WorldWideScience

Sample records for biological rhythms plant

  1. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  2. Dissipative structures and biological rhythms

    Science.gov (United States)

    Goldbeter, Albert

    2017-10-01

    Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.

  3. Human biological rhythm in traditional Chinese medicine

    Directory of Open Access Journals (Sweden)

    Tianxing Zhang

    2016-10-01

    Full Text Available Traditional Chinese medicine (TCM has a comprehensive and thorough understanding of biological rhythm. Biological rhythm is an inherent connotation of “harmony between human and nature”, one of the thoughts in TCM. TCM discusses emphatically circadian rhythm, syzygial rhythm and seasonal rhythm, and particularly circadian and seasonal rhythms. Theories of Yin Yang and Five Elements are the principles and methods, with which TCM understands biological rhythms. Based on theories in TCM, biological rhythm in essence is a continuous variation of the human body state synchronized with natural rhythms, and theories of Yin Yang and Five Elements are both language tools to describe this continuous variation and theoretical tools for its investigation and application. The understandings of biological rhythm in TCM can be applied to etiology, health care, disease control and treatment. Many understandings in TCM have been confirmed by modern research and clinical reports, but there are still some pending issues. TCM is distinguished for its holistic viewpoint on biological rhythms.

  4. Fluctuation of biological rhythm in finger tapping

    Science.gov (United States)

    Yoshinaga, H.; Miyazima, S.; Mitake, S.

    2000-06-01

    By analyzing biological rhythms obtained from finger tapping, we have investigated the differences of two biological rhythms between healthy and handicapped persons caused by Parkinson, brain infraction, car accident and so on. In this study, we have observed the motion of handedness of all subjects and obtained a slope a which characterizes a power-law relation between frequency and amplitude of finger-tapping rhythm. From our results, we have estimated that the slope a=0.06 is a rough criterion in order to distinguish healthy and handicapped persons.

  5. Biological Rhythms in the Skin

    Directory of Open Access Journals (Sweden)

    Mary S. Matsui

    2016-05-01

    Full Text Available Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN of the hypothalamus, which directs an organism’s rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional–translational autoregulatory loops. This master clock, following environmental cues, regulates an organism’s sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin.

  6. Biologic rhythms derived from Siberian mammoths' hairs.

    Directory of Open Access Journals (Sweden)

    Mike Spilde

    Full Text Available Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∼31 cms/year and ∼16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios, which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  7. Biologic Rhythms Derived from Siberian Mammoths Hairs

    Energy Technology Data Exchange (ETDEWEB)

    M Spilde; A Lanzirotti; C Qualls; G Phillips; A Ali; L Agenbroad; O Appenzeller

    2011-12-31

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was {approx}31 cms/year and {approx}16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  8. Working night shifts affects surgeons' biological rhythm

    DEFF Research Database (Denmark)

    Amirian, Ilda; Andersen, Lærke T; Rosenberg, Jacob

    2015-01-01

    BACKGROUND: Chronic sleep deprivation combined with work during the night is known to affect performance and compromise residents' own safety. The aim of this study was to examine markers of circadian rhythm and the sleep-wake cycle in surgeons working night shifts. METHODS: Surgeons were monitor...

  9. Biological and psychological rhythms: an integrative approach to rhythm disturbances in autistic disorder.

    Science.gov (United States)

    Botbol, Michel; Cabon, Philippe; Kermarrec, Solenn; Tordjman, Sylvie

    2013-09-01

    Biological rhythms are crucial phenomena that are perfect examples of the adaptation of organisms to their environment. A considerable amount of work has described different types of biological rhythms (from circadian to ultradian), individual differences in their patterns and the complexity of their regulation. In particular, the regulation and maturation of the sleep-wake cycle have been thoroughly studied. Its desynchronization, both endogenous and exogenous, is now well understood, as are its consequences for cognitive impairments and health problems. From a completely different perspective, psychoanalysts have shown a growing interest in the rhythms of psychic life. This interest extends beyond the original focus of psychoanalysis on dreams and the sleep-wake cycle, incorporating central theoretical and practical psychoanalytic issues related to the core functioning of the psychic life: the rhythmic structures of drive dynamics, intersubjective developmental processes and psychic containment functions. Psychopathological and biological approaches to the study of infantile autism reveal the importance of specific biological and psychological rhythmic disturbances in this disorder. Considering data and hypotheses from both perspectives, this paper proposes an integrative approach to the study of these rhythmic disturbances and offers an etiopathogenic hypothesis based on this integrative approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Stable isotope ratios in hair and teeth reflect biologic rhythms.

    Directory of Open Access Journals (Sweden)

    Otto Appenzeller

    Full Text Available Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals.

  11. Biological rhythms for rehabilitation of radiation damage of population

    International Nuclear Information System (INIS)

    Goncharova, T.G.; Vasil'eva, G.S.; Efimov, M.L.

    1999-01-01

    Considerable disturbances in biological eurhythmycal structure of redoracu were discovered for people living in Borodulikha area of the Semipalatinsk test site. The deep desynchronise may result in a development of the cardiovascular, bronco-pulmonary, endocrine, oncologic, neuro psychic diseases. A method to correct the biological eurhythmycal structure was developed. Homeopathic doses of melatonin ('rhythm driver' managing the most regenerating and immune systems) and uthynol (promoting production of dehydroepiandrosterone of maternal prehormone of 27 hormones) were used to provide the general correction. The endocrine diseases are not practically subjected to the homeopathic correction. The sub correction was sometimes carried out after 5 months. The developed methods of rehabilitation of the radiation damages are unique, since they allow performing the homeopathic correction using the acupuncture monitoring

  12. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Biological rhythm in 1/f fluctuations of heart rate in asthmatic children

    Directory of Open Access Journals (Sweden)

    Norio Kazuma

    2004-01-01

    Conclusion: During an asthma attack, the rhythm of 1/f fluctuations is ultradian (cycle length under 20 h, compared with various rhythms during a non-attack period. In future, we will clarify the relevance of the ultradian rhythm of 1/f fluctuations over a 24 h period and the biological life-support system at a point of time of an asthma attack.

  14. Autism as a disorder of biological and behavioral rhythms: Towards new therapeutic perspectives

    Directory of Open Access Journals (Sweden)

    Sylvie eTordjman

    2015-02-01

    Full Text Available There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional and relational rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of peripheral oscillators suggests that this hormone might be also involved in the synchrony of motor, emotional and relational rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors or interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional and relational rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony such as the Early Start Denver Model (ESDM.

  15. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives.

    Science.gov (United States)

    Tordjman, Sylvie; Davlantis, Katherine S; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model.

  16. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  17. The evolutionary biology of musical rhythm: was Darwin wrong?

    Directory of Open Access Journals (Sweden)

    Aniruddh D Patel

    2014-03-01

    Full Text Available In The Descent of Man, Darwin speculated that our capacity for musical rhythm reflects basic aspects of brain function broadly shared among animals. Although this remains an appealing idea, it is being challenged by modern cross-species research. This research hints that our capacity to synchronize to a beat, i.e., to move in time with a perceived pulse in a manner that is predictive and flexible across a broad range of tempi, may be shared by only a few other species. Is this really the case? If so, it would have important implications for our understanding of the evolution of human musicality.

  18. The evolutionary biology of musical rhythm: was Darwin wrong?

    Science.gov (United States)

    Patel, Aniruddh D

    2014-03-01

    In The Descent of Man, Darwin speculated that our capacity for musical rhythm reflects basic aspects of brain function broadly shared among animals. Although this remains an appealing idea, it is being challenged by modern cross-species research. This research hints that our capacity to synchronize to a beat, i.e., to move in time with a perceived pulse in a manner that is predictive and flexible across a broad range of tempi, may be shared by only a few other species. Is this really the case? If so, it would have important implications for our understanding of the evolution of human musicality.

  19. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  20. Biological behaviour of cucumbers depending on rhythm of seed irradiation with laser beam

    International Nuclear Information System (INIS)

    Cholakov, D.

    1997-01-01

    The aim of the study was to determine the optimal parameters of laser stimulation and obtained as a result resonance activation of phytohormones responsible for growth and formation of generative organs. The influence of the rhythm of irradiation on its effect was investigated. Cucumber seeds from the Bulgarian salad cultivar Gergana were irradiated with helium-neon laser of 632.8 nm wave length and exit power 20 mw. Besides control samples, the following irradiation groups were examined: 7-times on the 28th day before sowing (variant 7); 7-times in rhythm - 4-times on the 28th and 3-times on the 14th day before sowing (4+3); 7-times in rhythm - 3-times on the 28th and 3-times on the 14th and once on the day before sowing (3+3+1); 7-times in rhythm - 2-times on the 28th, the 21st and the 14th day and once on the day before sowing (2+2+2+1); 7-times in rhythm - once on the 28th, 24th, 20th, 16th, 12th, 8th and 4th day before sowing (1+1+1+1+1+1+1). There was the highest radiobiological effect at the rhythm of irradiation (2+2+2+1) and (1+1+1+1+1+1+1). The rhythmical application of radiation dose ensures better accumulation of the polarized light by the plant cells. The change of their electric vectors accelerates their growth and forces the physiological and biochemical processes. As a result the early yield has been increased respectively by 15.6% and 12% and the total standard yield - by 15.4% and 11.7%

  1. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  2. Diurnal rhythms in neurexins transcripts and inhibitory/excitatory synapse scaffold proteins in the biological clock.

    Directory of Open Access Journals (Sweden)

    Mika Shapiro-Reznik

    Full Text Available The neurexin genes (NRXN1/2/3 encode two families (α and β of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4. Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic

  3. Ethics and methods for biological rhythm research on animals and human beings.

    Science.gov (United States)

    Portaluppi, Francesco; Smolensky, Michael H; Touitou, Yvan

    2010-10-01

    This article updates the ethical standards and methods for the conduct of high-quality animal and human biological rhythm research, which should be especially useful for new investigators of the rhythms of life. The editors of Chronobiology International adhere to and endorse the Code of Conduct and Best Practice Guidelines of the Committee On Publication Ethics (COPE), which encourages communication of such updates at regular intervals in the journal. The journal accepts papers representing original work, no part of which was previously submitted for publication elsewhere, except as brief abstracts, as well as in-depth reviews. The majority of research papers published in Chronobiology International entails animal and human investigations. The editors and readers of the journal expect authors of submitted manuscripts to have made an important contribution to the research of biological rhythms and related phenomena using ethical methods/procedures and unbiased, accurate, and honest reporting of findings. Authors of scientific papers are required to declare all potential conflicts of interest. The journal and its editors endorse compliance of investigators to the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research of the National Research Council, relating to the conduct of ethical research on laboratory and other animals, and the principles of the Declaration of Helsinki of the World Medical Association, relating to the conduct of ethical research on human beings. The peer review of manuscripts by Chronobiology International thus includes judgment as to whether or not the protocols and methods conform to ethical standards. Authors are expected to show mastery of the basic methods and procedures of biological rhythm research and proper statistical assessment of data, including the appropriate application of time series data analyses, as briefly reviewed in this article. The journal editors strive to consistently achieve

  4. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  5. Learning Biology with Plant Pathology.

    Science.gov (United States)

    Carroll, Juliet E.

    This monograph contains 10 plant pathology experiments that were written to correspond to portions of a biology curriculum. Each experiment is suitable to a biology topic and designed to encourage exploration of those biological concepts being taught. Experiments include: (1) The Symptoms and Signs of Disease; (2) Koch's Postulates; (3)…

  6. Analysis of rhythmic variance - ANORVA. A new simple method for detecting rhythms in biological time series

    Directory of Open Access Journals (Sweden)

    Peter Celec

    2004-01-01

    Full Text Available Cyclic variations of variables are ubiquitous in biomedical science. A number of methods for detecting rhythms have been developed, but they are often difficult to interpret. A simple procedure for detecting cyclic variations in biological time series and quantification of their probability is presented here. Analysis of rhythmic variance (ANORVA is based on the premise that the variance in groups of data from rhythmic variables is low when a time distance of one period exists between the data entries. A detailed stepwise calculation is presented including data entry and preparation, variance calculating, and difference testing. An example for the application of the procedure is provided, and a real dataset of the number of papers published per day in January 2003 using selected keywords is compared to randomized datasets. Randomized datasets show no cyclic variations. The number of papers published daily, however, shows a clear and significant (p<0.03 circaseptan (period of 7 days rhythm, probably of social origin

  7. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    thus appear to be simple responses of living beings to cyclic presence/absence of ... For example, during leaf movement rhythms, leaves alternate between open and closed states .... gist of his time, in an elegant experiment (Box 2) to study the navigational .... diurnal rhythms as true biological timekeepers, a question which.

  8. The biology of plant metabolomics

    NARCIS (Netherlands)

    Hall, R.D.

    2011-01-01

    Following a general introduction, this book includes details of metabolomics of model species including Arabidopsis and tomato. Further chapters provide in-depth coverage of abiotic stress, data integration, systems biology, genetics, genomics, chemometrics and biostatisitcs. Applications of plant

  9. Ethical and methodological standards for laboratory and medical biological rhythm research.

    Science.gov (United States)

    Portaluppi, Francesco; Touitou, Yvan; Smolensky, Michael H

    2008-11-01

    The main objectives of this article are to update the ethical standards for the conduct of human and animal biological rhythm research and recommend essential elements for quality chronobiological research information, which should be especially useful for new investigators of the rhythms of life. A secondary objective is to provide for those with an interest in the results of chronobiology investigations, but who might be unfamiliar with the field, an introduction to the basic methods and standards of biological rhythm research and time series data analysis. The journal and its editors endorse compliance of all investigators to the principles of the Declaration of Helsinki of the World Medical Association, which relate to the conduct of ethical research on human beings, and the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research of the National Research Council, which relate to the conduct of ethical research on laboratory and other animals. The editors and the readers of the journal expect the authors of submitted manuscripts to have adhered to the ethical standards dictated by local, national, and international laws and regulations in the conduct of investigations and to be unbiased and accurate in reporting never-before-published research findings. Authors of scientific papers are required to disclose all potential conflicts of interest, particularly when the research is funded in part or in full by the medical and pharmaceutical industry, when the authors are stock-holders of the company that manufactures or markets the products under study, or when the authors are a recent or current paid consultant to the involved company. It is the responsibility of the authors of submitted manuscripts to clearly present sufficient detail about the synchronizer schedule of the studied subjects (i.e., the sleep-wake schedule, ambient light-dark cycle, intensity and spectrum of ambient light exposure, seasons when the research was

  10. Plant biology in the future.

    Science.gov (United States)

    Bazzaz, F A

    2001-05-08

    In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of "Complexity Theory" think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal

  11. Environmental factors influencing biological rhythms in newborns: From neonatal intensive care units to home.

    Science.gov (United States)

    Bueno, Clarissa; Menna-Barreto, Luiz

    2016-01-01

    Photic and non-photic environmental factors are suggested to modulate the development of circadian rhythms in infants. Our aim is to evaluate the development of biological rhythms (circadian or ultradian) in newborns in transition from Neonatal Intensive Care Units (NICU) to home and along the first 6 months of life, to identify masking and entraining environment factors along development. Ten newborns were evaluated in their last week inside the NICU and in the first week after being delivered home; 6 babies were also followed until 6 months of corrected age. Activity, recorded with actimeters, wrist temperature and observed sleep and feeding behavior were recorded continuously along their last week inside the NICU and in the first week at home and also until 6 months of corrected age for the subjects who remained in the study. Sleep/wake and activity/rest cycle showed ultradian patterns and the sleep/wake was strongly influenced by the 3 h feeding schedule inside the NICU, while wrist temperature showed a circadian pattern that seemed no to be affected by environmental cycles. A circadian rhythm emerges for sleep/wake behavior in the first week at home, whereas the 3 h period vanishes. Both activity/rest and wrist temperature presented a sudden increase in the contribution of the circadian component immediately after babies were delivered home, also suggesting a masking effect of the NICU environment. We found a positive correlation of postconceptional age and the increase in the daily component of activity and temperature along the following 6 months, while feeding behavior became arrhythmic.

  12. Seven-day human biological rhythms: An expedition in search of their origin, synchronization, functional advantage, adaptive value and clinical relevance.

    Science.gov (United States)

    Reinberg, Alain E; Dejardin, Laurence; Smolensky, Michael H; Touitou, Yvan

    2017-01-01

    This fact-finding expedition explores the perspectives and knowledge of the origin and functional relevance of the 7 d domain of the biological time structure, with special reference to human beings. These biological rhythms are displayed at various levels of organization in diverse species - from the unicellular sea algae of Acetabularia and Goniaulax to plants, insects, fish, birds and mammals, including man - under natural as well as artificial, i.e. constant, environmental conditions. Nonetheless, very little is known about their derivation, functional advantage, adaptive value, synchronization and potential clinical relevance. About 7 d cosmic cycles are seemingly too weak, and the 6 d work/1 d rest week commanded from G-d through the Laws of Mosses to the Hebrews is too recent an event to be the origin in humans. Moreover, human and insect studies conducted under controlled constant conditions devoid of environmental, social and other time cues report the persistence of 7 d rhythms, but with a slightly different (free-running) period (τ), indicating their source is endogenous. Yet, a series of human and laboratory rodent studies reveal certain mainly non-cyclic exogenous events can trigger 7 d rhythm-like phenomena. However, it is unknown whether such triggers unmask, amplify and/or synchronize previous non-overtly expressed oscillations. Circadian (~24 h), circa-monthly (~30 d) and circannual (~1 y) rhythms are viewed as genetically based features of life forms that during evolution conferred significant functional advantage to individual organisms and survival value to species. No such advantages are apparent for endogenous 7 d rhythms, raising several questions: What is the significance of the 7 d activity/rest cycle, i.e. week, storied in the Book of Genesis and adopted by the Hebrews and thereafter the residents of nearby Mediterranean countries and ultimately the world? Why do humans require 1 d off per 7 d span? Do 7 d rhythms bestow functional

  13. Is a SIMPLe smartphone application capable of improving biological rhythms in bipolar disorder?

    Science.gov (United States)

    Hidalgo-Mazzei, Diego; Reinares, María; Mateu, Ainoa; Juruena, Mario F; Young, Allan H; Pérez-Sola, Víctor; Vieta, Eduard; Colom, Francesc

    2017-12-01

    Biological rhythms (BR) disturbance has been suggested as a potential mediator of mood episodes in Bipolar Disorder (BD). The Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN) was designed as an assessment tool to evaluate BR domains comprehensively. In the context of a trial evaluating a smartphone application delivering personalized psychoeducational contents for BD (SIMPLe 1.0), the main aim of this study is to evaluate the potential impact of SIMPLe 1.0 in BR regulation using the BRIAN scale. 51 remitted BD patients were asked to use the application for 3 months. Paired t-test analyses were employed to compare baseline and follow-up BRIAN´s total and domains scores. The sample was divided into completers and non-completers of the study to evaluate differences between groups regarding BRIAN scores using ANCOVA analyses. The BRIAN's mean total score of the whole sample significantly decreased from baseline to post-intervention (35.89 (SD 6.64) vs. 31.18 (SD 6.33), t = 4.29, p = 0.001). At post-intervention, there was a significant difference between groups regarding the total BRIAN mean score (29.47 (SD 6.21) completers vs. 35.92 (SD 3.90) non-completers, t = 2.50, p = 0.02). This difference was maintained after conducting a one-way ANCOVA controlling for pre-intervention BRIAN scores, F (1, 46) = 10.545, p=0.002. A limited sample, pre-post measures, and a short study timeframe could have affected the results. Additional factors affecting BR, such as medication, could not be ruled out. Our results suggest that there are potential positive effects of a psychoeducational smartphone application as an adjunctive to treatment as usual on BD patients' BR. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  15. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 11. Circadian Rhythms ... M Vaze1 Vijay Kumar Sharma1. Chronobiology Laboratory Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, PO Box 6436, Bangalore 560 064, India.

  16. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2. Circadian Rhythms: Why do ... Nikhil Vijay Kumar Sharma1. Chronobiology Laboratory Evolutionary and Organismal Biology Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, PO Box 6436, Bangalore 560 064, India.

  17. The Biological Rhythms Interview of Assessment in Neuropsychiatry in patients with bipolar disorder: correlation with affective temperaments and schizotypy

    Directory of Open Access Journals (Sweden)

    Ewa Dopierala

    Full Text Available Objective: To assess the relationship of biological rhythms, evaluated by the Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN, with affective temperaments and schizotypy. Methods: The BRIAN assessment, along with the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego-Autoquestionnaire (TEMPS-A and the Oxford-Liverpool Inventory for Feelings and Experiences (O-LIFE, was administered to 54 patients with remitted bipolar disorder (BD and 54 healthy control (HC subjects. Results: The TEMPS-A cyclothymic temperament correlated positively and the hyperthymic temperament correlated negatively with BRIAN scores in both the BD and HC groups, although the correlation was stronger in BD subjects. Depressive temperament was associated with BRIAN scores in BD but not in HC; conversely, the irritable temperament was associated with BRIAN scores in HC, but not in BD. Several positive correlations between BRIAN scores and the schizotypal dimensions of the O-LIFE were observed in both BD and HC subjects, especially with cognitive disorganization and less so with unusual experiences and impulsive nonconformity. A correlation with introversion/anhedonia was found only in BD subjects. Conclusion: Cyclothymic and depressive temperaments predispose to disturbances of biological rhythms in BD, while a hyperthymic temperament can be protective. Similar predispositions were also found for all schizotypal dimensions, mostly for cognitive disorganization.

  18. Ninth International Workshop on Plant Membrane Biology

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  19. An Endogenous Circadian Rhythm in Sleep Inertia Results in Greatest Cognitive Impairment upon Awakening during the Biological Night

    Science.gov (United States)

    Scheer, Frank A. J. L.; Shea, Thomas J.; Hilton, Michael F.; Shea, Steven A.

    2011-01-01

    Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0°). Data were segregated according to: (1) circadian phase (60° bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300°, ~2300–0300 h in these subjects) than during the biological day (bin 180°, ~1500–1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be explained by changes in underlying sleep drive

  20. The full moon as a synchronizer of circa-monthly biological rhythms: Chronobiologic perspectives based on multidisciplinary naturalistic research.

    Science.gov (United States)

    Reinberg, Alain; Smolensky, Michael H; Touitou, Yvan

    Biological rhythmicity is presumed to be an advantageous genetic adaptation of fitness and survival value resulting from evolution of life forms in an environment that varies predictably-in-time during the 24 h, month, and year. The 24 h light/dark cycle is the prime synchronizer of circadian periodicities, and its modulation over the course of the year, in terms of daytime photoperiod length, is a prime synchronizer of circannual periodicities. Circadian and circannual rhythms have been the major research focus of most scientists. Circa-monthly rhythms triggered or synchronized by the 29.5 day lunar cycle of nighttime light intensity, or specifically the light of the full moon, although explored in waterborne and certain other species, have received far less study, perhaps because of associations with ancient mythology and/or an attitude naturalistic studies are of lesser merit than ones that entail molecular mechanisms. In this editorial, we cite our recent discovery through multidisciplinary naturalistic investigation of a highly integrated circadian, circa-monthly, and circannual time structure, synchronized by the natural ambient nyctohemeral, lunar, and annual light cycles, of the Peruvian apple cactus (C. peruvianus) flowering and reproductive processes that occur in close temporal coordination with like rhythms of the honey bee as its pollinator. This finding led us to explore the preservation of this integrated biological time structure, synchronized and/or triggered by environmental light cues and cycles, in the reproduction of other species, including Homo sapiens, and how the artificial light environment of today in which humans reside may be negatively affecting human reproduction efficiency.

  1. The biology of marine plants

    National Research Council Canada - National Science Library

    Dring, M.J

    1982-01-01

    Since over 90% of the species of marine plants are algae, most of the book is devoted to the marine representatives of this group, with examples from all oceans and coasts of the world where detailed work has been done...

  2. The hypothalamic-pituitary-thyroid axis and biological rhythms: The discovery of TSH's unexpected role using animal models.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2017-10-01

    Thyroid hormones (TH) are important for development, growth, and metabolism. It is also clear that the synthesis and secretion of TH are regulated by the hypothalamic-pituitary-thyroid (HPT) axis. Animal models have helped advance our understanding of the roles and regulatory mechanisms of TH. The animals' bodies develop through coordinated timing of cell division and differentiation. Studies of frog metamorphosis led to the discovery of TH and their role in development. However, to adapt to rhythmic environmental changes, animals also developed various endocrine rhythms. Studies of rodents clarified the neural and molecular mechanisms underlying the circadian regulation of the HPT axis. Moreover, birds have a sophisticated seasonal adaptation mechanism, and recent studies of quail revealed unexpected roles for thyroid-stimulating hormone (TSH) and TH in the seasonal regulation of reproduction. Interestingly, this mechanism is conserved in mammals. Thus, we review how animal studies have shaped our general understanding of the HPT axis in relation to biological rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Daily rhythm of phosphoenolpyruvate carboxylase in Crassulacean acid metabolism plants : Immunological evidence for the absence of a rhythm in protein synthesis.

    Science.gov (United States)

    Brulfert, J; Vidal, J; Gadal, P; Queiroz, O

    1982-11-01

    Immunotitration of phosphoenolpyruvate carboxylase (EC 4.1.1.31) extracted from leaves of Kalanchoe blossfeldiana v. Poelln. cv. Tom Thumb. It was established that at different times of the day-night cycle the daily rhythm of enzyme capacity does not result from a rhythm in protein synthesis, but rather from changes in the specific activity of the enzyme.

  4. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure

    Directory of Open Access Journals (Sweden)

    Maria Luisa eGuerriero

    2014-10-01

    Full Text Available Rhythmic behavior is essential for plants; for example, daily (circadian rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-hour day/night cycle.Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks.Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less studied.

  5. Methods for plant molecular biology

    National Research Council Canada - National Science Library

    Weissbach, Arthur; Weissbach, Herbert

    1988-01-01

    .... Current techniques to carry out plant cell culture and protoplast formation are described as are methods for gene and organelle transfer. The detection of DNA and RNA viruses by molecular probes or ELISA assays and the cloning and transcription of viral RNA complete the volume.

  6. Biological effect of radionuclides on plants

    International Nuclear Information System (INIS)

    Prister, B.S.; Khal'chenko, V.A.; Polyakova, V.Y.; Shevchenko, V.A.; Shejn, G.P.; Aleksakhin, R.M.

    1979-01-01

    Stated are dosimetry principles and given is an analysis of biological radionuclide effect on plants in aerial and root intakes. A comparative barley radiosensitivity characteristic depending on plant development phases during irradiation is given using LD 50 criteria. Considered is a possibility for using generalized bioinformation parameters as sensitive indications for estimating biological effects due to the influence of low radiation doses. On the grounds of data obtained generalization are forecasted probable losses of crops when getting radionuclides into plants during various vegetation periods

  7. The iPlant Collaborative: Cyberinfrastructure for Plant Biology.

    Science.gov (United States)

    Goff, Stephen A; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B S; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M; Cranston, Karen A; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J; White, Jeffery W; Leebens-Mack, James; Donoghue, Michael J; Spalding, Edgar P; Vision, Todd J; Myers, Christopher R; Lowenthal, David; Enquist, Brian J; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  8. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Directory of Open Access Journals (Sweden)

    Stephen A Goff

    2011-07-01

    Full Text Available The iPlant Collaborative (iPlant is a United States National Science Foundation (NSF funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006. iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  9. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Science.gov (United States)

    Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531

  10. DISTURBANCES OF BIOLOGICAL RHYTHMS IN A RAT CHRONIC MILD STRESS MODEL OF DEPRESSION

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Wiborg, Ove; Bouzinova, Elena

    validated animal model of depression, the chronic mild stress model (CMS). Depression-like and control rats were killed by decapitation within 24 h. Trunk blood, brain and liver tissue were collected. The quantitative amount of plasma corticosterone and melatonin were measured using an ELISA and RIA kit...... that depression-like animals showed an abnormal circadian rhythm in the liver and in subregions of the rat brains related to depression. However, the SCN was partly protected against stress. We found an increased level of corticosteron and melatonin, in the depression-like animals as well as a shifted circadian......Aim: The focus of this project is to identify biomarkers related to circadian disturbances in major depressive disorder. Background: A large body of clinical data from depressed individuals showed that sleep, temperature, hormones, physiological states and moodchanges are consistent...

  11. Plant pathology: a story about biology.

    Science.gov (United States)

    Gordon, Thomas R; Leveau, Johan H J

    2010-01-01

    Disease is a universal feature of life for multicellular organisms, and the study of disease has contributed to the establishment of key concepts in the biological sciences. This implies strong connections between plant pathology and basic biology, something that could perhaps be made more apparent to undergraduate students interested in the life sciences. To that end, we present an instructional narrative that begins with a simple question: Why are there diseases? Responses and follow-up questions can facilitate exploration of such topics as the evolution of parasitism, plant adaptations to parasitism, impacts of parasites on native plant communities, and ways in which human intervention can foster the emergence of aggressive plant pathogens. This approach may help to attract students who would not have found their way to plant pathology through traditional pathways. Packaging the narrative as a game may render it more interesting and accessible, particularly to a younger audience.

  12. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  13. A comparison of high-throughput techniques for assaying circadian rhythms in plants.

    Science.gov (United States)

    Tindall, Andrew J; Waller, Jade; Greenwood, Mark; Gould, Peter D; Hartwell, James; Hall, Anthony

    2015-01-01

    Over the last two decades, the development of high-throughput techniques has enabled us to probe the plant circadian clock, a key coordinator of vital biological processes, in ways previously impossible. With the circadian clock increasingly implicated in key fitness and signalling pathways, this has opened up new avenues for understanding plant development and signalling. Our tool-kit has been constantly improving through continual development and novel techniques that increase throughput, reduce costs and allow higher resolution on the cellular and subcellular levels. With circadian assays becoming more accessible and relevant than ever to researchers, in this paper we offer a review of the techniques currently available before considering the horizons in circadian investigation at ever higher throughputs and resolutions.

  14. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  15. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  16. The influence of psychoeducation on regulating biological rhythm in a sample of patients with bipolar II disorder: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Faria AD

    2014-06-01

    Full Text Available Augusto Duarte Faria,1 Luciano Dias de Mattos Souza,2 Taiane de Azevedo Cardoso,2 Karen Amaral Tavares Pinheiro,2 Ricardo Tavares Pinheiro,2 Ricardo Azevedo da Silva,2 Karen Jansen21Department of Clinical and Health Psychology, Universidade Federal do Rio Grande – FURG, Rio Grande, RS, Brazil; 2Health and Behavior Postgraduate Program, Universidade Católica de Pelotas – UCPEL, Pelotas, RS, BrazilIntroduction: Changes in biological rhythm are among the various characteristics of bipolar disorder, and have long been associated with the functional impairment of the disease. There are only a few viable options of psychosocial interventions that deal with this specific topic; one of them is psychoeducation, a model that, although it has been used by practitioners for some time, only recently have studies shown its efficacy in clinical practice.Aim: To assess if patients undergoing psychosocial intervention in addition to a pharmacological treatment have better regulation of their biological rhythm than those only using medication.Method: This study is a randomized clinical trial that compares a standard medication intervention to an intervention combined with drugs and psychoeducation. The evaluation of the biological rhythm was made using the Biological Rhythm Interview of Assessment in Neuropsychiatry, an 18-item scale divided in four areas (sleep, activity, social rhythm, and eating pattern. The combined intervention consisted of medication and a short-term psychoeducation model summarized in a protocol of six individual sessions of 1 hour each.Results: The sample consisted of 61 patients with bipolar II disorder, but during the study, there were 14 losses to follow-up. Therefore, the final sample consisted of 45 individuals (26 for standard intervention and 19 for combined. The results showed that, in this sample and time period evaluated, the combined treatment of medication and psychoeducation had no statistically significant impact on the

  17. Plants - biological indicators. Pflanzen - Gradmesser der Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The booklet informs briefly and in general on the kinds of damage plants sustain from environmental influences. Subsequently the most important toxic agents in the air (sulfur dioxide, hydrogen fluoride, nitrous gases, photosmog, hydrochloric acid), in the soil (de-icing salt, heavy metals) and in water are dealt with in detail, the sources of pollution named and plants presented that may act as biological indicators for the individual pollutants. Hazards from agriculture (over-fertilization, burning of straw) and from tourism are briefly discussed and some hints given as to how the threats to the plant kingdom could be effectively countered.

  18. Modification-specific proteomics in plant biology

    DEFF Research Database (Denmark)

    Ytterberg, A Jimmy; Jensen, Ole N

    2010-01-01

    and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM...

  19. The importance of biological rhythms in drug treatment of hypertension and sex-dependent modifications

    Directory of Open Access Journals (Sweden)

    Lemmer B

    2012-04-01

    normalize a disturbed non dipping 24-hour blood pressure profile.Keywords: chronopharmacology, hypertension, beta-blockers, calcium channel blockers, ACE inhibitors, AT1-receptor blockers, diuretics, chronopharmacokinetics, ABPM, circadian rhythms, urine NOχ excretion, plasma norepinephrine, sex dependency

  20. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  1. Evaluation of parameters of a plankton community's biological rhythms under the natural environment of the Black Sea using the Fourier transform method.

    Science.gov (United States)

    Mel'nikova, Ye B

    2017-05-01

    Night-time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0-h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Biologically Active and Antimicrobial Peptides from Plants

    Science.gov (United States)

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  3. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  4. PLANT ISOFLAVONES: BIOSYNHTESIS, DETECTION AND BIOLOGICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    V. D. Naumenko

    2013-10-01

    Full Text Available Biological properties, chemical structures and biosynthesis pathways of plant isoflavones, especially soybean isoflavones (daidzein, genistein and glycitein are reviewed. The structures of isoflavones, and their aglicone and glucosides (glycosides forms as well as isoflavone biosynthesis pathways are described. General information about the advanced methods for the detection of isoflavones and their conjugates are considered. The importance of the profiling of isoflavones, flavonoids and their conjugates by means of analytical tools and methods to dissolve some questions in biology and medicine is discussed. The review provides data on the major isoflavone content in some vegetable crops and in the tissues of different soybean varieties. Health benefits and treatment or preventive properties of isoflavones for cancer, cardiovascular, endocrine diseases and metabolic disorders are highlighted. The mechanisms that may explain their positive biological effects are considered. The information on the application of advanced technologies to create new plant forms producing isoflavonoids with a predicted level of isoflavones, which is the most favorable for the treatment is given. The possibilities to use the metabolic engineering for the increasing of accumulation and synthesis of isoflavones at the non-legume crops such as tobacco, Arabidopsis and maize are considered. The examples how the plant tissues, which are not naturally produced of the isoflavones, can obtain potential for the synthesis of biologically active compounds via inducing of the activity of the introduced enzyme isoflavon synthase, are given. Specific biochemical pathways for increasing the synthesis of isoflavone genistein in Arabidopsis thaliana tissues are discussed. It is concluded that plant genetic engineering which is focused on modification of the secondary metabolites contain in plant tissues, enables to create the new crop varieties with improved agronomic properties and

  5. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  6. Comparisons of chewing rhythm, craniomandibular morphology, body mass and height between mothers and their biological daughters.

    Science.gov (United States)

    Cho, Catherine; Louie, Ke'ale; Maawadh, Ahmed; Gerstner, Geoffrey E

    2015-11-01

    To study and compare the relationships between mean chewing cycle duration, selected cephalometric variables representing mandibular length, face height, etc., measured in women and in their teenage or young-adult biological daughters. Daughters were recruited from local high schools and the University of Michigan School of Dentistry. Selection criteria included healthy females with full dentition, 1st molar occlusion, no active orthodontics, no medical conditions nor medication use that could interfere with normal masticatory motor function. Mothers had to be biologically related to their daughters. All data were obtained in the School of Dentistry. Measurements obtained from lateral cephalograms included: two "jaw length" measures, condylion-gnathion and gonion-gnathion, and four measures of facial profile including lower anterior face height, and angles sella-nasion-A point (SNA), sella-nasion-B point (SNB) and A point-nasion-B point (ANB). Mean cycle duration was calculated from 60 continuous chewing cycles, where a cycle was defined as the time between two successive maximum jaw openings in the vertical dimension. Other variables included subject height and weight. Linear and logistic regression analyses were used to evaluate the mother-daughter relationships and to study the relationships between cephalometric variables and chewing cycle duration. Height, weight, Co-Gn and Go-Gn were significantly correlated between mother-daughter pairs; however, mean cycle duration was not (r(2)=0.015). Mean cycle duration was positively correlated with ANB and height in mothers, but negatively correlated with Co-Gn in daughters. Chewing rate is not correlated between mothers and daughters in humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Mitochondrial redox biology and homeostasis in plants.

    Science.gov (United States)

    Noctor, Graham; De Paepe, Rosine; Foyer, Christine H

    2007-03-01

    Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.

  8. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from Arabidopsis.

    Science.gov (United States)

    Yeang, Hoong-Yeet

    2015-07-01

    An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles. Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod. © The Author 2015. Published by Oxford University Press on behalf of the

  9. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from arabidopsis

    Science.gov (United States)

    Yeang, Hoong-Yeet

    2015-01-01

    Background and Aims An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Methods Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N–H cycles. Key Results Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Conclusions Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to ‘anticipate’ dawn, dusk or mid-day respectively, independently of the photoperiod. PMID:26070640

  10. Medicinal plants from Mali: Chemistry and biology.

    Science.gov (United States)

    Wangensteen, Helle; Diallo, Drissa; Paulsen, Berit Smestad

    2015-12-24

    Mali is one of the countries in West Africa where the health system rely the most on traditional medicine. The healers are mainly using medicinal plants for their treatments. The studies performed being the basis for this review is of importance as they will contribute to sustaining the traditional knowledge. They contribute to evaluate and improve locally produced herbal remedies, and the review gives also an overview of the plant preparations that will have the most potential to be evaluated for new Improved Traditional Medicines. The aim of this review is to give an overview of the studies performed related to medicinal plants from Mali in the period 1995-2015. These studies include ethnopharmacology, chemistry and biological studies of the plants that were chosen based on our interviews with the healers in different regions of Mali, and contribute to sustainable knowledge on the medicinal plants. The Department of Traditional Medicine, Bamako, Mali, is responsible for registering the knowledge of the traditional healers on their use of medicinal plants and also identifying compounds in the plants responsible for the bioactivities claimed. The studies reported aimed at getting information from the healers on the use of medicinal plants, and study the biology and chemistry of selected plants for the purpose of verifying the traditional use of the plants. These studies should form the basis for necessary knowledge for the development of registered Improved Traditional Medicines in Mali. The healers were the ethnopharmacological informants. Questions asked initially were related to wound healing. This was because the immune system is involved when wounds are healed, and additionally the immune system is involved in the majority of the illnesses common in Mali. Based on the results of the interviews the plant material for studies was selected. Studies were performed on the plant parts the healers were using when treating their patients. Conventional chromatographic

  11. A brief history of circadian time: The emergence of redox oscillations as a novel component of biological rhythms

    OpenAIRE

    Wulund, Lisa; Reddy, Akhilesh B.

    2015-01-01

    Circadian rhythms are present in all living organisms. They organise processes such as gene transcription, mitosis, feeding, and rest at different times of day and night. These rhythms are orchestrated by a network of core ‘clock genes’ that are organised into transcription–translation feedback loops (TTFLs), producing oscillations with a period of approximately 24 h. The modern understanding of circadian timekeeping has revolved around the TTFL paradigm. Recently, however, this has been chal...

  12. My journey from horticulture to plant biology.

    Science.gov (United States)

    Zeevaart, Jan A D

    2009-01-01

    The author describes the circumstances and opportunities that led him to higher education and to pursue a research career in plant biology. He acknowledges the important roles a few individuals played in guiding him in his career. His early work on flowering was followed by studies on the physiological roles and the metabolism of gibberellins and abscisic acid. He describes how collaborations and technical developments advanced his research from measuring hormones by bioassay to their identification and quantification by mass spectrometry and cloning of hormone biosynthetic genes.

  13. Plant and Animal Gravitational Biology. Part 1

    Science.gov (United States)

    1997-01-01

    Session TA2 includes short reports covering: (1) The Interaction of Microgravity and Ethylene on Soybean Growth and Metabolism; (2) Structure and G-Sensitivity of Root Statocytes under Different Mass Acceleration; (3) Extracellular Production of Taxanes on Cell Surfaces in Simulated Microgravity and Hypergravity; (4) Current Problems of Space Cell Phytobiology; (5) Biological Consequences of Microgravity-Induced Alterations in Water Metabolism of Plant Cells; (6) Localization of Calcium Ions in Chlorella Cells Under Clinorotation; (7) Changes of Fatty Acids Content of Plant Cell Plasma Membranes under Altered Gravity; (8) Simulation of Gravity by Non-Symmetrical Vibrations and Ultrasound; and (9) Response to Simulated weightlessness of In Vitro Cultures of Differentiated Epithelial Follicular Cells from Thyroid.

  14. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    and clocks driving such rhythms have been studied for a long time now, our ... passage of time using near 24 h oscillation as a reference process, and (iii) Output .... Bünning's work on circadian rhythms across model systems ranging from ..... E Bünning, The Physiological Clock, Revised 3rd Edition, The English. Universities ...

  15. Fundamental plant biology enabled by the space shuttle.

    Science.gov (United States)

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  16. Applications of optical manipulation in plant biology

    Science.gov (United States)

    Buer, Charles S.

    Measuring small forces in biology is important for determining basic physiological parameters of a cell. The plant cell wall provides a primary defense and presents a barrier to research. Magnitudes of small forces are impossible to measure with mechanical transducers, glass needles, atomic force microscopy, or micropipet-based force transduction due to the cell wall. Therefore, a noninvasive method of breaching the plant cell wall to access the symplastic region of the cell is required. Laser light provides sub-micrometer positioning, particle manipulation without mechanical contact, and piconewton force determination. Consequently, the extension of laser microsurgery to expand an experimental tool for plant biology encompassed the overall objective. A protocol was developed for precisely inserting microscopic objects into the periplasmic region of plant callus cells using laser microsurgery. Ginkgo biloba and Agrobacterium rhizogenes were used as the model system for developing the optical tweezers and scalpel techniques. Better than 95% survival was achieved after plasmolyzing G. biloba cells, ablating a 2-4 μm hole through the cell wall using a pulsed UV laser beam, trapping and manipulating bacteria into the periplasmic region, and deplasmolyzing the cells. Optical trapping experiments implied a difference existed between the bacteria models. Determining the optical trapping efficiency of Agrobacterium rhizogenes and A. tumefaciens strains indicated the A. rhizogenes strain, ATCC 11325, was significantly less efficiently trapped than strains A4 and ATCC 15834 and the A. tumefaciens strain LBA4404. Differences were also found in capsule generation, growth media viscosity, and transmission electron microscopy negative staining implying that a difference in surface structure exists. Calcofluor fluorescence suggests the difference involves an exopolysaccharide. Callus cell plasmolysis revealed Hechtian strands interconnecting the plasma membrane and the cell wall

  17. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  18. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. [ed.

    1992-12-31

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  19. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. (ed.)

    1992-01-01

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  20. Recent advances in plant centromere biology.

    Science.gov (United States)

    Feng, Chao; Liu, YaLin; Su, HanDong; Wang, HeFei; Birchler, James; Han, FangPu

    2015-03-01

    The centromere, which is one of the essential parts of a chromosome, controls kinetochore formation and chromosome segregation during mitosis and meiosis. While centromere function is conserved in eukaryotes, the centromeric DNA sequences evolve rapidly and have few similarities among species. The histone H3 variant CENH3 (CENP-A in human), which mostly exists in centromeric nucleosomes, is a universal active centromere mark in eukaryotes and plays an essential role in centromere identity determination. The relationship between centromeric DNA sequences and centromere identity determination is one of the intriguing questions in studying centromere formation. Due to the discoveries in the past decades, including "neocentromeres" and "centromere inactivation", it is now believed that the centromere identity is determined by epigenetic mechanisms. This review will present recent progress in plant centromere biology.

  1. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    nature of the system underlying such rhythms and inspired one of the ... behaviours and physiological processes were discovered in a wide range of animals. ... is thought to coordinate internal physiology, and thereby confer benefits to living ...

  2. Plant Systems Biology at the Single-Cell Level.

    Science.gov (United States)

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current

  4. Redefining plant systems biology: from cell to ecosystem

    NARCIS (Netherlands)

    Keurentjes, J.J.B.; Angenent, G.C.; Dicke, M.; Martins Dos Santos, V.A.P.; Molenaar, J.; Van der Putten, W.H.; de Ruiter, P.C.; Struik, P.C.; Thomma, B.P.H.J.

    2011-01-01

    Molecular biologists typically restrict systems biology to cellular levels. By contrast, ecologists define biological systems as communities of interacting individuals at different trophic levels that process energy, nutrient and information flows. Modern plant breeding needs to increase

  5. Short-term influence of cataract surgery on circadian biological rhythm and related health outcomes (CLOCK-IOL trial): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Saeki, Keigo; Obayashi, Kenji; Nishi, Tomo; Miyata, Kimie; Maruoka, Shinji; Ueda, Tetsuo; Okamoto, Masahiro; Hasegawa, Taiji; Matsuura, Toyoaki; Tone, Nobuhiro; Ogata, Nahoko; Kurumatani, Norio

    2014-12-29

    Light information is the most important cue of circadian rhythm which synchronizes biological rhythm with external environment. Circadian misalignment of biological rhythm and external environment is associated with increased risk of depression, insomnia, obesity, diabetes, cardiovascular disease, and cancer. Increased light transmission by cataract surgery may improve circadian misalignment and related health outcomes. Although some observational studies have shown improvement of depression and insomnia after cataract surgery, randomized controlled trials are lacking. We will conduct a parallel-group, assessor-blinded, simple randomized controlled study comparing a cataract surgery group at three months after surgery with a control group to determine whether cataract surgery improves depressive symptoms, sleep quality, body mass regulation, and glucose and lipid metabolism. We will recruit patients who are aged 60 years and over, scheduled to receive their first cataract surgery, and have grade 2 or higher nuclear opacification as defined by the lens opacities classification system III. Exclusion criteria will be patients with major depression, severe corneal opacity, severe glaucoma, vitreous haemorrhage, proliferative diabetic retinopathy, macular oedema, age-related macular degeneration, and patients needing immediate or combined cataract surgery. After baseline participants will be randomized to two groups. Outcomes will be measured at three months after surgery among the intervention group, and three months after baseline among the control group. We will assess depressive symptoms as a primary outcome, using the short version geriatric depression scale (GDS-15). Secondary outcomes will be subjective and actigraph-measured sleep quality, sleepiness, glycated haemoglobin, fasting plasma glucose and triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, body mass index, abdominal circumference, circadian rhythms of physical

  6. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  7. Stem cells: a plant biology perspective

    NARCIS (Netherlands)

    Scheres, B.J.G.

    2005-01-01

    A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom

  8. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    Early studies on circadian rhythms focussed on unravelling the fundamental .... careful analysis revealed that deaths of most arrhythmic indi- viduals were due to .... is no more a sci-fi movie script and is achievable through a technique called ...

  9. Federico Delpino and the foundation of plant biology.

    Science.gov (United States)

    Mancuso, Stefano

    2010-09-01

    In 1867, Federico Delpino, with his seminal work "Pensieri sulla biologia vegetale" (Thoughts on plant biology) established plant biology by defining it not in the broad general sense, namely as the science of living beings, but as a branch of natural science dedicated to the study of plant life in relation to the environment. Today, the figure and achievements of this outstanding plant scientist it is almost unknown. In the following pages, I will concisely describe the main realizations of Federico Delpino and outline the significance of his work for modern plant science.

  10. Invasive plants affect prairie soil biology

    Science.gov (United States)

    Non-native or exotic plants often cause ecological and environmental damage in ecosystems where they invade and become established. These invasive plants may be the most serious threat to plant diversity in prairies, especially those in scattered remnants, which may be particularly vulnerable to rap...

  11. Biological Control of Plant Disease Caused by Bacteria

    Directory of Open Access Journals (Sweden)

    Triwidodo Arwiyanto

    2014-07-01

    Full Text Available Bacterial diseases in plants are difficult to control. The emphasis is on preventing the spread of the bacteria rather than curing the diseased plant. Integrated management measures for bacterial plant pathogens should be applied for successfull control. Biological control is one of the control measures viz. through the use of microorganisms to suppress the growth and development of bacterial plant pathogen and ultimately reduce the possibility of disease onset. The study of biological control of bacterial plant pathogen was just began compared with of fungal plant pathogen. The ecological nature of diverse bacterial plant pathogens has led scientists to apply different approach in the investigation of its biological control. The complex process of entrance to its host plant for certain soil-borne bacterial plant pathogens need special techniques and combination of more than one biological control agent. Problem and progress in controlling bacterial plant pathogens biologically will be discussed in more detail in the paper and some commercial products of biological control agents (biopesticides will be introduced.     Penyakit tumbuhan karena bakteri sulit dikendalikan. Penekanan pengendalian adalah pada pencegahan penyebaran bakteri patogen dan bukan pada penyembuhan tanaman yang sudah sakit. Untuk suksesnya pengendalian bakteri patogen tumbuhan diperlukan cara pengelolaan yang terpadu. Pengendalian secara biologi merupakan salah satu cara pengendalian dengan menggunakan mikroorganisme untuk menekan pertumbuhan dan perkembangan bakteri patogen tumbuhan dengan tujuan akhir menurunkan kemungkinan timbulnya penyakit. Sifat ekologi bakteri patogen tumbuhan yang berbeda-beda mengharuskan pendekatan yang berbeda pula dalam pengendaliannya secara biologi. Masalah dan perkembangan dalam pengendalian bakteri patogen tumbuhan secara biologi didiskusikan secara detail dalam makalah ini.

  12. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    OpenAIRE

    Marija Ravlić; Renata Baličević

    2014-01-01

    Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated) biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides) or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chem...

  13. Plant synthetic biology for molecular engineering of signalling and development.

    Science.gov (United States)

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  14. Biological screening of Brazilian medicinal plants

    Directory of Open Access Journals (Sweden)

    Tânia Maria de Almeida Alves

    2000-06-01

    Full Text Available In this study, we screened sixty medicinal plant species from the Brazilian savanna ("cerrado" that could contain useful compounds for the control of tropical diseases. The plant selection was based on existing ethnobotanic information and interviews with local healers. Plant extracts were screened for: (a molluscicidal activity against Biomphalaria glabrata, (b toxicity to brine shrimp (Artemia salina L., (c antifungal activity in the bioautographic assay with Cladosporium sphaerospermum and (d antibacterial activity in the agar diffusion assay against Staphylococcus aureus, Escherichia coli, Bacillus cereus and Pseudomonas aeruginosa. Forty-two species afforded extracts that showed some degree of activity in one or more of these bioassays.

  15. Biological activity of some Patagonian plants.

    Science.gov (United States)

    Cuadra, Pedro; Furrianca, María; Oyarzún, Alejandra; Yáñez, Erwin; Gallardo, Amalia; Fajardo, Víctor

    2005-12-01

    Citotoxicity (inhibition of cell division in fertilized eggs of Loxechinus albus) and general toxicity (using embryos of Artemia salina) of plants belonging to the genera Senecio, Deschampsia, Alstroemeria, Anarthrophyllum, Chloraea and Geranium were investigated.

  16. Microbiome studies in the biological control of plant pathogens

    Science.gov (United States)

    Biological control of plant pathogens, although it has been a successful alternative that has allowed to select microorganisms for the generation of bioproducts and to understand multiple biological mechanisms, cannot be considered as a strategy defined only from the selection of a range of cultiva...

  17. CIRCADIAN RHYTHMS FROM MULTIPLE OSCILLATORS: LESSONS FROM DIVERSE ORGANISMS

    OpenAIRE

    Bell-Pedersen, Deborah; Cassone, Vincent M.; Earnest, David J.; Golden, Susan S.; Hardin, Paul E.; Thomas, Terry L.; Zoran, Mark J.

    2005-01-01

    The organization of biological activities into daily cycles is universal in organisms as diverse as cyanobacteria, fungi, algae, plants, flies, birds and man. Comparisons of circadian clocks in unicellular and multicellular organisms using molecular genetics and genomics have provided new insights into the mechanisms and complexity of clock systems. Whereas unicellular organisms require stand-alone clocks that can generate 24-hour rhythms for diverse processes, organisms with differentiated t...

  18. Targeted enrichment strategies for next-generation plant biology

    Science.gov (United States)

    Richard Cronn; Brian J. Knaus; Aaron Liston; Peter J. Maughan; Matthew Parks; John V. Syring; Joshua. Udall

    2012-01-01

    The dramatic advances offered by modem DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome...

  19. Controlling Circadian Rhythms by Dark-Pulse Perturbations in Arabidopsis thaliana

    Science.gov (United States)

    Fukuda, Hirokazu; Murase, Haruhiko; Tokuda, Isao T.

    2013-01-01

    Plant circadian systems are composed of a large number of self-sustained cellular circadian oscillators. Although the light-dark signal in the natural environment is known to be the most powerful Zeitgeber for the entrainment of cellular oscillators, its effect is too strong to control the plant rhythm into various forms of synchrony. Here, we show that the application of pulse perturbations, i.e., short-term injections of darkness under constant light, provides a novel technique for controlling the synchronized behavior of plant rhythm in Arabidopsis thaliana. By destroying the synchronized cellular activities, circadian singularity was experimentally induced. The present technique is based upon the theory of phase oscillators, which does not require prior knowledge of the detailed dynamics of the plant system but only knowledge of its phase and amplitude responses to the pulse perturbation. Our approach can be applied to diverse problems of controlling biological rhythms in living systems. PMID:23524981

  20. Plant Biology and Biogeochemistry Department annual project report 1999

    DEFF Research Database (Denmark)

    Jensen, A.; Gissel Nielsen, G.; Giese, H.

    2000-01-01

    The Department of Plant Biology and Biogeochemistry is engaged in basic and applied research to improve the scientific knowledge of developing new methods and technology for the future, environmentally benign industrial and agricultural production, thusexerting less stress and strain...... of Biomass, 3. DLF-Risø Biotechnology, 4. Plant Genetics and Epidemiology, 5. Biogeochemistry and 6. Plant Ecosystems and Nutrient Cycling. This electronicversion of the annual report from the Plant Biology and Biogeochemistry Department aims to provide information about the progress in our research. Each...... on the environment. This knowledge will lead to a greater prosperity and welfare for agriculture, industry and consumers in Denmark. The research approach in the Department is mainly experimental and the projects areorganized in six research programmes: 1. Plant-Microbe Symbioses, 2. Plant Products and Recycling...

  1. Plant Biology and Biogeochemistry Department annual report 1999

    DEFF Research Database (Denmark)

    Jensen, A.; Gissel Nielsen, G.; Giese, H.

    2000-01-01

    The Department of Plant Biology and Biogeochemistry is engaged in basic and applied research to improve the scientific knowledge of developing new methods and technology for the future environmentally benign industrial and agricultural production, thusexerting less stress and strain...... of Biomass, 3. DLF-Risø Biotechnology, 4. Plant Genetics and Epidemiology, 5. Biogeochemistry and 6. Plant Ecosystems and Nutrient Cycling. This version ofthe annual report from the Plant Biology and Biogeochemistry Department aims to provide information about the progress in our research. Each programme...... on the environment. This knowledge will lead to a greater prosperity and welfare for agriculture, industry and consumers in Denmark. The research approach in the Department is mainly experimental and the projects areorganized in six research programmes: 1. Plant-Microbe Symbioses, 2. Plant Products and Recycling...

  2. Introduction to nuclear techniques in agronomy and plant biology

    International Nuclear Information System (INIS)

    Vose, P.B.

    1980-01-01

    The subject is covered in chapters, entitled: nature of isotopes and radiation; nuclear reactions; working with radioisotopes; detection systems and instrumentation; radioassay; radioisotopes and tracer principles; stable isotopes as tracers - mainly the use of 15 N; activation analysis for biological samples; x-ray fluorescence spectrography for plants and soils; autoradiography; isotopes in soils studies; isotopic tracers in field experimentation; nuclear techniques in plant science; nuclear techniques for soil water; radiation and other induced mutation in plant breeding. (author)

  3. Biological advances in Bergenia genus plant

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... Bergenia, a genus belonging to Saxifragaceae family, is one of the most important medicinal plants, has high application values for human. Currently, wild Bergenia is becoming lacking, due to destruction of ecological environment and excessive excavation; furthermore, the study on it is not deep enough,.

  4. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from arabidopsis

    OpenAIRE

    Yeang, Hoong-Yeet

    2015-01-01

    Background and Aims An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the...

  5. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    Marija Ravlić

    2014-06-01

    Full Text Available Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chemical herbicides are not allowed, if resistant weed species are present or in the integrated pest management against weeds with reduced herbicides doses and other non-chemical measures, but it has certain limitations and disadvantages.

  6. Annual report. (Air quality criteria and plants as biological indicators)

    Energy Technology Data Exchange (ETDEWEB)

    1969-01-01

    Studies have been carried out to derive air quality criteria as the basis for establishing emission limits. Experiments have also been carried out on the resistance of plant species which are important to the economy and public health. Among the specific avenues of investigation have been: the determination of phytotoxic hydrogen fluoride concentrations; studies on the resistance behavior of cultivated plants; fluorine enrichment in plant organs as a function of exposure height and wind speed; development and use of biological methods for detecting atmospheric impurities; detection of sulfur dioxide effects on plants; the use of transplanted lichens as air pollution indicators; grass cultures as indicators of fluorine pollution; biological accumulation of fluorine as a function of HF concentration in air; and the determination of lead and zinc levels in plants. 5 figures, 4 tables.

  7. Lunar plant biology--a review of the Apollo era.

    Science.gov (United States)

    Ferl, Robert J; Paul, Anna-Lisa

    2010-04-01

    Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.

  8. Circadian Rhythms in Cyanobacteria

    Science.gov (United States)

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  9. Introduction to nuclear techniques in agronomy and plant biology

    International Nuclear Information System (INIS)

    Vose, P.B.

    1980-01-01

    A scientific textbook concerning the use of nuclear techniques in agricultural and biological studies has been written. In the early chapters, basic radiation physics principles are described including the nature of isotopes and radiation, nuclear reactions, working with radioisotopes, detection systems and instrumentation, radioassay and tracer techniques. The remaining chapters describe the applications of various nuclear techniques including activation analysis for biological samples, X-ray fluorescence spectrography for plants and soils, autoradiography, isotopes in soils studies, isotopic tracers in field experimentation, nuclear techniques in plant function and soil water studies and radiation-induced mutations in plant breeding. The principles and methods of these nuclear techniques are described in a straightforward manner together with details of many possible agricultural and biological studies which students could perform. (U.K.)

  10. Treatment guidelines for Circadian Rhythm Sleep-Wake Disorders of the Polish Sleep Research Society and the Section of Biological Psychiatry of the Polish Psychiatric Association. Part I. Physiology, assessment and therapeutic methods.

    Science.gov (United States)

    Wichniak, Adam; Jankowski, Konrad S; Skalski, Michal; Skwarło-Sońta, Krystyna; Zawilska, Jolanta B; Żarowski, Marcin; Poradowska, Ewa; Jernajczyk, Wojciech

    2017-10-29

    Majority of the physiological processes in the human organism are rhythmic. The most common are the diurnal changes that repeat roughly every 24 hours, called circadian rhythms. Circadian rhythms disorders have negative influence on human functioning. The aim of this article is to present the current understanding of the circadian rhythms physiological role, with particular emphasis on the circadian rhythm sleep-wake disorders (CRSWD), principles of their diagnosis and chronobiological therapy. The guidelines are based on the review of recommendations from the scientific societies involved in sleep medicine and the clinical experiences of the authors. Researchers participating in the preparation of guidelines were invited by the Polish Sleep Research Society and the Section of Biological Psychiatry of the Polish Psychiatric Association, based on their significant contributions in circadian rhythm research and/or clinical experience in the treatment of such disorders. Finally, the guidelines were adjusted to the questions and comments given by the members of both Societies. CRSWD have a significant negative impact on human health and functioning. Standard methods used to assess CRSWD are sleep diaries and sleep logs, while the actigraphy, when available, should be also used. The most effective methods of CRSWD treatment are melatonin administration and light therapy. Behavioral interventions are also recommended. Afourteen-day period of sleep-wake rhythm assessment in CRSWD enables accurate diagnosis, adequate selection of chronobiological interventions, and planning adequate diurnal timing of their application. This type of assessment is quite easy, low-cost, and provides valuable indications how to adjust the therapeutic approach to the circadian phase of the particular patient.

  11. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  12. Method and apparatus to image biological interactions in plants

    Science.gov (United States)

    Weisenberger, Andrew; Bonito, Gregory M.; Reid, Chantal D.; Smith, Mark Frederick

    2015-12-22

    A method to dynamically image the actual translocation of molecular compounds of interest in a plant root, root system, and rhizosphere without disturbing the root or the soil. The technique makes use of radioactive isotopes as tracers to label molecules of interest and to image their distribution in the plant and/or soil. The method allows for the study and imaging of various biological and biochemical interactions in the rhizosphere of a plant, including, but not limited to, mycorrhizal associations in such regions.

  13. Plant Biology and Biogeochemistry Department annual report 2000

    DEFF Research Database (Denmark)

    Kossmann, J.; Gissel Nielsen, G.; Nielsen, K.K.

    2001-01-01

    The Department of Plant Biology and Biogeochemistry is engaged in basic and applied research to improve the scientific basis for developing new methods and technology for an environmentally benign industrial and agricultural production in the future. TheDepartment's expertise covers a wide range...... of areas needed to develop crops that meet the demands to increase agricultural production for a growing population, to produce plants with improved nutritional value, to develop crops that deliver renewableresources to the industry, and to generate plants that are adapted to the future climate...

  14. What history tells us XXIX. Transfers from plant biology

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 37; Issue 6. What history tells us XXIX. Transfers from plant biology: From cross protection to RNA interference and DNA vaccination. Michel Morange. Series Volume 37 Issue 6 December 2012 pp 949-952 ...

  15. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  16. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Strnad, Miroslav

    2018-01-01

    Roč. 247, č. 5 (2018), s. 1051-1066 ISSN 0032-0935 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Dimethylallyl diphosphate * Isopentenyl diphosphate * Isoprenoids * Phytoecdysteroids * Plant hormones * Terpenoids Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemical research methods Impact factor: 3.361, year: 2016

  17. Plant glyco-biotechnology on the way to synthetic biology

    Directory of Open Access Journals (Sweden)

    Andreas eLoos

    2014-10-01

    Full Text Available Plants are increasingly being used for the production of recombinant proteins. One reason is that plants are highly amenable for glycan engineering processes and allow the production of therapeutic proteins with increased efficacies due to optimized glycosylation profiles. Removal and insertion of glycosylation reactions by knock-out/knock-down approaches and introduction of glycosylation enzymes have paved the way for the humanization of the plant glycosylation pathway. The insertion of heterologous enzymes at exactly the right stage of the existing glycosylation pathway has turned out to be of utmost importance for optimal results. To enable such precise targeting chimeric enzymes have been constructed. In this short review we will exemplify the importance of correct targeting of glycosyltransferases, we will give an overview of the targeting mechanism of glycosyltransferases, describe chimeric enzymes used in plant N-glycosylation engineering and illustrate how plant glycoengineering builds on the tools offered by synthetic biology to construct such chimeric enzymes.

  18. Integrating cell biology and proteomic approaches in plants.

    Science.gov (United States)

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-10-03

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  19. NASA Space Biology Plant Research for 2010-2020

    Science.gov (United States)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  20. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  1. Plant biology in reduced gravity on the Moon and Mars.

    Science.gov (United States)

    Kiss, J Z

    2014-01-01

    While there have been numerous studies on the effects of microgravity on plant biology since the beginning of the Space Age, our knowledge of the effects of reduced gravity (less than the Earth nominal 1 g) on plant physiology and development is very limited. Since international space agencies have cited manned exploration of Moon/Mars as long-term goals, it is important to understand plant biology at the lunar (0.17 g) and Martian levels of gravity (0.38 g), as plants are likely to be part of bioregenerative life-support systems on these missions. First, the methods to obtain microgravity and reduced gravity such as drop towers, parabolic flights, sounding rockets and orbiting spacecraft are reviewed. Studies on gravitaxis and gravitropism in algae have suggested that the threshold level of gravity sensing is around 0.3 g or less. Recent experiments on the International Space Station (ISS) showed attenuation of phototropism in higher plants occurs at levels ranging from 0.l g to 0.3 g. Taken together, these studies suggest that the reduced gravity level on Mars of 0.38 g may be enough so that the gravity level per se would not be a major problem for plant development. Studies that have directly considered the impact of reduced gravity and microgravity on bioregenerative life-support systems have identified important biophysical changes in the reduced gravity environments that impact the design of these systems. The author suggests that the current ISS laboratory facilities with on-board centrifuges should be used as a test bed in which to explore the effects of reduced gravity on plant biology, including those factors that are directly related to developing life-support systems necessary for Moon and Mars exploration. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Plant synthetic biology: a new platform for industrial biotechnology.

    Science.gov (United States)

    Fesenko, Elena; Edwards, Robert

    2014-05-01

    Thirty years after the production of the first generation of genetically modified plants we are now set to move into a new era of recombinant crop technology through the application of synthetic biology to engineer new and complex input and output traits. The use of synthetic biology technologies will represent more than incremental additions of transgenes, but rather the directed design of completely new metabolic pathways, physiological traits, and developmental control strategies. The need to enhance our ability to improve crops through new engineering capability is now increasingly pressing as we turn to plants not just for food, but as a source of renewable feedstocks for industry. These accelerating and diversifying demands for new output traits coincide with a need to reduce inputs and improve agricultural sustainability. Faced with such challenges, existing technologies will need to be supplemented with new and far-more-directed approaches to turn valuable resources more efficiently into usable agricultural products. While these objectives are challenging enough, the use of synthetic biology in crop improvement will face public acceptance issues as a legacy of genetically modified technologies in many countries. Here we review some of the potential benefits of adopting synthetic biology approaches in improving plant input and output traits for their use as industrial chemical feedstocks, as linked to the rapidly developing biorefining industry. Several promising technologies and biotechnological targets are identified along with some of the key regulatory and societal challenges in the safe and acceptable introduction of such technology.

  3. Circadian rhythm in ''1''5O-labeled water uptake manner of a soybean plant by PETIS (Positron Emitting Tracer Imaging System)

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.; Yokota, Harumi; Tanoi, Keitaro; Furukawa, Jun; Ikeue, Natsuko; Ookuni, Yoko; Uchida, Hiroshi; Tsuji, Atsunori

    2001-01-01

    We present a circadian rhythm of water uptake manner in a soybean plant through realtime imaging of water, labeled with 15 O. Nitrogen gas was irradiated with deuterons accelerated by a cyclotron at Hamamatsu Photonics Co. to produce 15 O-labeled water. Then the 15 O-labeled water was supplied to a soybean plant from the root and the realtime water uptake amount was measured for 20 min by Positron Emitting Tracer Imaging System (PETIS). All the targeting positions for the measurements were stems, two points at an internode between root and the first leaves, between the first leaves and the first trifoliates and between the first trifoliates and the second trifoliates. The water uptake amount was gradually increased and showed its maximum at around 13:00, especially at the basal part of the stem. Then the water uptake activity was gradually decreased until 17:00. The water amount taken up by a plant at 13:00 was about 40% higher than that at 17:00. (author)

  4. Circadian rhythm in ''1''5O-labeled water uptake manner of a soybean plant by PETIS (Positron Emitting Tracer Imaging System)

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tomoko M.; Yokota, Harumi; Tanoi, Keitaro; Furukawa, Jun; Ikeue, Natsuko; Ookuni, Yoko [Tokyo Univ. (Japan). Graduate School of Agricultural and Life Sciences; Uchida, Hiroshi; Tsuji, Atsunori

    2001-05-01

    We present a circadian rhythm of water uptake manner in a soybean plant through realtime imaging of water, labeled with {sup 15}O. Nitrogen gas was irradiated with deuterons accelerated by a cyclotron at Hamamatsu Photonics Co. to produce {sup 15}O-labeled water. Then the {sup 15}O-labeled water was supplied to a soybean plant from the root and the realtime water uptake amount was measured for 20 min by Positron Emitting Tracer Imaging System (PETIS). All the targeting positions for the measurements were stems, two points at an internode between root and the first leaves, between the first leaves and the first trifoliates and between the first trifoliates and the second trifoliates. The water uptake amount was gradually increased and showed its maximum at around 13:00, especially at the basal part of the stem. Then the water uptake activity was gradually decreased until 17:00. The water amount taken up by a plant at 13:00 was about 40% higher than that at 17:00. (author)

  5. Recombinant biologic products versus nutraceuticals from plants - a regulatory choice?

    Science.gov (United States)

    Drake, Pascal M W; Szeto, Tim H; Paul, Mathew J; Teh, Audrey Y-H; Ma, Julian K-C

    2017-01-01

    Biotechnology has transformed the potential for plants to be a manufacturing source of pharmaceutical compounds. Now, with transgenic and transient expression techniques, virtually any biologic, including vaccines and therapeutics, could be manufactured in plants. However, uncertainty over the regulatory path for such new pharmaceuticals has been a deterrent. Consideration has been given to using alternative regulatory paths, including those for nutraceuticals or cosmetic agents. This review will consider these possibilities, and discuss the difficulties in establishing regulatory guidelines for new pharmaceutical manufacturing technologies. © 2016 The British Pharmacological Society.

  6. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibious-plant Nuphar lutea.

    Science.gov (United States)

    Snir, Ainit; Gurevitz, Michael; Marcus, Yehouda

    2006-12-01

    Nuphar lutea is an amphibious plant with submerged and aerial foliage, which raises the question how do both leaf types perform photosynthetically in two different environments. We found that the aerial leaves function like terrestrial sun-leaves in that their photosynthetic capability was high and saturated under high irradiance (ca. 1,500 mumol photons m(-2) s(-1)). We show that stomatal opening and Rubisco activity in these leaves co-limited photosynthesis at saturating irradiance fluctuating in a daily rhythm. In the morning, sunlight stimulated stomatal opening, Rubisco synthesis, and the neutralization of a night-accumulated Rubisco inhibitor. Consequently, the light-saturated quantum efficiency and rate of photosynthesis increased 10-fold by midday. During the afternoon, gradual closure of the stomata and a decrease in Rubisco content reduced the light-saturated photosynthetic rate. However, at limited irradiance, stomatal behavior and Rubisco content had only a marginal effect on the photosynthetic rate, which did not change during the day. In contrast to the aerial leaves, the photosynthesis rate of the submerged leaves, adapted to a shaded environment, was saturated under lower irradiance. The light-saturated quantum efficiency of these leaves was much lower and did not change during the day. Due to their low photosynthetic affinity for CO(2) (35 muM) and inability to utilize other inorganic carbon species, their photosynthetic rate at air-equilibrated water was CO(2)-limited. These results reveal differences in the photosynthetic performance of the two types of Nuphar leaves and unravel how photosynthetic daily rhythm in the aerial leaves is controlled.

  7. Biological effects due to weak magnetic fields on plants

    Science.gov (United States)

    Belyavskaya, N.

    In the evolution process, living organisms have experienced the action of the Earth's magnetic field (MF) that is a natural component of our environment. It is known that a galactic MF induction does not exceed 0.1 nT, since investigations of weak magnetic field (WMF) effects on biological systems have attracted attention of biologists due to planning long-term space flights to other planets where the magnetizing force is near 10-5 Oe. However, the role of WMF and its influence on organisms' functioning are still insufficiently investigated. A large number of experiments with seedlings of different plant species placed in WMF has found that the growth of their primary roots is inhibited during the early terms of germination in comparison with control. The proliferation activity and cell reproduction are reduced in meristem of plant roots under WMF application. The prolongation of total cell reproductive cycle is registered due to the expansion of G phase in1 different plant species as well as of G phase in flax and lentil roots along with2 relative stability of time parameters of other phases of cell cycle. In plant cells exposed to WMF, the decrease in functional activity of genome at early prereplicate period is shown. WMF causes the intensification in the processes of proteins' synthesis and break-up in plant roots. Qualitative and quantitative changes in protein spectrum in growing and differentiated cells of plant roots exposed to WMF are revealed. At ultrastructural level, there are observed such ultrastructural peculiarities as changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells of pea roots exposed to WMF. Mitochondria are the most sensitive organelle to WMF application: their size and relative volume in cells increase, matrix is electron

  8. Biological activity of selected plants with adaptogenic effect

    OpenAIRE

    Eva Ivanišová; Miroslava Kačániová; Jana Petrová; Radka Staňková; Lucia Godočíková; Tomáš Krajčovič; Štefan Dráb

    2016-01-01

    The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diff...

  9. Visible Battle Rhythm

    National Research Council Canada - National Science Library

    Cort, Brian; Bouchard, Alain; Gouin, Denis; Proulx, Pascale; Wright, William

    2006-01-01

    .... Visual Battle Rhythm (VBR) is a software prototype which updates the battle rhythm process with modern technology and careful information design to improve the synchronization, situational awareness and decision making ability of commanders...

  10. Phytochemicals and biological studies of plants from the genus Balanophora

    Directory of Open Access Journals (Sweden)

    Wang Xiaohong

    2012-08-01

    Full Text Available Abstract This review focus on the phytochemical progress and biological studies of plants from the genus Balanophora (Balanophoraceae over the past few decades, in which most plants growth in tropical and subtropical regions of Asia and Oceania, and nearly 20 species ranged in southwest China. These dioeciously parasitic plants are normally growing on the roots of the evergreen broadleaf trees, especially in the family of Leguminosae, Ericaceae, Urticaceae, and Fagaceae. The plants are mainly used for clearing away heat and toxic, neutralizing the effect of alcoholic drinks, and as a tonic for the treatment of hemorrhoids, stomachache and hemoptysis. And it has been used widely throughtout local area by Chinese people. Cinnamic acid derivative tannins, possessing a phenylacrylic acid derivative (e. g. caffeoyl, coumaroyl, feruloyl or cinnamoyl, which connected to the C(1 position of a glucosyl unit by O-glycosidic bond, are the characteristic components in genus Balanophora. In addition, several galloyl, caffeoyl and hexahydroxydiphenoyl esters of dihydrochalcone glucosides are found in B. tobiracola, B. harlandii, and B. papuana. Other compounds like phenylpropanoids, flavonoids, terpenoids and sterols are also existed. And their biological activities, such as radical scavenging activities, HIV inhibiting effects, and hypoglycemic effects are highlighted in the review.

  11. Profile of biology prospective teachers’ representation on plant anatomy learning

    Science.gov (United States)

    Ermayanti; Susanti, R.; Anwar, Y.

    2018-04-01

    This study aims to obtaining students’ representation ability in understanding the structure and function of plant tissues in plant anatomy course. Thirty students of The Biology Education Department of Sriwijaya University were involved in this study. Data on representation ability were collected using test and observation. The instruments had been validated by expert judgment. Test scores were used to represent students’ ability in 4 categories: 2D-image, 3D-image, spatial, and verbal representations. The results show that students’ representation ability is still low: 2D-image (40.0), 3D-image (25.0), spatial (20.0), and verbal representation (45.0). Based on the results of this study, it is suggested that instructional strategies be developed for plant anatomy course.

  12. Biological nitrogen fixation in non-legume plants.

    Science.gov (United States)

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  13. Bacterial microcompartments as metabolic modules for plant synthetic biology.

    Science.gov (United States)

    Gonzalez-Esquer, C Raul; Newnham, Sarah E; Kerfeld, Cheryl A

    2016-07-01

    Bacterial microcompartments (BMCs) are megadalton-sized protein assemblies that enclose segments of metabolic pathways within cells. They increase the catalytic efficiency of the encapsulated enzymes while sequestering volatile or toxic intermediates from the bulk cytosol. The first BMCs discovered were the carboxysomes of cyanobacteria. Carboxysomes compartmentalize the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) with carbonic anhydrase. They enhance the carboxylase activity of RuBisCO by increasing the local concentration of CO2 in the vicinity of the enzyme's active site. As a metabolic module for carbon fixation, carboxysomes could be transferred to eukaryotic organisms (e.g. plants) to increase photosynthetic efficiency. Within the scope of synthetic biology, carboxysomes and other BMCs hold even greater potential when considered a source of building blocks for the development of nanoreactors or three-dimensional scaffolds to increase the efficiency of either native or heterologously expressed enzymes. The carboxysome serves as an ideal model system for testing approaches to engineering BMCs because their expression in cyanobacteria provides a sensitive screen for form (appearance of polyhedral bodies) and function (ability to grow on air). We recount recent progress in the re-engineering of the carboxysome shell and core to offer a conceptual framework for the development of BMC-based architectures for applications in plant synthetic biology. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  14. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Matsuhashi, S.

    2000-01-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48 V and 62 Zn. (author)

  15. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  16. Redox rhythm reinforces the circadian clock to gate immune response.

    Science.gov (United States)

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  17. Biological activity of selected plants with adaptogenic effect

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2016-05-01

    Full Text Available The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diffusion method against three species of Gram-negative bacteria: Escherichia coli CCM 3988, Salmonella enterica subsp. enterica CCM 3807, Yersinia enterocolitica CCM 5671 and two Gram-positive bacteria: Bacillus thuringiensis CCM 19, Stapylococcus aureus subsp. aureus CCM 2461. Results showed that plants with adaptogenic effect are rich for biologically active substances. The highest antioxidant activity by DPPH method was determined in the sample of Eleuterococcus senticosus (3.15 mg TEAC – Trolox equivalent antioxidant capacity per g of sample and by phosphomolybdenum method in the sample of Codonopsis pilosulae (188.79 mg TEAC per g of sample. In the sample of Panax ginseng was measured the highest content of total polyphenols (8.10 mg GAE – galic acid equivalent per g of sample and flavonoids (3.41 μg QE – quercetin equivalent per g of sample. All samples also showed strong antimicrobial activity with the best results in Panax ginseng and Withania somnifera in particular for species Yersinia enterocolitica CCM 5671 and Salmonella enterica subsp. enterica CCM 3807. The analyzed species of plant with high value of biological activity can be used more in the future, not only in food, but also in cosmetics and pharmaceutical industries.

  18. Biological properties of nitro-fatty acids in plants.

    Science.gov (United States)

    Mata-Pérez, Capilla; Padilla, María N; Sánchez-Calvo, Beatriz; Begara-Morales, Juan C; Valderrama, Raquel; Chaki, Mounira; Barroso, Juan B

    2018-03-27

    Nitro-fatty acids (NO 2 -FAs) are formed from the reaction between nitrogen dioxide (NO 2 ) and mono and polyunsaturated fatty acids. Knowledge concerning NO 2 -FAs has significantly increased within a few years ago and the beneficial actions of these species uncovered in animal systems have led to consider them as molecules with therapeutic potential. Based on their nature and structure, NO 2 -FAs have the ability to release nitric oxide (NO) in aqueous environments and the capacity to mediate post-translational modifications (PTM) by nitroalkylation. Recently, based on the potential of these NO-derived molecules in the animal field, the endogenous occurrence of nitrated-derivatives of linolenic acid (NO 2 -Ln) was assessed in plant species. Moreover and through RNA-seq technology, it was shown that NO 2 -Ln can induce a large set of heat-shock proteins (HSPs) and different antioxidant systems suggesting this molecule may launch antioxidant and defence responses in plants. Furthermore, the capacity of this nitro-fatty acid to release NO has also been demonstrated. In view of this background, here we offer an overview on the biological properties described for NO 2 -FAs in plants and the potential of these molecules to be considered new key intermediaries of NO metabolism in the plant field. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. 2012 Gordon Research Conference, Plant molecular biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, Michael R. [Univ. of Wisconsin, Madison, WI (United States)

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  20. Markets, Bodies, Rhythms

    DEFF Research Database (Denmark)

    Borch, Christian; Bondo Hansen, Kristian; Lange, Ann-Christina

    2015-01-01

    to respond to a widely perceived problem, namely that market rhythms might be contagious and that some form of separation of bodily and market rhythms might therefore be needed. Finally, we show how current high-frequency trading, despite being purely algorithmic, does not render the traders' bodies......This article explores the relationship between bodily rhythms and market rhythms in two distinctly different financial market configurations, namely the open-outcry pit (prevalent especially in the early 20th century) and present-day high-frequency trading. Drawing on Henri Lefebvre......'s rhythmanalysis, we show how traders seek to calibrate their bodily rhythms to those of the market. We argue that, in the case of early-20th-century open-outcry trading pits, traders tried to enact a total merger of bodily and market rhythms. We also demonstrate how, in the 1920s and '30s, market observers began...

  1. Circadian Rhythm Sleep Disorders

    Directory of Open Access Journals (Sweden)

    Erhan Akinci

    2016-06-01

    Full Text Available The circadian rhythm sleep disorders define the clinical conditions where sleep and ndash;wake rhythm is disrupted despite optimum environmental and social conditions. They occur as a result of the changes in endogenous circadian hours or non-compatibility of environmental factors or social life with endogenous circadian rhythm. The sleep and ndash;wake rhythm is disrupted continuously or in repeating phases depending on lack of balance between internal and external cycles. This condition leads to functional impairments which cause insomnia, excessive sleepiness or both in people. Application of detailed sleep anamnesis and sleep diary with actigraphy record, if possible, will be sufficient for diagnosis. The treatment aims to align endogenous circadian rhythm with environmental conditions. The purpose of this article is to review pathology, clinical characteristics, diagnosis and treatment of circadian rhythm disorder. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 178-189

  2. Phytochemical and biological assessment of medicinally important plant ochradenus arabicus

    International Nuclear Information System (INIS)

    Hussain, J.

    2014-01-01

    Jabal Al-Akhdar (Oman) is one of diverse floral region of Arabian Peninsula. Ochradenus arabicus, is an important medicinal plant to local people of the area. However, little is known about its potential role in biological activities against various emerging ailments. The collected plant samples were extracted with methanol and fractionated into n-hexane (JOAH), ethyl acetate (JOAE), chloroform (JOAC), n-butanol (JOAB) and water (JOAAQ). Various concentrations of these fractions were tested for their antimicrobial, anticancer, antioxidant, antidiabetic, phenolics, flavonoids, allopathic and nutrition quality properties. The results showed that fruits and leaves of O. arabicus have higher levels of carbohydrate, crude fats, fibres, proteins, moisture, ash and energy values. In phytotoxic activities, JOAAQ inhibited the lettuce seed germination and growth. The anticancer activities of fractions showed that JOAE, JOAB and JOAAQ are potent to reduce the cancer cell viability of HT29, HCT116, HepG2 and MCF-7 lines with a concentration of 1000 micro g/ml. JOAB showed a meagre activity of 12% in Glucosidase inhibition assay. The total phenolic and flavonoid contents were significantly higher in JOAE, which also resulted in higher DPPH radical scavenging activity as compared to other fractions and control. JOAE also exhibited higher antibacterial and antifungal activities. The results of current findings suggest that O. arabicus is a potential medicinal plants, which could be subjected to advance column chromatography for lead compounds using a bioassay guided approach. (author)

  3. Fraxinus: A Plant with Versatile Pharmacological and Biological Activities.

    Science.gov (United States)

    Sarfraz, Iqra; Rasul, Azhar; Jabeen, Farhat; Younis, Tahira; Zahoor, Muhammad Kashif; Arshad, Muhammad; Ali, Muhammad

    2017-01-01

    Fraxinus , a member of the Oleaceae family, commonly known as ash tree is found in northeast Asia, north America, east and western France, China, northern areas of Pakistan, India, and Afghanistan. Chemical constituents of Fraxinus plant include various secoiridoids, phenylethanoids, flavonoids, coumarins, and lignans; therefore, it is considered as a plant with versatile biological and pharmacological activities. Its tremendous range of pharmacotherapeutic properties has been well documented including anticancer, anti-inflammatory, antioxidant, antimicrobial, and neuroprotective. In addition, its bioactive phytochemicals and secondary metabolites can be effectively used in cosmetic industry and as a competent antiaging agent. Fraxinus presents pharmacological effectiveness by targeting the novel targets in several pathological conditions, which provide a spacious therapeutic time window. Our aim is to update the scientific research community with recent endeavors with specifically highlighting the mechanism of action in different diseases. This potentially efficacious pharmacological drug candidate should be used for new drug discovery in future. This review suggests that this plant has extremely important medicinal utilization but further supporting studies and scientific experimentations are mandatory to determine its specific intracellular targets and site of action to completely figure out its pharmacological applications.

  4. Biological significance of complex N-glycans in plants and their impact on plant physiology.

    Science.gov (United States)

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  5. Development of a Configurable Growth Chamber with a Computer Vision System to Study Circadian Rhythm in Plants

    Directory of Open Access Journals (Sweden)

    Marcos Egea-Cortines

    2012-11-01

    Full Text Available Plant development is the result of an endogenous morphogenetic program that integrates environmental signals. The so-called circadian clock is a set of genes that integrates environmental inputs into an internal pacing system that gates growth and other outputs. Study of circadian growth responses requires high sampling rates to detect changes in growth and avoid aliasing. We have developed a flexible configurable growth chamber comprising a computer vision system that allows sampling rates ranging between one image per 30 s to hours/days. The vision system has a controlled illumination system, which allows the user to set up different configurations. The illumination system used emits a combination of wavelengths ensuring the optimal growth of species under analysis. In order to obtain high contrast of captured images, the capture system is composed of two CCD cameras, for day and night periods. Depending on the sample type, a flexible image processing software calculates different parameters based on geometric calculations. As a proof of concept we tested the system in three different plant tissues, growth of petunia- and snapdragon (Antirrhinum majus flowers and of cladodes from the cactus Opuntia ficus-indica. We found that petunia flowers grow at a steady pace and display a strong growth increase in the early morning, whereas Opuntia cladode growth turned out not to follow a circadian growth pattern under the growth conditions imposed. Furthermore we were able to identify a decoupling of increase in area and length indicating that two independent growth processes are responsible for the final size and shape of the cladode.

  6. Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator.

    Directory of Open Access Journals (Sweden)

    Kevin R Hayes

    Full Text Available BACKGROUND: Plant diurnal rhythms are vital environmental adaptations to coordinate internal physiological responses to alternating day-night cycles. A comprehensive view of diurnal biology has been lacking for maize (Zea mays, a major world crop. METHODOLOGY: A photosynthetic tissue, the leaf, and a non-photosynthetic tissue, the developing ear, were sampled under natural field conditions. Genome-wide transcript profiling was conducted on a high-density 105 K Agilent microarray to investigate diurnal rhythms. CONCLUSIONS: In both leaves and ears, the core oscillators were intact and diurnally cycling. Maize core oscillator genes are found to be largely conserved with their Arabidopsis counterparts. Diurnal gene regulation occurs in leaves, with some 23% of expressed transcripts exhibiting a diurnal cycling pattern. These transcripts can be assigned to over 1700 gene ontology functional terms, underscoring the pervasive impact of diurnal rhythms on plant biology. Considering the peak expression time for each diurnally regulated gene, and its corresponding functional assignment, most gene functions display temporal enrichment in the day, often with distinct patterns, such as dawn or midday preferred, indicating that there is a staged procession of biological events undulating with the diurnal cycle. Notably, many gene functions display a bimodal enrichment flanking the midday photosynthetic maximum, with an initial peak in mid-morning followed by another peak during the afternoon/evening. In contrast to leaves, in developing ears as few as 47 gene transcripts are diurnally regulated, and this set of transcripts includes primarily the core oscillators. In developing ears, which are largely shielded from light, the core oscillator therefore is intact with little outward effect on transcription.

  7. Floral biology and the effects of plant-pollinator interaction on ...

    African Journals Online (AJOL)

    Reproductive biology and patterns of plant-pollinator interaction are fundamental to gene flow, diversity and evolutionary success of plants. Consequently, we examined the magnitude of insect-plant interaction based on the dynamics of breeding systems and floral biology and their effects on pollination intensity, fruit and ...

  8. Biological activity of common mullein, a medicinal plant.

    Science.gov (United States)

    Turker, Arzu Ucar; Camper, N D

    2002-10-01

    Common Mullein (Verbascum thapsus L., Scrophulariaceae) is a medicinal plant that has been used for the treatment of inflammatory diseases, asthma, spasmodic coughs, diarrhea and other pulmonary problems. The objective of this study was to assess the biological activity of Common Mullein extracts and commercial Mullein products using selected bench top bioassays, including antibacterial, antitumor, and two toxicity assays--brine shrimp and radish seed. Extracts were prepared in water, ethanol and methanol. Antibacterial activity (especially the water extract) was observed with Klebsiella pneumonia, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. Agrobacterium tumefaciens-induced tumors in potato disc tissue were inhibited by all extracts. Toxicity to Brine Shrimp and to radish seed germination and growth was observed at higher concentrations of the extracts.

  9. Phytochrome from Green Plants: Properties and biological Function

    Energy Technology Data Exchange (ETDEWEB)

    Quail, Peter H.

    2014-07-25

    Plants constantly monitor the light environment for informational light signals used to direct adaptational responses to the prevailing conditions. One major such response, the Shade-Avaoidance Response (SAR), triggered when plants sense the presence of competing neighbors, results in enhanced channeling of photosynthetically-fixed carbon into stem elongation at the expense of deposition in reproductive tissues. This response has been selected against in many modern food crops to ensure maximum edible yield (e.g. seeds). Converse enhancement of the SAR, with consequent increased carbon channeling into vegetative cellulose, could contribute to the generation of crops with improved yield of tissues suitable for cellulosic biofuel production. The signal for this response is light enriched in far-red wavelengths. This signal is produced by sunlight filtered through, or reflected from, neighboring vegetation, as a result of preferential depletion of red photons through chlorophyll absorption. The plant phytochrome (phy) photoreceptor system (predominantly phyB) senses this signal through its capacity to switch reversibly, in milliseconds, between two molecular states: the biologically inactive Pr (red-light-absorbing) and biologically active Pfr (far-red-light-absorbing) conformers. The photoequilibrium established between these two conformers in light-grown plants is determined by the ratio of red-to-far-red wavelengths in the incoming signal. The levels of Pfr then dictate the recipient plant’s growth response: high levels suppress elongation growth; low levels promote elongation growth. Studies on seedling deetiolation have advanced our understanding considerably in recent years, of the mechanism by which the photoactivated phy molecule transduces its signal into cellular growth responses. The data show that a subfamily of phy-interacting bHLH transcription factors (PIFs) promote skotomorphogenic seedling development in post-germinative darkness, but that the phy

  10. Biological studies on Brazilian plants used in wound healing.

    Science.gov (United States)

    Schmidt, C; Fronza, M; Goettert, M; Geller, F; Luik, S; Flores, E M M; Bittencourt, C F; Zanetti, G D; Heinzmann, B M; Laufer, S; Merfort, I

    2009-04-21

    n-Hexanic and ethanolic extracts from twelve plants (Brugmansia suaveolens Brecht. et Presl., Eupatorium laevigatum Lam., Galinsoga parviflora Cav., Iresine herbstii Hook., Kalanchöe tubiflora Hamet-Ahti, Petiveria alliacea L., Pluchea sagittalis (Lam.) Cabrera, Piper regnellii DC., Schinus molle L., Sedum dendroideum Moç et Sessé ex DC., Waltheria douradinha St. Hill., Xanthium cavanillesii Schouw.) used in traditional South Brazilian medicine as wound healing agents were investigated in various biological assays, targeting different aspects in this complex process. The extracts were investigated on NF-kappaB DNA binding, p38alpha MAPK, TNF-alpha release, direct elastase inhibition and its release as well as on caspase-3. Fibroblasts migration to and proliferation into the wounded monolayers were evaluated in the scratch assay, the agar diffusion test for antibacterial and the MTT assay for cytotoxic effects. The hydrophilic extracts from Galinsoga parviflora, Petiveria alliacea, Schinus molle, Waltheria douradinha and Xanthium cavanillesii as well as the lipophilic extract of Waltheria douradinha turned out to be the most active ones. These results increase our knowledge on the wound healing effects of the investigated medicinal plants. Further studies are necessary to find out the effective secondary metabolites responsible for the observed effects.

  11. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Strnad, Miroslav

    2016-01-01

    Roč. 244, č. 3 (2016), s. 545-555 ISSN 0032-0935 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Phytoecdysteroids * Ecdysteroids * 20-Hydroxyecdysone Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.361, year: 2016

  12. Important biological factors for utilizing native plant species

    Science.gov (United States)

    Loren E. Wiesner

    1999-01-01

    Native plant species are valuable resources for revegetation of disturbed ecosystems. The success of these plantings is dependent on the native species selected, quality of seed used, condition of the soil, environmental conditions before and after planting, planting equipment used, time of planting, and other factors. Most native species contain dormant seed. Dormancy...

  13. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    Science.gov (United States)

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Rhythm in language acquisition.

    Science.gov (United States)

    Langus, Alan; Mehler, Jacques; Nespor, Marina

    2017-10-01

    Spoken language is governed by rhythm. Linguistic rhythm is hierarchical and the rhythmic hierarchy partially mimics the prosodic as well as the morpho-syntactic hierarchy of spoken language. It can thus provide learners with cues about the structure of the language they are acquiring. We identify three universal levels of linguistic rhythm - the segmental level, the level of the metrical feet and the phonological phrase level - and discuss why primary lexical stress is not rhythmic. We survey experimental evidence on rhythm perception in young infants and native speakers of various languages to determine the properties of linguistic rhythm that are present at birth, those that mature during the first year of life and those that are shaped by the linguistic environment of language learners. We conclude with a discussion of the major gaps in current knowledge on linguistic rhythm and highlight areas of interest for future research that are most likely to yield significant insights into the nature, the perception, and the usefulness of linguistic rhythm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Biology and biotechnological advances in Jatropha curcas - A biodiesel plant

    KAUST Repository

    Reddy, Muppala P.

    2009-10-31

    Increasing global demand for energy, the impending depletion of fossil fuels, and concern over global climate change have lead to a resurgence in the development of alternative energy sources. Bio-fuels and bio-energy encompass a wide range of alternative sources of energy of biological origin, and offer excellent, environmentally friendly opportunities to address these issues. The recognition that Jatropha oil can yield high quality biodiesel has led to a surge of interest in Jatropha across the globe, more so in view of the potential for avoiding the dilemma of food vs fuel. Hardiness, rapid growth, easy propagation, short gestation period, wide adaptation, and optimum plant size combine to make this species suitable for sustainable cultivation on wastelands. Besides biodiesel from the seed, the plant produces several useful products that also have commercial value. Large scale cultivation remains the single most important factor that will ultimately determine the success of Jatropha as a source of bio-fuel. The limited knowledge of the genetics of this species, low and inconsistent yields, the narrow genetic variability, and vulnerability to insects and diseases are major constraints in successful cultivation of Jatropha as a bio-fuel crop. Despite the optimal protein content and composition of the pressed cake, the presence of phorbol esters makes it unsuitable for consumption by livestock. A non-toxic variety with low or no phorbol ester content has been identified from Mexico, and the utility of pressed cake from this variety as livestock feed has been demonstrated successfully. In the absence of any morphological differences, identification of linked markers for toxic/non-toxic varieties will add value to the crop and facilitate further improvement. This chapter discusses current efforts towards assessing the diversity and phylogeny of Jatropha, identification of specific markers for toxic and non-toxic varieties, and aspects of micropropagation and genetic

  16. A Circadian Rhythm Regulating Hyphal Melanization in Cercospora Kikuchii

    Science.gov (United States)

    Circadian rhythms, biochemical or developmental processes with a period length of approximately 24 hours, are thoroughly documented in plants and animals. However, virtually all of what is currently known about circadian rhythms in fungi is derived from the model fungus, Neurospora crassa, including...

  17. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  18. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench

    Science.gov (United States)

    2012-08-01

    1105 Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench Luiz H...fungal community and micropropagated clones of E. purpurea was re-established after acclimatization to soil and the endophytic fungi produced compounds...Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench 5a. CONTRACT

  20. [New materia medica project: synthetic biology based bioactive metabolites research in medicinal plant].

    Science.gov (United States)

    Wang, Yong

    2017-03-25

    In the last decade, synthetic biology research has been gradually transited from monocellular parts or devices toward more complex multicellular systems. The emerging plant synthetic biology is regarded as the "next chapter" of synthetic biology. The complex and diverse plant metabolism as the entry point, plant synthetic biology research not only helps us understand how real life is working, but also facilitates us to learn how to design and construct more complex artificial life. Bioactive compounds innovation and large-scale production are expected to be breakthrough with the redesigned plant metabolism as well. In this review, we discuss the research progress in plant synthetic biology and propose the new materia medica project to lift the level of traditional Chinese herbal medicine research.

  1. Melatonin in sleepless children : everything has a rhythm?

    NARCIS (Netherlands)

    van Geijlswijk, I.M.

    2011-01-01

    Every living organism has an biological clock regulating endogenous melatonin production, synchronized by exogenous impulses like daylight, temperature and feeding. Inappropriately applied bright light disturbs this melatonin rhythm. Some large swine producers apply artificial light three times a

  2. Circadian Rhythm Sleep-Wake Disorders.

    Science.gov (United States)

    Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C

    2015-12-01

    The circadian system regulates the timing and expression of nearly all biological processes, most notably, the sleep-wake cycle, and disruption of this system can result in adverse effects on both physical and mental health. The circadian rhythm sleep-wake disorders (CRSWDs) consist of 5 disorders that are due primarily to pathology of the circadian clock or to a misalignment of the timing of the endogenous circadian rhythm with the environment. This article outlines the nature of these disorders, the association of many of these disorders with psychiatric illness, and available treatment options. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    Science.gov (United States)

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Treatment guidelines for Circadian Rhythm Sleep - Wake Disorders of the Polish Sleep Research Society and the Section of Biological Psychiatry of the Polish Psychiatric Association. Part II. Diagnosis and treatment.

    Science.gov (United States)

    Wichniak, Adam; Jankowski, Konrad S; Skalski, Michał; Skwarło-Sońta, Krystyna; Zawilska, Jolanta B; Żarowski, Marcin; Poradowska, Ewa; Jernajczyk, Wojciech

    2017-10-29

    Circadian rhythm sleep-wake disorders (CRSWD) are a group of disorders, in which the timing of sleep and wakefulness significantly differs from a patient's expectations or socially acceptable times. The aimof the article is to present the current principles for the diagnosis and treatment of CRSWD in adults and children. Guidelines proposed as CRSWD treatment standard are based on the recommendations from the scientific societies involved in the sleep research and medicine. Researchers participating in the guidelines preparation were invited by the Polish Sleep Research Society and the Section of Biological Psychiatry of the Polish Psychiatric Association based on their significant contribution to the circadian rhythm research and/or clinical experience in the treatment of these disorders. Finally, the guidelines were adjusted to the questions and comments given by the members of both Societies. Patients with endogenous CRSWD are often misdiagnosed and treated for insomnia or hypersomnia. Therefore, each patient reporting sleep-wake disorders should be interviewed about the quality of sleep and its timing during free days (e.g. weekends, holidays). Avalid CRSWD diagnosis can be also established by using sleep diaries/logs and actigraphy. The treatment of choice for CRSWD is chronotherapy, which involves melatonin application, light therapy, and behavioral interventions. Sleep disorders associated with shift work and time zone changes are a growing health problem. Interventions for these disorders should primarily focus on prevention. The main problem in the treatment of CRSWD is an invalid diagnosis. Hypnotics and/or psychostimulants are often used instead of chronotherapeutic interventions, what can alleviate symptoms but is not an effective treatment.

  5. Eduard Strasburger (1844-1912): founder of modern plant cell biology.

    Science.gov (United States)

    Volkmann, Dieter; Baluška, František; Menzel, Diedrik

    2012-10-01

    Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in "education through science." He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.

  6. Biological clocks: riding the tides.

    Science.gov (United States)

    de la Iglesia, Horacio O; Johnson, Carl Hirschie

    2013-10-21

    Animals with habitats in the intertidal zone often display biological rhythms that coordinate with both the tidal and the daily environmental cycles. Two recent studies show that the molecular components of the biological clocks mediating tidal rhythms are likely different from the phylogenetically conserved components that mediate circadian (daily) rhythms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Program and Abstracts of the Society for Research on Biological Rhythms (2nd) Held in Jacksonville, Florida on 9-13 May 1990

    Science.gov (United States)

    1991-07-15

    York State Joseph S. Takahashi. Department of Biochemistry , Psychiatric Institute, New York, "Nestle Research Molecular Biology and Cell Biology, and...Foundation, Ontario, Dept. of Psychiatry. Stanford University School of Medicine, Dept. of 15:30-17:30 Room 4 & 5 Clinical Biochemistry , University of...University of Michigan, Dept. of Uniformed Services University of Health Sciences, Kinesiology , Ann Arbor, Mi. ard School of Life and Health Sciences

  8. Understanding the Biological Roles of Pectins in Plants through Physiological and Functional Characterizations of Plant and Fungal Mutants

    DEFF Research Database (Denmark)

    Stranne, Maria

    The plant cell wall is a dynamic structure and it is involved in regulating a number of physiological features of plants such as physical strength, growth, cell differentiation, intercellular communication, water movement and defense responses. Pectins constitute a major class of plant cell wall...... polysaccharides and consist of backbones rich in galacturonic acids, which are decorated with a range of functional groups including acetyl esters and arabinan sidechains. Although much effort has been made to uncover biological functions of pectins in plants and remarkable progresses have taken place, many...... aspects remain elusive. Studies described in this thesis aimed at gaining new insights into the biological roles of pectin acetylation and arabinosylation in the model plant Arabidopsis thaliana. The thesis consists of four chapters: physiological characterization of cell wall mutants affected in cell...

  9. Plant gum exudates (Karau) and mucilages, their biological sources ...

    African Journals Online (AJOL)

    In recent years those polymers derived from plants have evoke tremendous interest because of their industrial applications as diluent binders, thickening agents, smoothening, emulsifiers, gelling agents and stabilizers. This increasing research in this group of these plant materials are clear indications of their increasing ...

  10. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers

    KAUST Repository

    Serag, Maged F.; Kaji, Noritada; Habuchi, Satoshi; Bianco, Alberto; Baba, Yoshinobu

    2013-01-01

    For years, nanotechnology has shown great promise in the fields of biomedical and biotechnological sciences and medical research. In this review, we demonstrate its versatility and applicability in plant cell biology studies. Specifically, we discuss the ability of functionalized carbon nanotubes to penetrate the plant cell wall, target specific organelles, probe protein-carrier activity and induce organelle recycling in plant cells. We also, shed light on prospective applications of carbon nanomaterials in cell biology and plant cell transformation. © 2013 The Royal Society of Chemistry.

  11. RHYTHM STRUCTURE IN NEWS READING

    Directory of Open Access Journals (Sweden)

    Lluís Mas Manchón

    2013-06-01

    Full Text Available Rhythm is central to news reading in radio and television programs. This paper proposes a three level structure for rhythm in news discourse. It gives a comprehensive definition of rhythm and types of rhythm. Firstly, the Base Rhythm Structure consists of semantic and pragmatic rhythmic accents, coincident with very specific words. Secondly, these accents are grouped together according to type, frequency and order, thereby configuring three types of “rhythmic units” (the Internal Rhythm Structure: starting, main and end units. A last structure level presents four discursive factors that are very important in integrating the overall time structure of news announcing (the Melodic Rhythm Structure. This integral structure for news announcing rhythm should be further tested in acoustic-experimental studies under the criterion of information transmission efficacy.

  12. Biologically Active Compounds of Plant Foods: Prospective Impact ...

    African Journals Online (AJOL)

    On the other hand, other biologically active compounds impair health by ... of essential elements through different mechanisms and giving astringent taste, odor, ... The health benefits of selected substances from Ethiopian food crops need to ...

  13. The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones.

    Science.gov (United States)

    du Toit, Karen; Drewes, Siegfried E; Bodenstein, Johannes

    2010-03-01

    This work reviews the four basic structural types of homoisoflavanones. The relationships between the various structures of homoisoflavanones and their plant origins, ethnobotany and biological activities are put into perspective.

  14. Plant oligoadenylates: enzymatic synthesis, isolation, and biological activities

    International Nuclear Information System (INIS)

    Devash, Y.; Reichman, M.; Sela, I.; Reichenbach, N.L.; Suhadolnik, R.J.

    1985-01-01

    An enzyme that converts [ 3 H, 32 P]ATP, with a 3 H: 32 P ratio of 1:1, to oligoadenylates with the same 3 H: 32 P ratio was increased in plants following treatment with human leukocyte interferon or plant antiviral factor or inoculation with tobacco mosaic virus. The enzyme was extracted from tobacco leaves, callus tissue cultures, or cell suspension cultures. The enzyme, a putative plant oligoadenylate synthetase, was immobilized on poly(rI) . poly(rC)-agarose columns and converted ATP into plant oligoadenylates. These oligoadenylates were displaced from DEAE-cellulose columns with 350 mM KCl buffer, dialyzed, and further purified by high-performance liquid chromatography (HPLC) and DEAE-cellulose gradient chromatography. In all steps of purification, the ratio of 3 H: 32 P in the oligoadenylates remained 1:1. The plant oligoadenylates isolated by displacement with 350 mM KCl had a molecular weight greater than 1000. The plant oligoadenylates had charges of 5- and 6-. HPLC resolved five peaks, three of which inhibited protein synthesis in reticulocyte and wheat germ systems. Partial structural elucidation of the plant oligoadenylates has been determined by enzymatic and chemical treatments. An adenylate with a 3',5'-phosphodiester and/or a pyrophosphoryl linkage with either 3'- or 5'-terminal phosphates is postulated on the basis of treatment of the oligoadenylates with T2 RNase, snake venom phosphodiesterase, and bacterial alkaline phosphatase and acid and alkaline hydrolyses. The plant oligoadenylates at 8 X 10(-7) M inhibit protein synthesis by 75% in lysates from rabbit reticulocytes and 45% in wheat germ cell-free systems

  15. Light Rhythms in Architecture

    DEFF Research Database (Denmark)

    Bülow, Katja

    2013-01-01

    formation and rhythm. When integrated into an architectural concept, electrical lighting non-intended for poetic composition has the ability to contribute to place, time, and function-telling aspects of places in urban contexts. Urban environments are information wise challenging to pre-historic human...

  16. Charles Darwin and the origins of plant evolutionary developmental biology.

    Science.gov (United States)

    Friedman, William E; Diggle, Pamela K

    2011-04-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form.

  17. A circadian rhythm regulating hyphal melanization in Cercospora kikuchii.

    Science.gov (United States)

    Bluhm, Burton H; Burnham, A Michele; Dunkle, Larry D

    2010-01-01

    Many metabolic and developmental processes in fungi are controlled by biological rhythms. Circadian rhythms approximate a daily (24 h) cycle and have been thoroughly studied in the model fungus, Neurospora crassa. However relatively few examples of true circadian rhythms have been documented among other filamentous fungi. In this study we describe a circadian rhythm underlying hyphal melanization in Cercospora kikuchii, an important pathogen of soybean. After growth in light or light : dark cycles, colonies transferred to darkness produced zonate bands of melanized hyphae interspersed with bands of hyaline hyphae. Rhythmic production of bands was remarkably persistent in the absence of external cues, lasting at least 7 d after transfer to darkness, and was compensated over a range of temperatures. As in N. crassa, blue light but not red light was sufficient to entrain the circadian rhythm in C. kikuchii, and a putative ortholog of white collar-1, one of the genes required for light responses in N. crassa, was identified in C. kikuchii. Circadian regulation of melanization is conserved in other members of the genus: Similar rhythms were identified in another field isolate of C. kikuchii as well as field isolates of C. beticola and C. sorghi, but not in wild-type strains of C. zeae-maydis or C. zeina. This report represents the first documented circadian rhythm among Dothideomycete fungi and provides a new opportunity to dissect the molecular basis of circadian rhythms among filamentous fungi.

  18. Disrupted seasonal biology impacts health, food security and ecosystems

    NARCIS (Netherlands)

    Stevenson, T. J.; Visser, M. E.; Arnold, W.; Barrett, P.; Biello, S.; Dawson, A.; Denlinger, D. L.; Dominoni, D.; Ebling, F. J.; Elton, S.; Evans, N.; Ferguson, H. M.; Foster, R. G.; Hau, M.; Haydon, D. T.; Hazlerigg, D. G.; Heideman, P.; Hopcraft, J. G. C.; Jonsson, N. N.; Kronfeld-Schor, N.; Kumar, V.; Lincoln, G. A.; MacLeod, R.; Martin, S. A. M.; Martinez-Bakker, M.; Nelson, R. J.; Reed, T.; Robinson, J. E.; Rock, D.; Schwartz, W. J.; Steffan-Dewenter, I.; Tauber, E.; Thackeray, S. J.; Umstatter, C.; Yoshimura, T.; Helm, B.

    2015-01-01

    The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for

  19. Level of Awareness of Biology and Geography Students Related to Recognizing Some Plants

    Science.gov (United States)

    Aladag, Caner; Kaya, Bastürk; Dinç, Muhittin

    2017-01-01

    The aim of this study is to investigate the awareness of the geography and biology students about recognizing some plants which they see frequently around them in accordance with the information they gained during their education process. The sample of the study consists of 37 biology and 40 geography students studying at the Ahmet Kelesoglu…

  20. Biological effects from discharge of cooling water from thermal power plants

    International Nuclear Information System (INIS)

    1976-12-01

    Results are reported for a Danish project on biological effects from discharge of cooling water from thermal power plants. The purpose of the project was to provide an up-to-date knowledge of biological effects of cooling water discharge and of organization and evaluation of recipient investigations in planned and established areas. (BP)

  1. [Melatonin, synthetic analogs, and the sleep/wake rhythm].

    Science.gov (United States)

    Escames, G; Acuña-Castroviejo, D

    Melatonin, a widespread hormone in the animal kingdom, is produced by several organs and tissues besides the pineal gland. Whilst extrapineal melatonin behaves as a cytoprotective molecule, the pineal produces the hormone in a rhythmic manner. The discovery of melatonin in 1958, and the characterization of its synthesis somewhat later, let to the description of its photoperiodic regulation and its relationship with the biological rhythms such as the sleep/wake rhythm. The suprachiasmatic nuclei are the anatomical seat of the biological clock, represented by the clock genes, which code for the period and frequency of the rhythms. The photoperiod synchronizes the activity of the auprachiasmatic biological clock, which in turn induces the melatonin's rhythm. The rhythm of melatonin, peaking at 2-3 am, acts as an endogenous synchronizer that translates the environmental photoperiodic signal in chemical information for the cells. The sleep/wake cycle is a typical biological rhythm synchronized by melatonin, and the sleep/wake cycle alterations of chronobiological origin, are very sensitive to melatonin treatment. Taking advantage of the chronobiotic and antidepressive properties of melatonin, a series of synthetic analogs of this hormone, with high interest in insomnia, are now available. Melatonin is a highly effective chronobiotic in the treatment of chronobiological alterations of the sleep/wake cycle. From a pharmacokinetic point of view, the synthetic drugs derived from melatonin are interesting tools in the therapy of these alterations.

  2. Remediation of toxic ad hazardous wastes: plants as biological agents to mitigate heavy metal pollution

    International Nuclear Information System (INIS)

    Cadiz, Nina M.; Principe, Eduardo B.

    2005-01-01

    This papers introduced the plants as biological agents to control heavy metal pollution and the process used the green plants to clean contaminated soils or to render the toxic ions harmless is a new technology called phytoremediation with two levels, the phytostabilization and phytoextraction

  3. Physics and the molecular revolution in plant biology: union needed for managing the future

    Directory of Open Access Journals (Sweden)

    Ulrich Lüttge

    2016-10-01

    Full Text Available The question was asked if there is still a prominent role of biophysics in plant biology in an age when molecular biology appears to be dominating. Mathematical formation of theory is essential in systems biology, and mathematics is more inherent in biophysics than in molecular biology. A survey is made identifying and briefly characterizing fields of plant biology where approaches of biophysics remain essential. In transport at membranes electrophysiology and thermodynamics are biophysical topics. Water is a special molecule. Its transport follows the physical laws of osmosis and gradients of water potential on the background of physics of hydraulic architecture. Photobiology needs understanding of the physics of electro-magnetic radiation of quantitative nature in photosynthesis and of qualitative nature in perception by the photo-sensors cryptochromes, phototropins and phytochrome in environmental responses and development. Biophysical oscillators can play a role in biological timing by the circadian clock. Integration in the self-organization of modules, such as roots, stems and leaves, for the emergence of whole plants as unitary organisms needs storage and transport of information where physical modes of signaling are essential with cross talks between electrical and hydraulic signals and with chemical signals. Examples are gravitropism and root-shoot interactions in water relations. All of these facets of plant biophysics overlie plant molecular biology and exchange with it. It is advocated that a union of approaches of plant molecular biology and biophysics needs to be cultivated. In many cases it is already operative. In bionics biophysics is producing output for practical applications linking biology with technology. Biomimetic engineering intrinsically uses physical approaches. An extreme biophysical perspective is looking out for life in space. Sustained and increased practice of biophysics with teaching and research deserves strong

  4. Isotopic techniques for measuring the biological activity in plant rhizosphere

    International Nuclear Information System (INIS)

    Warembourg, F.R.

    1975-01-01

    The use of 14 C made it possible to separate root respired CO 2 and microbial CO 2 resulting from exudates utilisation by the rhizosphere microflora. Measurements were done after wheat plants grown under axenic and non axenic conditions were placed during short period of time in an atmosphere contaning 14 CO 2 . Under axenic conditions evolution of 14 CO 2 follows a bell shaped curve due to the brief appearance of labelled compounds translocated from the aerial part of the plants to the roots. In the presence of microorganisms, the maximum of activity due to root respiration is identical but immediately followed by a second peak of 14 CO 2 evolution that was attributed to the decomposition of labelled exudates by the microflora. The same observations resulted from the labelling of a grassland vegetation sampled with its soil and placed in the laboratory. Preliminary results obtained using this method of short term labelling of plants are presented here [fr

  5. Biological activity of phenolic compounds present in buckwheat plants

    Czech Academy of Sciences Publication Activity Database

    Kalinová, J.; Tříska, Jan; Vrchotová, Naděžda

    2005-01-01

    Roč. 16, č. 1 (2005), s. 123-129 ISSN 0971-4693 Institutional research plan: CEZ:AV0Z60870520 Keywords : biological activity, extract, Fagopyrum esculenthum Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.686, year: 2005

  6. Biological, ecological and agronomic significance of plant phenolic ...

    African Journals Online (AJOL)

    Our understanding of some phenolic compounds in the last few decades has greatly improved. However, their biological, ecological and agronomical significance in the rhizosphere of most symbiotic legumes is much less clear. Further understanding of these biomolecules will increase our knowledge of their contribution in ...

  7. Trichoderma-plant-pathogen interactions: advances in genetics of biological control.

    Science.gov (United States)

    Mukherjee, Mala; Mukherjee, Prasun K; Horwitz, Benjamin A; Zachow, Christin; Berg, Gabriele; Zeilinger, Susanne

    2012-12-01

    Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.

  8. BIOLOGICAL VALUE OF PLANT PROTEIN AND VITAMIN SUPPLEMENTS

    OpenAIRE

    Fisenko G. V.; Koshchaeva O. V.; Luneva A. V.; Petenko I. A.

    2014-01-01

    Results of the use of plant protein feed additives containing pumpkin paste and soybean seeds of different varieties for quail are presented in the article. It was established that the use of such additives on the basis of Valens soybean allowed to receive higher growth parameters than groups treated with Vilan soybean additive

  9. Plant Collections Online: Using Digital Herbaria in Biology Teaching

    Science.gov (United States)

    Flannery, Maura C.

    2013-01-01

    Herbaria are collections of preserved plants specimens, some of which date back to the 16th century. They are essential to botanical research, especially in systematics. They can also be important historical documents. The collections of Lewis and Clark, Carolus Linnaeus, and Charles Darwin, to name a few, are primary sources for the study of…

  10. Biological advances in Bergenia genus plant | Zhang | African ...

    African Journals Online (AJOL)

    Bergenia, a genus belonging to Saxifragaceae family, is one of the most important medicinal plants, has high application values for human. Currently, wild Bergenia is becoming lacking, due to destruction of ecological environment and excessive excavation; furthermore, the study on it is not deep enough, many related ...

  11. Reproductive biology in the medicinal plant, Plumbago zeylanica L ...

    African Journals Online (AJOL)

    Plumbago zeylanica L. is an important medicinal plant traditionally used for the treatment of various diseases. Phenology from seed germination via vegetative growth to reproductive development was studied under glasshouse and nursery conditions. Seeds rapidly germinated on a mixture of nursery soil and cattle dung in ...

  12. Biological monitoring of environmental contaminants (plants). Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Burton, M.A.S.

    1986-01-01

    Knowledge of contaminant concentrations does not necessarily indicate their significance to plant populations and communities within ecosystems. Accumulation within plants facilitates analysis of contaminants which may be present at very low levels in the environment and may show the spatial distribution and changes in the level of contamination with time. Effects on species distribution within plant communities and visible injury to foliage may also be related to contamination. Species can be selected appropriate to the area and the contaminant to be monitored. Species used to investigate the input of contaminants from atmospheric deposition, for example, may differ from those used to assess transfer through food webs. Mosses and lichens have been particularly widely used in many countries to show distribution of metals and radionuclides on local and regional scales and of pesticide contamination. Visible injury to foliage of higher plant species may reflect atmospheric concentrations of gaseous pollutants and monitoring networks of transplanted sensitive species can provide information on contaminant levels on a regional scale. Changes in species composition, especially of lichens, have also been related to the degree of contamination.

  13. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.

    Science.gov (United States)

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-12-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. RHYTHM DISTURBANCES DURING COLONOSCOPY

    Directory of Open Access Journals (Sweden)

    D. Jordanov

    2012-08-01

    Full Text Available Purpose: The purpose of this study is to assess the risk of inducing rhythm disturbances of the heart during colonoscopy.Patients and methods used: 80 patients had undergone colonoscopyper formed by two experienced specialists of endoscopy for the period from March to December 2011. The endoscopies were performed without premedication and sedation. Holter was placed on each patient one hour before the endoscopic examination, and the record continued one hour after the manipulation. The blood pressure was measured before, during and after the procedure.Results: During colonoscopy 25 patients (31,25% manifested rhythm disorders. In 15 patients (18,75% sinus tachycardia occurred. In 7 patients (8,75% suptraventricular extra systoles were observed and in 3 patients (3,75% - ventricular extra systoles. No ST-T changes were found. Highest values of the blood pressure were measured before and during the endoscopy, but the values did not exceed 160/105 mmHg. In 10 patients (12,5% a hypotensive reaction was observed, bur the values were not lower than 80/ 50. In 2 patients there was a short bradycardia with a heart frequency 50-55 /min.Conclusions: Our results showed that the rhythm disorders during lower colonoscopy occur in approximately 1/3 of the examined patients, there is an increase or decrease of the blood pressure in some patients, but that doesn’t require physician’s aid and the examination can be carried out safely without monitoring.

  15. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    Science.gov (United States)

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Rooting depths of plants relative to biological and environmental factors

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance

  17. Collective biology of neoplastic disease in dicotyledonous plants

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1987-07-01

    We discuss the two different responses from the angiosperms to the specific molecular mechanisms of the tumor-inducing agent contained in the bacterium Agrobacterium tumefaciens. This is done in terms of the collective variables for expressing genetic response to a continuously varying supply of energy from metabolic pathways. We are led to the conjecture that the expression of the recessive oncogenes may not be restricted to humans (retinoblastoma and osteosarcoma), but may also occur in plants (crown gall), and be expressed through a heat-shock. (author). 11 refs

  18. Chronotype and circadian rhythm in bipolar disorder: A systematic review.

    Science.gov (United States)

    Melo, Matias C A; Abreu, Rafael L C; Linhares Neto, Vicente B; de Bruin, Pedro F C; de Bruin, Veralice M S

    2017-08-01

    Despite a complex relationship between mood, sleep and rhythm, the impact of circadian disruptions on bipolar disorder (BD) has not been clarified. The purpose of this systematic review was to define current evidence regarding chronotype and circadian rhythm patterns in BD patients. 42 studies were included, involving 3432 BD patients. Disruption of the biological rhythm was identified, even in drug-naïve BD patients and independently of mood status. Daily profiles of melatonin levels and cortisol indicated a delayed phase. Depression was more frequently associated with circadian alterations than euthymia. Few studies evaluated mania, demonstrating irregular rhythms. Evening type was more common in BD adults. Studies about the influence of chronotype on depressive symptoms showed conflicting results. Only one investigation observed the influences of chronotype in mania, revealing no significant association. Effects of psychoeducation and lithium on rhythm in BD patients were poorly studied, demonstrating no improvement of rhythm parameters. Studies about genetics are incipient. In conclusion, disruption in circadian rhythm and eveningness are common in BD. Prospective research evaluating the impact of circadian disruption on mood symptoms, metabolism, seasonality, the influence of age and the effects of mood stabilizers are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities.

    Science.gov (United States)

    Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  20. Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Julie A Peterson

    2016-11-01

    Full Text Available Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically-, plant toxin-, plant nutrient-, and/or physically-mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  1. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  2. Plant Molecular Biology 2008 Gordon Research Conference - July 13-18, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Richard M. Amasino

    2009-08-28

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2008 conference will continue in that tradition. There will be sessions on metabolism; new methods to study genomes, proteomes and metabolomes; plant-microbe interactions; plant hormones; epigenetics. A new topic for the conference this year will be bioenergy. Thus this conference will bring together a range of disciplines to foster the exchange ideas and to permit the participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner.

  3. Review-An overview of Pistacia integerrima a medicinal plant species: Ethnobotany, biological activities and phytochemistry.

    Science.gov (United States)

    Bibi, Yamin; Zia, Muhammad; Qayyum, Abdul

    2015-05-01

    Pistacia integerrima with a common name crab's claw is an ethnobotanically important tree native to Asia. Traditionally plant parts particularly its galls have been utilized for treatment of cough, asthma, dysentery, liver disorders and for snake bite. Plant mainly contains alkaloids, flavonoids, tannins, saponins and sterols in different parts including leaf, stem, bark, galls and fruit. A number of terpenoids, sterols and phenolic compounds have been isolated from Pistacia integerrima extracts. Plant has many biological activities including anti-microbial, antioxidant, analgesic, cytotoxicity and phytotoxicity due to its chemical constituents. This review covers its traditional ethnomedicinal uses along with progresses in biological and phytochemical evaluation of this medicinally important plant species and aims to serve as foundation for further exploration and utilization.

  4. Regulation of reproduction by the circadian rhythms.

    Science.gov (United States)

    Zhang, Wen-Xiang; Chen, Si-Yu; Liu, Chang

    2016-12-25

    Mammals synchronize their circadian activity primarily to the cycles of light and darkness in the environment. Circadian rhythm is controlled by the central clock in the hypothalamic suprachiasmatic nucleus (SCN) and the peripheral clocks in various tissues. More importantly, the central clock can integrate photic/nonphotic signals to generate rhythmic outputs, and then drive the slave oscillators in peripheral tissues through neuroendocrine and behavioral signals. Human reproductive activities, as some other physiological functions, are controlled by the biological clocks. Accumulating lines of epidemiological and genetic evidence indicate that disruption of circadian clock can be directly involved in multiple pathological processes, including infertility. In this review, we mainly discuss the presence of a circadian clock in reproductive tissues and its roles in follicles development, ovulation, spermatogenesis, fertilization and embryo implantation, etc. As the increased shift work and assisted reproductive technologies possibly disrupt circadian rhythmicity to impact reproduction, the importance of circadian rhythms should be highlighted in the regulation of reproductive process.

  5. Blueprints for green biotech: development and application of standards for plant synthetic biology.

    Science.gov (United States)

    Patron, Nicola J

    2016-06-15

    Synthetic biology aims to apply engineering principles to the design and modification of biological systems and to the construction of biological parts and devices. The ability to programme cells by providing new instructions written in DNA is a foundational technology of the field. Large-scale de novo DNA synthesis has accelerated synthetic biology by offering custom-made molecules at ever decreasing costs. However, for large fragments and for experiments in which libraries of DNA sequences are assembled in different combinations, assembly in the laboratory is still desirable. Biological assembly standards allow DNA parts, even those from multiple laboratories and experiments, to be assembled together using the same reagents and protocols. The adoption of such standards for plant synthetic biology has been cohesive for the plant science community, facilitating the application of genome editing technologies to plant systems and streamlining progress in large-scale, multi-laboratory bioengineering projects. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  6. Light Rhythms in Architecture

    DEFF Research Database (Denmark)

    Bülow, Katja

    2013-01-01

    On one hand, urban lighting expresses itself in a complex visual environment made by the interplay by between many separate lighting schemes, as street lighting, shop lighting, luminous commercials etc. On the other, a noticeable order of patterns occurs, when lighting is observed as luminous...... formation and rhythm. When integrated into an architectural concept, electrical lighting non-intended for poetic composition has the ability to contribute to place, time, and function-telling aspects of places in urban contexts. Urban environments are information wise challenging to pre-historic human...... instincts, but they can be met by careful selection and adjustment of existing light situations....

  7. Orchestrating intensities and rhythms

    DEFF Research Database (Denmark)

    Staunæs, Dorthe; Juelskjær, Malou

    2016-01-01

    environmentality and learning-centered governance standards has dramatic and performative effects for the production of (educational) subjectivities. This implies a shift from governing identities, categories and structures towards orchestrating affective intensities and rhythms. Finally, the article discusses...... and the making of subjects have held sway for many years; and it is also well known that schools have been some of the most regular purchasers of psychological methods, tests and classifications. Following but also elaborating upon governmentality studies, it is suggested that a current shift towards...

  8. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies

    International Nuclear Information System (INIS)

    Necemer, Marijan; Kump, Peter; Scancar, Janez; Jacimovic, Radojko; Simcic, Jurij; Pelicon, Primoz; Budnar, Milos; Jeran, Zvonka; Pongrac, Paula; Regvar, Marjana; Vogel-Mikus, Katarina

    2008-01-01

    Phytoremediation is an emerging technology that employs the use of higher plants for the clean-up of contaminated environments. Progress in the field is however handicapped by limited knowledge of the biological processes involved in plant metal uptake, translocation, tolerance and plant-microbe-soil interactions; therefore a better understanding of the basic biological mechanisms involved in plant/microbe/soil/contaminant interactions would allow further optimization of phytoremediation technologies. In view of the needs of global environmental protection, it is important that in phytoremediation and plant biology studies the analytical procedures for elemental determination in plant tissues and soil should be fast and cheap, with simple sample preparation, and of adequate accuracy and reproducibility. The aim of this study was therefore to present the main characteristics, sample preparation protocols and applications of X-ray fluorescence-based analytical techniques (energy dispersive X-ray fluorescence spectrometry-EDXRF, total reflection X-ray fluorescence spectrometry-TXRF and micro-proton induced X-ray emission-micro-PIXE). Element concentrations in plant leaves from metal polluted and non-polluted sites, as well as standard reference materials, were analyzed by the mentioned techniques, and additionally by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). The results were compared and critically evaluated in order to assess the performance and capability of X-ray fluorescence-based techniques in phytoremediation and plant biology studies. It is the EDXRF, which is recommended as suitable to be used in the analyses of a large number of samples, because it is multi-elemental, requires only simple preparation of sample material, and it is analytically comparable to the most frequently used instrumental chemical techniques. The TXRF is compatible to FAAS in sample preparation, but relative to AAS it is fast, sensitive and

  9. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Directory of Open Access Journals (Sweden)

    Kara R Lind

    Full Text Available LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  10. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Science.gov (United States)

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  11. From Charles Darwin's botanical country-house studies to modern plant biology.

    Science.gov (United States)

    Kutschera, U; Briggs, W R

    2009-11-01

    As a student of theology at Cambridge University, Charles Darwin (1809-1882) attended the lectures of the botanist John S. Henslow (1796-1861). This instruction provided the basis for his life-long interest in plants as well as the species question. This was a major reason why in his book On the Origin of Species, which was published 150 years ago, Darwin explained his metaphorical phrase 'struggle for life' with respect to animals and plants. In this article, we review Darwin's botanical work with reference to the following topics: the struggle for existence in the vegetable kingdom with respect to the phytochrome-mediated shade avoidance response; the biology of flowers and Darwin's plant-insect co-evolution hypothesis; climbing plants and the discovery of action potentials; the power of movement in plants and Darwin's conflict with the German plant physiologist Julius Sachs; and light perception by growing grass coleoptiles with reference to the phototropins. Finally, we describe the establishment of the scientific discipline of Plant Biology that took place in the USA 80 years ago, and define this area of research with respect to Darwin's work on botany and the physiology of higher plants.

  12. Influence of fly dust from coking plants on some biological processes of plants

    Energy Technology Data Exchange (ETDEWEB)

    Masek, V

    1972-03-01

    The influence of three typical samples of fly dust from a coking plant on enzymatic reactions, photosynthesis, chlorophyll concentration in leaves of bean plants was studied. The hydrolysis of starch with amylases and of the albumen with pepsin at 37 C and the inversion of sacharosis by invertase in a buffered environment were also examined. None of the three dust samples had a significant effect on enzymatic reactions. Applying the dust samples to the leaves of young bean plants reduced the intensity of photosynthesis and chlorophyll concentration. In aqueous extracts, the dust samples liberated only small quantities of nutrients, plants which were grown in a dust suspension showed no increase of dry substance and growth rate. A stimulating effect of the dust samples on root growth was determined. Mixing the dust samples with the soil influenced the accessibility of water to plants. 17 references, 6 figures, 9 tables.

  13. INFLUENCE OF BIOLOGICAL AND THERMAL TRANSFORMED SEWAGE SLUDGE APPLICATION ON MANGANESE CONTENT IN PLANTS AND SOIL

    Directory of Open Access Journals (Sweden)

    Małgorzata Koncewicz-Baran

    2014-10-01

    Full Text Available A great variety of sewage sludge treatment methods, due to the agent (chemical, biological, thermal leads to the formation of varying ‘products’ properties, including the content of heavy metals forms. The aim of the study was to determine the effects of biologically and thermally transformed sewage sludge on the manganese content in plants and form of this element in the soil. The study was based on a two-year pot experiment. In this study was used stabilized sewage sludge collected from Wastewater Treatment Plant Krakow – ”Płaszów” and its mixtures with wheat straw in the gravimetric ratio 1:1 in conversion to material dry matter, transformed biologically (composting by 117 days in a bioreactor and thermally (in the furnace chamber with no air access by the following procedure exposed to temperatures of 130 °C for 40 min → 200 °C for 30 min. In both years of the study biologically and thermally transformed mixtures of sewage sludge with wheat straw demonstrated similar impact on the amount of biomass plants to the pig manure. Bigger amounts of manganese were assessed in oat biomass than in spring rape biomass. The applied sewage sludge and its biologically and thermally converted mixtures did not significantly affect manganese content in plant biomass in comparison with the farmyard manure. The applied fertilization did not modify the values of translocation and bioaccumulation ratios of manganese in the above-ground parts and roots of spring rape and oat. No increase in the content of the available to plants forms of manganese in the soil after applying biologically and thermally transformed sewage sludge mixtures with straw was detected. In the second year, lower contents of these manganese forms were noted in the soil of all objects compared with the first year of the experiment.

  14. Biological Effects of Potato Plants Transformation with Glucose Oxidase Gene and their Resistance to Hyperthermia

    Directory of Open Access Journals (Sweden)

    O.I. Grabelnych

    2017-02-01

    Full Text Available It is known that regulation of plant tolerance to adverse environmental factors is connected with short term increase of the concentration of endogenous reactive oxygen species (ROS, which are signalling molecules for the induction of protective mechanisms. Introduction and expression of heterologous gox gene, which encodes glucose oxidase enzyme in plant genome, induce constantly higher content of hydrogen peroxide in plant tissues. It is not known how the introduction of native or modified gox gene affects the plant resistance to high-temperature stress, one of the most commonly used model for the study of stress response and thermal tolerance. In this study, we investigated biological effects of transformation and evaluated the resistance to temperature stress of potato plants with altered levels of glucose oxidase expression. Transformation of potato plants by gox gene led to the more early coming out from tuber dormancy of transformed plants and slower growth rate. Transformants containing the glucose oxidase gene were more sensitive to lethal thermal shock (50 °C, 90 min than the transformant with the empty vector (pBI or untransformed plants (CK. Pre-heating of plants at 37 °C significantly weakened the damaging effect of lethal thermal shock. This attenuation was more significant in the non-transformed plants.

  15. Sleep, Memory & Brain Rhythms.

    Science.gov (United States)

    Watson, Brendon O; Buzsáki, György

    2015-01-01

    Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called "sharp-wave ripple" seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep-REM and non-REM, the latter of which has an abundance of ripple electrical activity-might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function.

  16. Circadian rhythms regulate amelogenesis.

    Science.gov (United States)

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-07-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of the development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24 h) intervals both at RNA and protein levels. This study also reveals that the two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory stage ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation stage ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stages of amelogenesis might be under circadian control. Changes in clock gene expression patterns might result in significant alterations of enamel apposition and mineralization. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Biological indices for classification of water quality around Mae Moh power plant, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsarun Junshum and Siripen Traichaiyaporn

    2007-12-01

    Full Text Available The algal communities and water quality were monitored at eight sampling sites around Mae Moh power plant during January-December 2003. Three biological indices, viz. algal genus pollution index, saprobic index, and Shannon-Weaver index, were adopted to classify the water quality around the power plant in comparison with the measured physico-chemical water quality. The result shows that the Shannon-Weaver diversity index appears to be much more applicable and interpretable for the classification of water quality around the Mae Moh power plant than the algal genus pollution index and the saprobic index.

  18. Microgravity research in plant biological systems: Realizing the potential of molecular biology

    Science.gov (United States)

    Lewis, Norman G.; Ryan, Clarence A.

    1993-01-01

    The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.

  19. Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World.

    Science.gov (United States)

    Di Silvestre, Dario; Bergamaschi, Andrea; Bellini, Edoardo; Mauri, PierLuigi

    2018-06-03

    The investigation of plant organisms by means of data-derived systems biology approaches based on network modeling is mainly characterized by genomic data, while the potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry (MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing to filling this gap and an increasing number of studies are focusing on plant proteome profiling and protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating the topology of PPI networks in the context of organ-associated biological processes as well as plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may provide to plant research. Thus, in addition to providing an overview of the main-omic technologies recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will also consider gene co-expression networks, and some examples of integration with metabolomic data and genome-wide association studies (GWAS) to select candidate genes will be mentioned.

  20. The Rhetorical Nature of Rhythm

    NARCIS (Netherlands)

    Balint, Mihaela; Dascalu, Mihai; Trausan-Matu, Stefan

    2017-01-01

    Up to date, linguistic rhythm has been studied for speech, but the rhythm of written texts has been merely recognized, and not analyzed or interpreted in connection to natural language tasks. We provide an extension of the textual rhythmic features we proposed in previous work, and

  1. Some Contributions for a Pedagogical Treatment of Alternative Conceptions in Biology: An Example from Plant Nutrition.

    Science.gov (United States)

    Vaz, Adelaine Neto; And Others

    This paper reports on a study that investigated the alternative conceptions of students in a biology and geology teacher education course regarding plant nutrition. Data were collected from first year and final year students using a questionnaire that had both multiple choice and descriptive items. Findings indicate common features related to the…

  2. Recent developments in systems biology and metabolic engineering of plant microbe interactions

    Directory of Open Access Journals (Sweden)

    Vishal Kumar

    2016-09-01

    Full Text Available Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant-microbe interaction plays an important role to balance the ecosystem. The present review explores plant microbe interactions using gene editing and system biology tools towards the comprehension in improvement of plant traits. Further, system biology tools like FBA, OptKnock and constrain based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g. single nucleotide polymorphism (SNP detection, RNA-seq, proteomics and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.

  3. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist V.; Jeppsson, Ulf

    2012-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  4. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Science.gov (United States)

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  5. Aromatic Medicinal Plants of the Lamiaceae Family from Uzbekistan: Ethnopharmacology, Essential Oils Composition, and Biological Activities

    Directory of Open Access Journals (Sweden)

    Nilufar Z. Mamadalieva

    2017-02-01

    Full Text Available Plants of the Lamiaceae family are important ornamental, medicinal, and aromatic plants, many of which produce essential oils that are used in traditional and modern medicine, and in the food, cosmetics, and pharmaceutical industry. Various species of the genera Hyssopus, Leonurus, Mentha, Nepeta, Origanum, Perovskia, Phlomis, Salvia, Scutellaria, and Ziziphora are widespread throughout the world, are the most popular plants in Uzbek traditional remedies, and are often used for the treatment of wounds, gastritis, infections, dermatitis, bronchitis, and inflammation. Extensive studies of the chemical components of these plants have led to the identification of many compounds, as well as essentials oils, with medicinal and other commercial values. The purpose of this review is to provide a critical overview of the literature surrounding the traditional uses, ethnopharmacology, biological activities, and essential oils composition of aromatic plants of the family Lamiaceae, from the Uzbek flora.

  6. Expanding Kenya's protected areas under the Convention on Biological Diversity to maximize coverage of plant diversity.

    Science.gov (United States)

    Scherer, Laura; Curran, Michael; Alvarez, Miguel

    2017-04-01

    Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected-area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant-cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility. © 2016 Society for Conservation Biology.

  7. Introduction to the Special Issue: Beyond traits: integrating behaviour into plant ecology and biology.

    Science.gov (United States)

    Cahill, James F

    2015-10-26

    The way that plants are conceptualized in the context of ecological understanding is changing. In one direction, a reductionist school is pulling plants apart into a list of measured 'traits', from which ecological function and outcomes of species interactions may be inferred. This special issue offers an alternative, and more holistic, view: that the ecological functions performed by a plant will be a consequence not only of their complement of traits but also of the ways in which their component parts are used in response to environmental and social conditions. This is the realm of behavioural ecology, a field that has greatly advanced our understanding of animal biology, ecology and evolution. Included in this special issue are 10 articles focussing not on the tried and true metaphor that plant growth is similar to animal movement, but instead on how application of principles from animal behaviour can improve our ability to understand plant biology and ecology. The goals are not to draw false parallels, nor to anthropomorphize plant biology, but instead to demonstrate how existing and robust theory based on fundamental principles can provide novel understanding for plants. Key to this approach is the recognition that behaviour and intelligence are not the same. Many organisms display complex behaviours despite a lack of cognition (as it is traditionally understood) or any hint of a nervous system. The applicability of behavioural concepts to plants is further enhanced with the realization that all organisms face the same harsh forces of natural selection in the context of finding resources, mates and coping with neighbours. As these ecological realities are often highly variable in space and time, it is not surprising that all organisms-even plants-exhibit complex behaviours to handle this variability. The articles included here address diverse topics in behavioural ecology, as applied to plants: general conceptual understanding, plant nutrient foraging, root

  8. Effect of Planting Date and Biological and Chemical Fertilizers on Phenology and Physiological Indices of Peanuts

    Directory of Open Access Journals (Sweden)

    A Sepehri

    2017-06-01

    Full Text Available Introduction Peanut (Arachis hypogaea L. is an annual herbaceous plant in Fabaceae which grown in tropical to temperate regions worldwide for extracting its seed oil and nut consumption. Select the optimum planting date is one of the most important agricultural techniques that comply with the seed yield is maximized . For instance, delay planting date can reduce the number of fertile nodes and the number of pods per plant. The delay in planting date reduces total dry matter (TDM, leaf area index (LAI, crop growth rate (CGR and yield in bean (Phaseolus vulgaris L.. Daneshian et al., (2008 reported that the delay in planting date reduced sunflower (Helianthus annuus yield due to high temperatures in early growth which shortened flowering time and reduced solar radiation. On the other hand, due to increase importance of environmental issues has been attending biofertilizers to replace chemical fertilizers. Biofertilizers has formed by beneficial bacteria and fungi that each of them are produced for a specific purpose, such as nitrogen fixation, release of phosphate, potassium and iron ions of insoluble compound. The use of nitrogen fertilizer with slow-releasing ability stimulated shoot growth in soybean (Glycine max and be created more LAI in the reproductive process, particularly during grain filling stage and finally increased seed yield . Therefore, this study was conducted in order to evaluate the interaction of biological and chemical fertilizers in the purpose of achieving sustainable agriculture with emphasis of the effects of various planting dates on physiological parameters and growth of peanut in Hamadan. Materials and Methods In order to investigate the effects of planting date on important physiological indices of peanuts (Arachis hypogaea L. under the influence of biological and chemical fertilizers. A field experiment was conducted in the research farm of Bu-Ali Sina University, Hamedan during 2013 growing season. This study was

  9. [Interpersonal and social rhythm therapy (IPSRT)].

    Science.gov (United States)

    Bottai, T; Biloa-Tang, M; Christophe, S; Dupuy, C; Jacquesy, L; Kochman, F; Meynard, J-A; Papeta, D; Rahioui, H; Adida, M; Fakra, E; Kaladjian, A; Pringuey, D; Azorin, J-M

    2010-12-01

    Bipolar disorder is common, recurrent, often severe and debiliting disorder. All types of bipolar disorder have a common determinant: depressive episode. It is justify to propose a psychotherapy which shown efficacy in depression. Howewer, perturbations in circadian rhythms have been implicated in the genesis of each episode of the illness. Biological circadian dysregulation can be encouraged by alteration of time-givers (Zeitgebers) or occurrence of time-disturbers (Zeitstörers). Addition of social rhythm therapy to interpersonal psychotherapy leads to create a new psychotherapy adaptated to bipolar disorders: InterPersonal and Social Rhythm Therapy (IPSRT). IPSRT, in combinaison with medication, has demonstrated efficacy as a treatment for bipolar disorders. IPSRT combines psychoeducation, behavioral strategy to regularize daily routines and interpersonal psychotherapy which help patients cope better with the multiple psychosocial and relationship problems associated with this chronic disorder. The main issues of this psychotherapy are: to take the history of the patient's illness and review of medication, to help patient for "grief for the lost healthy self" translated in the french version in "acceptance of a long-term medical condition", to give the sick role, to examinate the current relationships and changes proximal to the emergence of mood symptoms in the four problem areas (unresolved grief, interpersonal disputes, role transitions, role déficits), to examinate and increase daily routines and social rhythms. French version of IPSRT called TIPARS (with few differences), a time-limited psychotherapy, in 24 sessions during approximatively 6 months, is conducted in three phases. In the initial phase, the therapist takes a thorough history of previous episodes and their interpersonal context and a review of previous medication, provides psychoeducation, evaluates social rhythms, introduces the Social Rhythm Metric, identifies the patient's main interpersonal

  10. Disrupted seasonal biology impacts health, food security, and ecosystems: a call for integrated research

    NARCIS (Netherlands)

    Stevenson, T.J.; Visser, M.E.; Arnold, W.; Barrett, P.; Biello, S.; Dawson, A.; Denlinger, D.L.; Dominoni, Davide; Ebling, F.J.; Elton, S.; Evans, N.; Ferguson, H.M.; Foster, R.G.; Hau, M.; Haydon, D.T.; Hazlerigg, D.G.; Heideman, P.; Hopcraft, J.G.C.; Jonsson, N.N.; Kronfeld-Schor, N.; Kumar, V.; Lincoln, G.A.; MacLeod, R.; Martin, S.A.M.; Martinez-Bakker, M.; Nelson, R.J.; Reed, T.; Robinso, J.E.; Rock, D.; Schwartz, W.J.; Steffan-Dewenter, I.; Tauber, E.; Thackeray, S.J.; Umstatter, C.; Yoshimura, T.; Helm, B.

    2015-01-01

    The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for

  11. Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes.

    Science.gov (United States)

    Tusé, Daniel; Tu, Tiffany; McDonald, Karen A

    2014-01-01

    Production of recombinant biologics in plants has received considerable attention as an alternative platform to traditional microbial and animal cell culture. Industrially relevant features of plant systems include proper eukaryotic protein processing, inherent safety due to lack of adventitious agents, more facile scalability, faster production (transient systems), and potentially lower costs. Lower manufacturing cost has been widely claimed as an intuitive feature of the platform by the plant-made biologics community, even though cost information resides within a few private companies and studies accurately documenting such an advantage have been lacking. We present two technoeconomic case studies representing plant-made enzymes for diverse applications: human butyrylcholinesterase produced indoors for use as a medical countermeasure and cellulases produced in the field for the conversion of cellulosic biomass into ethanol as a fuel extender. Production economics were modeled based on results reported with the latest-generation expression technologies on Nicotiana host plants. We evaluated process unit operations and calculated bulk active and per-dose or per-unit costs using SuperPro Designer modeling software. Our analyses indicate that substantial cost advantages over alternative platforms can be achieved with plant systems, but these advantages are molecule/product-specific and depend on the relative cost-efficiencies of alternative sources of the same product.

  12. Manufacturing Economics of Plant-Made Biologics: Case Studies in Therapeutic and Industrial Enzymes

    Directory of Open Access Journals (Sweden)

    Daniel Tusé

    2014-01-01

    Full Text Available Production of recombinant biologics in plants has received considerable attention as an alternative platform to traditional microbial and animal cell culture. Industrially relevant features of plant systems include proper eukaryotic protein processing, inherent safety due to lack of adventitious agents, more facile scalability, faster production (transient systems, and potentially lower costs. Lower manufacturing cost has been widely claimed as an intuitive feature of the platform by the plant-made biologics community, even though cost information resides within a few private companies and studies accurately documenting such an advantage have been lacking. We present two technoeconomic case studies representing plant-made enzymes for diverse applications: human butyrylcholinesterase produced indoors for use as a medical countermeasure and cellulases produced in the field for the conversion of cellulosic biomass into ethanol as a fuel extender. Production economics were modeled based on results reported with the latest-generation expression technologies on Nicotiana host plants. We evaluated process unit operations and calculated bulk active and per-dose or per-unit costs using SuperPro Designer modeling software. Our analyses indicate that substantial cost advantages over alternative platforms can be achieved with plant systems, but these advantages are molecule/product-specific and depend on the relative cost-efficiencies of alternative sources of the same product.

  13. Trends in biological activity research of wild-growing aromatic plants from Central Balkans

    Directory of Open Access Journals (Sweden)

    Džamić, A.M.

    2016-12-01

    Full Text Available Flowering plants consists of more than 300.000 species around the world, out of which a small percentage has been sufficiently investigated from phytochemical and biological activity aspects. Plant diversity of the Balkans is very rich, but still poorly investigated. The aim of this paper is survey of current status and trends in research of wild-growing aromatic plants from Central Balkans. Many aromatic plants are investigated from morphological, physiological, ecological, systematic and phytochemical aspects. However, traditionally used medicinal and aromatic plants can also be considered from applicative aspects, concerning their health effects, and from wide range of usage in cosmetics, and as food, agrochemical and pharmaceutical products. In order to achieve all planned objectives, following methodology has been applied: field research, taxonomic authentication and, comparative biologically assayed phytochemical investigations. The total herbal extracts, postdistillation waste (deodorized extracts, essential oils and individual compounds of some autochthonous plants have been considered as potential source of antibacterial, antifungal, anti-biofilm, antioxidant and cytotoxic agents. In this manuscript, composition of essential oils and extracts were evaluated in a number of species, from the Apiaceae, Lamiaceae, Rosaceae and Asteraceae families. Extracts which were rich in phenols mostly of flavonoids, often showed high antioxidant potential. Also, phenolic compounds identified in essential oils and extracts were mostly responsible for expected antimicrobial activity. Current worldwide demand is to reduce or, if possible, eliminate chemically synthesized food additives. Plant-produced compounds are becoming of interest as a source of more effective and safe substances than synthetically produced antimicrobial agents (as inhibitors, growth reducers or even inactivators that control growth of microorganisms. Many different pathogens have

  14. Management of plant pathogens and pests using microbial biological control agents. In: Trigiano, R.N. and Ownley, B.H., editors. Plant Pathology Concepts and Laboratory Exercises

    Science.gov (United States)

    All parts of plants face continual attack by plant pathogens and insects. Some insects are vectors of pathogens. Plant pests can be controlled by a variety of methods including application of pesticides but one of the most stainable and environmentally friendly approaches is biological control. Mic...

  15. Biological methanation of hydrogen within biogas plants: A model-based feasibility study

    International Nuclear Information System (INIS)

    Bensmann, A.; Hanke-Rauschenbach, R.; Heyer, R.; Kohrs, F.; Benndorf, D.; Reichl, U.; Sundmacher, K.

    2014-01-01

    Highlights: • Simulation study about direct methanation of hydrogen within biogas plants. • In stationary operation two limitations, namely biological and transfer limit. • Biological limit at 4m H2 3 /m CO2 3 due to stoichiometry. • Dynamic behaviour shows three qualitatively different step responses. • A simple control scheme to meet the output quality was developed. - Abstract: One option to utilize excess electric energy is its conversion to hydrogen and the subsequent methanation. An alternative to the classical chemical Sabatier process is the biological methanation (methanogenesis) within biogas plants. In conventional biogas plants methane and carbon dioxide is produced. The latter can be directly converted to methane by feeding hydrogen into the reactor, since hydrogenotrophic bacteria are present. In the present contribution, a comprehensive simulation study with respect to stationary operating conditions and disturbances is presented. It reveals two qualitative different limitations, namely a biological limit (appr. at 4m H2 3 /m CO2 3 corresponds to 4.2m H2,STP 3 /m liq 3 /d) as well as a transfer limit. A parameter region for a safe operation was defined. The temporary operation with stationary unfeasible conditions was analysed and thereby three qualitatively different disturbances can be distinguished. In one of these the operation for several days is possible. On the basis of these results, a controller was proposed and tested that meets the demands on the conversion of hydrogen and also prevents the washout of the microbial community due to hydrogen overload

  16. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S. [and others

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  17. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    International Nuclear Information System (INIS)

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S.

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions

  18. Mapping the Metal Uptake in Plants from Jasper Ridge Biological Preserve - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Allison [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-24

    Serpentine soil originates in the Earth’s mantle and contains high concentrations of potentially toxic transition metals. Although serpentine soil limits plant growth, endemic and adapted plants at Jasper Ridge Biological Preserve, located behind SLAC National Accelerator Laboratory, can tolerate these conditions. Serpentine soil and seeds belonging to native California and invasive plants were collected at Jasper Ridge. The seeds were grown hydroponically and on serpentine and potting soil to examine the uptake and distribution of ions in the roots and shoots using synchrotron micro-focused X-ray fluorescence spectroscopy. The results were used to determine differences between serpentinetolerant plants. Rye grown on potting soil was enriched in Ni, Fe, Mn, and Cr compared to purple needlegrass grown on serpentine soil. Serpentine vegetation equally suppressed the uptake of Mn, Ni, and Fe in the roots and shoots. The uptake of Ca and Mg affected the uptake of other elements such as K, S, and P.

  19. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    Science.gov (United States)

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. How Two Players Negotiate Rhythm in a Shared Rhythm Game

    DEFF Research Database (Denmark)

    Hansen, Anne-Marie; Andersen, Hans Jørgen; Raudaskoski, Pirkko Liisa

    2012-01-01

    from each other. Video analysis of user interaction shines light upon how users engaged in a rhythmical relationship, and interviews give information about the user experience in terms of the game play and user collaboration. Based on the findings in this paper we propose design guidelines......In a design and working prototype of a shared music interface eleven teams of two people were to collaborate about filling in holes with tones and beats in an evolving ground rhythm. The hypothesis was that users would tune into each other and have sections of characteristic rhythmical...... relationships that related to the ground rhythm. Results from interaction data show that teams did find a mutual rhythm, and that they were able to keep this rhythm for a while and/or over several small periods. Results also showed that two players engaged in very specific rhythmical relationships that differed...

  1. Biological fluidized-bed treatment of groundwater from a manufactured gas plant site

    International Nuclear Information System (INIS)

    Grey, G.M.; Scheible, O.K.; Maiello, J.A.; Guarini, W.J.; Sutton, P.M.

    1995-01-01

    Bench- and pilot-scale biological treatability studies were performed as part of a comprehensive study for developing an on-site treatment system for contaminated groundwater at a former manufactured gas plant site. The bench-scale work, which included evaluations of activated sludge and fluidized-bed biological processes, indicated that a carbon-based fluidized-bed process was most appropriate. The process was then demonstrated on a pilot level at the site. The bench and pilot studies demonstrated significant reductions of chemical oxygen demand (COD), and all target organics including polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs)

  2. Anthropogenic climate change and allergen exposure: The role of plant biology.

    Science.gov (United States)

    Ziska, Lewis H; Beggs, Paul J

    2012-01-01

    Accumulation of anthropogenic gases, particularly CO(2), is likely to have 2 fundamental effects on plant biology. The first is an indirect effect through Earth's increasing average surface temperatures, with subsequent effects on other aspects of climate, such as rainfall and extreme weather events. The second is a direct effect caused by CO(2)-induced stimulation of photosynthesis and plant growth. Both effects are likely to alter a number of fundamental aspects of plant biology and human health, including aerobiology and allergic diseases, respectively. This review highlights the current and projected effect of increasing CO(2) and climate change in the context of plants and allergen exposure, emphasizing direct effects on plant physiologic parameters (eg, pollen production) and indirect effects (eg, fungal sporulation) related to diverse biotic and abiotic interactions. Overall, the review assumes that future global mitigation efforts will be limited and suggests a number of key research areas that will assist in adapting to the ongoing challenges to public health associated with increased allergen exposure. Published by Mosby, Inc.

  3. A method for evaluation of UV and biologically effective exposures to plants

    International Nuclear Information System (INIS)

    Paris, A.V.; Southern Queensland Univ., Toowoomba, QLD; Wong, J.C.F.; Galea, V.

    1996-01-01

    This paper presents a method for evaluating the UV and biologically effective exposures to a plant canopy during the irradiation of soybean with supplemental levels of UV radiation in a greenhouse study. The method employs four materials as dosimeters that allow evaluation of the UV spectra. The exposures evaluated at three growth stages were less by factors of 0.44, 0.49 and 0.56 compared to the ambient exposures. At the end of the irradiation period, the ambient biologically effective exposure for generalized plant response was higher by 180% compared to that calculated over the canopy. This is the magnitude of the error in UV studies that provide the ambient exposure as a measure of the UV incident on the plant. Additionally, the difference between the ambient and canopy exposures varied during the growth stages. These results indicate that the dosimetric technique applied to evaluating the UV exposures over a plant canopy is a more accurate representation of the UV exposure incidence on a plant than any obtained by measuring the ambient exposures only. (Author)

  4. Recombinant biologic products versus nutraceuticals from plants – a regulatory choice?

    Science.gov (United States)

    Drake, Pascal M. W.; Szeto, Tim H.; Paul, Mathew J.; Teh, Audrey Y.‐H.

    2016-01-01

    Biotechnology has transformed the potential for plants to be a manufacturing source of pharmaceutical compounds. Now, with transgenic and transient expression techniques, virtually any biologic, including vaccines and therapeutics, could be manufactured in plants. However, uncertainty over the regulatory path for such new pharmaceuticals has been a deterrent. Consideration has been given to using alternative regulatory paths, including those for nutraceuticals or cosmetic agents. This review will consider these possibilities, and discuss the difficulties in establishing regulatory guidelines for new pharmaceutical manufacturing technologies. PMID:27297459

  5. Fukushima Daiichi Nuclear Power Plant accident: facts, environmental contamination, possible biological effects, and countermeasures.

    Science.gov (United States)

    Anzai, Kazunori; Ban, Nobuhiko; Ozawa, Toshihiko; Tokonami, Shinji

    2012-01-01

    On March 11, 2011, an earthquake led to major problems at the Fukushima Daiichi Nuclear Power Plant. A 14-m high tsunami triggered by the earthquake disabled all AC power to Units 1, 2, and 3 of the Power Plant, and carried off fuel tanks for emergency diesel generators. Despite many efforts, cooling systems did not work and hydrogen explosions damaged the facilities, releasing a large amount of radioactive material into the environment. In this review, we describe the environmental impact of the nuclear accident, and the fundamental biological effects, acute and late, of the radiation. Possible medical countermeasures to radiation exposure are also discussed.

  6. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  7. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience.

    Science.gov (United States)

    Baldani, José I; Baldani, Vera L D

    2005-09-01

    This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of which was coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica). The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus) and GENOPAR (Herbaspirillum seropedicae) reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.

  8. Learning by joining the rhythm

    DEFF Research Database (Denmark)

    Lund, Ole; Ravn, Susanne; Christensen, Mette Krogh

    2012-01-01

    This article aims to explore how a joint rhythm is learned. The exploration is based on a combination of a case study of training in elite rowing and theoretical considerations concerning mutual incorporation of skills in learning. In 2009 Juliane and Anne start to row the double sculler together....... The two rowers’ aim is to be among the exclusive group of teams that qualify for the Olympic Games three years later. However Anne is not a rower, and has to be apprenticed by Juliane, who is an experienced elite rower. One important learning goal in the apprenticeship is to find a good joint rhythm......, to be able to put optimal effort into the rowing. Thus the apprenticeship is about developing a sense for a good rhythm in Anne which corresponds to Juliane’s fine-grained sense of what a good rhythm should feel like. Our study suggests that apprenticeship learning has to be understood as an embodied...

  9. Find a Heart Rhythm Specialist

    Science.gov (United States)

    ... Taiwan Thailand Turkey United Arab Emirates United Kingdom Venezuela Vietnam Within 5 miles 10 miles 15 miles ... info@HRSonline.org © Heart Rhythm Society 2017 Privacy Policy | Linking Policy | Patient Education Disclaimer You are about ...

  10. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    Directory of Open Access Journals (Sweden)

    Marc eBardin

    2015-07-01

    Full Text Available The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i the selection pressure exerted by it on populations of plant pathogens and (ii on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringensis and apparition of resistance of the codling moth Cydia pomonella to the Cydia pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss i.e. modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents.

  11. Sympathetic rhythms and nervous integration.

    Science.gov (United States)

    Gilbey, Michael P

    2007-04-01

    1. The present review focuses on some of the processes producing rhythms in sympathetic nerves influencing cardiovascular functions and considers their potential relevance to nervous integration. 2. Two mechanisms are considered that may account for rhythmic sympathetic discharges. First, neuronal elements of peripheral or central origin produce rhythmic activity by phasically exciting and/or inhibiting neurons within central sympathetic networks. Second, rhythms arise within central sympathetic networks. Evidence is considered that indicates the operation of both mechanisms; the first in muscle and the second in skin sympathetic vasoconstrictor networks. 3. Sympathetic activity to the rat tail, a model for the nervous control of skin circulation, is regulated by central networks involved in thermoregulation and those associated with fear and arousal. In an anaesthetized preparation, activity displays an apparently autonomous rhythm (T-rhythm; 0.4-1.2 Hz) and the level of activity can be manipulated by regulating core body temperature. This model has been used to study rhythm generation in central sympathetic networks and possible functional relevance. 4. A unique insight provided by the T rhythm, into possible physiological function(s) underlying rhythmic sympathetic discharges is that the activity of single sympathetic post-ganglionic neurons within a population innervating the same target can have different rhythm frequencies. Therefore, the graded and dynamic entrainment of the rhythms by inputs, such as central respiratory drive and/or lung inflation-related afferent activity, can produce graded and dynamic synchronization of sympathetic discharges. The degree of synchronization may influence the efficacy of transmission in a target chain of excitable cells. 5. The T-rhythm may be generated within the spinal cord because the intrathecal application of 5-hydroxytryptamine at the L1 level of the spinal cord of a rat spinalized at T10-T11 produces a T-like rhythm

  12. The female gametophyte: an emerging model for cell type-specific systems biology in plant development

    Directory of Open Access Journals (Sweden)

    Marc William Schmid

    2015-11-01

    Full Text Available Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (omics now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis. Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.

  13. Circadian rhythms and reproduction.

    Science.gov (United States)

    Boden, Michael J; Kennaway, David J

    2006-09-01

    There is a growing recognition that the circadian timing system, in particular recently discovered clock genes, plays a major role in a wide range of physiological systems. Microarray studies, for example, have shown that the expression of hundreds of genes changes many fold in the suprachiasmatic nucleus, liver heart and kidney. In this review, we discuss the role of circadian rhythmicity in the control of reproductive function in animals and humans. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance, but there are sufficient redundancies in their function that many of the knockout mice produced do not show overt reproductive failure. Furthermore, important strain differences have emerged from the studies especially between the various Clock (Circadian Locomotor Output Cycle Kaput) mutant strains. Nevertheless, there is emerging evidence that the primary clock genes, Clock and Bmal1 (Brain and Muscle ARNT-like protein 1, also known as Mop3), strongly influence reproductive competency. The extent to which the circadian timing system affects human reproductive performance is not known, in part, because many of the appropriate studies have not been done. With the role of Clock and Bmal1 in fertility becoming clearer, it may be time to pursue the effect of polymorphisms in these genes in relation to the various types of infertility in humans.

  14. Sequence-Related Amplified Polymorphism (SRAP Markers: A Potential Resource for Studies in Plant Molecular Biology

    Directory of Open Access Journals (Sweden)

    Daniel W. H. Robarts

    2014-07-01

    Full Text Available In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR, random-amplified polymorphic DNA (RAPD, and amplified fragment length polymorphism (AFLP to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use. highly variable marker with inherent biological significance.

  15. Synthetic biology approaches for the production of plant metabolites in unicellular organisms.

    Science.gov (United States)

    Moses, Tessa; Mehrshahi, Payam; Smith, Alison G; Goossens, Alain

    2017-07-10

    Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. MODELLING OF RADIONUCLIDE MIGRATION IN THE SYSTEM OF NUCLEAR POWER PLANT BIOLOGICAL PONDS

    Directory of Open Access Journals (Sweden)

    Ю. Кутлахмедов

    2011-04-01

    Full Text Available Migration of radionuclide coming from nuclear power plant into the system of biological pondsand then into the water reservoir-cooler is considered in the article. The theme of the work ismodeling of radionuclide migration process in the system of biological ponds on the example of thePivdennoukrainska nuclear power plant using chamber models method. Typical water ecosystemconsisting of three chambers (chamber-water, chamber-biota and chamber-bed silt was the basistaken by the authors. Application of chamber models method allowed authors to develop thedynamic chamber model of radionuclide migration in nuclear power plant biological ponds. Thismodel allows to forecast values and dynamics of radioactive water pollution based on limitedecosystem monitoring data. Thus, parameters of radioactive capacity of nuclear power plantbiological ponds system and water reservoir-cooler were modeled by authors, the estimation andprognosis of radionuclide distribution and accumulation in the system of nuclear power plantbiological ponds were done. Authors also explain the roles of basin water, biomass and bed silt inradionuclide deposition

  17. Assessing the status of biological control as a management tool for suppression of invasive alien plants in South Africa

    OpenAIRE

    Zachariades, Costas; Paterson, Iain D.; Strathie, Lorraine W.; Hill, Martin P.; van Wilgen, Brian W.

    2017-01-01

    Background: Biological control of invasive alien plants (IAPs) using introduced natural enemies contributes significantly to sustained, cost-effective management of natural resources in South Africa. The status of, and prospects for, biological control is therefore integral to National Status Reports (NSRs) on Biological Invasions, the first of which is due in 2017. Objectives: Our aim was to evaluate the status of, and prospects for, biological control of IAPs in South Africa. We discuss...

  18. Biological and Chemical Aspects of Natural Biflavonoids from Plants: A Brief Review.

    Science.gov (United States)

    Gontijo, Vanessa Silva; Dos Santos, Marcelo Henrique; Viegas, Claudio

    2017-01-01

    Biflavonoids belong to a subclass of the plant flavonoids family and are limited to several species in the plant kingdom. In the literature, biflavonoids are extensively reported for their pharmacological properties including anti-inflammatory, antioxidant, inhibitory activity against phospholipase A2 (PLA2) and antiprotozoal activity. These activities have been discovered from the small number of biflavonoid structures that have been investigated, although the natural biflavonoids library is likely to be large. In addition, many medicinal properties and traditional use of plants are attributed to the presence of bioflavonoids among their secondary metabolites. Structurally, biflavonoids are polyphenol compounds comprising of two identical or non-identical flavonflavonoid units joined in a symmetrical or unsymmetrical manner through an alkyl or an alkoxy-based linker of varying length. Due to their chemical and biological importance, several bioprospective phytochemical studies and chemical approaches using coupling and molecular rearrangement strategies have been developed to identify and synthesize new bioactive biflavonoids. In this brief review, we present some basic structural aspects for classification and nomenclature of bioflavonoids and a compilation of the literature data published in the last 7 years, concerning the discovery of new natural biflavonoids of plant origin and their pharmacological and biological properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Plants from The Genus Daphne: A Review of its Traditional Uses, Phytochemistry, Biological and Pharmacological Activity

    Directory of Open Access Journals (Sweden)

    Sovrlić Miroslav M.

    2017-03-01

    Full Text Available Plants have an important role in maintaining people’s health and improving the quality of human life. They are an important component of people’s diet, but they are also used in other spheres of human life as a therapeutic resources, ingredients of cosmetic products, paints and others. The Daphne genus belongs to family Thymeleaceae which includes 44 families with approximately 500 herbal species. The plant species of the genus Daphne are used in the traditional medicine in China and tropical part of Africa for the treatment of various conditions. Previous studies showed significant biological potential of these species as a source of pharmacologically active compounds. This indicates that this genus possess a broad spectrum of biological activity including antimicrobial, antioxidant, analgesic, anti-inflammatory, cytotoxic, anti-ulcerogenic, abortive, hypocholesterolemic and hemostatic effects. Additionally, Daphne plants are the source of valuable bioactive phytochemicals such as coumarins, flavonoids, lignans, steroids and different classes of terpenes. Different parts of the Daphne plants contain specific bioactive metabolites and can represent a source of new, natural, pharmacologically active compounds, which may potentially be used in pharmaceutical, cosmetic and food industries.

  20. Conservation, genetic characterization, phytochemical and biological investigation of black calla lily: A wild endangered medicinal plant

    Directory of Open Access Journals (Sweden)

    Mai Mohammed Farid

    2016-10-01

    Full Text Available Scientists continue to search for and conserve plants whose medicinal properties have become crucial in the fight against diseases. Moreover, lessons from folk medicine, indigenous knowledge and Chinese medicine on crude extracts points to possible findings of novel promising and strong pharmaceutically bioactive constituents. Arum palaestinum, commonly known as black calla lily, is one of the most important medicinal plants belonging to the family Araceae, which has not been well studied. Little is known about its pharmaceutically bioactive constituents and the effective conservation through the use of biotechnology. Thus, Arum Palaestinum is selected and reviewed for its phytochemical analysis and biological activities. Besides, the tissue culture and genetic characterization developed for effective conservation of the plant were also summarized.

  1. Some applications of neutron activation analysis in plant biology and agronomy

    International Nuclear Information System (INIS)

    Fourcy, A.

    1966-06-01

    Plants materials are not so commonly analysed by radioactivation than biological extracts of medical importance. With help of concrete examples, applications of neutrons activation analysis to the determination of some metals (Mn, Cu, Co, Fe, Zn, and K) in plant materials, are proposed. Samples are activated in a swimming-pool reactor at the thermal flux of 5.10 12 n.cm -2 s -1 for a time varying between few minutes and several days according to the element being analysed. The induced radioactivity is measured by spectrometry, with radiochemical separation ( Cu, Co, Fe, Zn and K) or without separation in best cases (Mn,Cu, K). Described dosages are related to: manganese in a graminaceous plant, copper in vine treatments, cobalt, iron and zinc in animal feeding, potassium in a radiological experiment. (author) [fr

  2. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems

    Directory of Open Access Journals (Sweden)

    Javad Sharifi-Rad

    2017-01-01

    Full Text Available Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products.

  3. Mechanical–biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization

    DEFF Research Database (Denmark)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen

    2013-01-01

    recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal...... of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials...... electricity source in the system. It was estimated that, overall, up to ca. 180—190 kt CO2-eq. y−1 may be saved by optimizing the MBT plants under assessment....

  4. Circadian rhythm and its role in malignancy

    Directory of Open Access Journals (Sweden)

    Mahmood Saqib

    2010-03-01

    Full Text Available Abstract Circadian rhythms are daily oscillations of multiple biological processes directed by endogenous clocks. The circadian timing system comprises peripheral oscillators located in most tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN of the hypothalamus. Circadian genes and the proteins produced by these genes constitute the molecular components of the circadian oscillator which form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends beyond clock genes to involve various clock-controlled genes (CCGs including various cell cycle genes. Aberrant expression of circadian clock genes could have important consequences on the transactivation of downstream targets that control the cell cycle and on the ability of cells to undergo apoptosis. This may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. Different lines of evidence in mice and humans suggest that cancer may be a circadian-related disorder. The genetic or functional disruption of the molecular circadian clock has been found in various cancers including breast, ovarian, endometrial, prostate and hematological cancers. The acquisition of current data in circadian clock mechanism may help chronotherapy, which takes into consideration the biological time to improve treatments by devising new therapeutic approaches for treating circadian-related disorders, especially cancer.

  5. Field demonstration of ex situ biological treatability of contaminated groundwater at the Strachan gas plant

    International Nuclear Information System (INIS)

    Kurz, M.D.; Stepan, D.J.

    1997-03-01

    A multi-phase study was conducted to deal with the issues of groundwater and soil contamination by sour gas processing plants in Alberta. Phase One consisted of a review of all soil and groundwater monitoring data submitted to Alberta Environment by sour gas plants in accordance with the Canadian Clean Water Act. The current phase involves the development, evaluation and demonstration of selected remediation technologies to address subsurface contamination of sediments and groundwater at sour gas treatment plants with special attention to the presence of natural gas condensate in the subsurface. Results are presented from a pilot-scale biological treatability test that was performed at the Gulf Strachan Natural Gas Processing Plant in Rocky Mountain House, Alberta, where contaminated groundwater from the plant was being pumped to the surface through many recovery wells to control contaminant migration. The recovered groundwater was directed to a pump-and-treat system that consisted of oil-water separation, iron removal, hardness removal, and air stripping, before being reinjected. The pilot-scale biological treatability testing was conducted to evaluate process stability in treating groundwater without pretreatment for iron and hardness reduction and to evaluate the removal of organic contaminants. Results of a groundwater characterization analysis are discussed. Chemical characteristics of the groundwater at the Strachan Gas Plant showed that an ex situ remediation technology would address the dissolved volatile and semi-volatile organic contamination from natural gas condensates, as well as the nitrogenous compounds resulting from the use of amine-based process chemicals. 4 refs., 5 tabs., 4 figs

  6. DATA MINING METHODS FOR OMICS AND KNOWLEDGE OF CRUDE MEDICINAL PLANTS TOWARD BIG DATA BIOLOGY

    Directory of Open Access Journals (Sweden)

    Farit M. Afendi

    2013-01-01

    Full Text Available Molecular biological data has rapidly increased with the recent progress of the Omics fields, e.g., genomics, transcriptomics, proteomics and metabolomics that necessitates the development of databases and methods for efficient storage, retrieval, integration and analysis of massive data. The present study reviews the usage of KNApSAcK Family DB in metabolomics and related area, discusses several statistical methods for handling multivariate data and shows their application on Indonesian blended herbal medicines (Jamu as a case study. Exploration using Biplot reveals many plants are rarely utilized while some plants are highly utilized toward specific efficacy. Furthermore, the ingredients of Jamu formulas are modeled using Partial Least Squares Discriminant Analysis (PLS-DA in order to predict their efficacy. The plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses. This model produces 71.6% correct classification in predicting efficacy. Permutation test then is used to determine plants that serve as main ingredients in Jamu formula by evaluating the significance of the PLS-DA coefficients. Next, in order to explain the role of plants that serve as main ingredients in Jamu medicines, information of pharmacological activity of the plants is added to the predictor block. Then N-PLS-DA model, multiway version of PLS-DA, is utilized to handle the three-dimensional array of the predictor block. The resulting N-PLS-DA model reveals that the effects of some pharmacological activities are specific for certain efficacy and the other activities are diverse toward many efficacies. Mathematical modeling introduced in the present study can be utilized in global analysis of big data targeting to reveal the underlying biology.

  7. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans

    Science.gov (United States)

    Hattori, Yuko; Tomonaga, Masaki; Matsuzawa, Tetsuro

    2015-01-01

    Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum) and auditory rhythms (e.g., hearing music while walking). Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse), suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement. PMID:26132703

  8. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans.

    Directory of Open Access Journals (Sweden)

    Yuko Hattori

    Full Text Available Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum and auditory rhythms (e.g., hearing music while walking. Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse, suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement.

  9. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans.

    Science.gov (United States)

    Hattori, Yuko; Tomonaga, Masaki; Matsuzawa, Tetsuro

    2015-01-01

    Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum) and auditory rhythms (e.g., hearing music while walking). Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse), suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement.

  10. Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Brandt, C.C.; Christensen, S.W.; Greeley, M.S.JR.; Hill, W.R.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-09-01

    The revised Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted as required by the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995 and became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Science Division (ESD) at the Oak Ridge National Laboratory (ORNL) at the request of the Y-12 Plant. The revision to the BMAP plan is based on results of biological monitoring conducted during the period of 1985 to present. Details of the specific procedures used in the current routine monitoring program are provided; experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional bioaccumulation monitoring if results indicate unexpectedly high PCBs or Hg) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is still observed). The program scope will be re-evaluated annually. By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of Y-12 Plant operations (past and present) on the biota of EFPC and to document the ecological effects of remedial actions.

  11. OAK RIDGE Y-12 PLANT BIOLOGICAL MONITORING AND ABATEMENT PROGRAM (BMAP) PLAN

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; BRANDT, C.C.; CHRISTENSEN, S.W.; CICERONE, D.S.; GREELEY, M.S.JR; HILL, W.R.; HUSTON, M.S.; KSZOS, L.A.; MCCARTHY, J.F.; PETERSON, M.J.; RYON, M.G.; SMITH, J.G.; SOUTHWORTH, G.R.; STEWART, A.J.

    1998-10-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y- 12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional toxicity testing if initial results indicate low survival or reproduction) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is observed). By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  12. Circadian rhythms, time-restricted feeding, and healthy aging.

    Science.gov (United States)

    Manoogian, Emily N C; Panda, Satchidananda

    2017-10-01

    Circadian rhythms optimize physiology and health by temporally coordinating cellular function, tissue function, and behavior. These endogenous rhythms dampen with age and thus compromise temporal coordination. Feeding-fasting patterns are an external cue that profoundly influence the robustness of daily biological rhythms. Erratic eating patterns can disrupt the temporal coordination of metabolism and physiology leading to chronic diseases that are also characteristic of aging. However, sustaining a robust feeding-fasting cycle, even without altering nutrition quality or quantity, can prevent or reverse these chronic diseases in experimental models. In humans, epidemiological studies have shown erratic eating patterns increase the risk of disease, whereas sustained feeding-fasting cycles, or prolonged overnight fasting, is correlated with protection from breast cancer. Therefore, optimizing the timing of external cues with defined eating patterns can sustain a robust circadian clock, which may prevent disease and improve prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Rhythms in the endocrine system of fish: a review.

    Science.gov (United States)

    Cowan, Mairi; Azpeleta, Clara; López-Olmeda, Jose Fernando

    2017-12-01

    The environment which living organisms inhabit is not constant and many factors, such as light, temperature, and food availability, display cyclic and predictable variations. To adapt to these cyclic changes, animals present biological rhythms in many of their physiological variables, timing their functions to occur when the possibility of success is greatest. Among these variables, many endocrine factors have been described as displaying rhythms in vertebrates. The aim of the present review is to provide a thorough review of the existing knowledge on the rhythms of the endocrine system of fish by examining the hormones that show rhythmicity, how environmental factors control these rhythms and the variation in the responses of the endocrine system depending on the time of the day. We mainly focused on the hypothalamic-pituitary axis, which can be considered as the master axis of the endocrine system of vertebrates and regulates a great variety of functions, including reproduction, growth, metabolism, energy homeostasis, stress response, and osmoregulation. In addition, the rhythms of other hormones, such as melatonin and the factors, produced in the gastrointestinal system of fish are reviewed.

  14. Biological timekeeping

    DEFF Research Database (Denmark)

    Lloyd, David

    2016-01-01

    , the networks that connect differenttime domains and the oscillations, rhythms and biological clocks that coordinate andsynchronise the complexity of the living state.“It is the pattern maintained by this homeostasis, which is the touchstone ofour personal identity. Our tissues change as we live: the food we...

  15. On the possibility of using biological toxicity tests to monitor the work of wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Zorić Jelena

    2008-01-01

    Full Text Available The aim of this study was to ascertain the possibility of using biological toxicity tests to monitor influent and effluent wastewaters of wastewater treatment plants. The information obtained through these tests is used to prevent toxic pollutants from entering wastewater treatment plants and discharge of toxic pollutants into the recipient. Samples of wastewaters from the wastewater treatment plants of Kragujevac and Gornji Milanovac, as well as from the Lepenica and Despotovica Rivers immediately before and after the influx of wastewaters from the plants, were collected between October 2004 and June 2005. Used as the test organism in these tests was the zebrafish Brachydanio rerio Hamilton - Buchanon (Cyprinidae. The acute toxicity test of 96/h duration showed that the tested samples had a slight acutely toxic effect on B. rerio, except for the sample of influent wastewater into the Cvetojevac wastewater treatment plant, which had moderately acute toxicity, indicating that such water should be prevented from entering the system in order to eliminate its detrimental effect on the purification process.

  16. 1. Biologic monitoring at Barsebaeck nuclear power plant 1985-1997. 2. Biological monitoring at Swedish nuclear power plants in 1998. Annual report 1998

    International Nuclear Information System (INIS)

    Andersson, Jan; Mo, K.; Thoernqvist, S.

    1999-06-01

    This report gives an account for two studies on the ecological effects of effluents to the aquatic environment from the Swedish nuclear power plants: 1. The results of biological monitoring at the Barsebaeck nuclear power plant during the period 1985-1997 are summarised. Comparisons are made with a previous report from 1969-1983. The fish community was studied by fyke net test fishing in the cooling water effluent area along a gradient out to unaffected sites. The loss of young eels in the cooling water intake was estimated annually. Damage on female grey mullet oocyte development was analysed on samples of cooling water exposed fish. 2. The biological monitoring at the Swedish nuclear power plants during 1998 was with minor exceptions performed according to the established programmes. The monitoring at Forsmark is running in the enclosed Biotest basin at the cooling water outlet and in the surrounding archipelago. Reference data are collected at Finbo, NW Aaland, and in the nearby Graesoe archipelago. In 1998 as in previous years the benthic macro fauna abundance within the Biotest basin showed strong variations. In the beginning of the year abundance and biomass were low, in the autumn though, higher than average. Oskarshamn: The monitoring is performed in the small effluent bay, Hamnefjaerden bay, in the waters surrounding the cooling water plume and in a reference area, Kvaedoe-fjaerden, 100 km north of the power plant. Perch and roach catches have been high in the Hamnefjaerden bay since the late 1980's. In 1998 catches of perch were on a higher level than in 1997, both in spring and in summer. The changes for roach were small. A moderate decrease in eel catches took place in 1997 and 1998, indicating a reduced effect of stockings in the late 1980's. Ringhals: The monitoring is performed in the area close to the cooling water outlet, which is located at an open coast, and in a reference area. An attraction of yellow eel to the effluent area has been

  17. Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants

    Directory of Open Access Journals (Sweden)

    Eduardo de Sá Mendonça

    Full Text Available ABSTRACT Green manures are an alternative for substituting or supplementing mineral nitrogen fertilizers. The aim of this study was to quantify biological N fixation (BNF and the N contribution derived from BNF (N-BNF to N levels in leaves of coffee intercropped with legumes grown on four family farms located in the mountainous region of the Atlantic Forest Biome in the state of Minas Gerais, Brazil. The following green manures were evaluated: pinto peanuts (Arachis pintoi, calopo (Calopogonium mucunoides, crotalaria (Crotalaria spectabilis, Brazilian stylo (Stylosanthes guianensis, pigeon pea (Cajanus cajan, lablab beans (Dolichos lablab, and velvet beans (Stizolobium deeringianum, and spontaneous plants. The experimental design was randomized blocks with a 4 × 8 factorial arrangement (four agricultural properties and eight green manures, and four replications. One hundred grams of fresh matter of each green manure plant were dried in an oven to obtain the dry matter. We then performed chemical and biochemical characterizations and determined the levels of 15N and 14N, which were used to quantify BNF through the 15N (δ15N natural abundance technique. The legumes C. mucunoides, S. guianensis, C. cajan, and D. lablab had the highest rates of BNF, at 46.1, 45.9, 44.4, and 42.9 %, respectively. C. cajan was the legume that contributed the largest amount of N (44.42 kg ha-1 via BNF.C. cajan, C. spectabilis, and C. mucunoides transferred 55.8, 48.8, and 48.1 %, respectively, of the N from biological fixation to the coffee plants. The use of legumes intercropped with coffee plants is important in supplying N, as well as in transferring N derived from BNF to nutrition of the coffee plants.

  18. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2014-01-01

    Full Text Available Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80% and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton’s reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals.

  19. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica

    Directory of Open Access Journals (Sweden)

    Misael Chinchilla

    2012-06-01

    Full Text Available Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biológica Alberto Manuel Brenes (REBAMB, were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P. berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae; Xanthosoma undipes (Araceae; Iriartea deltoidea (Arecaceae; Neurolaena lobata (Asteraceae; Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae; Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae; Hampea appendiculata (Malvaceae; Ruagea glabra, Guarea glabra (Meliaceae; Psidium guajava (Myrtaceae; Bocconia frutescens (Papaveraceae; Piper friedrichsthalii (Piperaceae; Clematis dioica (Ranunculaceae; Prunus annularis (Rosaceae; Siparuna thecaphora (Siparunaceae; Solanum arboreum, Witheringia solanácea (Solanaceae; Ticodendrum incognitum (Ticodendraceae; Heliocarpus appendiculatus (Tiliaceae and Myriocarpa longipes (Urticaceae. We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9μg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  20. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica.

    Science.gov (United States)

    Chinchilla, Misael; Valerio, Idalia; Sánchez, Ronald; Mora, Víctor; Bagnarello, Vanessa; Martínez, Laura; Gonzalez, Antonieta; Vanegas, Juan Carlos; Apestegui, Alvaro

    2012-06-01

    Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biol6gica Alberto Manuel Brenes (REBAMB), were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae); Xanthosoma undipes (Araceae); Iriartea deltoidea (Arecaceae); Neurolaena lobata (Asteraceae); Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae); Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae); Hampea appendiculata (Malvaceae); Ruagea glabra, Guarea glabra (Meliaceae); Psidium guajava (Myrtaceae); Bocconia frutescens (Papaveraceae); Piper friedrichsthalii (Piperaceae); Clematis dioica (Ranunculaceae); Prunus annularis (Rosaceae); Siparuna thecaphora (Siparunaceae); Solanum arboreum, Witheringia solanacea (Solanaceae); Ticodendrum incognitum (Ticodendraceae); Heliocarpus appendiculatus (Tiliaceae) and Myriocarpa longipes (Urticaceae). We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9 microg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  1. Chemical constituents and biological research on plants in the genus Curcuma.

    Science.gov (United States)

    Sun, Wen; Wang, Sheng; Zhao, Wenwen; Wu, Chuanhong; Guo, Shuhui; Gao, Hongwei; Tao, Hongxun; Lu, Jinjian; Wang, Yitao; Chen, Xiuping

    2017-05-03

    Curcuma, a valuable genus in the family Zingiberaceae, includes approximately 110 species. These plants are native to Southeast Asia and are extensively cultivated in India, China, Sri Lanka, Indonesia, Peru, Australia, and the West Indies. The plants have long been used in folk medicine to treat stomach ailments, stimulate digestion, and protect the digestive organs, including the intestines, stomach, and liver. In recent years, substantial progress has been achieved in investigations regarding the chemical and pharmacological properties, as well as in clinical trials of certain Curcuma species. This review comprehensively summarizes the current knowledge on the chemistry and briefly discusses the biological activities of Curcuma species. A total of 720 compounds, including 102 diphenylalkanoids, 19 phenylpropene derivatives, 529 terpenoids, 15 flavonoids, 7 steroids, 3 alkaloids, and 44 compounds of other types isolated or identified from 32 species, have been phytochemically investigated. The biological activities of plant extracts and pure compounds are classified into 15 groups in detail, with emphasis on anti-inflammatory and antitumor activities.

  2. Proceedings of the FNCA workshop on plant mutation breeding 2001. Molecular biological techniques

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Watanabe, Kazuo; Tano, Shigemitsu

    2002-02-01

    The FNCA (Forum for Nuclear Cooperation in Asia) Workshop on Plant Mutation Breeding was held on 20-24 August 2001 in Bangkok, Thailand. The Workshop was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The Kasetsart University (KU), the Office of Atomic Energy for Peace (OAEP) and Department of Agriculture (DOA) acted as local host and the organizer with the cooperation of the Ministry of Agriculture, Forestry and Fisheries (MAFF) of Japan, the Japan Atomic Industrial Forum (JAIF) and Japan Atomic Energy Research Institute (JAERI). The Workshop was attended by two participants, a Project Leader and an expert on molecular biological techniques for plant mutation breeding, from each of the participating countries, i.e. China, Indonesia, Malaysia, the Philippines and Vietnam. One participant from the Republic of Korea, nine participants from Japan and thirteen participants from Thailand including three invited speakers attended the Workshop. Eleven papers including three invited papers on the current status of molecular biological techniques for plant mutation breeding were presented. Discussions were focused to further regional cooperation, to review and discuss results of past activities. The Medium-Term Plan of the project on the application of radiation and radioisotopes for agriculture in participating countries of Regional Nuclear Cooperation Activities (RNCA) was formulated and agreed. This proceeding compiles the invited and contributed papers that were submitted from the speakers. (author)

  3. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Seong-Han; Lee, Si-Myung; Park, Bum-Seok; Yun, In-Sun; Goo, Doe-Hoe; Kim, Seok-Dong [Rural Development Administration, National Institute of Agricultural Science and Technology, Suwon (Korea)

    2002-02-01

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  4. Waste water biological purification plants of dairy products industry and energy management

    Science.gov (United States)

    Stepanov, Sergey; Solkina, Olga; Stepanov, Alexander; Zhukova, Maria

    2017-10-01

    The paper presents results of engineering and economical comparison of waste water biological purification plants of dairy products industry. Three methods of purification are compared: traditional biological purification with the use of secondary clarifiers and afterpurification through granular-bed filters, biomembrane technology and physical-and-chemical treatment together with biomembrane technology for new construction conditions. The improvement of the biological purification technology using nitro-denitrification and membrane un-mixing of sludge mixture is a promising trend in this area. In these calculations, an energy management which is widely applied abroad was used. The descriptions of the three methods are illustrated with structural schemes. Costs of equipment and production areas are taken from manufacturers’ data. The research is aimed at an engineering and economical comparison of new constructions of waste water purification of dairy products industry. The experiment demonstrates advantages of biomembrane technology in waste water purification. This technology offers prospects of 122 million rubles cost saving during 25 years of operation when compared with of the technology of preparatory reagent flotation and of 13.7 million rubles cost saving compared to the option of traditional biological purification.

  5. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    International Nuclear Information System (INIS)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T.; Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu

    2000-01-01

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C -0.68 , with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  6. Effect of biological and chemical preparations on peroxidase activity in leaves of tomato plants

    Directory of Open Access Journals (Sweden)

    Yulia Kolomiets

    2016-10-01

    Full Text Available In terms of treating tomato variety Chaika with chemical preparations with active substances if aluminum phosphate, 570 g/l + phosphorous acid 80 g/,l and mankotseb in concentration of 640 g/kg, the maximum increase in peroxidase activity in leaves of plants was observed in12 hours. In terms of use of biological preparations based on living cells Bacillus subtilis and Azotobacter chroococcum its activity was maximum in 24 hours and ranged from 77.7 to 112.7 un.mg-1•s-1

  7. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    Energy Technology Data Exchange (ETDEWEB)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T. [Nuclear Research Institute, Dalat (Viet Nam); Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C{sup -0.68}, with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  8. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery

    DEFF Research Database (Denmark)

    Hickey, John M.; Chiurugwi, Tinashe; Mackay, Ian

    2017-01-01

    The rate of annual yield increases for major staple crops must more than double relative to current levels in order to feed a predicted global population of 9 billion by 2050. Controlled hybridization and selective breeding have been used for centuries to adapt plant and animal species for human...... that unifies breeding approaches, biological discovery, and tools and methods. Here we compare and contrast some animal and plant breeding approaches to make a case for bringing the two together through the application of genomic selection. We propose a strategy for the use of genomic selection as a unifying...... use. However, achieving higher, sustainable rates of improvement in yields in various species will require renewed genetic interventions and dramatic improvement of agricultural practices. Genomic prediction of breeding values has the potential to improve selection, reduce costs and provide a platform...

  9. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery.

    Science.gov (United States)

    Hickey, John M; Chiurugwi, Tinashe; Mackay, Ian; Powell, Wayne

    2017-08-30

    The rate of annual yield increases for major staple crops must more than double relative to current levels in order to feed a predicted global population of 9 billion by 2050. Controlled hybridization and selective breeding have been used for centuries to adapt plant and animal species for human use. However, achieving higher, sustainable rates of improvement in yields in various species will require renewed genetic interventions and dramatic improvement of agricultural practices. Genomic prediction of breeding values has the potential to improve selection, reduce costs and provide a platform that unifies breeding approaches, biological discovery, and tools and methods. Here we compare and contrast some animal and plant breeding approaches to make a case for bringing the two together through the application of genomic selection. We propose a strategy for the use of genomic selection as a unifying approach to deliver innovative 'step changes' in the rate of genetic gain at scale.

  10. Combined biological treatment of sinter plant waste water, blast furnace gas scrubber water polluted groundwater and coke plant effluent

    Energy Technology Data Exchange (ETDEWEB)

    Antoine van Hoorn [Corus Staal, IJmuiden (Netherlands)

    2006-07-01

    Waste water from the Corus coke plant in IJmuiden had been handled by the activated sludge process since start-up in 1972 but in the eighties it was clear that although this removed most phenols, the rest of the COD and thiocyanate must also be removed before discharge. The paper describes the original water treatment process and the higher pressure gas scrubber system for removal of SO{sub 2}, heavy metals and other harmful components. It goes on to describe development of a combined biological treatment system, the heart of which is the so-called Bio 2000. The performance of this new plant is discussed. COD concentrations are very constant but Total Kjeldahl Nitrogen (TKN) concentrations fluctuate. COD, TKN and heavy metals are in compliance but cyanide and suspended solids are not always so. A method of overcoming this is being sought. This paper was presented at a COMA meeting in March 2005 held in Scunthorpe, UK. 10 figs., 2 tabs.

  11. Review: Biological fertilization and its effect on medicinal and aromatic plants

    Directory of Open Access Journals (Sweden)

    KHALID ALI KHALID

    2012-11-01

    Full Text Available Khalid KA. 2012. Review: Biological fertilization and its effect on medicinal and aromatic plants. Nusantara Bioscience 4: 124-133. The need of increase food production in the most of developing countries becomes an ultimate goal to meet the dramatic expansion of their population. However, this is also associated many cases with a reduction of the areas of arable land which leaves no opinion for farmers but to increase the yield per unit area through the use of improved the crop varieties, irrigation and fertilization. The major problem facing the farmer is that he cannot afford the cost of these goods, particularly that of chemical fertilizers. Moreover, in countries where fertilizer production relies on imported raw materials, the costs are even higher for farmer and for the country. Besides this, chemical fertilizers production and utilization are considered as air, soil and water polluting operations. The utilization of bio-fertilizers is considered today by many scientists as a promising alternative, particularly for developing countries. Bio-fertilization is generally based on altering the rhizosphere flora, by seed or soil inoculation with certain organisms, capable of inducing beneficial effects on a compatible host. Bio-fertilizers mainly comprise nitrogen fixes (Rhizobium, Azotobacter, Azospirellum, Azolla or blue green algae, phosphate dissolvers or vesicular-arbuscular mycorrhizas and silicate bacteria. These organisms may affect their host plant by one or more mechanisms such as nitrogen fixation, production of growth promoting substances or organic acids, enhancing nutrient uptake or protection against plant pathogens. Growth characters, yield, essential oil and its constituents, fixed oil, carbohydrates, soluble sugars and nutrients contents of medicinal and aromatic plants were significantly affected by adding the biological fertilizers compared with recommended chemical fertilizers.

  12. Biology of the citrus blackfly, Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae), in three host plants

    International Nuclear Information System (INIS)

    Pena, Marcia R.; Silva, Neliton M. da

    2009-01-01

    The citrus blackfly, Aleurocanthus woglumi Ashby, was detected in Brazil in 2001. The aim of this research was to evaluate the biology, biometry and host preference of A. woglumi in sweet orange, acid lime Tahiti and mango. Experiments were set in laboratory conditions with insects collected in rangpur lime plants in Manaus, State of Amazonas, from January to June of 2006. The following parameters were evaluated: number of spirals (ovo positions) and eggs per plant, number of eggs by spiral per plant, survival of the immature (eggs, 1st, 2nd, 3rd and 4th instars), and length and survival of the immature stage. The mean embrionary period was 15 days for the three hosts. The 4th nymph (puparium) was the longest during nymph development. Second and third instars had the highest survival. The mean length of the egg-adult cycle was 70 days for the three hosts evaluated. The eggs were laid in a spiral shape on the adaxial leaf surface. The 1st instars moved to short distances from the spiral, while the 2nd, 3rd and 4th are sessile and have bristles on the whole body. Based on the highest oviposition and the highest survival of the immature stage of the citrus blackfly in acid lime Tahiti, this plant can be considered the most suitable host to A. woglumi. (author)

  13. Circadian regulation of hormone signaling and plant physiology.

    Science.gov (United States)

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  14. The important of living botanical collections for plant biology and the “next generation” of evo-devo research

    Science.gov (United States)

    Michael Dosmann; Andrew Groover

    2012-01-01

    Living botanical collections include germplasm repositories, long-term experimental plantings, and botanical gardens. We present here a series of vignettes to illustrate the central role that living collections have played in plant biology research, including evo-devo research. Looking towards the future, living collections will become increasingly important in support...

  15. Temperature compensation and entrainment in circadian rhythms

    International Nuclear Information System (INIS)

    Bodenstein, C; Heiland, I; Schuster, S

    2012-01-01

    To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles. (paper)

  16. Circadian Rhythms, Sleep Deprivation, and Human Performance

    Science.gov (United States)

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  17. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F.; van der Veen, Daan R.; O’ Donnell, Aidan J.; Cumnock, Katherine; Schneider, David; Pain, Arnab; Subudhi, Amit; Ramaprasad, Abhinay; Rund, Samuel S. C.; Savill, Nicholas J.; Reece, Sarah E.

    2018-01-01

    by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms

  18. Plant interactions with changes in coverage of biological soil crusts and water regime in Mu Us Sandland, China.

    Science.gov (United States)

    Gao, Shuqin; Pan, Xu; Cui, Qingguo; Hu, Yukun; Ye, Xuehua; Dong, Ming

    2014-01-01

    Plant interactions greatly affect plant community structure. Dryland ecosystems are characterized by low amounts of unpredictable precipitation as well as by often having biological soil crusts (BSCs) on the soil surface. In dryland plant communities, plants interact mostly as they compete for water resources, and the direction and intensity of plant interaction varies as a function of the temporal fluctuation in water availability. Since BSCs influence water redistribution to some extent, a greenhouse experiment was conducted to test the hypothesis that the intensity and direction of plant interactions in a dryland plant community can be modified by BSCs. In the experiment, 14 combinations of four plant species (Artemisia ordosica, Artemisia sphaerocephala, Chloris virgata and Setaria viridis) were subjected to three levels of coverage of BSCs and three levels of water supply. The results show that: 1) BSCs affected plant interaction intensity for the four plant species: a 100% coverage of BSCs significantly reduced the intensity of competition between neighboring plants, while it was highest with a 50% coverage of BSCs in combination with the target species of A. sphaerocephala and C. virgata; 2) effects of the coverage of BSCs on plant interactions were modified by water regime when the target species were C. virgata and S. viridis; 3) plant interactions were species-specific. In conclusion, the percent coverage of BSCs affected plant interactions, and the effects were species-specific and could be modified by water regimes. Further studies should focus on effects of the coverage of BSCs on plant-soil hydrological processes.

  19. Plant biology: From on-campus to on-line development and implementation

    Science.gov (United States)

    Bradley, Lucy K.

    The lecture content of the Plant Biology class for non-majors was transformed from a traditional on-campus lecture to an asynchronous website that could be used both as a stand-alone course and as an adjunct to the on campus course sections. In addition, an interactive, on-line website with home laboratory experiments was developed and implemented by the Plant Biology Department in collaboration with design specialists from the Information Technology and Instructional Support Department of the Arizona State University. The 259-page lecture website included 134 interactive animations, as well as 11 videos. The lab website included 176 pages, with 187 graphics and 36 separate animations. Convenience was identified by most students as the key benefit of taking the course on-line. Website construction was rated highly by all of the students; however, website audio was problematic for 50% of them; video, for 71%. Students, staff, and faculty all agreed that to benefit fully from the website, adequate hardware, software, and internet connection speed were vital. Challenges with the web-based lab were either technological (inadequate equipment or skills), logistical (dissatisfaction with having to pick up home lab kits from campus), or motivational (student survey responses added to the growing literature that suggests that mature, focused, self-motivated students benefit more from distance learning).

  20. [[Anti-leishmanial activity in plants from a Biological Reserve of Costa Rica].

    Science.gov (United States)

    Chinchilla-Carmona, Misael; Valerio-Campos, Idalia; Sánchez-Porras, Ronald; Bagnarello-Madrigal, Vanessa; Martínez-Esquivel, Laura; González-Paniagua, Antonieta; Alpizar-Cordero, Javier; Cordero-Villalobos, Maribel; Rodríguez-Chaves, Daniela

    2014-09-01

    Leishmaniosis is an important human disease very difficult to treat. For this reason, many researchers in the world have been look- ing for anti-leishmanial chemical components present in several plant species. In Costa Rica, since no studies have been done in this field, this work aimed at the search of active chemical components in local plants that may have an activity against Leishmania sp. A total of 67 plants were selected from the Alberto Manuel Brenes Biological Reserve (REBAMB). For these collected plants, fresh or dried hidroalcoholic extracts of root, stem, mature or young leaves, flowers, and immature or mature fruits, were prepared under conventional methods. All extracts were tested for their effect against a strain of Leishmania (OCR with known characteristics). Firstly, by presumptive tests, we selected only those with some activity, and then, more specific studies were done to determine the IC50 in μg/mL; a promising plant was considered only if at least one of its parts presented an IC50 plants were obtained and their lowest and highest IC50 obtained values presented (μg/mL): Bocconia frutescens (0.6 and 66.7), Clematis dioica (27.5 and 44.4), Cordia megalantha (80.0), Eugenia austin-smithi (90.6), Guarea bullata (98.8), Guateria tonduzii (44.4 and 66.3), Mikania holwayana (45.0 and 95.6), Nectandra membranacea (44.5 and 58.6), Neurolaena lobata (25.0 and 100.0), Persea povedae (76.9), Piper auritum (60.0), Rollinia pittieri (43.1), Solanum arboreum (25.8 and 72.5), Tetrorchidiumn eurphyllum (53.8 and 95.0), Witheringia solanacea (15.9 and 98.1) and Zanthoxylum juniperinum (23.4 and 97.5). Although the parasitic effect of fresh or dried extracts were almost similar, the fresh material slightly showed better results. That anti-parasitic effect occurred in one or more than four parts of the plant. Most of the active extracts did not produce lysis and aglutination which indicates a low toxicity. Since the species studied are different from those

  1. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  2. Circadian rhythms in mitochondrial respiration

    NARCIS (Netherlands)

    de Goede, Paul; Wefers, Jakob; Brombacher, Eline Constance; Schrauwen, P; Kalsbeek, A.

    2018-01-01

    Many physiological processes are regulated with a 24h periodicity to anticipate the environmental changes of day to nighttime and vice versa. These 24h regulations, commonly termed circadian rhythms, amongst others control the sleep-wake cycle, locomotor activity and preparation for food

  3. Rhythm Deficits in "Tone Deafness"

    Science.gov (United States)

    Foxton, Jessica M.; Nandy, Rachel K.; Griffiths, Timothy D.

    2006-01-01

    It is commonly observed that "tone deaf" individuals are unable to hear the beat of a tune, yet deficits on simple timing tests have not been found. In this study, we investigated rhythm processing in nine individuals with congenital amusia ("tone deafness") and nine controls. Participants were presented with pairs of 5-note sequences, and were…

  4. Rhythm generation through period concatenation in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Mark A Kramer

    2008-09-01

    Full Text Available Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma ( approximately 25 ms period and beta2 ( approximately 40 ms period rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 ( approximately 65 ms period rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms+beta2 period (40 ms = beta1 period (65 ms. In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation.

  5. Systematic review of biological effects of exposure to static electric fields. Part II: Invertebrates and plants.

    Science.gov (United States)

    Schmiedchen, Kristina; Petri, Anne-Kathrin; Driessen, Sarah; Bailey, William H

    2018-01-01

    The construction of high-voltage direct current (HVDC) lines for the long-distance transport of energy is becoming increasingly popular. This has raised public concern about potential environmental impacts of the static electric fields (EF) produced under and near HVDC power lines. As the second part of a comprehensive literature analysis, the aim of this systematic review was to assess the effects of static EF exposure on biological functions in invertebrates and plants and to provide the basis for an environmental impact assessment of such exposures. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used to guide the methodological conduct and reporting. Thirty-three studies - 14 invertebrate and 19 plant studies - met the eligibility criteria and were included in this review. The reported behavioral responses of insects and planarians upon exposure strongly suggest that invertebrates are able to perceive the presence of a static EF. Many other studies reported effects on physiological functions that were expressed as, for example, altered metabolic activity or delayed reproductive and developmental stages in invertebrates. In plants, leaf damage, alterations in germination rates, growth and yield, or variations in the concentration of essential elements, for example, have been reported. However, these physiological responses and changes in plant morphology appear to be secondary to surface stimulation by the static EF or caused by concomitant parameters of the electrostatic environment. Furthermore, all of the included studies suffered from methodological flaws, which lowered credibility in the results. At field levels encountered from natural sources or HVDC lines (plants. At far higher field levels (> 35kV/m), adverse effects on physiology and morphology, presumably caused by corona-action, appear to be more likely. Higher quality studies are needed to unravel the role of air ions, ozone, nitric oxide and corona current on

  6. Optimal Plant Carbon Allocation Implies a Biological Control on Nitrogen Availability

    Science.gov (United States)

    Prentice, I. C.; Stocker, B. D.

    2015-12-01

    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C exudation into the soil (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. Thus, N availability is under biological control, but incurs a C cost. In spite of clear observational support, this concept is left unaccounted for in Earth system models. We develop a model for the coupled cycles of C and N in terrestrial ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We assume that Cex is proportional to root mass, and that the ratio of N uptake (Nup) to Cex is proportional to inorganic N concentration in the soil solution. We further assume that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. Our analysis thereby accounts for the feedbacks between ecosystem C and N cycling and stoichiometry. We address the question of how the plant C economy will adjust under rising atmospheric CO2 and what this implies for the ecosystem C balance and the degree of N limitation.

  7. Relative biological effectiveness and radiation weighting factors in the context of animals and plants

    International Nuclear Information System (INIS)

    Higley, K.A.; Kocher, D.C.; Real, A.G.; Chambers, D.B.

    2012-01-01

    Radiation weighting factors have long been employed to modify absorbed dose as part of the process of evaluating radiological impact to humans. Their use represents an acknowledgement of the fundamental difference in energy deposition patterns of charged and uncharged particles, and how this can translate into varying degrees of biological impact. Weighting factors used in human radiation protection are derived from a variety of endpoints taken from in-vitro experiments that include human and animal cell lines, as well as in-vivo experiments with animals. Nonetheless, the application of radiation weighting factors in the context of dose assessment of animals and plants is not without some controversy. Specifically, radiation protection of biota has largely focused on limiting deterministic effects, such as reduced reproductive fitness. Consequently, the application of conventional stochastic-based radiation weighting factors (when used for human protection) appears inappropriate. While based on research, radiation weighting factors represent the parsing of extensive laboratory studies on relative biological effectiveness. These studies demonstrate that the magnitude of a biological effect depends not just on dose, but also on other factors including the rate at which the dose is delivered, the type and energy of the radiation delivering the dose, and, most importantly, the endpoint under consideration. This article discusses the efforts taken to develop a logical, transparent, and defensible approach to establishing radiation weighting factors for use in assessing impact to non-human biota, and the challenges found in differentiating stochastic from deterministic impacts.

  8. Artificial microRNAs and their applications in plant molecular biology

    Directory of Open Access Journals (Sweden)

    Pérez-Quintero Álvaro Luis

    2010-11-01

    Full Text Available

    Artificial microRNAs (amiRNAs are modified endogenous microRNA precursors in which the miRNA:miRNA* duplex is replaced with sequences designed to silence any desired gene. amiRNAs are used as part of new genetic transformation techniques in eukaryotes and have proven to be effective and to excel over other RNA-mediated gene silencing methods in both specificity and stability. amiRNAs can be designed to silence single or multiple genes, it is also possible to construct dimeric amiRNA precursors to silence two non-related genes simultaneously. amiRNA expression is quantitative and allows using constitutive, inducible, or tissue-specific promoters. One main application of amiRNAs is gene functional validation and to this end they have been mostly used in model plants; however, their use can be extended to any species or variety. amiRNA-mediated antiviral defense is another important application with great potential for plant molecular biology and crop improvement, but it still needs to be optimized to prevent the escape of viruses from the silencing mechanism. Furthermore, amiRNAs have propelled research in related areas allowing the development of similar tools like artificial trans-acting small interference RNAs (tasiARNs and artificial target mimicry. In this review, some applications and advantages of amiRNAs in plant molecular biology are analyzed. 

  9. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    Science.gov (United States)

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  10. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid.

    Science.gov (United States)

    de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline

    2017-05-30

    Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.

  11. Biological concentration of radionuclides in plants and animals after Chernobyl catastrophe

    International Nuclear Information System (INIS)

    Nakajima, Hiroo; Ryo, Haruko; Nomura, Taisei; Yamaguchi, Yoshiaki; Saito, Tadashi; Yeliseeva, K.G.; Piskunov, V.S.; Krupnova, E.V.; Voitovich, A.M.

    2000-01-01

    The 137 Cs radioactivity and its distribution in plants (trees, mushrooms, berries, duckweed, and etc.) and animals (insects, mice, fish, and etc.) were measured in contaminated areas of southern Belarus, which was highly polluted by radionuclides as a result of the Chernobyl catastrophe in Ukraine in 1986. Gamma spectrometry of 137 Cs was carried out, and a computer graphic imaging analysis was performed to visualize the distribution of radioactive nuclides in the organisms. The specimen was placed on the imaging plate, the plate was exposed for 20 h. High 137 Cs radioactivity was detected in both the animals (mice, moles, dragonflies, grasshoppers, and fish) and the plants (pine trees, oak leaves, mushrooms, berries, duckweed). The 137 Cs radioactivity in the organisms was proportional to the radioactivity in the soil. Assessment of its distribution showed that 137 Cs was highly concentrated in muscle, but there were no substantial differences in 137 Cs radioactivity according to organ or species. Computer graphic imaging analysis clearly revealed non-uniform distribution of 137 Cs radioactivity in the animals and plants. In pine trees, the highest level of radioactivity was found in the bark, and it decreased toward the center of the tree. In conclusion, the authors suggest that self-cleaning of the soil will require a very long time and that the biological concentrations will persist and increase in higher animals for a long time, resulting in accumulation of both external and internal radiation exposure in animals. (K.H.)

  12. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    Science.gov (United States)

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance.

    Science.gov (United States)

    Yadav, Vikas; Hemansi; Kim, Nayun; Tuteja, Narendra; Yadav, Puja

    2017-01-01

    G quadruplexes (G4) are higher-order DNA and RNA secondary structures formed by G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential G4 quadruplex sequences have been identified in G-rich eukaryotic non-telomeric and telomeric genomic regions. Upon function, G4 formation is known to involve in chromatin remodeling, gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. The natural role and biological validation of G4 structures is starting to be explored, and is of particular interest for the therapeutic interventions for human diseases. However, the existence and physiological role of G4 DNA and G4 RNA in plants species have not been much investigated yet and therefore, is of great interest for the development of improved crop varieties for sustainable agriculture. In this context, several recent studies suggests that these highly diverse G4 structures in plants can be employed to regulate expression of genes involved in several pathophysiological conditions including stress response to biotic and abiotic stresses as well as DNA damage. In the current review, we summarize the recent findings regarding the emerging functional significance of G4 structures in plants and discuss their potential value in the development of improved crop varieties.

  14. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics

    Science.gov (United States)

    Schoof, Heiko; Ernst, Rebecca; Nazarov, Vladimir; Pfeifer, Lukas; Mewes, Hans-Werner; Mayer, Klaus F. X.

    2004-01-01

    Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db. PMID:14681437

  15. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance

    Directory of Open Access Journals (Sweden)

    Vikas Yadav

    2017-07-01

    Full Text Available G quadruplexes (G4 are higher-order DNA and RNA secondary structures formed by G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential G4 quadruplex sequences have been identified in G-rich eukaryotic non-telomeric and telomeric genomic regions. Upon function, G4 formation is known to involve in chromatin remodeling, gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. The natural role and biological validation of G4 structures is starting to be explored, and is of particular interest for the therapeutic interventions for human diseases. However, the existence and physiological role of G4 DNA and G4 RNA in plants species have not been much investigated yet and therefore, is of great interest for the development of improved crop varieties for sustainable agriculture. In this context, several recent studies suggests that these highly diverse G4 structures in plants can be employed to regulate expression of genes involved in several pathophysiological conditions including stress response to biotic and abiotic stresses as well as DNA damage. In the current review, we summarize the recent findings regarding the emerging functional significance of G4 structures in plants and discuss their potential value in the development of improved crop varieties.

  16. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26 Al, 49 V, 51 Cr, 54 Mn, 55 Fe, 58 Co, 60 Co, 93 Nb, and 94 Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  17. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  18. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets.

    Science.gov (United States)

    Koc, Suheda; Isgor, Belgin S; Isgor, Yasemin G; Shomali Moghaddam, Naznoosh; Yildirim, Ozlem

    2015-05-01

    Plants and most of the plant-derived compounds have long been known for their potential pharmaceutical effects. They are well known to play an important role in the treatment of several diseases from diabetes to various types of cancers. Today most of the clinically effective pharmaceuticals are developed from plant-derived ancestors in the history of medicine. The aim of this study was to evaluate the free radical scavenging activity and total phenolic and flavonoid contents of methanol, ethanol, and acetone extracts from flowers and leaves of Onopordum acanthium L., Carduus acanthoides L., Cirsium arvense (L.) Scop., and Centaurea solstitialis L., all from the Asteraceae family, for investigating their potential medicinal values of biological targets that are participating in the antioxidant defense system such as catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). In this study, free radical scavenging activity and total phenolic and flavonoid contents of the plant samples were assayed by DPPH, Folin-Ciocalteu, and aluminum chloride colorimetric methods. Also, the effects of extracts on CAT, GST, and GPx enzyme activities were investigated. The highest phenolic and flavonoid contents were detected in the acetone extract of C. acanthoides flowers, with 90.305 mg GAE/L and 185.43 mg Q/L values, respectively. The highest DPPH radical scavenging was observed with the methanol leaf extracts of C. arvense with an IC50 value of 366 ng/mL. The maximum GPx and GST enzyme inhibition activities were observed with acetone extracts from the flower of C. solstitialis with IC50 values of 79 and 232 ng/mL, respectively.

  19. Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality.

    Science.gov (United States)

    Lee, Scott J; Warnick, Thomas A; Pattathil, Sivakumar; Alvelo-Maurosa, Jesús G; Serapiglia, Michelle J; McCormick, Heather; Brown, Virginia; Young, Naomi F; Schnell, Danny J; Smart, Lawrence B; Hahn, Michael G; Pedersen, Jeffrey F; Leschine, Susan B; Hazen, Samuel P

    2012-02-08

    There is currently considerable interest in developing renewable sources of energy. One strategy is the biological conversion of plant biomass to liquid transportation fuel. Several technical hurdles impinge upon the economic feasibility of this strategy, including the development of energy crops amenable to facile deconstruction. Reliable assays to characterize feedstock quality are needed to measure the effects of pre-treatment and processing and of the plant and microbial genetic diversity that influence bioconversion efficiency. We used the anaerobic bacterium Clostridium phytofermentans to develop a robust assay for biomass digestibility and conversion to biofuels. The assay utilizes the ability of the microbe to convert biomass directly into ethanol with little or no pre-treatment. Plant samples were added to an anaerobic minimal medium and inoculated with C. phytofermentans, incubated for 3 days, after which the culture supernatant was analyzed for ethanol concentration. The assay detected significant differences in the supernatant ethanol from wild-type sorghum compared with brown midrib sorghum mutants previously shown to be highly digestible. Compositional analysis of the biomass before and after inoculation suggested that differences in xylan metabolism were partly responsible for the differences in ethanol yields. Additionally, we characterized the natural genetic variation for conversion efficiency in Brachypodium distachyon and shrub willow (Salix spp.). Our results agree with those from previous studies of lignin mutants using enzymatic saccharification-based approaches. However, the use of C. phytofermentans takes into consideration specific organismal interactions, which will be crucial for simultaneous saccharification fermentation or consolidated bioprocessing. The ability to detect such phenotypic variation facilitates the genetic analysis of mechanisms underlying plant feedstock quality.

  20. Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality

    Directory of Open Access Journals (Sweden)

    Lee Scott J

    2012-02-01

    Full Text Available Abstract Background There is currently considerable interest in developing renewable sources of energy. One strategy is the biological conversion of plant biomass to liquid transportation fuel. Several technical hurdles impinge upon the economic feasibility of this strategy, including the development of energy crops amenable to facile deconstruction. Reliable assays to characterize feedstock quality are needed to measure the effects of pre-treatment and processing and of the plant and microbial genetic diversity that influence bioconversion efficiency. Results We used the anaerobic bacterium Clostridium phytofermentans to develop a robust assay for biomass digestibility and conversion to biofuels. The assay utilizes the ability of the microbe to convert biomass directly into ethanol with little or no pre-treatment. Plant samples were added to an anaerobic minimal medium and inoculated with C. phytofermentans, incubated for 3 days, after which the culture supernatant was analyzed for ethanol concentration. The assay detected significant differences in the supernatant ethanol from wild-type sorghum compared with brown midrib sorghum mutants previously shown to be highly digestible. Compositional analysis of the biomass before and after inoculation suggested that differences in xylan metabolism were partly responsible for the differences in ethanol yields. Additionally, we characterized the natural genetic variation for conversion efficiency in Brachypodium distachyon and shrub willow (Salix spp.. Conclusion Our results agree with those from previous studies of lignin mutants using enzymatic saccharification-based approaches. However, the use of C. phytofermentans takes into consideration specific organismal interactions, which will be crucial for simultaneous saccharification fermentation or consolidated bioprocessing. The ability to detect such phenotypic variation facilitates the genetic analysis of mechanisms underlying plant feedstock quality.

  1. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  2. Ischemic stroke destabilizes circadian rhythms

    Directory of Open Access Journals (Sweden)

    Borjigin Jimo

    2008-10-01

    Full Text Available Abstract Background The central circadian pacemaker is a remarkably robust regulator of daily rhythmic variations of cardiovascular, endocrine, and neural physiology. Environmental lighting conditions are powerful modulators of circadian rhythms, but regulation of circadian rhythms by disease states is less clear. Here, we examine the effect of ischemic stroke on circadian rhythms in rats using high-resolution pineal microdialysis. Methods Rats were housed in LD 12:12 h conditions and monitored by pineal microdialysis to determine baseline melatonin timing profiles. After demonstration that the circadian expression of melatonin was at steady state, rats were subjected to experimental stroke using two-hour intralumenal filament occlusion of the middle cerebral artery. The animals were returned to their cages, and melatonin monitoring was resumed. The timing of onset, offset, and duration of melatonin secretion were calculated before and after stroke to determine changes in circadian rhythms of melatonin secretion. At the end of the monitoring period, brains were analyzed to determine infarct volume. Results Rats demonstrated immediate shifts in melatonin timing after stroke. We observed a broad range of perturbations in melatonin timing in subsequent days, with rats exhibiting onset/offset patterns which included: advance/advance, advance/delay, delay/advance, and delay/delay. Melatonin rhythms displayed prolonged instability several days after stroke, with a majority of rats showing a day-to-day alternation between advance and delay in melatonin onset and duration. Duration of melatonin secretion changed in response to stroke, and this change was strongly determined by the shift in melatonin onset time. There was no correlation between infarct size and the direction or amplitude of melatonin phase shifting. Conclusion This is the first demonstration that stroke induces immediate changes in the timing of pineal melatonin secretion, indicating

  3. Circadian Rhythm Shapes the Gut Microbiota Affecting Host Radiosensitivity.

    Science.gov (United States)

    Cui, Ming; Xiao, Huiwen; Luo, Dan; Zhang, Xin; Zhao, Shuyi; Zheng, Qisheng; Li, Yuan; Zhao, Yu; Dong, Jiali; Li, Hang; Wang, Haichao; Fan, Saijun

    2016-10-26

    Modern lifestyles, such as shift work, nocturnal social activities, and jet lag, disturb the circadian rhythm. The interaction between mammals and the co-evolved intestinal microbiota modulates host physiopathological processes. Radiotherapy is a cornerstone of modern management of malignancies; however, it was previously unknown whether circadian rhythm disorder impairs prognosis after radiotherapy. To investigate the effect of circadian rhythm on radiotherapy, C57BL/6 mice were housed in different dark/light cycles, and their intestinal bacterial compositions were compared using high throughput sequencing. The survival rate, body weight, and food intake of mice in diverse cohorts were measured following irradiation exposure. Finally, the enteric bacterial composition of irradiated mice that experienced different dark/light cycles was assessed using 16S RNA sequencing. Intriguingly, mice housed in aberrant light cycles harbored a reduction of observed intestinal bacterial species and shifts of gut bacterial composition compared with those of the mice kept under 12 h dark/12 h light cycles, resulting in a decrease of host radioresistance. Moreover, the alteration of enteric bacterial composition of mice in different groups was dissimilar. Our findings provide novel insights into the effects of biological clocks on the gut bacterial composition, and underpin that the circadian rhythm influences the prognosis of patients after radiotherapy in a preclinical setting.

  4. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [ed.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.

  5. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    International Nuclear Information System (INIS)

    Kszos, L.A.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992

  6. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant December 1992--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1995-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP for PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.

  7. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  8. Plant molecular biology and biotechnology research in the post-recombinant DNA era.

    Science.gov (United States)

    Tyagi, Akhilesh K; Khurana, Jitendra P

    2003-01-01

    After the beginning of the recombinant DNA era in the mid-1970s, researchers in India started to make use of the new technology to understand the structure of plant genes and regulation of their expression. The outcome started to appear in print in early the 1980s and genes for histones, tubulin, photosynthetic membrane proteins, phototransduction components, organelles and those regulated differentially by developmental and extrinsic signals were sequenced and characterized. Some genes of biotechnological importance like those encoding an interesting seed protein and the enzyme glyoxalase were also isolated. While work on the characterization of genome structure and organization was started quite early, it remained largely focused on the identification of DNA markers and genetic variability. In this context, the work on mustard, rice and wheat is worth mentioning. In the year 2000, India became a member of the international consortium to sequence entire rice genome. Several laboratories have also given attention to regulated expression of plastid and nuclear genes as well as to isolate target-specific promoters or design promoters with improved potential. Simultaneously, transgenic systems for crops like mustard, rice, wheat, cotton, legumes and several vegetables have been established. More recently, genes of agronomic importance like those for insect resistance, abiotic stress tolerance, nutritional improvement and male sterility, isolated in India or abroad, have been utilized for raising transgenics for crop improvement. Some of these transgenics have already shown their potential in containment facility or limited field trials conducted under the stipulated guidelines. Plant molecular biology and biotechnology are thus clearly poised to make an impact on research in basic biology and agriculture in the near future.

  9. Biological and radioecological investigations at the nuclear power plant of Oskarshamn at simpvarp, 1962-1978

    International Nuclear Information System (INIS)

    Grimaas, U.; Neuman, E.

    1979-06-01

    The effect of the cooling water on the biological system and the uptake/enrichment of radionuclides in sediments and living systems have been investigated at the Oskarshamns plant at the Baltic. The directions which the cooling water takes and the topography of the region makes it natural to divide the region into four effective zones. In zone 1, namely in the plant and in the cooling channels, the destruction of fish, the loss of planktons and the development of clinging systems, mainly balanidae, takes place. In zone 2, 0.1 km 2 , in the bay of discharge, the effects are evident on all levels of the ecological systems. The balance is changed and the favoured species of biologic substances increase. There is a larger turnover of organic materials. In zone 3 which is the sea region outside the bay, 20 - 25 km 2 effects can be shown in different parts of the ecosystems. The effects are pronounced along the coast to the south. The small herring is attracted to the bay of discharge, and it spawns earlier than usual. There is no effect on eels. In the large area, zone 4, 20 kg to the south and 7 km to the north the effects are shaded by natural variations. Small amounts of radionuclides are detected in the sediments of this large region. The radionuclide enrichment is highest in the vegetation, and smallest in the fish. The assumed factors of enrichment have been very conservative, and the real values for the fish are 10 to 100 times lower. (GBn)

  10. Clean Water Act and biological studies at the Savannah River Plant

    International Nuclear Information System (INIS)

    Fleming, R.R.

    1985-01-01

    Federal facilities are required to comply with applicable water quality standards, effluent limitations, and permit requirements established by the EPA or agreement state pursuant to provision of the Federal Water Pollution Control Act, as amended in 1977 (P.L. 95-217). Production reactors and a large fossil-fueled powerplant at the Savannah River Plant (SRP) use either once-through water from the Savannah River or recirculating water from 2700-acre reservoir to remove waste heat. Once through cooling water is discharged directly to streams whose headwaters originate on the plant. The thermal load carried by these streams is largely dissipated by the time the streams re-enter the river. However, effluent discharge temperatures to the streams and reservoir do not meet current criteria specified by the State of South Carolina for a National Pollutant Discharge Elimination System (NPDES) permit. Less stringent effluent limitations can be approved by the State if DOE can demonstrate that current or mitigated thermal discharges will ensure the protection and propagation of a balanced biological community within the receiving waters. Following information provided in the EPA 316(a) Technical Guidance Manual, biological studies were designed and implemented that will identify and determine the significance of impacts on waters receiving thermal effluents. Sampling is being conducted along the length of each thermal stream, in the cooling water reservoir, and along a 160-mile stretch of the Savannah River and in the mouths of 33 of its tributaries. Preliminary results of the 316(a) type studies and how they are being used to achieve compliance with State water quality regulations will be discussed

  11. Biological invasion by Myrica faya in Hawaii: Plant demography, nitrogen fixation, ecosystem effects

    International Nuclear Information System (INIS)

    Vitousek, P.M.; Walker, L.R.

    1989-01-01

    Myrica faya, an introduced actinorhizal nitrogen fixer, in invading young volcanic sites in Hawaii Volcanoes National Park. We examined the population biology of the invader and ecosystem-level consequences of its invasion in open-canopied forests resulting from volcanic cinder-fall. Although Myrica faya is nominally dioecious, both males and females produce large amounts of fruit that are utilized by a number of exotic and native birds, particularly the exotic Zosterops japonica. In areas of active colonization, Myrica seed rain under perch trees of the dominant native Metrosideros polymorpha ranged from 6 to 60 seeds m -2 yr -1 ; no seeds were captured in the open. Planted seeds of Myrica also germinated an established better under isolated individuals of Metrosideros than in the open. Diameter growth of Myrica is > 15-fold greater than that of Metrosideros, and the Myrica population is increasing rapidly. Rates of nitrogen fixation were measured using the acetylene reduction assay calibrated with 15 N. Myrica nodules reduced acetylene at between 5 and 20 μmol g -1 h -1 , a rate that extrapolated to nitrogen fixation of 18 kg ha -1 in a densely colonized site. By comparison, all native sources of nitrogen fixation summed to 0.2 kg ha -1 yr -1 , and precipitation added -1 yr -1 . Measurements of litter decomposition and nitrogen release, soil nitrogen mineralization, and plant growth in bioassays all demonstrated that nitrogen fixed by Myrica becomes available to other organisms as well. We conclude that biological invasion by Myrica faya alters ecosystem-level properties in this young volcanic area; at least in this case, the demography and physiology of one species controls characteristics of a whole ecosystem

  12. Differential effects of plant species on a mite pest (Tetranychus utricae) and its predator (Phytoseiulus persimilis): implications for biological control.

    Science.gov (United States)

    Skirvin, D J; de Courcy Williams, M

    1999-06-01

    The influence of plant species on the population dynamics of the spider mite pest, Tetranychus urticae, and its predator, Phytoseiulus persimilis, was examined as a prerequisite to effective biological control on ornamental nursery stock. Experiments have been done to investigate how the development, fecundity and movement of T. urticae, and the movement of P. persimilis were affected by plant species. A novel experimental method, which incorporates plant structure, was used to investigate the functional response of P. persimilis. Development times for T. urticae were consistent with published data and did not differ with plant species in a biologically meaningful way. Plant species was shown to have a major influence on fecundity (P < 0.001) and movement of the pest mite (P < 0.01), but no influence on the movement of the predator. The movement of both pest and predator was shown to be related to the density of the adult pest mites on the plant (P < 0.001). Plant structure affected the functional response, particularly in relation to the ability of the predator to locate prey at low densities. The impact of these findings on the effective use of biological control on ornamental nursery stock is discussed.

  13. Temporal interactions between cortical rhythms

    Directory of Open Access Journals (Sweden)

    Anita K Roopun

    2008-12-01

    Full Text Available Multiple local neuronal circuits support different, discrete frequencies of network rhythm in neocortex. Relationships between different frequencies correspond to mechanisms designed to minimise interference, couple activity via stable phase interactions, and control the amplitude of one frequency relative to the phase of another. These mechanisms are proposed to form a framework for spectral information processing. Individual local circuits can also transform their frequency through changes in intrinsic neuronal properties and interactions with other oscillating microcircuits. Here we discuss a frequency transformation in which activity in two coactive local circuits may combine sequentially to generate a third frequency whose period is the concatenation sum of the original two. With such an interaction, the intrinsic periodicity in each component local circuit is preserved – alternate, single periods of each original rhythm form one period of a new frequency - suggesting a robust mechanism for combining information processed on multiple concurrent spatiotemporal scales.

  14. Circadian Rhythm Control: Neurophysiological Investigations

    Science.gov (United States)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  15. Stepwise screening of microorganisms for commercial use in biological control of plant pathogenic fungi and bacteria. Biological Control

    NARCIS (Netherlands)

    Köhl, J.; Postma, J.; Nicot, P.; Ruocco, M.

    2011-01-01

    The development of new biocontrol products against plant diseases requires screening of high numbers of candidate antagonists. Antagonists for commercial use have to fulfill many different requirements. Besides being active against the specific targeted plant pathogens they must be safe and

  16. Very-large-scale production of antibodies in plants: The biologization of manufacturing.

    Science.gov (United States)

    Buyel, J F; Twyman, R M; Fischer, R

    2017-07-01

    Gene technology has facilitated the biologization of manufacturing, i.e. the use and production of complex biological molecules and systems at an industrial scale. Monoclonal antibodies (mAbs) are currently the major class of biopharmaceutical products, but they are typically used to treat specific diseases which individually have comparably low incidences. The therapeutic potential of mAbs could also be used for more prevalent diseases, but this would require a massive increase in production capacity that could not be met by traditional fermenter systems. Here we outline the potential of plants to be used for the very-large-scale (VLS) production of biopharmaceutical proteins such as mAbs. We discuss the potential market sizes and their corresponding production capacities. We then consider available process technologies and scale-down models and how these can be used to develop VLS processes. Finally, we discuss which adaptations will likely be required for VLS production, lessons learned from existing cell culture-based processes and the food industry, and practical requirements for the implementation of a VLS process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January-December 1997

    International Nuclear Information System (INIS)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997

  18. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997.

  19. Serial binary interval ratios improve rhythm reproduction.

    Science.gov (United States)

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  20. Serial binary interval ratios improve rhythm reproduction

    Directory of Open Access Journals (Sweden)

    Xiang eWu

    2013-08-01

    Full Text Available Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8, non-binary integer (1:3:5:6, and non-integer (1:2.3:5.3:6.4 ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  1. The role of adaptive trans-generational plasticity in biological invasions of plants.

    Science.gov (United States)

    Dyer, Andrew R; Brown, Cynthia S; Espeland, Erin K; McKay, John K; Meimberg, Harald; Rice, Kevin J

    2010-03-01

    High-impact biological invasions often involve establishment and spread in disturbed, high-resource patches followed by establishment and spread in biotically or abiotically stressful areas. Evolutionary change may be required for the second phase of invasion (establishment and spread in stressful areas) to occur. When species have low genetic diversity and short selection history, within-generation phenotypic plasticity is often cited as the mechanism through which spread across multiple habitat types can occur. We show that trans-generational plasticity (TGP) can result in pre-adapted progeny that exhibit traits associated with increased fitness both in high-resource patches and in stressful conditions. In the invasive sedge, Cyperus esculentus, maternal plants growing in nutrient-poor patches can place disproportional number of propagules into nutrient-rich patches. Using the invasive annual grass, Aegilops triuncialis, we show that maternal response to soil conditions can confer greater stress tolerance in seedlings in the form of greater photosynthetic efficiency. We also show TGP for a phenological shift in a low resource environment that results in greater stress tolerance in progeny. These lines of evidence suggest that the maternal environment can have profound effects on offspring success and that TGP may play a significant role in some plant invasions.

  2. Synthesis of Biomass and Utilization of Plant Wastes in a Physical Model of a Biological Life Support System

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu A.; Kovalev, V. S.; Gribovksaya, I. V.; Tirranen, L. S.; Zolotukkhin, I. G.; Gros, J. B.; Lasseur, Ch.

    Biological life support systems (LSS) with highly closed intrasystem mass ex change mass ex change hold much promise for long-term human life support at planetary stations (Moon, Mars, etc.). The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotroph block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas ex change in such a system consists of respiratory gas ex change of SLS and photosynthesis and respiration of plants. Specifics of gas ex change dynamics of high plants -SLS complex has been considered. Relationship between such a gas ex change and photosynthetic active radiation (PAR) and age of plants has been established. SLS fertility has been shown to depend on its thickness and phase of maturity. The biogenic elements (potassium, phosphorus, nitrogen) in Liebig minimum have been found to include nitrogen which is the first to impair plants' growth in disruption of the process conditions. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances -products of ex change of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. In multiple recycle of the mat ter (more than 5 cycles) under the irradiance intensity of 150 W/m2 PAR and the SLS mass (dry weight) of 17.7 -19.9 kg/m2 average total harvest of

  3. Biological aspects of Periga circumstans Walker, 1855 (Lepidoptera: Saturniidae: Hemileucinae with larvae reared on khaki and mate-plant leaves

    Directory of Open Access Journals (Sweden)

    A. Specht

    Full Text Available The goal of the present study was to investigate biological aspects of Periga circumstans Walker, 1855 (Lepidoptera: Saturniidae: Hemileucinae whose larvae were fed on leaves of khaki-plant (Diospyros khaki Linnaeus - Ebenaceae and Mate-plant (Ilex paraguariensis Saint Hilaire - Aquifoliaceae leaves. The biological parameters were obtained from specimens kept under controlled conditions: temperature of 25 ± 1 °C, relative humidity of 70 ± 10%, and photoperiod of 12 hours. For each developmental stage, morphological and ethological parameters are described. The larvae passed through six instars with a growth average rate of 1.4 for each instar. The host plants influenced significantly only the total duration of the larval phase, which was prolonged for larvae fed on khaki-plant leaves. Several aspects related to the morphology and the ethology of P. circumstans are similar to those described for Lonomia obliqua Walker, 1855.

  4. The biological model of postradiation restoration of plants on the organismic and population levels of organization

    International Nuclear Information System (INIS)

    Ivanishvili, N.I.; Gogebashvili, M.E.

    2012-01-01

    Full text : When studying postradiating restoration of plants, the question of working out of biological models for testing of biosystems' reliability has become rather urgent. It is known that each organization level of a live organism is characterized by certain mechanisms of postradiating restoration at the formation of various radiobiological reactions. For example, the basic processes at cellular, tissue and organism levels are reparation and regeneration whereas at cenosis level the leading processes are often the forms of population restoration. Besides, in spite of the fact that the population restoration at cenosis level is continuously inked with restoration at the lower organization levels, at this level the specific forms of restoration characterized for only this level are seen. It is natural that studying of the mechanisms of response to the influence of damaging factors needs new methodological approaches on various forms of population restoration with the use of adequate test systems. For this purpose the species of duckweed was used. It was seen that this test-system is characterized by the two levels of response to radiation influence. The first one - at a rather low level of radiation influence (up to 50Gy) when decrease in intensity of leaf growth as well as in colony formation was observed and the second one - at a high level of radiation influence (up to 200Gy) when a crushing of colonies took place and an increase in quantity of undeveloped plant leaves was seen. Thus, thanks to the step character of response of culture duckweed it becomes possible to definite quantity indicators for the investigated populations, not only at the influence of concrete physical and chemical factors but also at multifactorial influences that is often difficult to be calculated. It can be concluded that at the first level of damage an increase of plant resistance to unfavorable factors takes place that is due to the inhibition of growth processes

  5. Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-11-01

    Full Text Available The effectiveness of plant growth – promoting bacteria is variable under different biotic and abiotic conditions. Abiotic factors may negatively affect the beneficial properties and efficiency of the introduced PGPR inoculants. The aim of this study was to evaluate the effect of plant growth – promoting rhizobacteria on plant growth and on the control of foot and root rot of tomatoes caused by Fusarium solani under different soil salinity conditions. Among the five tested strains, only Pseudomonas chlororaphis TSAU13, and Pseudomonas extremorientalis TSAU20 were able to stimulate plant growth and act as biological controls of foot and root rot disease of tomato. The soil salinity did not negatively affect the beneficial impacts of these strains, as they were able to colonize and survive on the roots of tomato plants under both saline and non-saline soil conditions. The improved plant height and fruit yield of tomato was also observed for plants inoculated with P. extremorientalis TSAU20. Our results indicated that, saline condition is not crucial factor in obtaining good performance with respect to the plant growth stimulating and biocontrol abilities of PGPR strains. The bacterial inoculant also enhanced antioxidant enzymes activities thereby preventing ROS induced oxidative damage in plants, and the proline concentrations in plant tissue that play an important role in plant stress tolerance.

  6. Air Travel, Circadian Rhythms/Hormones, and Autoimmunity.

    Science.gov (United States)

    Torres-Ruiz, J; Sulli, A; Cutolo, M; Shoenfeld, Y

    2017-08-01

    Biological rhythms are fundamental for homeostasis and have recently been involved in the regulatory processes of various organs and systems. Circadian cycle proteins and hormones have a direct effect on the inflammatory response and have shown pro- or anti-inflammatory effects in animal models of autoimmune diseases. The cells of the immune system have their own circadian rhythm, and the light-dark cycle directly influences the inflammatory response. On the other hand, patients with autoimmune diseases characteristically have sleep disorders and fatigue, and in certain disease, such as rheumatoid arthritis (RA), a frank periodicity in the signs and symptoms is recognized. The joint symptoms predominate in the morning, and apparently, subjects with RA have relative adrenal insufficiency, with a cortisol peak unable to control the late night load of pro-inflammatory cytokines. Transatlantic flights represent a challenge in the adjustment of biological rhythms, since they imply sleep deprivation, time zone changes, and potential difficulties for drug administration. In patients with autoimmune diseases, the use of DMARDs and prednisone at night is probably best suited to lessen morning symptoms. It is also essential to sleep during the trip to improve adaptation to the new time zone and to avoid, as far as possible, works involving flexible or nocturnal shifts. The study of proteins and hormones related to biological rhythms will demonstrate new pathophysiological pathways of autoimmune diseases, which will emphasize the use of general measures for sleep respect and methods for drug administration at key daily times to optimize their anti-inflammatory and immune modulatory effects.

  7. Chorusing, synchrony and the evolutionary functions of rhythm

    Directory of Open Access Journals (Sweden)

    Andrea eRavignani

    2014-10-01

    Full Text Available A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc. with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony, we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, making group behavior key to understand the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates. Finally, we propose an Evolving Signal Timing hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s of rhythmic behavior in our proto-musical primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and

  8. Chorusing, synchrony, and the evolutionary functions of rhythm.

    Science.gov (United States)

    Ravignani, Andrea; Bowling, Daniel L; Fitch, W Tecumseh

    2014-01-01

    A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an "Evolving Signal Timing" hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our "proto-musical" primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and

  9. Plant interactions with changes in coverage of biological soil crusts and water regime in Mu Us Sandland, China.

    Directory of Open Access Journals (Sweden)

    Shuqin Gao

    Full Text Available Plant interactions greatly affect plant community structure. Dryland ecosystems are characterized by low amounts of unpredictable precipitation as well as by often having biological soil crusts (BSCs on the soil surface. In dryland plant communities, plants interact mostly as they compete for water resources, and the direction and intensity of plant interaction varies as a function of the temporal fluctuation in water availability. Since BSCs influence water redistribution to some extent, a greenhouse experiment was conducted to test the hypothesis that the intensity and direction of plant interactions in a dryland plant community can be modified by BSCs. In the experiment, 14 combinations of four plant species (Artemisia ordosica, Artemisia sphaerocephala, Chloris virgata and Setaria viridis were subjected to three levels of coverage of BSCs and three levels of water supply. The results show that: 1 BSCs affected plant interaction intensity for the four plant species: a 100% coverage of BSCs significantly reduced the intensity of competition between neighboring plants, while it was highest with a 50% coverage of BSCs in combination with the target species of A. sphaerocephala and C. virgata; 2 effects of the coverage of BSCs on plant interactions were modified by water regime when the target species were C. virgata and S. viridis; 3 plant interactions were species-specific. In conclusion, the percent coverage of BSCs affected plant interactions, and the effects were species-specific and could be modified by water regimes. Further studies should focus on effects of the coverage of BSCs on plant-soil hydrological processes.

  10. Circadian Rhythms in Diet-Induced Obesity.

    Science.gov (United States)

    Engin, Atilla

    2017-01-01

    The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in

  11. Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer's disease

    NARCIS (Netherlands)

    Wu, Y.-H.; Swaab, D.F.

    2007-01-01

    Circadian rhythm disturbances, such as sleep disorders, are frequently seen in aging and are even more pronounced in Alzheimer's disease (AD). Alterations in the biological clock, the suprachiasmatic nucleus (SCN), and the pineal gland during aging and AD are considered to be the biological basis

  12. Timing Matters: Circadian Rhythm in Sepsis, Obstructive Lung Disease, Obstructive Sleep Apnea, and Cancer.

    Science.gov (United States)

    Truong, Kimberly K; Lam, Michael T; Grandner, Michael A; Sassoon, Catherine S; Malhotra, Atul

    2016-07-01

    Physiological and cellular functions operate in a 24-hour cyclical pattern orchestrated by an endogenous process known as the circadian rhythm. Circadian rhythms represent intrinsic oscillations of biological functions that allow for adaptation to cyclic environmental changes. Key clock genes that affect the persistence and periodicity of circadian rhythms include BMAL1/CLOCK, Period 1, Period 2, and Cryptochrome. Remarkable progress has been made in our understanding of circadian rhythms and their role in common medical conditions. A critical review of the literature supports the association between circadian misalignment and adverse health consequences in sepsis, obstructive lung disease, obstructive sleep apnea, and malignancy. Circadian misalignment plays an important role in these disease processes and can affect disease severity, treatment response, and survivorship. Normal inflammatory response to acute infections, airway resistance, upper airway collapsibility, and mitosis regulation follows a robust circadian pattern. Disruption of normal circadian rhythm at the molecular level affects severity of inflammation in sepsis, contributes to inflammatory responses in obstructive lung diseases, affects apnea length in obstructive sleep apnea, and increases risk for cancer. Chronotherapy is an underused practice of delivering therapy at optimal times to maximize efficacy and minimize toxicity. This approach has been shown to be advantageous in asthma and cancer management. In asthma, appropriate timing of medication administration improves treatment effectiveness. Properly timed chemotherapy may reduce treatment toxicities and maximize efficacy. Future research should focus on circadian rhythm disorders, role of circadian rhythm in other diseases, and modalities to restore and prevent circadian disruption.

  13. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    Directory of Open Access Journals (Sweden)

    José I. Baldani

    2005-09-01

    Full Text Available This review covers the history on Biological Nitrogen Fixation (BNF in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of whichwas coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali, associative (Azospirillum lipoferum, A. brasilense, A. amazonense and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica. The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus and GENOPAR (Herbaspirillum seropedicae reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.A presente revisão aborda a história da Fixação Biológica de Nitrogênio (FBN em Gramíneas no Brasil, procurando mostrar a evolução da pesquisa na área iniciada a mais de 40 anos sob a liderança da pesquisadora Johanna Döbereiner. Um aspecto marcante deste período foi a descoberta de diversas bactérias fixadoras de nitrogênio atmosf

  14. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica

    Directory of Open Access Journals (Sweden)

    Misael Chinchilla

    2012-06-01

    Full Text Available Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biológica Alberto Manuel Brenes (REBAMB, were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P. berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae; Xanthosoma undipes (Araceae; Iriartea deltoidea (Arecaceae; Neurolaena lobata (Asteraceae; Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae; Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae; Hampea appendiculata (Malvaceae; Ruagea glabra, Guarea glabra (Meliaceae; Psidium guajava (Myrtaceae; Bocconia frutescens (Papaveraceae; Piper friedrichsthalii (Piperaceae; Clematis dioica (Ranunculaceae; Prunus annularis (Rosaceae; Siparuna thecaphora (Siparunaceae; Solanum arboreum, Witheringia solanácea (Solanaceae; Ticodendrum incognitum (Ticodendraceae; Heliocarpus appendiculatus (Tiliaceae and Myriocarpa longipes (Urticaceae. We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9μg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  15. Disturbed mouse circadian rhythm before the Kobe EQ in 1995

    Science.gov (United States)

    Yokoi, Sayoko

    2013-04-01

    Legends of macro-anomalies before large earthquakes have been passed down for generations in Asia. Most of the statements on earthquake precursors are considered unreliable afterthoughts by traditional scientists. However, disturbed biological rhythms in mice were observed before the Kobe EQ in 1995 (Yokoi et al, 2003). The records of unusual mouse behavior before the earthquake were obtained to study biological clock at Institute for Protein Research, Osaka University. It is clarified that the disturbance was very rare phenomena statistically. Similar phenomenon was observed before the Wenchuan earthquake in 2008, too (Li et al, 2009). In the presentation, I will discuss the phenomena as one example of preseismic unusual animal behaviors.

  16. Circadian rhythm of leaf movement in Capsicum annuum observed during centrifugation

    Science.gov (United States)

    Chapman, D. K.; Brown, A. H.; Dahl, A. O.

    1975-01-01

    Plant circadian rhythms of leaf movement in seedlings of the pepper plant (Capsicum annuum L., var. Yolo Wonder) were observed at different g-levels by means of a centrifuge. Except for the chronically imposed g-force all environmental conditions to which the plants were exposed were held constant. The circadian period, rate of change of amplitude of successive oscillations, symmetry of the cycles, and phase of the rhythm all were found not to be significantly correlated with the magnitude of the sustained g-force.

  17. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    Science.gov (United States)

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. A perspective on plant origin radiolabeled compounds, their biological affinities and interaction between plant extracts with radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zumrut Biber Muftuler, F.; Ayfer Yurt Kilcar; Perihan Unak

    2015-01-01

    Plant origin products having anticancer properties come into prominence due to widespread of cancer. There is significant increase on the usage of plant origin products and their purification to investigate the potential use at the treatment and diagnosis. Plant origin radiolabeled compounds have been attracting more scientific attention since the achievement of earlier researches. Furthermore, plant extracts are consumed quite a lot with unknown side effects of their contents. Researchers focus on investigation of their interactions with radiopharmaceuticals. Current review is carried out to evaluate the contribution of plant extracts for the development of new plant origin radiolabeled ( 125 / 131 I, 99m Tc) compounds for imaging and/or therapy and to investigate the interaction of plant extracts with radiopharmaceuticals. (author)

  19. Acquisition of speech rhythm in first language.

    Science.gov (United States)

    Polyanskaya, Leona; Ordin, Mikhail

    2015-09-01

    Analysis of English rhythm in speech produced by children and adults revealed that speech rhythm becomes increasingly more stress-timed as language acquisition progresses. Children reach the adult-like target by 11 to 12 years. The employed speech elicitation paradigm ensured that the sentences produced by adults and children at different ages were comparable in terms of lexical content, segmental composition, and phonotactic complexity. Detected differences between child and adult rhythm and between rhythm in child speech at various ages cannot be attributed to acquisition of phonotactic language features or vocabulary, and indicate the development of language-specific phonetic timing in the course of acquisition.

  20. Factors influencing circadian rhythms in acetaminophen lethality.

    Science.gov (United States)

    Schnell, R C; Bozigian, H P; Davies, M H; Merrick, B A; Park, K S; McMillan, D A

    1984-01-01

    Experiments were conducted to examine the effects of changes in lighting schedules and food consumption on circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice. Under a normal lighting schedule (light: 06.00-18.00 h), male mice exhibited a circadian rhythm in acetaminophen lethality (peak: 18.00 h; nadir: 06.00, 10.00 h) and an inverse rhythm in hepatic glutathione concentrations (peak: 06.00, 10.00 h; nadir: 18.00 h). Under a reversed lighting schedule (light: 18.00-06.00 h) the glutathione rhythm was reversed and the rhythm in acetaminophen lethality was altered showing greater sensitivity to the drug. Under continuous light, there was a shift in the acetaminophen lethality and the hepatic glutathione rhythms. Under continuous dark, both rhythms were abolished. Under a normal lighting regimen, hepatic glutathione levels were closely correlated with food consumption; i.e., both were increased during the dark phase and decreased during the light phase. Fasting the mice for 12 h abolished the rhythms in acetaminophen lethality and hepatic glutathione levels; moreover, the lethality was increased and the hepatic glutathione levels were decreased. These experiments show that both lighting schedules and feeding can alter the circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice.

  1. An improved method to quantitate mature plant microRNA in biological matrices using periodate treatment and internal control

    Science.gov (United States)

    MicroRNAs (miRNAs) ubiquitously exist in microorganisms, plants and animals, and appear to modulate a wide range of critical biological processes. However, no definitive conclusion has been reached regarding the uptake of exogenous dietary small RNAs into mammalian circulation and organs and cross-k...

  2. S.A.P. Students Adopt Plants: A Curriculum Guide for Independent Research Projects in High School Biology.

    Science.gov (United States)

    Wilkinson, Gayle A.

    This curriculum guide begins with classroom and text study of plants and develops into an individual research project that continues throughout the school year outside the regular biology or botany teaching plan and text. The project uses about one class period every 2 weeks for group discussions, evaluations, and suggestions for the individual…

  3. An analysis of heart rhythm dynamics using a three-coupled oscillator model

    International Nuclear Information System (INIS)

    Gois, Sandra R.F.S.M.; Savi, Marcelo A.

    2009-01-01

    Rhythmic phenomena represent one of the most striking manifestations of the dynamic behavior in biological systems. Understanding the mechanisms responsible for biological rhythms is crucial for the comprehension of the dynamics of life. Natural rhythms could be either regular or irregular over time and space. Each kind of dynamical behavior may be related to both normal and pathological physiological functioning. The cardiac conducting system can be treated as a network of self-excitatory elements and, since these elements exhibit oscillatory behavior, they can be modeled as nonlinear oscillators. This paper proposes a mathematical model to describe heart rhythms considering three modified Van der Pol oscillators connected with time delay couplings. Therefore, the heart dynamics is represented by a system of differential difference equations. Numerical simulations are carried out presenting qualitative agreement with the general heart rhythm behavior. Normal and pathological rhythms represented by the ECG signals are reproduced. Pathological rhythms are generated by either the coupling alterations that represents communications aspects in the heart electric system or forcing excitation representing external pacemaker excitation.

  4. Sleep, Rhythms, and the Endocrine Brain: Influence of Sex and Gonadal Hormones

    Science.gov (United States)

    Mong, Jessica A.; Baker, Fiona C.; Mahoney, Megan M.; Paul, Ketema N.; Schwartz, Michael D.; Semba, Kazue; Silver, Rae

    2011-01-01

    While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master “circadian clock” within the suprachiasmatic nucleus (SCN), modulate photic effects on activity in males points to novel mechanisms of circadian control. Work in aromatase deficient (ArKO) mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a mini-symposium at the 2011 annual meeting of the Society for Neuroscience. PMID:22072663

  5. Evaluation of an ethnopharmacologically selected Bhutanese medicinal plants for their major classes of phytochemicals and biological activities.

    Science.gov (United States)

    Wangchuk, Phurpa; Keller, Paul A; Pyne, Stephen G; Taweechotipatr, Malai; Tonsomboon, Aunchalee; Rattanajak, Roonglawan; Kamchonwongpaisan, Sumalee

    2011-09-01

    As many as 229 medicinal plants have been currently used in the Bhutanese Traditional Medicine (BTM) as a chief ingredient of polyherbal formulations and these plants have been individually indicated for treating various types of infections including malaria, tumor, and microbial. We have focused our study only on seven species of these plants. We aim to evaluate the antiplasmodial, antimicrobial, anti-Trypanosoma brucei rhodesiense and cytotoxicity activities of the seven medicinal plants of Bhutan selected using an ethno-directed bio-rational approach. This study creates a scientific basis for their use in the BTM and gives foundation for further phytochemical and biological evaluations which can result in the discovery of new drug lead compounds. A three stage process was conducted which consisted of: (1) an assessment of a pharmacopoeia and a formulary book of the BTM for their mode of plant uses; (2) selecting 25 anti-infective medicinal plants based on the five established criteria, collecting them, and screening for their major classes of phytochemicals using appropriate test protocols; and (3) finally analyzing the crude extracts of the seven medicinal plants, using the standard test protocols, for their antiplasmodial, antimicrobial, anti-Trypanosoma brucei rhodesiense and cytotoxicity activities as directed by the ethnopharmacological uses of each plant. Out of 25 medicinal plants screened for their major classes of phytochemicals, the majority contained tannins, alkaloids and flavonoids. Out of the seven plant species investigated for their biological activities, all seven of them exhibited mild antimicrobial properties, five plants gave significant in vitro antiplasmodial activities, two plants gave moderate anti-Trypanosoma brucei rhodesiense activity, and one plant showed mild cytotoxicity. Meconopsis simplicifolia showed the highest antiplasmodial activity with IC(50) values of 0.40 μg/ml against TM4/8.2 strain (a wild type chloroquine and

  6. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo.

    Science.gov (United States)

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-11-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed.

  7. Floral biology of Senecio macrophyllus M. BIEB. (Asteraceae, a rare Central European steppe plant

    Directory of Open Access Journals (Sweden)

    Bożenna Czarnecka

    2014-03-01

    Full Text Available Knowledge of the flowering phase and plant pollination ecology is very important for understanding the life history of long-lived perennials. In the case of rare species, the information may have implications for conservation practices. Our studies on flower morphology and blooming biology of the vulnerable plant Senecio macrophyllus M. BIEB. were conducted in situ (flowering, activity of insect visitors in the largest population in SE Poland and in laboratory (light and scanning electron microscopy. The disc florets open diurnally with most intensive anthesis in the early afternoon and attract insect visitors with nectar and pollen. In highly protandrous disc florets, pollen viability decreases in time, whereas stigma receptivity increases. The upper part of the pistil forms a brush-like pollen presenter, covered with unicellular trichomes with chromoplasts. Pollen presentation lasts 4–11 hours per floret, and 8 days in a single head, the main function of which is to extend the availability of male gamets for reproduction. The number of florets per head, the head size, and the number of pollen grains produced per anther, and the pollen grain viability differed significantly between microsites. The finding indicates that, apart from the biotic factors, abiotic conditions may considerably influence generative reproduction of the species. In the study area, the principal visitors of S. macrophyllus flowers were Hymenoptera, with predominance of Apis mellifera (53.4% of visits. The remarkable share of butterflies (13.9% recognized as the long-distance moving insects may improve the genetic variability of individuals within a fragmented population. A more detailed study is necessary to explain the role of insect visitors in effective pollination and in gene transfer between patches. The assessment of optimal conditions for the generative reproduction is fundamental for the in situ conservation of this rare species.

  8. The potential of plants as a system for the development and production of human biologics [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2016-05-01

    Full Text Available The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology.

  9. ARADISH - Development of a Standardized Plant Growth Chamber for Experiments in Gravitational Biology Using Ground Based Facilities

    Science.gov (United States)

    Schüler, Oliver; Krause, Lars; Görög, Mark; Hauslage, Jens; Kesseler, Leona; Böhmer, Maik; Hemmersbach, Ruth

    2016-06-01

    Plant development strongly relies on environmental conditions. Growth of plants in Biological Life Support Systems (BLSS), which are a necessity to allow human survival during long-term space exploration missions, poses a particular problem for plant growth, as in addition to the traditional environmental factors, microgravity (or reduced gravity such as on Moon or Mars) and limited gas exchange hamper plant growth. Studying the effects of reduced gravity on plants requires real or simulated microgravity experiments under highly standardized conditions, in order to avoid the influence of other environmental factors. Analysis of a large number of biological replicates, which is necessary for the detection of subtle phenotypical differences, can so far only be achieved in Ground Based Facilities (GBF). Besides different experimental conditions, the usage of a variety of different plant growth chambers was a major factor that led to a lack of reproducibility and comparability in previous studies. We have developed a flexible and customizable plant growth chamber, called ARAbidopsis DISH (ARADISH), which allows plant growth from seed to seedling, being realized in a hydroponic system or on Agar. By developing a special holder, the ARADISH can be used for experiments with Arabidopsis thaliana or a plant with a similar habitus on common GBF hardware, including 2D clinostats and Random Positioning Machines (RPM). The ARADISH growth chamber has a controlled illumination system of red and blue light emitting diodes (LED), which allows the user to apply defined light conditions. As a proof of concept we tested a prototype in a proteomic experiment in which plants were exposed to simulated microgravity or a 90° stimulus. We optimized the design and performed viability tests after several days of growth in the hardware that underline the utility of ARADISH in microgravity research.

  10. From systems biology to photosynthesis and whole-plant physiology: a conceptual model for integrating multi-scale networks.

    Science.gov (United States)

    Weston, David J; Hanson, Paul J; Norby, Richard J; Tuskan, Gerald A; Wullschleger, Stan D

    2012-02-01

    Network analysis is now a common statistical tool for molecular biologists. Network algorithms are readily used to model gene, protein and metabolic correlations providing insight into pathways driving biological phenomenon. One output from such an analysis is a candidate gene list that can be responsible, in part, for the biological process of interest. The question remains, however, as to whether molecular network analysis can be used to inform process models at higher levels of biological organization. In our previous work, transcriptional networks derived from three plant species were constructed, interrogated for orthology and then correlated with photosynthetic inhibition at elevated temperature. One unique aspect of that study was the link from co-expression networks to net photosynthesis. In this addendum, we propose a conceptual model where traditional network analysis can be linked to whole-plant models thereby informing predictions on key processes such as photosynthesis, nutrient uptake and assimilation, and C partitioning.

  11. Reproductive biology and breeding system of Saraca asoca (Roxb.) De Wilde: a vulnerable medicinal plant.

    Science.gov (United States)

    Smitha, G R; Thondaiman, V

    2016-01-01

    Ashoka ( Saraca asoca ) is a perennial, evergreen tree valued for its ornamental flowers and medicinal values. This species is classified as 'vulnerable' under IUCN list due to its dwindling population because of destructive harvesting from natural habitats. Therefore, conservation and multiplication of this species is need of the hour to utilize its astonishing medicinal uses eternally. Conservation approaches of any plant species require in-depth study of its reproductive biology, which is lacking in this species. The present study is the first detailed report on reproductive biology of S. asoca . This tree bears fragrant flowers in paniculate corymbose inflorescence from December end to May, with peak flowering during February-March. The fruits attain its maturity during last week of May-July. Seeds were dispersed from the pod to the tree premises upon complete maturity. The time of anthesis in this species is noticed in the early morning from 3.00 to 5.30 am, which coincided with anther dehiscence, stigma receptivity and insect activity. The length of the stamen and pistil points towards the pollination compatibility in both male and female parts. Pollen viability was maximum within 2 h of anthesis, which decreased thereafter and no pollens were viable after 6 h. The stigma was receptive at the time of anthesis and continued for 24 h. The tree produces bright colour attractive flowers, which changed from yellow/light orange to scarlet/red from the inception of buds to wilting. The bright color of the flowers attracted floral visitors/pollinators thereby facilitated the pollination in this species. The observations of the floral biology and breeding system indicated the cross pollination behaviour, which limited the production of selfed seeds and would help to maintain the sustainable levels of heterozygosity among the various populations. Considerable amount of seeds produced in this species indicated that the species is capable of sustaining its progenies

  12. Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.

    Science.gov (United States)

    Nakamura, Yuki

    2018-03-01

    Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.

  13. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology

    Directory of Open Access Journals (Sweden)

    Zhenzhen eQiao

    2013-11-01

    Full Text Available Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because –omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i.e. uptake of water and various nutrients; primary site of infection by nitrogen-fixing bacteria in legumes, the root hair cell is an attractive single cell model to study root cell response to various stresses and treatments. To fully study their biology, we have recently optimized procedures in obtaining root hair cell samples. We culture the plants using an ultrasound aeroponic system maximizing root hair cell density on the entire root systems and allowing the homogeneous treatment of the root system. We then isolate the root hair cells in liquid nitrogen. Isolated root hair yields could be up to 800 to 1000 mg of plant cells from 60 root systems. Using soybean as a model, the purity of the root hair was assessed by comparing the expression level of genes previously identified as soybean root hair specific between preparations of isolated root hair cells and stripped roots, roots devoid in root hairs. Enlarging our tests to include other plant species, our results support the isolation of large quantities of highly purified root hair cells which is compatible with a systems biology approach.

  14. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants.

    Science.gov (United States)

    Plattner, Helmut

    2018-03-01

    During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca 2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca 2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca 2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H + -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in

  15. BIOLOGICAL FUNCTION OF TOMBUSVIRUS-ENCODED SUPPRESSOR OF RNA SILENCING IN PLANTS

    Directory of Open Access Journals (Sweden)

    Omarov R.T.

    2012-08-01

    Full Text Available RNA interference (RNAi plays multiple biological roles in eukaryotic organisms to regulate gene expression. RNAi also operates as a conserved adaptive molecular immune mechanism against invading viruses. The antiviral RNAi pathway is initiated with the generation of virus-derived short-interfering RNAs (siRNAs that are used for subsequent sequence-specific recognition and degradation of the cognate viral RNA molecules. As an efficient counter-defensive strategy, most plant viruses evolved the ability to encode specific proteins capable of interfering with RNAi, and this process is commonly known as RNA silencing suppression. Virus-encoded suppressors of RNAi (VSRs operate at different steps in the RNAi pathway and display distinct biochemical properties that enable these proteins to efficiently interfere with the host-defense system. Tombusvirus-encoded P19 is an important pathogenicity factor, required for symptom development and elicitation of a hypersensitive response in a host-dependent manner. Protein plays a crucial role of TBSV P19 in protecting viral RNA during systemic infection on Nicotiana benthamiana. The X-ray crystallographic studies conducted by two independent groups revealed the existence of a P19-siRNA complex; a conformation whereby caliper tryptophan residues on two subunits of P19 dimers measure and bind 21-nt siRNA duplexes. These structural studies provided the first details on the possible molecular mechanism of any viral suppressor to block RNAi. The association between P19 and siRNAs was also shown to occur in infected plants These and related studies revealed that in general the ability of P19 to efficiently sequester siRNAs influences symptom severity, however this is not a strict correlation in all hosts.The current working model is that during TBSV infection of plants, P19 appropriates abundantly circulating Tombusvirus-derived siRNAs thereby rendering these unavailable to program RISC, to prevent degradation of

  16. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [ed.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1997-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate.

  17. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2012-12-01

    Full Text Available In Poland the cultivation of the fibrous form of flax (Linum usitatissimum L. is dying out, but the acreage of its oilseed form, linseed, which provides seed (Semen lini used in therapy and being a source of -linolenic acid, is expanding. Nowadays, linseed is grown in 64 countries of the world, but yield levels in these countries vary greatly. Under European conditions, seed yield of linseed shows high variation, which is evidence of little knowledge of the biology of this plant and the lack of precise cultivation solutions in agricultural technologies used. A major reason is the difficulty in obtaining optimal crop density. A sparse crop results in low above-ground biomass yield, which is translated into insufficient crop yields. The selection of highly productive domestic and foreign varieties can partially increase linseed yield; apart from some domestic varieties, the Canadian cultivar 'Flanders' and the Hungarian cultivar 'Barbara' are positive examples in this respect. There is a possibility of effective selection at early stages of linseed breeding, which bodes well for the prospect of obtaining highly productive varieties with normal or very low -linolenic acid content.

  18. Testing surrogacy assumptions: can threatened and endangered plants be grouped by biological similarity and abundances?

    Directory of Open Access Journals (Sweden)

    Judy P Che-Castaldo

    Full Text Available There is renewed interest in implementing surrogate species approaches in conservation planning due to the large number of species in need of management but limited resources and data. One type of surrogate approach involves selection of one or a few species to represent a larger group of species requiring similar management actions, so that protection and persistence of the selected species would result in conservation of the group of species. However, among the criticisms of surrogate approaches is the need to test underlying assumptions, which remain rarely examined. In this study, we tested one of the fundamental assumptions underlying use of surrogate species in recovery planning: that there exist groups of threatened and endangered species that are sufficiently similar to warrant similar management or recovery criteria. Using a comprehensive database of all plant species listed under the U.S. Endangered Species Act and tree-based random forest analysis, we found no evidence of species groups based on a set of distributional and biological traits or by abundances and patterns of decline. Our results suggested that application of surrogate approaches for endangered species recovery would be unjustified. Thus, conservation planning focused on individual species and their patterns of decline will likely be required to recover listed species.

  19. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [ed.

    1996-05-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate.

  20. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    International Nuclear Information System (INIS)

    Kszos, L.A.

    1996-05-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate

  1. Integration into plant biology and soil science has provided insights into the total environment.

    Science.gov (United States)

    Shao, Hongbo; Lu, Haiying; Xu, Gang; Marian, Brestic

    2017-02-01

    The total environment includes 5 closely-linking circles, in which biosphere and lithosphere are the active core. As global population increases and urbanization process accelerates, arable land is gradually decreasing under global climate change and the pressure of various types of environmental pollution. This case is especially for China. Land is the most important resources for human beings' survival. How to increase and manage arable land is the key for sustainable agriculture development. China has extensive marshy land that can be reclamated for the better potential land resources under the pre- condition of protecting the environment, which will be a good way for enlarging globally and managing arable land. Related studies have been conducted in China for the past 30years and now many results with obvious practical efficiency have been obtained. For summarizing these results, salt-soil will be the main target and related contents such as nutrient transport, use types, biodiversity and interactions with plants from molecular biology to ecology will be covered, in which the interactions among biosphere, lithosphere, atmosphere and anthroposphere will be focused on. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phyto chemical and biological studies of certain plants with potential radioprotective activity

    International Nuclear Information System (INIS)

    Sherif, N.H.M.I

    2008-01-01

    One of the promising directions of radiation protection development is the search for natural radioprotective agents.The present work includes: I- Screening of certain edible and medicinal plants growing in Egypt for their radioprotective activities. II- Detailed phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla endl. comprising: A-Phyto chemical screening and proximate analysis. B-Investigation of lipoidal matter. C- Isolation, characterization and structure elucidation of phenolic constituents. D- Isolation, characterization and structure elucidation of saponin constituents. E- Evaluation of radioprotective and antitumor activities. I- Evaluation of potential radioprotective activities of certain herbs: In vivo biological screening designed to investigate the radioprotective role of 70% ethanol extract of 11 different herbals was carried out by measuring the lipid peroxide content, as well as the activities of two antioxidant enzymes; viz glutathione, and superoxide dismutase in blood and liver tissues 1 and 7 days after radiation exposure. II : Phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla Endl A : preliminary phyto chemical screening, determination and TLC examination of successive extractives. B : Investigation of lipoidal matter. GLC of unsaponifiable matter (USM)

  3. Differential Interaction of Synthetic Glycolipids with Biomimetic Plasma Membrane Lipids Correlates with the Plant Biological Response.

    Science.gov (United States)

    Nasir, Mehmet Nail; Lins, Laurence; Crowet, Jean-Marc; Ongena, Marc; Dorey, Stephan; Dhondt-Cordelier, Sandrine; Clément, Christophe; Bouquillon, Sandrine; Haudrechy, Arnaud; Sarazin, Catherine; Fauconnier, Marie-Laure; Nott, Katherine; Deleu, Magali

    2017-09-26

    Natural and synthetic amphiphilic molecules including lipopeptides, lipopolysaccharides, and glycolipids are able to induce defense mechanisms in plants. In the present work, the perception of two synthetic C14 rhamnolipids, namely, Alk-RL and Ac-RL, differing only at the level of the lipid tail terminal group have been investigated using biological and biophysical approaches. We showed that Alk-RL induces a stronger early signaling response in tobacco cell suspensions than does Ac-RL. The interactions of both synthetic RLs with simplified biomimetic membranes were further analyzed using experimental and in silico approaches. Our results indicate that the interactions of Alk-RL and Ac-RL with lipids were different in terms of insertion and molecular responses and were dependent on the lipid composition of model membranes. A more favorable insertion of Alk-RL than Ac-RL into lipid membranes is observed. Alk-RL forms more stable molecular assemblies than Ac-RL with phospholipids and sterols. At the molecular level, the presence of sterols tends to increase the RLs' interaction with lipid bilayers, with a fluidizing effect on the alkyl chains. Taken together, our findings suggest that the perception of these synthetic RLs at the membrane level could be related to a lipid-driven process depending on the organization of the membrane and the orientation of the RLs within the membrane and is correlated with the induction of early signaling responses in tobacco cells.

  4. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January - December 1996

    International Nuclear Information System (INIS)

    Kszos, L.A.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1997-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate

  5. Growth responses of five desert plants as influenced by biological soil crusts from a temperate desert, China

    Science.gov (United States)

    Zhang, Yuanming; Belnap, Jayne

    2015-01-01

    In almost all dryland systems, biological soil crusts (biocrusts) coexist alongside herbaceous and woody vegetation, creating landscape mosaics of vegetated and biocrusted patches. Results from past studies on the interaction between biocrusts and vascular plants have been contradictory. In the Gurbantunggut desert, a large temperate desert in northwestern China, well-developed lichen-dominated crusts dominate the areas at the base and between the sand dunes. We examined the influence of these lichen-dominated biocrusts on the germination, growth, biomass accumulation, and elemental content of five common plants in this desert: two shrubs (Haloxylon persicum, Ephedra distachya) and three herbaceous plants (Ceratocarpus arenarius, Malcolmia africana and Lappula semiglabra) under greenhouse conditions. The influence of biocrusts on seed germination was species-specific. Biocrusts did not affect percent germination in plants with smooth seeds, but inhibited germination of seeds with appendages that reduced or eliminated contact with the soil surface or prevented seeds from slipping into soil cracks. Once seeds had germinated, biocrusts had different influences on growth of shrub and herbaceous plants. The presence of biocrusts increased concentrations of nitrogen but did not affect phosphorus or potassium in tissue of all tested species, while the uptake of the other tested nutrients was species-specific. Our study showed that biocrusts can serve as a biological filter during seed germination and also can influence growth and elemental uptake. Therefore, they may be an important trigger for determining desert plant diversity and community composition in deserts.

  6. Towards a sustainable bio-based economy: Redirecting primary metabolism to new products with plant synthetic biology.

    Science.gov (United States)

    Shih, Patrick M

    2018-08-01

    Humans have domesticated many plant species as indispensable sources of food, materials, and medicines. The dawning era of synthetic biology represents a means to further refine, redesign, and engineer crops to meet various societal and industrial needs. Current and future endeavors will utilize plants as the foundation of a bio-based economy through the photosynthetic production of carbohydrate feedstocks for the microbial fermentation of biofuels and bioproducts, with the end goal of decreasing our dependence on petrochemicals. As our technological capabilities improve, metabolic engineering efforts may expand the utility of plants beyond sugar feedstocks through the direct production of target compounds, including pharmaceuticals, renewable fuels, and commodity chemicals. However, relatively little work has been done to fully realize the potential in redirecting central carbon metabolism in plants for the engineering of novel bioproducts. Although our ability to rationally engineer and manipulate plant metabolism is in its infancy, I highlight some of the opportunities and challenges in applying synthetic biology towards engineering plant primary metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Biological effects of plant residues with constrasting chemical compositions on plant and soil under humid tropical conditions

    NARCIS (Netherlands)

    Tian, G.

    1992-01-01

    A study on plant residues with contrasting chemical compositions was conducted under laboratory, growth chamber and humid tropical field conditions to understand the function of the soil fauna in the breakdown of plant residues, the cycling of nutrients, in particular nitrogen, and the

  8. Analysis of Handwriting based on Rhythm Perception

    Science.gov (United States)

    Saito, Kazuya; Uchida, Masafumi; Nozawa, Akio

    Humanity fluctuation was reported in some fields. In handwriting process, fluctuation appears on handwriting-velocity. In this report, we focused attention on human rhythm perception and analyzed fluctuation in handwriting process. As a result, 1/f noise related to rhythm perception and features may caused by Kahneman's capacity model were measured on handwriting process.

  9. Development of cortisol circadian rhythm in infancy.

    NARCIS (Netherlands)

    Weerth, C. de; Zijl, R.H.

    2003-01-01

    BACKGROUND AND AIMS: Cortisol is the final product of the hypothalamus-pituitary-adrenal (HPA) axis. It is secreted in a pulsatile fashion that displays a circadian rhythm. Infants are born without a circadian rhythm in cortisol and they acquire it during their first year of life. Studies do not

  10. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  11. Measurement of the occipital alpha rhythm and temporal tau rhythm by using magnetoencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. E.; Gohel, Bakul; Kim, K.; Kwon, H.; An, Kyung Min [Center for Biosignals, Korea Research Institute of Standards and Science(KRISS), Daejeon (Korea, Republic of)

    2015-12-15

    Developing Magnetoencephalography (MEG) based on Superconducting Quantum Interference Device (SQUID) facilitates to observe the human brain functions in non-invasively and high temporal and high spatial resolution. By using this MEG, we studied alpha rhythm (8-13 Hz) that is one of the most predominant spontaneous rhythm in human brain. The 8–13 Hz rhythm is observed in several sensory region in the brain. In visual related region of occipital, we call to alpha rhythm, and auditory related region of temporal call to tau rhythm, sensorimotor related region of parietal call to mu rhythm. These rhythms are decreased in task related region and increased in task irrelevant regions. This means that these rhythms play a pivotal role of inhibition in task irrelevant region. It may be helpful to attention to the task. In several literature about the alpha-band inhibition in multi-sensory modality experiment, they observed this effect in the occipital and somatosensory region. In this study, we hypothesized that we can also observe the alpha-band inhibition in the auditory cortex, mediated by the tau rhythm. Before that, we first investigated the existence of the alpha and tau rhythm in occipital and temporal region, respectively. To see these rhythms, we applied the visual and auditory stimulation, in turns, suppressed in task relevant regions, respectively.

  12. Measurement of the occipital alpha rhythm and temporal tau rhythm by using magnetoencephalography

    International Nuclear Information System (INIS)

    Kim, J. E.; Gohel, Bakul; Kim, K.; Kwon, H.; An, Kyung Min

    2015-01-01

    Developing Magnetoencephalography (MEG) based on Superconducting Quantum Interference Device (SQUID) facilitates to observe the human brain functions in non-invasively and high temporal and high spatial resolution. By using this MEG, we studied alpha rhythm (8-13 Hz) that is one of the most predominant spontaneous rhythm in human brain. The 8–13 Hz rhythm is observed in several sensory region in the brain. In visual related region of occipital, we call to alpha rhythm, and auditory related region of temporal call to tau rhythm, sensorimotor related region of parietal call to mu rhythm. These rhythms are decreased in task related region and increased in task irrelevant regions. This means that these rhythms play a pivotal role of inhibition in task irrelevant region. It may be helpful to attention to the task. In several literature about the alpha-band inhibition in multi-sensory modality experiment, they observed this effect in the occipital and somatosensory region. In this study, we hypothesized that we can also observe the alpha-band inhibition in the auditory cortex, mediated by the tau rhythm. Before that, we first investigated the existence of the alpha and tau rhythm in occipital and temporal region, respectively. To see these rhythms, we applied the visual and auditory stimulation, in turns, suppressed in task relevant regions, respectively

  13. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm.

    Science.gov (United States)

    Tranquilli, A L; Turi, A; Giannubilo, S R; Garbati, E

    2004-03-01

    We assessed the correlation between the rhythm of melatonin concentration and circadian blood pressure patterns in normal and hypertensive pregnancy. Ambulatory 24-h blood pressure and blood samples every 4 h were monitored in 16 primigravidae who had shown an abnormal circadian blood pressure pattern (eight pre-eclamptic and eight normotensive) in pregnancy and 6-12 months after pregnancy. The circadian rhythm was analyzed by chronobiological measures. Eight normotensive women with maintained blood pressure rhythm served as controls. During pregnancy, melatonin concentration was significantly higher in pre-eclamptic than in normotensive women (pre-eclampsia, 29.4 +/- 1.9 pg/ml, normotensin, altered rhythm, 15.6 +/- 2.1; controls, 22.7 +/- 1.8; p lost in all pregnant women with loss of blood pressure rhythm. After pregnancy, normotensive women showed a reappearance of both melatonin and blood pressure rhythm, whereas pre-eclamptic women showed a reappearance of blood pressure but not melatonin rhythm. The loss of blood pressure rhythm in pregnancy is consistent with the loss of melatonin concentration rhythm. In pre-eclamptic women, the normalization of blood pressure rhythm, while melatonin rhythm remained altered, suggests a temporal or causal priority of circadian concentration of melatonin in the determination of blood pressure trend.

  14. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells.

    Science.gov (United States)

    Foureau, E; Carqueijeiro, I; Dugé de Bernonville, T; Melin, C; Lafontaine, F; Besseau, S; Lanoue, A; Papon, N; Oudin, A; Glévarec, G; Clastre, M; St-Pierre, B; Giglioli-Guivarc'h, N; Courdavault, V

    2016-01-01

    Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform. © 2016 Elsevier Inc. All rights reserved.

  15. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis.

    Science.gov (United States)

    Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J; Inzé, Dirk; Van de Peer, Yves

    2013-03-01

    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein-protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies.

  16. ePlant and the 3D data display initiative: integrative systems biology on the world wide web.

    Science.gov (United States)

    Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J

    2011-01-10

    Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).

  17. Management of vascular wilt of lentil through host plant resistance, biological control agents and chemicals

    International Nuclear Information System (INIS)

    Rafique, K.; Rauf, C.A.; Naz, F.

    2016-01-01

    The management of devastating lentil (Lens culinaris Medik.) wilt disease was investigated through evaluation of host plant resistance, biological control agents and seed treatment with different fungicides against a known most aggressive isolate i.e. FWL12 (KP297995) of Fusarium oxysporum f. sp. lentis. The In vitro screening of germplasm (23 advanced lines and cultivars) for host resistance by root dip method revealed five cultivars viz. Markaz-09, Masoor-86, Masoor-2006, Punjab Masoor-00518 and Punjab Masoor-09 resistant with 20 to 46.67% incidence, 4.44 to 12.95% severity index and 9.60 to 24.94% yield reduction compared with highly susceptible (100% incidence) local lentil line (NARC-08-1). The later line was treated with Trichoderma species as antagonists in pot experiment by drenching. The bio-control treatment revealed maximum positive effect of T. harzianum (26.7% incidence, 8.9% severity index and 16.27% yield reduction), followed by T. viride (66.7% incidence, 17.8% severity index and 31.13% yield reduction). On inoculated untreated control, the fungus produced the characteristic wilt symptoms and significantly caused increased severity index, incidence and decreased 100% yield. In vitro evaluation of four fungicides at five concentrations (10, 20, 30, 50 and 100 ppm) revealed maximum inhibition of the test fungus with benomyl (85.9%), followed by thiophanate methyl (81.2%). Determination of the efficacy of two best fungicides viz. benomyl and thiophanate methyl in reducing wilt infection through In vivo seed treatment of NARC-08-1 in previously inoculated potting mixture revealed 100% seed germination and suppressed wilt disease, the most effective being benomyl with 6.7% incidence, 1.5% wilt severity and 17.16% yield reduction compared to the control. The study concluded that the genetic diversity already present in lentil cultivars is an important source, which could be exploited for breeding wilt resistant lentil genotypes. Moreover, being seed and

  18. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  19. Circadian Rhythms in Floral Scent Emission.

    Science.gov (United States)

    Fenske, Myles P; Imaizumi, Takato

    2016-01-01

    To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the floral volatile benzenoid/phenylpropanoid (FVBP) pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT 1 (ODO1), EMISSION OF BENZENOIDS I (EOBI), and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY) have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.

  20. Circadian rhythms in floral scent emission

    Directory of Open Access Journals (Sweden)

    Myles eFenske

    2016-04-01

    Full Text Available To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the benzenoid/phenylpropanoid (FVBP pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT1 (ODO1, EMISSION OF BENZENOIDS I (EOBI, and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.

  1. Report of biological investigations at the Los Medanos Waste Isolation Pilot Plant (WIPP) area of New Mexico during FY 1978

    International Nuclear Information System (INIS)

    Best, T.L.; Neuhauser, S.

    1980-03-01

    The US Department of Energy is considering the construction of a Waste Isolation Pilot Plant (WIPP) in Eddy County, NM. This location is approximately 40 km east of Carlsbad, NM. Biological studies during FY 1978 were concentrated within a 5-mi radius of drill hole ERDA 9. Additional study areas have been established at other sites in the vicinity, e.g., the Gnome site, the salt lakes and several stations along the Pecos River southward from Carlsbad, NM, to the dam at Red Bluff Reservoir in Texas. The precise locations of all study areas are presented and their biology discussed

  2. Report of biological investigations at the Los Medanos Waste Isolation Pilot Plant (WIPP) area of New Mexico during FY 1978

    Energy Technology Data Exchange (ETDEWEB)

    Best, T.L.; Neuhauser, S. (eds.)

    1980-03-01

    The US Department of Energy is considering the construction of a Waste Isolation Pilot Plant (WIPP) in Eddy County, NM. This location is approximately 40 km east of Carlsbad, NM. Biological studies during FY 1978 were concentrated within a 5-mi radius of drill hole ERDA 9. Additional study areas have been established at other sites in the vicinity, e.g., the Gnome site, the salt lakes and several stations along the Pecos River southward from Carlsbad, NM, to the dam at Red Bluff Reservoir in Texas. The precise locations of all study areas are presented and their biology discussed.

  3. Evaluation of biological activities and chemical constituent of storage medicinal plant materials used as a traditional medicine in Nepal

    Directory of Open Access Journals (Sweden)

    Bishnu Prasad Pandey

    2017-12-01

    Full Text Available Aim: The main aims of the study were to evaluate the phytochemicals, antioxidant, antibacterial and chemical constituents of storage medicinal plant materials used as a traditional medicine in Nepal. Methods: Phytochemical screening, total phenolic content, total flavonoid content, antibacterial activities, anti-oxidant assay of the crude extract (water, methanol, n-hexane and acetone were carried out to identify the biological activities and phytonutrients present in the different extract. The chemical constituents present in the crude extract were analyzed using the high performance liquid chromatography (HPLC equipped with UV detector. Results: Evaluated medicinal plant materials were found to have diverse phytonutrients. Results revealed that methanol extract of Pakhanved and Jethimadhu have highest total flavonoids and polyphenol content. Among the selected medicinal plant materials Jethimadhu extract revealed the highest antioxidant activities. Furthermore, evaluated medicinal plants extract were found to exert a range of in vitro growth inhibition activity against both gram positive and gram negative species. The highest antibacterial activities were observed in the case of methanol extract, whereas, least activity was observed with the hexane extract. HPLC analysis of the acetone extract of Jethimadhu reveals the presence of diosmetin. Conclusions: Our result revealed that among the five evaluated medicinal plant materials, Jethimadhu extract revealed biological activities and exhibits a higher amount of polyphenol and flavonoid content. [J Complement Med Res 2017; 6(4.000: 369-377

  4. Biology of the Huanglongbing vector Diaphorina citri (Hemiptera: Liviidae) on different host plants.

    Science.gov (United States)

    Alves, G R; Diniz, A J F; Parra, J R P

    2014-04-01

    Although many studies have been conducted on the development and reproductive potential of Diaphorina citri Kuwayama, 1908 (Hemiptera: Liviidae) in different host species, few have evaluated these parameters on different varieties of the same host species. This study evaluated the influence of five commercial varieties of citrus (Citrus spp. L.)--Hamlin, Natal, Pêra, Ponkan, and Valencia-and orange jasmine [Murraya exotica (L.) Jack] on the development of D. citri. Survival rates for the egg stage were highest on orange jasmine (85.7%) and on Valencia (83.3%). The lowest viability of the nymphal stage was also observed on Hamlin, averaging 57.4%. Values for total viability ranged from 65.9 to 32.6%, and were highest on Valencia. The longest egg-adult development time was on Natal, with a mean of 18.4 d; the shortest total development time was on orange jasmine, with a mean of 17.3 d. Based on the fertility life table, the net reproductive rate (Ro) of D. citri was 2.5 times higher when reared on Valencia than on Hamlin. The other parameters (duration of each generation [T], finite rate of increase [lambda], and innate capacity to increase in number [r(m)]) also demonstrated that Valencia is best suited to this insect. The results obtained for the biological parameters and the fertility life table indicate that Valencia and orange jasmine were the most suitable hosts, whereas Hamlin was least suitable for the development of D. citri. These results provide information for the installation of new citrus groves, especially in the choice of varieties to be planted and the location of different varieties within the groves, with a view toward the management of Huanglongbing or HLB.

  5. EuroFIR-BASIS - a combined composition and biological activity database for bioactive compounds in plant-based foods

    DEFF Research Database (Denmark)

    Gry, Jørn; Black, Lucinda; Eriksen, Folmer Damsted

    2007-01-01

    Mounting evidence suggests that certain non-nutrient bioactive compounds promote optimal human health and reduce the risk of chronic disease. An Internet-deployed database, EuroFIR-BASIS, which uniquely combines food composition and biological effects data for plant-based bioactive compounds......, is being developed. The database covers multiple compound classes and 330 major food plants and their edible parts with data sourced from quality-assessed, peer-reviewed literature. The database will be a valuable resource for food regulatory and advisory bodies, risk authorities, epidemiologists...... and researchers interested in diet and health relationships, and product developers within the food industry....

  6. Economic value of biological control in integrated pest management of managed plant systems.

    Science.gov (United States)

    Naranjo, Steven E; Ellsworth, Peter C; Frisvold, George B

    2015-01-07

    Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.

  7. Floral biology and the effects of plant-pollinator interaction on ...

    African Journals Online (AJOL)

    oyelana

    2012-10-18

    Oct 18, 2012 ... interaction on pollination intensity, fruit and seed set in. Solanum ... which plants offer rewards to flower visitors and they inadvertently ... fragmentation and extinction. Therefore, the ...... Plant resources of tropical Africa 2.

  8. Biological screening of some Turkish medicinal plant extracts for antimicrobial and toxicity activities.

    Science.gov (United States)

    Turker, A U; Usta, C

    2008-01-20

    Screening of antibacterial activity and toxicity of 22 aqueous plant extracts from 17 Turkish plants was conducted. Antibacterial activity was performed with six bacteria including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus and Staphylococcus epidermidis. Extracts of Tussilago farfara leaves, Helichyrsum plicatum flowers, Solanum dulcamara aerial parts and Urtica dioica leaves gave the best inhibitory activity against S. pyogenes, S. aureus and S. epidermidis. Of the 22 plant extracts, 20 extracts displayed toxicity (LC50 was plant extracts. Also, the most inhibitive plant extract for seed germination was obtained with S. dulcamara aerial parts.

  9. Statistical methods for detecting and comparing periodic data and their application to the nycthemeral rhythm of bodily harm: A population based study

    LENUS (Irish Health Repository)

    Stroebel, Armin M

    2010-11-08

    Abstract Background Animals, including humans, exhibit a variety of biological rhythms. This article describes a method for the detection and simultaneous comparison of multiple nycthemeral rhythms. Methods A statistical method for detecting periodic patterns in time-related data via harmonic regression is described. The method is particularly capable of detecting nycthemeral rhythms in medical data. Additionally a method for simultaneously comparing two or more periodic patterns is described, which derives from the analysis of variance (ANOVA). This method statistically confirms or rejects equality of periodic patterns. Mathematical descriptions of the detecting method and the comparing method are displayed. Results Nycthemeral rhythms of incidents of bodily harm in Middle Franconia are analyzed in order to demonstrate both methods. Every day of the week showed a significant nycthemeral rhythm of bodily harm. These seven patterns of the week were compared to each other revealing only two different nycthemeral rhythms, one for Friday and Saturday and one for the other weekdays.

  10. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology1

    Science.gov (United States)

    Robarts, Daniel W. H.; Wolfe, Andrea D.

    2014-01-01

    In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance. PMID:25202637

  11. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology(1.).

    Science.gov (United States)

    Robarts, Daniel W H; Wolfe, Andrea D

    2014-07-01

    In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance.

  12. The biological effects of gamma irradiation and/or plant extract (Neem) on the greater wax moth, Galleria Mollenella

    International Nuclear Information System (INIS)

    Mohamed, H. F.

    2012-12-01

    The present study was evaluating the effect of plant extract (Neem) with the concentrations 0, 10, 15, 20, 25, 50, 75 and 100 ppm on the percentage of observed mortality and corrected mortality of the greater wax moth, Galleria mellon ella zeller. Also the effect of the plant extract concentrations 0.25, 50, 75 and 100 ppm on the biology of this insect as percentage larval mortality, percentage larval weight, percentage larval and pupal duration, total development time, fecundity of resulting adults. Furthermore, we examined the effect of gamma irradiation with the doses 0, 100, 200, 300 and 400 Gray on some biological aspects of G. mellon ella. In addition, we studied the combined effect of gamma irradiation and plant extract (Neem) on some biological aspects of G. mellon ella by the doses 0,100, 200, 300, 400 Gray of gamma irradiation and the concentration 15 ppm of Neem as the percentage larval mortality, percentage pupation, percentage pupal mortality, percentage of emergence and the percentage of adult survival. (Author)

  13. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis.

    Science.gov (United States)

    Celedon, J M; Bohlmann, J

    2016-01-01

    Terpenoid fragrances are powerful mediators of ecological interactions in nature and have a long history of traditional and modern industrial applications. Plants produce a great diversity of fragrant terpenoid metabolites, which make them a superb source of biosynthetic genes and enzymes. Advances in fragrance gene discovery have enabled new approaches in synthetic biology of high-value speciality molecules toward applications in the fragrance and flavor, food and beverage, cosmetics, and other industries. Rapid developments in transcriptome and genome sequencing of nonmodel plant species have accelerated the discovery of fragrance biosynthetic pathways. In parallel, advances in metabolic engineering of microbial and plant systems have established platforms for synthetic biology applications of some of the thousands of plant genes that underlie fragrance diversity. While many fragrance molecules (eg, simple monoterpenes) are abundant in readily renewable plant materials, some highly valuable fragrant terpenoids (eg, santalols, ambroxides) are rare in nature and interesting targets for synthetic biology. As a representative example for genomics/transcriptomics enabled gene and enzyme discovery, we describe a strategy used successfully for elucidation of a complete fragrance biosynthetic pathway in sandalwood (Santalum album) and its reconstruction in yeast (Saccharomyces cerevisiae). We address questions related to the discovery of specific genes within large gene families and recovery of rare gene transcripts that are selectively expressed in recalcitrant tissues. To substantiate the validity of the approaches, we describe the combination of methods used in the gene and enzyme discovery of a cytochrome P450 in the fragrant heartwood of tropical sandalwood, responsible for the fragrance defining, final step in the biosynthesis of (Z)-santalols. © 2016 Elsevier Inc. All rights reserved.

  14. Biological dysrhythm in remitted bipolar I disorder.

    Science.gov (United States)

    Iyer, Aishwarya; Palaniappan, Pradeep

    2017-12-01

    Recent treatment guidelines support treatment of biological rhythm abnormalities as a part of treatment of bipolar disorder, but still, literature examining various domains (Sleep, Activity, Social, and Eating) of biological rhythm and its clinical predictors are less. The main aim of our study is to compare various domains of biological rhythm among remitted bipolar I subjects and healthy controls. We also explored for any association between clinical variables and biological rhythm among bipolar subjects. 40 subjects with Bipolar I disorder and 40 healthy controls who met inclusion and exclusion criteria were recruited for the study. Diagnoses were ascertained by a qualified psychiatrist using MINI 5.0. Sociodemographic details, biological rhythm (BRIAN-Biological Rhythm Interview of assessment in Neuropsychiatry) and Sleep functioning (PSQI- Pittsburgh Sleep Quality Index) were assessed in all subjects. Mean age of the Bipolar subjects and controls were 41.25±11.84years and 38.25±11.25 years respectively. Bipolar subjects experienced more biological rhythm disturbance when compared to healthy controls (total BRIAN score being 34.25±9.36 vs 28.2±6.53) (p=0.002). Subsyndromal depressive symptoms (HDRS) had significant positive correlation with BRIAN global scores(r=0.368, p=0.02). Linear regression analysis showed that number of episodes which required hospitalization (β=0.601, t=3.106, P=0.004), PSQI (β=0.394, t=2.609, p=0.014), HDRS (β=0.376, t=2.34, t=0.036) explained 31% of variance in BRIAN scores in remitted bipolar subjects. Biological rhythm disturbances seem to persist even after clinical remission of bipolar illness. More studies to look into the impact of subsyndromal depressive symptoms on biological rhythm are needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants.

    Science.gov (United States)

    Guo, Shengye; Li, Xingyu; He, Pengfei; Ho, Honhing; Wu, Yixin; He, Yueqiu

    2015-06-01

    Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites. In addition, the genes contributed to the strain's plant colonization, bio-control and stimulation of plant growth. Sequencing of the genome is a fundamental step for developing a desired strain to serve as an efficient biological control agent and plant growth stimulator. Similar to other members of the taxon, XF-1 has a genome that contains giant gene clusters for the non-ribosomal synthesis of antifungal lipopeptides (surfactin and fengycin), the polyketides (macrolactin and bacillaene), the siderophore bacillibactin, and the dipeptide bacilysin. There are two synthesis pathways for volatile growth-promoting compounds. The expression of biosynthesized antibiotic peptides in XF-1 was revealed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

  16. Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): implications for biological control.

    Science.gov (United States)

    Skirvin, D J; Fenlon, J S

    2001-02-01

    The functional response of the predatory mite Phytoseiulus persimilis Athias-Henriot to eggs of its prey, the spider mite Tetranychus urticae Koch was examined on three plant species. Experiments were done to determine whether differences in the functional response on the three plant species were due to the morphological features of the crop directly on the predator or through an effect of the plant species on the prey. The results show that crop morphology is the only factor influencing the predatory ability of P. persimilis on the three plant species. Fewer eggs were eaten on Ceanothus thyrsiflorus var. 'Autumnal Blue', the plant species with hairy leaves, and greater numbers of prey consumed on Choisya ternata, a species with smooth leaves. However, similarly few eggs were eaten on the smooth, but waxy leaved Euonymus japonicus as on Ceanothus thyrsiflorus, demonstrating that morphological characters of leaves other than the possession of hairs and trichomes may affect the rates of predation. The implications of these results for the tritrophic interactions between plant, predator and prey, and the development of suitable biological control strategies are discussed.

  17. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert.

    Science.gov (United States)

    Godínez-Alvarez, H; Morín, C; Rivera-Aguilar, V

    2012-01-01

    Information about the effects of biological soil crusts (BSC) on germination, seedling survival and growth of vascular plants is controversial because they can have positive, neutral or negative effects. This controversy may be because most studies conducted until now have just analysed one or two recruitment stages independently. To understand the BSC effects on vascular plants, it is necessary to consider each stage of the recruitment process and synthesise all this information. The goal of this study was twofold. First, we analyse germination, seedling survival and growth of three vascular plants (Agave marmorata, Prosopis laevigata and Neobuxbaumia tetetzo) on BSC (cyanobacteria and mixed crust) from a tropical desert region of south-central México. Second, we synthesise the information to determine the total effect of BSC on plant species performance. We conducted experiments under controlled conditions to evaluate the proportion of germinated seeds, proportion of surviving seedlings and seedling dry weight in BSC and bare soil. Results showed that BSC have different effects on germination, seedling survival and growth of plant species. Plant species performance was qualitatively higher on BSC than bare soil. The highest performance of A. marmorata and P. laevigata was observed on cyanobacteria and mixed crusts, respectively. The highest performance of N. tetetzo was on both crust types. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. The importance of living botanical collections for plant biology and the next generation of evo-devo research

    Directory of Open Access Journals (Sweden)

    Andrew eGroover

    2012-06-01

    Full Text Available Living botanical collections include germplasm repositories, long-term experimental plantings, and botanical gardens. We present here a series of vignettes to illustrate the central role that living collections have played in plant biology research, including evo-devo research. Looking towards the future, living collections will become increasingly important in support of future evo-devo research. The driving force behind this trend is nucleic acid sequencing technologies, which are rapidly becoming more powerful and cost-effective, and which can be applied to virtually any species. This allows for more extensive sampling, including non-model organisms with unique biological features and plants from diverse phylogenetic positions. Importantly, a major challenge for sequencing-based evo-devo research is to identify, access, and propagate appropriate plant materials. We use a vignette of the ongoing One Thousand Transcriptomes project as an example of the challenges faced by such projects. We conclude by identifying some of the pinch-points likely to be encountered by future evo-devo researchers, and how living collections can help address them.

  19. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome

    Science.gov (United States)

    Schoof, Heiko; Zaccaria, Paolo; Gundlach, Heidrun; Lemcke, Kai; Rudd, Stephen; Kolesov, Grigory; Arnold, Roland; Mewes, H. W.; Mayer, Klaus F. X.

    2002-01-01

    Arabidopsis thaliana is the first plant for which the complete genome has been sequenced and published. Annotation of complex eukaryotic genomes requires more than the assignment of genetic elements to the sequence. Besides completing the list of genes, we need to discover their cellular roles, their regulation and their interactions in order to understand the workings of the whole plant. The MIPS Arabidopsis thaliana Database (MAtDB; http://mips.gsf.de/proj/thal/db) started out as a repository for genome sequence data in the European Scientists Sequencing Arabidopsis (ESSA) project and the Arabidopsis Genome Initiative. Our aim is to transform MAtDB into an integrated biological knowledge resource by integrating diverse data, tools, query and visualization capabilities and by creating a comprehensive resource for Arabidopsis as a reference model for other species, including crop plants. PMID:11752263

  20. Mathematical modeling of heat treatment processes conserving biological activity of plant bioresources

    Science.gov (United States)

    Rodionova, N. S.; Popov, E. S.; Pozhidaeva, E. A.; Pynzar, S. S.; Ryaskina, L. O.

    2018-05-01

    The aim of this study is to develop a mathematical model of the heat exchange process of LT-processing to estimate the dynamics of temperature field changes and optimize the regime parameters, due to the non-stationarity process, the physicochemical and thermophysical properties of food systems. The application of LT-processing, based on the use of low-temperature modes in thermal culinary processing of raw materials with preliminary vacuum packaging in a polymer heat- resistant film is a promising trend in the development of technics and technology in the catering field. LT-processing application of food raw materials guarantees the preservation of biologically active substances in food environments, which are characterized by a certain thermolability, as well as extend the shelf life and high consumer characteristics of food systems that are capillary-porous bodies. When performing the mathematical modeling of the LT-processing process, the packet of symbolic mathematics “Maple” was used, as well as the mathematical packet flexPDE that uses the finite element method for modeling objects with distributed parameters. The processing of experimental results was evaluated with the help of the developed software in the programming language Python 3.4. To calculate and optimize the parameters of the LT processing process of polycomponent food systems, the differential equation of non-stationary thermal conductivity was used, the solution of which makes it possible to identify the temperature change at any point of the solid at different moments. The present study specifies data on the thermophysical characteristics of the polycomponent food system based on plant raw materials, with the help of which the physico-mathematical model of the LT- processing process has been developed. The obtained mathematical model allows defining of the dynamics of the temperature field in different sections of the LT-processed polycomponent food systems on the basis of calculating the

  1. The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    KAUST Repository

    Burrell, Thomas

    2017-03-01

    Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m2, giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large

  2. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes

    Science.gov (United States)

    Chen, Xiaoyulong; Pizzatti, Cristina; Bonaldi, Maria; Saracchi, Marco; Erlacher, Armin; Kunova, Andrea; Berg, Gabriele; Cortesi, Paolo

    2016-01-01

    Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (106 CFU/mL) were applied to S. sclerotiorum inoculated substrate in a growth chamber 1 week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40 and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP) marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM). The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces' capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on 2-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM) observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to 3 weeks by quantifying its

  3. Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic streptomycetes

    Directory of Open Access Journals (Sweden)

    Xiaoyulong eChen

    2016-05-01

    Full Text Available Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (106 CFU/mL were applied to S. sclerotiorum inoculated substrate in a growth chamber one week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40% and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM. The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces’ capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on two-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to

  4. Quinones from plants of northeastern Brazil: structural diversity, chemical transformations, NMR data and biological activities.

    Science.gov (United States)

    Lemos, Telma L G; Monte, Francisco J Q; Santos, Allana Kellen L; Fonseca, Aluisio M; Santos, Hélcio S; Oliveira, Mailcar F; Costa, Sonia M O; Pessoa, Otilia D L; Braz-Filho, Raimundo

    2007-05-20

    The present review focus in quinones found in species of Brazilian northeastern Capraria biflora, Lippia sidoides, Lippia microphylla and Tabebuia serratifolia. The review cover ethnopharmacological aspects including photography of species, chemical structure feature, NMR datea and biological properties. Chemical transformations of lapachol to form enamine derivatives and biological activities are discussed.

  5. The gravitational plant physiology facility-Description of equipment developed for biological research in spacelab

    Science.gov (United States)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.; Lewis, R. F.

    1994-01-01

    In January 1992, the NASA Suttle mission STS 42 carried a facility designed to perform experiments on plant gravi- and photo-tropic responses. This equipment, the Gravitational Plant Physiology Facility (GPPF) was made up of a number of interconnected units mounted within a Spacelab double rack. The details of these units and the plant growth containers designed for use in GPPF are described. The equipment functioned well during the mission and returned a substantial body of time-lapse video data on plant responses to tropistic stimuli under conditions of orbital microgravity. GPPF is maintained by NASA Ames Research Center, and is flight qualifiable for future spacelab missions.

  6. Endophytic colonization of tomato plants by the biological control agent Clonostachys rosea

    DEFF Research Database (Denmark)

    Høyer, Anna Kaja; Jørgensen, Hans Jørgen Lyngs; Amby, Daniel Buchvaldt

    Fungal endophytes live naturally inside plants without causing symptoms. On the contrary, they can promote plant growth and increase tolerance to abiotic and biotic stress. These beneficial effects have increased the agricultural interest for exploitation of fungal isolates with an endophytic life...... controls seed- and soil-borne diseases and can furthermore promote plant growth. However, it is not known whether IK726 can colonize plants internally and therefore, the objective of the present study was to examine the possibility of an endophytic life-style of IK726 in tomato. Tomato seeds were sown...

  7. EPlantLIBRA: A composition and biological activity database for bioactive compounds in plant food supplements

    DEFF Research Database (Denmark)

    Plumb, J.; Lyons, J.; Nørby, Karin Kristiane

    2015-01-01

    The newly developed ePlantLIBRA database is a comprehensive and searchable database, with up-to-date coherent and validated scientific information on plant food supplement (PFS) bioactive compounds, with putative health benefits as well as adverse effects, and contaminants and residues. It is the......The newly developed ePlantLIBRA database is a comprehensive and searchable database, with up-to-date coherent and validated scientific information on plant food supplement (PFS) bioactive compounds, with putative health benefits as well as adverse effects, and contaminants and residues...

  8. Circadian-Rhythm Sleep Disorders in Persons Who Are Totally Blind.

    Science.gov (United States)

    Sack, R. L.; Blood, M. L.; Hughes, R. J.; Lewy, A. J.

    1998-01-01

    Discusses the diagnosis and management of "non-24-hour sleep-wake syndrome," a form of cyclic insomnia to which people who are totally blind are prone. Covered are incidence and clinical features, formal diagnostic criteria, the biological basis of circadian sleep disorders, circadian rhythms in blind people, pharmacological entrainment,…

  9. Circadian Rhythm Management System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The value of measuring sleep-wake cycles is significantly enhanced by measuring other physiological signals that depend on circadian rhythms (such as heart rate and...

  10. Survey results of corroding problems at biological treatment plants, Stage II Protection of concrete - State of the Art

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Ylva (CBI, Boraas (Sweden)); Henriksson, Gunilla (SP, Boraas (Sweden))

    2011-07-01

    A pilot study on the degradation and corrosion of concrete in biological treatment plants was conducted in 2009/2010 in a Waste Refinery Project WR-27 'Survey results of corroding problems at biological treatment plants'. The results showed that the concrete does not have sufficient resistance in the current aggressive plant environment. Furthermore, it is stated that some form of surface protection system is needed to ensure the good performance of concrete constructions, and that the system must withstand the aggressive environment and the traffic that occurs on site. Consequently, a new study was proposed in order to develop specifications for surface protection of concrete in aggressive food waste environments. Results from that study are presented in this report. The report includes various types of waterproofing/protection coating for concrete in biological treatment plants. A number of proposals from the industry are presented in the light of results from project WR-27, i.e., the materials must, among other things, withstand the aggressive leachate from waste food at temperatures up to 70 deg C, and some degree of wear. Some systems are compared in terms of technical material properties as reported by the manufacturer. It turns out that different testing methods were used, and the test results are thus generally not directly comparable. A proposal for a test program has been developed, focusing on chemical resistance and wear resistance. A test solution corresponding to leachate is specified. Laboratory tests for verification of the proposed methodology and future requirements are proposed, as well as test sites and follow-up in the field

  11. Right- and left-brain hemisphere. Rhythm in reaction time to light signals is task-load-dependent: age, gender, and handgrip strength rhythm comparisons.

    Science.gov (United States)

    Reinberg, Alain; Bicakova-Rocher, Alena; Mechkouri, Mohamed; Ashkenazi, Israel

    2002-11-01

    subjects. Hand-side differences in the grip strength rhythms in the same individuals were detected, the tau being ultradian rather than circadian in adolescent subjects while in mature subjects the tau frequently differed from that of the rhythm in CRT. These findings further support the hypothesis that functional biological clocks exist in both the left and right hemispheres of the human cortex.

  12. International Symposium on the Biology and Management of Aquatic Plants. Volume 31

    Science.gov (United States)

    1993-01-01

    Yang. 1991. Lipid peroxidation and antioxidative transgenic plants overexpressing peroxidase. Plant Physiol 96:577- defense systems in early leaf...Factors 3. Chandrasena, J. P. N. R. and W. H. T. Dhammika. 1988. Studies on limiting the distribution of cogongrass, Imperata cylindrica, and torpe

  13. Dysrhythmia: a specific congenital rhythm perception deficit

    Directory of Open Access Journals (Sweden)

    Jacques eLaunay

    2014-02-01

    Full Text Available Why do some people have problems ‘feeling the beat’? Here we investigate participants with congenital impairments in musical rhythm perception and production. A web-based version of the Montreal Battery of Evaluation of Amusia (MBEA was used to screen for difficulties with rhythmic processing in a large sample and we identified three ‘dysrhythmic’ individuals who scored below cut-off for the rhythm subtest, but not the pitch-based subtests. Follow-up testing in the laboratory was conducted to characterize the nature of both rhythm perception and production deficits in these dysrhythmic individuals. We found that they differed from control participants when required to synchronize their tapping to an external stimulus with a metrical pulse, but not when required to tap spontaneously (with no external stimulus or to tap in time to an isochronous stimulus. Dysrhythmics exhibited a general tendency to tap at half the expected tempo when asked to synchronize to the beat of strongly metrical rhythms. These results suggest that the individuals studied here did not have motor production problems, but suffer from a selective rhythm perception deficit that influences the ability to entrain to metrical rhythms.

  14. Plants modify biological processes to ensure survival following carbon depletion: a Lolium perenne model.

    Directory of Open Access Journals (Sweden)

    Julia M Lee

    Full Text Available BACKGROUND: Plants, due to their immobility, have evolved mechanisms allowing them to adapt to multiple environmental and management conditions. Short-term undesirable conditions (e.g. moisture deficit, cold temperatures generally reduce photosynthetic carbon supply while increasing soluble carbohydrate accumulation. It is not known, however, what strategies plants may use in the long-term to adapt to situations resulting in net carbon depletion (i.e. reduced photosynthetic carbon supply and carbohydrate accumulation. In addition, many transcriptomic experiments have typically been undertaken under laboratory conditions; therefore, long-term acclimation strategies that plants use in natural environments are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Perennial ryegrass (Lolium perenne L. was used as a model plant to define whether plants adapt to repetitive carbon depletion and to further elucidate their long-term acclimation mechanisms. Transcriptome changes in both lamina and stubble tissues of field-grown plants with depleted carbon reserves were characterised using reverse transcription-quantitative polymerase chain reaction (RT-qPCR. The RT-qPCR data for select key genes indicated that plants reduced fructan degradation, and increased photosynthesis and fructan synthesis capacities following carbon depletion. This acclimatory response was not sufficient to prevent a reduction (P<0.001 in net biomass accumulation, but ensured that the plant survived. CONCLUSIONS: Adaptations of plants with depleted carbon reserves resulted in reduced post-defoliation carbon mobilization and earlier replenishment of carbon reserves, thereby ensuring survival and continued growth. These findings will help pave the way to improve plant biomass production, for either grazing livestock or biofuel purposes.

  15. Seed reproductive biology of the rare aquatic carnivorous plant Aldrovanda vesiculosa L. (Droseraceae)

    Czech Academy of Sciences Publication Activity Database

    Cross, A. T.; Adamec, Lubomír; Turner, S. R.; Dixon, K. W.; Merritt, D. J.

    2016-01-01

    Roč. 180, č. 4 (2016), s. 515-529 ISSN 0024-4074 Institutional support: RVO:67985939 Keywords : flowering ecology * freshwater wetlands * germination biology Subject RIV: EF - Botanics Impact factor: 2.277, year: 2016

  16. Costs and benefits of biological control of invasive alien plants: case studies from South Africa

    CSIR Research Space (South Africa)

    Van Wilgen, BW

    2004-01-01

    Full Text Available Invasive alien species can have significant negative environmental and economic impacts. Such species are often controlled biologically by means of introducing host-specific insects or pathogens that can reduce the species' invasive potential...

  17. Screening of some marine plants from the Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Solimabi; Kamat, S.Y.; DeSouza, L.; Reddy, C.V.G.; Bhakuni, D.S.; Dhawan, B.N.

    Extracts of twenty five seaweeds from Indian coast have been put through a broad biological screen which includes tests for antiviral, antibacterial, antifungal, antiprotozoal, antifertility activities and a wide range of pharmacological activities...

  18. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver.

    Science.gov (United States)

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-02-15

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Uric acid in plants and microorganisms: Biological applications and genetics - A review.

    Science.gov (United States)

    Hafez, Rehab M; Abdel-Rahman, Tahany M; Naguib, Rasha M

    2017-09-01

    Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.

  20. Uric acid in plants and microorganisms: Biological applications and genetics - A review

    Directory of Open Access Journals (Sweden)

    Rehab M. Hafez

    2017-09-01

    Full Text Available Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.

  1. Biological oxygen demand in soils and hydrogel compositions for plant protection of the rhizosphere

    Science.gov (United States)

    Valentinovich Smagin, Andrey

    2018-02-01

    Potential biological activity of mineral and organogenic samples from light-textured sod-podzolic soils as well as of hydrogel compositions for protecting the root layer from pathogenic microflora and unfavorable edaphic factors were studied in laboratory conditions by oxygen consumption under the optimal hydrothermic conditions with portable gas analyzers. We have conducted ecological standardization of biological activity and organic matter destruction estimated by biological oxygen demand (BOD) in the widespread sandy soils. The primary outcome was the scale of gradations of biological oxygen uptake in soils with a range of quantities of potential biological activity from “very low” (140 g·m-3·hour-1), obtained on the basis of statistical processing of data array 1308 measurements. Acrylic polymer hydrogels had BOD = 0.2-2 g·m-3·hour-1, which corresponded to the periods of their half-lives from 0.2±0.1 to 6.8± 4.5 years, or relatively low resistance to biodestruction. In contrast to the pure gels, hydrogel compositions for rhizosphere based on ionic and colloidal silver showed low biological activity (BOD=0.01-0.2 g·m-3· hour-1) and, accordingly, significant resistance to biodegradation with half-lives from 5 to 70 years and above.

  2. Plant Growth Promoting Bacteria Associated with Langsdorffia hypogaea-Rhizosphere-Host Biological Interface: A Neglected Model of Bacterial Prospection

    Science.gov (United States)

    Felestrino, Érica B.; Santiago, Iara F.; Freitas, Luana da Silva; Rosa, Luiz H.; Ribeiro, Sérvio P.; Moreira, Leandro M.

    2017-01-01

    Soil is a habitat where plant roots and microorganisms interact. In the region of the Brazilian Iron Quadrangle (IQ), studies involving the interaction between microbiota and plants have been neglected. Even more neglected are the studies involving the holoparasite plant Langsdorffia hypogaea Mart. (Balanophoraceae). The geomorphological peculiarities of IQ soil, rich in iron ore, as well as the model of interaction between L. hypogaea, its hosts and the soil provide a unique niche that acts as selective pressure to the evolution of plant growth-promoting bacteria (PGPB). The aim of this study was to prospect the bacterial microbiota of holoparasitic plant L. hypogaea, its plant host and corresponding rhizosphere of IQ soil, and to analyze the potential of these isolates as PGPB. We obtained samples of 11 individuals of L. hypogaea containing fragments of host and rhizosphere remnants, resulting in 81 isolates associated with Firmicutes and Proteobacteria phyla. The ability to produce siderophores, hydrocyanic acid (HCN), indole-3-acetic acid (IAA), nitrogen (N2) fixation, hydrolytic enzymes secretion and inhibition of enteropathogens, and phytopathogens were evaluated. Of the total isolates, 62, 86, and 93% produced, respectively, siderophores, IAA, and were able to fix N2. In addition, 27 and 20% of isolates inhibited the growth of enteropathogens and phytopathogens, respectively, and 58% were able to produce at least one hydrolytic activity investigated. The high number of isolates that produce siderophores and indole-3-acetic acid suggests that this microbiota may be important for adaptation of plants to IQ. The results demonstrate for the first time the biological importance of Brazilian IQ species as reservoirs of specific microbiotas that might be used as PGPB on agricultural land or antropized soils that needs to be reforested. PMID:28239369

  3. Second report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, R.L. [ed.; Adams, S.M. [Oak Ridge National Lab., TN (United States); Black, M.C. [Oklahoma State Univ., Stillwater, OK (United States)] [and others

    1993-06-01

    As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Control Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate.

  4. Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R. A.

    1982-04-01

    In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the spring and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.

  5. Second report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    International Nuclear Information System (INIS)

    Hinzman, R.L.; Black, M.C.

    1993-06-01

    As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Control Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate

  6. First report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Boston, H.L.; Huston, M.A.; McCarthy, J.F.; Smith, J.G.; Southworth, G.R.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Black, M.C. (Oklahoma State Univ., Stillwater, OK (United States)); Gatz, A.J. Jr. (Ohio Wesleyan Univ., Delaware, OH (United States)); Hinzman, R.L. (Oak Ridge Research Inst., TN (United States)); Jimenez, B.D. (Puerto Rico Univ.,

    1992-07-01

    As stipulated in the National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of the BMAP are (1) to demonstrate that the current effluent limitations established for the Oak Ridge Y-12 Plant protect the uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) [formerly the Tennessee Department of Health and Environment (TDHE)], and (2) to document the ecological effects resulting from implementation of a water pollution control program that includes construction of several large wastewater treatment facilities. The BMAP consists of four major tasks: (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic macroinvertebrates, and fish. This document, the first in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted from May 1985 through September 1986.

  7. Isolation and biological activity of a new plant growth regulator of Vicia faba L

    International Nuclear Information System (INIS)

    Sembdner, G.; Dathe, W.; Bergner, C.; Roensch, H.

    1983-01-01

    Jasmonic acid was identified as a plant growth inhibitor of the pericarp of Vicia faba by means of gas-liquid chromatography, high resolution mass spectrometry as well as 1 H and 13 C NMR. The highest level of jasmonic acid was reached during intensive pericarp growth. Jasmonic acid is a plant growth inhibitor possessing a relative activity in the wheat seedling bioassay of 1-2.5 % compared to ABA (=100%). Contrary to ABA, jasmonic acid does not cause retardation of leaf emergence. In the dwarf rice gibberellin bioassay relative low concentrations of jasmonic acid inhibit both autonomous and GA 3 -stimulated growth. Jasmonic acid does not influence seed germination of Amaranthus caudatus. The possible physiological role of jasmonic acid in the Vicia pericarp and the distribution in plants of this new plant growth regulator type are discussed. (author)

  8. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species

    National Research Council Canada - National Science Library

    Pimentel, David

    2011-01-01

    ...: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, this reference discusses how non-native species invade new ecosystems and the subsequent economic and environmental effects of these species...

  9. Isolation and biological activity of a new plant growth regulator of Vicia faba L

    Energy Technology Data Exchange (ETDEWEB)

    Sembdner, G.; Dathe, W.; Bergner, C.; Roensch, H. (Akademie der Wissenschaften der DDR, Halle/Saale. Inst. fuer Biochemie der Pflanzen)

    1983-01-01

    Jasmonic acid was identified as a plant growth inhibitor of the pericarp of Vicia faba by means of gas-liquid chromatography, high resolution mass spectrometry as well as /sup 1/H and /sup 13/C NMR. The highest level of jasmonic acid was reached during intensive pericarp growth. Jasmonic acid is a plant growth inhibitor possessing a relative activity in the wheat seedling bioassay of 1-2.5 % compared to ABA (=100%). Contrary to ABA, jasmonic acid does not cause retardation of leaf emergence. In the dwarf rice gibberellin bioassay relative low concentrations of jasmonic acid inhibit both autonomous and GA/sub 3/-stimulated growth. Jasmonic acid does not influence seed germination of Amaranthus caudatus. The possible physiological role of jasmonic acid in the Vicia pericarp and the distribution in plants of this new plant growth regulator type are discussed.

  10. Temporal Variation in the Estrogenicity of a Sewage Treatment Plant Effluent and its Biological Significance

    Science.gov (United States)

    This paper describes variations in the estrogenic potency of effluent from a "model" wastewater treatment plant in Duluth, MN, and explores the significance of these variations relative to sampling approaches for monitoring effluents and their toxicity to fish.

  11. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F.

    2018-02-26

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  12. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F

    2017-12-07

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host\\'s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host\\'s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  13. Phytochemical studies and biological activity of carnivorous plants from the Mediterranean region

    OpenAIRE

    Grevenstuk, Tomás

    2010-01-01

    Tese de doutoramento, Ciências Biotecnológicas (Biotecnologia Vegetal), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010 In this thesis several studies were conducted with four carnivorous plant species which occur on Portuguese territory: Pinguicula lusitanica, Pinguicula vulgaris, Drosera intermedia and Drosera rotundifolia. Most habitats of these plants are threatened and natural populations are scarce, therefore micropropagation protocols were developed to ...

  14. Fukushima Daiichi Nuclear Power Plant accident: facts, environmental contamination, possible biological effects, and countermeasures

    OpenAIRE

    Anzai, Kazunori; Ban, Nobuhiko; Ozawa, Toshihiko; Tokonami, Shinji

    2011-01-01

    On March 11, 2011, an earthquake led to major problems at the Fukushima Daiichi Nuclear Power Plant. A 14-m high tsunami triggered by the earthquake disabled all AC power to Units 1, 2, and 3 of the Power Plant, and carried off fuel tanks for emergency diesel generators. Despite many efforts, cooling systems did not work and hydrogen explosions damaged the facilities, releasing a large amount of radioactive material into the environment. In this review, we describe the environmental impact of...

  15. Chemical and biological characterization of phytotoxins produced by Diplodia species, fungi involved in forest plants diseases

    OpenAIRE

    Masi, Marco

    2013-01-01

    In recent years, numerous studies have been initiated in order to understand what are the microorganisms involved in forest plants diseases and the role played by phytotoxins produced in the pathogenesis processes. The aim of the present thesis was to study the fungi and the phytotoxins associated with canker disease of the Italian cypress (Cupressus sempervirens L.) and the branch dieback of juniper (Juniperus phoenicea L.) which are plant diseases with noteworthy social and economical impli...

  16. Pythium invasion of plant-based life support systems: biological control and sources

    Science.gov (United States)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  17. Biology and occurrence of Inga Busk species (Lepidoptera: Oecophoridae) on Cerrado host plants.

    Science.gov (United States)

    Diniz, Ivone R; Bernardes, Carolina; Rodovalho, Sheila; Morais, Helena C

    2007-01-01

    We sampled Inga Busk species caterpillars weekly in the cerrado on 15 plants of Diospyros burchellii Hern. (Ebenaceae) from January 2002 to December 2003, on 30 plants of Caryocar brasiliense (Caryocaraceae) from July 2003 to June 2004, and since 1991 on several other plant species. In total we found 15 species of Inga on cerrado host plants. Nine species were very rare, with only one to five adults reared. The other six species occurred throughout the year, with higher abundance during the dry season, from May to July, coinciding with overall peaks of caterpillar abundance in the cerrado. Caterpillars of the genus Inga build shelters by tying and lining two mature or old leaves with silk and frass, where they rest and develop (a common habit found in Oecophorinae). The final instar builds a special envelope inside the leaf shelter, where it will complete the larval stage and pupate. The species are very difficult to distinguish in the immature stages. External features were useful in identifying only four species: I. haemataula (Meyrick), I. phaecrossa (Meyrick), I. ancorata (Walsingham), and I. corystes (Meyrick). These four species are polyphagous and have wide geographical distributions. In this paper we provide information on the natural history and host plants of six Inga species common on cerrado host plants, for which there are no reports in the literature.

  18. Development of a Low-cost, Comprehensive Recording System for Circadian Rhythm Behavior.

    Science.gov (United States)

    Kwon, Jea; Park, Min Gu; Lee, Seung Eun; Lee, C Justin

    2018-02-01

    Circadian rhythm is defined as a 24-hour biological oscillation, which persists even without any external cues but also can be re-entrained by various environmental cues. One of the widely accepted circadian rhythm behavioral experiment is measuring the wheel-running activity (WRA) of rodents. However, the price for commercially available WRA recording system is not easily affordable for researchers due to high-cost implementation of sensors for wheel rotation. Here, we developed a cost-effective and comprehensive system for circadian rhythm recording by measuring the house-keeping activities (HKA). We have monitored animal's HKA as electrical signal by simply connecting animal housing cage with a standard analog/digital converter: input to the metal lid and ground to the metal grid floor. We show that acquired electrical signals are combined activities of eating, drinking and natural locomotor behaviors which are well-known indicators of circadian rhythm. Post-processing of measured electrical signals enabled us to draw actogram, which verifies HKA to be reliable circadian rhythm indicator. To provide easy access of HKA recording system for researchers, we have developed user-friendly MATLAB-based software, Circa Analysis. This software provides functions for easy extraction of scalable "touch activity" from raw data files by automating seven steps of post-processing and drawing actograms with highly intuitive user-interface and various options. With our cost-effective HKA circadian rhythm recording system, we have estimated the cost of our system to be less than $150 per channel. We anticipate our system will benefit many researchers who would like to study circadian rhythm.

  19. Does a plant for mechanical-biological waste treatment require a sanitary landfill?; Braucht die MBA eine Deponie?

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Burkart [GVoA mbH und Co. KG, Hille (Germany)

    2012-11-01

    In mechanical-biological waste treatment, an interesting recyclable fraction is dumped in landfill together with other treatment residues. This may be 10-20% depending on the energy content of the initial material. Some operators of mechanical-biological waste treatment plants are currently working on modifying their waste treatment processes. Results so far have shown that this may also reduce the cost. (orig.) [German] Bei der bisherigen Abfallentsorgung mittels einer MBA (mechanisch-biologische Abfallbehandlung) wird immer noch ein interessanter Wertstoffanteil mit dem Deponat auf der Deponie abgelagert. Je nach Qualitaet der Vorbehandlung sind dies alleine vom Energieinhalt des Eingangsmaterials ca. 10-20%. Um auch diesen Anteil zu verwerten, sind aktuell einige MBA-Betreiber dabei, ihre Verfahren entsprechend umzustellen. Erste Ergebnisse zeigen, dass dies auch noch zu Kosteneinsparungen fuehren kann. (orig.)

  20. Components for real-time state monitoring of biological sewage treatment plants; Komponenten zur Echtzeit-Zustandserfassung biologischer Klaeranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Obenaus, F.; Rosenwinkel, K.H. [Hannover Univ. (Germany). Inst. fuer Siedlungswasserwirtschaft und Abfalltechnik

    1999-07-01

    Described is a method for the acquision of comprehensive state monitoring data from a sewage treatment plant's biological stage. The focus is on the measuring point in the effluent from preliminary cleaning. This is the most critical point of the system, its function being safeguarded only if the pollution load induced by the inflow to the biological stage can be exactly monitored. (orig.) [German] Beschrieben wurde eine Methode zum Erhalt umfassender Zustandsinformationen aus der biologischen Reinigungsstufe einer Klaeranlage, wobei der Schwerpunkt der Ausfuehrungen sich der Messstelle im Ablauf der Vorklaerung als kritischstem Punkt des Systems widmete, dessen Funktion nur bei genauer Erfassung der durch den Zulauf zur biologischen Stufe induzierten Belastung gewaehrleistet ist. (orig.)

  1. Influence of Nano-Crystal Metals on Texture and Biological Properties of Water Soluble Polysaccharides of Medicinal Plants

    Science.gov (United States)

    Churilov, G.; Ivanycheva, J.; Kiryshin, V.

    2015-11-01

    When treating the plants seeds with nano-materials there are some quality and quantity changes of polysaccharides, the molecular mass increase and monosaccharides change that leads to the increase of physiological and pharmacological activity of carbohydrates got from medicinal plants. We have got water soluble polysaccharides and nano-metals combinations containing 0.000165-0.000017 mg/dm3 of the metal. In a case of induced anemia the blood composition has practically restored on the 10th day of the treatment with nanocomposites. The use of pectin polysaccharides (that are attributed to modifiers of biological respond) to get nano-structured materials seems to be actual relative to their physiological activity (radio nuclides persorption, heavy metals ions, bacteria cells and their toxins; lipids metabolism normalization; bowels secreting and motor functions activation and modulation of the endocrine system.

  2. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  3. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds.

    Science.gov (United States)

    Beck, John J; Smith, Lincoln; Baig, Nausheena

    2014-01-01

    The technology for the collection and analysis of plant-emitted volatiles for understanding chemical cues of plant-plant, plant-insect or plant-microbe interactions has increased over the years. Consequently, the in situ collection, analysis and identification of volatiles are considered integral to elucidation of complex plant communications. Due to the complexity and range of emissions the conditions for consistent emission of volatiles are difficult to standardise. To discuss: evaluation of emitted volatile metabolites as a means of screening potential target- and non-target weeds/plants for insect biological control agents; plant volatile metabolomics to analyse resultant data; importance of considering volatiles from damaged plants; and use of a database for reporting experimental conditions and results. Recent literature relating to plant volatiles and plant volatile metabolomics are summarised to provide a basic understanding of how metabolomics can be applied to the study of plant volatiles. An overview of plant secondary metabolites, plant volatile metabolomics, analysis of plant volatile metabolomics data and the subsequent input into a database, the roles of plant volatiles, volatile emission as a function of treatment, and the application of plant volatile metabolomics to biological control of invasive weeds. It is recommended that in addition to a non-damaged treatment, plants be damaged prior to collecting volatiles to provide the greatest diversity of odours. For the model system provided, optimal volatile emission occurred when the leaf was punctured with a needle. Results stored in a database should include basic environmental conditions or treatments. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Comparing chemical and biological control strategies for twospotted spider mites (Acari: Tetranychidae) in commercial greenhouse production of bedding plants.

    Science.gov (United States)

    Opit, George P; Perret, Jamis; Holt, Kiffnie; Nechols, James R; Margolies, David C; Williams, Kimberly A

    2009-02-01

    Efficacy, costs, and impact on crop salability of various biological and chemical control strategies for Tetranychus urticae Koch (Acari: Tetranychidae) were evaluated on mixed plantings of impatiens, Impatiens wallerana Hook.f (Ericales: Balsaminaceae), and ivy geranium, Pelargonium peltatum (1.) L'Hér. Ex Aiton (Geraniales: Geraniaceae), cultivars in commercial greenhouses. Chemical control consisting of the miticide bifenazate (Floramite) was compared with two biological control strategies using the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Treatments were 1) a single, early application of bifenazate; 2) a single, early release of predatory mites at a 1:4 predator:pest ratio based on leaf samples to estimate pest density; 3) a weekly release of predatory mites at numbers based on the area covered by the crop; and 4) an untreated control. T. urticae populations were monitored for 3 wk after the earliest treatment. When plants were ready for market, their salability was estimated. Bifenazate and density-based P. persimilis treatments effectively reduced T. urticae numbers starting 1 wk after plants had been treated, whereas the scheduled, area-based P. persimilis treatment had little or no effect. The percentage of flats that could be sold at the highest market wholesale price ranged from 15 to 33%, 44 to 86%, 84 to 95%, and 92 to 100%, in the control, weekly area-based P. persimilis, bifenazate, and single density-based P. persimilis treatments, respectively. We have shown that in commercial greenhouse production of herbaceous ornamental bedding plants, estimating pest density to determine the appropriate number of predators to release is as effective and offers nearly the same economic benefit as prophylactic use of pesticides.

  5. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective

    Directory of Open Access Journals (Sweden)

    Gayathri Ilangumaran

    2017-10-01

    Full Text Available Salinity affects plant growth and is a major abiotic stress that limits crop productivity. It is well-understood that environmental adaptations and genetic traits regulate salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Harnessing the potential of beneficial microorganisms present in the rhizosphere is an alternative strategy for improving plant stress tolerance. This review intends to elucidate the understanding of salinity tolerance mechanisms attributed by plant growth promoting rhizobacteria (PGPR. Recent advances in molecular studies have yielded insights into the signaling networks of plant–microbe interactions that contribute to salt tolerance. The beneficial effects of PGPR involve boosting key physiological processes, including water and nutrient uptake, photosynthesis, and source-sink relationships that promote growth and development. The regulation of osmotic balance and ion homeostasis by PGPR are conducted through modulation of phytohormone status, gene expression, protein function, and metabolite synthesis in plants. As a result, improved antioxidant activity, osmolyte accumulation, proton transport machinery, salt compartmentalization, and nutrient status reduce osmotic stress and ion toxicity. Furthermore, in addition to indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, other extracellular secretions of the rhizobacteria function as signaling molecules and elicit stress responsive pathways. Application of PGPR inoculants is a promising measure to combat salinity in agricultural fields, thereby increasing global food production.

  6. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Science.gov (United States)

    Daranas, Núria; Badosa, Esther; Francés, Jesús; Montesinos, Emilio; Bonaterra, Anna

    2018-01-01

    Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH) conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  7. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Directory of Open Access Journals (Sweden)

    Núria Daranas

    Full Text Available Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  8. Bacterial selection for biological control of plant disease: criterion determination and validation

    Directory of Open Access Journals (Sweden)

    Monalize Salete Mota

    Full Text Available Abstract This study aimed to evaluate the biocontrol potential of bacteria isolated from different plant species and soils. The production of compounds related to phytopathogen biocontrol and/or promotion of plant growth in bacterial isolates was evaluated by measuring the production of antimicrobial compounds (ammonia and antibiosis and hydrolytic enzymes (amylases, lipases, proteases, and chitinases and phosphate solubilization. Of the 1219 bacterial isolates, 92% produced one or more of the eight compounds evaluated, but only 1% of the isolates produced all the compounds. Proteolytic activity was most frequently observed among the bacterial isolates. Among the compounds which often determine the success of biocontrol, 43% produced compounds which inhibit mycelial growth of Monilinia fructicola, but only 11% hydrolyzed chitin. Bacteria from different plant species (rhizosphere or phylloplane exhibited differences in the ability to produce the compounds evaluated. Most bacterial isolates with biocontrol potential were isolated from rhizospheric soil. The most efficient bacteria (producing at least five compounds related to phytopathogen biocontrol and/or plant growth, 86 in total, were evaluated for their biocontrol potential by observing their ability to kill juvenile Mesocriconema xenoplax. Thus, we clearly observed that bacteria that produced more compounds related to phytopathogen biocontrol and/or plant growth had a higher efficacy for nematode biocontrol, which validated the selection strategy used.

  9. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer.

    Science.gov (United States)

    Altman, Brian J

    2016-01-01

    Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight.

  10. Critical time delay of the pineal melatonin rhythm in humans due to weak electromagnetic exposure.

    Science.gov (United States)

    Halgamuge, Malka N

    2013-08-01

    Electromagnetic fields (EMFs) can increase free radicals, activate the stress response and alter enzyme reactions. Intracellular signalling is mediated by free radicals and enzyme kinetics is affected by radical pair recombination rates. The magnetic field component of an external EMF can delay the "recombination rate" of free radical pairs. Magnetic fields thus increase radical life-times in biological systems. Although measured in nanoseconds, this extra time increases the potential to do more damage. Melatonin regulates the body's sleep-wake cycle or circadian rhythm. The World Health Organization (WHO) has confirmed that prolonged alterations in sleep patterns suppress the body's ability to make melatonin. Considerable cancer rates have been attributed to the reduction of melatonin production as a result of jet lag and night shift work. In this study, changes in circadian rhythm and melatonin concentration are observed due to the external perturbation of chemical reaction rates. We further analyze the pineal melatonin rhythm and investigate the critical time delay or maturation time of radical pair recombination rates, exploring the impact of the mRNA degradation rate on the critical time delay. The results show that significant melatonin interruption and changes to the circadian rhythm occur due to the perturbation of chemical reaction rates, as also reported in previous studies. The results also show the influence of the mRNA degradation rate on the circadian rhythm's critical time delay or maturation time. The results support the hypothesis that exposure to weak EMFs via melatonin disruption can adversely affect human health.

  11. Evaluation of the biological effect of the concentration of ''CMU''on the leaves plant breeding

    International Nuclear Information System (INIS)

    Revilla Pedreira, R.

    1980-01-01

    The effect of CMU (3-p-chlorophenyl)-1,1-dimethylurea on the photosynthetic activity of six species of higher plants and on chlorella pyrenoidosa was studied. In the higher plants the absorption of CMU was studied using 14 C-CMU. The effect of different concentrations of this herbicide on the photosynthetic assimilation of CO 2 by the plant's leaves has also been determined. Moreover, the inhibitory effect of the CMU on the Hill reaction of isolated chloroplasts has been studied. The results indicate that there is a correlation between the concentration of the herbicide and the degree of inhibition of photosynthesis for concentration between 10 -8 M and 10 -4 M. As a consequence of the results obtained, a biotest is proposed for the detection of residues of the photosynthesis inhibitors using the alga chlorella pyrenoidosa as the sensory element. (auth.)

  12. MADIBA: A web server toolkit for biological interpretation of Plasmodium and plant gene clusters

    Directory of Open Access Journals (Sweden)

    Louw Abraham I

    2008-02-01

    Full Text Available Abstract Background Microarray technology makes it possible to identify changes in gene expression of an organism, under various conditions. Data mining is thus essential for deducing significant biological information such as the identification of new biological mechanisms or putative drug targets. While many algorithms and software have been developed for analysing gene expression, the extraction of relevant information from experimental data is still a substantial challenge, requiring significant time and skill. Description MADIBA (MicroArray Data Interface for Biological Annotation facilitates the assignment of biological meaning to gene expression clusters by automating the post-processing stage. A relational database has been designed to store the data from gene to pathway for Plasmodium, rice and Arabidopsis. Tools within the web interface allow rapid analyses for the identification of the Gene Ontology terms relevant to each cluster; visualising the metabolic pathways where the genes are implicated, their genomic localisations, putative common transcriptional regulatory elements in the upstream sequences, and an analysis specific to the organism being studied. Conclusion MADIBA is an integrated, online tool that will assist researchers in interpreting their results and understand the meaning of the co-expression of a cluster of genes. Functionality of MADIBA was validated by analysing a number of gene clusters from several published experiments – expression profiling of the Plasmodium life cycle, and salt stress treatments of Arabidopsis and rice. In most of the cases, the same conclusions found by the authors were quickly and easily obtained after analysing the gene clusters with MADIBA.

  13. Potentials of biological control of plant diseases in the tropics | Ofor ...

    African Journals Online (AJOL)

    This paper highlights the various categories of biological control, which are employed in an Integrated Disease Management (IDM) scheme. These include conservation, classical biocontrol and augmentation. Also, the various types of biocontrol agents/agencies which are currently in use in various parts of the world like, ...

  14. Physical interactions among plant MADS-box transcription factors and their biological relevance

    NARCIS (Netherlands)

    Nougalli Tonaco, I.A.

    2008-01-01

    The biological interpretation of the genome starts from transcription, and many different signaling pathways are integrated at this level. Transcription factors play a central role in the transcription process, because they select the down-stream genes and determine their spatial and temporal

  15. Mu rhythm desynchronization by tongue thrust observation

    Directory of Open Access Journals (Sweden)

    Kotoe eSakihara

    2015-09-01

    Full Text Available We aimed to investigate the mu rhythm in the sensorimotor area during tongue thrust observation and to obtain an answer to the question as to how subtle non-verbal orofacial movement observation activates the sensorimotor area. Ten healthy volunteers performed finger tap execution, tongue thrust execution, and tongue thrust observation. The electroencephalogram was recorded from 128 electrodes placed on the scalp, and regions of interest were set at sensorimotor areas. The event-related desynchronization (ERD and event-related synchronization (ERS for the mu rhythm (8–13 Hz and beta (13−25 Hz bands were measured. Tongue thrust observation induced mu rhythm ERD, and the ERD was detected at the left hemisphere regardless whether the observed tongue thrust was toward the left or right. Mu rhythm ERD was also recorded during tongue thrust execution. However, temporal analysis revealed that the ERD associated with tongue thrust observation preceded that associated with execution by approximately 2 s. Tongue thrust observation induces mu rhythm ERD in sensorimotor cortex with left hemispheric dominance.

  16. [Dynamic Attending Binds Time and Rhythm Perception].

    Science.gov (United States)

    Kuroda, Tsuyoshi; Ono, Fuminori; Kadota, Hiroshi

    2017-11-01

    Relations between time and rhythm perception are discussed in this review of psychophysical research relevant to the multiple-look effect and dynamic-attending theory. Discrimination of two neighboring intervals that are marked by three successive sounds is improved when the presentation of the first (standard, S) interval is repeated before that of the second (comparison, C), as SSSSC. This improvement in sensitivity, called the multiple-look effect, occurs because listeners (1) perceive regular rhythm during the repetition of the standard interval, (2) predict the timing of subsequent sounds, and (3) detect sounds that are deviated from the predicted timing. The dynamic-attending theory attributes such predictions to the entrainment of attentional rhythms. An endogenous attentional rhythm is synchronized with the periodic succession of sounds marking the repeated standard. The standard and the comparison are discriminated on the basis of whether the ending marker of the comparison appears at the peak of the entrained attentional rhythm. This theory is compatible with the findings of recent neurophysiological studies that relate temporal prediction to neural oscillations.

  17. Daily Rhythms in Mobile Telephone Communication.

    Science.gov (United States)

    Aledavood, Talayeh; López, Eduardo; Roberts, Sam G B; Reed-Tsochas, Felix; Moro, Esteban; Dunbar, Robin I M; Saramäki, Jari

    2015-01-01

    Circadian rhythms are known to be important drivers of human activity and the recent availability of electronic records of human behaviour has provided fine-grained data of temporal patterns of activity on a large scale. Further, questionnaire studies have identified important individual differences in circadian rhythms, with people broadly categorised into morning-like or evening-like individuals. However, little is known about the social aspects of these circadian rhythms, or how they vary across individuals. In this study we use a unique 18-month dataset that combines mobile phone calls and questionnaire data to examine individual differences in the daily rhythms of mobile phone activity. We demonstrate clear individual differences in daily patterns of phone calls, and show that these individual differences are persistent despite a high degree of turnover in the individuals' social networks. Further, women's calls were longer than men's calls, especially during the evening and at night, and these calls were typically focused on a small number of emotionally intense relationships. These results demonstrate that individual differences in circadian rhythms are not just related to broad patterns of morningness and eveningness, but have a strong social component, in directing phone calls to specific individuals at specific times of day.

  18. Phytochemical constituents of selected plants from Apiaceae family and their biological effects in poultry

    Directory of Open Access Journals (Sweden)

    Aćimović Milica G.

    2016-01-01

    Full Text Available The dried ripe fruits of the plants from Apiaceae family are used in folk medicine for treating digestive disorders. They can be used in veterinary and animal production, especially poultry, as immunostimulants and as natural antibiotics. Plants from Apiaceae family improve performance parameters of poultry and can be used for prevention of diseases. This article is a review of present literature data on the usage of caraway, anise, coriander and fennel in broiler chickens and Japanese quail nutrition and their mode of action and effects on production performance, blood parameters, cholesterol and fatty acids profile.

  19. Biological analysis of endocrine disrupting compounds in Tunisian sewage treatment plants

    International Nuclear Information System (INIS)

    Minif, W.; Dagnino, S.; Pillon, A.; Escande, A.; Fenet, E.; Gomez, E.; Casellas, C.; Duchesne, M. J.; Cavailles, V.

    2009-01-01

    The endocrine disrupting compounds (EDCs) are frequently found in sewage treatment plant (STPs) works. Natural and synthetic hormones have been identified as the major contributors to the estrogenic activity in sewage. Dosing and identification of EDCs are certainly of great interest and can lead to the improvement of chemicals treatments. With reporter cell lines developed in the laboratory and allowing the detection of nuclear receptor activities, we characterized the endocrine disrupting profile of water, particulate matter and sludge from three Tunisian sewage, treatment plants (STPs). (Author)

  20. Biological analysis of endocrine disrupting compounds in Tunisian sewage treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Minif, W.; Dagnino, S.; Pillon, A.; Escande, A.; Fenet, E.; Gomez, E.; Casellas, C.; Duchesne, M. J.; Cavailles, V.

    2009-07-01

    The endocrine disrupting compounds (EDCs) are frequently found in sewage treatment plant (STPs) works. Natural and synthetic hormones have been identified as the major contributors to the estrogenic activity in sewage. Dosing and identification of EDCs are certainly of great interest and can lead to the improvement of chemicals treatments. With reporter cell lines developed in the laboratory and allowing the detection of nuclear receptor activities, we characterized the endocrine disrupting profile of water, particulate matter and sludge from three Tunisian sewage, treatment plants (STPs). (Author)

  1. The sensory-motor theory of rhythm and beat induction 20 years on: A new synthesis and future perspectives.

    Directory of Open Access Journals (Sweden)

    Neil Philip Todd

    2015-08-01

    Full Text Available Some 20 years ago Todd and colleagues proposed that rhythm perception is mediated by the conjunction of a sensory representation of the auditory input and a motor representation of the body (Todd 1994, 1995, and that a sense of motion from sound is mediated by the vestibular system (Todd 1992, 1993. These ideas were developed into a sensory-motor theory of rhythm and beat induction (Todd et al. 1999. A neurological substrate was proposed which might form the biological basis of the theory (Todd et al. 2002. The theory was implemented as a computational model and a number of experiments conducted to test it. In the following time there have been several key developments. One is the demonstration that the vestibular system is primal to rhythm perception, and in related work several experiments have provided further evidence that rhythm perception is body dependent. Another is independent advances in imaging, which have revealed the brain areas associated with both vestibular processing and rhythm perception. A third is the finding that vestibular receptors contribute to auditory evoked potentials (Todd et al. 2014ab. These behavioural and neurobiological developments demand a theoretical overview which could provide a new synthesis over the domain of rhythm perception. In this paper we suggest four propositions as the basis for such a synthesis. (1 Rhythm perception is a form of vestibular perception; (2 Rhythm perception evokes both external and internal guidance of somatotopic representations; (3 A link from the limbic system to the internal guidance pathway mediates the dance habit; (4 The vestibular reward mechanism is innate. The new synthesis provides an explanation for a number of phenomena not often considered by rhythm researchers. We discuss these along with possible computational implementations and alternative models and propose a number of new directions for future research.

  2. "Bird Song Metronomics": Isochronous Organization of Zebra Finch Song Rhythm.

    Science.gov (United States)

    Norton, Philipp; Scharff, Constance

    2016-01-01

    The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a "signal-derived pulse," or pulse(S), of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulse(S) significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulse(P)), as yet untested. Strikingly, in our study, pulses(S) that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulse(S) periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel

  3. Chemical and Biological Aspects of Extracts from Medicinal Plants with Antidiabetic Effects.

    Science.gov (United States)

    Gushiken, Lucas F; Beserra, Fernando P; Rozza, Ariane L; Bérgamo, Patrícia L; Bérgamo, Danilo A; Pellizzon, Cláudia H

    2016-01-01

    Diabetes mellitus is a chronic disease and a leading cause of death in western countries. Despite advancements in the clinical management of the disease, it is not possible to control the late complications of diabetes. The main characteristic feature of diabetes is hyperglycemia, which reflects the deterioration in the use of glucose due to a faulty or poor response to insulin secretion. Alloxan and streptozotocin (STZ) are the chemical tools that are most commonly used to study the disease in rodents. Many plant species have been used in ethnopharmacology or to treat experimentally symptoms of this disease. When evaluated pharmacologically, most of the plants employed as antidiabetic substances have been shown to exhibit hypoglycemic and antihyperglycemic activities, and to contain chemical constituents that may be used as new antidiabetic agents. There are many substances extracted from plants that offer antidiabetic potential, whereas others may result in hypoglycemia as a side effect due to their toxicity, particularly their hepatotoxicity. In this article we present an updated overview of the studies on extracts from medicinal plants, relating the mechanisms of action by which these substances act and the natural principles of antidiabetic activity.

  4. Secretion of biologically active glycoforms of bovine follicle stimulating hormone in plants

    NARCIS (Netherlands)

    Dirnberger, D.; Steinkellner, H.; Abdennebi, L.; Remy, J.J.; Wiel, van de D.

    2001-01-01

    We chose the follicle stimulating hormone (FSH), a pituitary heterodimeric glycoprotein hormone, as a model to assess the ability of the plant cell to express a recombinant protein that requires extensive N-glycosylation for subunit folding and assembly, intracellular trafficking, signal

  5. The role of adaptive trans-generational plasticity in biological invasions of plants

    Science.gov (United States)

    Trans-generational plasticity (TGP) that confers greater offspring fitness is likely to be an important mechanism contributing to the spread of some invasive plant species. TGP is predicted for populations found in habitats with predictable spatial or temporal resource heterogeneity, and that have ...

  6. Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol

    Science.gov (United States)

    Jeandet, Philippe; Delaunois, Bertrand; Aziz, Aziz; Donnez, David; Vasserot, Yann; Cordelier, Sylvain; Courot, Eric

    2012-01-01

    Resveratrol, a stilbenic compound deriving from the phenyalanine/polymalonate route, being stilbene synthase the last and key enzyme of this pathway, recently has become the focus of a number of studies in medicine and plant physiology. Increased demand for this molecule for nutraceutical, cosmetic and possibly pharmaceutic uses, makes its production a necessity. In this context, the use of biotechnology through recombinant microorganisms and plants is particularly promising. Interesting results can indeed arise from the potential of genetically modified microorganisms as an alternative mechanism for producing resveratrol. Strategies used to tailoring yeast as they do not possess the genes that encode for the resveratrol pathway, will be described. On the other hand, most interest has centered in recent years, on STS gene transfer experiments from various origins to the genome of numerous plants. This work also presents a comprehensive review on plant molecular engineering with the STS gene, resulting in disease resistance against microorganisms and the enhancement of the antioxidant activities of several fruits in transgenic lines. PMID:22654481

  7. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater

    Science.gov (United States)

    Manu, D. S.; Thalla, Arun Kumar

    2017-11-01

    The current work demonstrates the support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) modeling to assess the removal efficiency of Kjeldahl Nitrogen of a full-scale aerobic biological wastewater treatment plant. The influent variables such as pH, chemical oxygen demand, total solids (TS), free ammonia, ammonia nitrogen and Kjeldahl Nitrogen are used as input variables during modeling. Model development focused on postulating an adaptive, functional, real-time and alternative approach for modeling the removal efficiency of Kjeldahl Nitrogen. The input variables used for modeling were daily time series data recorded at wastewater treatment plant (WWTP) located in Mangalore during the period June 2014-September 2014. The performance of ANFIS model developed using Gbell and trapezoidal membership functions (MFs) and SVM are assessed using different statistical indices like root mean square error, correlation coefficients (CC) and Nash Sutcliff error (NSE). The errors related to the prediction of effluent Kjeldahl Nitrogen concentration by the SVM modeling appeared to be reasonable when compared to that of ANFIS models with Gbell and trapezoidal MF. From the performance evaluation of the developed SVM model, it is observed that the approach is capable to define the inter-relationship between various wastewater quality variables and thus SVM can be potentially applied for evaluating the efficiency of aerobic biological processes in WWTP.

  8. Impact of rice-straw biochars amended soil on the biological Si cycle in soil-plant ecosystem

    Science.gov (United States)

    Li, Zimin; Delvaux, Bruno; Struyf, Eric; Unzué-Belmonte, Dácil; Ronsse, Frederik; Cornelis, Jean-Thomas

    2017-04-01

    uptake by wheat , Si-/biochar does not increase the Si content of plants in either soil type. As expected, Si+/biochar and wollastonite significantly increase the Si content of wheat plants grown on both soils. The increase caused by Si+/biochar is, larger in NI (10 mg Si pot-1) than that in CA (5 mg Si pot-1). This result is in line with the release of CaCl2 extractable Si in both soils amended by Si+/biochar, confirming the validity of CaCl2-extraction to estimate the pool of bioavailable Si. Our data highlight that phytolith-rich biochar readily contributes to the pool of bioavailable Si, further taken up by plant roots, and increases Si mineralomass in plants as well as plant growth. Thus it provides an alternative to wollastonite application. The effect is particularly large in the highly weathered Nitisol. Under such conditions, the impact of phytolith rich biochar is not limited to the enhancement of Si biological cycle, but is extended to the increase of soil pH, CEC and organic matter content.

  9. Toward a biologically significant and usable standard for ozone that will also protect plants

    International Nuclear Information System (INIS)

    Paoletti, Elena; Manning, William J.

    2007-01-01

    Ozone remains an important phytotoxic air pollutant and is also recognized as a significant greenhouse gas. In North America, Europe, and Asia, incidence of high concentrations is decreasing, but background levels are steadily rising. There is a need to develop a biologically significant and usable standard for ozone. We compare the strengths and weaknesses of concentration-based, exposure-based and threshold-based indices, such as SUM60 and AOT40, and examine the O 3 flux concept. We also present major challenges to the development of an air quality standard for ozone that has both biological significance and practicality in usage. - Current standards do not protect vegetation from ozone, but progress is being made

  10. Small wastewater treatment plants in mountain areas: combination of septic tank and biological filter.

    Science.gov (United States)

    Maunoir, S; Philip, H; Rambaud, A

    2007-01-01

    Research work has been carried out for more than 20 years by Eparco and the University of Montpellier (France) on the application of biological wastewater treatment processes for small communities. This research has led to a new process which is particularly suitable for remote populations, taking into account several specificities such as as the seasonal fluctuations in the population, the accessibility of the site, the absence of a power supply on site, the reduced area of land available and the low maintenance. Thus, the process, which combines a septic tank operating under anaerobic conditions and a biological aerobic filter, is a solution for wastewater treatment in mountain areas. This paper presents the process and three full-scale applications in the region of the Alps.

  11. Commercial Biological Control Agents Targeted Against Plant-Parasitic Root-knot Nematodes

    Directory of Open Access Journals (Sweden)

    Marie-Stéphane Tranier

    2014-12-01

    Full Text Available Root-knot nematodes are microscopic round worms, which cause severe agricultural losses. Their attacks affect the productivity by reducing the amount and the caliber of the fruits. Chemical control is widely used, but biological control appears to be a better solution, mainly using microorganisms to reduce the quantity of pests infecting crops. Biological control is developing gradually, and with time, more products are being marketed worldwide. They can be formulated with bacteria, viruses or with filamentous fungi, which can destroy and feed on phytoparasitic nematodes. To be used by the farmers, biopesticides must be legalized by the states, which has led to the establishment of a legal framework for their use, devised by various governmental organizations.

  12. The role of adaptive trans-generational plasticity in biological invasions of plants

    OpenAIRE

    Dyer, Andrew R; Brown, Cynthia S; Espeland, Erin K; McKay, John K; Meimberg, Harald; Rice, Kevin J

    2010-01-01

    High-impact biological invasions often involve establishment and spread in disturbed, high-resource patches followed by establishment and spread in biotically or abiotically stressful areas. Evolutionary change may be required for the second phase of invasion (establishment and spread in stressful areas) to occur. When species have low genetic diversity and short selection history, within-generation phenotypic plasticity is often cited as the mechanism through which spread across multiple hab...

  13. Integrating plant and animal biology for the search of novel DNA damage biomarkers

    Czech Academy of Sciences Publication Activity Database

    Nikitaki, Z.; Holá, Marcela; Donà, M.; Pavlopoulou, A.; Michalopoulos, I.; Angelis, Karel; Georgakilas, A. G.; Macovei, I.; Balestrazzi, A.

    2018-01-01

    Roč. 775, JAN-MAR (2018), s. 21-38 ISSN 1383-5742 R&D Projects: GA ČR GA16-01137S Institutional support: RVO:61389030 Keywords : DNA damage response * Ionizing radiation * Radiation exposure monitoring * Radiotolerance * Ultraviolet radiation Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 5.500, year: 2016

  14. Biological monitoring to determine worker dose in a butadiene processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Hayes, R.B. [National Cancer Inst., Bethesda, MD (United States)

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to better assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.

  15. Daily rhythm of cerebral blood flow velocity

    Directory of Open Access Journals (Sweden)

    Spielman Arthur J

    2005-03-01

    Full Text Available Abstract Background CBFV (cerebral blood flow velocity is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1 CBFV changes are due to sleep-associated processes or 2 time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. Methods Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD ultrasonography. Other variables included core body temperature (CBT, end-tidal carbon dioxide (EtCO2, blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO served as a measure of endogenous circadian phase position. Results A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively. Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p Conclusion In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration.

  16. Endophytic Actinobacteria from the Brazilian Medicinal Plant Lychnophora ericoides Mart. and the Biological Potential of Their Secondary Metabolites.

    Science.gov (United States)

    Conti, Raphael; Chagas, Fernanda Oliveira; Caraballo-Rodriguez, Andrés Mauricio; Melo, Weilan Gomes da Paixão; do Nascimento, Andréa Mendes; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Pessoa, Cláudia; Costa-Lotufo, Letícia Veras; Krogh, Renata; Andricopulo, Adriano Defini; Lopes, Norberto Peporine; Pupo, Mônica Tallarico

    2016-06-01

    Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3-hydroxy-4-methoxybenzamide (9) and 2,3-dihydro-2,2-dimethyl-4(1H)-quinazolinone (15) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine (2) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Biological Control Against the Cowpea Weevil (Callosobruchus Chinensis L., Coleoptera: Bruchidae Using Essential Oils of Some Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Fatiha Righi Assia

    2014-07-01

    Full Text Available Chickpea (Cicer arietinum L. is a valuable foodstuff but unfortunately this legume is prone to insect attacks from the chick pea weevil (Callosobruchus chinensis L.. This serious pest damages the chickpea and causes decreases in the yield and in the nutritional quality. Biological control is being used to deal with this problem. We tried different doses of the essential oils of three new medicinal plants, namely Salvia verbenaca L., Scilla maritima L., and Artemisia herba-alba Asso to limit the damage of the chick pea weevil pest, and to protect consumer’s health. To determine the effect and efficiency of the oil, the tests were conducted using the different biological parameters of fertility, longevity, and fecundity, under controlled temperature and relative humidity (28°C and 75%. The effectiveness of organic oils was demonstrated. We tested these oils on the germination of seeds. The obtained results showed that the tested plant oils have a real organic insecticide effect. The essential oil of Artemisia proved most effective as a biocide; achieving a mortality rate of 100%. A significant reduction in longevity was observed under the effect of 30 μl of S. maritima (1.3 days and S. verbenaca (2.8, 4.6 days, respectively, for males and females compared to 8 and 15 days for the control. For fecundity, an inhibition of oviposition was obtained using 30 μl of Salvia and Scilla essential oils. The test on the seed germination using different essential oils, showed no damage to the germinating seeds. The germination rate was 99%. These findings suggest that the tested plants can be used as a bioinsecticide for control of the C. chinensis pest of stored products.

  18. Circadian rhythm asynchrony in man during hypokinesis.

    Science.gov (United States)

    Winget, C. M.; Vernikos-Danellis, J.; Cronin, S. E.; Leach, C. S.; Rambaut, P. C.; Mack, P. B.

    1972-01-01

    Posture and exercise were investigated as synchronizers of certain physiologic rhythms in eight healthy male subjects in a defined environment. Four subjects exercised during bed rest. Body temperature (BT), heart rate, plasma thyroid hormone, and plasma steroid data were obtained from the subjects for a 6-day ambulatory equilibration period before bed rest, 56 days of bed rest, and a 10-day recovery period after bed rest. The results indicate that the mechanism regulating the circadian rhythmicity of the cardiovascular system is rigorously controlled and independent of the endocrine system, while the BT rhythm is more closely aligned to the endocrine system.

  19. Circadian rhythm in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Eleftheriou, Andreas; Ulander, Martin; Lundin, Fredrik

    2018-01-01

    The pathogenesis of idiopathic normal pressure hydrocephalus (iNPH) takes place in structures close to the cerebral ventricular system. Suprachiasmatic nucleus (SCN), situated close to the third ventricle, is involved in circadian rhythm. Diurnal disturbances are well-known in demented patients. The cognitive decline in iNPH is potentially reversible after a shunt operation. Diurnal rhythm has never been studied in iNPH. We hypothesize that there is a disturbance of circadian rhythm in iNPH-patients and the aim was to study any changes of the diurnal rhythm (mesor and circadian period) as well as any changes of the diurnal amplitude and acrophase of the activity in iNPH-patients before and after a shunt operation. Twenty consecutive iNPH-patients fulfilling the criteria of the American iNPH-guidelines, 9 males and 11 females, mean age 73 (49-81) years were included. The patients underwent a pre-operative clinical work-up including 10m walk time (w10mt) steps (w10ms), TUG-time (TUGt) and steps (TUGs) and for cognitive function an MMSE score was measured. In order to receive circadian rhythm data actigraphic recordings were performed using the SenseWear 2 (BodyMedia Inc Pittsburgh, PA, USA) actigraph. Cosinor analyses of accelerometry data were performed in "R" using non-linear regression with Levenburg- Marquardt estimation. Pre- and post-operative data regarding mesor, amplitude and circadian period were compared using Wilcoxon-Mann-Whitney test for paired data. Twenty patients were evaluated before and three month post-operatively. Motor function (w10mt, w10ms, TUGt, TUGs) was significantly improved while MMSE was not significantly changed. Actigraphic measurements (mesor, amplitude and circadian period) showed no significant changes after shunt operation. This is the first systematic study of circadian rhythm in iNPH-patients. We found no significant changes in circadian rhythm after shunt surgery. The conceptual idea of diurnal rhythm changes in hydrocephalus is

  20. Guidelines for the use of biological monitors in air pollution control (plants). Pt. 1. Methodological guidance for the drawing-up of biomonitoring guidelines (plants)

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, R.D. [Buero fuer Konzeptionelle Bioindikation, Jockgrim (Germany); Wagner, G. [Universitaet des Saarlandes, Saarbruecken (Germany). Inst. fuer Biogeographie; Finck, M.

    2000-04-01

    The main objective of this study is to encourage and promote further development of the methodological basis for a broader and more effective use of biological methods for monitoring the effects of air pollution on plants. It is not intended here to explain or discuss general criteria for the design of environmental monitoring studies and principal statistical methods for dealing with heterogeneously distributed spatial phenomena in detail. A further objective of this study is to give general guidance on how to - select suitable bioindicators, - develop, optimise and validate specific guidelines for the use of these bioindicators, - plan, design and employ biomonitoring studies for different purposes, - develop case-specific study plans determining how to apply an appropriate bioindicator (method-specific guideline) to a given task, case and area, - adapt principles of quality assurance and quality control to biomonitoring studies, - increase the importance and reliability of results obtained by bioindicators with respect to administrative measures. (orig.)