concerned with engineering. In 2004, this industry employed 1 800 000 persons, 220 000 of which worked as engineers and managers in 45 000 companies, with a turnover of 420 billion euros. This state of grace is starting to decline. We are undergoing, in this sector as in others, a de-industrialization that affects upstream activities: courses in these disciplines, which have been previously outstanding, have partially disappeared; laboratories have shrunk; expertise has been dispersed; students are staying away from a discipline they consider 'unfruitful', like many other engineering sciences. Simultaneously, further up in this sector, decision centres have moved away from production centres and away from our country. France still maintains a few important R and D centres within international groups in spite of France's decreasing weight in world production. However, these groups see the future of R and D as being centred in the emerging countries (China, India...). The main users (transport, energy, ...) are losing their experts as are the technical centres on which rely a large network of small and medium businesses. The consequences are alarming in view of the already noticeable loss of technical control. This trend can and must be reversed. Because of its presence in many industrial sectors and its excellence, metallurgy - including both research and industry - is an essential activity in which France should remain a major player

  5. Biology and the space sciences.

    Science.gov (United States)

    Klein, H. P.

    The intellectual content in the field of exobiology goes far beyond attempts to detect life on another planet. Thus, while exobiology has historically been narrowly viewed as the search for extraterrestrial life, in point of fact, the field today is better described as an interdisciplinary science devoted to the study of evolutionary biology. As such, it encompasses the origins and history of the major elements required for life; their processing in the interstellar medium and in protostellar systems; their incorporation into organic compounds on the primitive Earth and on other celestial objects; the interactions of an evolving planet with the evolution of complex organic compounds; the conditions under which chemical evolution resulted in replicating molecules; and the subsequent interactions between an evolving biota and further planetary evolution.

  6. Ethiopian Journal of Biological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. The Ethiopian Journal of Biological Sciences publishes scholarly featured articels, short communications and review articles in the various basic and applied biological disciplines to biologists and other workers in related fields of study.

  7. Science Academies' Refresher Course on Experimental Biology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Science Academies' Refresher Course on Experimental Biology: Orthodox to Modern. Information and Announcements Volume 21 Issue 9 September 2016 pp 858-858 ...

  8. Enabling plant synthetic biology through genome engineering.

    Science.gov (United States)

    Baltes, Nicholas J; Voytas, Daniel F

    2015-02-01

    Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Associations and Committees of or for Women in Science, Engineering, Mathematics and Medicine.

    Science.gov (United States)

    Aldrich, Michele, Comp.; Leach, Alicia, Comp.

    Provided is a list of associations and committees of or for women in science, engineering, mathematics, and medicine. The list is organized by discipline, with cross-referencing to cognate specialties. The disciplines include: anthropology; astronomy; atmospheric sciences; biology; chemistry; computer sciences; earth sciences; energy; engineering;…

  10. Micromechanics of engineered and biological systems

    Indian Academy of Sciences (India)

    Microsystems are good examples of integrated engineered systems of small size. Although this .... In develop- mental biology, the application of controlled forces on growing embryos is shown to help in under- standing ..... Optimization is a useful tool for synthesis. Many optimal synthesis methods have been developed for.

  11. Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2014

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Christopher [Massachusetts Institute of Technology

    2014-07-01

    SEED2014 focused on advances in the science and technology emerging from the field of synthetic biology. We broadly define this as technologies that accelerate the process of genetic engineering. It highlighted new tool development, as well as the application of these tools to diverse problems in biotechnology, including therapeutics, industrial chemicals and fuels, natural products, and agriculture. Systems spanned from in vitro experiments and viruses, through diverse bacteria, to eukaryotes (yeast, mammalian cells, plants).

  12. Science Academies' Refresher Course on Experimental Biology ...

    Indian Academy of Sciences (India)

    IAS Admin

    2012-10-28

    Oct 28, 2012 ... A Refresher Course in Experimental Biology for college and university teachers will be organized at the. Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata at. Mohanpur, Nadia, West Bengal during 19–31 December 2012. The Course will consist of stimulating ...

  13. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  14. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  15. American Institute of Biological Sciences

    Science.gov (United States)

    ... Biology Classifieds Get Involved AIBS on Diversity Diversity Diversity Leadership Award Diversity Scholars Outreach Directory News Newsroom Peer ... Biology Classifieds Get Involved AIBS on Diversity Diversity Diversity Leadership Award Diversity Scholars Outreach Directory News Newsroom Contact ...

  16. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Editorial Policies ... Original theoretical work and application-based studies, which contributes to a better understanding of engineering, science and technological challenges, are ... The time between review and publication can range from 2-6 months ...

  17. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  18. Why Do Women Leave Science and Engineering?

    OpenAIRE

    Hunt, Jennifer

    2012-01-01

    I use the 1993 and 2003 National Surveys of College Graduates to examine the higher exit rate of women compared to men from science and engineering relative to other fields. I find that the higher relative exit rate is driven by engineering rather than science, and show that 60\\% of the gap can be explained by the relatively greater exit rate from engineering of women dissatisfied with pay and promotion opportunities. Contrary to the existing literature, I find that family--related constraint...

  19. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  20. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool

    NARCIS (Netherlands)

    Boon, Mieke

    2017-01-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in

  1. Systems Biology and Livestock Science

    NARCIS (Netherlands)

    Pas, te M.F.W.; Woelders, H.; Bannink, A.

    2011-01-01

    Systems Biology is an interdisciplinary approach to the study of life made possible through the explosion of molecular data made available through the genome revolution and the simultaneous development of computational technologies that allow us to interpret these large data sets. Systems Biology

  2. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  3. A Synthetic Biology Approach to Engineering Living Photovoltaics.

    Science.gov (United States)

    Schuergers, N; Werlang, C; Ajo-Franklin, C M; Boghossian, A A

    2017-05-01

    The ability to electronically interface living cells with electron accepting scaffolds is crucial for the development of next-generation biophotovoltaic technologies. Although recent studies have focused on engineering synthetic interfaces that can maximize electronic communication between the cell and scaffold, the efficiency of such devices is limited by the low conductivity of the cell membrane. This review provides a materials science perspective on applying a complementary, synthetic biology approach to engineering membrane-electrode interfaces. It focuses on the technical challenges behind the introduction of foreign extracellular electron transfer pathways in bacterial host cells and the past and future efforts to engineer photosynthetic organisms with artificial electron-export capabilities for biophotovoltaic applications. The article highlights advances in engineering protein-based, electron-exporting conduits in a model host organism, E. coli, before reviewing state-of-the-art biophotovoltaic technologies that use both unmodified and bioengineered photosynthetic bacteria with improved electron transport capabilities. A thermodynamic analysis is used to propose an energetically feasible pathway for extracellular electron transport in engineered cyanobacteria and identify metabolic bottlenecks amenable to protein engineering techniques. Based on this analysis, an engineered photosynthetic organism expressing a foreign, protein-based electron conduit yields a maximum theoretical solar conversion efficiency of 6-10% without accounting for additional bioengineering optimizations for light-harvesting.

  4. Engineering Sciences Strategic Leadership Plan

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Heidi A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-14

    The purpose of this report is to promote the three key elements of engineering capabilities, staff and engagement in coordination with an R&D investment cycle; and establish an Engineering Steering Council to own and guide this leadership plan.

  5. MATLAB for Engineering and the Life Sciences

    CERN Document Server

    Tranquillo, Joseph

    2011-01-01

    In recent years, the life sciences have embraced simulation as an important tool in biomedical research. Engineers are also using simulation as a powerful step in the design process. In both arenas, Matlab has become the gold standard. It is easy to learn, flexible, and has a large and growing userbase. MATLAB for Engineering and the Life Sciences is a self-guided tour of the basic functionality of MATLAB along with the functions that are most commonly used in biomedical engineering and other life sciences. Although the text is written for undergraduates, graduate students and academics, those

  6. Conference Modern Engineering : Science and Education

    CERN Document Server

    2017-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2016 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  7. 77 FR 19740 - Biological Sciences Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-02

    ... NATIONAL SCIENCE FOUNDATION Biological Sciences Advisory Committee; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L., 92- 463, as amended), the National Science Foundation announces the following meeting: Name: Biological Sciences Advisory Committee ( 1110). Date and...

  8. Ethiopian Journal of Biological Sciences: Submissions

    African Journals Online (AJOL)

    Author Guidelines. 1. GENERAL a) The Ethiopian Journal of Biological Sciences (Ethiop. J. Biol. Sci.) publishes scholarly standard (full length) articles in the various basic and applied biological disciplines. b) It also publishes feature articles, short communications, review articles, book reviews and dissertation abstracts. 2.

  9. Science Academies' Refresher Course in Developmental Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Science Academies' Refresher Course in Developmental Biology. Information and Announcements Volume 20 Issue 8 August 2015 pp 756-756. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Science Academies' Refresher Course on Experimental Biology ...

    Indian Academy of Sciences (India)

    IAS Admin

    advanced laboratory techniques in life sciences including cell and molecular biology. The resource persons will be eminent scientists working in these fields who are distinguished Fellows of the National Science Academies. The participants of the refresher course will have hands-on experience with all of the advanced ...

  11. Introducing systems biology for nursing science.

    Science.gov (United States)

    Founds, Sandra A

    2009-07-01

    Systems biology expands on general systems theory as the "omics'' era rapidly progresses. Although systems biology has been institutionalized as an interdisciplinary framework in the biosciences, it is not yet apparent in nursing. This article introduces systems biology for nursing science by presenting an overview of the theory. This framework for the study of organisms from molecular to environmental levels includes iterations of computational modeling, experimentation, and theory building. Synthesis of complex biological processes as whole systems rather than isolated parts is emphasized. Pros and cons of systems biology are discussed, and relevance of systems biology to nursing is described. Nursing research involving molecular, physiological, or biobehavioral questions may be guided by and contribute to the developing science of systems biology. Nurse scientists can proactively incorporate systems biology into their investigations as a framework for advancing the interdisciplinary science of human health care. Systems biology has the potential to advance the research and practice goals of the National Institute for Nursing Research in the National Institutes of Health Roadmap initiative.

  12. Applications of sliding mode control in science and engineering

    CERN Document Server

    Lien, Chang-Hua

    2017-01-01

    Gathering 20 chapters contributed by respected experts, this book reports on the latest advances in and applications of sliding mode control in science and engineering. The respective chapters address applications of sliding mode control in the broad areas of chaos theory, robotics, electrical engineering, physics, chemical engineering, memristors, mechanical engineering, environmental engineering, finance, and biology. Special emphasis has been given to papers that offer practical solutions, and which examine design and modeling involving new types of sliding mode control such as higher order sliding mode control, terminal sliding mode control, super-twisting sliding mode control, and integral sliding mode control. This book serves as a unique reference guide to sliding mode control and its recent applications for graduate students and researchers with a basic knowledge of electrical and control systems engineering.

  13. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    Science.gov (United States)

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  14. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 7, No 3 (2015) >. Log in or Register to get access to full text downloads.

  15. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 11 (2010) >. Log in or Register to get access to full text downloads.

  16. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 3 (2016) >. Log in or Register to get access to full text downloads.

  17. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 3 (2011) >. Log in or Register to get access to full text downloads.

  18. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 2 (2010) >. Log in or Register to get access to full text downloads.

  19. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 4, No 4 (2012) >. Log in or Register to get access to full text downloads.

  20. Retraction | Editor | International Journal of Engineering, Science ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 4 (2016) >. Log in or Register to get access to full text downloads.

  1. Engineering Liposomes and Nanoparticles for Biological Targeting

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Feldborg, Lise Nørkjær; Andersen, Simon

    2011-01-01

    Our ability to engineer nanomaterials for biological and medical applications is continuously increasing, and nanomaterial designs are becoming more and more complex. One very good example of this is the drug delivery field where nanoparticle systems can be used to deliver drugs specifically...... to diseased tissue. In the early days, the design of the nanoparticles was relatively simple, but today we can surface functionalize and manipulate material properties to target diseased tissue and build highly complex drug release mechanisms into our designs. One of the most promising strategies in drug...

  2. Engineering biological systems toward a sustainable bioeconomy.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.

  3. Science Ideals and Science Careers in a University Biology Department

    Science.gov (United States)

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  4. Online citizen science games: Opportunities for the biological sciences.

    Science.gov (United States)

    Curtis, Vickie

    2014-12-01

    Recent developments in digital technologies and the rise of the Internet have created new opportunities for citizen science. One of these has been the development of online citizen science games where complex research problems have been re-imagined as online multiplayer computer games. Some of the most successful examples of these can be found within the biological sciences, for example, Foldit, Phylo and EteRNA. These games offer scientists the opportunity to crowdsource research problems, and to engage with those outside the research community. Games also enable those without a background in science to make a valid contribution to research, and may also offer opportunities for informal science learning.

  5. Multimedia Tutors for Science and Engineering.

    Science.gov (United States)

    Woolf, Beverly Park; Poli, Corrado; Grosse, Ian; Day, Roberta

    We have built several multimedia tutors for science and engineering education. This paper discusses Design for Manufacturing tutors and an electronic homework systems used by over 2000 students daily. The engineering tutors instruct students on efficient procedures for designing parts for manufacture. The goal is to support a deeper understanding…

  6. Engineering and Applied Science, Recent Research Reports.

    Science.gov (United States)

    National Science Foundation, Washington, DC. Directorate of Engineering and Applied Science.

    This collection contains abstracts of technical reports and journal articles resulting from research funded by the National Science Foundation. Included in the collection are abstracts arranged in several categories: (1) electrical, computer, and systems engineering; (2) civil and mechanical engineering; (3) applied research; (4) problem-focused…

  7. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  8. Engineering sciences research highlights. Fiscal year 1983

    International Nuclear Information System (INIS)

    Tucker, E.F.; Dobratz, B.

    1984-05-01

    The Laboratory's overall mission is sixfold. We are charged with developing nuclear warheads for defense, technology for arms control, and new concepts for defense against nuclear attack; with supporting programs for both nonnuclear defense and energy research and development; and with advancing our knowledge of science and technology so that we can respond to other national needs. Major programs in support of this mission involve nuclear weapons, energy, environmental science, and basic research. Specific areas of investigation include the design, development, and testing of nuclear weapons; nuclear safeguards and security; inertial and magnetic fusion and nuclear, solar, fossil, and geothermal energy; and basic research in physics, chemistry, mathematics, engineering, and the computer and life sciences. With the staff and facilities maintained for these and other programs, the Laboratory can respond to specific national needs in virtually all areas of the physical and life sciences. Within the Laboratory's organization, most technical research activities are carried out in three directorates: Engineering Sciences; Physics and Mathematics; and Chemistry, Earth and Life Sciences. The activities highlighted here are examples of unclassified work carried out in the seven divisions that made up the Engineering Sciences Directorate at the end of fiscal year 1983. Brief descriptions of these divisions' goals and capabilities and summaries of selected projects illustrate the diversity of talent, expertise, and facilities maintained within the Engineering Sciences Directorate

  9. PREFACE: Nanobiology: from physics and engineering to biology

    Science.gov (United States)

    Nussinov, Ruth; Alemán, Carlos

    2006-03-01

    Biological systems are inherently nano in scale. Unlike nanotechnology, nanobiology is characterized by the interplay between physics, materials science, synthetic organic chemistry, engineering and biology. Nanobiology is a new discipline, with the potential of revolutionizing medicine: it combines the tools, ideas and materials of nanoscience and biology; it addresses biological problems that can be studied and solved by nanotechnology; it devises ways to construct molecular devices using biomacromolecules; and it attempts to build molecular machines utilizing concepts seen in nature. Its ultimate aim is to be able to predictably manipulate these, tailoring them to specified needs. Nanobiology targets biological systems and uses biomacromolecules. Hence, on the one hand, nanobiology is seemingly constrained in its scope as compared to general nanotechnology. Yet the amazing intricacy of biological systems, their complexity, and the richness of the shapes and properties provided by the biological polymers, enrich nanobiology. Targeting biological systems entails comprehension of how they work and the ability to use their components in design. From the physical standpoint, ultimately, if we are to understand biology we need to learn how to apply physical principles to figure out how these systems actually work. The goal of nanobiology is to assist in probing these systems at the appropriate length scale, heralding a new era in the biological, physical and chemical sciences. Biology is increasingly asking quantitative questions. Quantitation is essential if we are to understand how the cell works, and the details of its regulation. The physical sciences provide tools and strategies to obtain accurate measurements and simulate the information to allow comprehension of the processes. Nanobiology is at the interface of the physical and the biological sciences. Biology offers to the physical sciences fascinating problems, sophisticated systems and a rich repertoire of

  10. Engineering and Biology: Counsel for a Continued Relationship

    Science.gov (United States)

    Levy, Arnon; Siegal, Mark L.; Soyer, Orkun S.; Wagner, Andreas

    2015-01-01

    Biologists frequently draw on ideas and terminology from engineering. Evolutionary systems biology—with its circuits, switches, and signal processing—is no exception. In parallel with the frequent links drawn between biology and engineering, there is ongoing criticism against this cross-fertilization, using the argument that over-simplistic metaphors from engineering are likely to mislead us as engineering is fundamentally different from biology. In this article, we clarify and reconfigure the link between biology and engineering, presenting it in a more favorable light. We do so by, first, arguing that critics operate with a narrow and incorrect notion of how engineering actually works, and of what the reliance on ideas from engineering entails. Second, we diagnose and diffuse one significant source of concern about appeals to engineering, namely that they are inherently and problematically metaphorical. We suggest that there is plenty of fertile ground left for a continued, healthy relationship between engineering and biology. PMID:26085824

  11. 16 CFR 1000.29 - Directorate for Engineering Sciences.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Directorate for Engineering Sciences. 1000... ORGANIZATION AND FUNCTIONS § 1000.29 Directorate for Engineering Sciences. The Directorate for Engineering Sciences, which is managed by the Associate Executive Director for Engineering Sciences, is responsible for...

  12. Engineering Science--Raising Awareness of Engineering through Key Stage 3 (Age 11-14) Science

    Science.gov (United States)

    Mannion, Ken

    2012-01-01

    During 2011, a team from the Centre for Science Education (CSE) worked with four local schools and five Sheffield city region engineering organisations on a project to identify ways to increase the input into young people's awareness of engineering that comes from activities they do in school science. The project also tested an hypothesis that…

  13. Engineering and physical sciences in oncology: challenges and opportunities.

    Science.gov (United States)

    Mitchell, Michael J; Jain, Rakesh K; Langer, Robert

    2017-11-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.

  14. World Congress on Engineering and Computer Science 2014

    CERN Document Server

    Amouzegar, Mahyar; Ao, Sio-long

    2015-01-01

    This volume contains thirty-nine revised and extended research articles, written by prominent researchers participating in the World Congress on Engineering and Computer Science 2014, held in San Francisco, October 22-24 2014. Topics covered include engineering mathematics, electrical engineering, circuit design, communications systems, computer science, chemical engineering, systems engineering, and applications of engineering science in industry. This book describes some significant advances in engineering technologies, and also serves as an excellent source of reference for researchers and graduate students.

  15. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The notion of excellence in science is universally attributed to the “pathfinders” – those whose distinction lies in their research work: New results, new interpretations, new research techniques are the driving force of scientific progress. This holds in a general sense as well as for the individual scientist. Still, while scientific ...

  16. Fuzzy logic applications in engineering science

    CERN Document Server

    Harris, J

    2006-01-01

    Fuzzy logic is a relatively new concept in science applications. Hitherto, fuzzy logic has been a conceptual process applied in the field of risk management. Its potential applicability is much wider than that, however, and its particular suitability for expanding our understanding of processes and information in science and engineering in our post-modern world is only just beginning to be appreciated. Written as a companion text to the author's earlier volume "An Introduction to Fuzzy Logic Applications", the book is aimed at professional engineers and students and those with an interest in exploring the potential of fuzzy logic as an information processing kit with a wide variety of practical applications in the field of engineering science and develops themes and topics introduced in the author's earlier text.

  17. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  18. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  19. How our biology constrains our science

    NARCIS (Netherlands)

    Vlerick, Michael

    2017-01-01

    Reasoning from a naturalistic perspective, viewing the mind as an evolved biological organ with a particular structure and function, a number of influential philosophers and cognitive scientists claim that science is constrained by human nature. How exactly our genetic constitution constrains

  20. Nanobiotechnology: synthetic biology meets materials science.

    Science.gov (United States)

    Jewett, Michael C; Patolsky, Fernando

    2013-08-01

    Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  2. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  3. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  4. Mechanical engineering science in SI units

    CERN Document Server

    Gwyther, J L; Williams, G

    1970-01-01

    0.1 Mechanical Engineering Science covers various fundamental concepts that are essential in the practice of mechanical engineering. The title is comprised of 19 chapters that detail various topics, including chemical and physical laws. The coverage of the book includes Newtonian laws, mechanical energy, friction, stress, and gravity. The text also discusses the chemical aspects of mechanical engineering, which include gas laws, states of matter, and fuel combustion. The last chapter tackles concerns in laboratory experiments. The book will be of great use to students of mechanical eng

  5. e-Science and biological pathway semantics

    Directory of Open Access Journals (Sweden)

    Luciano Joanne S

    2007-05-01

    Full Text Available Abstract Background The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science. Results We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs. Conclusion Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science.

  6. 77 FR 50174 - Biological Sciences Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-08-20

    ... NATIONAL SCIENCE FOUNDATION Biological Sciences Advisory Committee; Notice of Meeting In... Foundation announces the following meeting: Name: Biological Sciences Advisory Committee ( 1110). Date and... Biological Sciences [call 703-292-8400 or send an email message to [email protected] ] at least 24 hours prior...

  7. Progress Toward a Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) Experiment in the Homestake Mine Deep Underground Science and Engineering Laboratory

    Science.gov (United States)

    Sonnenthal, E. L.; Maher, K.; Elsworth, D.; Lowell, R. P.; Uzunlar, N.; Mailloux, B. J.; Conrad, M. E.; Olsen, N. J.; Jones, T. L.; Cruz, M. F.; Torchinsky, A.

    2011-12-01

    The purpose of performing a long-term hydrothermal experiment in a deep mine is to gain a scientific understanding of the coupled physical, chemical, and biological processes taking place in fractured rock under the influence of mechanical stress, thermal effects, and fluid flow. Only in a controlled experiment in a well-characterized rock mass, can a fractured rock be probed in 3-D through geophysical imaging, in situ measurements, geochemical/biological sampling, and numerical modeling. Our project is focused on the feasibility of a THMCB experiment in the Homestake Mine, South Dakota to study the long-term evolution (10+ years) of a perturbed heterogeneous rock mass. In addition to the experiment as a laboratory for studying crustal processes, it has direct application to Enhanced Geothermal Systems, carbon sequestration, and contaminant transport. Field activities have focused on fracture and feature mapping, flux measurements from flowing fractures, and collection of water and rock samples for geochemical, biological, and isotopic analyses. Fracture mapping and seepage measurements are being used to develop estimates of permeability and fluxes at different length scales and design the location and orientation of the heater array. Fluxes measured up to several liters/minute indicate localized regions of very high fracture permeability, likely in excess of 10-10 m2. Isotopic measurements indicate heterogeneity in the fracture network on the scale of tens of meters in addition to the large-scale geochemical heterogeneity observed in the mine. New methods for sampling and filtering water samples were developed and tested with the goal of performing radiocarbon analyses in DNA and phospholipid fatty acids. Analytical and numerical models of the thermal perturbation have been used to design the heater orientation and spacing. Reaction path and THC simulations were performed to assess geochemical and porosity/permeability changes as a function of the heat input

  8. Sustaining biological welfare for our future through consistent science

    Directory of Open Access Journals (Sweden)

    Shimomura Yoshihiro

    2013-01-01

    Full Text Available Abstract Physiological anthropology presently covers a very broad range of human knowledge and engineering technologies. This study reviews scientific inconsistencies within a variety of areas: sitting posture; negative air ions; oxygen inhalation; alpha brain waves induced by music and ultrasound; 1/f fluctuations; the evaluation of feelings using surface electroencephalography; Kansei; universal design; and anti-stress issues. We found that the inconsistencies within these areas indicate the importance of integrative thinking and the need to maintain the perspective on the biological benefit to humanity. Analytical science divides human physiological functions into discrete details, although individuals comprise a unified collection of whole-body functions. Such disparate considerations contribute to the misunderstanding of physiological functions and the misevaluation of positive and negative values for humankind. Research related to human health will, in future, depend on the concept of maintaining physiological functions based on consistent science and on sustaining human health to maintain biological welfare in future generations.

  9. Requirements Engineering in Building Climate Science Software

    Science.gov (United States)

    Batcheller, Archer L.

    2011-01-01

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling…

  10. Classroom Implementation of Science, Technology, Engineering ...

    African Journals Online (AJOL)

    Understanding science, technology, engineering, and mathematics (STEM) education as a curriculum that endows learners with specialized life skills in general and scientific literacy, along with a productive disposition and sense of social responsibility in particular, this paper discusses some elements of this curricular ...

  11. (Ict) Integration Into Science, Technology, Engineering And ...

    African Journals Online (AJOL)

    As Nigeria aspires for technological growth, positive changes need be made by placing proper educational values towards Science, Technology, Engineering and Mathematics (STEM) education. Some problems faced by STEM include lack of qualified teachers, curriculum, the misconception that STEM education is ...

  12. Complex engineering systems science meets technology

    CERN Document Server

    Minai, Ali A; Bar-Yam, Yaneer

    2006-01-01

    Every time that we take money out of an ATM, surf the internet or simply turn on a light switch, we enjoy the benefits of complex engineered systems. Systems like power grids and global communication networks are so ubiquitous in our daily lives that we usually take them for granted, only noticing them when they break down. But how do such amazing technologies and infrastructures come to be what they are? How are these systems designed? How do distributed networks work? How are they made to respond rapidly in 'real time'? And as the demands that we place on these systems become increasingly complex, are traditional systems-engineering practices still relevant? This volume examines the difficulties that arise in creating highly complex engineered systems and new approaches that are being adopted. Topics addressed range from the formal representation and classification of distributed networked systems to revolutionary engineering practices inspired by biological evolution. By bringing together the latest resear...

  13. DATABASES DEVELOPED IN INDIA FOR BIOLOGICAL SCIENCES

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    2017-09-01

    databases have also helped in development of novel data mining methods, prediction strategies and data driven application software or web servers. In this article, we give an overview of biological databases developed in India and their impact on data driven research in biology. We also provide some suggestions for planning training programs in biological data science for making transitions to big data revolution in biology by combining advanced techniques like Deep Learning with biological big data.

  14. Women Working in Engineering and Science

    Science.gov (United States)

    Luna, Bernadette; Kliss, Mark (Technical Monitor)

    1998-01-01

    The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.

  15. Proceedings of the 1. National Forum of Science and Technology on Health; 13. Brazilian Congress on Biomedical Engineering; 4. Brazilian Congress of Physicists on Medicine; Brazilian Meeting on Biology and Nuclear Medicine; Brazilian Meeting on Radiological Protection

    International Nuclear Information System (INIS)

    Costa, E.T.; Martins, H.L.; Muehlen, S.S.; Rockman, T.M.B.

    1992-01-01

    This 1. National Forum of Science and Technology on Health presents works of several scientific institutions, including topics on bioengineering; modelling and simulation; sensors and transducers; ultrasonic on medicine; instrumentation processing of signs and medical images; biomedical informatics and clinical software; engineering of rehabilitation; bio-materials and bio-mechanical; clinical engineering; in vivo and in vitro nuclear medicine; radioisotope production and utilization; radiology; radiology protection and dosimetry; radiotherapy; evaluation of technology on health and education. (C.G.C.)

  16. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jewett, Michael Christopher

    2008-01-01

    in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development...... programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given....

  17. International Journal of Biological and Chemical Sciences: Contact

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: Contact. Journal Home > About the Journal > International Journal of Biological and Chemical Sciences: Contact. Log in or Register to get access to full text downloads.

  18. Archives: International Journal of Biological and Chemical Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 61 ... Archives: International Journal of Biological and Chemical Sciences. Journal Home > Archives: International Journal of Biological and Chemical Sciences. Log in or Register to get access to full text downloads.

  19. International Journal of Biological and Chemical Sciences: About ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: About this journal. Journal Home > International Journal of Biological and Chemical Sciences: About this journal. Log in or Register to get access to full text downloads.

  20. On science versus engineering in hydrological modelling

    Science.gov (United States)

    Melsen, Lieke

    2017-04-01

    It is always stressed that hydrological modelling is very important, to prevent floods, to mitigate droughts, to ensure food production or nature conservation. All very true, but I believe that focussing so much on the application of our knowledge (which I call `the engineering approach'), does not stimulate thorough system understanding (which I call `the scientific approach'). In many studies, science and engineering approaches are mixed, which results in large uncertainty e.g. due to a lack of system understanding. To what extent engineering and science approached are mixed depends on the Philosophy of Science of the researcher; verificationism seems to be closer related to engineering, than falsificationism or Bayesianism. In order to grow our scientific knowledge, which means increasing our understanding of the system, we need to be more critical towards the models that we use, but also recognize all the processes that influence the hydrological cycle. In an era called 'The Anthropocene' the influence of humans on the water system can no longer be neglected, and if we choose a scientific approach we have to account for human-induced processes. Summarizing, I believe that we have to account for human impact on the hydrological system, but we have to resist the temptation to directly quantify the hydrological impact on the human system.

  1. Challenges and opportunities in synthetic biology for chemical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Luo, YZ; Lee, JK; Zhao, HM

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.

  2. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  3. International Conference on Medical and Biological Engineering 2017

    CERN Document Server

    2017-01-01

    This volume presents the proceedings of the International Conference on Medical and Biological Engineering held from 16 to 18 March 2017 in Sarajevo, Bosnia and Herzegovina. Focusing on the theme of ‘Pursuing innovation. Shaping the future’, it highlights the latest advancements in Biomedical Engineering and also presents the latest findings, innovative solutions and emerging challenges in this field. Topics include: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education - Pharmaceutical Engineering.

  4. International Journal of Engineering, Science and Technology: Site ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Site Map. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Site Map. Log in or Register to get access to full text downloads.

  5. IntegromeDB: an integrated system and biological search engine.

    Science.gov (United States)

    Baitaluk, Michael; Kozhenkov, Sergey; Dubinina, Yulia; Ponomarenko, Julia

    2012-01-19

    With the growth of biological data in volume and heterogeneity, web search engines become key tools for researchers. However, general-purpose search engines are not specialized for the search of biological data. Here, we present an approach at developing a biological web search engine based on the Semantic Web technologies and demonstrate its implementation for retrieving gene- and protein-centered knowledge. The engine is available at http://www.integromedb.org. The IntegromeDB search engine allows scanning data on gene regulation, gene expression, protein-protein interactions, pathways, metagenomics, mutations, diseases, and other gene- and protein-related data that are automatically retrieved from publicly available databases and web pages using biological ontologies. To perfect the resource design and usability, we welcome and encourage community feedback.

  6. Engineering Specifications derived from Science Requirements

    Science.gov (United States)

    Stahl, H. Philip; Arnold, William; Bevan, Ryan M.; Smith, W. Scott; Kirk, Charles S.; Postman, Marc

    2013-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, we use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  7. World Congress on Engineering and Computer Science 2015

    CERN Document Server

    Kim, Haeng; Amouzegar, Mahyar

    2017-01-01

    This proceedings volume contains selected revised and extended research articles written by researchers who participated in the World Congress on Engineering and Computer Science 2015, held in San Francisco, USA, 21-23 October 2015. Topics covered include engineering mathematics, electrical engineering, circuits, communications systems, computer science, chemical engineering, systems engineering, manufacturing engineering, and industrial applications. The book offers the reader an overview of the state of the art in engineering technologies, computer science, systems engineering and applications, and will serve as an excellent reference work for researchers and graduate students working in these fields.

  8. Midwest Nuclear Science and Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  9. Midwest Nuclear Science and Engineering Consortium

    International Nuclear Information System (INIS)

    Volkert, Wynn; Kumar, Arvind; Becker, Bryan; Schwinke, Victor; Gonzalez, Angel; McGregor, Douglas

    2010-01-01

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  10. Evaluation of Research in Engineering Science in Norway

    DEFF Research Database (Denmark)

    Van Brussel, Hendrik Van Brussel; Lindberg, Bengt; Cederwall, Klas

    This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway .......This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway ....

  11. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  12. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  13. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  14. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  15. A transatlantic perspective on 20 emerging issues in biological engineering.

    Science.gov (United States)

    Wintle, Bonnie C; Boehm, Christian R; Rhodes, Catherine; Molloy, Jennifer C; Millett, Piers; Adam, Laura; Breitling, Rainer; Carlson, Rob; Casagrande, Rocco; Dando, Malcolm; Doubleday, Robert; Drexler, Eric; Edwards, Brett; Ellis, Tom; Evans, Nicholas G; Hammond, Richard; Haseloff, Jim; Kahl, Linda; Kuiken, Todd; Lichman, Benjamin R; Matthewman, Colette A; Napier, Johnathan A; ÓhÉigeartaigh, Seán S; Patron, Nicola J; Perello, Edward; Shapira, Philip; Tait, Joyce; Takano, Eriko; Sutherland, William J

    2017-11-14

    Advances in biological engineering are likely to have substantial impacts on global society. To explore these potential impacts we ran a horizon scanning exercise to capture a range of perspectives on the opportunities and risks presented by biological engineering. We first identified 70 potential issues, and then used an iterative process to prioritise 20 issues that we considered to be emerging, to have potential global impact, and to be relatively unknown outside the field of biological engineering. The issues identified may be of interest to researchers, businesses and policy makers in sectors such as health, energy, agriculture and the environment.

  16. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  17. Engineering Biology by Controlling Tissue Folding.

    Science.gov (United States)

    Hookway, Tracy A

    2018-04-01

    Achieving complex self-organization in vitro has remained a fundamental challenge in tissue engineering. A recent study in Developmental Cell by Hughes and colleagues uses computational and experimental approaches to understand and control the morphogenic process of tissue folding. These approaches provide an engineering framework to reproducibly control tissue shape. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Coherence and Divergence of Megatrends in Science and Engineering

    International Nuclear Information System (INIS)

    Roco, M.C.

    2002-01-01

    Scientific discoveries and technological innovations are at the core of human endeavor, and it is estimated that their role will only increase in time. Such advancements evolve in coherence, with areas of confluence and temporary divergences, which bring synergism and that stimulate further developments following in average an exponential growth. Six increasingly interconnected megatrends are perceived as dominating the scene for the next decades: (a) information and computing, (b) nanoscale science and engineering (S and E), (c) biology and bio-environmental approaches, (d) medical sciences and enhancing human physical capabilities, (e) cognitive sciences and enhancing intellectual abilities, and (f) collective behavior and system approach.This paper presents a perspective on the process of identification, planning and program implementation of S and E megatrends, with illustration for the US research initiative on nanoscale science, engineering, and technology. The interplay between coherence and divergence, leading to unifying science and converging technologies, does not develop only among simultaneous scientific trends but also along time and across geopolitical boundaries. There is no single way of development of S and E, and here is the role of taking visionary measures. Societal implication scientists need to be involved from the conceptual phase of a program responding to a S and E megatrend

  19. How Our Biology Constrains Our Science

    Directory of Open Access Journals (Sweden)

    Vlerick Michael

    2017-04-01

    Full Text Available Reasoning from a naturalistic perspective, viewing the mind as an evolved biological organ with a particular structure and function, a number of influential philosophers and cognitive scientists claim that science is constrained by human nature. How exactly our genetic constitution constrains scientific representations of the world remains unclear. This is problematic for two reasons. Firstly, it often leads to the unwarranted conclusion that we are cognitively closed to certain aspects or properties of the world. Secondly, it stands in the way of a nuanced account of the relationship between our cognitive and perceptual wiring and scientific theory. In response, I propose a typology or classification of the different kinds of biological constraints and their sources on science. Using Boden’s (1990 notion of a conceptual space, I distinguish between constraints relating to the ease with which we can reach representations within our conceptual space (which I call ‘biases’ and constraints causing possible representations to fall outside of our conceptual space. This last kind of constraints does not entail that some aspects or properties of the world cannot be represented by us – as argued by advocates of ‘cognitive closure’ – merely that some ways of representing the world are inaccessible to us. It relates to what Clark (1986 and Rescher (1990 have framed as ‘the alien scientist hypothesis’ (the possibility that alien scientists, endowed with radically different cognitive abilities, could produce representations of the world that are unintelligible to us. The purpose of this typology is to provide some much needed clarity and structure to the debate about biological constraints on science.

  20. Russian science readings (chemistry, physics, biology)

    CERN Document Server

    Light, L

    1949-01-01

    Some years' experience in teaching Russian to working scientists who had already acquired the rudiments of the grammar convinced me of the need for a reader of the present type that would smooth the path of those wishing to study Russian scientific literature in the original. Although the subject matter comprises what I have described for convenience as chemistry, physics and biology, it could be read with equal profit by those engaged in any branch of pure or applied science. All the passages are taken from school textbooks, and acknowledgements are due to the authors of the works listed at the foot of the contents page.

  1. Biological mechanisms beyond network analysis via mathematical modeling. Comment on "Network science of biological systems at different scales: A review" by Marko Gosak et al.

    Science.gov (United States)

    Pedersen, Morten Gram

    2018-03-01

    Methods from network theory are increasingly used in research spanning from engineering and computer science to psychology and the social sciences. In this issue, Gosak et al. [1] provide a thorough review of network science applications to biological systems ranging from the subcellular world via neuroscience to ecosystems, with special attention to the insulin-secreting beta-cells in pancreatic islets.

  2. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  3. Accessing Nature's diversity through metabolic engineering and synthetic biology.

    Science.gov (United States)

    King, Jason R; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory

    2016-01-01

    In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through "scaffold diversification", and subsequent "derivatization" of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the "privileged" chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents.

  4. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Women in science & engineering and minority engineering scholarships : year 2 report for 2007-2008 activities.

    Science.gov (United States)

    2008-08-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  6. Women in science & engineering and minority engineering scholarships : year 3, report for 2008-2009 activities.

    Science.gov (United States)

    2009-05-01

    Support made scholarships available to minority and women students interested in engineering and science and significantly increased : the number of minority and female students that Missouri S&T can recruit to its science and engineering programs. R...

  7. Synthetic biology and its alternatives. Descartes, Kant and the idea of engineering biological machines.

    Science.gov (United States)

    Kogge, Werner; Richter, Michael

    2013-06-01

    The engineering-based approach of synthetic biology is characterized by an assumption that 'engineering by design' enables the construction of 'living machines'. These 'machines', as biological machines, are expected to display certain properties of life, such as adapting to changing environments and acting in a situated way. This paper proposes that a tension exists between the expectations placed on biological artefacts and the notion of producing such systems by means of engineering; this tension makes it seem implausible that biological systems, especially those with properties characteristic of living beings, can in fact be produced using the specific methods of engineering. We do not claim that engineering techniques have nothing to contribute to the biotechnological construction of biological artefacts. However, drawing on Descartes's and Kant's thinking on the relationship between the organism and the machine, we show that it is considerably more plausible to assume that distinctively biological artefacts emerge within a paradigm different from the paradigm of the Cartesian machine that underlies the engineering approach. We close by calling for increased attention to be paid to approaches within molecular biology and chemistry that rest on conceptions different from those of synthetic biology's engineering paradigm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Undergraduate Computer Science and Engineering Curriculum in India

    OpenAIRE

    Rajaraman, Vaidyeswaran

    1993-01-01

    The undergraduate computer science and engineering degree in India is a professional engineering degree and follows the general structure of other engineering degree programs. It aims to provide a good breadth in basic engineering and 50% of the curriculum in common with all engineering disciplines. The curriculum has a strong electrical engineering bias. At present there is no formal accreditation of engineering programs in India and each university is expected to maintain their own standard...

  9. World Congress on Engineering and Computer Science 2013

    CERN Document Server

    Ao, Sio-Iong; Amouzegar, Mahyar

    2014-01-01

    This volume contains fifty-six revised and extended research articles, written by prominent researchers participating in the congress. Topics covered include electrical engineering, chemical engineering, circuits, computer science, communications systems, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. This book offers theoretical advances in engineering technologies, and presents state of the art applications. It also serves as an excellent source of reference for researchers and graduate students working with/on engineering technologies.

  10. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    Hennie

    South African Journal of Education, Volume 35, Number 1, February 2015. 1 ... Department of Science and Technology Education, Faculty of Education, University of Johannesburg, South Africa ... Keywords: Biology textbooks; Life Sciences textbooks; nature of science; school science curriculum; science textbook analysis.

  11. Cultural stereotypes as gatekeepers: increasing girls’ interest in computer science and engineering by diversifying stereotypes

    OpenAIRE

    Cheryan, Sapna; Master, Allison; Meltzoff, Andrew N.

    2015-01-01

    Despite having made significant inroads into many traditionally male-dominated fields (e.g., biology, chemistry), women continue to be underrepresented in computer science and engineering. We propose that students’ stereotypes about the culture of these fields—including the kind of people, the work involved, and the values of the field—steer girls away from choosing to enter them. Computer science and engineering are stereotyped in modern American culture as male-oriented fields that involve ...

  12. Analysing the Integration of Engineering in Science Lessons with the Engineering-Infused Lesson Rubric

    Science.gov (United States)

    Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.

    2017-01-01

    Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons…

  13. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  14. Proceedings of the 3rd Symposium on Engineering Sciences

    International Nuclear Information System (INIS)

    Ahmed, J.; Rizvi, S.Z.H.; Ahmad, R.; Saleem, M.

    2010-01-01

    The 3rd symposium on engineering sciences was held from March 10-12, 2010 in Lahore, Pakistan. More than twenty academic institutions and six industries participated in this conference. The foreign and Pakistani experts delivered their keynotes talk, contributor lectures and poster presentation on the conference topics. In three days of the symposium, Fifty four papers presented on different topics of Engineering Sciences including chemical engineering, energy engineering, metallurgy engineering, material engineering and electrical engineering. This symposium provided an ideal opportunity for exchange of information amongst scientists, engineers and researchers from all over Pakistan and other countries of the world. (A.B)

  15. LIVIVO - the Vertical Search Engine for Life Sciences.

    Science.gov (United States)

    Müller, Bernd; Poley, Christoph; Pössel, Jana; Hagelstein, Alexandra; Gübitz, Thomas

    2017-01-01

    The explosive growth of literature and data in the life sciences challenges researchers to keep track of current advancements in their disciplines. Novel approaches in the life science like the One Health paradigm require integrated methodologies in order to link and connect heterogeneous information from databases and literature resources. Current publications in the life sciences are increasingly characterized by the employment of trans-disciplinary methodologies comprising molecular and cell biology, genetics, genomic, epigenomic, transcriptional and proteomic high throughput technologies with data from humans, plants, and animals. The literature search engine LIVIVO empowers retrieval functionality by incorporating various literature resources from medicine, health, environment, agriculture and nutrition. LIVIVO is developed in-house by ZB MED - Information Centre for Life Sciences. It provides a user-friendly and usability-tested search interface with a corpus of 55 Million citations derived from 50 databases. Standardized application programming interfaces are available for data export and high throughput retrieval. The search functions allow for semantic retrieval with filtering options based on life science entities. The service oriented architecture of LIVIVO uses four different implementation layers to deliver search services. A Knowledge Environment is developed by ZB MED to deal with the heterogeneity of data as an integrative approach to model, store, and link semantic concepts within literature resources and databases. Future work will focus on the exploitation of life science ontologies and on the employment of NLP technologies in order to improve query expansion, filters in faceted search, and concept based relevancy rankings in LIVIVO.

  16. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology ...

  18. Teaching Interdisciplinary Engineering and Science Educations

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; S. Stachowicz, Marian

    2014-01-01

    creating new knowledge. We will address the challenges by defining the term interdisciplinary in connection with education, and using the Problem Based Learning educational approach and experience from the engineering and science educational areas to find the obstacles. Two cases based on interdisciplinary......In this paper we study the challenges for the involved teachers who plan and implement interdisciplinary educations. They are confronted with challenges regarding their understanding of using known disciplines in a new interdisciplinary way and see the possibilities of integrating disciplines when...... and understand how different expertise can contribute to an interdisciplinary education....

  19. International Conference on Computational Engineering Science

    CERN Document Server

    Yagawa, G

    1988-01-01

    The aim of this Conference was to become a forum for discussion of both academic and industrial research in those areas of computational engineering science and mechanics which involve and enrich the rational application of computers, numerical methods, and mechanics, in modern technology. The papers presented at this Conference cover the following topics: Solid and Structural Mechanics, Constitutive Modelling, Inelastic and Finite Deformation Response, Transient Analysis, Structural Control and Optimization, Fracture Mechanics and Structural Integrity, Computational Fluid Dynamics, Compressible and Incompressible Flow, Aerodynamics, Transport Phenomena, Heat Transfer and Solidification, Electromagnetic Field, Related Soil Mechanics and MHD, Modern Variational Methods, Biomechanics, and Off-Shore-Structural Mechanics.

  20. Eleventh symposium on energy engineering sciences: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases

  1. Sandia technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

  2. Robotic Manufacturing Science and Engineering Laboratory (RMSEL)

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Robotic Manufacturing Science and Engineering Laboratory (RMSEL) at Sandia National Laboratories/New Mexico (SNL). This facility is needed to integrate, consolidate, and enhance the robotics research and testing currently in progress at SNL. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  3. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  4. Is Reintroduction Biology an Effective Applied Science?

    Science.gov (United States)

    Taylor, Gemma; Canessa, Stefano; Clarke, Rohan H; Ingwersen, Dean; Armstrong, Doug P; Seddon, Philip J; Ewen, John G

    2017-11-01

    Reintroduction biology is a field of scientific research that aims to inform translocations of endangered species. We review two decades of published literature to evaluate whether reintroduction science is evolving in its decision-support role, as called for by advocates of evidence-based conservation. Reintroduction research increasingly addresses a priori hypotheses, but remains largely focused on short-term population establishment. Similarly, studies that directly assist decisions by explicitly comparing alternative management actions remain a minority. A small set of case studies demonstrate full integration of research in the reintroduction decision process. We encourage the use of tools that embed research in decision-making, particularly the explicit consideration of multiple management alternatives because this is the crux of any management decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Women, Men, and Academic Performance in Science and Engineering: The Gender Difference in Undergraduate Grade Point Averages

    Science.gov (United States)

    Sonnert, Gerhard; Fox, Mary Frank

    2012-01-01

    Using longitudinal and multi-institutional data, this article takes an innovative approach in its analyses of gender differences in grade point averages (GPA) among undergraduate students in biology, the physical sciences, and engineering over a 16-year period. Assessed are hypotheses about (a) the gender ecology of science/engineering and (b) the…

  6. The Art and Science of Systems Engineering

    Science.gov (United States)

    Singer, Christopher E.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.

  7. Minimum Learning Essentials: Science. Chemistry, Earth Science, Biology, Physics, General Science. Experimental Edition 0/4.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This guide presents the "minimum teaching essentials" published by the New York City Board of Education, for science education in grades 9-12. Covered are: biology, physics, earth science, and chemistry. Work study skills for all subjects are given with content areas, performance objectives, and suggested classroom activities. (APM)

  8. 9th International Conference on Management Science and Engineering Management

    CERN Document Server

    Nickel, Stefan; Machado, Virgilio; Hajiyev, Asaf

    2015-01-01

    This is the Proceedings of the Ninth International Conference on Management Science and Engineering Management (ICMSEM) held from July 21-23, 2015 at Karlsruhe, Germany. The goals of the conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current findings. These proceedings cover various areas in management science and engineering management. It focuses on the identification of management science problems in engineering and innovatively using management theory and methods to solve engineering problems effectively. It also establishes a new management theory and methods based on experience of new management issues in engineering. Readers interested in the fields of management science and engineering management will benefit from the latest cutting-edge innovations and research advances presented in these proceedings and will find new ideas and research directions. A total number of 132 papers from 15 countries a...

  9. 10th International Conference on Management Science and Engineering Management

    CERN Document Server

    Hajiyev, Asaf; Nickel, Stefan; Gen, Mitsuo

    2017-01-01

    This book presents the proceedings of the Tenth International Conference on Management Science and Engineering Management (ICMSEM2016) held from August 30 to September 02, 2016 at Baku, Azerbaijan and organized by the International Society of Management Science and Engineering Management, Sichuan University (Chengdu, China) and Ministry of Education of Azerbaijan. The aim of conference was to foster international research collaborations in management science and engineering management as well as to provide a forum to present current research findings. The presented papers were selected and reviewed by the Program Committee, made up of respected experts in the area of management science and engineering management from around the globe. The contributions focus on identifying management science problems in engineering, innovatively using management theory and methods to solve engineering problems effectively and establishing novel management theories and methods to address new engineering management issues.

  10. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    NARCIS (Netherlands)

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  11. Epistemological Predictors of Prospective Biology Teachers' Nature of Science Understandings

    Science.gov (United States)

    Köseoglu, Pinar; Köksal, Mustafa Serdar

    2015-01-01

    The purpose of this study was to investigate epistemological predictors of nature of science understandings of 281 prospective biology teachers surveyed using the Epistemological Beliefs Scale Regarding Science and the Nature of Science Scale. The findings on multiple linear regression showed that understandings about definition of science and…

  12. A Computer Assisted Learning Project in Engineering Science

    Science.gov (United States)

    Cheesewright, R.; And Others

    1974-01-01

    A British project in engineering science is described. Computer assisted instruction packages are being developed to provide students with experience with models or systems of models related to lecture material on electrical, electronic, nuclear, and mechanical engineering. (SD)

  13. Nanoscale Science and Engineering in Romania

    International Nuclear Information System (INIS)

    Dascalu, Dan; Topa, Vladimir; Kleps, Irina

    2001-01-01

    In spite of difficult working conditions and with very low financial support, many groups from Romania are involved in emerging fields, such as the nanoscale science and technology. Until the last years, this activity was developed without a central coordination and without many interactions between these research groups. In the year 2000, some of the institutes and universities active in the nanotechnology field in Romania founded the MICRONANOTECH network. The aim of this paper is to emphasize the main activities and results of the Romanian groups working in this novel domain. Most of the groups are deal with the nanomaterial technology and only few of them have activities in nanostructure science and engineering, in new concepts and device modeling and technology. This paper describes the nanotechnology research development in two of the most significant institutes from Romania: Centre for Nanotechnologies from National Institute for Research and Development in Microtehnologies (IMT-Bucharest) and from National Institute for Research and Development in Materials Physics (INCD-FM), Magurele. The Romanian research results in nanotechnology field were presented in numerous papers presented in international conferences or published in national and international journals. They are also presented in patents, international awards and fellowships. The research effort and financial support are outlined. Some future trends of the Romanian nanoscale science and technology research are also described

  14. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    Science.gov (United States)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-01-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about…

  15. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  16. Biological process of soil improvement in civil engineering: A review

    Directory of Open Access Journals (Sweden)

    Murtala Umar

    2016-10-01

    Full Text Available The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically controlled and biologically induced mineralization, were also discussed. Environmental and other factors that may be encountered in situ during microbially induced calcite precipitation (MICP and their influences on the process were identified and presented. Improvements in the engineering properties of soil such as strength/stiffness and permeability as evaluated in some studies were explored. Potential applications of the process in geotechnical engineering and the challenges of field application of the process were identified.

  17. Microenvironmental Regulation of Tumor Angiogenesis: Biological and Engineering Considerations

    Science.gov (United States)

    Infanger, David W.; Pathi, Siddharth P.; Fischbach, Claudia

    Tumor angiogenesis is fundamental to tumor growth and metastasis, and antiangiogenic therapies have been developed to target this process. However, the clinical success of these treatments has been limited, which may be due, in part, to an incomplete understanding of cell-microenvironment interactions and their role in tumor angiogenesis. Traditionally, two-dimensional (2D) culture approaches have been used to study tumor progression in vitro, but these systems fail to faithfully recreate tumor microenvironmental conditions contributing to tumor angiogenesis in vivo. By integrating cancer biology with tissue engineering and drug delivery approaches, the development of biologically inspired tumor models has emerged. Such 3D model systems allow studying the specific role of soluble factor signaling, cell-extracellular matrix (ECM) interactions, cell-cell interactions, mechanical cues, and metabolic stress. This chapter discusses specific biological and engineering design considerations for tissue-engineered tumor models and highlights their application for defining the underpinnings of tumor angiogenesis.

  18. Recent applications of synthetic biology tools for yeast metabolic engineering

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required...... to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together...... with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed...

  19. Institute for Computer Applications in Science and Engineering (ICASE)

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.

  20. Genome modularity and synthetic biology: Engineering systems.

    Science.gov (United States)

    Mol, Milsee; Kabra, Ritika; Singh, Shailza

    2018-01-01

    Whole genome sequencing projects running in various laboratories around the world has generated immense data. A systematic phylogenetic analysis of this data shows that genome complexity goes on decreasing as it evolves, due to its modular nature. This modularity can be harnessed to minimize the genome further to reduce it with the bare minimum essential genes. A reduced modular genome, can fuel progress in the area of synthetic biology by providing a ready to use plug and play chassis. Advances in gene editing technology such as the use of tailor made synthetic transcription factors will further enhance the availability of synthetic devices to be applied in the fields of environment, agriculture and health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Applying elastic fibre biology in vascular tissue engineering

    OpenAIRE

    Kielty, Cay M; Stephan, Simon; Sherratt, Michael J; Williamson, Matthew; Shuttleworth, C. Adrian

    2007-01-01

    For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and pate...

  2. A discussion of molecular biology methods for protein engineering.

    Science.gov (United States)

    Zawaira, Alexander; Pooran, Anil; Barichievy, Samantha; Chopera, Denis

    2012-05-01

    A number of molecular biology techniques are available to generate variants from a particular start gene for eventual protein expression. We discuss the basic principles of these methods in a repertoire that may be used to achieve the elemental steps in protein engineering. These include site-directed, deletion and insertion mutagenesis. We provide detailed case studies, drawn from our own experiences, packaged together with conceptual discussions and include an analysis of the techniques presented with regards to their uses in protein engineering.

  3. Transcription control engineering and applications in synthetic biology

    Directory of Open Access Journals (Sweden)

    Michael D. Engstrom

    2017-09-01

    Full Text Available In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein, a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors, giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  4. Transcription control engineering and applications in synthetic biology.

    Science.gov (United States)

    Engstrom, Michael D; Pfleger, Brian F

    2017-09-01

    In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators ( cis -factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators ( trans- factors), giving examples of how cis- and trans -acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli , we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  5. On Multifunctional Collaborative Methods in Engineering Science

    Science.gov (United States)

    Ransom, Jonathan B.

    2001-01-01

    Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.

  6. Molecular thermodynamics for food science and engineering.

    Science.gov (United States)

    Nguyen, Phuong-Mai; Guiga, Wafa; Vitrac, Olivier

    2016-10-01

    We argue that thanks to molecular modeling approaches, many thermodynamic properties required in Food Science and Food Engineering will be calculable within a few hours from first principles in a near future. These new possibilities will enable to bridge via multiscale modeling composition, process and storage effects to reach global optimization, innovative concepts for food or its packaging. An outlook of techniques and a series of examples are given in this perspective. We emphasize solute chemical potentials in polymers, liquids and their mixtures as they cannot be understood and estimated without theory. The presented atomistic and coarse-grained methods offer a natural framework to their conceptualization in polynary systems, entangled or crosslinked homo- or heteropolymers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Tsunamis: bridging science, engineering and society.

    Science.gov (United States)

    Kânoğlu, U; Titov, V; Bernard, E; Synolakis, C

    2015-10-28

    Tsunamis are high-impact, long-duration disasters that in most cases allow for only minutes of warning before impact. Since the 2004 Boxing Day tsunami, there have been significant advancements in warning methodology, pre-disaster preparedness and basic understanding of related phenomena. Yet, the trail of destruction of the 2011 Japan tsunami, broadcast live to a stunned world audience, underscored the difficulties of implementing advances in applied hazard mitigation. We describe state of the art methodologies, standards for warnings and summarize recent advances in basic understanding, and identify cross-disciplinary challenges. The stage is set to bridge science, engineering and society to help build up coastal resilience and reduce losses. © 2015 The Author(s).

  8. Bullying Prevention: a Summary of the Report of the National Academies of Sciences, Engineering, and Medicine : Committee on the Biological and Psychosocial Effects of Peer Victimization: Lessons for Bullying Prevention.

    Science.gov (United States)

    Flannery, Daniel J; Todres, Jonathan; Bradshaw, Catherine P; Amar, Angela Frederick; Graham, Sandra; Hatzenbuehler, Mark; Masiello, Matthew; Moreno, Megan; Sullivan, Regina; Vaillancourt, Tracy; Le Menestrel, Suzanne M; Rivara, Frederick

    2016-11-01

    Long tolerated as a rite of passage into adulthood, bullying is now recognized as a major and preventable public health problem. The consequences of bullying-for those who are bullied, the perpetrators of bullying, and the witnesses-include poor physical health, anxiety, depression, increased risk for suicide, poor school performance, and future delinquent and aggressive behavior. Despite ongoing efforts to address bullying at the law, policy, and programmatic levels, there is still much to learn about the consequences of bullying and the effectiveness of various responses. In 2016, the National Academies of Sciences, Engineering, and Medicine published a report entitled Preventing Bullying Through Science, Policy and Practice, which examined the evidence on bullying, its impact, and responses to date. This article summarizes the report's key findings and recommendations related to bullying prevention.

  9. 77 FR 13367 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2012-03-06

    .... Type of Meeting: Open. Contact Person: Robert Webber, Office of International Science and Engineering... international science and engineering. Agenda: Review NSF international activities, and discuss and develop... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice...

  10. Biological augmentation and tissue engineering approaches in meniscus surgery.

    Science.gov (United States)

    Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C

    2015-05-01

    The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and

  11. Biological process of soil improvement in civil engineering: A review

    OpenAIRE

    Murtala Umar; Khairul Anuar Kassim; Kenny Tiong Ping Chiet

    2016-01-01

    The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically co...

  12. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    Science.gov (United States)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  13. European Master of Science in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, F.; Safieh, J.; Giot, M.; Mavko, B.; Sehgal, B.R.; Schaefer, A.; Goethem, G. van; D'haeseleer, W.

    2004-01-01

    The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. It appears that within the European university education and training network, nuclear engineering is presently sufficiently covered, although somewhat fragmented. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding a.o. from public and private is to be re-established. More, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include world-wide cooperation with academic institutions and research centres. The European master in nuclear engineering guarantees a high quality nuclear education in Europe by means of stimulating student and instructor exchange, through mutual checks of the quality of the programmes offered, by close collaboration with renowned nuclear-research groups at universities and laboratories. The concept for a nuclear master programme consists of a solid basket of recommended basic nuclear science and engineering courses, but also contains advanced courses as well as practical training. Some of the advanced courses also serve as part of the curricula for doctoral programmes. A second important issue identified is Continued Professional Development. In order to achieve the objectives and practical goals described above, the ENEN association was formed. This international, non-profit association is be considered as a step towards a virtual European Nuclear University symbolising the active collaboration between various national institutions pursuing nuclear education. (author)

  14. Network science of biological systems at different scales: A review

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present

  15. Biology as an Integrating Natural Science Domain A Proposal for ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  16. International conference on Advances in Engineering Technologies and Physical Science

    CERN Document Server

    Ao, Sio-Iong; Rieger, Burghard; IAENG Transactions on Engineering Technologies : Special Edition of the World Congress on Engineering and Computer Science 2011

    2013-01-01

    This volume contains thirty revised and extended research articles written by prominent researchers participating in an international conference in engineering technologies and physical science and applications. The conference serves as good platforms for the engineering community to meet with each other and to exchange ideas. The conference has also struck a balance between theoretical and application development. The conference is truly international meeting with a high level of participation from many countries. Topics covered include chemical engineering, circuits, communications systems, control theory, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.

  17. Developing the Next Generation of Science Data System Engineers

    Science.gov (United States)

    Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.

    2016-01-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data

  18. Developing the Next Generation of Science Data System Engineers

    Science.gov (United States)

    Moses, J. F.; Durachka, C. D.; Behnke, J.

    2015-12-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational

  19. Gender Equity in Materials Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Angus Rockett

    2008-12-01

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases

  20. Engineering Titanium for Improved Biological Response

    Energy Technology Data Exchange (ETDEWEB)

    Orme, C; Bearinger, J; Dimasi, E; Gilbert, J

    2002-01-23

    The human body and its aggressive environment challenge the survival of implanted foreign materials. Formidable biocompatibility issues arise from biological, chemical, electrical, and tribological origins. The body's electrolytic solution provides the first point of contact with any kind of implant, and is responsible for transport, healing, integration, or attack. Therefore, determining how to successfully control the integration of a biomaterial should begin with an analysis of the early interfacial dynamics involved. setting, a complicated feedback system of solution chemistry, pH, ions, and solubility exists. The introduction of a fixation device instantly confounds this system. The body is exposed to a range of voltages, and wear can bring about significant shifts in potentials across an implant. In the environment of a new implant the solution pH becomes acidic, ionic concentrations shift, cathodic currents can lead to corrosion, and oxygen levels can be depleted; all of these impact the ability of the implant to retain its protective oxide layer and to present a stable interface for the formation of a biolayer. Titanium has been used in orthopedic and maxilofacial surgery for many years due to its reputation as being biocompatible and its ability to osseointegrate. Osseointegration is defined as direct structural and functional connection between ordered, living bone, and the surface of a load carrying implant. Branemark discovered this phenomenon in the 60's while examining titanium juxtaposed to bone. The mechanism by which titanium and its passivating oxide encourage osseosynthetic activity remains unknown. However in general terms the oxide film serves two purposes: first to provide a kinetic barrier that prevents titanium from corroding and second to provide a substrate that allows the constituents of bone (calcium phosphate crystals, cells, proteins, and collagen) to bond to it. We believe that the electrochemical environment dictates the

  1. Towards Engineering Biological Systems in a Broader Context.

    Science.gov (United States)

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Attracting Girls to Science, Engineering and Technology: An Australian Perspective

    Science.gov (United States)

    Little, Alison J.; Leon de la Barra, Bernardo A.

    2009-01-01

    This paper describes a project undertaken by the school outreach team at the School of Engineering, University of Tasmania, Australia, to attract girls to science, engineering and technology (SET). The project was a pilot program designed to engage female students from upper primary to senior secondary in the teaching of physical sciences. A…

  3. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. International Journal of Biological and Chemical Sciences: Editorial ...

    African Journals Online (AJOL)

    Focus and Scope. The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG). It is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, biochemistry, biophysics, molecular biology, physiology, ...

  5. Cell-free synthetic biology forin vitroprototype engineering.

    Science.gov (United States)

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  6. Innovations and Advances in Computer, Information, Systems Sciences, and Engineering

    CERN Document Server

    Sobh, Tarek

    2013-01-01

    Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.

  7. Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering

    CERN Document Server

    Elleithy, Khaled

    2013-01-01

    Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.

  8. 78 FR 33115 - Biological Sciences Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-06-03

    ... education and CAREER programs, data management and access, and the draft NSF strategic plan for 2014-2018... NATIONAL SCIENCE FOUNDATION Biological Sciences Advisory Committee; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L., 92- 463, as amended), the National Science...

  9. This is Biology: The Science of the Living World

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 7. This is Biology: The Science of the Living World. S Mahadevan. Book Review ... Author Affiliations. S Mahadevan1. Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.

  10. Plant synthetic biology for molecular engineering of signalling and development.

    Science.gov (United States)

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  11. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages...

  12. European Master of Science in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, Frans; Safieh, Joseph; Giot, Michel; Mavko, Borut; Sehgal, Bal Raj; Schaefer, Anselm; Goethem, Georges van; D'Haeseleer, William

    2005-01-01

    The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. Among others, 'networking to maintain nuclear competence through education and training', was recommended in 2001 by an expert panel to the European Commission [EUR, 19150 EN, Strategic issues related to a 6th Euratom Framework Programme (2002-2006). Scientific and Technical Committee Euratom, pp. 14]. It appears that within the European University education and training framework, nuclear engineering is presently still sufficiently covered, although somewhat fragmented. However, it has been observed that several areas are at risk in the very near future including safety relevant fields such as reactor physics and nuclear thermal-hydraulics. Furthermore, in some countries deficiencies have been identified in areas such as the back-end of the nuclear fuel cycle, waste management and decommissioning. To overcome these risks and deficiencies, it is of very high importance that European countries work more closely together. Harmonisation and improvement of the nuclear education and training have to take place at an international level in order to maintain the knowledge properly and to transfer it throughout Europe for the safe and economic design, operation and dismantling of present and future nuclear systems. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding from public and private sources. In addition, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include worldwide cooperation with academic institutions and research centres. The first and central issue is to establish a European Master of Science in Nuclear Engineering. The concept envisaged is compatible with the projected harmonised European

  13. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  14. The Use of Web Search Engines in Information Science Research.

    Science.gov (United States)

    Bar-Ilan, Judit

    2004-01-01

    Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…

  15. Genome-scale engineering for systems and synthetic biology

    Science.gov (United States)

    Esvelt, Kevin M; Wang, Harris H

    2013-01-01

    Genome-modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre-defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome-scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering. PMID:23340847

  16. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.

    Science.gov (United States)

    Boon, Mieke

    2017-10-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  18. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    Science.gov (United States)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  19. International Conference on Emerging Trends in Science, Engineering and Technology

    CERN Document Server

    Caroline, B; Jayanthi, J

    2012-01-01

    The present book is based on the research papers presented in the International Conference on Emerging Trends in Science, Engineering and Technology 2012, held at Tiruchirapalli, India. The papers presented bridges the gap between science, engineering and technology. This book covers a variety of topics, including mechanical, production, aeronautical, material science, energy, civil and environmental energy, scientific management, etc. The prime objective of the book is to fully integrate the scientific contributions from academicians, industrialists and research scholars.

  20. Welding As Science: Applying Basic Engineering Principles to the Discipline

    Science.gov (United States)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  1. Machine learning and data science in soft materials engineering.

    Science.gov (United States)

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  2. Machine learning and data science in soft materials engineering

    Science.gov (United States)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  3. Engineering plant metabolism into microbes: from systems biology to synthetic biology.

    Science.gov (United States)

    Xu, Peng; Bhan, Namita; Koffas, Mattheos A G

    2013-04-01

    Plant metabolism represents an enormous repository of compounds that are of pharmaceutical and biotechnological importance. Engineering plant metabolism into microbes will provide sustainable solutions to produce pharmaceutical and fuel molecules that could one day replace substantial portions of the current fossil-fuel based economy. Metabolic engineering entails targeted manipulation of biosynthetic pathways to maximize yields of desired products. Recent advances in Systems Biology and the emergence of Synthetic Biology have accelerated our ability to design, construct and optimize cell factories for metabolic engineering applications. Progress in predicting and modeling genome-scale metabolic networks, versatile gene assembly platforms and delicate synthetic pathway optimization strategies has provided us exciting opportunities to exploit the full potential of cell metabolism. In this review, we will discuss how systems and synthetic biology tools can be integrated to create tailor-made cell factories for efficient production of natural products and fuel molecules in microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Recent applications of synthetic biology tools for yeast metabolic engineering.

    Science.gov (United States)

    Jensen, Michael K; Keasling, Jay D

    2015-02-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  5. LAILAPS: the plant science search engine.

    Science.gov (United States)

    Esch, Maria; Chen, Jinbo; Colmsee, Christian; Klapperstück, Matthias; Grafahrend-Belau, Eva; Scholz, Uwe; Lange, Matthias

    2015-01-01

    With the number of sequenced plant genomes growing, the number of predicted genes and functional annotations is also increasing. The association between genes and phenotypic traits is currently of great interest. Unfortunately, the information available today is widely scattered over a number of different databases. Information retrieval (IR) has become an all-encompassing bioinformatics methodology for extracting knowledge from complex, heterogeneous and distributed databases, and therefore can be a useful tool for obtaining a comprehensive view of plant genomics, from genes to traits. Here we describe LAILAPS (http://lailaps.ipk-gatersleben.de), an IR system designed to link plant genomic data in the context of phenotypic attributes for a detailed forward genetic research. LAILAPS comprises around 65 million indexed documents, encompassing >13 major life science databases with around 80 million links to plant genomic resources. The LAILAPS search engine allows fuzzy querying for candidate genes linked to specific traits over a loosely integrated system of indexed and interlinked genome databases. Query assistance and an evidence-based annotation system enable time-efficient and comprehensive information retrieval. An artificial neural network incorporating user feedback and behavior tracking allows relevance sorting of results. We fully describe LAILAPS's functionality and capabilities by comparing this system's performance with other widely used systems and by reporting both a validation in maize and a knowledge discovery use-case focusing on candidate genes in barley. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  6. Advances and Computational Tools towards Predictable Design in Biological Engineering

    Directory of Open Access Journals (Sweden)

    Lorenzo Pasotti

    2014-01-01

    Full Text Available The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated.

  7. Why So Few? Women in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Hill, Catherine; Corbett, Christianne; St. Rose, Andresse

    2010-01-01

    The number of women in science and engineering is growing, yet men continue to outnumber women, especially at the upper levels of these professions. In elementary, middle, and high school, girls and boys take math and science courses in roughly equal numbers, and about as many girls as boys leave high school prepared to pursue science and…

  8. ETHICS AND JUSTICE IN ENVIRONMENTAL SCIENCE AND ENGINEERING

    Science.gov (United States)

    Science and engineering are built on trust. C.P. Snow's famous quote, "the only ethical principle which has made science possible is that the truth shall be told all the time" underscores the importance of honesty in science. Environmental scientists must do work that is useful...

  9. Proceedings of Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2015

    Energy Technology Data Exchange (ETDEWEB)

    Silver, Pamela [Harvard Univ., Cambridge, MA (United States); SEED 2015 Conference Chair; Flach, Evan [American Institute of Chemical Engineers; SEED 2015 Conference Organizer

    2016-10-27

    Synthetic Biology is an emerging discipline that seeks to accelerate the process of engineering biology. As such, the tools are broadly applicable to application areas, including chemicals and biofuels, materials, medicine and agriculture. A characteristic of the field is to look holistically at cellular design, from sensing and genetic circuitry to the manipulation of cellular processes and actuators, to controlling metabolism, to programming multicellular behaviors. Further, the types of cells that are manipulated are broad, from in vitro systems to microbes and fungi to mammalian and plant cells and living animals. Many of the projects in synthetic biology seek to move biochemical functions across organisms. The field is highly interdisciplinary with faculty and students spread across departments that focus on engineering (biological, chemical, electrical, mechanical, civil, computer science) and basic science (biology and systems biology, chemistry, physics). While there have been many one-off workshops and meeting on synthetic biology, the 2014 Synthetic Biology: Engineering, Evolution and Design (SEED) was the first of an annual conference series that serves as a reliable place to pull together the involved disciplines in order to organize and exchange advances in the science and technology in the field. Further, the SEED conferences have a strong focus on industry, with many companies represented and actively participating. A number of these companies have started major efforts in synthetic biology including large companies (e.g., Pfizer, Novartis, Dow, Dupont, BP, Total), smaller companies have recently gone public (e.g., Amyris, Gevo, Intrexon), and many start-ups (e.g., Teslagen, Refactored Materials, Pivot, Genomatica). There are a number of loosely affiliated Synthetic Biology Centers, including ones at MIT, Boston University, UCSD, UCSF, UC-Berkeley, Imperial College, Oxford, and ETH. SEED 2015 will serve as the primary meeting at which international

  10. Science, technology and engineering at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Mercer-smith, Janet A [Los Alamos National Laboratory; Wallace, Terry C [Los Alamos National Laboratory

    2011-01-06

    The Laboratory provides science solution to the mission areas of nuclear deterrence, global security, and energy security. The capabilities support the Laboratory's vision as the premier national security science laboratory. The strength of LANL's science is at the core of the Laboratory. The Laboratory addresses important science questions for stockpile stewardship, emerging threats, and energy. The underpinning science vitality to support mission areas is supported through the Post Doc program, the fundamental science program in LDRD, collaborations fostered through the Institutes, and the LANL user facilities. LANL fosters the strategy of Science that Matters through investments, people, and facilities.

  11. Network biology methods integrating biological data for translational science.

    Science.gov (United States)

    Bebek, Gurkan; Koyutürk, Mehmet; Price, Nathan D; Chance, Mark R

    2012-07-01

    The explosion of biomedical data, both on the genomic and proteomic side as well as clinical data, will require complex integration and analysis to provide new molecular variables to better understand the molecular basis of phenotype. Currently, much data exist in silos and is not analyzed in frameworks where all data are brought to bear in the development of biomarkers and novel functional targets. This is beginning to change. Network biology approaches, which emphasize the interactions between genes, proteins and metabolites provide a framework for data integration such that genome, proteome, metabolome and other -omics data can be jointly analyzed to understand and predict disease phenotypes. In this review, recent advances in network biology approaches and results are identified. A common theme is the potential for network analysis to provide multiplexed and functionally connected biomarkers for analyzing the molecular basis of disease, thus changing our approaches to analyzing and modeling genome- and proteome-wide data.

  12. Computational problems in science and engineering

    CERN Document Server

    Bulucea, Aida; Tsekouras, George

    2015-01-01

    This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.

  13. Applying elastic fibre biology in vascular tissue engineering.

    Science.gov (United States)

    Kielty, Cay M; Stephan, Simon; Sherratt, Michael J; Williamson, Matthew; Shuttleworth, C Adrian

    2007-08-29

    For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and patency. In blood vessels, they endow vessels with the critical property of elastic recoil. They also influence vascular cell behaviour through direct interactions and by regulating growth factor activation. This review addresses physiological elastic fibre assembly and contributions to vessel structure and function, and how elastic fibre biology is now being exploited in small diameter vascular graft design.

  14. 5. Conference cycle. The radiations and the Biological Sciences

    International Nuclear Information System (INIS)

    Balcazar G, M.; Chavez B, A.

    1991-06-01

    Nuclear technologies and their development have influenced many aspects of modern life. Besides used for electricity production nuclear technologies are applied in many other fields, especially in biological sciences. In genetics and molecular biology they enable research resulting in increased food production and better food preservation. Usage in material sciences lead to new varieties of plastics or improved characteristics. Nuclear applications are used in pe troleum industries and in forecasting geothermic power. Radiobiology and radiotherapy enable diagnosis and therapy of several diseases, e.g. cancer. Nuclear technologies also contribute to preserve the environment. They offer methods to analyse as well as decrease the environmental impacts. The 5. conference cyle entitled 'The Radiations and the Biological Sciences' aims to inform students of biological sciences about new nuclear technologies applied in their field of interest

  15. Scientific perspectivism: A philosopher of science's response to the challenge of big data biology.

    Science.gov (United States)

    Callebaut, Werner

    2012-03-01

    Big data biology-bioinformatics, computational biology, systems biology (including 'omics'), and synthetic biology-raises a number of issues for the philosophy of science. This article deals with several such: Is data-intensive biology a new kind of science, presumably post-reductionistic? To what extent is big data biology data-driven? Can data 'speak for themselves?' I discuss these issues by way of a reflection on Carl Woese's worry that "a society that permits biology to become an engineering discipline, that allows that science to slip into the role of changing the living world without trying to understand it, is a danger to itself." And I argue that scientific perspectivism, a philosophical stance represented prominently by Giere, Van Fraassen, and Wimsatt, according to which science cannot as a matter of principle transcend our human perspective, provides the best resources currently at our disposal to tackle many of the philosophical issues implied in the modeling of complex, multilevel/multiscale phenomena. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Towards Analysis of the Status of Science Technology Engineering ...

    African Journals Online (AJOL)

    This has been the case at both 'O' and 'A' levels. There is also a noticeable decline in enrolment statistics in STEM related subjects as the level of education increases. Within the sciences, at 'O' level, integrated science has high number of entries whilst pure science subjects such as biology, chemistry, physics and ...

  17. Conference “Modern Engineering : Science and Education”

    CERN Document Server

    2015-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2013 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines, and engineering graduates.

  18. iBiology: communicating the process of science.

    Science.gov (United States)

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Basic mathematics for the biological and social sciences

    CERN Document Server

    Marriott, F H C

    2013-01-01

    Basic Mathematics for the Biological and Social Sciences deals with the applications of basic mathematics in the biological and social sciences. Mathematical concepts that are discussed in this book include graphical methods, differentiation, trigonometrical or circular functions, limits and convergence, integration, vectors, and differential equations. The exponential function and related functions are also considered. This monograph is comprised of 11 chapters and begins with an overview of basic algebra, followed by an introduction to infinitesimal calculus, scalar and vector quantities, co

  20. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  1. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  2. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  3. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Science.gov (United States)

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology, National Science and Technology Council Workshop ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  4. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    International Nuclear Information System (INIS)

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  5. 77 FR 40090 - Proposed Collection of Information; Comment Request: Biological Sciences Proposal Classification...

    Science.gov (United States)

    2012-07-06

    ... NATIONAL SCIENCE FOUNDATION Proposed Collection of Information; Comment Request: Biological Sciences Proposal Classification Form AGENCY: National Science Foundation. ACTION: Notice. SUMMARY: The... Biological Sciences has a continuing commitment to monitor its information collection in order to preserve...

  6. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  7. Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Ramser

    2012-07-01

    Full Text Available This paper reviews microfluidic technologies with emphasis on applications in the fields of pharmacy, biology, and tissue engineering. Design and fabrication of microfluidic systems are discussed with respect to specific biological concerns, such as biocompatibility and cell viability. Recent applications and developments on genetic analysis, cell culture, cell manipulation, biosensors, pathogen detection systems, diagnostic devices, high-throughput screening and biomaterial synthesis for tissue engineering are presented. The pros and cons of materials like polydimethylsiloxane (PDMS, polymethylmethacrylate (PMMA, polystyrene (PS, polycarbonate (PC, cyclic olefin copolymer (COC, glass, and silicon are discussed in terms of biocompatibility and fabrication aspects. Microfluidic devices are widely used in life sciences. Here, commercialization and research trends of microfluidics as new, easy to use, and cost-effective measurement tools at the cell/tissue level are critically reviewed.

  8. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Impact of Theoretical Chemistry on Chemical and Biological Sciences: Chemistry Nobel Prize – 2013. Saraswathi Vishveshwara. General Article Volume 19 Issue 4 April 2014 pp 347-367 ...

  9. Sustaining Global Pressures: Women in Science and Engineering

    Indian Academy of Sciences (India)

    Women in Science and Engineering. (SGPW 2008). Next Generation. Challenges and Opportunities. January 3 - 5, 2008. Venue. SR Convention Centre,. Anupuram, Kalpakkam,. Tamil Nadu, India www.iwsakalpakkam.com. Organised by. Indian Women Scientists' Association (IWSA). Kalpakkam Branch.

  10. 7th International Conference on Management Science and Engineering Management

    CERN Document Server

    Fry, John; Lev, Benjamin; Hajiyev, Asaf; Vol.I Focused on Electrical and Information Technology; Vol.II Focused on Electrical and Information Technology

    2014-01-01

    This book presents the proceedings of the Seventh International Conference on Management Science and Engineering Management (ICMSEM2013) held from November 7 to 9, 2013 at Drexel University, Philadelphia, Pennsylvania, USA and organized by the International Society of Management Science and Engineering Management, Sichuan University (Chengdu, China) and Drexel University (Philadelphia, Pennsylvania, USA).   The goals of the Conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current research findings. The selected papers cover various areas in management science and engineering management, such as Decision Support Systems, Multi-Objective Decisions, Uncertain Decisions, Computational Mathematics, Information Systems, Logistics and Supply Chain Management, Relationship Management, Scheduling and Control, Data Warehousing and Data Mining, Electronic Commerce, Neural Networks, Stochastic Models and Simulation, F...

  11. 8th International Conference on Management Science and Engineering Management

    CERN Document Server

    Cruz-Machado, Virgílio; Lev, Benjamin; Nickel, Stefan

    2014-01-01

    This is the Proceedings of the Eighth International Conference on Management Science and Engineering Management (ICMSEM) held from July 25 to 27, 2014 at Universidade Nova de Lisboa, Lisbon, Portugal and organized by International Society of Management Science and Engineering Management (ISMSEM), Sichuan University (Chengdu, China) and Universidade Nova de Lisboa (Lisbon, Portugal). The goals of the conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current findings. A total number of 138 papers from 14 countries are selected for the proceedings by the conference scientific committee through rigorous referee review. The selected papers in the second volume are focused on Computing and Engineering Management covering areas of Computing Methodology, Project Management, Industrial Engineering and Information Technology.

  12. The future of fish passage science, engineering, and practice

    Science.gov (United States)

    Silva, Ana T.; Lucas, Martyn C.; Castro-Santos, Theodore R.; Katopodis, Christos; Baumgartner, Lee J.; Thiem, Jason D.; Aarestrup, Kim; Pompeu, Paulo S.; O'Brien, Gordon C.; Braun, Douglas C.; Burnett, Nicholas J.; Zhu, David Z.; Fjeldstad, Hans-Petter; Forseth, Torbjorn; Rajarathnam, Nallamuthu; Williams, John G.; Cooke, Steven J.

    2018-01-01

    Much effort has been devoted to developing, constructing and refining fish passage facilities to enable target species to pass barriers on fluvial systems, and yet, fishway science, engineering and practice remain imperfect. In this review, 17 experts from different fish passage research fields (i.e., biology, ecology, physiology, ecohydraulics, engineering) and from different continents (i.e., North and South America, Europe, Africa, Australia) identified knowledge gaps and provided a roadmap for research priorities and technical developments. Once dominated by an engineering‐focused approach, fishway science today involves a wide range of disciplines from fish behaviour to socioeconomics to complex modelling of passage prioritization options in river networks. River barrier impacts on fish migration and dispersal are currently better understood than historically, but basic ecological knowledge underpinning the need for effective fish passage in many regions of the world, including in biodiversity hotspots (e.g., equatorial Africa, South‐East Asia), remains largely unknown. Designing efficient fishways, with minimal passage delay and post‐passage impacts, requires adaptive management and continued innovation. While the use of fishways in river restoration demands a transition towards fish passage at the community scale, advances in selective fishways are also needed to manage invasive fish colonization. Because of the erroneous view in some literature and communities of practice that fish passage is largely a proven technology, improved international collaboration, information sharing, method standardization and multidisciplinary training are needed. Further development of regional expertise is needed in South America, Asia and Africa where hydropower dams are currently being planned and constructed.

  13. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Saving our science from ourselves: the plight of biological classification

    Directory of Open Access Journals (Sweden)

    Malte C. Ebach

    2011-06-01

    Full Text Available Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.

  15. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for th...

  16. Science Academies' Refresher Course on Environmental Biology

    Indian Academy of Sciences (India)

    IAS Admin

    This two-week refresher course on environmental biology will cover recent advances in fields such as RNAi technology, soil and rhizosphere health, biogeochemistry, environmental pollution, functional genomics, plant genomics and biochemis- try, and molecular medicine. All resource persons will be eminent scientists ...

  17. Science Academies' Refresher Course on Experimental Biology ...

    Indian Academy of Sciences (India)

    IAS Admin

    A refresher course on 'Experimental Biology: Orthodox to Modern' will be held at PG and Research Department of Botany, St.Joseph's College, Tiruchirappalli , Tamil Nadu for two weeks from 07 November to 19 November. 2016. The objective of this course is to improvise on teaching methodologies and also get familiar ...

  18. Science Academies' Refresher Course on Environmental Biology

    Indian Academy of Sciences (India)

    IAS Admin

    GCMS, Gradient PCR and RT-PCR machines, Automatic karyotyping workstation and so on. The UGC has notified (F-3/1-2009) that teachers in Universities and Colleges attending two-week. Refresher Courses are entitled to be considered for promotion. This two-week refresher course on environmental biology will cover ...

  19. Integration, Authenticity, and Relevancy in College Science through Engineering Design

    Science.gov (United States)

    Turner, Ken L., Jr.; Hoffman, Adam R.

    2018-01-01

    Engineering design is an ideal perspective for engaging students in college science classes. An engineering design problem-solving framework was used to create a general chemistry lab activity focused on an important environmental issue--dead zones. Dead zones impact over 400 locations around the world and are a result of nutrient pollution, one…

  20. Integral methods in science and engineering theoretical and practical aspects

    CERN Document Server

    Constanda, C; Rollins, D

    2006-01-01

    Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students.

  1. Career Pathways of Science, Engineering and Technology Research Postgraduates

    Science.gov (United States)

    Giles, Marnie; Ski, Chantal; Vrdoljak, Davorin

    2009-01-01

    Suitably qualified scientists and engineers are essential for research and development, innovation and, in turn, the growth of the economy. Science, engineering and technology skills are therefore necessary for Australia to remain competitive in a global market. This article reports findings from a nationwide study investigating the career…

  2. Learning Styles of Mexican Food Science and Engineering Students

    Science.gov (United States)

    Palou, Enrique

    2006-01-01

    People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…

  3. Toward an integration of evolutionary biology and ecosystem science.

    Science.gov (United States)

    Matthews, Blake; Narwani, Anita; Hausch, Stephen; Nonaka, Etsuko; Peter, Hannes; Yamamichi, Masato; Sullam, Karen E; Bird, Kali C; Thomas, Mridul K; Hanley, Torrance C; Turner, Caroline B

    2011-07-01

    At present, the disciplines of evolutionary biology and ecosystem science are weakly integrated. As a result, we have a poor understanding of how the ecological and evolutionary processes that create, maintain, and change biological diversity affect the flux of energy and materials in global biogeochemical cycles. The goal of this article was to review several research fields at the interfaces between ecosystem science, community ecology and evolutionary biology, and suggest new ways to integrate evolutionary biology and ecosystem science. In particular, we focus on how phenotypic evolution by natural selection can influence ecosystem functions by affecting processes at the environmental, population and community scale of ecosystem organization. We develop an eco-evolutionary model to illustrate linkages between evolutionary change (e.g. phenotypic evolution of producer), ecological interactions (e.g. consumer grazing) and ecosystem processes (e.g. nutrient cycling). We conclude by proposing experiments to test the ecosystem consequences of evolutionary changes. © 2011 Blackwell Publishing Ltd/CNRS.

  4. African Journals Online: Biology & Life Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 71 ... African Journal for Physical Activity and Health Sciences. AJPHES publishes research papers that contribute to knowledge and practice, and also develops theory either as new information, reviews, confirmation of previous findings, application of new teaching/coaching techniques and research notes.

  5. Biology Grade 10, Science Curriculum Materials.

    Science.gov (United States)

    Bloom, Samuel W.

    This teaching guide and syllabus outline is intended for use with pupils whose primary interests are in non-science fields, or who do not intend to enter college. The guide contains suggested activities, both laboratory and discussion, for a course containing the following sections: Introduction to Cells and Life; Animal Physiology; Plant…

  6. Interdisciplinary Team Science in Cell Biology.

    Science.gov (United States)

    Horwitz, Rick

    2016-11-01

    The cell is complex. With its multitude of components, spatial-temporal character, and gene expression diversity, it is challenging to comprehend the cell as an integrated system and to develop models that predict its behaviors. I suggest an approach to address this issue, involving system level data analysis, large scale team science, and philanthropy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Engineered ion channels as emerging tools for chemical biology.

    Science.gov (United States)

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  8. Advances in Computer Science, Engineering & Applications : Proceedings of the Second International Conference on Computer Science, Engineering & Applications

    CERN Document Server

    Zizka, Jan; Nagamalai, Dhinaharan

    2012-01-01

    The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of  intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.  

  9. Advances in Computer Science, Engineering & Applications : Proceedings of the Second International Conference on Computer Science, Engineering & Applications

    CERN Document Server

    Zizka, Jan; Nagamalai, Dhinaharan

    2012-01-01

    The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of  intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.

  10. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  11. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  12. Structural biology computing: Lessons for the biomedical research sciences.

    Science.gov (United States)

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields. Copyright © 2013 Wiley Periodicals, Inc.

  13. From biology to mathematical models and back: teaching modeling to biology students, and biology to math and engineering students.

    Science.gov (United States)

    Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.

  14. Applied mathematics for science and engineering

    CERN Document Server

    Glasgow, Larry A

    2014-01-01

    Prepare students for success in using applied mathematics for engineering practice and post-graduate studies moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade's worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters

  15. Taiwanese Preservice Teachers' Science, Technology, Engineering, and Mathematics Teaching Intention

    Science.gov (United States)

    Lin, Kuen-Yi; Williams, P. John

    2016-01-01

    This study applies the theory of planned behavior as a basis for exploring the impact of knowledge, values, subjective norms, perceived behavioral controls, and attitudes on the behavioral intention toward science, technology, engineering, and mathematics (STEM) education among Taiwanese preservice science teachers. Questionnaires (N = 139)…

  16. Breathing Life into Engineering: A Lesson Study Life Science Lesson

    Science.gov (United States)

    Lawrence, Maria; Yang, Li-Ling; Briggs, May; Hession, Alicia; Koussa, Anita; Wagoner, Lisa

    2016-01-01

    A fifth grade life science lesson was implemented through a lesson study approach in two fifth grade classrooms. The research lesson was designed by a team of four elementary school teachers with the goal of emphasizing engineering practices consistent with the "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013). The fifth…

  17. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    Science.gov (United States)

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  18. "Phronesis": Children's Local Rural Knowledge of Science and Engineering

    Science.gov (United States)

    Avery, Leanne M.; Kassam, Karim-Aly

    2011-01-01

    This study analyzes videotaped interviews and 407 photographs taken by 20 grade 5 and 6 students in rural New York State to document their science and engineering learning. Aristotle's concept of phronesis or practical wisdom frames the findings and their implications. Key findings indicate that: (1) All 20 children found examples of science and…

  19. Science and Engineering Indicators: Digest 2012. NSB 12-02

    Science.gov (United States)

    National Science Foundation, 2012

    2012-01-01

    The United States holds a preeminent position in science and engineering (S&E) in the world, derived in large part from its long history of public and private investment in S&E research and development (R&D) and education. Investment in R&D, science, technology, and education correlate strongly with economic growth, as well the development of a…

  20. Factors Affecting Students' Choice of Science and Engineering in Portugal.

    Science.gov (United States)

    de Almeida, Maria Jose B. M.; Leite, Maria Salete S. C. P.; Woolnough, Brian E.

    This paper presents the results of a study undertaken in Portugal to determine the influence of different factors on students' (n=499) decisions to study or refuse to study in one of the physical sciences or engineering. Some influencing factors are related to what goes on in school and during science lessons, and other factors are related to the…

  1. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  2. Science Grade 7, Chemistry, Physics, Earth Science, Biology. Curriculum Bulletin, 1968-69 Series, No. 15.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    This publication is a teacher's guide for teaching seventh grade science in New York City Schools. Activities for four areas -- physics, chemistry, earth science, and biology -- are included. This particular edition is a reprint of Science: Grade 7, Curriculum Bulletin Nos 9a--9d, 1962-1963 Series, which were originally produced in four separate…

  3. The art and science of Systems Engineering

    Directory of Open Access Journals (Sweden)

    Jerome Longrew

    2014-12-01

    Full Text Available In this work are collected years of experience and the work of systems engineering, and debates centered in the industry leadership, of engineer and instructors around the world. A recurrent issue in this experiences and discussions is that community used a lot of terms and titles more diffused with the aim of achieve an agreement toward a common comprehension of this area of knowledge. Besides, it does not matter how are divided the functions and responsibilities among teams, the obligatoriness is ensure that this be clears and are run as a functional whole. The goal is provide a wide definition of systems engineer, described the characteristics of behave of highly effective engineered, and make explicit the expectations of the same.

  4. HUYGENS ACP CALIBRATED ENGINEERING & SCIENCE DATA

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is composed of data produced during the descent to Titan on January 14 2005 from the ACP instrument (Engineering data) and also from the GCMS...

  5. Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials.

    Science.gov (United States)

    Esensten, Jonathan H; Bluestone, Jeffrey A; Lim, Wendell A

    2017-01-24

    Engineered T cells are currently in clinical trials to treat patients with cancer, solid organ transplants, and autoimmune diseases. However, the field is still in its infancy. The design, and manufacturing, of T cell therapies is not standardized and is performed mostly in academic settings by competing groups. Reliable methods to define dose and pharmacokinetics of T cell therapies need to be developed. As of mid-2016, there are no US Food and Drug Administration (FDA)-approved T cell therapeutics on the market, and FDA regulations are only slowly adapting to the new technologies. Further development of engineered T cell therapies requires advances in immunology, synthetic biology, manufacturing processes, and government regulation. In this review, we outline some of these challenges and discuss the contributions that pathologists can make to this emerging field.

  6. Annual report 1993 - Science and Engineering Alliance, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    By combining their resources and with support from the US Department of Energy (DOE), Science and Engineering Alliance (SEA) has worked for the past three years to increase the participation of African-Americans in science, engineering, and related fields. At the core of the SEA is a combined population of over 33,000 African-American students, and a combined Historically Black Colleges and Universities research faculty and staff of nearly 400 individuals that specialize in several major areas of science and engineering. SEA views its approach as a constructive, long-term solution to increasing the nation`s technical manpower talent pool. For the faculty and students, SEA develops new collaborative research opportunities, creates new summer research internships and coop programs, strengthens existing programs, provides students participation in technical conferences, workshops, and seminars, and grants scholarships and incentive awards to future scientists and engineers. SEA relies on the collective talents of its members to build partnerships with the Federal government and private industry that help create opportunities for African-American science and engineering students, and promote activities that advance this mission. As the number of science and engineering students graduating from SEA institutions continues to rise, SEA is pleased to report that the program is making a difference.

  7. Proceedings of the Joint Conference of Australasian College of Physical Scientists and Engineers in Medicine and IEAust College of Biomedical Engineers; Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society

    International Nuclear Information System (INIS)

    1996-01-01

    This is a celebration of the centenary of Rontgen''s discovery of Xrays. It is also the 50th anniversary of the first hospital physicist appointment in New Zealand. The historical element of the programme will complement the emphasis on current applications of the physical and engineering sciences to medicine and an anticipation of future developments. For the first time the Australasian College of Physical Scientists and Engineers in Medicine, together with the IEAust College of Biomedical Engineers, are joined by the Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society to make this a truly international conference. The proceedings include many papers on radiology and radiotherapy

  8. Is nanotechnology the key to unravel and engineer biological processes?

    Science.gov (United States)

    Navarro, Melba; Planell, Josep A

    2012-01-01

    Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.

  9. Engineering the robustness of industrial microbes through synthetic biology.

    Science.gov (United States)

    Zhu, Linjiang; Zhu, Yan; Zhang, Yanping; Li, Yin

    2012-02-01

    Microbial fermentations and bioconversions play a central role in the production of pharmaceuticals, enzymes and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximized carbon flux towards target metabolites regardless of fluctuations in intracellular or extracellular environments. This requires cellular systems that maintain functional stability and dynamic homeostasis in a given physiological state, or manipulate transitions between different physiological states. Stable maintenance or smooth transition can be achieved through engineering of dynamic controllability, modular and hierarchical organization, or functional redundancy, three key features of biological robustness in a cellular system. This review summarizes how synthetic biology can be used to improve the robustness of industrial microbes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms.

    Science.gov (United States)

    Park, Beom Gi; Kim, Minsuk; Kim, Joonwon; Yoo, Heewang; Kim, Byung-Gee

    2017-01-01

    Heterotrophic oleaginous microorganisms continue to draw interest as they can accumulate a large amount of lipids which is a promising feedstock for the production of biofuels and oleochemicals. Nutrient limitation, especially nitrogen limitation, is known to effectively trigger the lipid production in these microorganisms. For the aim of developing improved strains, the mechanisms behind the lipid production have been studied for a long time. Nowadays, system-level understanding of their metabolism and associated metabolic switches is attainable with modern systems biology tools. This work reviews the systems biology studies, based on (i) top-down, large-scale 'omics' tools, and (ii) bottom-up, mathematical modeling methods, on the heterotrophic oleaginous microorganisms with an emphasis on further application to metabolic engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  12. 8th International Conference on Management Science and Engineering Management

    CERN Document Server

    Cruz-Machado, Virgílio; Lev, Benjamin; Nickel, Stefan

    2014-01-01

    This is the Proceedings of the Eighth International Conference on Management Science and Engineering Management (ICMSEM) held from July 25 to 27, 2014 at Universidade Nova de Lisboa, Lisbon, Portugal and organized by International Society of Management Science and Engineering Management (ISMSEM), Sichuan University (Chengdu, China) and Universidade Nova de Lisboa (Lisbon, Portugal). The goals of the conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current findings. A total number of 138 papers from 14 countries are selected for the proceedings by the conference scientific committee through rigorous referee review. The selected papers in the first volume are focused on Intelligent System and Management Science covering areas of Intelligent Systems, Decision Support Systems, Manufacturing and Supply Chain Management.

  13. Exploring the Art and Science of Systems Engineering

    Science.gov (United States)

    Jansma, P. A.

    2012-01-01

    There has been much discussion of late in the NASA systems engineering community about the fact that systems engineering cannot be just about process and technical disciplines. The belief is that there is both an art and science to systems engineering, and that both aspects are necessary for designing and implementing a successful system or mission. How does one go about differentiating between and characterizing these two aspects? Some say that the art of systems engineering is about designing systems that not only function well, but that are also elegant, beautiful and engaging. What does that mean? How can you tell when a system has been designed with that holistic "art" component? This paper attempts to answer these questions by exploring various ways of looking at the Art and Science of Systems Engineering.

  14. New frontiers in biomedical science and engineering during 2014-2015.

    Science.gov (United States)

    Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep

    2015-01-01

    The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.

  15. Annual conference on engineering and the physical sciences in medicine

    International Nuclear Information System (INIS)

    Le Heron, J.

    1999-01-01

    The venue for the 1998 annual conference on Engineering and the Physical Sciences in Medicine was the Wrest Point Casino Convention Centre, Hobart, from 15 to 19 November. Jointly sponsored by the Australasian College of Physical Scientists and Engineers in Medicine, the College of Biomedical Engineers and the Society of Medical and Biomedical Engineering, this meeting is a major forum for professionals working in these areas in Australasia. The theme for the conference was Relevance beyond rationalism - charting a course for the future. This reviewer will consider only those presentations concerned with the use of radiation in medicine. (author)

  16. Classroom Demonstrations in Materials Science/Engineering.

    Science.gov (United States)

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  17. International Conference of Applied Science and Technology for Infrastructure Engineering

    Science.gov (United States)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  18. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  19. Nutritional biology: a neglected basic discipline of nutritional science.

    Science.gov (United States)

    Döring, Frank; Ströhle, Alexander

    2015-11-01

    On the basis of a scientific-philosophical analysis, this paper tries to show that the approaches in current nutritional science-including its subdisciplines which focus on molecular aspects-are predominantly application-oriented. This becomes particularly evident through a number of conceptual problems characterized by the triad of 'dearth of theoretical foundation,' 'particularist research questions,' and 'reductionist understanding of nutrition.' The thesis presented here is that an interpretive framework based on nutritional biology is able to shed constructive light on the fundamental problems of nutritional science. In this context, the establishment of 'nutritional biology' as a basic discipline in research and education would be a first step toward recognizing the phenomenon of 'nutrition' as an oecic process as a special case of an organism-environment interaction. Modern nutritional science should be substantively grounded on ecological-and therefore systems biology as well as organismic-principles. The aim of nutritional biology, then, should be to develop near-universal 'law statements' in nutritional science-a task which presents a major challenge for the current science system.

  20. A model of engineering materials inspired by biological tissues

    Directory of Open Access Journals (Sweden)

    Holeček M.

    2009-12-01

    Full Text Available The perfect ability of living tissues to control and adapt their mechanical properties to varying external conditions may be an inspiration for designing engineering materials. An interesting example is the smooth muscle tissue since this "material" is able to change its global mechanical properties considerably by a subtle mechanism within individual muscle cells. Multi-scale continuum models may be useful in designing essentially simpler engineering materials having similar properties. As an illustration we present the model of an incompressible material whose microscopic structure is formed by flexible, soft but incompressible balls connected mutually by linear springs. This simple model, however, shows a nontrivial nonlinear behavior caused by the incompressibility of balls and is very sensitive on some microscopic parameters. It may elucidate the way by which "small" changes in biopolymer networks within individual muscular cells may control the stiffness of the biological tissue, which outlines a way of designing similar engineering materials. The 'balls and springs' material presents also prestress-induced stiffening and allows elucidating a contribution of extracellular fluids into the tissue’s viscous properties.

  1. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    Directory of Open Access Journals (Sweden)

    Chang Jui-Jen

    2012-07-01

    Full Text Available Abstract Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO, that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei, a beta-glucosidase (from a cow rumen fungus, a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.

  2. POULTRY SCIENCEBIOLOGICAL AND ZOOTECHNICAL PRINCIPLES

    Directory of Open Access Journals (Sweden)

    Gordana Kralik

    2010-06-01

    Full Text Available The academic textbook Poultry Breeding – Biological and Zootechnical Principles presents up-to-date trends and knowledge on selection, breeding, nutrition and production technology in intensive exploitation of different types of poultry, i.e. hens, turkeys, geese and ducks. A special emphasis is put on presentation of poultry meat and egg quality indicators, as well as on modification of their nutritive composition for the purpose of production of functional food. In order to make advantage of the poultry genetic potential, it is necessary to understand anatomy and functioning of the animal organ system. With this respect, this handbook presents the poultry skeleton in detail, as it differs from skeleton of other vertebrates. Furthermore, the following organ systems: respiratory, circulatory and lymphatic, digestive, excretory, reproductive and endocrine, as well as sensory system, are elaborated in the handbook. Along with metabolic processes that all vertebrates have in common, additional attention has been given to specific metabolic adjustments of vertebrates that have the ability to fly, like poultry. This handbook also presents modern technology that is applied in poultry production. Modern poultry production is completely automated process that requires minimum physical engagement of zootechnicians. At the same time, it is also a very complex process that demands professional and scientific knowledge of breeders, as zootechnical conditions need to be adjusted to genetic potential of contemporary poultry breeds and hybrids, as well as to attain high standards of environment protection.

  3. 76 FR 46769 - Applications for New Awards; Minority Science and Engineering Improvement Program

    Science.gov (United States)

    2011-08-03

    ... science, technology, engineering, or mathematics (STEM) fields; or applications that develop articulation... Administration, National Oceanic and Atmospheric Administration, National Science Foundation and National... in science, technology, engineering and mathematics. D. For cooperative projects grants, eligible...

  4. Solar energy sciences and engineering applications

    CERN Document Server

    Enteria, Napoleon

    2013-01-01

    Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.This book will introduce the rapid development and progress in the field of solar energy applications for science and technology: the advanc

  5. Institute for Science and Engineering Simulation (ISES)

    Science.gov (United States)

    2015-12-18

    performance and other functionalities such as electrical , magnetic, optical, thermal, biological, chemical, and so forth. Structural integrity...Fe3Si nanocrystals and the amorphous matrix, on the nucleation and growth kinetics has been addressed. The results demonstrate that while Cu clustering...Si, and B. Therefore, the kinetics of solute partitioning and mobility of the nanocrystal /amorphous matrix interface is substantially slower in

  6. Biologically active and biomimetic dual gelatin scaffolds for tissue engineering.

    Science.gov (United States)

    Sánchez, P; Pedraz, J L; Orive, G

    2017-05-01

    We have designed, developed and optimized Genipin cross-linked 3D gelatin scaffolds that were biologically active and biomimetic, show a dual activity both for growth factor and cell delivery. Type B gelatin powder was dissolved in DI water. 100mg of genipin was dissolved in 10ml of DI water. Three genipin concentrations were prepared: 0.1%, 0.2% and 0.3% (w/v). Solutions were mixed at 40°C and under stirring and then left crosslinking for 72h. Scaffolds were obtained by punching 8 mm-cylinders into ethanol 70% solution for 10min and then freeze-drying. Scaffolds were biologically, biomechanically and morphologically evaluated. Cell adhesion and morphology of D1-Mesenchymal stem cells (MSCs) and L-929 fibroblast was studied. Vascular endothelial grwoth factor (VEGF) and Sonic hedgehog (SHH) were used as model proteins. Swelling ratio increased and younǵs module decreased along with the concentration of genipin. All scaffolds were biocompatible according to the toxicity test. MSC and L-929 cell adhesion improved in 0.2% of genipin, obtaining better results with MSCs. VEGF and SHH were released from the gels. This preliminary study suggest that the biologically active and dual gelatin scaffolds may be used for tissue engineering approaches like bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Bringing the physical sciences into your cell biology research.

    Science.gov (United States)

    Robinson, Douglas N; Iglesias, Pablo A

    2012-11-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences.

  8. Supporting indigenous women in science, technology, engineering ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    These programs, partly funded by Mexico's Consejo Nacional de Ciencia y Tecnologia (CONACYT) (National council of science and technology), have considerably improved the participation of indigenous people in the country's education system. However, there continue to be important challenges in advancement ...

  9. The art of insight in science and engineering mastering complexity

    CERN Document Server

    Mahajan, Sanjoy

    2014-01-01

    In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. To master complexity, we can organize it or discard it. The Art of Insight in Science and Engineering first teaches the tools for organizing complexity, then distinguishes the two paths for discarding complexity: with and without loss of information. Questions and problems throughout the text help readers master and apply these groups of tools. Armed with this three-part toolchest, and without complicated mathematics, readers can estimate the flight ...

  10. Construction informatics - Issues in engineering, computer science and ontology

    DEFF Research Database (Denmark)

    Eir, Asger

    2004-01-01

    . With origin in civil engineering and design issues, the study was directed towards computer science oriented theories in an attempt to introduce such theories in modelling and clarification of the domain. This strategy turned out to be a strength for the study and this thesis. However, it also discovered some...... problems in carrying out such a truly interdisciplinary Ph.D. study. Per Galle s and Dines Bjørner's common background in computer science has been essential for the success of this study. The original title of the Ph.D. project was Design and application of a civil engineering ontology. However, it became....... The issues of the thesis are treated from three angles: from computer science, from civil engineering and design theory, and from philosophy. It is characteristic for the thesis that these angles are all present in analysis and argumentation. The philosophical aspect is a natural ingredient as construction...

  11. Parallel science and engineering applications the charm++ approach

    CERN Document Server

    Kale, Laxmikant V

    2016-01-01

    Developed in the context of science and engineering applications, with each abstraction motivated by and further honed by specific application needs, Charm++ is a production-quality system that runs on almost all parallel computers available. Parallel Science and Engineering Applications: The Charm++ Approach surveys a diverse and scalable collection of science and engineering applications, most of which are used regularly on supercomputers by scientists to further their research. After a brief introduction to Charm++, the book presents several parallel CSE codes written in the Charm++ model, along with their underlying scientific and numerical formulations, explaining their parallelization strategies and parallel performance. These chapters demonstrate the versatility of Charm++ and its utility for a wide variety of applications, including molecular dynamics, cosmology, quantum chemistry, fracture simulations, agent-based simulations, and weather modeling. The book is intended for a wide audience of people i...

  12. Parallel science and engineering applications the Charm++ approach

    CERN Document Server

    Kale, Laxmikant V

    2016-01-01

    Developed in the context of science and engineering applications, with each abstraction motivated by and further honed by specific application needs, Charm++ is a production-quality system that runs on almost all parallel computers available. Parallel Science and Engineering Applications: The Charm++ Approach surveys a diverse and scalable collection of science and engineering applications, most of which are used regularly on supercomputers by scientists to further their research. After a brief introduction to Charm++, the book presents several parallel CSE codes written in the Charm++ model, along with their underlying scientific and numerical formulations, explaining their parallelization strategies and parallel performance. These chapters demonstrate the versatility of Charm++ and its utility for a wide variety of applications, including molecular dynamics, cosmology, quantum chemistry, fracture simulations, agent-based simulations, and weather modeling. The book is intended for a wide audience of people i...

  13. The women in science and engineering scholars program

    Science.gov (United States)

    Falconer, Etta Z.; Guy, Lori Ann

    1989-01-01

    The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.

  14. Experiential Engineering through iGEM--An Undergraduate Summer Competition in Synthetic Biology

    Science.gov (United States)

    Mitchell, Rudolph; Dori, Yehudit Judy; Kuldell, Natalie H.

    2011-01-01

    Unlike students in other engineering disciplines, undergraduates in biological engineering typically have limited opportunity to develop design competencies, and even fewer chances to implement their designed projects. The international Genetically Engineered Machines (iGEM) competition is a student Synthetic Biology competition that, in 2009,…

  15. 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering

    CERN Document Server

    Wang, Shyh-Hau; Yeh, Ming-Long

    2015-01-01

    This volume presents the proceedings of the 9th Asian-Pacific Conference on Medical and Biological Engineering (APCMBE 2014). The proceedings address a broad spectrum of topics from Bioengineering and Biomedicine, like Biomaterials, Artificial Organs, Tissue Engineering, Nanobiotechnology and Nanomedicine, Biomedical Imaging, Bio MEMS, Biosignal Processing, Digital Medicine, BME Education. It helps medical and biological engineering professionals to interact and exchange their ideas and experiences.

  16. Introduction to probability and statistics for science, engineering, and finance

    CERN Document Server

    Rosenkrantz, Walter A

    2008-01-01

    Data Analysis Orientation The Role and Scope of Statistics in Science and Engineering Types of Data: Examples from Engineering, Public Health, and Finance The Frequency Distribution of a Variable Defined on a Population Quantiles of a Distribution Measures of Location (Central Value) and Variability Covariance, Correlation, and Regression: Computing a Stock's Beta Mathematical Details and Derivations Large Data Sets Probability Theory Orientation Sample Space, Events, Axioms of Probability Theory Mathematical Models of Random Sampling Conditional Probability and Baye

  17. Earth Science Research at the Homestake Deep Underground Science and Engineering Laboratory

    Science.gov (United States)

    Roggenthen, W.; Wang, J.

    2004-12-01

    The Homestake Mine in South Dakota ceased gold production in 2002 and was sealed for entry in 2003. The announcement of mine closure triggered the revival of a national initiative to establish a deep underground facility, currently known as the Deep Underground Science and Engineering Laboratory (DUSEL). The National Science Foundation announced that solicitations were to be issued in 2004 and 2005, with the first one (known as S-1) issued in June, 2004. The focus of S-1 is on site non-specific technical requirements to define the scientific program at DUSEL. Earth scientists and physicists participated in an S-1 workshop at Berkeley in August, 2004. This abstract presents the prospects of the Homestake Mine to accommodate the earth science scientific programs defined at the S-1 workshop. The Homestake Mine has hundreds of kilometers of drifts over fifty levels accessible (upon mine reopening) for water evaluation, seepage quantification, seismic monitoring, geophysical imaging, geological mapping, mineral sampling, ecology and geo-microbiology. The extensive network of drifts, ramps, and vertical shafts allows installation of 10-kilometer-scale seismograph and electromagnetic networks. Ramps connecting different levels, typically separated by 150 ft, could be instrumented for flow and transport studies, prior to implementation of coupled thermal-hydro-chemical-mechanical-biological processes testing. Numerous large rooms are available for ecological and introduced-material evaluations. Ideas for installing instruments in cubic kilometers of rock mass can be realized over multiple levels. Environmental assessment, petroleum recovery, carbon sequestration were among the applications discussed in the S-1 workshop. If the Homestake Mine can be expediently reopened, earth scientists are ready to perform important tests with a phased approach. The drifts and ramps directly below the large open pit could be the first area for shallow testing. The 4,850 ft level is the

  18. General and special engineering materials science. Vol. 1

    International Nuclear Information System (INIS)

    Ondracek, G.; Voehringer, O.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes: Volume I treats general engineering materials science in 4 capital chapters on the structure of materials, the properties of materials, materials technology and materials testing and investigation supplemented by a selected detailed chapter about elasticity plasticity and rupture mechanics. Volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including reactor clad and structural materials, nuclear fuels and fuel elements and nuclear waste as a materials viewpoint. Volume III - also concerning special engineering materials science - considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accidents and nuclear materials in core melt accidents. (orig.) [de

  19. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  20. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  1. Science and Engineering Alliance: A new resource for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Lawrence Livermore National Laboratory and four major Historically Black Colleges and Universities with strong research and development capabilities in science, engineering and computer technology have formed the Science and Engineering Alliance. Located in California, Alabama, Mississippi, Louisiana and Texas, each brings to the Alliance a tradition of research and development and educational excellence. This unique consortium is now available to perform research development and training to meet the needs of the public and private sectors. The Alliance was formed to help assure an adequate supply of top-quality minority scientists in the next century, while simultaneously meeting the research and development needs of the public and private sectors.

  2. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  3. Gross's Anatomy: Textual Politics in Science/Biology Education Research

    Science.gov (United States)

    Reis, Giuliano

    2009-01-01

    In approaching how the grotesque is--or should be--situated within contemporary science (biology) education practices, Weinstein and Broda undertake a passionate reclaim of an education that is at the same time scientific, critical, and liberatory. However legitimate, their work offers more than they probably could have anticipated: It exemplifies…

  4. Use of Lecture Capture in Undergraduate Biological Science Education

    Science.gov (United States)

    Wiese, Candace; Newton, Genevieve

    2013-01-01

    This study examined the use of lecture capture in students in a large 3rd year undergraduate biological science course at the University of Guelph. Data regarding viewing behaviour, academic performance, and attendance were analyzed in relation to student learning approach (as assessed by the R-SPQ-2F), gender, and year of post-secondary…

  5. Biotechniques Laboratory: An Enabling Course in the Biological Sciences

    Science.gov (United States)

    Di Trapani, Giovanna; Clarke, Frank

    2012-01-01

    Practical skills and competencies are critical to student engagement and effective learning in laboratory courses. This article describes the design of a yearlong, stand-alone laboratory course--the Biotechniques Laboratory--a common core course in the second year of all our degree programs in the biological sciences. It is an enabling,…

  6. Infusing Quantitative Approaches throughout the Biological Sciences Curriculum

    Science.gov (United States)

    Thompson, Katerina V.; Cooke, Todd J.; Fagan, William F.; Gulick, Denny; Levy, Doron; Nelson, Kären C.; Redish, Edward F.; Smith, Robert F.; Presson, Joelle

    2013-01-01

    A major curriculum redesign effort at the University of Maryland is infusing all levels of our undergraduate biological sciences curriculum with increased emphasis on interdisciplinary connections and quantitative approaches. The curriculum development efforts have largely been guided by recommendations in the National Research Council's "Bio…

  7. Computing handbook computer science and software engineering

    CERN Document Server

    Gonzalez, Teofilo; Tucker, Allen

    2014-01-01

    Overview of Computer Science Structure and Organization of Computing Peter J. DenningComputational Thinking Valerie BarrAlgorithms and Complexity Data Structures Mark WeissBasic Techniques for Design and Analysis of Algorithms Edward ReingoldGraph and Network Algorithms Samir Khuller and Balaji RaghavachariComputational Geometry Marc van KreveldComplexity Theory Eric Allender, Michael Loui, and Kenneth ReganFormal Models and Computability Tao Jiang, Ming Li, and Bala

  8. Learning developmental biology has priority in the life sciences curriculum in Singapore.

    Science.gov (United States)

    Lim, Tit-Meng

    2003-01-01

    Singapore has embraced the life sciences as an important discipline to be emphasized in schools and universities. This is part of the nation's strategic move towards a knowledge-based economy, with the life sciences poised as a new engine for economic growth. In the life sciences, the area of developmental biology is of prime interest, since it is not just intriguing for students to know how a single cell can give rise to a complex, coordinated, functional life that is multicellular and multifaceted, but more importantly, there is much in developmental biology that can have biomedical implications. At different levels in the Singapore educational system, students are exposed to various aspects of developmental biology. The author has given many guest lectures to secondary (ages 12-16) and high school (ages 17-18) students to enthuse them about topics such as embryo cloning and stem cell biology. At the university level, some selected topics in developmental biology are part of a broader course which caters for students not majoring in the life sciences, so that they will learn to comprehend how development takes place and the significance of the knowledge and impacts of the technologies derived in the field. For students majoring in the life sciences, the subject is taught progressively in years two and three, so that students will gain specialist knowledge in developmental biology. As they learn, students are exposed to concepts, principles and mechanisms that underlie development. Different model organisms are studied to demonstrate the rapid advances in this field and to show the interconnectivity of developmental themes among living things. The course inevitably touches on life and death matters, and the social and ethical implications of recent technologies which enable scientists to manipulate life are discussed accordingly, either in class, in a discussion forum, or through essay writing.

  9. Finding the key - cell biology and science education.

    Science.gov (United States)

    Miller, Kenneth R

    2010-12-01

    No international research community, cell biology included, can exist without an educational community to renew and replenish it. Unfortunately, cell biology researchers frequently regard their work as independent of the process of education and see little reason to reach out to science teachers. For cell biology to continue to prosper, I argue that researchers must support education in at least three ways. First, we must view education and research as part of a single scientific community. Second, we should take advantage of new technologies to connect the research laboratory to the classroom. Finally, we must take the initiative in defending the integrity of science teaching, particularly when education is under attack for political or religious reasons. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. A comprehensive program of nuclear engineering and science education

    Energy Technology Data Exchange (ETDEWEB)

    Bereznai, G.; Lewis, B. [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada)

    2014-07-01

    The University of Ontario Institute of Technology offers undergraduate degrees in nuclear engineering, nuclear power, health physics and radiation science, graduate degrees (masters as well as doctorate) in nuclear engineering, and graduate diplomas that encompass a wide range of nuclear engineering and technology topics. Professional development programs tailored to specific utility needs are also offered, and the sharing of course material between the professional development and university education courses has strengthened both approaches to ensuring the high qualification levels required of professionals in the nuclear industry. (author)

  11. A comprehensive program of nuclear engineering and science education

    International Nuclear Information System (INIS)

    Bereznai, G.; Lewis, B.

    2014-01-01

    The University of Ontario Institute of Technology offers undergraduate degrees in nuclear engineering, nuclear power, health physics and radiation science, graduate degrees (masters as well as doctorate) in nuclear engineering, and graduate diplomas that encompass a wide range of nuclear engineering and technology topics. Professional development programs tailored to specific utility needs are also offered, and the sharing of course material between the professional development and university education courses has strengthened both approaches to ensuring the high qualification levels required of professionals in the nuclear industry. (author)

  12. Mortality among petrochemical science and engineering employees

    International Nuclear Information System (INIS)

    Arnetz, B.B; Raymond, L.W.; Nicolich, M.J.; Vargo, L.

    1991-01-01

    This is a study of a dynamic cohort of 13,250 commercial research and development personnel for whom information on occupational and education background and smoking was available. Their age-, sex-, race-, and period-adjusted death rates were compared with New Jersey rates and with an internal comparison population. The study groups had significantly fewer deaths from most major disease categories compared with other New Jersey residents. Among white male scientists and engineers, age-adjusted overall mortality and ischemic heart disease mortality were comparable to white male managers and support staff studied, whereas mortality from leukemia and lymphatic cancer was significantly elevated. Mechanics, however, had a significantly lower leukemia and lymphatic cancer mortality rate than did the comparison group. In a Poisson regression model in which white males and females from the study population were used, and for which the effects of age, smoking, college education category, period of hire, and years employed were controlled, scientists, engineers, and research technicians had elevated (nonsignificantly) mortality rates for leukemia and lymphatic cancer compared with managers and support staff. Smoking was an independent risk factor for leukemia and lymphatic cancer. Further work is needed to asses is specific environmental factors, such as benzene, other aromatics, radiation, medical treatment, and smoking habits, might have contributed to the above findings

  13. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Science.gov (United States)

    Bonham, Kevin S; Stefan, Melanie I

    2017-10-01

    While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  14. Strengthening programs in science, engineering and mathematics. Third annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1997-09-30

    The Division of Natural Sciences and Mathematics at Claflin College consists of the Departments of Biology, Chemistry, Computer Science, Physics, Engineering and Mathematics. It offers a variety of major and minor academic programs designed to meet the mission and objectives of the college. The division`s pursuit to achieve excellence in science education is adversely impacted by the poor academic preparation of entering students and the lack of equipment, facilities and research participation, required to impart adequate academic training and laboratory skills to the students. Funds were received from the US Department of Energy to improve the divisional facilities and laboratory equipment and establish mechanism at pre-college and college levels to increase (1) the pool of high school students who will enroll in Science and Mathematics courses (2) the pool of well qualified college freshmen who will seek careers in Science, Engineering and Mathematics (3) the graduation rate in Science,engineering and Mathematics at the undergraduate level and (4) the pool of well-qualified students who can successfully compete to enter the graduate schools of their choice in the fields of science, engineering, and mathematics. The strategies that were used to achieve the mentioned objectives include: (1) Improved Mentoring and Advisement, (2) Summer Science Camp for 7th and 8th graders, (3) Summer Research Internships for Claflin SEM Seniors, (4) Summer Internships for Rising High School Seniors, (5) Development of Mathematical Skills at Pre-college/Post-secondary Levels, (6) Expansion of Undergraduate Seminars, (7) Exposure of Undergraduates to Guest Speakers/Roll Models, (8) Visitations by Undergraduate Students to Graduate Schools, and (9) Expanded Academic Program in Environmental Chemistry.

  15. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  16. Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation

    Science.gov (United States)

    O'Connell, Grace D.; Leach, J. Kent; Klineberg, Eric O.

    2015-01-01

    Abstract The intervertebral disc is a critical part of the intersegmental soft tissue of the spinal column, providing flexibility and mobility, while absorbing large complex loads. Spinal disease, including disc herniation and degeneration, may be a significant contributor to low back pain. Clinically, disc herniations are treated with both nonoperative and operative methods. Operative treatment for disc herniation includes removal of the herniated material when neural compression occurs. While this strategy may have short-term advantages over nonoperative methods, the remaining disc material is not addressed and surgery for mild degeneration may have limited long-term advantage over nonoperative methods. Furthermore, disc herniation and surgery significantly alter the mechanical function of the disc joint, which may contribute to progression of degeneration in surrounding tissues. We reviewed recent advances in tissue engineering and regenerative medicine strategies that may have a significant impact on disc herniation repair. Our review on tissue engineering strategies focuses on cell-based and inductive methods, each commonly combined with material-based approaches. An ideal clinically relevant biological repair strategy will significantly reduce pain and repair and restore flexibility and motion of the spine. PMID:26634189

  17. Volatile science? Metabolic engineering of terpenoids in plants

    NARCIS (Netherlands)

    Aharoni, A.; Jongsma, M.A.; Bouwmeester, H.J.

    2005-01-01

    Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has

  18. The Science of Solubility: Using Reverse Engineering to Brew a Perfect Cup of Coffee

    Science.gov (United States)

    West, Andrew B.; Sickel, Aaron J.; Cribbs, Jennifer D.

    2015-01-01

    The Next Generation Science Standards call for the integration of science and engineering. Often, the introduction of engineering activities occurs after instruction in the science content. That is, engineering is used as a way for students to elaborate on science ideas that have already been explored. However, using only this sequence of…

  19. Digest of Key Science and Engineering Indicators, 2008. NSB-08-2

    Science.gov (United States)

    National Science Foundation, 2008

    2008-01-01

    This digest of key science and engineering indicators draws primarily from the National Science Board's two-volume "Science and Engineering Indicators, 2008" report. The digest serves two purposes: (1) to draw attention to important trends and data points from across the chapters and volumes of "Science and Engineering Indicators, 2008," and (2)…

  20. A content-oriented model for science exhibit engineering

    DEFF Research Database (Denmark)

    Achiam, Marianne

    2013-01-01

    Recently, science museums have begun to review their educational purposes and redesign their pedagogies. At the most basic level, this entails accounting for the performance of individual exhibits, and indeed, in some cases, research indicates shortcomings in exhibit design: While often successful......: as a means to operationalize the link between exhibit features and visitor activities; and as a template to transform scientists’ practices in the research context into visitors’ activities in the exhibit context. The resulting model of science exhibit engineering is presented and exemplified, and its...... implications for science exhibit design are discussed at three levels: the design product, the design process, and the design methodology....

  1. STEMM: Science, Technology, Engineering, Math...and Multimedia?

    Science.gov (United States)

    Cornelius, Dave

    2011-01-01

    The current buzz surrounding science, technology, engineering and math (STEM) disciplines and their economic importance is certainly justified. Unfortunately, when educators push to improve a specific discipline, it often has negative effects on everything else. While the STEM disciplines are important, focus on them is taking away from other…

  2. Engagement in Science and Engineering through Animal-Based Curricula

    Science.gov (United States)

    Mueller, Megan Kiely; Byrnes, Elizabeth M.; Buczek, Danielle; Linder, Deborah E.; Freeman, Lisa M.; Webster, Cynthia R. L.

    2018-01-01

    One of the persistent challenges in science, technology, engineering, and math (STEM) education is increasing interest, learning, and retention, particularly with regard to girls and students in underserved areas. Educational curricula that promote process and content knowledge development as well as interest and engagement in STEM are critical in…

  3. Women of Color in Science, Technology, Engineering, and Mathematics (STEM)

    Science.gov (United States)

    Johnson, Dawn R.

    2011-01-01

    Scholars have theorized and examined women's underrepresentation in science, technology, engineering and mathematics (STEM) fields for well over thirty years. However, much of this research has paid little attention to issues of racial and ethnic diversity among women, suggesting that all women have the same experiences in STEM. Women of color…

  4. Undergraduate Origins of Recent Science and Engineering Doctorate Recipients.

    Science.gov (United States)

    Hill, Susan T.; And Others

    Because undergraduate education is the foundation for graduate studies, it is important to know where our Nation's science and engineering (S&E) doctorate recipients are receiving their undergraduate training. Specifically, this report addresses the following broad questions: (1) What are the undergraduate origins of S&E doctorate holders? (2)…

  5. Imprinting Community College Computer Science Education with Software Engineering Principles

    Science.gov (United States)

    Hundley, Jacqueline Holliday

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and maintenance. We proposed that some software engineering principles can be incorporated into the introductory-level of the computer science curriculum. Our vision is to give community college students a broader exposure to the software development lifecycle. For those students who plan to transfer to a baccalaureate program subsequent to their community college education, our vision is to prepare them sufficiently to move seamlessly into mainstream computer science and software engineering degrees. For those students who plan to move from the community college to a programming career, our vision is to equip them with the foundational knowledge and skills required by the software industry. To accomplish our goals, we developed curriculum modules for teaching seven of the software engineering knowledge areas within current computer science introductory-level courses. Each module was designed to be self-supported with suggested learning objectives, teaching outline, software tool support, teaching activities, and other material to assist the instructor in using it.

  6. Sustaining Global Pressures: Women in Science and Engineering

    Indian Academy of Sciences (India)

    Women in Science and Engineering. (SGPW 2008). Next Generation. Challenges and Opportunities. January 3 - 5, 2008. Venue. SRI Convention Centre,. Anupuram, Kalpakkam,. Tamil Nadu, India www.iwsakalpakkam.com. Organised by. Indian Women Scientists' Association (IWSA). Kalpakkam Branch. IWSA. IN DA.

  7. A Novel Coupling Pattern in Computational Science and Engineering Software

    Science.gov (United States)

    Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization,existing CSE software may need to integrate other CSE software systems developed by different groups of experts. Thecoupling problem is one of the challenges f...

  8. Imprinting Community College Computer Science Education with Software Engineering Principles

    Science.gov (United States)

    Hundley, Jacqueline Holliday

    2012-01-01

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and…

  9. FEATURES TERMINOLOGY IN MODERN MEDICAL SCIENCE AND ENGINEERING

    Directory of Open Access Journals (Sweden)

    Zlepko S.M.

    2016-02-01

    Full Text Available The article is devoted to the problem of compliance with terms and definitions in medical science and engineering to the actual essence. One of the components of successful development of these trends is adequate linguistic support of the process of development and operation, basic level of determination and terms which indicated certain principles, approaches, processes and so on.

  10. Thermochemical Surface Engineering: A Playground for Science and Innovation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Jellesen, Morten Stendahl

    2017-01-01

    at the surface. Current research and innovation activities are used to exemplify thermochemical surface engineering and the interplay of science and innovation. The examples given encompass aspects of the synthesis of extremely porous materials, low temperature surface hardening of stainless steel, surface...

  11. Management Science/Industrial Engineering Techniques to Reduce Food Costs.

    Science.gov (United States)

    Greenberg, Murray

    This paper examines the contributions of Industrial Engineering and Management Science toward reduction in the cost of production and distribution of food. Food processing firms were requested to respond to a questionnaire which asked for examples of their use of various operations research tools and information on the number of operations…

  12. Nano-Science-Engineering-Technology Applications to Food and Nutrition.

    Science.gov (United States)

    Nakajima, Mitsutoshi; Wang, Zheng; Chaudhry, Qasim; Park, Hyun Jin; Juneja, Lekh R

    2015-01-01

    Nanoscale Science, Engineering and Technology are applied to Food and Nutrition. Various delivery systems include nanoemulsions, microemulsions, solid lipid nanoparticles, micelles, and liposomes. The nanoscale systems have advantages, such as higher bioavailabitity, and other physicochemical properties. The symposium will provide an overview of the formulation, characterization, and utilization of nanotechnology-based food and nutrition.

  13. Retaining Students in Science, Technology, Engineering, and Mathematics (STEM) Majors

    Science.gov (United States)

    Watkins, Jessica; Mazur, Eric

    2013-01-01

    In this paper we present results relating undergraduate student retention in science, technology, engineering, and mathematics (STEM) majors to the use of Peer Instruction (PI) in an introductory physics course at a highly selective research institution. We compare the percentages of students who switch out of a STEM major after taking a physics…

  14. Stationary Engineering, Environmental Control, Refrigeration. Science Manual I.

    Science.gov (United States)

    Steingress, Frederick M.; And Others

    The student materials present lessons about occupations related to environmental control, stationary engineering, and refrigeration. Included are 18 units organized by objective, information, reference, procedure, and assignment. Each lesson involves concrete trade experience where science is applied. Unit titles are: safety and housekeeping,…

  15. Science Educators Teaching Engineering Design: An Examination across Science Professional Development Sites

    Science.gov (United States)

    Grubbs, Michael E.; Love, Tyler S.; Long, David E.; Kittrell, Danielle

    2016-01-01

    Although the currently employed STEM (science, technology, engineering, and mathematics) acronym is of recent origin, dating to the early 2000s (Chute, 2009), the United States has long emphasized the importance of teaching STEM in its public schools. Early efforts, such as "Science, the Endless Frontier" (Bush, 1945) and the…

  16. The Association between Science Summer Camps and Career Interest in Science and Engineering

    Science.gov (United States)

    Kong, Xiaoqing; Dabney, Katherine P.; Tai, Robert H.

    2014-01-01

    This study addresses the association between middle-school students' reported participation in science summer programmes and their reported expectation of a career in science and engineering. Data were collected on 1,580 students from eight middle schools in five states, applying an accelerated longitudinal design. Two consecutive cohorts were…

  17. General and special engineering materials science. Vol. 3

    International Nuclear Information System (INIS)

    Ondracek, G.; Hofmann, P.

    1983-04-01

    The report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume III concerns special engineering materials science and considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accident and nuclear materials in core melt accidents. (orig./IHOE) [de

  18. General and special engineering materials science. Vol. 2

    International Nuclear Information System (INIS)

    Anderko, K.; Kummerer, K.R.; Ondracek, G.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including 1. reactor clad and structural materials, 2. nuclear fuels and fuel elements, 3. nuclear waste as a materials viewpoint. (orig./IHOE) [de

  19. 77 FR 56681 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2012-09-13

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National Science and Technology Council; Public Engagement Through Nano.gov Webinar AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION...

  20. The genesis of craniofacial biology as a health science discipline.

    Science.gov (United States)

    Sperber, G H; Sperber, S M

    2014-06-01

    The craniofacial complex encapsulates the brain and contains the organs for key functions of the body, including sight, hearing and balance, smell, taste, respiration and mastication. All these systems are intimately integrated within the head. The combination of these diverse systems into a new field was dictated by the dental profession's desire for a research branch of basic science devoted and attuned to its specific needs. The traditional subjects of genetics, embryology, anatomy, physiology, biochemistry, dental materials, odontology, molecular biology and palaeoanthropology pertaining to dentistry have been drawn together by many newly emerging technologies. These new technologies include gene sequencing, CAT scanning, MRI imaging, laser scanning, image analysis, ultrasonography, spectroscopy and visualosonics. A vibrant unitary discipline of investigation, craniofacial biology, has emerged that builds on the original concept of 'oral biology' that began in the 1960s. This paper reviews some of the developments that have led to the genesis of craniofacial biology as a fully-fledged health science discipline of significance in the advancement of clinical dental practice. Some of the key figures and milestones in craniofacial biology are identified. © 2014 Australian Dental Association.

  1. Global Conference on Applied Computing in Science and Engineering

    CERN Document Server

    2016-01-01

    The Global Conference on Applied Computing in Science and Engineering is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Computing in Science and Engineering. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar...

  2. Engineering success: Persistence factors of African American doctoral recipients in engineering and applied science

    Science.gov (United States)

    Simon, Tiffany Monique

    The purpose of this qualitative study was to identify factors that influence African Americans to pursue and complete doctoral degrees in engineering and applied science disciplines. Critical race theory (CRT), two models of doctoral student persistence, and graduate student persistence literature guided the conceptual framework of this study. In-depth and focus group interviews were conducted to learn the key factors that positively impacted the persistence of 19 African Americans who earned doctoral degrees in engineering and applied science. The following two factors were found to significantly contribute to the decision to pursue the doctorate: encouragement from others and participation in a research or internship program. Key factors impacting doctoral degree completion included: peer support, faculty adviser support, support from university administrators, and family support. In addition to identifying factors that influenced 19 African Americans to pursue and complete doctoral degrees in engineering and applied science, this study was about the importance of diversity and inclusion of multiple perspectives in education research and scholarship. To this end, the study served to promote and include the expert knowledge of African American doctoral degree recipients in engineering and applied science in the scholarly discourse on the issue of low participation rates of African Americans in engineering and applied science disciplines. Such knowledge will challenge traditional views on this issue and hopefully inspire new ways of addressing and remedying this issue. With African Americans and other minority populations growing at an exponential rate, people of color are quickly becoming the majority in key states across the nation. Therefore, it is imperative that all Americans have an opportunity to develop skills necessary to compete for professional positions in the science and engineering workforce. This mandate is required for the United States to maintain

  3. Differences in short-term memory span of social sciences, science and engineering, and business majors

    Science.gov (United States)

    Khan, Naeem Ullah

    This study investigated the difference in the short-term memory span of students of three major groups, namely Social Sciences, Science and Engineering, and Business. This study was designed to answer the following two questions: (1) Is there a difference between short-term memory span, measured by digit span, among the students in or intended for Social Sciences, Science and Engineering, and Business majors? (2) Is there a difference of short-term memory span, measured by word span, among students in or intended for Social Sciences, Science and Engineering, and Business majors? For answering these two questions, inferential and descriptive statistics were used. Analysis of Variance (ANOVA) was used to compare the means of the scores of digit span and word span among the three major groups. The means of digit span and word span among the three groups were compared to find out if a statistically significant difference existed among them or not. The observations were recorded at the level of significance at alpha = .05, and highly significant at alpha = .01. The answer to the first question is yes. The results of this study showed a statistically significant difference in the means of the digit span of the three major groups of students in or intended for Social Sciences, Science and Engineering, and Business. The mean scaled score for digit span was 12.88 for Social Sciences, 14.27 for Science and Engineering, and 15.33 for Business majors, respectively. The means of the free recalls word span of the three groups was 7.23 for Social Sciences, 7.89 for Science and Engineering, and 7.12 for Business majors, respectively. No significant difference was observed in the means of the word span of the three groups. In general observations, it is noted that students want to stay in the subjects or majors in which they can perform well or feel comfortable. In addition to this, students are screened in the school system due to levels of performance or selection pressure

  4. Computer simulation in nuclear science and engineering

    International Nuclear Information System (INIS)

    Akiyama, Mamoru; Miya, Kenzo; Iwata, Shuichi; Yagawa, Genki; Kondo, Shusuke; Hoshino, Tsutomu; Shimizu, Akinao; Takahashi, Hiroshi; Nakagawa, Masatoshi.

    1992-01-01

    The numerical simulation technology used for the design of nuclear reactors includes the scientific fields of wide range, and is the cultivated technology which grew in the steady efforts to high calculation accuracy through safety examination, reliability verification test, the assessment of operation results and so on. Taking the opportunity of putting numerical simulation to practical use in wide fields, the numerical simulation of five basic equations which describe the natural world and the progress of its related technologies are reviewed. It is expected that numerical simulation technology contributes to not only the means of design study but also the progress of science and technology such as the construction of new innovative concept, the exploration of new mechanisms and substances, of which the models do not exist in the natural world. The development of atomic energy and the progress of computers, Boltzmann's transport equation and its periphery, Navier-Stokes' equation and its periphery, Maxwell's electromagnetic field equation and its periphery, Schroedinger wave equation and its periphery, computational solid mechanics and its periphery, and probabilistic risk assessment and its periphery are described. (K.I.)

  5. Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary Build-a-Genome course.

    Science.gov (United States)

    Dymond, Jessica S; Scheifele, Lisa Z; Richardson, Sarah; Lee, Pablo; Chandrasegaran, Srinivasan; Bader, Joel S; Boeke, Jef D

    2009-01-01

    A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into approximately 750-bp fragments. Once trained in assembly of such DNA "building blocks" by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular "lab meeting" sessions help prepare them for future roles in laboratory science.

  6. Prospects and progress in the production of valuable carotenoids: Insights from metabolic engineering, synthetic biology, and computational approaches.

    Science.gov (United States)

    Sankari, Mohan; Rao, Priya Rajendra; Hemachandran, Hridya; Pullela, Phani Kumar; Doss C, George Priya; Tayubi, Iftikhar Aslam; Subramanian, Babu; Gothandam, K M; Singh, Pooja; Ramamoorthy, Siva

    2018-01-20

    Carotenoids are isoprenoid pigments synthesized exclusively by plants and microorganisms and play critical roles in light harvesting, photoprotection, attracting pollinators and phytohormone production. In recent years, carotenoids have been used for their health benefits due to their high antioxidant activity and are extensively utilized in food, pharmaceutical, and nutraceutical industries. Regulation of carotenoid biosynthesis occurs throughout the life cycle of plants, with vibrant changes in composition based on developmental needs and responses to external environmental stimuli. With advancements in metabolic engineering techniques, there has been tremendous progress in the production of industrially valuable secondary metabolites such as carotenoids. Application of metabolic engineering and synthetic biology has become essential for the successful and improved production of carotenoids. Synthetic biology is an emerging discipline; metabolic engineering approaches may provide insights into novel ideas for biosynthetic pathways. In this review, we discuss the current knowledge on carotenoid biosynthetic pathways and genetic engineering of carotenoids to improve their nutritional value. In addition, we investigated synthetic biological approaches for the production of carotenoids. Theoretical biology approaches that may aid in understanding the biological sciences are discussed in this review. A combination of theoretical knowledge and experimental strategies may improve the production of industrially relevant secondary metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  8. Introduction to nonparametric statistics for the biological sciences using R

    CERN Document Server

    MacFarland, Thomas W

    2016-01-01

    This book contains a rich set of tools for nonparametric analyses, and the purpose of this supplemental text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses a...

  9. 76 FR 61118 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2011-10-03

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and... Computer and Information Science and Engineering (1115). Date and Time: November 1, 2011 from 12 p.m.-5:30... Computer and Information Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite...

  10. Augmenting Primary and Secondary Education with Polymer Science and Engineering

    Science.gov (United States)

    Cersonsky, Rose K.; Foster, Leanna L.; Ahn, Taeyong; Hall, Ryan J.; van der Laan, Harry L.; Scott, Timothy F.

    2017-01-01

    Despite the prevalence of polymers in modern everyday life, there is little introduction to the topic in science education throughout primary or secondary schooling in the United States. Of the few states that do include polymer education, this is only found at the high school level, primarily in biology or chemistry. Over the past year, we have…

  11. Scanning probe microscopy in material science and biology

    International Nuclear Information System (INIS)

    Cricenti, A; Colonna, S; Girasole, M; Gori, P; Ronci, F; Longo, G; Dinarelli, S; Luce, M; Rinaldi, M; Ortenzi, M

    2011-01-01

    A review of the activity of scanning probe microscopy at our Institute is presented, going from instrumentation to software development of scanning tunnelling microscopy, atomic force microscopy and scanning near-field optical microscopy (SNOM). Some of the most important experiments in material science and biology performed by our group through the years with these SPM techniques will be presented. Finally, infrared applications by coupling a SNOM with a free electron laser will also be presented.

  12. BioCarian: search engine for exploratory searches in heterogeneous biological databases.

    Science.gov (United States)

    Zaki, Nazar; Tennakoon, Chandana

    2017-10-02

    There are a large number of biological databases publicly available for scientists in the web. Also, there are many private databases generated in the course of research projects. These databases are in a wide variety of formats. Web standards have evolved in the recent times and semantic web technologies are now available to interconnect diverse and heterogeneous sources of data. Therefore, integration and querying of biological databases can be facilitated by techniques used in semantic web. Heterogeneous databases can be converted into Resource Description Format (RDF) and queried using SPARQL language. Searching for exact queries in these databases is trivial. However, exploratory searches need customized solutions, especially when multiple databases are involved. This process is cumbersome and time consuming for those without a sufficient background in computer science. In this context, a search engine facilitating exploratory searches of databases would be of great help to the scientific community. We present BioCarian, an efficient and user-friendly search engine for performing exploratory searches on biological databases. The search engine is an interface for SPARQL queries over RDF databases. We note that many of the databases can be converted to tabular form. We first convert the tabular databases to RDF. The search engine provides a graphical interface based on facets to explore the converted databases. The facet interface is more advanced than conventional facets. It allows complex queries to be constructed, and have additional features like ranking of facet values based on several criteria, visually indicating the relevance of a facet value and presenting the most important facet values when a large number of choices are available. For the advanced users, SPARQL queries can be run directly on the databases. Using this feature, users will be able to incorporate federated searches of SPARQL endpoints. We used the search engine to do an exploratory search

  13. Integration of Social Sciences and Humanities into Mechanical Engineering Curriculum

    Directory of Open Access Journals (Sweden)

    Nikša Dubreta

    2014-04-01

    Full Text Available Article deals with ways in which social sciences and humanities have been integrated from the 1980s to the present day into curriculum of Faculty of Mechanical Engineering and Naval Architecture at University of Zagreb, Croatia. After a brief review and summary of selected research and theoretical contributions to the subject theme, a specific research setting is indicated and contextualized. Elements of socio-historical approach are established primarily through analysis of corresponding documents: curriculums from the 1980s, 1990s and 2000s and from key documents on strategic development of the Faculty. It is stressed that social sciences and humanities topics are continually represented in mechanical engineering study program as legitimate, but separate unit, poorly integrated in the main engineering courses. Together with more or less expressed orientation toward micro-social and micro-economical issues in industry and business, it points to the main features in continuity of establishing the field of social sciences and humanities. Finally, it is shown that chances to widen and enrich aforementioned field are in close relation to the character of engineering and its social contextualization expressed in a key Faculty’s strategic documents.

  14. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  15. A Science, Engineering and Technology (SET) Approach Improves Science Process Skills in 4-H Animal Science Participants

    Science.gov (United States)

    Clarke, Katie C.

    2010-01-01

    A new Science, Engineering and Technology (SET) approach was designed for youth who participated in the Minnesota State Fair Livestock interview process. The project and evaluation were designed to determine if the new SET approach increased content knowledge and science process skills in participants. Results revealed that youth participants not…

  16. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  17. Reconstruction of nuclear science and engineering harmonized with human society

    International Nuclear Information System (INIS)

    2003-03-01

    At the beginning of the 21th century, the use of nuclear power has assumed very serious dimensions, because there are many problems not only safety technologies but also action of technical expert. The situation and problems of nuclear power are explained. It consists of six chapter as followings; introduction, history and R and D of nuclear power, paradigm change of nuclear science and engineering, energy science, investigation of micro world, how to research and development and education and training of special talent. The improvement plans and five proposals are stated as followings; 1) a scholar and engineer related to nuclear power have to understand ethics and build up closer connection with person in the various fields. 2) Nuclear power generation and nuclear fuel cycle are important in future, so that they have to be accepted by the society by means of opening to the public. Safety science, anti-pollution measurements, treatment and disposal of radioactive waste and development of new reactor and fusion reactor should be carried out. 3) It is necessary that the original researches of quantum beam and isotope have to step up. 4) The education of nuclear science and technology and upbringing special talent has to be reconstructed. New educational system such as 'nuclear engineering course crossing with many universities' is established. 5) Cooperation among industry, academic world and government. (S.Y.)

  18. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  19. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    Science.gov (United States)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are

  20. Environmental Science and Engineering Merit Badges: An Exploratory Case Study of a Non-Formal Science Education Program and the U.S. Scientific and Engineering Practices

    Science.gov (United States)

    Vick, Matthew E.; Garvey, Michael P.

    2016-01-01

    The Boy Scouts of America's Environmental Science and Engineering merit badges are two of their over 120 merit badges offered as a part of a non-formal educational program to U.S. boys. The Scientific and Engineering Practices of the U.S. Next Generation Science Standards provide a vision of science education that includes integrating eight…

  1. Women in science & engineering scholarships and summer camp outreach programs : year 6.

    Science.gov (United States)

    2012-08-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  2. LDRD Final Report: Global Optimization for Engineering Science Problems

    Energy Technology Data Exchange (ETDEWEB)

    HART,WILLIAM E.

    1999-12-01

    For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.

  3. Style and Ethics of Communication in Science and Engineering

    CERN Document Server

    Humphrey, Jay D

    2008-01-01

    Scientists and engineers seek to discover and disseminate knowledge so that it can be used to improve the human condition. Style and Ethics of Communication in Science and Engineering serves as a valuable aid in this pursuit-it can be used as a textbook for undergraduate or graduate courses on technical communication and ethics, a reference book for senior design courses, or a handbook for young investigators and beginning faculty members. In addition to presenting methods for writing clearly and concisely and improving oral presentations, this compact book provides practical guidelines for pr

  4. Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences.

    Science.gov (United States)

    Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R

    2013-06-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.

  5. Biomaterials — where biology, physics, chemistry, engineering and medicine meet

    Science.gov (United States)

    Hing, K. A.

    2008-03-01

    The success or failure of an implant material in the body depends on a complex interaction between a synthetic 'foreign body' and the 'host tissue'. These interactions occur at many levels from the sub-microscopic level, where subtle changes in the surface physio-chemistry can substantially alter the nature of the biomaterial-host tissue interface, through the microscopical level (e.g. sensitivity to surface topography) to the macrostructural level (e.g. dependence on scaffold porosity). Thus the factors that control these responses are not only biologically determined but also mechanically, physically and chemically mediated, although identifying where one starts and the other finishes can be difficult. Design of a successful medical device has therefore to call on expertise within a wide range of disciplines. In terms of both investigating the basic science behind the factors which orchestrate a biological response and developing research tools that enable study of these responses. However, a medical device must also meet the economic and practical demands of health care professionals who will ultimately be using it in the clinic. Bone graft substitute materials are used in orthopaedics as an alternative or adjunct to autografting, a practice where the patient 'donates' bone from a healthy site to aid bone repair at a damaged or diseased site. These materials are used in a wide range of procedures from total hip revision to spinal fusion and their evolution over the last 10 years illustrates how an interdisciplinary approach has benefited their development and may lead to further innovation in the future.

  6. The rise of nanotoxicology: A successful collaboration between engineering and biology

    Directory of Open Access Journals (Sweden)

    Kristen K. Comfort

    2016-07-01

    Full Text Available The field of nanotechnology has grown exponentially in the last decade, due to increasing capabilities in material science which allows for the precise and reproducible synthesis of nanomaterials (NMs. However, the unique physicochemical properties of NMs that make them attractive for nanotechnological applications also introduce serious health and safety concerns; thus giving rise to the field of nanotoxicology. Initial efforts focused on evaluating the toxic potential of NMs, however, it became clear that due to their distinctive characteristics it was necessary to design and develop new assessment metrics. Through a prolific collaboration, engineering practices and principles were applied to nanotoxicology in order to accurately evaluate NM behavior, characterize the nano-cellular interface, and measure biological responses within a cellular environment. This review discusses three major areas in which the field of nanotoxicology progressed as a result of a strong engineering-biology partnership: 1 the establishment of standardized characterization tools and techniques, 2 the examination of NM dosimetry and the development of mathematical, predictive models, and 3 the generation of physiologically relevant exposure systems that incorporate fluid dynamics and high-throughput mechanisms. The goal of this review is to highlight the multidisciplinary efforts behind the successes of nanotoxicology and celebrate the partnerships that have emerged from this research field.

  7. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    Science.gov (United States)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  8. Generalized Linear Models with Applications in Engineering and the Sciences

    CERN Document Server

    Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J

    2012-01-01

    Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma

  9. Curriculum optimization of College of Optical Science and Engineering

    Science.gov (United States)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  10. Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, United States of America

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in the ATLAS assembly hall with from left to right Randi Ruchti, Peter Jenni and Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA. Photo 02: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in the ATLAS assembly hall with from left to right Randi Ruchti, Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA and Peter Jenni. Photo 03: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in front of the ATLAS End-Cap Toroid vacuum vessel in the ATLAS assembly hall with from left to right Peter Jenni, Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA and Randi Ruchti ________________________________

  11. Advances in Computer Science and Information Engineering Volume 2

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  12. Advances in Computer Science and Information Engineering Volume 1

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  13. Writing for science and engineering papers, presentations and reports

    CERN Document Server

    Silyn-Roberts, Heather

    2013-01-01

    Learning how to write clearly and concisely is an integral part of furthering your research career; however, doing so is not always easy. In this second edition, fully updated and revised, Dr. Silyn-Roberts explains in plain English the steps to writing abstracts, theses, journal papers, funding bids, literature reviews, and more. The book also examines preparing seminar and conference presentations. Written in a practical and easy to follow style specifically for postgraduate students in Engineering and Sciences, this book is essential in learning how to create powerful documents. Writing for Science and Engineering will prove invaluable in all areas of research and writing due its clear, concise style. The practical advice contained within the pages alongside numerous examples to aid learning will make the preparation of documentation much easier for all students.

  14. Biomimetics: forecasting the future of science, engineering, and medicine

    Science.gov (United States)

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. PMID:26388692

  15. Education and training in nuclear science/engineering in Taiwan

    International Nuclear Information System (INIS)

    Chung, C.

    1994-01-01

    The present status of nuclear education and training in Taiwan is reviewed. The nuclear science/engineering program has been established in Taiwan under the College of Nuclear Science at the National Tsing Hua University since 1956; it remains the only program among 123 universities and colleges in Taiwan where education and training in nuclear fields are offered. The program, with 52 faculty members, offers advanced studies leading to BSc, MSc, and PhD degrees. Lectures and lab classes are given to 600 students currently registered in the program. Career placement program geared for the 200 graduate and 400 undergraduate students is to orientate them into the local nuclear power utilities as well as agricultural, medical, industrial, academic and governmental sectors where nuclear scientists and engineers at all levels are needed. 8 refs., 1 fig

  16. Biomimetics: forecasting the future of science, engineering, and medicine.

    Science.gov (United States)

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark's skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations.

  17. High Performance Computing in Science and Engineering '14

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2015-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and   engineers. The book comes with a wealth of color illustrations and tables of results.  

  18. 78 FR 32475 - Committee on Equal Opportunities in Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2013-05-30

    ... Broader Impacts NCSES Report, Women, Minorities and Persons with Disabilities in Science and Engineering... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering; Notice of... Engineering (CEOSE) Advisory Committee Meeting, 1173. Dates/Time: June 19, 2013, 9:00 a.m.-5:30 p.m. June 20...

  19. Broad Collaboration to Improve Biological Sciences Students' Writing and Research Skills

    Science.gov (United States)

    Brancato, Lisa; Chan, Tina; Contento, Anthony

    2016-01-01

    At the State University of New York at Oswego (SUNY Oswego), a faculty member and advisement coordinator, both of the biological sciences department, and the biological sciences librarian have worked together since 2013 to present a workshop called Writing for the Biological Sciences. Offered once per semester, the workshop is sponsored by the…

  20. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Science.gov (United States)

    2010-07-01

    ... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering...

  1. Annual Science and Engineering Technology Conference Presentations (8th)

    Science.gov (United States)

    2007-04-19

    Engine of Transformation Coalition Partners Adaptation to Globalisation - A Perspective - Dr A.C. (Tony) Lindsay Counsellor, Defence Science Embassy of...Australia April 19th 2007 A DIFFERENT PERSPECTIVE… A LOCAL PERSPECTIVE… GLOBALISATION OF TECHNOLOGY… From: Task Force on the Future of American...Ethical challenges • Inequality UK’s DCDC STRATEGIC TRENDS 2007-2036 (3) Defence Implications: • Information warfare; • Encryption – reduction in

  2. Applications of Green's functions in science and engineering

    CERN Document Server

    Greenberg, Michael D

    2015-01-01

    Concise and highly regarded, this treatment of Green's functions and their applications in science and engineering is geared toward undergraduate and graduate students with only a moderate background in ordinary differential equations and partial differential equations. The text also includes a wealth of information of a more general nature on boundary value problems, generalized functions, eigenfunction expansions, partial differential equations, and acoustics. The two-part treatment begins with an overview of applications to ordinary differential equations. Topics include the adjoint operato

  3. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  4. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  5. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-06-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  6. A Comparative Analysis of South African Life Sciences and Biology Textbooks for Inclusion of the Nature of Science

    Science.gov (United States)

    Ramnarain, Umesh; Padayachee, Keshni

    2015-01-01

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology textbooks that were written…

  7. Physical sciences and engineering advances in life sciences and oncology a WTEC global assessment

    CERN Document Server

    Fletcher, Daniel; Gerecht, Sharon; Levine, Ross; Mallick, Parag; McCarty, Owen; Munn, Lance; Reinhart-King, Cynthia

    2016-01-01

    This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).

  8. 75 FR 10507 - Advisory Committee for Biological Sciences; Notice of Meeting

    Science.gov (United States)

    2010-03-08

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Biological Sciences; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended), the National Science Foundation announces the following meeting: Name: Advisory Committee for Biological Sciences (1110). Date/Time: March...

  9. 77 FR 21812 - Biological Science Advisory Committee; Notice of Meeting: Correction

    Science.gov (United States)

    2012-04-11

    ... NATIONAL SCIENCE FOUNDATION Biological Science Advisory Committee; Notice of Meeting: Correction Summary: The National Science Foundation (NSF) published in the Federal Register on April 2, 2012, a notice of an open meeting for the Biological Sciences Advisory Committee, 1110. This notice is to correct...

  10. 76 FR 12996 - Advisory Committee for Biological Sciences; Notice of Meeting

    Science.gov (United States)

    2011-03-09

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Biological Sciences; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L., 92- 463, as amended), the National Science Foundation announces the following meeting: Name: Biological Sciences Advisory Committee ( 1110). Date and...

  11. 75 FR 55617 - Advisory Committee for Biological Sciences; Notice of Meeting

    Science.gov (United States)

    2010-09-13

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Biological Sciences; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as amended), the National Science Foundation announces the following meeting: Name: Advisory Committee for Biological Sciences ( 1110). Date...

  12. B. F. Skinner and G. H. Mead: on biological science and social science.

    Science.gov (United States)

    Blackman, D E

    1991-01-01

    Skinner's contributions to psychology provide a unique bridge between psychology conceptualized as a biological science and psychology conceptualized as a social science. Skinner focused on behavior as a naturally occurring biological phenomenon of interest in its own right, functionally related to surrounding events and, in particular (like phylogenesis), subject to selection by its consequences. This essentially biological orientation was further enhanced by Skinner's emphasis on the empirical foundations provided by laboratory-based experimental analyses of behavior, often with nonhuman subjects. Skinner's theoretical writings, however, also have affinity with the traditions of constructionist social science. The verbal behavior of humans is said to be subject, like other behavior, to functional analyses in terms of its environment, in this case its social context. Verbal behavior in turn makes it possible for us to relate to private events, a process that ultimately allows for the development of consciousness, which is thus said to be a social product. Such ideas make contact with aspects of G. H. Mead's social behaviorism and, perhaps of more contemporary impact in psychology, L. Vygotsky's general genetic law of cultural development. Failure to articulate both the biological and the social science aspects of Skinner's theoretical approach to psychology does a disservice to his unique contribution to a discipline that remains fragmented between two intellectual traditions. PMID:2037828

  13. Science for Survival: The Modern Synthesis of Evolution and the Biological Sciences Curriculum Study

    Science.gov (United States)

    Green, Lisa Anne

    2012-01-01

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called…

  14. Holography demonstrations and workshops for science and engineering outreach

    Science.gov (United States)

    Thomas, Weston; Kruse, Kevin; Middlebrook, Christopher

    2012-10-01

    The SPIE/OSA Student Chapter at Michigan Technological University have developed demonstrations and workshops for science and engineering outreach. The practical approach to holography promotes the study of photonic related sciences in high school and college-aged students. An introduction to laser safety, optical laboratory practices, and basic laser coherence theory is given in order to first introduce the participants to the science behind the holograms. The students are then able to create a hologram of an item of their choice, personalizing the experience. By engaging directly, the students are able to see how the theory is applied and also enforces a higher level of attention from them so no mistakes are made in their hologram. Throughout the course participants gain an appreciation for photonics by learning how holograms operate and are constructed through hands on creation of their own holograms. This paper reviews the procedures and methods used in the demonstrations and workshop while examining the overall student experience.

  15. Communicating science a practical guide for engineers and physical scientists

    CERN Document Server

    Boxman, Raymond

    2017-01-01

    Read this book before you write your thesis or journal paper! Communicating Science is a textbook and reference on scientific writing oriented primarily at researchers in the physical sciences and engineering. It is written from the perspective of an experienced researcher. It draws on the authors' experience of teaching and working with both native English speakers and English as a Second Language (ESL) writers. For the range of topics covered, this book is relatively short and tersely written, in order to appeal to busy researchers.Communicating Science offers comprehensive guidance on: Graduate students and early career researchers will be guided through the researcher's basic communication tasks: writing theses, journal papers, and internal reports, presenting lectures and posters, and preparing research proposals. Extensive best practice examples and analyses of common problems are presented. Advanced researchers who aim to commercialize their research results will be introduced to business plans and pat...

  16. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    Science.gov (United States)

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Multicultural science education in Lesotho high school biology classrooms

    Science.gov (United States)

    Nthathakane, Malefu Christina

    2001-12-01

    This study investigated how Basotho high school biology students responded to a multicultural science education (MCSE) approach. Students' home language---Sesotho---and cultural experiences were integrated into the teaching of a unit on alcohol, tobacco and other drugs (ATOD) abuse. The focus was on students whose cultural background is African and who are English second language users. The study was conducted in three high school biology classrooms in Lesotho where the ATOD unit was taught using MCSE. A fourth biology classroom was observed for comparison purposes. In this classroom the regular biology teacher taught ATOD using typical instructional strategies. The study was framed by the general question: How does a multicultural science education approach affect Basotho high school biology students? More specifically: How does the use of Sesotho (or code-switching between Sesotho and English) and integration of Basotho students' cultural knowledge and experiences with respect to ATOD affect students' learning? In particular how does the approach affect students' participation and academic performance? A qualitative research method was used in this study. Data were drawn from a number of different sources and analyzed inductively. The data sources included field-notes, transcripts of ATOD lessons, research assistant lesson observation notes and interviews, regular biology teachers' interviews and notes from observing a few of their lessons, students' interviews and pre and posttest scripts, and other school documents that recorded students' performance throughout the year. Using the students' home language---Sesotho---was beneficial in that it enabled them to share ideas, communicate better and understand each other, the teacher and the material that was taught. Integrating students' cultural and everyday experiences was beneficial because it enabled students to anchor the new ATOD ideas in what was familiar and helped them find the relevance of the unit by

  18. An Examination of Science High School Students' Motivation towards Learning Biology and Their Attitude towards Biology Lessons

    Science.gov (United States)

    Kisoglu, Mustafa

    2018-01-01

    The purpose of this study is to examine motivation of science high school students towards learning biology and their attitude towards biology lessons. The sample of the study consists of 564 high school students (308 females, 256 males) studying at two science high schools in Aksaray, Turkey. In the study, the relational scanning method, which is…

  19. 78 FR 24241 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2013-04-24

    ... TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National Science and Technology Council; Notice of Public Meeting AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION: Notice of Public Meeting. SUMMARY: The National...

  20. Retention and promotion of women and underrepresented minority faculty in science and engineering at four large land grant institutions.

    Science.gov (United States)

    Gumpertz, Marcia; Durodoye, Raifu; Griffith, Emily; Wilson, Alyson

    2017-01-01

    In the most recent cohort, 2002-2015, the experiences of men and women differed substantially among STEM disciplines. Female assistant professors were more likely than men to leave the institution and to leave without tenure in engineering, but not in the agricultural, biological and biomedical sciences and natural resources or physical and mathematical sciences. In contrast, the median times to promotion from associate to full professor were similar for women and men in engineering and the physical and mathematical sciences, but one to two years longer for women than men in the agricultural, biological and biomedical sciences and natural resources. URM faculty hiring is increasing, but is well below the proportions earning doctoral degrees in STEM disciplines. The results are variable and because of the small numbers of URM faculty, the precision and power for comparing URM faculty to other faculty were low. In three of the four institutions, lower fractions of URM faculty than other faculty hired in the 2002-2006 time frame left without tenure. Also, in the biological and biomedical and physical and mathematical sciences no URM faculty left without tenure. On the other hand, at two of the institutions, significantly more URM faculty left before their tenth anniversary than other faculty and in engineering significantly more URM faculty than other faculty left before their tenth anniversary. We did not find significant differences in promotion patterns between URM and other faculty.

  1. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  2. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  3. A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering

    CERN Document Server

    Banks, HT

    2012-01-01

    A Modern Framework Based on Time-Tested Material A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering presents functional analysis as a tool for understanding and treating distributed parameter systems. Drawing on his extensive research and teaching from the past 20 years, the author explains how functional analysis can be the basis of modern partial differential equation (PDE) and delay differential equation (DDE) techniques. Recent Examples of Functional Analysis in Biology, Electromagnetics, Materials, and Mechanics Through numerous application exa

  4. Building a better search engine for earth science data

    Science.gov (United States)

    Armstrong, E. M.; Yang, C. P.; Moroni, D. F.; McGibbney, L. J.; Jiang, Y.; Huang, T.; Greguska, F. R., III; Li, Y.; Finch, C. J.

    2017-12-01

    Free text data searching of earth science datasets has been implemented with varying degrees of success and completeness across the spectrum of the 12 NASA earth sciences data centers. At the JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) the search engine has been developed around the Solr/Lucene platform. Others have chosen other popular enterprise search platforms like Elasticsearch. Regardless, the default implementations of these search engines leveraging factors such as dataset popularity, term frequency and inverse document term frequency do not fully meet the needs of precise relevancy and ranking of earth science search results. For the PO.DAAC, this shortcoming has been identified for several years by its external User Working Group that has assigned several recommendations to improve the relevancy and discoverability of datasets related to remotely sensed sea surface temperature, ocean wind, waves, salinity, height and gravity that comprise a total count of over 500 public availability datasets. Recently, the PO.DAAC has teamed with an effort led by George Mason University to improve the improve the search and relevancy ranking of oceanographic data via a simple search interface and powerful backend services called MUDROD (Mining and Utilizing Dataset Relevancy from Oceanographic Datasets to Improve Data Discovery) funded by the NASA AIST program. MUDROD has mined and utilized the combination of PO.DAAC earth science dataset metadata, usage metrics, and user feedback and search history to objectively extract relevance for improved data discovery and access. In addition to improved dataset relevance and ranking, the MUDROD search engine also returns recommendations to related datasets and related user queries. This presentation will report on use cases that drove the architecture and development, and the success metrics and improvements on search precision and recall that MUDROD has demonstrated over the existing PO.DAAC search

  5. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  6. Cultural Stereotypes as Gatekeepers: Increasing Girls’ Interest in Computer Science and Engineering by Diversifying Stereotypes

    Directory of Open Access Journals (Sweden)

    Sapna eCheryan

    2015-02-01

    Full Text Available Despite having made significant inroads into many traditionally male-dominated fields (e.g., biology, chemistry, women continue to be underrepresented in computer science and engineering. We propose that students’ stereotypes about the culture of these fields—including the kind of people, the work involved, and the values of the field—steer girls away from choosing to enter these fields. Computer science and engineering are stereotyped in modern American culture as male-oriented fields that involve social isolation, an intense focus on machinery, and inborn brilliance. These stereotypes are more compatible with qualities that are typically valued in men than women. As a result, when computer science and engineering stereotypes are salient, girls report less interest in these fields than their male peers. However, altering these stereotypes—by broadening the representation of the people who do this work, the work itself, and the environments in which it occurs—significantly increases girls’ sense of belonging and interest in the field. Academic stereotypes thus serve as gatekeepers, driving girls away from certain fields and constraining their learning opportunities and career aspirations.

  7. Cultural stereotypes as gatekeepers: increasing girls’ interest in computer science and engineering by diversifying stereotypes

    Science.gov (United States)

    Cheryan, Sapna; Master, Allison; Meltzoff, Andrew N.

    2015-01-01

    Despite having made significant inroads into many traditionally male-dominated fields (e.g., biology, chemistry), women continue to be underrepresented in computer science and engineering. We propose that students’ stereotypes about the culture of these fields—including the kind of people, the work involved, and the values of the field—steer girls away from choosing to enter them. Computer science and engineering are stereotyped in modern American culture as male-oriented fields that involve social isolation, an intense focus on machinery, and inborn brilliance. These stereotypes are compatible with qualities that are typically more valued in men than women in American culture. As a result, when computer science and engineering stereotypes are salient, girls report less interest in these fields than their male peers. However, altering these stereotypes—by broadening the representation of the people who do this work, the work itself, and the environments in which it occurs—significantly increases girls’ sense of belonging and interest in the field. Academic stereotypes thus serve as gatekeepers, driving girls away from certain fields and constraining their learning opportunities and career aspirations. PMID:25717308

  8. Cultural stereotypes as gatekeepers: increasing girls' interest in computer science and engineering by diversifying stereotypes.

    Science.gov (United States)

    Cheryan, Sapna; Master, Allison; Meltzoff, Andrew N

    2015-01-01

    Despite having made significant inroads into many traditionally male-dominated fields (e.g., biology, chemistry), women continue to be underrepresented in computer science and engineering. We propose that students' stereotypes about the culture of these fields-including the kind of people, the work involved, and the values of the field-steer girls away from choosing to enter them. Computer science and engineering are stereotyped in modern American culture as male-oriented fields that involve social isolation, an intense focus on machinery, and inborn brilliance. These stereotypes are compatible with qualities that are typically more valued in men than women in American culture. As a result, when computer science and engineering stereotypes are salient, girls report less interest in these fields than their male peers. However, altering these stereotypes-by broadening the representation of the people who do this work, the work itself, and the environments in which it occurs-significantly increases girls' sense of belonging and interest in the field. Academic stereotypes thus serve as gatekeepers, driving girls away from certain fields and constraining their learning opportunities and career aspirations.

  9. Chemical Science and Technology I. A Study Guide of the Science and Engineering Technician Curriculum.

    Science.gov (United States)

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…

  10. Effects of Web Based Inquiry Science Environment on Cognitive Outcomes in Biological Science in Correlation to Emotional Intelligence

    Science.gov (United States)

    Manoj, T. I.; Devanathan, S.

    2010-01-01

    This research study is the report of an experiment conducted to find out the effects of web based inquiry science environment on cognitive outcomes in Biological science in correlation to Emotional intelligence. Web based inquiry science environment (WISE) provides a platform for creating inquiry-based science projects for students to work…

  11. Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli.

    Science.gov (United States)

    Lee, Sang Yup; Park, Jin Hwan

    2010-01-01

    Random mutation and selection or targeted metabolic engineering without consideration of its impact on the entire metabolic and regulatory networks can unintentionally cause genetic alterations in the region, which is not directly related to the target metabolite. This is one of the reasons why strategies for developing industrial strains are now shifted towards targeted metabolic engineering based on systems biology, which is termed systems metabolic engineering. Using systems metabolic engineering strategies, all the metabolic engineering works are conducted in systems biology framework, whereby entire metabolic and regulatory networks are thoroughly considered in an integrated manner. The targets for purposeful engineering are selected after all possible effects on the entire metabolic and regulatory networks are thoroughly considered. Finally, the strain, which is capable of producing the target metabolite to a high level close to the theoretical maximum value, can be constructed. Here we review strategies and applications of systems biology successfully implemented on bioprocess engineering, with particular focus on developing L: -threonine production strains of Escherichia coli.

  12. Use of Lecture Capture in Undergraduate Biological Science Education

    Directory of Open Access Journals (Sweden)

    Candace Wiese

    2013-12-01

    Full Text Available This study examined the use of lecture capture in students in a large 3rd year undergraduate biological science course at the University of Guelph. Data regarding viewing behaviour, academic performance, and attendance were analyzed in relation to student learning approach (as assessed by the R-SPQ-2F, gender, and year of post-secondary education. It was found that relative to historic controls, students provided lecture capture videos increased their final exam grade by approximately 5%. It was also found that learning approach was significantly related to video viewing behaviour, final exam performance, and attendance, with a deep learning approach being associated with more video views, better performance, and a greater tendency to watch videos to master and review material. A surface approach showed contrasting associations. Moreover, a higher deep approach score was related to fewer absences, while a higher surface approach score was related to more absences and increased the likelihood of a student missing a class. Gender also influenced viewing behaviour, with females being more likely than males to watch videos to generate notes and to review material. This research demonstrates that learning approach and gender are significant predictors of lecture capture behaviour, performance, and/or attendance in biological science education, and provides support for the use of lecture capture as a tool to improve academic performance.

  13. Designing a 'neotissue' using the principles of biology, chemistry and engineering.

    Science.gov (United States)

    Nannaparaju, Madhusudhan; Oragui, Emeka; Khan, Wasim S

    2012-01-01

    The traditional methods of treating musculoskeletal injuries and disorders are not completely effective and have several limitations. Tissue engineering involves using the principles of biology, chemistry and engineering to design a 'neotissue' that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. In this review we provide an overview of the biology of common musculoskeletal tissue and discuss their common pathologies. We also describe the commonly used stem cells, scaffolds and bioreactors and evaluate their role in issue engineering.

  14. International Colloquium on Sports Science, Exercise, Engineering and Technology 2014

    CERN Document Server

    Ismail, Shariman; Sulaiman, Norasrudin

    2014-01-01

    The proceeding is a collection of research papers presented at the International Colloquium on Sports Science, Exercise, Engineering and Technology (ICoSSEET2014), a conference dedicated to address the challenges in the areas of sports science, exercise, sports engineering and technology including other areas of sports, thereby presenting a consolidated view to the interested researchers in the aforesaid fields. The goal of this conference was to bring together researchers and practitioners from academia and industry to focus on the scope of the conference and establishing new collaborations in these areas. The topics of interest are as follows but are not limited to:1. Sports and Exercise Science • Sports Nutrition • Sports Biomechanics • Strength and Conditioning • Motor Learning and Control • Sports Psychology • Sports Coaching • Sports and Exercise Physiology • Sports Medicine and Athletic Trainer • Fitness and Wellness • Exercise Rehabilitation • Adapted Physical Activity...

  15. Enabling Arctic Research Through Science and Engineering Partnerships

    Science.gov (United States)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  16. 6th European Conference of the International Federation for Medical and Biological Engineering

    CERN Document Server

    Vasic, Darko

    2015-01-01

    This volume presents the Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering (MBEC2014), held in Dubrovnik September 7 – 11, 2014. The general theme of MBEC 2014 is "Towards new horizons in biomedical engineering" The scientific discussions in these conference proceedings include the following themes: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education

  17. Using Mathematics and Engineering to Solve Problems in Secondary Level Biology

    Science.gov (United States)

    Cox, Charles; Reynolds, Birdy; Schunn, Christian; Schuchardt, Anita

    2016-01-01

    There are strong classroom ties between mathematics and the sciences of physics and chemistry, but those ties seem weaker between mathematics and biology. Practicing biologists realize both that there are interesting mathematics problems in biology, and that viewing classroom biology in the context of another discipline could support students'…

  18. Promoting convergence: The integrated graduate program in physical and engineering biology at Yale University, a new model for graduate education.

    Science.gov (United States)

    Noble, Dorottya B; Mochrie, Simon G J; O'Hern, Corey S; Pollard, Thomas D; Regan, Lynne

    2016-11-12

    In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co-teaching by faculty with complementary specializations, student peer learning, and novel hands-on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.-granting home programs in the physical, engineering, and biological sciences. Moreover, the wide-ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution-level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical "how to" manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537-549, 2016. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  19. Benefiting Female Students in Science, Math, and Engineering: The Nuts and Bolts of Establishing a WISE (Women in Science and Engineering) Learning Community

    Science.gov (United States)

    Pace, Diana; Witucki, Laurie; Blumreich, Kathleen

    2008-01-01

    This paper describes the rationale and the step by step process for setting up a WISE (Women in Science and Engineering) learning community at one institution. Background information on challenges for women in science and engineering and the benefits of a learning community for female students in these major areas are described. Authors discuss…

  20. The Humanistic Side of Engineering: Considering Social Science and Humanities Dimensions of Engineering in Education and Research

    OpenAIRE

    Hynes, Morgan; Swenson, Jessica

    2013-01-01

    Mathematics and science knowledge/skills are most commonly associated with engineering’s pre-requisite knowledge. Our goals in this paper are to argue for a more systematic inclusion of social science and humanities knowledge in the introduction of engineering to K-12 students. As part of this argument, we present a construct for framing the humanistic side of engineering with illustrative examples of what appealing to the humanistic side of engineering can look like in a classroom setting, a...

  1. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    Science.gov (United States)

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  2. Nonparametric statistics with applications to science and engineering

    CERN Document Server

    Kvam, Paul H

    2007-01-01

    A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provide...

  3. Materials for construction and civil engineering science, processing, and design

    CERN Document Server

    Margarido, Fernanda

    2015-01-01

    This expansive volume presents the essential topics related to construction materials composition and their practical application in structures and civil installations. The book's diverse slate of expert authors assemble invaluable case examples and performance data on the most important groups of materials used in construction, highlighting aspects such as nomenclature, the properties, the manufacturing processes, the selection criteria, the products/applications, the life cycle and recyclability, and the normalization. Civil Engineering Materials: Science, Processing, and Design is ideal for practicing architects; civil, construction, and structural engineers, and serves as a comprehensive reference for students of these disciplines. This book also: ·       Provides a substantial and detailed overview of traditional materials used in structures and civil infrastructure ·       Discusses properties of natural and synthetic materials in construction and materials' manufacturing processes ·  �...

  4. Teaching and Assessing Teamwork Skills in Engineering and Computer Science

    Directory of Open Access Journals (Sweden)

    Robert W. Lingard

    2010-02-01

    Full Text Available To be successful in today's workplace, engineering and computer science students must possess high levels of teamwork skills. Unfortunately, most engineering programs provide little or no specific instruction in this area. This paper outlines an assessment-driven approach toward teaching teamwork skills. Working with the Industrial Advisory Board for the College, a set of performance criteria for teamwork was developed. This set of criteria was used to build an assessment instrument to measure the extent to which students are able to achieve the necessary skills. This set of criteria provides a clear basis for the development of an approach toward teaching teamwork skills. Furthermore, the results from the assessment can be used to adjust the teaching techniques to address the particular skills where students show some weaknesses. Although this effort is in the early stages, the approach seems promising and will be improved over time.

  5. Physics and information technology an interplay between science and engineering

    CERN Multimedia

    Hagstrom, S B

    1999-01-01

    In the last decade of this century and millennium, the computer and communication revolution has shown its power to transform the society. In this talk I will reflect on my personal experience of witnessing this revolution from an observation post in Silicon Valley. In particular, I will emphasize the role of physics and the interplay between science and engineering in this development. Information technology is often viewed as based on some physics discoveries and inventions such as the transistor and the semiconductor laser. Much of the subsequent development, the integrated circuit being a good example, has been an engineering feat. With shrinking dimensions of the circuits we are approaching the quantum limitations, requiring new types of computer architectures based on fundamental physics concepts. In this context we may ask if we should include the basic concepts of information and information handling as part of physics. Finally I will include some remarks on the views of physics as seen in the eyes of...

  6. Decomposition techniques in mathematical programming engineering and science applications

    CERN Document Server

    Conejo, Antonio J; Minguez, Roberto; Garcia-Bertrand, Raquel

    2006-01-01

    Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning p...

  7. Reformulating General Engineering and Biological Systems Engineering Programs at Virginia Tech

    Science.gov (United States)

    Lohani, Vinod K.; Wolfe, Mary Leigh; Wildman, Terry; Mallikarjunan, Kumar; Connor, Jeffrey

    2011-01-01

    In 2004, a group of engineering and education faculty at Virginia Tech received a major curriculum reform and engineering education research grant under the department-level reform (DLR) program of the NSF. This DLR project laid the foundation of sponsored research in engineering education in the Department of Engineering Education. The DLR…

  8. Students' attitudes towards science and science learning in an introductory undergraduate biology course

    Science.gov (United States)

    Floro, Nicole

    Science education strives to cultivate individuals who understand scientific concepts as well as the nature of science and science learning. This study focused on the potential benefits of the flipped classroom on students' attitudes towards science and science learning. Our study investigated changes in and effects of students' attitudes towards science and science learning in a flipped introductory biology course at the University of Massachusetts Boston. We used The Colorado Learning Attitudes about Science Survey for Biology to assess students' attitudes at pre and post-instruction. We investigated the effect of a flipped classroom on students' attitudes towards science and science learning by measuring the impact of different teaching approaches (flipped vs. traditional lecture). Following the prior literature, we hypothesized that there would be a negative shift in students' attitudes over the semester in the traditional classroom and that this negative shift would not occur in the flipped. Our results showed there was no significant difference in the shift of students' attitudes between the traditional and flipped sections. We also examined the relationship between students' attitudes and academic performance. We hypothesized there would be a positive correlation between students' attitudes and their academic performance, as measured by exam average. In support of the prior literature, we found a significant positive correlation. Finally, we examined whether the relationship between students' attitudes and performance was mediated by learning behavior. Specifically, we considered if students with more favorable attitudes solved more on-line problems correctly and whether this aspect of problem solving was associated with greater achievement. We hypothesized there would be a positive correlation between attitudes and problem solving behavior as well as problem solving behavior and achievement. We did not find a significant correlation between attitudes and

  9. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  10. Electronic digital computers their use in science and engineering

    CERN Document Server

    Alt, Franz L

    1958-01-01

    Electronic Digital Computers: Their Use in Science and Engineering describes the principles underlying computer design and operation. This book describes the various applications of computers, the stages involved in using them, and their limitations. The machine is composed of the hardware which is run by a program. This text describes the use of magnetic drum for storage of data and some computing. The functions and components of the computer include automatic control, memory, input of instructions by using punched cards, and output from resulting information. Computers operate by using numbe

  11. 3rd World Congress on Global Optimization in Engineering & Science

    CERN Document Server

    Ruan, Ning; Xing, Wenxun; WCGO-III; Advances in Global Optimization

    2015-01-01

    This proceedings volume addresses advances in global optimization—a multidisciplinary research field that deals with the analysis, characterization, and computation of global minima and/or maxima of nonlinear, non-convex, and nonsmooth functions in continuous or discrete forms. The volume contains selected papers from the third biannual World Congress on Global Optimization in Engineering & Science (WCGO), held in the Yellow Mountains, Anhui, China on July 8-12, 2013. The papers fall into eight topical sections: mathematical programming; combinatorial optimization; duality theory; topology optimization; variational inequalities and complementarity problems; numerical optimization; stochastic models and simulation; and complex simulation and supply chain analysis.

  12. Optimization in engineering sciences approximate and metaheuristic methods

    CERN Document Server

    Stefanoiu, Dan; Popescu, Dumitru; Filip, Florin Gheorghe; El Kamel, Abdelkader

    2014-01-01

    The purpose of this book is to present the main metaheuristics and approximate and stochastic methods for optimization of complex systems in Engineering Sciences. It has been written within the framework of the European Union project ERRIC (Empowering Romanian Research on Intelligent Information Technologies), which is funded by the EU's FP7 Research Potential program and has been developed in co-operation between French and Romanian teaching researchers. Through the principles of various proposed algorithms (with additional references) this book allows the reader to explore various methods o

  13. Smartphone measurement engineering - Innovative challenges for science & education, instrumentation & training

    Science.gov (United States)

    Hofmann, D.; Dittrich, P.-G.; Duentsch, E.

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science & education, instrumentation & training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  14. Henderson Deep Underground Science and Engineering Lab: Unearthing the secrets of the Universe, underground

    International Nuclear Information System (INIS)

    Jung, C.K.

    2011-01-01

    The Henderson Mine near Empire, Colorado is proposed to be the site to host a Deep Underground Science and Engineering Laboratory (DUSEL), which will have a rich program for forefront research in physics, biology, geosciences, and mining engineering. The mine is owned by the Climax Molybdenum Company (CMC). It is located about 50 miles west of Denver and is easily accessible via major highways. The mine is modern and has extensive infrastructure with reserve capacity well-suited to the demands of DUSEL. CMC owns all land required for DUSEL, including the tailings site. It also has all environmental and mining permits required for DUSEL excavation, core drilling, and rock disposal. The mine owners are enthusiastic supporters of this initiative. In support of the Henderson DUSEL project, the State of Colorado has pledged substantial funding for surface construction.

  15. Accessing Nature’s diversity through metabolic engineering and synthetic biology [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jason R. King

    2016-03-01

    Full Text Available In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents.

  16. Accessing Nature’s diversity through metabolic engineering and synthetic biology

    Science.gov (United States)

    King, Jason R.; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory

    2016-01-01

    In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents. PMID:27081481

  17. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  18. Climate Engineering: A Nexus of Ethics, Science and Governance

    Science.gov (United States)

    Ackerman, T. P.

    2015-12-01

    Climate engineering (or geoengineering) has emerged as a possible component of a strategy to mitigate global warming. This emergence has produced a novel intersection of atmospheric science, environmental ethics and global governance. The scientific questions of climate engineering, while difficult to answer in their own right, are compounded by ethical considerations regarding whether these questions should be addressed and governance questions of how research and deployment could be managed. In an effort to address this intersection of ideas and provide our students with a rich interdisciplinary experience, we (T. Ackerman and S. Gardiner, both senior professors at the University of Washington) taught a cross-listed course in the Atmospheric Sciences and Philosophy departments. The course attracted 12 students (mostly graduate students but with two upper level undergraduates), with roughly equal representation from environmental sciences, ethics, and public policy disciplines, as well as two post-docs. Our primary goal for the course was to develop a functioning research community to address the core issues at the intersection of science and ethics. In this presentation, we discuss the course structure, identify strategies that were successful (or less so), and describe outcomes. We consider this course to be primarily pedagogical in nature, but we also recognize that many of the students in the class, perhaps even a majority, are intending to pursue careers outside academia in areas of public policy, environmental consulting, etc., which added an extra dimension to our class. Here, we also discuss the possibility of developing and teaching such courses in an academic environment that is stressed financially and increasingly dependent on metrics related to class size and student credit hours.

  19. Distance Learning and Skill Acquisition in Engineering Sciences: Present State and Prospects

    Science.gov (United States)

    Potkonjak, Veljko; Jovanovic, Kosta; Holland, Owen; Uhomoibhi, James

    2013-01-01

    Purpose: The purpose of this paper is to present an improved concept of software-based laboratory exercises, namely a Virtual Laboratory for Engineering Sciences (VLES). Design/methodology/approach: The implementation of distance learning and e-learning in engineering sciences (such as Mechanical and Electrical Engineering) is still far behind…

  20. An Annotated List of Disciplines and Sub-Disciplines in the Biological Sciences

    Science.gov (United States)

    McDonald, Brandon

    2008-01-01

    Biology has become a large and diversified science. Current biological research areas transgress academic and professional boundaries to such a degree that the biological sciences could arguably be referred to as "all encompassing." In this article, the author describes how he compiled information on currently recognised disciplines and…

  1. A Standards-Based Content Analysis of Selected Biological Science Websites

    Science.gov (United States)

    Stewart, Joy E.

    2010-01-01

    The purpose of this study was to analyze the biology content, instructional strategies, and assessment methods of 100 biological science websites that were appropriate for Grade 12 educational purposes. For the analysis of each website, an instrument, developed from the National Science Education Standards (NSES) for Grade 12 Life Science coupled…

  2. Engineering Design of an Adaptive Leg Prosthesis Using Biological Principles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Dentel, Andy; Invarsdottir, Thorunn

    2010-01-01

    The biomimetic design process is explored through a design case: An adaptive leg prosthesis. The aim is to investigate if the biomimetic design process can be carried out with a minimum of biological knowledge and without using advanced design methods. In the design case biomimetic design was suc...... was successfully carried out using library search resulting in 14 biological analogies for the design problem 'shape adaption'. It is proposed that search results are handled using special cards describing the biological phenomena and the functional principles....

  3. The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering

    International Nuclear Information System (INIS)

    Stakhov, A.P.

    2005-01-01

    The 'Dichotomy Principle' and the classical 'Golden Section Principle' are two of the most important principles of Nature, Science and also Art. The Generalized Principle of the Golden Section that follows from studying the diagonal sums of the Pascal triangle is a sweeping generalization of these important principles. This underlies the foundation of 'Harmony Mathematics', a new proposed mathematical direction. Harmony Mathematics includes a number of new mathematical theories: an algorithmic measurement theory, a new number theory, a new theory of hyperbolic functions based on Fibonacci and Lucas numbers, and a theory of the Fibonacci and 'Golden' matrices. These mathematical theories are the source of many new ideas in mathematics, philosophy, botanic and biology, electrical and computer science and engineering, communication systems, mathematical education as well as theoretical physics and physics of high energy particles

  4. 78 FR 61870 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2013-10-04

    ... Committee for Computer and Information Science and Engineering (1115). Date/Time: Oct 31, 2013: 12:30 p.m... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended...

  5. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods

    NARCIS (Netherlands)

    Waltman, L.R.; Van, Raan A.F.J.; Smart, S.

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach

  6. Participatory modeling - engineering and social sciences in tandem

    Science.gov (United States)

    Class, Holger; Kissinger, Alexander; Knopf, Stefan; Konrad, Wilfried; Noack, Vera; Scheer, Dirk

    2017-04-01

    The modeling of flow and transport processes in the context of engineering in the subsurface often takes place within a field of conflict from different interests, where societal issues are touched or involved. Carbon Capture and Storage, Fracking, or nuclear waste disposal are just a few prominent examples, where engineering (or: natural sciences) and social sciences have a common field of research. It is only consequent for both disciplines to explore methods and tools to achieve best possible mutual benefits. Participatory modeling (PM) is such an idea, where so-called stakeholders can be involved during different phases of the modeling process. This can be accomplished by very different methods of participation and for different reasons (public acceptance, public awareness, transparency, improved understanding through collective learning, etc). Therefore, PM is a generic approach, open for different methods to be used in order to facilitate early expert and stakeholder integration in science development. We have used PM recently in two examples, both in the context of Carbon Capture and Storage. The first one addressed the development and evaluation (by stakeholders) of a screening criterion for site selection. The second one deals with a regional-scale brine migration scenario where stakeholders have been involved in evaluating the general importance of brine migration, the design of a representative geological model for a case study and in the definition of scenarios to be simulated. This contribution aims at summarizing our experiences and share it with the modeling community. References: A Kissinger, V Noack, S Knopf, D Scheer, W Konrad, H Class Characterization of reservoir conditions for CO2 storage using a dimensionless gravitational number applied to the North German Basin, Sustainable Energy Technologies and Assessments 7, 209-220, 2014 D Scheer, W Konrad, H Class, A Kissinger, S Knopf, V Noack Expert involvement in science development: (re

  7. Proceedings of the fifteenth symposium on energy engineering sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This Proceedings Volume includes the technical papers that were presented during the Fifteenth Symposium on Energy Engineering Sciences on May 14-15, 1997, at Argonne National Laboratory, Argonne, Illinois. The Symposium was organized into eight technical sessions, which included 32 individual presentations followed by discussion and interaction with the audience. The topics of the eight sessions are: multiphase flows 1; multiphase flows 2; mostly optics; fluid mechanics; nonlinear fields; welding and cracks; materials; and controls. The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. It has the prime responsibility for establishing the basic scientific foundation upon which the Nation`s future energy options will have to be identified, developed, and built. It is committed to the generation of new knowledge necessary for the solution of present and future problems of energy exploration, production, conversion, and utilization, consistent with respect for the environment. Separate abstracts have been indexed into the energy database for contributions to this Symposium.

  8. Mathematical and Computational Challenges in Population Biology and Ecosystems Science

    Science.gov (United States)

    Levin, Simon A.; Grenfell, Bryan; Hastings, Alan; Perelson, Alan S.

    1997-01-01

    Mathematical and computational approaches provide powerful tools in the study of problems in population biology and ecosystems science. The subject has a rich history intertwined with the development of statistics and dynamical systems theory, but recent analytical advances, coupled with the enhanced potential of high-speed computation, have opened up new vistas and presented new challenges. Key challenges involve ways to deal with the collective dynamics of heterogeneous ensembles of individuals, and to scale from small spatial regions to large ones. The central issues-understanding how detail at one scale makes its signature felt at other scales, and how to relate phenomena across scales-cut across scientific disciplines and go to the heart of algorithmic development of approaches to high-speed computation. Examples are given from ecology, genetics, epidemiology, and immunology.

  9. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    The American Indian Science and Engineering Society (AISES) has been funded under a U.S. Department of Energy (DOE) grant (Grant Award No. DE-SC0004058) to host an Intertribal Middle-School Science and Math Bowl (IMSSMB) comprised of teams made up of a majority of American Indian students from Bureau of Indian Education-funded schools and public schools. The intent of the AISES middle school science and math bowl is to increase participation of American Indian students at the DOE-sponsored National Science Bowl. Although national in its recruitment scope, the AISES Intertribal Science and Math Bowl is considered a “regional” science bowl, equivalent to the other 50 regional science bowls which are geographically limited to states. Most regional bowls do not have American Indian student teams competing, hence the AISES bowl is meant to encourage American Indian student teams to increase their science knowledge in order to participate at the national level. The AISES competition brings together teams from various American Indian communities across the nation. Each team is provided with funds for travel to and from the event, as well as for lodging and meals. In 2011 and 2012, there were 10 teams participating; in 2013, the number of teams participating doubled to 20. Each Science and Math Bowl team is comprised of four middle school — grades 6 through 8 — students, one alternate, and a teacher who serves as advisor and coach — although in at least two cases, the coach was not a teacher, but was the Indian Education Coordinator. Each team member must have at least a 3.0 GPA. Furthermore, the majority of students in each team must be comprised of American Indian, Alaska Native or Native Hawaiian students. Under the current DOE grant, AISES sponsored three annual middle school science bowl competitions over the years 2011, 2012 and 2013. The science and math bowls have been held in late March concurrently with the National American Indian Science and

  10. Influencing attitudes toward science through field experiences in biology

    Science.gov (United States)

    Carpenter, Deborah Mcintyre

    The purpose of this study was to determine how student attitudes toward science are influenced by field experiences in undergraduate biology courses. The study was conducted using two institutions of higher education including a 2-year lower-level and a 2-year upper-level institution. Data were collected through interviews with student participants, focus group discussions, students' journal entries, and field notes recorded by the researcher during the field activities. Photographs and video recordings were also used as documentation sources. Data were collected over a period of 34 weeks. Themes that emerged from the qualitative data included students' beliefs that field experiences (a) positively influence student motivation to learn, (b) increase student ability to learn the concepts being taught, and (c) provide opportunities for building relationships and for personal growth. The findings of the study reinforce the importance of offering field-study programs at the undergraduate level to allow undergraduate students the opportunity to experience science activities in a field setting. The research study was framed by the behavioral and developmental theories of attitude and experience including the Theory of Planned Behavior (Ajzen, 1991) and the Theory of Experiential Learning (Kolb, 1984).

  11. New trends in networking, computing, e-learning, systems sciences, and engineering

    CERN Document Server

    Sobh, Tarek

    2015-01-01

    This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers form the conference proceedings of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  • Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; • Includes chapters in the most advanced areas of Computing, Informatics, Systems Sciences, and Engineering; • Accessible to a wide range of readership, including professors, researchers, practitioners and...

  12. Innovations and advances in computing, informatics, systems sciences, networking and engineering

    CERN Document Server

    Elleithy, Khaled

    2015-01-01

    Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering  This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers from the conference proceedings of the Eighth and some selected papers of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2012 & CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  ·       Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; ·       Includes chapters in the most a...

  13. New software engineering paradigm based on complexity science an introduction to NSE

    CERN Document Server

    Xiong, Jay

    2011-01-01

    This book describes a revolution in software engineering - the Nonlinear Software Engineering paradigm, which complies with the essential principles of complexity science and can help double productivity, halve costs and reduce defects in software products.

  14. V&V in Computational Engineering and Science. Part 1: Basic Concepts

    National Research Council Canada - National Science Library

    Babuska, Ivo; Oden, Tinsley

    2003-01-01

    Computational engineering and science, the discipline concerned with the use of computational methods and devices to simulate physical events and engineering systems, is being heralded by many as one...

  15. Development of engineering and materials science in Pronuclear: retrospective and perspectives for the 80's

    International Nuclear Information System (INIS)

    Haydt, H.M.

    1982-01-01

    The evolution of a great number of persons that completed engineering and materials science course, up to 1981, is showed. The Pronuclear, an organ that finances the personel education with emphasis in nuclear engineering, is described. (E.G.) [pt

  16. Biological production of monoethanolamine by engineered Pseudomonas putida S12

    NARCIS (Netherlands)

    Foti, M.J.; Médici, R.; Ruijssenaars, H.J.

    2013-01-01

    Pseudomonas putida S12 was engineered for the production of monoethanolamine (MEA) from glucose via the decarboxylation of the central metabolite l-serine, which is catalyzed by the enzyme l-serine decarboxylase (SDC).The host was first evaluated for its tolerance towards MEA as well as its

  17. Evolution, Science and Society: Evolutionary Biology and the National Research Agenda.

    Science.gov (United States)

    Futuyma, Douglas J.; Meagher, Thomas R.

    2001-01-01

    Discusses ways of advancing understanding of evolutionary biology which seeks to explain all the characteristics of organisms. Describes the goals of evolutionary biology, why it is important, and how it contributes to society and basic science. (ASK)

  18. Extended Abstracts from BioGeo99: Applications of Geospatial Technology to Biological Sciences

    National Research Council Canada - National Science Library

    Handley, Lawrence

    2000-01-01

    ... of Global Positioning System (GPS), aquatic and terrestrial telemetry, national classification systems, remote sensing, metadata, and other geospatial technologies used in biological science applications...

  19. Review of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae

    Directory of Open Access Journals (Sweden)

    Ya-Tang Yang

    2016-10-01

    Full Text Available One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae is to engineer strains that can optimally produce biofuels and commodity chemicals. However, the current workflow is slow and labor intensive with respect to assembly of genetic parts and characterization of production yields because of the slow growth rates of these organisms. Here, we review recent progress in the microfluidic photobioreactors and identify opportunities and unmet needs in metabolic engineering and synthetic biology. Because of the unprecedented experimental resolution down to the single cell level, long-term real-time monitoring capability, and high throughput with low cost, microfluidic photobioreactor technology will be an indispensible tool to speed up the development process, advance fundamental knowledge, and realize the full potential of metabolic engineering and synthetic biology for cyanobacteria and microalgae.

  20. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    Science.gov (United States)

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…