WorldWideScience

Sample records for biological research reactor janus

  1. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1970-1992: The JANUS Program Survival and Pathology Data

    International Nuclear Information System (INIS)

    A research reactor for exclusive use in experimental radiobiology was designed and built at Argonne National Laboratory in the 1960's. It was located in a special addition to Building 202, which housed the Division of Biological and Medical Research. Its location assured easy access for all users to the animal facilities, and it was also near the existing gamma-irradiation facilities. The water-cooled, heterogeneous 200-kW(th) reactor, named JANUS, became the focal point for a range of radiobiological studies gathered under the rubic of open-quotes the JANUS programclose quotes. The program ran from about 1969 to 1992 and included research at all levels of biological organization, from subcellular to organism. More than a dozen moderate- to large-scale studies with the B6CF1 mouse were carried out; these focused on the late effects of whole-body exposure to gamma rays or fission neutrons, in matching exposure regimes. In broad terms, these studies collected data on survival and on the pathology observed at death. A deliberate effort was made to establish the cause of death. This archieve describes these late-effects studies and their general findings. The database includes exposure parameters, time of death, and the gross pathology and histopathology in codified form. A series of appendices describes all pathology procedures and codes, treatment or irradiation codes, and the manner in which the data can be accessed in the ORACLE database management system. A series of tables also presents summaries of the individual experiments in terms of radiation quality, sample sizes at entry, mean survival times by sex, and number of gross pathology and histopathology records

  2. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1970-1992: The JANUS Program Survival and Pathology Data

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, D.; Wright, B.J.; Carnes, B.A.; Williamson, F.S.; Fox, C.

    1995-02-01

    A research reactor for exclusive use in experimental radiobiology was designed and built at Argonne National Laboratory in the 1960`s. It was located in a special addition to Building 202, which housed the Division of Biological and Medical Research. Its location assured easy access for all users to the animal facilities, and it was also near the existing gamma-irradiation facilities. The water-cooled, heterogeneous 200-kW(th) reactor, named JANUS, became the focal point for a range of radiobiological studies gathered under the rubic of {open_quotes}the JANUS program{close_quotes}. The program ran from about 1969 to 1992 and included research at all levels of biological organization, from subcellular to organism. More than a dozen moderate- to large-scale studies with the B6CF{sub 1} mouse were carried out; these focused on the late effects of whole-body exposure to gamma rays or fission neutrons, in matching exposure regimes. In broad terms, these studies collected data on survival and on the pathology observed at death. A deliberate effort was made to establish the cause of death. This archieve describes these late-effects studies and their general findings. The database includes exposure parameters, time of death, and the gross pathology and histopathology in codified form. A series of appendices describes all pathology procedures and codes, treatment or irradiation codes, and the manner in which the data can be accessed in the ORACLE database management system. A series of tables also presents summaries of the individual experiments in terms of radiation quality, sample sizes at entry, mean survival times by sex, and number of gross pathology and histopathology records.

  3. Janus particles for biological imaging and sensing.

    Science.gov (United States)

    Yi, Yi; Sanchez, Lucero; Gao, Yuan; Yu, Yan

    2016-06-21

    Janus particles, named after the two-faced Roman god Janus, have different surface makeups, structures or compartments on two sides. This review highlights recent advances in employing Janus particles as novel analytical tools for live cell imaging and biosensing. Unlike conventional particles used in analytical science, two-faced Janus particles provide asymmetry and directionality, and can combine different or even incompatible properties within a single particle. The broken symmetry enables imaging and quantification of rotational dynamics, revealing information beyond what traditional measurements offer. The spatial segregation of molecules on the surface of a single particle also allows analytical functions that would otherwise interfere with each other to be decoupled, opening up opportunities for novel multimodal analytical methods. We summarize here the development of Janus particles, a few general methods for their fabrication and, more importantly, the emerging and novel applications of Janus particles as multi-functional imaging probes and sensors. PMID:27052001

  4. JANUS reactor d and d project

    International Nuclear Information System (INIS)

    Argonne National Laboratory (ANL-E) has recently completed the decontamination and decommissioning (D and D) of the JANUS Reactor Facility located in Building 202. The 200 KW reactor operated from August 1963 to March 1992. The facility was used to study the effects of both high and low doses of fission neutrons in animals. There were two exposure rooms on opposite sides of the reactor and the reactor was therefore named after the two-faced Roman god. The High Dose Room was capable of specimen exposure at a dose rate of 3,600 rads per hour. During calendar year 1996 a detailed characterization of the facility was performed by ANL-E Health Physics personnel. ANL-E Analytical Services performed the required sample analysis. An Auditable Safety Analysis and an Environmental Assessment were completed. D and D plans, procedures and procurement documents were prepared and approved. A D and D subcontractor was selected and a firm, fixed price contract awarded for the field work and final survey effort. The D and D subcontractor was mobilized to ANL-E in January 1997. Electrical isolation of all reactor equipment and control panels was accomplished and the equipment removed. A total of 207,230 pounds (94,082 Kg) of lead shielding was removed, surveyed and sampled, and free-released for recycle. All primary and secondary piping was removed, size reduced and packaged for disposal or recycled as appropriate. The reactor vessel was removed, sized reduced and packaged as radioactive waste in April. The activated graphite block reflector was removed next, followed by the bioshield concrete and steel. All of this material was packaged as low level waste. Total low level radioactive waste generation was 4002.1 cubic feet (113.3 cubic meters). Mixed waste generation was 538 cubic feet (15.2 cubic meters). The Final Release Survey was completed in September. The project field work was completed in 38 weeks without any lost-time accidents, personnel contaminations or unplanned

  5. Decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East. Project final report

    International Nuclear Information System (INIS)

    The decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East (ANL-E) was completed in October 1997. Descriptions and evaluations of the activities performed and analyses of the results obtained during the JANUS D and D Project are provided in this Final Report. The following information is included: objective of the JANUS D and D Project; history of the JANUS Reactor facility; description of the ANL-E site and the JANUS Reactor facility; overview of the D and D activities performed; description of the project planning and engineering; description of the D and D operations; summary of the final status of the JANUS Reactor facility based upon the final survey results; description of the health and safety aspects of the project, including personnel exposure and OSHA reporting; summary of the waste minimization techniques utilized and total waste generated by the project; and summary of the final cost and schedule for the JANUS D and D Project

  6. PEAR SHOOT SAWFLY (JANUS COMPRESSUS FABRICIUS) – LIFE CYCLE AND BIOLOGICAL AND MORPHOLOGICAL CHARACTERISTIC

    OpenAIRE

    Tihomir Validžić

    2014-01-01

    The aim of the thesis was to investigate life cycle, biological and morphological characteristics of pear shoot sawfly (Janus compressus Fabricius, Hymenoptera Cephidae), furthermore to identify natural enemies in order to protect pear from this pest. The trial was conducted in the period of three years: 2010, 2011 and 2012 in pear orchards at five localities. Monitoring of adult sawfly was done by yellow sticky traps. Laboratory research was done at the Faculty of Agriculture, Department of ...

  7. Decontamination and decommissioning of the JANUS reactor at the Argonne National Laboratory-East site

    International Nuclear Information System (INIS)

    Argonne National Laboratory has begun the decontamination and decommissioning (D ampersand D) of the JANUS Reactor Facility. The project is managed by the Technology Development Division's D ampersand D Program personnel. D ampersand D procedures are performed by sub-contractor personnel. Specific activities involving the removal, size reduction, and packaging of radioactive components and facilities are discussed

  8. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  9. Research reactors

    International Nuclear Information System (INIS)

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world's research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted

  10. Decommissioning of the ASTRA research reactor: Dismantling of the biological shield

    Directory of Open Access Journals (Sweden)

    Meyer Franz

    2006-01-01

    Full Text Available The paper describes the dismantling of the inactive and activated areas of the biological shield of the ASTRA research reactor at the Austrian Research Center in Seibersdorf. The calculation of the parameters determining the activated areas at the shield (reference nuclide, nuclide vector in the barite concrete and horizontal and vertical reduction behaviors of activity concentration and the activation profiles within the biological shield for unrestricted release, release restricted to permanent deposit and radioactive waste are presented. Considerations of located activation anomalies in the shield, e.g. in the vicinities of the beam-tubes, were made according to the reactor's operational history. Finally, an overview of the materials removed from the biological shield is given.

  11. Decommissioning of the ASTRA research reactor - dismantling of the biological shield

    International Nuclear Information System (INIS)

    The paper describes the dismantling of the inactive and activated areas of the biological shield of the ASTRA research reactor at the Austrian Research Center in Seibersdorf. The calculation of the parameters determining the activated areas at the shield (reference nuclide, nuclide vector in the barite concrete and horizontal and vertical reduction behaviors of activity concentration) and the activation profiles within the biological shield for unrestricted release, release restricted to permanent deposit and radioactive waste are presented. Considerations of located activation anomalies in the shield, e. g. in the vicinities of the beam-tubes, were made according to the reactor's operational history. Finally, an overview of the materials removed from the biological shield is given. (author)

  12. Biological samples positioning device for irradiations on a radial channel at the nuclear research reactor

    International Nuclear Information System (INIS)

    For the demand of an experimental device for biological samples positioning system for irradiations on a radial channel at the nuclear research reactor in operation was constructed and started up a device for the place and remove of the biological samples from the irradiation channels without interrupting the operation of the reactor. The economical valuations are effected comparing with another type of device with the same functions. This work formed part of an international project between Cuba and Brazil that undertook the study of the induced damages by various types of ionizing radiation in DNA molecules. Was experimentally tested the proposed solution, which demonstrates the practical validity of the device. As a result of the work, the experimental device for biological samples irradiations are installed and operating in the radial beam hole No3(BH3) for more than five years at the IEA-R1 Brazilian research reactor according to the solicited requirements the device. The designed device increases considerably the type of studies can be conducted in this reactor. Its practical application in research taking place in that facility, in the field of radiobiology and dosimetry, and so on is immediate

  13. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  14. Improvements at the biological shielding of BNCT research facility in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    The technique of neutron capture in boron is a promising technique in cancer treatment, it uses the high LET particles from the reaction 10B (n, α) 7Li to destroy cancer cells.The development of this technique began in the mid-'50s and even today it is the object of study and research in various centers around the world, Brazil has built a facility that aims to conduct research in BNCT, this facility is located next to irradiation channel number three at the research nuclear reactor IEA-R1 and has a biological shielding designed to meet the radiation protection standards. This biological shielding was developed to allow them to conduct experiments with the reactor at maximum power, so it is not necessary to turn on and off the reactor to irradiate samples. However, when the channel is opened for experiments the background radiation in the experiments salon increases and this background variation makes it impossible to perform measurements in a neutron diffraction research that utilizes the irradiation channel number six. This study aims to further improve the shielding in order to minimize the variation of background making it possible to perform the research facility in BNCT without interfering with the action of the research group of the irradiation channel number six. To reach this purpose, the code MCNP5, dosimeters and activation detectors were used to plan improvements in the biological shielding. It was calculated with the help of the code an improvement that can reduce the average heat flow in 71.2% ± 13 and verified experimentally a mean reduce of 70 ± 9% in dose due to thermal neutrons. (author)

  15. Biological dosimetry studies for boron neutron capture therapy at the RA-1 research reactor facility

    International Nuclear Information System (INIS)

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminescent dosimeters to characterize the BNCT facility developed at the RA-1 research reactor operated by the National Atomic Energy Commission in Buenos Aires. Biological dosimetry was performed employing the hamster cheek pouch oral cancer model previously validated for BNCT studies by our group. Results indicate that the RA-1 neutron source produces useful dose rates for BNCT studies but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications. (author)

  16. Survey of research reactors

    International Nuclear Information System (INIS)

    A survey of reasearch reactors based on the IAEA Nuclear Research Reactor Data Base (RRDB) was done. This database includes information on 273 operating research reactors ranging in power from zero to several hundred MW. From these 273 operating research reactors 205 reactors have a power level below 5 MW, the remaining 68 reactors range from 5 MW up to several 100 MW thermal power. The major reactor types with common design are: Siemens Unterrichtsreaktors, 1.2 Argonaut reactors, Slowpoke reactors, the miniature neutron source reactors, TRIGA reactors, material testing reactors and high flux reactors. Technical data such as: power, fuel material, fuel type, enrichment, maximum neutron flux density and experimental facilities for each reactor type as well as a description of their utilization in physics and chemistry, medicine and biology, academic research and teaching, training purposes (students and physicists, operating personnel), industrial application (neutron radiography, silicon neutron transmutation doping facilities) are provided. The geographically distribution of these reactors is also shown. As conclusions the author discussed the advantages (low capital cost, low operating cost, low burn up, simple to operate, safe, less restrictive containment and sitting requirements, versatility) and disadvantages (lower sensitivity for NAA, limited radioisotope production, limited use of neutron beams, limited access to the core, licensing) of low power research reactors. 24 figs., refs. 15, Tab. 1 (nevyjel)

  17. Biological Tests for Boron Neutron Capture Therapy Research at the TRIGA Mark II Reactor in Pavia

    International Nuclear Information System (INIS)

    The thermal column of the TRIGA Mark II reactor of the Pavia University is used as an irradiation facility to perform biological tests and irradiations of living systems for Boron Neutron Capture Therapy (BNCT) research. The suitability of the facility has been ensured by studying the neutron flux and the photon background in the irradiation chamber inside the thermal column. This characterization has been realized both by flux and dose measurements as well as by Monte Carlo simulations. The routine irradiations concern in vitro cells cultures and different tumor animal models to test the efficacy of the BNCT treatment. Some results about these experiments will be described. (author)

  18. Biological Tests for Boron Neutron Capture Therapy Research at the TRIGA Mark II Reactor in Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Protti, N.; Ballarini, F.; Bortolussi, S.; De Bari, A.; Stella, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Nuclear Physics National Institute (INFN), Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Bakeine, J.G.; Cansolino, L.; Clerici, A.M. [Laboratory of Experimental Surgery, Department of Surgery, University of Pavia, Pavia (Italy)

    2011-07-01

    The thermal column of the TRIGA Mark II reactor of the Pavia University is used as an irradiation facility to perform biological tests and irradiations of living systems for Boron Neutron Capture Therapy (BNCT) research. The suitability of the facility has been ensured by studying the neutron flux and the photon background in the irradiation chamber inside the thermal column. This characterization has been realized both by flux and dose measurements as well as by Monte Carlo simulations. The routine irradiations concern in vitro cells cultures and different tumor animal models to test the efficacy of the BNCT treatment. Some results about these experiments will be described. (author)

  19. The scientific and technical requirements for biology at Australia's Replacement Research Reactor

    International Nuclear Information System (INIS)

    A Symposium and Workshop on Neutrons for Biology was held in the School of Biochemistry and Molecular Biology at the University of Melbourne, under the auspices of AINSE, Univ of Melbourne and ANSTO. Invited talks were given on the subjects of Genome, small-angle neutron scattering (SANS) as a critical framework for understanding bio-molecular, neutron diffraction at high and low resolution, and the investigation of viruses and large-scale biological structures using neutrons. There were also talks from prominent NMR practitioners and X-ray protein crystallographers, with substantial discussion about how the various methods might fit together in the future. Significant progress was made on defining Australia's needs, which include a strong push to use SANS and reflectometry for the study of macromolecular complexes and model membranes, and a modest network of supporting infrastructure in Brisbane, Melbourne and the Sydney Basin. Specific recommendations were that the small-angle neutron scattering and reflectometry instruments in the Replacement Research Reactor (RRR) be pursued with high priority, that there be no specific effort to provide high-resolution protein-crystallography facilities at the RRR, but that a watching brief be kept on instrumentation and sample-preparation technologies elsewhere. A watch be kept on inelastic and quasielastic neutron scattering capabilities elsewhere, although these methods will not initially be pursued at the RRR and that should be input from this community into the design of the biochemistry/chemistry laboratories at the Replacement Research Reactor. It was also recommended that a small number of regional facilities be established (or enhanced) to allow users to perform deuteration of biomolecules. These facilities would be of significant value to the NMR and neutron scattering communities

  20. PEAR SHOOT SAWFLY (JANUS COMPRESSUS FABRICIUS – LIFE CYCLE AND BIOLOGICAL AND MORPHOLOGICAL CHARACTERISTIC

    Directory of Open Access Journals (Sweden)

    Tihomir Validžić

    2014-06-01

    Full Text Available The aim of the thesis was to investigate life cycle, biological and morphological characteristics of pear shoot sawfly (Janus compressus Fabricius, Hymenoptera Cephidae, furthermore to identify natural enemies in order to protect pear from this pest. The trial was conducted in the period of three years: 2010, 2011 and 2012 in pear orchards at five localities. Monitoring of adult sawfly was done by yellow sticky traps. Laboratory research was done at the Faculty of Agriculture, Department of Plant Protection, Section of Entomology and Nematology. In this study, pear shoot sawfly in Eastern Slavonia occurred in the period of four weeks, starting from the third decade of April with the peak population at the beginning of the May. Adults flight is the most intensive during warm and sunny days, when temperatures are above 14°C. Adult sawflies are characterized by elongated body and antennae, usually 7-12 mm long and sexual dimorphism is present. Pest is univoltine. Basic colour of adult sawfly is black. Antennae are moniliform and consist of 20 (male - 22 (female segments. Females have red or dark red colored abdomen, while males have yellow or orange one. Eggs are cylindrically shaped, 0.8-1.0 mm long. Female lays approximately 30 eggs. Embryonic development of pear shoot sawfly eggs lasts from 11 to 14 days. Larvae are 8-10 mm long, white or pale yellow. Larvae molt three times. Pear shoot sawfly larvae were parasitized by insects from Hymenoptera order, from five identified and one unidentified genera. Level of parasitism by genera is as follows: Eurytoma sp. (Hymenoptera: Eurytomidae – 9.83%, Tetrastichus sp. (Hymenoptera: Eulophidae – 2.01%, Eupelmus sp. (Hymenoptera: Eupelmidae – 1.66%, Pteromalus sp. (Hymenoptera: Pteromalidae – 0.55%, Ichneumonida sp. (Hymenoptera: Pimplinae – 0.35% and unidentified genera – 0.62%. Plant parasitic species Metopoplax origani (Hemiptera: Lygaeidae was found in 1.80% of analyzed shoots. Larvae were

  1. The Biological Efficiency of the Petten Research Reactor Beam on Human Lymphocytes (Methodological Approach)

    International Nuclear Information System (INIS)

    In this paper we present preliminary results of examination of the biological efficiency of the Petten Research Reactor mixed beam with respect to 250 kV X-rays for the induction of DNA damage and chromosomal aberrations in human lymphocytes. Human blood samples or isolated lymphocytes were irradiated by the beam from Research Reactor in ECN Petten, Netherlands and dose response relationships for the level of damage induced were investigated. In order to check any enhancement effect due to the process of boron neutron capture, chemical pretreatment with boric acid or mercaptoborane (containing boron-10 ions) was done. The estimation of the DNA damage was done with the use of a single cell gel-electrophoresis method (SCGE), to asses the frequency of chromosomal aberrations culturing of lymphocytes for the evaluation of cytogenetic damage was performed. Abnormal behavior of blood samples during a culture procedure and abnormally low metaphases frequency was noticed. During the analysis of DNA damage by SCGE assay we have also found the abnormalities in shapes and brightness of investigated comets. Part of the studied lymphocytes was bigger than others and had much bigger fraction of the DNA in tail. Very poor dose response relationship was observed in those results. From this reason, our paper presents the methodological approach and discussion of the results obtained and also studies on the parameters reflecting the level of the DNA in human lymphocytes. In order to eliminate outstanding comets (fluffy) we measured for all our results the relation of the fraction of DNA in tail to the length of the comet tail. The value of this ratio usually fluctuated in range of 0.1 to 0.70. For the fluffy comets mentioned before the tDNA/TL ratio was generally about 0.9, or even more than 1.0 that means that the percentage of fraction of DNA in tail was higher than in usually seen comets with such a tail length. After analysis of distribution of frequency cells with various t

  2. Nuclear research reactors

    International Nuclear Information System (INIS)

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.)

  3. Research reactors - an overview

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  4. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  5. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  6. Research Nuclear Reactors

    International Nuclear Information System (INIS)

    Published in English and in French, this large report first proposes an overview of the use and history of research nuclear reactors. It discusses their definition, and presents the various types of research reactors which can be either related to nuclear power (critical mock-ups, material test reactors, safety test reactors, training reactors, prototypes), or to research (basic research, industry, health), or to specific particle physics phenomena (neutron diffraction, isotope production, neutron activation, neutron radiography, semiconductor doping). It reports the history of the French research reactors by distinguishing the first atomic pile (ZOE), and the activities and achievements during the fifties, the sixties and the seventies. It also addresses the development of instrumentation for research reactors (neutron, thermal, mechanical and fission gas release measurements). The other parts of the report concern the validation of neutronics calculations for different reactors (the EOLE water critical mock-up, the MASURCA air critical mock-up dedicated to fast neutron reactor study, the MINERVE water critical mock-up, the CALIBAN pulsed research reactor), the testing of materials under irradiation (OSIRIS reactor, laboratories associated with research reactors, the Jules Horowitz reactor and its experimental programs and related devices, irradiation of materials with ion beams), the investigation of accident situations (on the CABRI, Phebus, Silene and Jules Horowitz reactors). The last part proposes a worldwide overview of research reactors

  7. The Use of Structural Biology In Janus Kinase Targeted Drug Discovery

    OpenAIRE

    Alicea Velázquez, Nilda L.; Boggon, Titus J.

    2011-01-01

    The Janus kinases (or Jak kinases) mediate cytokine and growth factor signal transduction. Acquired or inherited Jak mutations can result in dysregulation of Jak-mediated signal transduction and can be critical to disease acquisition in neoplasias including acute myeloid, acute lymphoblastic and acute megakaryoblastic leukemias, and in rare X-linked severe combined immunodeficiency. The discovery of an acquired Jak2 point mutation, V617F, in significant numbers of patients w...

  8. Safeguarding research reactors

    International Nuclear Information System (INIS)

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  9. Research nuclear reactors

    International Nuclear Information System (INIS)

    Since the divergence of the first nuclear reactor in 1942, about 600 research or test reactors have been built throughout the world. Today 255 research reactors are operating in 57 countries and about 70% are over 25 years old. Whereas there are very few reactor types for power plants because of rationalization and standardisation, there is a great diversity of research reactors. We can divide them into 2 groups: heavy water cooled reactors and light water moderated reactors. Heavy water cooled reactors are dedicated to the production of high flux of thermal neutrons which are extracted from the core by means of neutronic channels. Light water moderated reactors involved pool reactors and slightly pressurized closed reactors, they are polyvalent but their main purposes are material testing, technological irradiations, radionuclide production and neutron radiography. At the moment 8 research reactors are being built in Canada, Germany, Iran, Japan, Kazakhstan, Morocco, Russia and Slovakia and 8 others are planned in 7 countries (France, Indonesia, Nigeria, Russia, Slovakia, Thailand and Tunisia. Different research reactors are described: Phebus, Masurca, Phenix and Petten HFR. The general principles of nuclear safety applied to test reactors are presented. (A.C.)

  10. Multipurpose research reactors

    International Nuclear Information System (INIS)

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  11. Research reactors in Argentina

    International Nuclear Information System (INIS)

    Argentine Nuclear Development started in early fifties. In 1957, it was decided to built the first a research reactor. RA-1 reactor (120 kw, today licensed to work at 40 kW) started operation in January 1958. Originally RA-1 was an Argonaut (American design) reactor. In early sixties, the RA-1 core was changed. Fuel rods (20% enrichment) was introduced instead the old Argonaut core design. For that reason, a critical facility named RA-0 was built. After that, the RA-3 project started, to build a multipurpose 5 MW nuclear reactor MTR pool type, to produce radioisotopes and research. For that reason and to define the characteristics of the RA-3 core, another critical facility was built, RA-2. Initially RA-3 was a 90 % enriched fuel reactor, and started operation in 1967. When Atucha I NPP project started, a German design Power Reactor, a small homogeneous reactor was donated by the German Government to Argentina (1969). This was RA-4 reactor (20% enrichment, 1W). In 1982, RA-6 pool reactor achieved criticality. This is a 500 kW reactor with 90% enriched MTR fuel elements. In 1990, RA-3 started to operate fueled by 20% enriched fuel. In 1997, the RA-8 (multipurpose critical facility located at Pilcaniyeu) started to operate. RA-3 reactor is the most important CNEA reactor for Argentine Research Reactors development. It is the first in a succession of Argentine MTR reactors built by CNEA (and INVAP SE ) in Argentina and other countries: RA-6 (500 kW, Bariloche-Argentina), RP-10 (10MW, Peru), NUR (500 kW, Algeria), MPR (22 MW, Egypt). The experience of Argentinian industry permits to compete with foreign developed countries as supplier of research reactors. Today, CNEA has six research reactors whose activities have a range from education and promotion of nuclear activity, to radioisotope production. For more than forty years, Argentine Research Reactors are working. The experience of Argentine is important, and argentine firms are able to compete in the design and

  12. Ageing of research reactors

    International Nuclear Information System (INIS)

    Historically, many of the research institutions were centred on a research reactor facility as main technological asset and major source of neutrons for research. Important achievements were made in time in these research institutions for development of nuclear materials technology and nuclear safety for nuclear energy. At present, ageing of nuclear research facilities among these research reactors and ageing of staff are considerable factors of reduction of competence in research centres. The safe way of mitigation of this trend deals with ageing management by so called, for power reactors, Plant Life Management and new investments in staff as investments in research, or in future resources of competence. A programmatic approach of ageing of research reactors in correlation with their actual and future utilisation, will be used as a basis for safety evaluation and future spending. (author)

  13. Reactor Materials Research

    International Nuclear Information System (INIS)

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  14. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  15. Amphiphilic Soft Janus Particles as Interfacial Stabilizers

    Science.gov (United States)

    Wang, Wenda; Niu, Sunny; Sosa, Chris; Prud'Homme, Robert; Priestley, Rodney; Priestley Polymer group Team; Prud'homme Research Group Team

    Janus particles, which incorporate two or more ``faces'' with different chemical functionality, have attracted great attention in scientific research. Amphiphilic Janus particles have two faces with distinctly different hydrophobicity. This can be thought of as colloidal surfactants. Theoretical studies on the stabilization of emulsions using Janus particles have confirmed higher efficiency. Herein we synthesize the narrow distributed amphiphilic polymeric Janus particles via Precipitation-Induced Self-Assembly (PISA). The efficiency of the amphiphilic Janus particles are tested on different oil/water systems. Biocompatible polymers can also be used on this strategy and may potentially have wide application for food emulsion, cosmetics and personal products.

  16. INVAP's Research Reactor Designs

    International Nuclear Information System (INIS)

    INVAP, an Argentine company founded more than three decades ago, is today recognized as one of the leaders within the research reactor industry. INVAP has participated in several projects covering a wide range of facilities, designed in accordance with the requirements of our different clients. For complying with these requirements, INVAP developed special skills and capabilities to deal with different fuel assemblies, different core cooling systems, and different reactor layouts. This paper summarizes the general features and utilization of several INVAP research reactor designs, from subcritical and critical assemblies to high-power reactors IAEA safety

  17. The replacement research reactor

    International Nuclear Information System (INIS)

    As a consequences of the government decision in September 1997. ANSTO established a replacement research reactor project to manage the procurement of the replacement reactor through the necessary approval, tendering and contract management stages This paper provides an update of the status of the project including the completion of the Environmental Impact Statement. Prequalification and Public Works Committee processes. The aims of the project, management organisation, reactor type and expected capabilities are also described

  18. Safety of research reactors

    International Nuclear Information System (INIS)

    The number of research reactors that have been constructed worldwide for civilian applications is about 651. Of the reactors constructed, 284 are currently in operation, 258 are shut down and 109 have been decommissioned. More than half of all operating research reactors worldwide are over thirty years old. During this long period of time national priorities have changed. Facility ageing, if not properly managed, has a natural degrading effect. Many research reactors face concerns with the obsolescence of equipment, lack of experimental programmes, lack of funding for operation and maintenance and loss of expertise through ageing and retirement of the staff. Other reactors of the same vintage maintain effective ageing management programmes, conduct active research programmes, develop and retain high calibre personnel and make important contributions to society. Many countries that operate research reactors neither operate nor plan to operate power reactors. In most of these countries there is a tendency not to create a formal regulatory body. A safety committee, not always independent of the operating organization, may be responsible for regulatory oversight. Even in countries with nuclear power plants, a regulatory regime differing from the one used for the power plants may exist. Concern is therefore focused on one tail of a continuous spectrum of operational performance. The IAEA has been sending missions to review the safety of research reactors in Member States since 1972. Some of the reviews have been conducted pursuant to the IAEA' functions and responsibilities regarding research reactors that are operated within the framework of Project and Supply Agreements between Member States and the IAEA. Other reviews have been conducted upon request. All these reviews are conducted following procedures for Integrated Safety Assessment of Research Reactors (INSARR) missions. The prime objective of these missions has been to conduct a comprehensive operational safety

  19. Research reactor support

    International Nuclear Information System (INIS)

    Research reactors (RRs) have been used in a wide range of applications including nuclear power development, basic physics research, education and training, medical isotope production, geology, industry and other fields. However, many research reactors are fuelled with High Enriched Uranium (HEU), are underutilized and aging, and have significant quantities of spent fuel. HEU inventories (fresh and spent) pose security risks Unavailability of a high-density-reprocessable fuel hinders conversion and limits back-end options and represents a survival dilemma for many RRs. Improvement of interim spent fuel storage is required at some RRs. Many RRs are under-utilized and/or inadequately funded and need to find users for their services, or permanently shut down and eventually decommission. Reluctance to decommission affect both cost and safety (loss of experienced staff ) and many shut down but not decommissioned RR with fresh and/or spent fuel at the sites invoke serious concern. The IAEA's research reactor support helps to ensure that research reactors can be operated efficiently with fuels and targets of lower proliferation and security concern and that operators have appropriate technology and options to manage RR fuel cycle issues, especially on long term interim storage of spent research reactor fuel. Availability of a high-density-reprocessable fuel would expand and improve back end options. The International Atomic Energy Agency provides assistance to Member States to convert research reactors from High Enriched Uranium fuel and targets (for medical isotope production) to qualified Low Enriched Uranium fuel and targets while maintaining reactor performance levels. The assistance includes provision of handbooks and training in the performance of core conversion studies, advice for the procurement of LEU fuel, and expert services for LEU fuel acceptance. The IAEA further provides technical and administrative support for countries considering repatriation of its

  20. Evaluation of research reactors

    International Nuclear Information System (INIS)

    The present status of research reactors with highly enriched (93%) uranium fuel at JAERI, JRR-2 and JMTR is described. JRR-2 is a heterogeneous type of reactor, using heavy water as moderator and coolant. It uses both MTR type and cylindrical type of fuel elements. The maximum thermal power and the thermal neutron flux are 10 MW and 2x1014 n/cm2 see respectively. The reactor has been used for various experiments such as solid state physics, material irradiation, reactor fuel irradiation and radioisotope production. The JMTR is a multi-purpose tank type material testing reactor, and light water moderator and coolant, operated at 50 MW. The evaluation of lower enriched fuel and its consequences for both reactors is considered more especially

  1. Thai research reactor

    International Nuclear Information System (INIS)

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  2. Research reactor DHRUVA

    International Nuclear Information System (INIS)

    DHRUVA, a 100 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay, attained first criticality during August, 1985. The reactor is fuelled with natural uranium and is cooled, moderated and reflected by heavy water. Maximum thermal neutron flux obtained in the reactor is 1.8 X 1014 n/cm2/sec. Some of the salient design features of the reactor are discussed in this paper. Some important features of the reactor coolant system, regulation and protection systems and experimental facilities are presented. A short account of the engineered safety features is provided. Some of the problems that were faced during commissioning and the initial phase of power operation are also dealt upon

  3. TRIGA research reactors

    International Nuclear Information System (INIS)

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  4. Dossier: research reactors

    International Nuclear Information System (INIS)

    Research reactors are used at the CEA (the French atomic energy commission) since many years. Their number has been reduced but they remain unique tools that CEA valorize continuously. The results of the programs involving such reactors are of prime importance for the operation of Electricite de France (EdF) park of existing power plants but also for the design of future nuclear power plants and future research reactors. This dossier presents three examples of research reactors in use at the CEA: Osiris and Orphee (CEA-Saclay), devoted to nuclear energy and fundamental research, respectively, and the critical mockups Eole, Minerve and Masurca (CEA-Cadarache) devoted to nuclear data libraries and neutronic calculation. (J.S.)

  5. Janus Micelles

    OpenAIRE

    Erhardt, R.; Böker, A.; Zettl, H; H. KAYA; PYCKHOUT-HINTZEN, W.; Krausch, G.; Abetz, V.; A. Müller

    2001-01-01

    A novel strategy to synthesize amphiphilic surface-compartmentalized nanoparticles based on linear ABC triblock copolymers is presented. These so-called Janus micelles consist of a cross-linked core and a corona with a "northern" and a "southern" hemisphere. Selectively cross-linking spherical domains of the polybutadiene middle block in a well-ordered bulk morphology of a polystyrene-block-polybutadiene-block-poly( methyl methacrylate) triblock copolymer (SBM) leads to the conservation of th...

  6. Research Reactor Benchmarks

    International Nuclear Information System (INIS)

    A criticality benchmark experiment performed at the Jozef Stefan Institute TRIGA Mark II research reactor is described. This experiment and its evaluation are given as examples of benchmark experiments at research reactors. For this reason the differences and possible problems compared to other benchmark experiments are particularly emphasized. General guidelines for performing criticality benchmarks in research reactors are given. The criticality benchmark experiment was performed in a normal operating reactor core using commercially available fresh 20% enriched fuel elements containing 12 wt% uranium in uranium-zirconium hydride fuel material. Experimental conditions to minimize experimental errors and to enhance computer modeling accuracy are described. Uncertainties in multiplication factor due to fuel composition and geometry data are analyzed by sensitivity analysis. The simplifications in the benchmark model compared to the actual geometry are evaluated. Sample benchmark calculations with the MCNP and KENO Monte Carlo codes are given

  7. First Algerian research reactor

    International Nuclear Information System (INIS)

    In 1985, both the Algerian Commissariat of New Energies and the Argentine National Atomic Energy Commission plus the firm INVAP S.E., started a series of mutual visits aimed at defining the mechanisms for cooperation in the nuclear field. Within this framework, a commercial contract was undersigned covering the supply of a low-power reactor (RUN), designed for basic and applied research in the fields of reactor physics and nuclear engineering. The reactor may also be used for performing experiences with neutron beams, for the irradiation of several materials and for the training of technicians, scientists and operators

  8. The replacement research reactor

    International Nuclear Information System (INIS)

    The contract for the design, construction and commissioning of the Replacement Research Reactor was signed in July 2000. This was followed by the completion of the detailed design and an application for a construction licence was made in May 2001. This paper will describe the main elements of the design and their relation to the proposed applications of the reactor. The future stages in the project leading to full operation are also described

  9. JANUS characterization report

    International Nuclear Information System (INIS)

    The JANUS Reactor was operated from 1965 to 1992. All of the fuel was removed and shipped offsite in 1993. To provide information for use in finalizing the planning for the decommissioning of the reactor, the Health Physics Section of Argonne National Laboratory performed a characterization of the facility in January and February 1996. The characterization included measurements for radioactivity, hazardous materials, lead in wall paint, and asbestos. Measurements and smear samples for surface contamination were collected from every wall, ceiling and floor of the facility. Samples to determine activity concentrations were collected from vertical and horizontal corings into the reactor shield and foundation, and from coring into walls of the high dose and low dose rooms. Soil samples were collected outdoors from two drill holes, one south and one north of the JANUS exhaust stack. The predominant radionuclides detected were 60Co, 152Eu, and 154Eu. The highest exposure rate was 175 mR/h at the center of the reactor core. No hazardous materials were found in pits or sumps. There are 20 identified areas with asbestos and 7 objects with lead based paint

  10. Innovative hybrid biological reactors using membranes

    International Nuclear Information System (INIS)

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  11. Reactor Materials Research

    International Nuclear Information System (INIS)

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  12. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  13. Janus nanoparticles: preparation, characterization, and applications.

    Science.gov (United States)

    Song, Yang; Chen, Shaowei

    2014-02-01

    In chemical functionalization of colloidal particles, the functional moieties are generally distributed rather homogeneously on the particle surface. Recently, a variety of synthetic protocols have been developed in which particle functionalization may be carried out in a spatially controlled fashion, leading to the production of structurally asymmetrical particles. Janus particles represent the first example in which the two hemispheres exhibit distinctly different chemical and physical properties, which is analogous to the dual-faced Roman god, Janus. Whereas a variety of methods have been reported for the preparation of (sub)micron-sized polymeric Janus particles, it has remained challenging for the synthesis and (unambiguous) structural characterization of much smaller nanometer-sized Janus particles. Herein, several leading methods for the preparation of nanometer-sized Janus particles are discussed and the important properties and applications of these Janus nanoparticles in electrochemistry, sensing, and catalysis are highlighted. Some perspectives on research into functional patchy nanoparticles are also given. PMID:24376180

  14. Gaseous fuel reactor research

    Science.gov (United States)

    Thom, K.; Schneider, R. T.

    1977-01-01

    The paper reviews studies dealing with the concept of a gaseous fuel reactor and describes the structure and plans of the current NASA research program of experiments on uranium hexafluoride systems and uranium plasma systems. Results of research into the basic properties of uranium plasmas and fissioning gases are reported. The nuclear pumped laser is described, and the main results of experiments with these devices are summarized.

  15. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    training. With these considerations in mind, and with the object of providing a proper perspective to scientists and engineers from developing Member States on the potentials for optimum utilization of research reactors as neutron sources in physics, chemistry, biology, and industrial applications, and to familiarize them with up-to-date developments in research reactor technology, the IAEA, through its technical assistance programme, included this training course in its activities for 1979. Since the utilization and operation of research reactors covers many diverse subjects, the programme included a wide variety of topics of interest. Professor S.H. Levine from Pennsylvania State University (USA) delivered a series of lectures on fundamental reactor physics which served as an excellent starting point for the rest of the lectures. Fundamental neutron physics, research reactor techniques and development, modern nuclear electronics and instrumentation, principles of radiation protection at research reactors and the use of microcomputers and microprocessors in reactor operation, were among the basic subjects of the theoretical lectures. Regarding applications, quite a few lectures were devoted to neutron activation analysis, semiconductor gamma ray spectrometry and isotope production in low- and medium-flux reactors. The morning lectures were complemented by some 18 laboratory exercises which dealt with many relevant aspects of research reactor utilization. Some of the topics covered in these experiments were: shielding measurements in mixed neutron and gamma fields, thermoluminescent dosimetry, determination of neutron dose intensity, reactor simulator measurements, control rod calibration, critical and sub-critical experiments, thermal neutron spectra and flux measurements, neutron radiography, semiconductor spectrometry and instrumental neutron activation analysis in several matrices. The laboratory manual prepared by the staff of the host institution and distributed

  16. PROTEUS research reactor

    International Nuclear Information System (INIS)

    The PROTEUS zero power reactor at the Paul Scherrer Institute (PSI) in Switzerland achieved first criticality in 1968 and since then has been operated as an experimental tool for reactor physics research on test lattices representative of a wide range of reactor concepts. Reactor design codes and their associated data libraries are validated on the basis of the experimental results obtained. PROTEUS is normally configured as a driven system, in which a subcritical test zone is made critical by the surrounding driver zones. The advantages of driven systems can be summarized as follows: - Smaller amount of test fuel is required; - Large range of test zone conditions (including k∞ < 1 states) can be investigated by changes in the driver loading alone, thus avoiding undesirable perturbations to the test zone which would influence the measurement conditions and thus affect the interpretability of the results; - Necessary reactor control and instrumentation equipment (usually perturbing from the experimental viewpoint) can be located in the outer driver regions, thereby avoiding disturbance of the test lattice

  17. Fast breeder reactor research

    International Nuclear Information System (INIS)

    reactors of the future, the body of research aimed at developing liquid metal cooled fast reactors, national plans for work in 1976 on developing fast reactors - these were some of the topics discussed in connection with the national programmes. The development of power reactors involves a wide range of problems in the fields of nuclear and reactor physics, the thermophysics, chemistry, physics and technology of the cooling system, structural materials and nuclear fuel, the fabrication of reliable fuel elements and operating equipment, reactor monitoring and control, spent fuel reprocessing, the economics of constructing fast power reactors, nuclear safety, etc. The IWGFR, as at previous meetings, therefore paid great attention to the matter of holding international specialists' meetings. The working group recommended that the IAEA should organize the following IWGFR meetings in 1976: (1) In-Service Inspection and Monitoring (Bensberg, FRG, March 1976). (2) Cavitation in Sodium and Studies of Analogy with Water as Compared to Sodium (Cadarache, France, April 1976). (3) High Temperature Structural Design Technology (United States, May 1976) (4) Aerosol Formation, Vapour Deposits and Sodium Vapour Trapping (France, September-December 1976). The Group welcomed the IAEA's proposal to hold specialists' meetings on 'Fast Reactor Instrumentation' and 'Fuel Reprocessing and Recycling Techniques' within the framework of the Agency's programme of working groups in 1976. After discussing questions of co-ordinating and organizing international conferences on fast reactors, the IWGFR agreed to send representatives to the joint meeting of the American Nuclear Society and the American Institute of Metallurgical Engineers on 'Liquid Metal Technology', to be held at Champion, Pennsylvania, U.S.A. from 3-6 May 1976, and recommended that the IAEA should organize an international symposium on the 'Design, Construction and Operating Experience of Demonstration Fast Power Reactors' at Bologna

  18. Research Reactors of Ukraine

    International Nuclear Information System (INIS)

    Ukraine today operates two nuclear research reactors: WWR-M (total capacity of 10 MW), which is located on the site of the Kyiv Nuclear Research Institute of the National Academy of Sciences of Ukraine, and IR-100 (total capacity of 200 kW), which is located on the site of Sevastopol National University of Nuclear Energy and Industry. Both of them have been in operation since the 1960s. The operation project period of WWR-M for which it is licensed is limited to 31 December 2013. In order to improve safety at WWR-M several modernization projects, development of the reactor vessel and the first loop equipment ageing management programme were conducted. According to the license for operation of IR-100 the operation period of the reactor depends upon results from assessments of critical safety elements such as the tank, control and protection system, cable lines and electrical switchgear. Currently the operation period of this equipment has been justified until 2013. (author)

  19. The Australian Replacement Research Reactor

    Science.gov (United States)

    Kennedy, Shane; Robinson, Robert

    2004-03-01

    The 20-MW Australian Replacement Research Reactor represents possibly the greatest single research infrastructure investment in Australia's history. Construction of the facility has commenced, following award of the construction contract in July 2000, and the construction licence in April 2002. The project includes a large state-of-the-art liquid deuterium cold-neutron source and supermirror guides feeding a large modern guide hall, in which most of the instruments are placed. Alongside the guide hall, there is good provision of laboratory, office and space for support activities. While the facility has "space" for up to 18 instruments, the project has funding for an initial set of 8 instruments, which will be ready when the reactor is fully operational in July 2006. Instrument performance will be competitive with the best research-reactor facilities anywhere, and our goal is to be in the top 3 such facilities worldwide. Staff to lead the design effort and man these instruments have been hired on the international market from leading overseas facilities, and from within Australia, and 7 out of 8 instruments have been specified and costed. At present the instrumentation project carries 10contingency. An extensive dialogue has taken place with the domestic user community and our international peers, via various means including a series of workshops over the last 2 years covering all 8 instruments, emerging areas of application like biology and the earth sciences, and computing infrastructure for the instruments.

  20. Decommissioning of research reactors

    International Nuclear Information System (INIS)

    Research reactors of WWR-S type were built in countries under Soviet influence in '60, last century and consequently reached their service life. Decommissioning implies removal of all radioactive components, processing, conditioning and final disposal in full safety of all sources on site of radiological pollution. The WWR-S reactor at Bucuresti-Magurele was put into function in 1957 and operated until 1997 when it was stopped and put into conservation in view of decommissioning. Presented are three decommissioning variants: 1. Reactor shut-down for a long period (30-50 years) what would entail a substantial decrease of contamination with lower costs in dismantling, mechanical, chemical and physical processing followed by final disposal of the radioactive wastes. The drawback of this solution is the life prolongation of a non-productive nuclear unit requiring funds for personnel, control, maintenance, etc; 2. Decommissioning in a single stage what implies large funds for a immediate investment; 3. Extending the operation on a series of stages rather phased in time to allow a more convenient flow of funds and also to gather technical solutions, better than the present ones. This latter option seems to be optimal for the case of the WWR-S Research at Bucharest-Magurele Reactor. Equipment and technologies should be developed in order to ensure the technical background of the first operations of decommissioning: equipment for scarification, dismantling, dismemberment in a highly radioactive environment; cutting-to-pieces and disassembling technologies; decontamination modern technologies. Concomitantly, nuclear safety and quality assurance regulations and programmes, specific to decommissioning projects should be implemented, as well as a modern, coherent and reliable system of data acquisition, recording and storing. Also the impact of decommissioning must be thoroughly evaluated. The national team of specialists will be assisted by IAEA experts to ensure the

  1. Applications of Research Reactors

    International Nuclear Information System (INIS)

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The purpose of the earlier publication, The Application of Research Reactors, IAEA-TECDOC-1234, was to present descriptions of the typical forms of research reactor use. The necessary criteria to enable an application to be performed were outlined for each one, and, in many cases, the minimum as well as the desirable requirements were given. This revision of the publication over a decade later maintains the original purpose and now specifically takes into account the changes in service requirements demanded by the relevant stakeholders. In particular, the significant improvements in

  2. Modern research reactors in the world and RA research reactor

    International Nuclear Information System (INIS)

    This paper covers the following topics: fundamentals of research reactors, thermal neutron flux density, classification of research reactors in the world, properties of research reactors of higher power in the world according to IAEA data for 1995, their application, and trend of development, experimental feasibility and status of RA reactor. Trend of research reactors development in the world (after 1980) is directed towards increasing the neutron production quality factor, i.e. ratio between thermal neutron flux density and reactor power, which is achieved by designing compact reactor cores. With the aim of renewal of RA reactor (without analysis of reactor components and staff aging, possibility of restart and commercialization), according to the analysis in this paper, it can be concluded: there is very few reactors under construction in the world, all the important countries in Europe have research reactors; RA reactor is not very interesting for development of reactor physics; nowadays RA reactor is in the group of reactors which are 30-40 years old; its inventories of fuel and heavy water are enough for about 20 years of operation; it has achieved high quality factor of neutron production with low and highly enriched fuel; core transfer from low highly enriched to low enriched fuel should be carefully studies from operation, experimental and economical point of view; it is necessary to use the advantages of RA reactor (minimum investment): volume of the core and reflector which enables availability of neutron flux for the users (numerous experimental loops), fuel in shape of slugs enabling efficient fuel management and flexible neutron flux distribution in the core in the reflector, reactor operation should be directed towards commercial applications. Bibliography of more than 140 relevant papers used is included in this paper

  3. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  4. MINT research reactor safety program

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad Idris bin Taib [Division of Special Project, Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia)

    2000-11-01

    Malaysian Institute for Nuclear Technology Research (MINT) Research Reactor Safety Program has been done along with Reactor Power Upgrading Project, Reactor Safety Upgrading Project and Development of Expert System for On-Line Nuclear Process Control Project. From 1993 up to date, Neutronic and Thermal-hydraulics analysis, Probabilistic Safety Assessment as well as installation of New 2 MW Secondary Cooling System were done. Installations of New Reactor Building Ventilation System, Reactor Monitoring System, Updating of Safety Analysis Report and Upgrading Primary Cooling System are in progress. For future activities, Reactor Modeling will be included to add present activities. (author)

  5. Dismantling of Biological Agricultural Reactor Netherlands (BARN)

    International Nuclear Information System (INIS)

    The Biological Agricultural Reactor (BARN) was built in 1962 by government order through the Institute for Atomic Science in Agriculture (ITAL) in the Netherlands. The idea to build this nuclear reactor especially for biological research purposes was grown out of the first international conference about peaceful application of atomic energy hold in 1955. The construction composed of a basin reactor with light water as moderator and cooling medium. Up to 90% enriched Uranium was used as fuel. The maximal power was 100 kW. The reactor was used for research in the field of plant reproduction and other biological research. Mainly because of disappointing scientific results in 1978, 15 years after the start, the decision was made to terminate the reactor process following by dismantling. Alternative techniques proved to give comparative results at lower costs. In the decision making process political considerations played an important role. Prior to dismantling the reactor the 26 fuel elements were removed. Beside the uranium-235 each element contains about 1.3 TBq of fission and activation products. In 1982 the elements were shipped tot the Savannah River Plant in United States. An extensive analyze was carried out to map out the activation products on basis of neutron flux data, radiation history and composition of the materials. Results of this study was used to predict the dose rate of the different activated items and consequently to reduce risks of handling the items. For several reasons (e.g. control of building, knowledge of the plant) in 1996 a project has been initiated to remove all the active materials form the building and to recover the place to the original state, i.e. forest. High radioactive items with large dimensions were transferred to the so-called 'hot cells' of the ECN and were cut into small pieces. Finally all the activated material was brought to the COVRA for end storage. Parts of the basin construction were highly activated and were removed

  6. Microdosimetric studies using a Filtered Fast Neutron Irradiation System of research reactor to application in radiation biology

    International Nuclear Information System (INIS)

    In this work, microdosimetric measurements were performed using a Wall-less Tissue Equivalent Proportional Counter - TEPC with spherical cavity with an inner diameter of 1.27 cm. The TEPC was tilled with pure propane gas, C3H8 at 5.6 kPa (42 Torr) pressure, which is equivalent to 1.3 μm in diameter of unit density tissue. The microdosimetric measurement device was irradiated with fast neutron radiation from Texas A and M University Nuclear Science Center research reactor, in College Station, Texas. The fast neutron beams were emitted with three different power values, 0.5, 1.0 and 2.0 kW. during 1h for both high gain and low gain, totalizing two hours for each power with 0.0083 Gy/min of dose rate. The neutron was filtered using the heavily filtered fast neutron irradiation system (FNIS). from Nuclear Science Center, to obtain a decrease of neutron radiation contamination by gamma ray and so, to gain the neutron microdosimetric spectra as. frequency distribution of lineal energy, dose distribution of lineal energy with good precision, and another quantities as frequency-mean of lineal energy, dose- mean of lineal energy, absorbed dose, equivalent dose and average quality factor of fast neutron. The obtained results were satisfactory, with the neutron microdosimetric spectra showing a gamma ray contamination under 5 %, especially to dose distribution of lineal energy. The results obtained in this work were in agreement when compared with another results from scientific literature, which used another procedure to reduce the neutron contamination by gamma ray. (author)

  7. Radiochemistry at the University of Missouri-Columbia. A joint venture with chemistry, nuclear engineering, molecular biology, biochemistry, and the Missouri University Research Reactor (MURR)

    International Nuclear Information System (INIS)

    Missouri University, a recipient of a U.S. Department of Energy Radiochemistry Education Award Program (REAP) grant in 1999, has significantly expanded its education and research mission in radiochemistry. While MU had a viable radiochemistry program through existing faculty expertise and the utilization of the Missouri University Research Reactor, the REAP award allowed MU to leverage its resources in significantly expanding capabilities in radiochemistry. Specifically, the grant enabled the: (1) hiring of a new faculty member in actinide radiochemistry (Dr. Paul Duval); (2) support of six graduate students in radiochemistry; (3) purchase of new radiochemistry laboratory equipment; (4) more extensive collaboration with DOE scientists through interactions with faculty and graduate students, and (5) revised radiochemical curriculum (joint courses across disciplines and new courses in actinide chemistry). The most significant impact of this award has been in encouraging interdisciplinary education and research. The proposal was initiated by a joint effort between Nuclear Engineering and Chemistry, but also included faculty in biochemistry, radiology, and molecular biology. Specific outcomes of the REAP grant thus far are: (1) increased educational and research capabilities in actinide chemistry (faculty hire and equipment acquisition); (2) increased integration of biochemistry and radiochemistry (e.g., radiochemical analysis of uranium speciation in biological systems); (3) stronger interdisciplinary integration of molecular biology and radiochemical sciences (alpha-emitters for treating cancer); (4) new and more extensive interactions with national laboratory facilities (e.g., student internships at LANL and LLBL, faculty and lab scientist exchange visits, analytical measurements and collaboration with the Advanced Photon Source), and (7) new research funding opportunities based on REAP partnership. (author)

  8. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  9. Physical security at research reactors

    International Nuclear Information System (INIS)

    Of the 84 non-power research facilities licensed under 10 CFR Part 50, 73 are active (two test reactors, 68 research reactors and three critical facilities) and are required by 10 CFR Part 73.40 to provide physical protection against theft of SNM and against industrial sabotage. Each licensee has developed a security plan required by 10 CFR Part 50.34(c) to demonstrate the means of compliance with the applicable requirements of 10 CFR Part 73. In 1974, the Commission provided interim guidance for the organization and content of security plans for (a) test reactors, (b) medium power research and training reactors, and (c) low power research and training reactors. Eleven TRIGA reactors, with power levels greater than 250 kW and all other research and training reactors with power levels greater than 100 kW and less than or equal to 5,000 kW are designated as medium power research and training reactors. Thirteen TRIGA reactors with authorized power levels less than 250 kW are considered to be low power research and training reactors. Additional guidance for complying with the requirements of 73.50 and 73.60, if applicable, is provided in the Commission's Regulatory Guides. The Commission's Office of Inspection and Enforcement inspects each licensed facility to assure that an approved security plan is properly implemented with appropriate procedures and physical protection systems

  10. Management of research reactor ageing

    International Nuclear Information System (INIS)

    As of December 1993, about one quarter of the operating research reactors were over 30 years old. The long life of research reactors has raised some concern amongst research reactor operators, regulators and, to some extent, the general public. The International Atomic Energy Agency commenced activities on the topic of research reactor ageing by appointing an internal working group in 1988 and convening a Consultants Meeting in 1989. The subject was also discussed at an international symposium and a regional seminar held in 1989 and 1992 respectively. A draft document incorporating information and experience exchanged at the above meetings was reviewed by a Technical Committee Meeting held in Vienna in 1992. The present TECDOC is the outcome of this meeting and contains recommendations, guidelines and information on the management of research reactor ageing, which should be used in conjunction with related publications of the IAEA Research Reactor Safety Programme, which are referenced throughout the text. This TECDOC will be of interest to operators and regulators involved with the safe operation of any type of research reactor to (a) understand the behaviour and influence of ageing mechanisms on the reactor structures, systems and components; (b) detect and assess the effect of ageing; (c) establish preventive and corrective measures to mitigate these effects; and (d) make decisions aimed at the safe and continued operation of a research reactor. 32 refs, tabs

  11. Research reactors and alternative devices for research

    International Nuclear Information System (INIS)

    This report includes papers on research reactors and alternatives to the research reactors - radioisotopic neutron sources, cyclotrons, D-T neutron generators and small accelerators, used for radioisotope production, neutron activation analysis, material science, applied and basic research using neutron beams. A separate abstract was prepared for each of the 7 papers

  12. Investigation of the cyclic techniques in neutron activation analysis on Da Lat research reactor for determination of short-lived radionuclides in biological materials

    International Nuclear Information System (INIS)

    The ability of the sensitivity and precision of Cyclic, Pseudocyclic and Cumulative (Replicate) techniques in neutron activation analysis (NAA) on Dalat research reactor were investigated for the determination of short-lived radionuclides. This research focused on determination of 77mSe (T1/2 = 17.4 seconds) in biological materials as a case in point. The result shows that an improvement of detection limits of approximately 2 times in the 3rd cycle to 4th cycle was obtained by using Cyclic NAA, Pseudocyclic NAA and Cumulative NAA in comparison with conventional NAA. The lower detection limits of approximately 3 times can be obtained by a combination of 3 subsamples in Cumulative NAA and 3 cycles in PCNAA. The precision of the techniques is typically within 2-5% from 2nd to 3rd cycles and afterward. In general, the precision and confidence in representative of the analysis result of Cumulative NAA are better than others. However, the utilization of Cyclic NAA is the most useful as regards analysis time. With reference to analytical sensitivity, Cumulative NAA in combination with CNAA or PCNAA will provide a lowest detection limit, and thereby suiting for determining short-lived radionuclides in biological materials with very low concentration levels. (author)

  13. Fusion reactor research

    International Nuclear Information System (INIS)

    This work covers four separate areas: (1) development of technology for processing liquid lithium from blankets, (2) investigation of hydrogen isotope permeation in candidate structural metals and alloys for near-term fusion reactors, (3) analytical studies encompassing fusion reactor thermal hydraulics, tritium facility design, and fusion reactor safety, and (4) studies involving dosimetry and damage analysis. Recent accomplishments in each of these areas are summarized

  14. Improvement of research reactor sustainability

    International Nuclear Information System (INIS)

    The Research Reactors as is well known have numerous applications in a wide range of science technology, nuclear power development, medicine, to enumerate only the most important. The requirements of clients and stack-holders are fluctuating for the reasons out of control of Research Reactor Operating Organization, which may ensure with priority the safety of facility and nuclear installation. Sustainability of Research Reactor encompasses several aspects which finally are concentrated on safety of Research Reactor and economical aspects concerning operational expenses and income from external resources. Ensuring sustainability is a continuous, permanent activity and also it requests a strategic approach. The TRIGA - 14 MW Research Reactor detains a 30 years experience of safe utilization with good performance indicators. In the last 4 years the reactor benefited of a large investment project for modernization, thus ensuring the previous performances and opening new perspectives for power increase and for new applications. The previous core conversion from LEU to HEU fuel accomplished in 2006 ensures the utilization of reactor based on new qualified European supplier of TRIGA LEU fuel. Due to reduction of number of performed research reactors, the 14 MW TRIGA modernized reactor will play a significant role for the following two decades. (author)

  15. Biological efficiency of the Brookhaven Medical Research Reactor mixed neutron beam estimated from gene mutations in Tradescantia stamen hair cells assay

    International Nuclear Information System (INIS)

    The relative biological effectiveness (RBE) of low energy neutrons for the induction of various abnormalities in Tradescantia stamen hair mutation (Trad-SH) assay was studied using two clones (T-4430 and T-02), heterozygous for flower color. Dose response relationship for gene mutations induced in somatic cells of Trad-SH were investigated after irradiation with a mixed neutron beam of the Brookhaven Medical Research Reactor (BMRR), currently used in a clinical trial of boron neutron capture therapy (BNCT) for glioblastoma. To establish the RBE of the BMRR beam in the induction of various biological end-points in Tradescantia, irradiation with various doses of γ-rays was also performed. After irradiation all plants were cultivated several days at Brookhaven National Laboratory (BNL), then transported to Poland for screening the biological end-points. Due to the post-exposure treatment, all plants showed high levels of lethal events and alteration of the cell cycle. Plants of clone 4430 were more reactive to post-treatment conditions, resulting in decreased blooming efficiency that affected the statistics. Slope coefficients estimated from the dose response curves for gene mutation frequencies allowed the evaluation of ranges for the maximal RBE values of the applied beam vs. γ rays as 6.0 and 5.4 for the cells of T-02 and T-4430, respectively. Estimated fraction of doses from neutrons and corresponding biological effects for the clones T-02 and T-4430 allowed to evaluate the RBE values for neutrons part in the beam as 32.3 and 45.4, respectively. (author)

  16. Decommissioning of the research reactor ASTRA in Seibersdorf, Austria: Determination of exemption limits at the Barite-concrete of the neutron activated biological shield to minimize radioactive waste

    International Nuclear Information System (INIS)

    The 10 MW multipurpose M.T.R. research reactor ASTRA at Arcs was in successful operation for 39 years (1960 to 1999) and after the decision of the government to shut it down it was necessary to decommission and dismantle the reactor. A team consisting of former reactor crew staff members was set up to perform the decommissioning. Working instructions for handling and operating sequences and radiation protection were developed. An extensive documentation describes the project. The planning took into account that all the work and operations for decommissioning could be performed inside the existing buildings (confinement or pump room) with the ventilation and radiological monitoring systems in operation. Hence, virtually no possibility for a release of activity to the environment during the whole decommissioning process would exist. In immediate succession and still under the operating license, all experimental facilities and components of the reactor within the vicinity of the core or in intermediate storage within the building (e.g. old beam-tube-inserts) were removed and treated in a first stage of dismantling from 2001 to 2003. In 2002 an environmental impact statement was prepared, the public hearing was held on December 19, 2002 to be followed by a license to decommission, which was granted on April 08, 2003 and was legalized in May 2003. It was intended to take down the structures of the biological shield by cutting blocks of between 7 and 9 tons (limited by the 10-ton-capacity of the crane) from the inactive zones in multiple section planes using wire-cutting techniques, and to get clearance for the material by referencing the surfaces and by additional internal probing.Actual work on the second state of dismantling could only be started after May 2003. It comprised the dismantling of the primary and secondary cooling facilities and the removal of he upper, inactive part of the biological shield (roughly 1600 tons).A building directly attached to the reactor

  17. Experience in Remote Demolition of the Activated Biological Shielding of the Multi Purpose Research Reactor (MZFR) on the German Karlsruhe Site - 12208

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, Beata; Fleisch, Joachim; Prechtl, Erwin; Suessdorf, Werner; Urban, Manfred [WAK Rueckbau- und Entsorgungs- GmbH, P.O.Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    In 2009, WAK Decommissioning and Waste Management GmbH (WAK) became owner and operator of the waste treatment facilities of Karlsruhe Institute of Technology (KIT) as well as of the prototype reactors, the Compact Sodium-Cooled Fast Reactor (KNK) and Multi-Purpose Reactor (MZFR), both being in an advanced stage of dismantling. Together with the dismantling and decontamination activities of the former WAK reprocessing facility since 1990, the envisaged demolishing of the R and D reactor FR2 and a hot cell facility, all governmentally funded nuclear decommissioning projects on the Karlsruhe site are concentrated under the WAK management. The small space typical of prototype research reactors represented a challenge also during the last phase of activated dismantling, dismantling of the activated biological shield of the MZFR. Successful demolition of the biological shield required detailed planning and extensive testing in the years before. In view of the limited space and the ambient dose rate that was too high for manual work, it was required to find a tool carrier system to take up and control various demolition and dismantling tools in a remote manner. The strategy formulated in the concept of dismantling the biological shield by means of a modified electro-hydraulic demolition excavator in an adaptable working scaffolding turned out to be feasible. The following boundary conditions were essential: - Remote exchange of the dismantling and removal tools in smallest space. - Positioning of various supply facilities on the working platform. - Avoiding of interfering edges. - Optimization of mass flow (removal of the dismantled mass from the working area). - Maintenance in the surroundings of the dismantling area (in the controlled area). - Testing and qualification of the facilities and training of the staff. Both the dismantling technique chosen and the proceeding selected proved to be successful. Using various designs of universal cutters developed on the basis of

  18. Replacement research reactor for Australia

    International Nuclear Information System (INIS)

    In 1992, the Australian Government commissioned a review into the need for a replacement research reactor. That review concluded that in about years, if certain conditions were met, the Government could make a decision in favour of a replacement reactor. A major milestone was achieved when, on 3 September 1997, the Australian Government announced the construction of a replacement research reactor at the site of Australia's existing research reactor HIFAR, subject to the satisfactory outcome of an environmental assessment process. The reactor will be have the dual purpose of providing a first class facility for neutron beam research as well as providing irradiation facilities for both medical isotope production and commercial irradiations. The project is scheduled for completion before the end of 2005. (author)

  19. The research reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    Paper dwells upon the design and the operation of one of the German test reactors, namely, the TRIGA Mainz one (TRIGA: Training Research Isotope Production General Atomic). The TRIGA reactor is a pool test reactor the core of which contains a graphite reflector and is placed into 2 m diameter and 6.25 m height aluminum vessel. There are 75 fuel elements in the reactor core, and any of them contains about 36 g of 235U. The TRIGA reactors under the stable operation enjoy wide application to ensure tests and irradiation, namely: neutron activation analysis, radioisotope production, application of a neutron beam to ensure the physical, the chemical and the medical research efforts. Paper presents the reactor basic experimental program lines

  20. Advances in reactor safety research

    International Nuclear Information System (INIS)

    The Nuclear Safety Project is an important part of the German reactor safety research programme. It works on problems concerning safety and environemental risks of LWR reactors and reprocessing plants and investigates accident consequences. At the 1978 annual meeting, the core behaviour on cooling and reactivity disturbances was discussed, as well as release, retention, and possible radiological effects of radioactive pollutants. Among other subjects, fission product retention in LWR reactors and reprocessing plants were reported on as well as hypothetic core meltdown. (orig.)

  1. Research reactor decommissioning

    International Nuclear Information System (INIS)

    Full text: Of the ∼ 800 research reactors constructed worldwide to date, ∼50% have been shut down and are at various stages of decommissioning. Many reached the end of their design lives or were shut down due to strategic, economic or regulatory considerations. 27% of those in operation are over 40 years old and will need to be decommissioned soon. Decommissioning normally takes the facility permanently out of service and subjects it to progressive hazard reduction, dismantling and decontamination in a safe, secure economically viable way, using best practicable means to meet the best practicable environmental option, such that the risks and doses to workers and the general public are maintained as low as reasonably practicable. Whilst most decommissioning techniques are well established there are still some challenging and important issues that need resolution. Perhaps the most challenging issue is radioactive waste management and storage. It is vitally important that all local and national waste classification, transportation, storage and end point requirements are known, as the adopted strategy will be heavily influenced by these factors. Other equally important but softer issues include the requirement for early decommissioning plans, adequate funding/cost estimates and the involvement of all relevant stakeholders. A comprehensive decommissioning plan should be produced up front that encompasses an early radiological characterisation survey of the facility/site. An appropriate funding mechanism needs to be assured. Whilst regular revisions of the decommissioning cost study should help to determine required funds, it is important to validate these cost estimates by benchmarking other decommissioning projects and accumulated experience. The use of appropriate 'stakeholder dialogue' methods by the facility operator to inform and communicate with all interested parties, such as government and non-government organisations, regulators, trades unions, anti

  2. Research Reactors Coalitions

    International Nuclear Information System (INIS)

    When considering the potential role of an existing RR or possibly the construction of a new RR, it is clear that a nuclear science and technology programme (including nuclear power) could benefit provided the RR is safely and competently managed, well utilised and adequately funded. Based on MSs experience, a domestic RR may not be required to develop a nuclear power programme, provided the decision takes advantage of foreign expertise, including access to foreign RRs facilities and RRs regional/international networks. If a country decides to gain access to a foreign research reactor, it may need considering the potential risk of change in the political relationship with the host country that could compromise the achievement of its national relevant objectives. This risk may be offset by availability of many options within one or more regional/international RRs networks and coalitions. Examples include the use of existing RRs in vendor, non-vendor countries and, in some cases non-nuclear power countries, to develop human resources in support of the introduction of nuclear power elsewhere. International RR networking trends are most evident with high flux, higher capability, and more complex fuel and material testing RRs being shared through international partnerships. However, networks involving low-medium power RRs for education and training purposes are also gaining a more prominent role to support nuclear capacity building in newcomer MSs. Networking through the internet seems also to be a promising way to support, as complementary offer to direct access to RRs facilities, MSs nuclear capacity building objectives (e.g. the IRL project)

  3. Meeting on reactor safety research

    International Nuclear Information System (INIS)

    The meeting 'Reactor Safety Research' organized for the second time by the GRS by order of the BMFT gave a review of research activities on the safety of light water reactors in the Federal Repulbic of Germany, international co-operation in this field and latest results of this research institution. The central fields of interest were subjects of man/machine-interaction, operational reliability accident sequences, and risk. (orig.)

  4. Enrichment reduction for research reactors

    International Nuclear Information System (INIS)

    The worldwide activities on enrichment reduction for research reactors are reviewed and the national and international programs are described. Especially the following points are discussed: Benchmark calculations, reactor safety, fuel element development, irradiation tests, post irradiation examinations, full core demonstrations, activities of the GKSS and economical questions. (orig.)

  5. Ageing management for research reactors

    International Nuclear Information System (INIS)

    During the past several years, ageing of research reactor facilities continues to be an important safety issue. Despite the efforts exerted by operating organizations and regulatory authorities worldwide to address this issue, the need for an improved strategy as well as the need for establishing and implementing a systematic approach to ageing management at research reactors was identified. This paper discusses, on the basis of the IAEA Safety Standards, the effect of ageing on the safety of research reactors and presents a proactive strategy for ageing management. A systematic approach for ageing management is developed and presented together with its key elements, along with practical examples for their application. (author)

  6. IAEA safeguards at research reactors

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency applies safeguards to almost 150 facilities classified as research reactors. From a safeguards point of view, these facilities present a spectrum of features that must be addressed both from the nuclear material and from the operational viewpoints. The nuclear fuel used by these reactors varies from high enriched uranium (NEU), up to 93 U-235, to natural uranium and the thermal power output from over 100 megawatt to less than ten watts. Research reactors are also used for a wide variety of purposes, including materials testing, radiosotope production, training and nuclear physics studies. The effort spent by the Agency in safeguarding these reactors is dependant upon the thermal power of the reactor and on the quantity and type of nuclear material present. On some research reactors, the Agency devotes more inspection effort than on a large power reactor. On others, very little effort is reguired. Safeguards that are applied are done so according to Agency State agreements and consist of a combiination of nuclear material accounting and containment and surveillance. In this paper, the safeguards activities performed by the State and by the Agency will be reviewed for a large (≤50MWt) and for a small (≥ 1 MWt) reactor according to the most common type agreement. (author)

  7. Light water reactor safety research

    International Nuclear Information System (INIS)

    As the technology of light water reactors (LWR) was being commercialized, the German Federal Government funded the reactor safety research program, which was conducted by national research centers, universities, and industry, and which led to the establishment, in early 1972, of the Nuclear Safety Project in Karlsruhe. In the seventies, the PNS project mainly studied the loss-of-coolant accident. Numerous experiments were run and computer codes developed for this purpose. In the eighties, the Karlsruhe Nuclear Research Center contributed to the German Risk Study, investigating especially core meltdown accidents under the impact of the events at Three Mile Island-2 and Chernobyl-4. Safety research in the nineties is concentrated on the requirements of future reactor generations, such as the European Pressurized Water Reactor (EPR) or potential approaches which, at the present time, are discernible only as tentative theoretical designs. (orig.)

  8. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  9. Determination of research reactor safety parameters by reactor calculations

    International Nuclear Information System (INIS)

    Main research reactor safety parameters such as power density peaking factors, shutdown margin and temperature reactivity coefficients are treated. Reactor physics explanation of the parameters is given together with their application in safety evaluation performed as part of research reactor operation. Reactor calculations are presented as a method for their determination assuming use of widely available computer codes. (author)

  10. Research reactor education and training

    International Nuclear Information System (INIS)

    CORYS T.E.S.S. and TECHNICATOME present in this document some of the questions that can be rightfully raised concerning education and training of nuclear facilities' staffs. At first, some answers illustrate the tackled generic topics: importance of training, building of a training program, usable tools for training purposes. Afterwards, this paper deals more specifically with research reactors as an actual training tool. The pedagogical advantages they can bring are illustrated through an example consisting in the description of the AZUR facility training capabilities followed by the detailed experiences CORYS T.E.S.S. and TECHNICATOME have both gathered and keeps on gaining using research reactors for training means. The experience shows that this incomparable training material is not necessarily reserved to huge companies or organisations' numerous personnel. It offers enough flexibility to be adapted to the specific needs of a thinner audience. Thus research reactor staffs can also take advantages of this training method. (author)

  11. Research reactor modernization and refurbishment

    International Nuclear Information System (INIS)

    Many recent, high profile research reactor unplanned shutdowns can be directly linked to different challenges which have evolved over time. The concept of ageing management is certainly nothing new to nuclear facilities, however, these events are highlighting the direct impact unplanned shutdowns at research reactors have on various stakeholders who depend on research reactor goods and services. Provided the demand for these goods and services remains strong, large capital projects are anticipated to continue in order to sustain future operation of many research reactors. It is within this context that the IAEA organized a Technical Workshop to launch a broader Agency activity on research reactor modernization and refurbishment (M and R). The workshop was hosted by the operating organization of the HOR Research Reactor in Delft, the Netherlands, in October 2006. Forty participants from twenty-three countries participated in the meeting: with representation from Africa, Asia Pacific, Eastern Europe, North America, South America and Western Europe. The specific objectives of this workshop were to present facility reports on completed, existing and planned M and R projects, including the project objectives, scope and main characteristics; and to specifically report on: - the project impact (planned or actual) on the primary and key supporting motivation for the M and R project; - the project impact (planned or actual) on the design basis, safety, and/or regulatory-related reports; - the project impact (planned or actual) on facility utilization; - significant lessons learned during or following the completion of M and R work. Contributions from this workshop were reviewed by experts during a consultancy meeting held in Vienna in December 2007. The experts selected final contributions for inclusion in this report. Requests were also distributed to some authors for additional detail as well as new authors for known projects not submitted during the initial 2006 workshop

  12. Application of the k{sub 0}-INAA method for analysis of biological samples at the pneumatic station of the IEA-R1 nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puerta, Daniel C.; Figueiredo, Ana Maria G.; Semmler, Renato, E-mail: dcpuerta@hotmail.com, E-mail: anamaria@ipen.br, E-mail: rsemmler@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Jacimovic, Radojko, E-mail: radojko.jacimovic@ijs.si [Jozef Stefan Institute (JSI), Ljubljana, LJU (Slovenia). Department of Environmental Sciences

    2013-07-01

    As part of the process of implementation of the k{sub 0}-INAA standardization method at the Neutron Activation Laboratory (LAN-IPEN), Sao Paulo, Brazil, this study presents the results obtained for the analysis of short and medium-lived nuclides in biological samples by k{sub 0}-INAA using the program k{sub 0}-IAEA, provided by the International Atomic Energy Agency (IAEA). The elements Al, Ba, Br, Na, K, Mn, Mg, Sr and V were determined with respect to gold ({sup 197}Au) using the pneumatic station facility of the IEA-R1 4.5 MW swimming pool nuclear research reactor, Sao Paulo. Characterization of the pneumatic station was carried out by using the 'bare triple-monitor' method with {sup 197}Au-{sup 96}Zr-{sup 94}Zr. The Certified Reference Material IRMM-530R Al-0.1%Au alloy and high purity zirconium comparators were used. The efficiency curves of the gamma-ray spectrometer used were determined by measuring calibrated radioactive sources at the usually utilized counting geometries. The method was validated by analyzing the reference materials NIST SRM 1547 Peach Leaves, INCT-MPH-2 Mixed Polish Herbs and NIST SRM 1573a Tomato Leaves. The concentration results obtained agreed with certified, reference and recommended values, showing relative errors (bias, %) less than 30% for most elements. The Coefficients of Variation were below 20%, showing a good reproducibility of the results. The E{sub n}-number showed that all results, except Na in NIST SRM 1547 and NIST SRM 1573a and Al in INCT-MPH-2, were within 95% confidence interval. (author)

  13. Upgrading the NRU research reactor

    International Nuclear Information System (INIS)

    After a nearly two-year long detailed review, AECL Research decided that its NRU research reactor will complete its mission around the turn of the century. The company's original intentions for major refurbishment have been revised and upgrading work will now mainly comprise add-ons to existing systems - so that research projects and isotope production schedules can be met - and procedure modifications to ensure continued safe operation. (Author)

  14. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  15. Synthesis of Nano-Bowls with a Janus Template

    Science.gov (United States)

    Emerson, Chris D.; Zhang, Chen; Anzenberg, Paula; Akkiraju, Siddhartha; Lal, Ratnesh

    2015-01-01

    Colloidal particles with two or more different surface properties (Janus particles) are of interest in catalysis, biological imaging, and drug delivery. Eccentric nanoparticles are a type of Janus particle consisting of a shell that envelops the majority of a core particle, leaving a portion of the core surface exposed. Previous work to synthesize eccentric nanoparticles from silica and polystyrene have only used microemulsion techniques. In contrast we report the solgel synthesis of eccentric Janus nanoparticles composed of a silica shell around a carboxylate-modified polystyrene core (Janus templates). In addition, we have synthesized nano-bowl-like structures after the removal of the polystyrene core by organic solvent. These Janus templates and nanobowls can be used as a versatile platform for site-specific functionalization or controlled theranostic delivery. PMID:25431230

  16. Fast reactor research in Switzerland

    International Nuclear Information System (INIS)

    The small Swiss research program on fast reactors serves to further understanding of the role of LMFR for energy production and to convert radioactive waste to more environmentally benign forms. These activities are on the one hand the contribution to the comparison of advanced nuclear systems and bring on the other to our physical and engineers understanding. (author)

  17. Australia's replacement research reactor project

    International Nuclear Information System (INIS)

    HIFAR, a 10 MW tank type DIDO Class reactor has operated at the Lucas Heights Science and Technology Centre for 43 years. HIFAR and the 10 kW Argonaut reactor 'Moata' which is in the Care and Maintenance phase of decommissioning are Australia's only nuclear reactors. The initial purpose for HIFAR was for materials testing to support a nuclear power program. Changing community attitude through the 1970's and a Government decision not to proceed with a planned nuclear power reactor resulted in a reduction of materials testing activities and a greater emphasis being placed on neutron beam research and the production of radioisotopes, particularly for medical purposes. HIFAR is not fully capable of satisfying the expected increase in demand for medical radiopharmaceuticals beyond the next 5 years and the radial configuration of the beam tubes severely restricts the scope and efficiency of neutron beam research. In 1997 the Australian Government decided that a replacement research reactor should be built by the Australian Nuclear Science and Technology Organisation at Lucas Heights subject to favourable results of an Environmental Impact Study. The Ei identified no reasons on the grounds of safety, health, hazard or risk to prevent construction on the preferred site and it was decided in May 1999 that there were no environmental reasons why construction of the facility should not proceed. In recent years ANSTO has been reviewing the operation of HIFAR and observing international developments in reactor technology. Limitations in the flexibility and efficiency achievable in operation of a tank type reactor and the higher intrinsic safety sought in fundamental design resulted in an early decision that the replacement reactor must be a pool type having cleaner and higher intensity tangential neutron beams of wider energy range than those available from HIFAR. ANSTO has chosen to use it's own resources supported by specialised external knowledge and experience to identify

  18. 2012 review of French research reactors

    International Nuclear Information System (INIS)

    Proposed by the French Reactor Operators' Club (CER), the meeting and discussion forum for operators of French research reactors, this report first gives a brief presentation of these reactors and of their scope of application, and a summary of highlights in 2012 for each of them. Then, it proposes more detailed presentations and reviews of characteristics, activities, highlights, objectives and results for the different types of reactors: neutron beam reactors (Orphee, High flux reactor-Laue-Langevin Institute or HFR-ILL), technological irradiation reactors (Osiris and Phenix), training reactors (Isis and Azur), reactors for safety research purposes (Cabri and Phebus), reactors for neutronic studies (Caliban, Prospero, Eole, Minerve and Masurca), and new research reactors (the RES facility and the Jules Horowitz reactor or JHR)

  19. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    This paper includes some statements and remarks concerning the uranium silicide fuels for which there is significant fabrication in AECL, irradiation and defect performance experience; description of two Canadian high flux research reactors which use high enrichment uranium (HEU) and the fuels currently used in these reactors; limited fabrication work done on Al-U alloys to uranium contents as high as 40 wt%. The latter concerns work aimed at AECL fast neutron program. This experience in general terms is applied to the NRX and NRU designs of fuel

  20. Research for enhancing reactor safety

    International Nuclear Information System (INIS)

    Recent research for enhanced reactor safety covers extensive and numerous experiments and computed modelling activities designed to verify and to improve existing design requirements. The lectures presented at the meeting report GRS research results and the current status of reactor safety research in France. The GRS experts present results concerning expert systems and their perspectives in safety engineering, large-scale experiments and their significance in the development and verification of computer codes for thermohydraulic modelling of safety-related incidents, the advanced system code ATHLET for analysis of thermohydraulic processes of incidents, the analysis simulator which is a tool for fast evaluation of accident management measures, and investigations into event sequences and the required preventive emergency measures within the German Risk Study. (DG)

  1. Research reactor's role in Korea

    International Nuclear Information System (INIS)

    After a TRIGA MARK-II was constructed in 1962, new research activity of a general nature, utilizing neutrons, prevailed in Korea. Radioisotopes produced from the MARK-II played a good role in the 1960's in educating people as to what could be achieved by a neutron source. Because the research reactor had implanted neutron science in the country, another TRIGA MARK-III had to be constructed within 10 years after importing the first reactor, due to increased neutron demand from the nuclear community. With the sudden growth of nuclear power, however, the emphasis of research changed. For a while research activities were almost all oriented to nuclear power plant technology. However, the specifics of nuclear power plant technology created a need for a more highly capable research reactor like HANARO 30MWt. HANARO will perform well with irradiation testing and other nuclear programs in the future, including: production of key radioisotopes, doping of silicon by transmutation, neutron activation analysis, neutron beam experiments, cold neutron source. 3 tabs., 2 figs

  2. Pakistan research reactor and its utilization

    International Nuclear Information System (INIS)

    The 5 MW enriched uranium fuelled, light water moderated and cooled Pakistan Research reactor became critical on 21st December, 1965 and was taken to full power on 22nd June, 1966. Since then is has been operated for about 23000 hours till 30th June, 1983 without any major break down. It has been used for the studies of neutron cross-sections, nuclear structure, fission physics, structure of material, radiation damage in crystals and semiconductors, studies of geological, biological and environmental samples by neutron activation techniques, radioisotope production, neutron radiography and for training of scientists, engineers and technicians. In the paper we have described briefly the facility of Pakistan Research Reactor and the major work carried around it during the last decade. (author)

  3. New research reactor for Australia

    International Nuclear Information System (INIS)

    HIFAR, Australia's major research reactor was commissioned in 1958 to test materials for an envisaged indigenous nuclear power industry. HIFAR is a Dido type reactor which is operated at 10 MW. With the decision in the early 1970's not to proceed to nuclear power, HIFAR was adapted to other uses and has served Australia well as a base for national nuclear competence; as a national facility for neutron scattering/beam research; as a source of radioisotopes for medical diagnosis and treatment; and as a source of export revenue from the neutron transmutation doping of silicon for the semiconductor industry. However, all of HIFAR's capabilities are becoming less than optimum by world and regional standards. Neutron beam facilities have been overtaken on the world scene by research reactors with increased neutron fluxes, cold sources, and improved beams and neutron guides. Radioisotope production capabilities, while adequate to meet Australia's needs, cannot be easily expanded to tap the growing world market in radiopharmaceuticals. Similarly, neutron transmutation doped silicon production, and export income from it, is limited at a time when the world market for this material is expanding. ANSTO has therefore embarked on a program to replace HIFAR with a new multi-purpose national facility for nuclear research and technology in the form of a reactor: a) for neutron beam research, - with a peak thermal flux of the order of three times higher than that from HIFAR, - with a cold neutron source, guides and beam hall, b) that has radioisotope production facilities that are as good as, or better than, those in HIFAR, c) that maximizes the potential for commercial irradiations to offset facility operating costs, d) that maximizes flexibility to accommodate variations in user requirements during the life of the facility. ANSTO's case for the new research reactor received significant support earlier this month with the tabling in Parliament of a report by the Australian Science

  4. Research reactors for the social safety and prosperous neutron use

    International Nuclear Information System (INIS)

    The present status of nuclear reactors in Japan and the world was briefly described in this report. Aiming to construct a background of stable future society dependent on nuclear energy, the necessity to establish an organization for research reactors in Japan was pointed out. There are a total of 468 reactors in the world, but only 248 of them are running at present and most of them are superannuated. In Japan, 15 research reactors are running and 8 of them are under collaborative utilization, but not a few of them have various problems. In the education of atomic energy, a reactor is dispensable for understanding its working principle through practice learning. Furthermore, a research reactor has important roles for development of power reactor in addition to various basic studies such as activation analysis, fission track, biological irradiation, neutron scattering, etc. Application of a reactor has been also progressing in industrial and medical fields. However, operation of the reactors has become more and more difficult in Japan because of a large running cost and a lack of residential consensus for nuclear reactor. Here, the author proposed an establishment of organization of research reactor in order to promote utilization of a reactor in the field of education, rearing of professionals and science and engineering. (M.N.)

  5. The research reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    The TRIGA Mark II reactor at the Institut fuer Kernchemie became first critical on August 3rd, 1965. It can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth. A survey of the research programmes performed at the TRIGA Mainz is given covering applications in basic research as well as applied science in nuclear chemistry and nuclear physics. Furthermore, the reactor is used for neutron activation analysis and for education and training of scientists, teachers, students and technical personal. Important projects for the future of the TRIGA Mainz are the UCN (ultra cold neutrons) experiment, fast chemical separation, medical applications and the use of the NAA as well as the use of the reactor facility for the training of students in the fields of nuclear chemistry, nuclear physics and radiation protection. Taking into account the past and future operation schedule and the typically low burn-up of TRIGA fuel elements (∝4 g U-235/a), the reactor can be operated for at least the next decade taking into account the fresh fuel elements on stock and without changing spent fuels. (orig.)

  6. Chemistry research and chemical techniques based on research reactors

    International Nuclear Information System (INIS)

    Chemistry has occupied an important position historically in the sciences associated with nuclear reactors and it continues to play a prominent role in reactor-based research investigations. This Panel of prominent scientists in the field was convened by the International Atomic Energy Agency (IAEA) to assess the present state of such chemistry research for the information of its Member States and others interested in the subject. There are two ways in which chemistry is associated with nuclear reactors: (a) general applications to many scientific fields in which chemical techniques are involved as essential service functions; and (b) specific applications of reactor facilities to the solution of chemical problems themselves. Twenty years of basic research with nuclear reactors have demonstrated a very widespread, and still increasing, demand for radioisotopes and isotopically-labelled molecules in all fields of the physical and biological sciences. Similarly, the determination of the elemental composition of a material through the analytical technique of activation analysis can be applied throughout experimental science. Refs, figs and tabs

  7. Janus kinase inhibitors: jackpot or potluck?

    Directory of Open Access Journals (Sweden)

    Pavithran Keechilat

    2012-06-01

    Full Text Available The reports of a unique mutation in the Janus kinase-2 gene (JAK2 in polycythemia vera by several independent groups in 2005 quickly spurred the development of the Janus kinase inhibitors. In one of the great victories of translational research in recent times, the first smallmolecule Janus kinase inhibitor ruxolitinib entered a phase I trial in 2007. With the approval of ruxolitinib by the US Federal Drug Administration in November 2011 for high-risk and intermediate-2 risk myelofibrosis, a change in paradigm has occurred in the management of a subset of myeloproliferative neoplasms (MPN: primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis. Whereas the current evidence for ruxolitinib only covers high-risk and intermediate-2 risk myelofibrosis, inhibitors with greater potency are likely to offer better disease control and survival advantage in patients belonging to these categories, and possibly to the low-risk and intermediate-1 risk categories of MPN as well. But use of the Janus kinase inhibitors also probably has certain disadvantages, such as toxicity, resistance, withdrawal phenomenon, non-reversal of histology, and an implausible goal of disease clone eradication, some of which could offset the gains. In spite of this, Janus kinase inhibitors are here to stay, and for use in more than just myeloproliferative neoplasms.

  8. Relocation of a Research Reactor

    International Nuclear Information System (INIS)

    The research reactor RA-8 is placed in Pilcaniyeu Technological Centre (PTC) in the province of Rio Negro, approximately 70 km east from San Carlos de Bariloche city. The first time the reactor went critical was in June 1997 and it is out of operation since March 1999. Due to the intention to relocate the reactor in Bariloche Atomic Centre (BAC) a study has been done in order to assess the technical and economical feasibility. The scope of this study covers the disassembly and transport from PTC to BAC. Relocation of the reactor will reduce costs, time and difficulties in the transport of personnel (operators, researcher, and students) to Pilcaniyeu allowing the performance of nuclear research as well as academic application. The RA-8 is basically a critical facility of enriched uranium with light water as moderator. It is a pool type reactor with low thermal power, maximum 100 W and nominal 10 W. The principal assembly and the associated systems are placed in the reactor hall: consisting of a core, tanks, block, nuclear and conventional instrumentation, moderator system and the neutron source system. Also there is a control room with computers for monitoring together with the safety and control systems. The core is inside two stainless steel concentric tanks communicated with each other that contain water during the operation. The technical feasibility consists in: radiological characterization of the facility, visual inspection of the systems, structures and components, dismantling engineering, mass estimation for disassembly, packing, transport and storage. Economical feasibility has been done in order to evaluate time and costs necessaries for the disassembly and transport from Pilcaniyeu to Bariloche. Regulatory aspects that must be fulfilled were considered in this study. Nothing detectable was found in water samples from pipes of the pumps' well. The systems, structures and components of the RA-8 present in general a good condition of preservation that would

  9. Research Reactors Types and Utilization

    International Nuclear Information System (INIS)

    A nuclear reactor, in gross terms, is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate. The nuclei of fuel heavy atoms (mostly 235U or 239Pu), when struck by a slow neutron, may split into two or more smaller nuclei as fission products,releasing energy and neutrons in a process called nuclear fission. These newly-born fast neutrons then undergo several successive collisions with relatively low atomic mass material, the moderator, to become thermalized or slow. Normal water, heavy water, graphite and beryllium are typical moderators. These neutrons then trigger further fissions, and so on. When this nuclear chain reaction is controlled, the energy released can be used to heat water, produce steam and drive a turbine that generates electricity. The fission process, and hence the energy release, are controlled by the insertion (or extraction) of control rods through the reactor. These rods are strongly neutron absorbents, and thus only enough neutrons to sustain the chain reaction are left in the core. The energy released, mostly in the form of heat, should be continuously removed, to protect the core from damage. The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for power in some military ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. Research reactors are used for radioisotope production and for beam experiments with free neutrons. Historically, the first use of nuclear reactors was the production of weapons grade plutonium for nuclear weapons. Currently all commercial nuclear reactors are based on nuclear fission. Fusion power is an experimental technology based on nuclear fusion instead of fission.

  10. Accident analysis in research reactors

    International Nuclear Information System (INIS)

    With the sustained development in computer technology, the possibilities of code capabilities have been enlarged substantially. Consequently, advanced safety evaluations and design optimizations that were not possible few years ago can now be performed. The challenge today is to revisit the safety features of the existing nuclear plants and particularly research reactors in order to verify that the safety requirements are still met and - when necessary - to introduce some amendments not only to meet the new requirements but also to introduce new equipment from recent development of new technologies. The purpose of the present paper is to provide an overview of the accident analysis technology applied to the research reactor, with emphasis given to the capabilities of computational tools. (author)

  11. Improvements at the biological shielding of BNCT research facility in the IEA-R1 reactor; Projeto e implantacao de melhorias na blindagem biologica da instalacao para estudos em BCNT

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Gregorio Soares de

    2011-07-01

    The technique of neutron capture in boron is a promising technique in cancer treatment, it uses the high LET particles from the reaction {sup 10}B (n, {alpha}) {sup 7}Li to destroy cancer cells.The development of this technique began in the mid-'50s and even today it is the object of study and research in various centers around the world, Brazil has built a facility that aims to conduct research in BNCT, this facility is located next to irradiation channel number three at the research nuclear reactor IEA-R1 and has a biological shielding designed to meet the radiation protection standards. This biological shielding was developed to allow them to conduct experiments with the reactor at maximum power, so it is not necessary to turn on and off the reactor to irradiate samples. However, when the channel is opened for experiments the background radiation in the experiments salon increases and this background variation makes it impossible to perform measurements in a neutron diffraction research that utilizes the irradiation channel number six. This study aims to further improve the shielding in order to minimize the variation of background making it possible to perform the research facility in BNCT without interfering with the action of the research group of the irradiation channel number six. To reach this purpose, the code MCNP5, dosimeters and activation detectors were used to plan improvements in the biological shielding. It was calculated with the help of the code an improvement that can reduce the average heat flow in 71.2% {+-} 13 and verified experimentally a mean reduce of 70 {+-} 9% in dose due to thermal neutrons. (author)

  12. Current status and future of utilization in research reactors

    International Nuclear Information System (INIS)

    In research reactors of Japan Atomic Energy Research Institute (JAERI), JRR-3 was upgraded (so called JRR-3M) with irradiation facilities and neutron beam experimental facilities. Particularly the new supply of cold neutrons brings to a great increase of fields of utilization in research reactors of JAERI. In JRR-4, it is planned to reduce the fuel enrichment and to renew several utilization facilities in several years. JRR-2 will be shut down also in several years because of its superannuation. On the other hand most research reactors of other institutes in Japan have faced with their superannuation and the difficulties of refurbishment or upgrading as well as new construction because of the changes of environmental condition such as urbanization of their surroundings. The research reactors in JAERI will play more important role for research and development using neutrons in future than past and present. Therefore the investigation was made in order to catch the needs for utilization of research reactors. The results of this investigation show that there are many research institutes which hope to utilize research reactors in accordance with the increase of available fields such as research of high polymer, biology, industrial materials and components, and contribution to environmental investigation by using neutron scattering, neutron radiography and activation analysis. This means that the research reactor utilization will be able to contribute to general scientific fields as well as utilization for research and development of nuclear energy which have been popular as utilization of research reactors. In this presentation, the current status of utilization of research reactors in JAERI and utilization fields of research reactors expected in future based on the investigation are described. It is also discussed what is important for the utilization to use effectively the research reactors in JAERI. (author)

  13. Reactor safety research in Sweden

    International Nuclear Information System (INIS)

    Objectives, means and results of Swedish light water reactor safety research during the 1970s are reviewed. The expenditure is about 40 Million Swkr per year excluding industry. Large efforts have been devoted to experimental studies of loss of coolant accidents. Large scale containment response tests for simulated pipe breaks were carried out at the Marviken facility. At Studsvik a method for testing fuel during fast power changes has been developed. Stress corrosion, crack growth and the effect of irradiation on the strength ductility of Zircaloy tube was studied. A method for determining the fracture toughness of pressure vessel steel was developed and it was shown that the fracture toughness was lower than earlier assumed. The release of fission products to reactor water was studied and so was the release, transport and removal of airborne radioactive matter for Swedish BWRs and PWRs. Test methods for iodine filter systems were developed. A system for continuous monitoring of radioactive noble gas stack release was developed for the Ringhals plant. Attention was drawn to the importance of the human factor for reactor safety. Probabilistic methods for risk analysis were applied to the Barsebaeck 2 and Forsmark 3 boiling water reactors. Procedures and working conditions for operator personnel were investigated. (GBn)

  14. Research reactors in Austria - Present situation

    International Nuclear Information System (INIS)

    In the past decades Austria operated three research reactors, the 10 MW ASTRA reactor at Seibersdorf, the 250 kW TRIGA reactor at the Atominstitut and the 1 kW Argonaut reactor at the Technical University in Graz. Since the shut down of the ASTRA on July 31th, 1999 and its immediate decommissioning reactor and the shut down of the Argonaut reactor in Graz on August 31st, 2004 only one reactor remains operational for keeping nuclear competence in Austria which is the 250 kW TRIGA Mark II reactor. (author)

  15. The Janus fluid a theoretical perspective

    CERN Document Server

    Fantoni, Riccardo

    2013-01-01

    The state-of-the-art in the theoretical statistical physics treatment of the Janus fluid is reported with a bridge between new research results published in journal articles and a contextual literature review. Recent Monte Carlo simulations on the Kern and Frenkel model of the Janus fluid have revealed that in the vapor phase, below the critical point, there is the formation of preferred inert clusters made up of a well-defined number of particles: the micelles and the vesicles. This is responsible for a re-entrant gas branch of the gas-liquid binodal. Detailed account of this findings are given in the first chapter where the Janus fluid is introduced as a product of new sophisticated synthesis laboratory techniques. In the second chapter a cluster theory is developed to approximate the exact clustering properties stemming from the simulations. It is shown that the theory is able to reproduce semi-quantitatively the micellization phenomenon.

  16. Current status of the world's research reactors

    International Nuclear Information System (INIS)

    Data from the IAEA's Research Reactor Database (RRDB) provides information with respect to the status of the world's research reactors. Some summary data are given. Recent initiatives by the IAEA regarding communications and information flow with respect to research reactors are discussed. Future plans and perspectives are also introduced. (author)

  17. Synthesis of Biofunctional Janus Particles.

    Science.gov (United States)

    Li, Binghui; Wang, Man; Chen, Kui; Cheng, Zhifeng; Chen, Gaojian; Zhang, Zexin

    2015-06-01

    Janus particles with anisotropic biofunctionalities are perfect models to mimic anisotropic architectures and directional interactions that occur in nature. It is therefore highly desirable to develop reliable and efficient methods to synthesize biofunctional Janus particles. Herein, a facile method combining seeded-emulsion polymerization and thiol-click chemistry has been developed to synthesize Janus particles with glucose moieties on one side. These biofunctional Janus particles show region-selective binding of protein, which represents a big step toward biomimicry, and demonstrates the potential of the bioJanus particles for targeted drug delivery and binding. PMID:25858757

  18. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  19. SIMS applications in biological research

    International Nuclear Information System (INIS)

    Full text: SIMS has been utilised as a tool for biological research since the early 1970's. SIMS' abilities in isotopic detection with high sensitivity, imaging capabilities at a subcellular level, and the possibility of molecular imaging have been the main areas of interest for biological development. However, whilst hundreds of instruments are available in industrial and university laboratories for semiconductor and materials analysis, only a handful successfully perform biological research. For this reason there is generally a lack of awareness of SIMS by the biological community. Biological SIMS analysis requires a working knowledge of both biology and SIMS. Sample preparation is a critical and time consuming prerequisite for any successful biological SIMS study. In addition, for quantification to be possible a homogeneous, matrix matched standard must be available. Once these difficulties are more widely understood and overcome there will be a greater motivation for the biological community to embrace SIMS as a unique tool in their research. This paper provides an overview of some of the more successful biological SIMS application areas internationally, and summarises the types of biological SIMS requests received by ANSTO

  20. Myrrha, new polyvalent research reactor

    International Nuclear Information System (INIS)

    Myrrha (Multi-purpose hybrid research reactor for high-tech applications) is the first prototype of sub-critical nuclear reactor driven by a particle accelerator (an ADS, accelerator-driven system) at semi-industrial scale (50-100 MW), a safe and easy-to-control technology. In an interview, the manager of this project recalls his curriculum, presents and comments the characteristics of Myrrha, outlines why these ADS are so interesting to produce radio-isotopes, comments the variety of countries and companies involved in this project, outlines the peculiarities of Myrrha in terms of safety and the main technological challenges (a mixing of lead and bismuth for the coolant, control of corrosion by oxygen, an improved reliability based on redundant design and fault tolerance, MOX as fuel). He also evokes competing technologies

  1. Decommissioning of Salaspils Research Reactor

    International Nuclear Information System (INIS)

    The Salaspils Research Reactor (SRR) is out of operation since July 1998 and the decommissioning of SRR was started in 1999 according to the decision of the Government of Latvia. The main decommissioning activities up to 2006 were connected with collecting and conditioning of historical radioactive wastes from different storages outside and inside of reactor hall. The total amount of dismantled materials was about 700 tons, more than 77 tons were conditioned in concrete containers for disposal in repository. The radioactive wastes management technology is discussed in the paper. It was found, that additional efforts must be spent for immobilization of radionuclides in cemented matrix to be comply with the wastes acceptance criteria. The investigations of mechanical stability of water-cement matrix are described and discussed in the paper

  2. Progress with the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Construction of the new Australian Research Reactor, the replacement for the now 46 year old HIFAR research reactor, is approximately 80% completed. Construction of the reactor facility began in April 2002 at ANSTO's Lucas Heights site near Sydney and commissioning is still on track for late 2005. Some details of the progress of construction and licensing and an outline of ANSTO research related to the use of Zircaloy-4 in the core region and reflector vessel of the reactor are given. (author)

  3. Biological Phosphorus Removal in a Moving Bed Biofilm Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Helness, Herman

    2007-09-15

    The scope of this study was to investigate use of the moving bed biofilm reactor (MBBR) process for biological phosphorus removal. The goal has been to describe the operating conditions required for biological phosphorus and nitrogen removal in a MBBR operated as a sequencing batch reactor (SBR), and determine dimensioning criteria for such a process

  4. Reactor D and D at Argonne National Laboratory - lessons learned

    International Nuclear Information System (INIS)

    This paper focuses on the lessons learned during the decontamination and decommissioning (D and D) of two reactors at Argonne National Laboratory-East (ANL-E). The Experimental Boiling Water Reactor (EBWR) was a 100 MW(t), 5 MSV(e) proof-of-concept facility. The Janus Reactor was a 200 kW(t) reactor located at the Biological Irradiation Facility and was used to study the effects of neutron radiation on animals

  5. Analysis of higher power research reactors' parameters

    International Nuclear Information System (INIS)

    The objective of this monograph was to analyze and compare parameters of different types of research reactors having higher power. This analysis could be used for decision making and choice of a reactor which could possibly replace the existing ageing RA reactor in Vinca. Present experimental and irradiation needs are taken into account together with the existing reactors operated in our country, RB and TRIGA reactor

  6. Health Physics Research Reactor (HPRR) operating experience and applications

    International Nuclear Information System (INIS)

    The Health Physics Research Reactor (HPRR) is a small, unmoderated fast pulse reactor located at the Oak Ridge National Laboratory (ORNL). The HPRR is the principle research tool of ORNL's Dosimetry Applications Research Group. The reactor is described, and its operating experience is presented. The HPRR is used by dosimeter vendors, government laboratories, nuclear power utilities, the military, and universities as well as by the ORNL staff for a wide variety of applications. These applications have been divided into six categories as follows: (1) biological effects studies, (2) criticality alarm testing, (3) dosimetry intercomparison studies, (4) neutron and gamma dose equivalent dosimeter development, (5) simulation of nuclear weapon spectra, and (6) training

  7. Operating experiences of the research reactors

    International Nuclear Information System (INIS)

    Nuclear research reactors are devices of wide importance, being used for different scientific research tasks, for testing and improving reactor systems and components, for the production of radioisotopes, for the purposes of defence, for staff training and for other purposes. There are three research reactors in Yugoslavia: RA, RB and TRIGA. Reactors RA and RB at the 'Boris Kidric' Institute of Nuclear Sciences are of heavy water type power being 6500 and 10 kW, and maximum thermal neutron flux of 1014 and 1011(n/cm2s), respectively. TRIGA reactor at the 'Jozef Stefan' Institute in Ljubljana is of 250 kW power and maximum thermal neutron flux of 1013(n/cm2s). Reactors RA and RB use soviet fuel in the form of uranium dioxide (80% enriched) and metallic uranium (2%). Besides, RB reactor operates with natural uranium too. TRIGA reactor uses american uranium fuel 70% and 20% enriched, uranium being mixed homogeneously with moderator (ZrH). Experiences in handling and controlling the fuel before irradiation in the reactor, in reactor and after it are numerous and valuable, involving either the commercial arrangements with foreign producers, or optimal burn up in reactor or fuel treatment after the reactor irradiation. Twenty years of operating experience of these reactors have great importance especially having in mind the number of trained staff. Maintenance of reactors systems and fluids in continuous operation is valuable experience from the point of view of water reactor utilization. The case of the RA reactor primary cycle cobalt decontamination and other events connected with nuclear and radiation security for all three reactors are also specially emphasized. Owing to our research reactors, numerous theoretical, numerical and experimental methods are developed for nuclear and other analyses and design of research and power reactors,as well as methods for control and protection of radiation. (author)

  8. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  9. Training and Certification of Research Reactor Personnel

    International Nuclear Information System (INIS)

    The safe operation of a research reactor requires that reactor personnel be fully trained and certified by the relevant authorities. Reactor operators at PUSPATI TRIGA Reactor underwent extensive training and are certified, ever since the reactor first started its operation in 1982. With the emphasis on enhancing reactor safety in recent years, reactor operator training and certification have also evolved. This paper discusses the changes that have to be implemented and the challenges encountered in developing a new training programme to be in line with the national standards. (author)

  10. Nuclear research reactors activities in INVAP

    International Nuclear Information System (INIS)

    This presentation describes the different activities in the research reactor field that are being carried out by INVAP. INVAP is presently involved in the design of three new research reactors in three different countries. The RA-10 is a multipurpose reactor, in Argentina, planned as a replacement for the RA-3 reactor. INVAP was contracted by CNEA for carrying out the preliminary engineering for this reactor, and has recently been contracted by CNEA for the detailed engineering. CNEA groups are strongly involved in the design of this reactor. The RMB is a multipurpose reactor, planned by CNEN from Brazil. CNEN, through REDETEC, has contracted INVAP to carry out the preliminary engineering for this reactor. As the user requirements for RA-10 and RMB are very similar, an agreement was signed between Argentina and Brasil governments to cooperate in these two projects. The agreement included that both reactors would use the OPAL reactor in Australia, design and built by INVAP, as a reference reactor. INVAP has also designed the LPRR reactor for KACST in Saudi Arabia. The LPRR is a 30 kw reactor for educational purposes. KACST initially contracted INVAP for the engineering for this reactor and has recently signed the contract with INVAP for building the reactor. General details of these three reactors will be presented

  11. Nuclear research reactors activities in INVAP

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, Juan Pablo [INVAP, Bariloche (Argentina)

    2013-07-01

    This presentation describes the different activities in the research reactor field that are being carried out by INVAP. INVAP is presently involved in the design of three new research reactors in three different countries. The RA-10 is a multipurpose reactor, in Argentina, planned as a replacement for the RA-3 reactor. INVAP was contracted by CNEA for carrying out the preliminary engineering for this reactor, and has recently been contracted by CNEA for the detailed engineering. CNEA groups are strongly involved in the design of this reactor. The RMB is a multipurpose reactor, planned by CNEN from Brazil. CNEN, through REDETEC, has contracted INVAP to carry out the preliminary engineering for this reactor. As the user requirements for RA-10 and RMB are very similar, an agreement was signed between Argentina and Brasil governments to cooperate in these two projects. The agreement included that both reactors would use the OPAL reactor in Australia, design and built by INVAP, as a reference reactor. INVAP has also designed the LPRR reactor for KACST in Saudi Arabia. The LPRR is a 30 kw reactor for educational purposes. KACST initially contracted INVAP for the engineering for this reactor and has recently signed the contract with INVAP for building the reactor. General details of these three reactors will be presented.

  12. Reliability studies in research reactors

    International Nuclear Information System (INIS)

    Fault trees and event trees are widely used in industry to model and to evaluate the reliability of safety systems. Detailed analyzes in nuclear installations require the combination of these two techniques. This study uses the methods of FT (Fault Tree) and ET (Event Tree) to accomplish the PSA (Probabilistic Safety Assessment) in research reactors. According to IAEA (lnternational Atomic Energy Agency), the PSA is divided into Level 1, Level 2 and Level 3. At the Level 1, conceptually, the security systems perform to prevent the occurrence of accidents, At the Level 2, once accidents happened, this Level seeks to minimize consequences, known as stage management of accident, and at Level 3 accident impacts are determined. This study focuses on analyzing the Level 1, and searching through the acquisition of knowledge, the consolidation of methodologies for future reliability studies. The Greek Research Reactor, GRR-1, is a case example. The LOCA (Loss of Coolant Accident) was chosen as the initiating event and from it, using ET, possible accidental sequences were developed, which could lead damage to the core. Moreover, for each of affected systems, probabilities of each event top of FT were developed and evaluated in possible accidental sequences. Also, the estimates of importance measures for basic events are presented in this work. The studies of this research were conducted using a commercial computational tool SAPHIRE. Additionally, achieved results thus were considered satisfactory for the performance or the failure of analyzed systems. (author)

  13. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  14. Overview on New Research Reactors in China

    International Nuclear Information System (INIS)

    In China, 2 research reactors are now under construction. Correspondingly, this paper consists of 2 parts. Part 1 will focus on China Advanced Research Reactor (CARR), the reactor characteristics, utilization, safety related systems and other main systems will be described in this part. Part 2 will focus on China Experiment Fast Reactor(CEFR), the general design and the safety features in particular will be illustrated in this part. (author)

  15. Safe Operation of Research Reactors in Germany

    International Nuclear Information System (INIS)

    In Germany, experience was gained in the field of safe operation of research reactors during the last five decades. In this time, in total 46 research reactors were built and operated safely. Concerning the design, there is, or has been, a very broad range of different types of research reactors. The variety of facilities includes large pool or tank reactors with a thermal power of several tens of megawatt as well as small educational reactors with a negligible thermal power and critical assemblies. At present, 8 research reactors are still in operation. The other facilities are permanently shutdown, in decommissioning or have already been dismantled completely and released from regulatory control. In this paper, four selected facilities still being operated are presented as examples for safe operation of research reactors in Germany, including especially a description of the safety reviews and safety upgrades for the older facilities. (author)

  16. Industrial structure at research reactor suppliers

    International Nuclear Information System (INIS)

    Due to the recent joining of the forces of Framatome S. A. from France and the Nuclear Division of Siemens AG Power Generation (KWU) from Germany to a Joint Venture named Framatome Advanced Nuclear Power S.A.S., the issue of the necessary and of the optimal industrial structure for nuclear projects as a research reactor is, was discussed internally often and intensively. That discussion took place also in the other technical fields such as Services for NPPs but also in the field of interest here, i. e. Research Reactors. In summarizing the statements of this presentation one can about state that: Research Reactors are easier to build than NPPs, but not standardised; Research Reactors need a wide spectrum of skills and experiences; to design and build Research Reactors needs an experienced team especially in terms of management and interfaces; Research Reactors need background from built reference plants more than from operating plants; Research Reactors need knowledge of suitable experienced subsuppliers. Two more essential conclusions as industry involved in constructing and upgrading research reactors are: Research Reactors by far are more than a suitable core that generates a high neutron flux; every institution that designs and builds a Research Reactor lacks quality or causes safety problems, damages the reputation of the entire community

  17. Application of research reactors for radiation education

    International Nuclear Information System (INIS)

    Nuclear research Reactors are, as well as being necessary for research purposes, indispensable educational tools for a country whose electric power resources are strongly dependent on nuclear energy. Both large and small research reactors are available, but small ones are highly useful from the viewpoint of radiation education. This paper oders a brief review of how small research reactors can, and must, be used for radiation education for high school students, college and graduate students, as well as for the public. (author)

  18. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    The purpose of this technical paper is to provide status of the United State domestic Research Reactor Infrastructure (RRI) Program at the Idaho National Laboratory. This paper states the purpose of the program, lists the universities operating TRIGA reactors that are supported by the program, identifies anticipated fresh fuel needs for the reactor facilities, discusses spent fuel activities associated with the program, and addresses successes and planned activities for the program. (author)

  19. Technology and use of low power research reactors

    International Nuclear Information System (INIS)

    The report contains a summary of discussions and 10 papers presented at the Consultants' Meeting on the Technology and Use of Low Power Research Reactors organized by the IAEA and held in Beijing (China) during 30 April - 3 May 1985. The following topics have been covered: reactor utilization in medicine and biology, in universities, for training, as a neutron source for radiography and some remarks on the safety of low power research reactors. A separate abstract was prepared for each paper presented at the meeting

  20. Euratom research supporting reactor safety

    International Nuclear Information System (INIS)

    This paper focuses on the way the Fifth Framework Programme (FP5) of the European Atomic Energy Community (Euratom) (1998-2002) contributed to the overall effort supporting LWR safety and on the prospects of FP6 (2002-2006) to achieve the additional goal of contributing to the creation of the European Research Area (ERA). The objectives of the FP5 Community research are discussed, topic per topic, with reference to the relevant projects contributing to their achievement while emphasising the role and expectations of the end-users. 71 research projects have been carried out in FP5 with a total cost of 85.4 million Euro, out of which 43.5 million Euro are contributed by the EU. Economic aspects and needs for nuclear knowledge management throughout the EU-25 countries are briefly discussed as well as future Euratom research needs and nuclear stakeholders' interests. Implementation aspects and prospects of Euratom FP6 are discussed bearing in mind the challenging additional objective. Very ambitious S/T actions have been undertaken supporting reactor safety not only by their technical achievements but also by their structuring effect in the European research picture. (authors)

  1. RB research reactor Safety Report

    International Nuclear Information System (INIS)

    This RB reactor safety report is a revised and improved version of the Safety report written in 1962. It contains descriptions of: reactor building, reactor hall, control room, laboratories, reactor components, reactor control system, heavy water loop, neutron source, safety system, dosimetry system, alarm system, neutron converter, experimental channels. Safety aspects of the reactor operation include analyses of accident causes, errors during operation, measures for preventing uncontrolled activity changes, analysis of the maximum possible accident in case of different core configurations with natural uranium, slightly and highly enriched fuel; influence of possible seismic events

  2. Water-oil Janus emulsions: microfluidic synthesis and morphology design.

    Science.gov (United States)

    Ge, Xue-Hui; Huang, Jin-Pei; Xu, Jian-Hong; Chen, Jian; Luo, Guang-Sheng

    2016-04-14

    In this work we developed a facile method to prepare water-oil Janus emulsions in situ with tunable morphologies by using a double-bore capillary microfluidic device. In addition, by combining the theory model and our liquids' properties, we propose a method to design the morphology of water-oil Janus emulsions. To systematically research Janus morphologies we combined the theory model and the fluids' properties. Under the model guidance, we carefully selected the liquids system where only the interfacial tension between the water phase and the continuous phase changed while keeping the other two interfacial tensions unchanged. Thus we could adjust the Janus morphology by changing the surfactant mass fraction in the continuous phase. In addition, with the double-bore capillary, we prepared water-oil Janus emulsions with a large flow ratio range. By adjusting the flow ratio and the surfactant mass fraction, we successfully prepared Janus emulsions with gradual morphology changes, which would be meaningful in fields that have a high demand for morphology designing of amphiphilic Janus particles. PMID:26947622

  3. Research reactor decommissioning experience - concrete removal and disposal -

    International Nuclear Information System (INIS)

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limits for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations

  4. Strategic planning for research reactors. Guidance for reactor managers

    International Nuclear Information System (INIS)

    The purpose of this publication is to provide guidance on how to develop a strategic plan for a research reactor. The IAEA is convinced of the need for research reactors to have strategic plans and is issuing a series of publications to help owners and operators in this regard. One of these covers the applications of research reactors. That report brings together all of the current uses of research reactors and enables a reactor owner or operator to evaluate which applications might be possible with a particular facility. An analysis of research reactor capabilities is an early phase in the strategic planning process. The current document provides the rationale for a strategic plan, outlines the methodology of developing such a plan and then gives a model that may be followed. While there are many purposes for research reactor strategic plans, this report emphasizes the use of strategic planning in order to increase utilization. A number of examples are given in order to clearly illustrate this function

  5. Biological Databases for Human Research

    Institute of Scientific and Technical Information of China (English)

    Dong Zou; Lina Ma; Jun Yu; Zhang Zhang

    2015-01-01

    The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases. With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of human-related biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation.

  6. Conformal Janus on Euclidean Sphere

    CERN Document Server

    Bak, Dongsu; Rey, Soo-Jong

    2016-01-01

    We interpret Janus as an interface in a conformal field theory and study its properties. The Janus is created by an exactly marginal operator and we study its effect on the interface conformal field theory on the Janus. We do this by utilizing the AdS/CFT correspondence. We compute the interface free energy both from leading correction to the Euclidean action in the dual gravity description and from conformal perturbation theory in the conformal field theory. We find that the two results agree each other and that the interface free energy scales precisely as expected from the conformal invariance of the Janus interface.

  7. Light water reactor safety research project

    International Nuclear Information System (INIS)

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  8. Safety of research reactors - A regulator's perspective

    International Nuclear Information System (INIS)

    Due to historical reasons research reactors have received less regulatory attention in the world than nuclear power plants. This has given rise to several safety issues which, if not addressed immediately, may result in an undesirable situation. However, in Pakistan, research reactors and power reactors have received due attention from the regulatory authority. The Pakistan Research Reactor-1 has been under regulatory surveillance since 1965, the year of its commissioning. The second reactor has also undergone all the safety reviews and checks mandated by the licensing procedures. A brief description of the regulatory framework, the several safety reviews carried out have been briefly described in this paper. Significant activities of the regulatory authority have also been described in verifying the safety of research reactors in Pakistan along with the future activities. The views of the Pakistani regulatory authority on the specific issues identified by the IAEA have been presented along with specific recommendations to the IAEA. We are of the opinion that there are more Member States operating nuclear research reactors than nuclear power plants. Therefore, there should be more emphasis on the research reactor safety, which somehow has not been the case. In several recommendations made to the IAEA on the specific safety issues the emphasis has been, in general, to have a similar documentation and approach for maintaining and verifying operational safety at research reactors as is currently available for nuclear power reactors and may be planned for nuclear fuel cycle facilities. (author)

  9. Developing research reactor coalitions and centres of excellence

    International Nuclear Information System (INIS)

    Research reactors continue to play a key role in the development of peaceful uses of atomic energy. They are used for a variety of purposes such as education and training, production of medical and industrial isotopes, non-destructive testing, analytical studies, modification of materials, for research in physics, biology and materials science, and in support of nuclear power programmes. The IAEA Research Reactor Data Base lists about 250 operational research reactors worldwide, many of which have been operating for more than 40 years. Through both statistical and anecdotal evidence, it is clear that many of these reactors are under utilized, face critical issues related to sustainability, and must make important decisions concerning future operation. These challenges are occurring in the context of increased concerns over global non-proliferation and nuclear material security, due to which research reactor operators are coming under increased pressure to substantially improve physical security and convert to the use of low enriched uranium (LEU) fuel. Thus, there is a complex environment for research reactors, and one in which underutilized and therefore likely poorly funded facilities invoke particular concern. any research reactors are challenged to generate sufficient income to offset operational costs, often in a context of declining political and/or public support. Many research reactor operators have limited access to potential customers for their services and are not familiar with the business planning concepts needed to secure additional commercial revenues or governmental or international programme funding. This not only results in reduced income for the facilities involved, but sometimes also in research reactor services priced below full cost, preventing recovery of back-end costs and creating unsustainable market norms. Parochial attitudes and competitive behaviour restrict information sharing, dissemination of best practices, and mutual support that

  10. Research nuclear reactor RA - Annual Report 2000

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor started in 1986 were fulfilled except the exchange of the complete reactor instrumentation. Since 1992, due to economic and political reasons, RA reactor is in a difficult situation. The old RA reactor instrumentation was dismantled. Decision about the future status of the reactor should be made because the aging of all the components is becoming dramatic. Control and maintenance of the reactor components was done regularly and efficiently. The most important activity and investment in 1998 was improvement of conditions for spent fuel storage in the existing pools at the RA reactor. Russian company ENTEK and IAEA are involved in this activity which was initiated 1997. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. Research reactor RA Annual report for year 2000 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  11. Research nuclear reactor RA - Annual Report 1998

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor started in 1986 were fulfilled except the exchange of the complete reactor instrumentation. Since 1992, due to economic and political reasons, RA reactor is in a difficult situation. The old RA reactor instrumentation was dismantled. Decision about the future status of the reactor should be made because the aging of all the components is becoming dramatic. Control and maintenance of the reactor components was done regularly and efficiently. The most important activity and investment in 1998 was improvement of conditions for spent fuel storage in the existing pools at the RA reactor. Russian company ENTEK and IAEA are involved in this activity which was initiated 1997. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. Research reactor RA Annual report for year 1998 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  12. Research nuclear reactor RA - Annual Report 1999

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor started in 1986 were fulfilled except the exchange of the complete reactor instrumentation. Since 1992, due to economic and political reasons, RA reactor is in a difficult situation. The old RA reactor instrumentation was dismantled. Decision about the future status of the reactor should be made because the aging of all the components is becoming dramatic. Control and maintenance of the reactor components was done regularly and efficiently. The most important activity and investment in 1998 was improvement of conditions for spent fuel storage in the existing pools at the RA reactor. Russian company ENTEK and IAEA are involved in this activity which was initiated 1997. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. Research reactor RA Annual report for year 1998 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  13. Usage of burnable poison on research reactors

    International Nuclear Information System (INIS)

    The fuel assemblies with burnable poison are widely used on power reactors, but there are not commonly used on research reactors. This paper shows a neutronic analysis of the advantages and disadvantages of the burnable poison usage on research reactors. This paper analyses both burnable poison design used on research reactors: Boron on the lateral wall and Cadmium wires. Both designs include a parametric study on the design parameters like the amount and geometry of the burnable poison. This paper presents the design flexibility using burnable poisons, it does not find an optimal or final design, which it will strongly depend on the core characteristics and fuel management strategy. (author)

  14. The Canadian research reactor spent fuel situation

    International Nuclear Information System (INIS)

    This paper summarizes the present research reactor spent fuel situation in Canada. The research reactors currently operating are listed along with the types of fuel that they utilize. Other shut down research reactors contributing to the storage volume are included for completeness. The spent fuel storage facilities associated with these reactors and the methods used to determine criticality safety are described. Finally the current inventory of spent fuel and where it is stored is presented along with concerns for future storage. (author). 3 figs

  15. The Berkeley TRIGA Mark III research reactor

    International Nuclear Information System (INIS)

    The Berkeley Research Reactor went critical on August 10, 1966, and achieved licensed operating power of 1000 kW shortly thereafter. Since then, the reactor has operated, by and large, trouble free on a one-shift basis. The major use of the reactor is in service irradiations, and many scientific programs are accommodated, both on and off campus. The principal off-campus user is the Lawrence Radiation Laboratory at Berkeley. The reactor is also an important instructional tool in the Nuclear Engineering Department reactor experiments laboratory course, and as a source of radioisotopes for two other laboratory courses given by the Department. Finally, the reactor is used in several research programs conducted within the Department, involving studies with neutron beams and in reactor kinetics

  16. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  17. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  18. Research reactor and its application in Thailand

    International Nuclear Information System (INIS)

    The first Thai Research Reactor (TRR-1) was established in 1961. TRR-1 had been operated with power of 1 MW from 1962 to 1975 and was shut down for modification during 1975 to 1977. The Thai Research Reactor1/modification1 (TRR-1/M1) is a multipurpose reactor with nominal power of 2 MW. Since 1977 TRR-1/M1 has been operated and utilized for various applications such as neutron activation analysis, radioisotope production, gem irradiation, neutron radiography and research works. To expand and promote the utilization of research reactor, the new 10 MW Research Reactor will be established in the Ongkarak Nuclear Research Center (ONRC) project and the project will be finished in the near future. (author)

  19. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  20. Utilisation of the Research Reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    The TRIGA Mark II reactor of the University of Mainz can be operated in the steady state mode with thermal powers up to a maximum of 100 kW and in the pulse mode with a maximum peak power of 250 MW. So far, more than 17 000 pulses have been performed. For irradiations the TRIGA Mainz has a central experimental tube, three pneumatic transfer systems and a rotary specimen rack. In addition, the TRIGA Mainz includes four horizontal beam ports and a graphite thermal column which provides a source of well-thermalised neutrons. A broad spectrum of commercial applications, scientific research and training can be executed. For education and training various courses in nuclear and radiochemistry, radiation protection, reactor operation and physics are held for scientists, advanced students, teachers, engineers and technicians. Isotope production and Neutron Activation Analysis (NAA) are applied in in-core positions for different applications. NAA in Mainz is focused to determine trace elements in different materials such as in archaeometry, forensics, biology and technical materials including semiconductors for photovoltaics. The beam ports and the thermal column are used for commercial as well as for special basic and applied research in medicine, biology, chemistry and physics. Experiments are in preparation to determine the fundamental neutron properties with very high precision using ultra cold neutrons (UCN) produced at the tangential beam port. A second source is under development at the radial piercing beam port. Another experiment under development is the determination of ground-state properties of radioactive nuclei with very high precision using a penning trap and collinear laser spectroscopy. For many years fast chemical separation procedures combining a gas-jet transport system installed in one beam tube with either continuous or discontinuous chemical separation are carried out. In addition the thermal column of the reactor is also used for medical and

  1. Overview of research reactor operation within AECL

    International Nuclear Information System (INIS)

    This paper presents information on reactor operations within the Research Company of Atomic Energy of Canada (AECL) today relative to a few years ago, and speculates on future operations. In recent years, the need for Research Company reactors has diminished. This, combined with economic pressures, has led to the shutdown of some of the company's major reactors. However, compliance with the government agenda to privatize government companies in Canada, and a Research Company policy of business development, has led to some offsetting activities. The building of a pool-type 10 MWt MAPLE (Multipurpose Applied Physics Lattice Experimental) reactor for isotope production will assist in the sale of the AECL isotopes marketing company. A Low Enriched Uranium (LEU) fuel fabrication facility and a Tritium Extraction Plant (TEP), both currently under construction, are needed in support of the NRU (National Research Universal) reactor and are in line with business development strategies. The research program demands on NRU stretch many years into the future and the strategies for achieving effective operation of this aging reactor, now 32 years old, are discussed. The repair of the leaking light-water reflector of the NRU reactor is highlighted. The isotope business requires that a second reactor be available for back-up production and the operation of the 42 year old NRX (National Research Experimental) reactor in its present 'hot standby' mode is believed to be unique in the world

  2. Design of a multipurpose research reactor

    International Nuclear Information System (INIS)

    The availability of a research reactor is essential in any endeavor to improve the execution of a nuclear programme, since it is a very versatile tool which can make a decisive contribution to a country's scientific and technological development. Because of their design, however, many existing research reactors are poorly adapted to certain uses. In some nuclear research centres, especially in the advanced countries, changes have been made in the original designs or new research prototypes have been designed for specific purposes. These modifications have proven very costly and therefore beyond the reach of developing countries. For this reason, what the research institutes in such countries need is a single sufficiently versatile nuclear plant capable of meeting the requirements of a nuclear research programme at a reasonable cost. This is precisely what a multipurpose reactor does. The Mexican National Nuclear Research Institute (ININ) plans to design and build a multipurpose research reactor capable at the same time of being used for the development of reactor design skills and for testing nuclear materials and fuels, for radioisotopes production, for nuclear power studies and basic scientific research, for specialized training, and so on. For this design work on the ININ Multipurpose Research Reactor, collaborative relations have been established with various international organizations possessing experience in nuclear reactor design: Atomehnergoeksport of the USSR: Atomic Energy of Canada Limited (AECL); General Atomics (GA) of the USA; and Japan Atomic Energy Research Institute

  3. Utilisation of British University Research Reactors.

    Science.gov (United States)

    Duncton, P. J.; And Others

    British experience relating to the employment of university research reactors and subcritical assemblies in the education of nuclear scientists and technologists, in the training of reactor operators and for fundamental pure and applied research in this field is reviewed. The facilities available in a number of British universities and the uses…

  4. Problems of Decommissioning Research Reactor IR-100

    International Nuclear Information System (INIS)

    The research reactor IR-100 with a thermal power of 200 kW is assigned to conduct science research and training activities in the fields of nuclear and molecular physics, radiation chemistry, radioactive isotope production, material, irradiation in neutron and gamma fields of devices and equipment, as well as for training of specialists for nuclear reactor operation

  5. The future role of research reactors

    International Nuclear Information System (INIS)

    The decline of neutron source capacity in the next decades urges for the planning and construction of new neutron sources for basic and applied research with neutrons. Modern safety precautions of research reactors make them competitive with other ways of neutron production using non-chain reactions for many applications. Research reactors consequently optimized offer a very broad range of possible applications in basic and applied research. Research reactors at universities also in the future have to play an important role in education and training in basic and applied nuclear science. (orig.)

  6. Developments in the regulation of research reactors

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) has data on over 670 research reactors in the world. Fewer than half of them are operational and a significant number are in a shutdown but not decommissioned state. The International Nuclear Safety Advisory Group (INSAG) has expressed concerns about the safety of many research reactors and this has resulted in a process to draw up an international Code of Conduct on the Safety of Research Reactors. The IAEA is also reviewing its safety standards applying to research reactors. On the home front, regulation of the construction of the Replacement Research Reactor continues. During the construction phase, regulation has centred around the consideration of Requests for Approval (RFA) for the manufacture and installation of systems, structures and components important for safety. Quality control of construction of systems, structures and components is the central issue. The process for regulation of commissioning is under consideration

  7. Nuclear data usage for research reactors

    International Nuclear Information System (INIS)

    In the department of research reactor, many neutronics calculations have been performed to construct, to operate and to modify research reactors of JAERI with several kinds of nuclear data libraries. This paper presents latest two neutronic analyses on research reactors. First one is design work of a low enriched uranium (LEU) fuel for JRR-4 (Japan Research Reactor No.4). The other is design of a uranium silicon dispersion type (silicide) fuel of JRR-3M (Japan Research Reactor No.3 Modified). Before starting the design work, to estimate the accuracy of computer code and calculation method, experimental data are calculated with several nuclear data libraries. From both cases of calculations, it is confirmed that JENDL-3.2 gives about 1 %Δk/k higher excess reactivity than JENDL-3.1. (author)

  8. Research reactor job analysis - A project description

    International Nuclear Information System (INIS)

    Addressing the need of the improved training in nuclear industry, nuclear utilities established training program guidelines based on Performance-Based Training (PBT) concepts. The comparison of commercial nuclear power facilities with research and test reactors owned by the U.S. Department of Energy (DOE), made in an independent review of personnel selection, training, and qualification requirements for DOE-owned reactors pointed out that the complexity of the most critical tasks in research reactors is less than that in power reactors. The U.S. Department of Energy (DOE) started a project by commissioning Oak Ridge Associated Universities (ORAU) to conduct a job analysis survey of representative research reactor facilities. The output of the project consists of two publications: Volume 1 - Research Reactor Job Analysis: Overview, which contains an Introduction, Project Description, Project Methodology,, and. An Overview of Performance-Based Training (PBT); and Volume 2 - Research Reactor Job Analysis: Implementation, which contains Guidelines for Application of Preliminary Task Lists and Preliminary Task Lists for Reactor Operators and Supervisory Reactor Operators

  9. Software development for research reactors

    International Nuclear Information System (INIS)

    The Texas A and M University Nuclear Science Center, in a program jointly sponsored with the International Atomic Energy Agency, is developing a series of computer software programs of use at research reactor facilities. The programs cover a wide range of topics including activation and shielding calculations, control rod calibrations, power calorimetrics, and fuel inventory including burnup. Many of the programs are modified and improved versions of programs already in use at the NSC that ran on outdated computing equipment. All of the new versions were written in Fortran77 on the NSC's new TI Pro microcomputer and are IBM-compatible. This paper describes the development and translation efforts in preparing the programs for use by other facilities, and gives an overview of the aim of the development effort. A brief description of each program that has been or is to be written is given including the required inputs and the resulting outputs. This paper also addresses the original needs that brought about the development program and the benefits to facility operations that each program provides. The programs discussed are available to interested parties in a hard-copy listing as requested. (author)

  10. The concept of a research fusion reactor

    International Nuclear Information System (INIS)

    Thus,for advancement towards a commercial fusion reactor,we have proposed here as a next step a steady state operated research fusion reactor with an increased plasma-wall detachment so as to further guarantee not only the production but also a long-term (for many years) confinement of a self-sustained plasma at the existing technology level. We consider the primary goal of the research fusion reactor is the provision of full-scale conditions for carrying out materials science experiments to create and test 1 st wall materials for the commercial fusion reactor

  11. RA Research nuclear reactor - Annual report 1987

    International Nuclear Information System (INIS)

    Annual report concerning the project 'RA research nuclear reactor' for 1987, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities

  12. RA Research reactor, Annual report 1988

    International Nuclear Information System (INIS)

    Annual report concerning the project 'RA research nuclear reactor' for 1989, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities

  13. Research nuclear reactor RA - Annual Report 1989

    International Nuclear Information System (INIS)

    Annual report concerning the project 'RA research nuclear reactor' for 1989, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities

  14. Advanced research reactor fuel development

    International Nuclear Information System (INIS)

    The fabrication technology of the U3Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U3Si2 dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U3Si2 fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 ∼ 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The γ-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U3Si2. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano-plates will be conducted in the Advanced Test Reactor(ATR). 49

  15. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  16. Research reactor records in the INIS database

    International Nuclear Information System (INIS)

    This report presents a statistical analysis of more than 13,000 records of publications concerned with research and technology in the field of research and experimental reactors which are included in the INIS Bibliographic Database for the period from 1970 to 2001. The main objectives of this bibliometric study were: to make an inventory of research reactor related records in the INIS Database; to provide statistics and scientific indicators for the INIS users, namely science managers, researchers, engineers, operators, scientific editors and publishers, decision-makers in the field of research reactors related subjects; to extract other useful information from the INIS Bibliographic Database about articles published in research reactors research and technology. (author)

  17. Manual for the operation of research reactors

    International Nuclear Information System (INIS)

    The great majority of the research reactors in newly established centres are light-water cooled and are often also light-water moderated. Consequently, the IAEA has decided to publish in its Technical Reports Series a manual dealing with the technical and practical problems associated with the safe and efficient operation of this type of reactor. Even though this manual is limited to light-water reactors in its direct application and presents the practices and experience at one specific reactor centre, it may also be useful for other reactor types because of the general relevance of the problems discussed and the long experience upon which it is based. It has, naturally, no regulatory character but it is hoped that it will be found helpful by staff occupied in all phases of the practical operation of research reactors, and also by those responsible for planning their experimental use. 23 refs, tabs

  18. Performance of a multipurpose research electrochemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Henquin, E.R. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2011-07-01

    Highlights: > For this reactor configuration the current distribution is uniform. > For this reactor configuration with bipolar connection the leakage current is small. > The mass-transfer conditions are closely uniform along the electrode. > The fluidodynamic behaviour can be represented by the dispersion model. > This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of {+-}10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  19. IAEA Guidelines for New Research Reactor Projects

    International Nuclear Information System (INIS)

    In recent years, the interest of the IAEA Member States in developing research reactor (RR) programmes has been steadily growing. Currently a number of Member States are in different stages of new research reactor projects. Some of these Member States are building their first research reactor as their country's introduction to nuclear science and technology infrastructure. To support Member States in such efforts, the IAEA published in 2012 a Nuclear Energy Series Report NP-T-5.1: 'Specific Considerations and Milestones for a New Research Reactor Project'. This publication provides guidance on the timely preparation of a research reactor project through a sequential development process. It includes a detailed description of the range of infrastructure issues that need to be addressed and the expected level of achievement (or milestones) at the end of each phase of the project. The publication provides a discussion of the mechanisms for justification of a research reactor, and for building stakeholder support. It includes both the technical, legal, regulatory and safety infrastructure, and the development of qualified human resources needed for a research reactor. The publication also addresses the evolution of infrastructure needs from the time a Member State first considers a research reactor and its associated facilities, through the stages of planning, bid preparation, construction, start-up, and preparation for commissioning. The subsequent stages of operation, decommissioning, spent fuel and waste management issues are addressed in the publication to the degree necessary for appropriate planning prior to research reactor commissioning. The feedback from the IAEA activities, in particular from Member States establishing their first research reactor, indicated the need for further guidance on the development of the technical specifications for the bidding process of a research reactor project. In responding to these needs, a Nuclear Energy Series Report on

  20. Education and Training on ISIS Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X. [French Atomic Energy and Alternative Energies Commission, Paris (France)

    2013-07-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions.

  1. Education and Training on ISIS Research Reactor

    International Nuclear Information System (INIS)

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions

  2. Reactor containment research and development

    Energy Technology Data Exchange (ETDEWEB)

    Weil, N. A.

    1963-06-15

    An outline is given of containment concepts, sources and release rates of energy, responses of containment structures, effects of projectiles, and leakage rates of radioisotopes, with particular regard to major reactor accidents. (T.F.H.)

  3. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Science.gov (United States)

    Košťál, Michal; Milčák, Ján; Cvachovec, František; Jánský, Bohumil; Rypar, Vojtěch; Juříček, Vlastimil; Novák, Evžen; Egorov, Alexander; Zaritskiy, Sergey

    2016-02-01

    A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1-10 MeV) and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1). Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  4. Impact of proposed research reactor standards on reactor operation

    International Nuclear Information System (INIS)

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  5. Research reactor utilization in chemistry programmes

    International Nuclear Information System (INIS)

    The establishment and roles of the Philippines Atomic Energy Commission in promoting and regulating the use of atomic energy are explained. The research reactor, PRR-1 is being converted to TRIGA to meet the increasing demands of high-flux. The activities of PAEC in chemistry research programs utilizing reactor are discussed in detail. The current and future plans of Research and Development programs are also included. (A.J.)

  6. MIT research reactor. Power uprate and utilization

    International Nuclear Information System (INIS)

    The MIT Research Reactor (MITR) is a university research reactor located on MIT campus. and has a long history in supporting research and education. Recent accomplishments include a 20% power rate to 6 MW and expanding advanced materials fuel testing program. Another important ongoing initiative is the conversion to high density low enrichment uranium (LEU) monolithic U-Mo fuel, which will consist of a new fuel element design and power increase to 7 MW. (author)

  7. Operational experience with research reactors in Trombay

    International Nuclear Information System (INIS)

    The research reactors Apsara and Cirus, located at the Bhabha Atomic Research Centre, Trombay, Bombay have recently completed 30 years and 26 years of successful operation respectively. Both reactors have been used extensively for research, isotope production and manpower training. Several measures have been taken towards achieving this long successful operation. These include preventive maintenance, meticulous control on chemistry of fluid systems, proper physics management, surveillance measures and modifications to system and equipment based on experience. Extensive training of O and M personnel has been another important factor contributing towards this. Major topics detailed in this paper include detection of one leaky reactor vessel lattice tube in Cirus and its successful plugging, replacement of old control system hardware consisting of vacuum tubes with modern solid state devices in both the reactors, installation of S.S.liner in Apsara reactor pool and certain modifications towards improving fuel performance in Cirus. Some aspects of preventive maintenance are also dealt with. (author)

  8. Safety of Ghana Research Reactor (GHARR-1)

    International Nuclear Information System (INIS)

    The Ghana Research Reactor, GHARR-1 is a low power research rector with maximum thermal power lever of 30kW. The reactor is inherently safe and uses highly enriched uranium (HEU) as fuel, light water as moderator and beryllium as a reflector. The construction, commissioning and operation of this reactor have been subjected to the system of authorization and inspection developed by the Regulatory Authority, the Radiation Protection Board (RPB) with the assistance of the International Atomic Energy Agency. The reactor has been regulated by the preparation of an Interim Safety Analysis Report (SAR) based upon International Atomic Energy Agency standards. An International Safety Assessment peer review and safe inspections have confirmed a high level of operational safety of the reactor since it started operation in 1994. Since its operation there has been no significant reported incident/accidents. Several studies have validated the inherent safety of the reactor. The reactor has been used for neutron activation analysis of various samples, research and teaching. About 1000 samples are analysed annually. The final Safety Analysis Report (SAR) was submitted (after five years of extensive research on the operational reactor) to the Regulatory Authority for review in June 2000. (author)

  9. Utilization of the SLOWPOKE-2 research reactor

    International Nuclear Information System (INIS)

    SLOWPOKEs are typically low power research reactors that have a limited number of applications. However, a significant range of NAA can be performed with such reactors. This paper describes a SLOWPOKE-based NAA program that is performing a valuable series of studies in Jamaica, including geological mapping and pollution assessment. (author)

  10. No small fry: Decommissioning research reactors

    International Nuclear Information System (INIS)

    To get a permit to build a research reactor, would-be operators need to submit an initial decommissioning plan for the eventual shutdown of their new facility. This, however, was not a requirement back in the 1950s, 60s and 70s when most research reactors that are now nearing the end of their working lives were built. The result: many unused reactors sit idle in the middle of university campuses, research parks and hospital compounds, because their operators lack the proper plans to decommission them

  11. Effective utilization and management of research reactors

    International Nuclear Information System (INIS)

    The problem of utilizing a research reactor effectively is closely related to its management and therefore should not be considered separately. Too often, attention has been focused on specific techniques and methods rather than on the overall programme of utilization, with the result that skills and equipment have been acquired without any active continuing programme of applications and services. The seminar reported here provided a forum for reactor managers, users, and operators to discuss their experience. At the invitation of the Government of Malaysia, it was held at the Asia Pacific Development Centre, Kuala Lumpur, from 7 to 11 November 1983. It was attended by about 50 participants from 19 Member States; it is hoped that a report on the seminar, including papers presented, can be published and thus reach a wider audience. Thirty-one lectures and contributions were presented at a total of seven sessions: Research reactor management; Radiation exposure and safety; Research reactor utilization (two sessions); PUSPATI Research Reactor Project Development; Core conversion to low-enriched uranium, and safeguards; Research reactor technology. In addition, a panel discussed the causes and resolutions of the under-utilization of research reactors

  12. The first university research reactor in India

    International Nuclear Information System (INIS)

    As the first university research reactor in India, the low power, pool type with fixed core and low enriched uranium fuel research reactor is under construction in the Andhra university campus, Andhra Pradesh, India. The reactor is expected to be commissioned during 2001-2002. The mission of the reactor is to play the research center as a regional research facility catering to the needs of academic institutions and industrial organizations of this region of the country. Further, to encourage interdisplinary and multidisplinary research activities, to supply radioisotope and labelled compounds to the user institutions and to create awareness towards the peaceful uses of atomic energy. This report describes its objectives, status and future plans in brief. (H. Itami)

  13. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  14. Biological Psychiatry, Research And Industry

    Directory of Open Access Journals (Sweden)

    Ajai R. Singh

    2007-01-01

    Full Text Available In this section, we look at how the biological paradigm shift in psychiatry has been aided and abetted by industry for serving its own needs; which stymies other promising approaches; but which, nonetheless, can serve to advance biomedicine if checks and balances are in place. Industry, Biological Psychiatry And Non-pharmacological Advance The larger issue of benefit to society also concerns us when we realize that industry sponsorship is mainly for potential medications, not for trying to determine whether there may be non-pharmacological interventions that may be equally good, if not better. …a lack of balance in research activities, with a focus mainly on potential medications, is likely to divert talented researchers from the pursuit of profound scientific questions or divert them from the pursuit of questions without market relevance but with an aspect of public good. A company has little incentive to support trials evaluating whether inexpensive, off-patent drugs or whether non-pharmaceutical interventions, could replace their profitable patented drug (Baird, 2003 This is the reason why methods like yoga, psychotherapy, meditation, non-medicated non-mechanised relaxation will not find industry sponsors readily and may never be proved useful apart from anecdotal reporting.In which case to expect industry sponsorship to develop a larger therapeutic armamentarium, especially non-drug based, is wishful thinking. Moreover, non-pharmacological treatment procedures may not get desirable funding. This may not be as much of a problem in other branches of medicine as in psychiatry, wherein non-pharmacological interventions like psychotherapy still hold promise of therapeutic relief.If we do not see rigorous experimental research in psychotherapy or other non-drug modalities to the extent that we should, let us be careful before blaming the researchers for it. Where are the funds? Also, let us note that behind the great thrust towards Biological

  15. Higher power density TRIGA research reactors

    International Nuclear Information System (INIS)

    The uranium zirconium hydride (U-ZrH) fuel is the fundamental feature of the TRIGA family of reactors that accounts for its widely recognized safety, good performance, economy of operation, and its acceptance worldwide. Of the 65 TRIGA reactors or TRIGA fueled reactors, several are located in hospitals or hospital complexes and in buildings that house university classrooms. These examples are a tribute to the high degree of safety of the operating TRIGA reactor. In the early days, the majority of the TRIGA reactors had power levels in the range from 10 to 250 kW, many with pulsing capability. An additional number had power levels up to 1 MW. By the late 1970's, seven TRIGA reactors with power levels up to 2 MW had been installed. A reduction in the rate of worldwide construction of new research reactors set in during the mid 1970's but construction of occasional research reactors has continued until the present. Performance of higher power TRIGA reactors are presented as well as the operation of higher power density reactor cores. The extremely safe TRIGA fuel, including the more recent TRIGA LEU fuel, offers a wide range of possible reactor configurations. A long core life is assured through the use of a burnable poison in the TRIGA LEU fuel. In those instances where large neutron fluxes are desired but relatively low power levels are also desired, the 19-rod hexagonal array of small diameter fuel rods offers exciting possibilities. The small diameter fuel rods have provided extremely long and trouble-free operation in the Romanian 14 MW TRIGA reactor

  16. Significance of residual activity due to long-lived beta emitting radionuclides in reflectors and biological shield of research reactor, CIRUS - for decommissioning

    International Nuclear Information System (INIS)

    Reactor system and structural components (SSCs) develop residual activity due to neutron irradiation during the operation of the reactor. The neutron activated components, are of significance in any planning of decommissioning of the reactors. Within the wide spectrum of radionuclides representing the radioactive inventory of a shut down nuclear facility, there are several radionuclides, mainly long lived, low energy beta emitters which pose a concern in long term waste management program. Even though in terms of radiation level, 60Co will be most predominant after few years of shutdown, long lived activation products like 59Ni, 63Ni, 55Fe, 14C and 3H etc. contribute to major activity on the irradiated structural components and would be of concern in the long term waste management. Quantification of such nuclides are essential for release of materials for reuse and recycling as per the clearance levels prescribed by the regulatory body. An attempt is made in this work to evaluate the significance of such radionuclides in the Graphite reflector and concrete bio-shield of CIRUS. (author)

  17. Decommissioning of the Neuherberg Research Reactor (FRN)

    International Nuclear Information System (INIS)

    The Neuherberg Research Reactor is of type TRIGA MARK III with 1 MW steady state power and pulsable up to 2000 MW. During more than ten years of operation 12000 MWh and 6000 reactor pulses had been performed. In spite of its good technical condition and of permanent safe operation without any failures, the decommissioning of the Neuherberg research reactor was decided by the GSF board of directors to save costs for maintaining and personnel. As the mode of decommissioning the safe enclosure was chosen which means that the fuel elements will be transferred back to the USA. All other radioactive reactor components will be enclosed in the reactor block. Procedures for licensing of the decommissioning, dismantling procedures and time tables are presented

  18. Conceptual design of multipurpose compact research reactor

    International Nuclear Information System (INIS)

    Conceptual design of the high-performance and low-cost multipurpose compact research reactor which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  19. Power Control Method for Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baang, Dane; Suh, Yongsuk; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Considering safety-oriented design concept and other control environment, we developed a simple controller that provides limiting function of power change- rate as well as fine tracking performance. The design result has been well-proven via simulation and actual application to a TRIGA-II type research reactor. The proposed controller is designed to track the PDM(Power Demand) from operator input as long as maintaining the power change rate lower than a certain value for stable reactor operation. A power control method for a TRIGA-II type research reactor has been designed, simulated, and applied to actual reactor. The control performance during commissioning test shows that the proposed controller provides fine control performance for various changes in reference values (PDM), even though there is large measurement noise from neutron detectors. The overshoot at low power level is acceptable in a sense of reactor operation.

  20. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari

    2004-10-01

    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  1. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    These technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded

  2. Refurbishment of research reactor IRT in Sofia

    International Nuclear Information System (INIS)

    A decommissioning strategy of the research reactor IRT-Sofia is subjected to a refurbishment into critical assembly is presented. The main stages in the planning and management of a partial decommissioning are exposed. (author)

  3. Problems and experience of research reactor decommissioning

    International Nuclear Information System (INIS)

    According to the IAEA research reactor database there are about 300 research reactors worldwide. At present above 30% of them have lifetime more than 35 years, 60% - more then 25 years. After the Chernobyl accident significant efforts have been made by many countries to modernize old research reactors aiming, first of all, at ensuring of its safe operation. However, a large number of aging research reactor will be facing shutdown in the near future. Before developing the design and planning of the works it is necessary to define the concept of the reactor decommissioning. It is defined by the time of the beginning of dismantling works after the reactor shutdown and the finite state of the reactor site.The concept of the reactor decommissioning provides 3 variants in a general case: reactor conservation, or partial dismantling, or complete dismantling to 'green field' state. Specialists of three International institutions (European Commission, IAEA and the Nuclear Energy Agency/Organization for Economic Cooperation and Development) have developed a detailed plan of all actions and operations on nuclear power plants decommissioning in the framework of a joint project for cost assessment. For the reactor decontamination the following main constructions, equipment and devices are necessary: temporary storage facility for the spent fuel; general site-dismantling equipment including manipulators and 'hot' cells; facilities for 'active' equipment, personnel, tooling and washing decontamination; equipment for concentration of liquid and compactness of solid radioactive waste; temporary storage facility for radioactive waste; instrumentation and radiometric devices including , α,β,γ-spectrometers; transportable containers and other means for transportation of fuel and radioactive materials

  4. Research reactor coalitions - Second year progress report

    International Nuclear Information System (INIS)

    The IAEA, in line with its statute and mandatory responsibilities to support its member states in the promotion of peaceful uses of nuclear energy, has an initiative to promote the formation of coalitions of research reactor operators and stakeholders. These networks of research reactors are conducting joint research or other shared activities, have the potential to increase research reactor utilization and thus to improve sustainability at the same time enhancing nuclear material security and non-proliferation objectives. This effort builds upon existing IAEA efforts to enhance research reactor strategic planning, to encourage formation of research reactor networks, and to promote regional and international cooperation between research reactors. The paper will describe the Agency's progress in the second year of activities to assist in the formation of research reactor coalitions. The paper will describe the Agency's efforts in serving a catalytic and 'match-making' role for the formation of new the coalition relationships, and its activities in organizing various missions and meetings for exploratory and organizational discussions on possible coalitions and networks. The paper presents the concrete progress that has been made during the past year, including new coalitions in Eastern Europe, the Caribbean, Latin America and Central Asia. These coalitions cover a wide range of activities, for example, enhancing the regional infrastructure and capabilities for neutron sciences, developing new supplies of medicinal radioisotopes, and expanding the reach of reactor physics training courses. The paper also outlines the path forward that has been established for 2009 to support these coalitions as they mature and develop toward self-sufficiency. (author)

  5. Nuclear Research Center IRT reactor dynamics calculation

    International Nuclear Information System (INIS)

    The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs

  6. Safety review, assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    In 1998, the NNSA organized to complete the nuclear safety review on the test loop in-reactor operation of the High-flux Engineering Experimental Reactor (HFEER) and the re-operation of the China Pulsed Reactor and the Uranium-water Criticality Facility. The NNSA conducted the nuclear safety review on the CP application of the China Experimental Fast Reactor (CEFR) and the siting of China Advanced Research Reactor (CARR), and carried out the construction supervision on HTR-10, and dealt with the event about the technological tube breakage of HWRR and other events

  7. Current status and prospects of research reactors

    International Nuclear Information System (INIS)

    Full text: The first nuclear research reactors (RR) appeared in the 1940s. Their initial purpose was to provide knowledge of the main processes associated with neutron-induced nuclear reactions. Later, the rang of problems addressed expanded substantially. Besides fundamental research in the properties of matter, such reactors are successfully used for dealing with problems in the fields of materials science, nuclear engineering, medicine, isotope production, education, etc. Over the whole period of RR fleet growth, more than six hundred nuclear research facilities were built in 70 countries of the world. As of the end of 2008, the number of Russian research reactors in service was about 20% of the globally operating RR fleet. This paper discusses the current status of the world's RR fleet and describes the capabilities of the experimental reactor facilities existing in Russia. In the 21st century, research reactors will remain in demand to solve scientific and technological problems for innovative development of society. The emerging renaissance of nuclear power, the expanding RR uses for production of isotopes and other applications, the increase in the number of countries willing to use nuclear technologies in energy production, industry and science - all contribute to a rebirth of interest in research reactors. One of the ways to improve the experimental capabilities lies in radical upgrading of the reactor facilities with qualitative changes in the main neutronic characteristics of the core. The associated design approaches are illustrated with the example of the IBR-2M reactor at the JNRI in Dubna. The imperative need restricting the spread of nuclear threat leads us to give up using highly enriched uranium in most research reactors. Development of RR fuel with reduced enrichment in uranium has been one of the priority objectives of NIKIET for many years. This paper presents the latest results obtained along these lines, as applied to pool-type research

  8. Current status and prospects of research reactors

    International Nuclear Information System (INIS)

    Full text: The first nuclear research reactors (RR) appeared in the 1940s. Their initial purpose was to provide knowledge of the main processes associated with neutron-induced nuclear reactions. Later, the range of problems addressed expanded substantially. Besides fundamental research in the properties of matter, such reactors are successfully used for dealing with problems in the fields of materials science, nuclear engineering, medicine, isotope production, education, etc. Over the whole period of RR fleet growth, more than six hundred nuclear research facilities were built in 70 countries of the world. As of the end of 2008, the number of Russian research reactors in service was about 20% of the globally operating RR fleet. This paper discusses the current status of the world's RR fleet and describes the capabilities of the experimental reactor facilities existing in Russia. In the 21st century, research reactors will remain in demand to solve scientific and technological problems for innovative development of society. The emerging renaissance of nuclear power, the expanding RR uses for production of isotopes and other applications, the increase in the number of countries willing to use nuclear technologies in energy production, industry and science - all contribute to a rebirth of interest in research reactors. One of the ways to improve the experimental capabilities lies in radical upgrading of the reactor facilities with qualitative changes in the main neutronic characteristics of the core. The associated design approaches are illustrated with the example of the IBR-2M reactor at the JNRI in Dubna. The imperative need for restricting the spread of nuclear threat leads us to give up using highly enriched uranium in most research reactors. Development of RR fuel with reduced enrichment in uranium has been one of the priority objectives of NIKIET for many years. This paper presents the latest results obtained along these lines, as applied to pool-type research

  9. On the utilization of neutron beams of research reactors in research and applications

    International Nuclear Information System (INIS)

    Nuclear research reactors are the most widely available neutron sources, and they are capable of producing very high fluxes of neutrons having a considerable range of energies, from a few MeV to 10 MeV. Therefore, these neutrons can be used in many fields of basic research and for applications in physics, chemistry, medicine, biology, etc. Experiments with research reactors over the last 50 years have laid the foundations of today's nuclear technology. In addition, research reactors continue to be utilized as facilities for testing materials and in training manpower for nuclear programs, because basic training on a research reactor provides an essential understanding of the nuclear process, and personnel become accustomed to work under the special conditions resulting from irradiation and contamination risks

  10. Supply of enriched uranium for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  11. Research nuclear reactor RA - Annual Report 1997

    International Nuclear Information System (INIS)

    RA reactor is not in operation since 1984, activities related to revitalisation of the RA reactor started in 1986. The planned actions related to renewal of the reactor components were finished except for the most important action, related to exchange of complete reactor instrumentation which was delayed. Only 80% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the sanctions imposed to our country. The existing RA reactor instrumentation was dismantled. Control and maintenance of the reactor components was done regularly and efficiently. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. There have been on the average 42 employees at the RA reactor which is considered sufficient for maintenance and repair conditions. The problem of financing the reactor activities and maintenance remains unsolved. Research reactor RA Annual report for year 1997 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  12. Research nuclear reactor RA - Annual Report 1996

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor started in 1986, were continued in 1996. All the planned actions related to renewal of the reactor components were finished. The last, and at the same time most important action, related to exchange of complete reactor instrumentation is underway, delayed. The delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Only 80% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA. The existing RA reactor instrumentation was dismantled. Control and maintenance of the reactor components was done regularly and efficiently. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. There have been on the average 43 employees at the RA reactor which is considered sufficient for maintenance and repair conditions. The problem of financing the reactor activities and maintenance remains unsolved. Research reactor RA Annual report for year 1996 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  13. Boson/Fermion Janus Particles

    CERN Document Server

    Tsekov, R

    2016-01-01

    Thermodynamically, bosons and fermions differ by their statistics only. A general entropy functional is proposed by superposition of entropic terms, typical for different quantum gases. The statistical properties of the corresponding Janus particles are derived by variation of the weight of the boson/fermion fraction. It is shown that di-bosons and anti-fermions separate in gas and liquid phases, while three-phase equilibrium appears for poly-boson/fermion Janus particles.

  14. Status of Research Reactor Utilization in Brazil

    International Nuclear Information System (INIS)

    Brazil has four research reactors in operation: the IEA-R1, a pool type research reactor of 5 MW; the IPR-R1, a TRIGA Mark I type research reactor of 100 kW; the ARGONAUTA, an Argonaut type research reactor of 500 W; and the IPEN/MB-01 a critical facility of 100 W. Research reactor utilization has more than fifty years in Brazil. The first three reactors, constructed in the late 50's and early 60's at university campus in Sao Paulo, Belo Horizonte and Rio de Janeiro, had their utilization for training, teaching and nuclear research. The IPEN/MB-01, designed and constructed in IPEN in the late 80's, is utilized for the development and qualification of reactor physics calculation for PWR core application. The IEA-R1 has had its application and utilization increased through the years and it is presently used for radioisotope production, neutron beam application, neutrongraphy, neutron activation analysis, and limited fuel and material irradiation tests, besides the regular use for training and teaching. The low power of the reactor and the lack of hot cells for post irradiation analysis limits its technical application for the nuclear fuel industry. Brazil has two nuclear power plants in operation, one unit starting construction and four more units planned for the next two decades. Brazil has significant quantities of uranium ore and has expertise in all the fuel cycle steps, including uranium enrichment, and produces the fuel assemblies for the nuclear power plants. These industrial activities demand the need of material and fuel irradiation tests. IPEN produces radiopharmaceutical kits for the treatment of more than three million patients each year. The majority of the radiopharmaceutical kits is produced from imported radioisotopes. The increasing price and shortage of world supply of 99mTc leads also to the need of increasing the radioisotope production in Brazil. Due to these new demands, the Brazilian Nuclear Energy Commission is analyzing the costs and benefits

  15. Utilization of the Research Reactor ASTRA

    International Nuclear Information System (INIS)

    A short history and an overview over present research activities at the 10 MW Pool Type Reactor ASTRA of the Austrian Research Centre Seibersdorf are given. The projects comprise: medical and industrial isotope production, material irradiations (e.g. silicon doping), neutron activation analysis, geological dating and radiation induced mutation techniques for agricultural research. (author)

  16. Material test reactor fuel research at the BR2 reactor

    International Nuclear Information System (INIS)

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  17. Remote dismantlement activities for the Argonne CP-5 Research Reactor

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE's) Robotics Technology Development Program (RTDP) is participating in the dismantlement of a mothballed research reactor, Chicago Pile Number 5 (CP-5), at Argonne National Laboratory (ANL) to demonstrate technology developed by the program while assisting Argonne with their remote system needs. Equipment deployed for CP-5 activities includes the dual-arm work platform (DAWP), which will handle disassembly of reactor internals, and the RedZone Robotics-developed 'Rosie' remote work vehicle, which will perform size reduction of shield plugs, demolition of the biological shield, and waste packaging. Remote dismantlement tasks are scheduled to begin in February of 1997 and to continue through 1997 and beyond

  18. Safety upgrades to the NRU research reactor

    International Nuclear Information System (INIS)

    The NRU (National Research Universal) Reactor is a 135 MW thermal research facility located at Chalk River Laboratories, and is owned and operated by Atomic Energy of Canada Limited. One of the largest and most versatile research reactors in the world, it serves as the R and D workhorse for Canada's CANDU business while at the same time filling the role as one of the world's major producers of medical radioisotopes. AECL plans to extend operation of the NRU reactor to approximately the year 2005 when a new replacement, the Irradiation Research Facility (IRF) will be available. To achieve this, AECL has undertaken a program of safety reassessment and upgrades to enhance the level of safety consistent with modem requirements. An engineering assessment/inspection of critical systems, equipment and components was completed and seven major safety upgrades are being designed and installed. These upgrades will significantly reduce the reactor's vulnerability to common mode failures and external hazards, with particular emphasis on seismic protection. The scheduled completion date for the project is 1999 December at a cost approximately twice the annual operating cost. All work on the NRU upgrade project is planned and integrated into the regular operating cycles of the reactor; no major outages are anticipated. This paper describes the safety upgrades and discusses the technical and managerial challenges involved in extending the operating life of the NRU reactor. (author)

  19. Thermal hydraulic analysis of nuclear research reactors

    International Nuclear Information System (INIS)

    A loss of coolant accident (LOCA) can cause total or partial core uncovery which is followed by substantial fuel element temperature increase due to fuel residual heat. It is essential to demonstrate that such a temperature increase does not lead to excessive core melting and to significant radioactive material release into the reactor building and consequently to the environment. The THEAP computer codes able to perform reliable analysis of such accidents have been developed. THEAP-I is a computer code developed with the aim to contribute to the safety analysis of the MTR open pool research reactors. THEAP-I is designed for three dimensional, transient thermal/hydraulic analysis of a thermally interacting channel bundle totally immersed into water or air, such as the reactor core. The mathematical and physical models and methods of the solution are given as well as the code description and the input data. A sample problem is included, referring to the Greek Research Reactor analysis, under a hypothetical severe loss of coolant accident. The micro computer version of the code is also described. More emphasis is given in the new features of the code (i.e. input data structure). A set of instructions for running in an IBM-AT2 computer with the microsoft FORTRAN V4.0 is included together with a sample problem referring to the Greek Research Reactor. THEAP-I can be used also for other MTR open pool research reactors. Refs and figs

  20. Description of the Korean multipurpose research reactor

    International Nuclear Information System (INIS)

    The Korean Multipurpose Research Reactor (KMRR) was still under construction at the time of the conference, and was scheduled for completion in 1994. It has since been completed. Owned by Korean Atomic Energy Research Institute (KAERI), KMRR is designed for fuel and materials testing, production of key nuclides (including 99Mo, 131I, 192Ir, 60Co, and transmutation doped Si), neutron activation analysis, and neutron radiography. KMRR is a 30 MWth open pool type research reactor, with a forced upward light water moderator and coolant flow, and a heavy water annular reflector. The fuel is made from low-enriched U-Si-Al alloy, with finned aluminum cladding. Two configurations of fuel bundle have been designed, namely, hexagonal 36 element and circular 18 element. The reactor has seven tangential beam tubes, the position of which has been carefully selected to maximize thermal neutron flux while minimizing fast neutrons and gamma. Heat is transported to two heat exchangers by the primary coolant circuit, and thence by the secondary coolant circuit to a set of cooling towers. The reactor regulating system has two stepping motors that drive four hafnium control rods. The control functions are performed by two redundant programmable controllers. The reactor protection system is equipped with four hafnium shutoff rods driven by a fail-safe hydraulic circuit. The design of KMRR uses leading edge technology, and it might well figure among the best multipurpose research reactors in the world. 5 figs., 1 tab

  1. Wastewater Treatment in a Hybrid Biological Reactor (HBR) :Nitrification Characteristics

    Institute of Scientific and Technical Information of China (English)

    JIAN-LONG WANG; LI-BO WU

    2004-01-01

    To investigate the nitrifying characteristics of both suspended- and attached- biomass in a hybrid bioreactor. Methods The hybrid biological reactor was developed by introducing porous ceramic particles into the reactor to provide the surface for biomass attachment. Microorganisms immobilized on the ceramics were observed using scanning electron microscopy (SEM). All chemical analyses were performed in accordance with standard methods. Results The suspended- and attached-biomass had approximately the same nitrification activity. The nitrifying kinetic was independent of the initial biomass concentration, and the attached-biomass had a stronger ability to resist the nitrification inhibitor. Conclusion The attached biomass is superior to suspended-biomass for nitrifying wastewater, especially that containing toxic organic compounds. The hybrid biological reactor consisting of suspended- and attached-biomass is advantageous in such cases.

  2. Initiatives in biological research in Indian psychiatry

    OpenAIRE

    Shrivatava, Amresh

    2010-01-01

    Biological psychiatry is an exploratory science for mental health. These biological changes provide some explicit insight into the complex area of ‘brain-mind and behavior’. One major achievement of research in biological field is the finding to explain how biological factors cause changes in behavior. In India, we have a clear history of initiatives in research from a biological perspective, which goes back to 1958. In the last 61 years, this field has seen significant evolution, precision a...

  3. Status report of Indonesian research reactor

    International Nuclear Information System (INIS)

    A general description of three Indonesian research reactor, its irradiation facilities and its future prospect are described. Since 1965 Triga Mark II 250 KW Bandung, has been in operation and in 1972 the design powers were increased to 1000 KW. Using core grid form Triga 250 KW BATAN has designed and constructed Kartini Reactor in Yogyakarta which started its operation in 1979. Both of this Triga type reactors have served a wide spectrum of utilization such as training manpower in nuclear engineering, radiochemistry, isotope production and beam research in solid state physics. Each of this reactor have strong cooperation with Bandung Institute of Technology at Bandung and Gajah Mada University at Yogyakarta which has a faculty of Nuclear Engineering. Since 1976 the idea to have high flux reactor has been foreseen appropriate to Indonesian intention to prepare infrastructure for nuclear industry for both energy and non-energy related activities. The idea come to realization with the first criticality of RSG-GAS (Multipurpose Reactor G.A. Siwabessy) in July 1987 at PUSPIPTEK Serpong area. It is expected that by early 1992 the reactor will reached its full power of 30 MW and by end 1992 its expected that irradiation facilities will be utilized in the future for nuclear scientific and engineering work. (author)

  4. Research reactor spent fuel management in Argentina

    International Nuclear Information System (INIS)

    The research reactor spent fuel (RRSF) management strategy will be presented as well as the interim storage experience. Currently, low-enriched uranium RRSF is in wet interim storage either at reactor site or away from reactor site in a centralized storage facility. High-enriched uranium RRSF from the centralized storage facility has been sent to the USA in the framework of the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The strategy for the management of the RRSF could implement the encapsulation for interim dry storage. As an alternative to encapsulation for dry storage some conditioning processes are being studied which include decladding, isotopic dilution, oxidation and immobilization. The immobilized material will be suitable for final disposal. (author)

  5. BNCT activities at Slovenian TRIGA research reactor

    International Nuclear Information System (INIS)

    It has been reported that satisfactory thermal/epithermal neutron beams for Boron Neutron Capture Therapy (BNCT) could be designed at TRIGA research reactors These reactors are generally perceived as being safe to install and operate in populated areas. This contribution presents the most recent BNCT research activities on the 'Jozef Stefan' Institute, where epithermal neutron beam for 'in-vitro' irradiation has been developed and experimentally verified. Furthermore, The Monte Carlo feasibility study of development of the epithermal neutron beam for BNCT clinical trials of human patients in thermalising column (TC) of TRIGA reactor has been carried out. The simulation results prove, that a BNCT irradiation facility with performances, comparable to existing beam throughout the world, could be installed in TC of the TRIGA reactor. (author)

  6. Nuclear reactor safety research in Kazakhstan

    International Nuclear Information System (INIS)

    Full text : The paper summarizes activities being implemented by the National Nuclear Center of the Republic of Kazakhstan in support of safe operation of nuclear reactors; shows its crucial efforts and further road map in this line. As is known, the world community considers nuclear reactor safety as one of the urgent research areas. Kazakhstan has been pursuing studies in support of nuclear energy safety since early 80s. The findings allow to coordinate available computational methods and design new ones while validating new NPP Projects and making analysis for reactor installations available

  7. Utilization of research reactors in universities and their medical applications

    International Nuclear Information System (INIS)

    In Japan, five research reactors and a critical assembly are operated by the universities. They are opened to all university researchers, the system of which is financially supported by the Ministry of Education, Culture and Science of the Japanese government. Usually KUR is operated eight cycles per year. One cycle consists of the following four week operation: 1. Mainly for researchers from other universities; 2. Mainly for researchers in the institute; 3. Mainly for beam experiment; 4. Sort time experiment. In the weeks of 1 ∼ 3 the KUR is operated continously from Tuesday morning to Friday evening. The experiment include studies on physics, chemistry, biology, medicine, engineering etc. Recently the medical application of research reactors has become popular in Japan. The new technique of the boron neutron capture thereby has been successfully applied to brain tumors and will be to melanoma (skin cancer) in near future. (author)

  8. Making better use of research reactors

    International Nuclear Information System (INIS)

    Some 250 research reactors are in operation in the world today, and there are problems in putting them to the most fruitful use. The difficulties - of trained manpower, of auxiliary equipment, of satisfactory research programmes, of co-ordination, between the various disciplines - are common to all users. But as is only to be expected, they press more heavily on the newly-established centres, particularly those in the developing countries which are lacking in long experience in research and usually severely limited as to technical manpower and money. The IAEA has been turning its attention to this question for the past three or four years - ever since, in fact, its early assistance missions and other field operations brought it into close contact with the operations of numerous Member States. The task of providing assistance and advice in this matter is growing. Many centres have been building research reactors under bilateral arrangements; with the completion of their projects this form of aid usually ends, and they look to IAEA for help in operating the reactors. Although some critics consider that difficulties have been caused by premature construction of research reactors, before well-founded programmes of nuclear research had been developed in the countries concerned, several valid motives have led to the establishment of some of these centres at an early stage. A research reactor often provides an effective stimulant for scientific research in the country. It is a remarkably versatile tool for workers in many fields of science and technology. There have been instances where the establishment of a research reactor has had a great impact on the scientific education of a country and has led to a salutary reappraisal and reforms. A reactor is sometimes considered to be a particularly effective means of retaining in the country men trained in the nuclear field. This particular problem is common to most countries. In fact, it is a feature of the present age that

  9. Research on plasma core reactors

    Science.gov (United States)

    Jarvis, G. A.; Barton, D. M.; Helmick, H. H.; Bernard, W.; White, R. H.

    1976-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with one-meter diameter by one-meter long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17 cm thick by 89 cm diameter beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000 cu cm aluminum canister in the central region was fueled with UF6 gas and fission density distributions determined. These results are to be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  10. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    For a period of about 10 years AECL had a significant program looking into the possibility of developing U3Si as a high density replacement for the UO2 pellet fuel in use in CANDU power reactors. The element design consisted of a Zircaloy-clad U3Si rod containing suitable voidage to accommodate swelling. We found that the binary U3Si could not meet the defect criterion for our power reactors, i.e., one month in 300 degree C water with a defect in the sheath and no significant damage to the element. Since U3Si could not do the job, a new corrosion resistant ternary U-Si-Al alloy was developed and patented. Fuel elements containing this alloy came close to meeting the defect criterion and showed slightly better irradiation stability than U3Si. Shortly after this, the program was terminated for other reasons. We have made much of this experience available to the Low Enrichment Fuel Development Program and will be glad to supply further data to assist this program

  11. RMB. The new Brazilian multipurpose research reactor

    International Nuclear Information System (INIS)

    Brazil has four research reactors (RR) in operation: IEA-R1, a 5 MW pool type RR; IPR-R1, a 100 kW TRIGA type RR; ARGONAUTA, a 500 W Argonaut type RR, and IPEN/MB-01, a 100 W critical facility. The first three were constructed in the 50's and 60's, for teaching, training, and nuclear research, and for many years they were the basic infrastructure for the Brazilian nuclear developing program. The last, IPEN/MB-01, is the result of a national project developed specifically for qualification of reactor physics codes. Considering the relative low power of Brazilian research reactors, with exception of IEAR1, none of the other reactors are feasible for radioisotope production, and even IEA-R1 has a limited capacity. As a consequence, since long ago, 100% of the Mo-99 needed to attend Brazilian nuclear medicine services has been imported. Because of the high dependence on external supply, the international Moly-99 supply crisis that occurred in 2008/2009 affected significantly Brazilian nuclear medicine services, and as presented in previous IAEA events, in 2010 Brazilian government formalized the decision to build a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be a 30 MW open pool type reactor, using low enriched uranium fuel. The facility will be part of a new nuclear research centre, to be built about 100 kilometres from Sao Paulo city, in the southern part of Brazil. The new nuclear research centre will have several facilities, to use thermal and cold neutron beams; to produce radioisotopes; to perform neutron activation analysis; and to perform irradiations tests of materials and fuels of interest for the Brazilian nuclear program. An additional facility will be used to store, for at least 100 years, all the fuel used in the reactor. The paper describes the main characteristics of the new centre, emphasising the research reactor and giving a brief description of the laboratories that will be constructed, It also presents the

  12. RMB. The new Brazilian multipurpose research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, Jose Augusto; Soares, Adalberto Jose [Comissao Nacional de Energia Nuclear (CNEN) (Brazil)

    2015-01-15

    Brazil has four research reactors (RR) in operation: IEA-R1, a 5 MW pool type RR; IPR-R1, a 100 kW TRIGA type RR; ARGONAUTA, a 500 W Argonaut type RR, and IPEN/MB-01, a 100 W critical facility. The first three were constructed in the 50's and 60's, for teaching, training, and nuclear research, and for many years they were the basic infrastructure for the Brazilian nuclear developing program. The last, IPEN/MB-01, is the result of a national project developed specifically for qualification of reactor physics codes. Considering the relative low power of Brazilian research reactors, with exception of IEAR1, none of the other reactors are feasible for radioisotope production, and even IEA-R1 has a limited capacity. As a consequence, since long ago, 100% of the Mo-99 needed to attend Brazilian nuclear medicine services has been imported. Because of the high dependence on external supply, the international Moly-99 supply crisis that occurred in 2008/2009 affected significantly Brazilian nuclear medicine services, and as presented in previous IAEA events, in 2010 Brazilian government formalized the decision to build a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be a 30 MW open pool type reactor, using low enriched uranium fuel. The facility will be part of a new nuclear research centre, to be built about 100 kilometres from Sao Paulo city, in the southern part of Brazil. The new nuclear research centre will have several facilities, to use thermal and cold neutron beams; to produce radioisotopes; to perform neutron activation analysis; and to perform irradiations tests of materials and fuels of interest for the Brazilian nuclear program. An additional facility will be used to store, for at least 100 years, all the fuel used in the reactor. The paper describes the main characteristics of the new centre, emphasising the research reactor and giving a brief description of the laboratories that will be constructed, It also

  13. Determination of research reactor fuel burnup

    International Nuclear Information System (INIS)

    This report was prepared by a Consultants Group which met during 12-15 June 1989 at the Jozef Stefan Institute, Yugoslavia, and during 11-13 July 1990 at the IAEA Headquarters in Vienna, Austria, with subsequent contributions from the Consultants. The report is intended to provide information to research reactor operators and managers on the different, most commonly used methods of determining research reactor fuel burnup: 1) reactor physics calculations, 2) measurement of reactivity effects, and 3) gamma ray spectrometry. The advantages and disadvantages of each method are discussed. References are provided to assist the reactor operator planning to establish a programme for burnup determination of fuel. Destructive techniques are not included since such techniques are expensive, time consuming, and not normally performed by the reactor operators. In this report, TRIGA fuel elements are used in most examples to describe the methods. The same techniques however can be used for research reactors which use different types of fuel elements. 22 refs, 13 figs, 2 tabs

  14. Status report of Indonesian research reactors

    International Nuclear Information System (INIS)

    A general description of the three Indonesia research reactors, their irradiation facilities and future prospect are given. The 250 kW Triga Mark II in Bandung has been in operation since 1965 and in 1972 its designed power was increased to 1000 kW. The core grid from the previous 250 kW Triga Mark II was then used by Batan for designing and constructing the Kartini reactor in Yogyakarta. This reactor commenced its operation in 1979. Both Triga reactors have served a wide spectrum of utilization such as for manpower training in nuclear engineering, radiochemistry, isotope production, and beam research in solid state physics. The Triga reactor management in Bandung has a strong cooperation with the Bandung Institute of Technology and the one in Yogyakarta with the Gadjah Mada University which has a Nuclear Engineering Department at its Faculty of Engineering. In 1976 there emerged an idea to have a high flux reactor appropriate for Indonesia's intention to prepare an infrastructure for both nuclear energy and non-energy industry era. Such an idea was then realized with the achievement of the first criticality of the RSG-GAS reactor at the Serpong area. It is now expected that by early 1992 the reactor will reach its full 30 MW power level and by the end of 1992 the irradiation facilities be utilizable fully for future scientific and engineering work. As a part of the national LEU fuel development program a study has been underway since early 1989 to convert the RSG-GAS reactor core from using oxide fuel to using higher loading silicide fuel. (author)

  15. RRFM (European Research Reactor Conference) 2011 Transactions

    International Nuclear Information System (INIS)

    The RRFM conference is an international forum for researchers, operators and decision-makers to discuss all significant aspects of Research Reactor utilisation. In order to improve operational efficiency and fuel safety and contribute to the search for back-end solutions for spent fuel

  16. Event management in research reactors

    International Nuclear Information System (INIS)

    In the Radiological and Nuclear Safety field, the Nuclear Regulatory Authority of Argentina controls the activities of three investigation reactors and three critical groups, by means of evaluations, audits and inspections, in order to assure the execution of the requirements settled down in the Licenses of the facilities, in the regulatory standards and in the documentation of mandatory character in general. In this work one of the key strategies developed by the ARN to promote an appropriate level of radiological and nuclear safety, based on the control of the administration of the abnormal events that its could happen in the facilities is described. The established specific regulatory requirements in this respect and the activities developed in the entities operators are presented. (Author)

  17. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H2O2(toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H2O2)-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H2O2(or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  18. Biological Research for Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-15

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H{sub 2}O{sub 2}(toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H{sub 2}O{sub 2})-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H{sub 2}O{sub 2}(or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells.

  19. Thermal reactor safety CNEN research programs

    International Nuclear Information System (INIS)

    A review of CNEN (National Committee for Nuclear Energy, Italy) programs in the field of thermal reactor safety research is given. The ASCOT program (research program on safety aspects of thermal reactor cores) is briefly described. ASCOT is a program aiming at studying fuel behavior under accident conditions; it is mainly focused on development and experimental testing of analytical models and computer codes relevant to thermohydraulic and mechanical behavior of fuel under transient conditions. The program, fully financed by CNEN, is carried out in CNEN laboratories, in CISE laboratories (particularly for thermohydraulic experiments) and in JRC Ispra Centre (in pile experiments, by ESSOR reactor). Other CNEN research programs in the field of water reactor safety are also described; they concern thermohydraulics and mechanics problems (model development and experimental tests on pressure suppression, ECCS, etc.) and are performed both in CNEN laboratories and in other Italian organizations, under CNEN sponsorship. A short description of some facilities used for ASCOT and other CNEN programs is given: SARA loop (a loop of ESSOR reactor, basically conceived for safety tests, including operation with failed fuel rods); CIRCE and IETI loops (CISE, large-scale facilities for thermohydraulic experiments on blow-down, ECCS, etc.); ADI (a CNEN, large-scale loop where pressure suppression experiments are performed), and so on. Finally, the report describes interesting safety researches on various types of reactors: researches on external events (seismology, etc.), radioactive effluent control (e.g., filtration, effects to environment); these researches also are carried out directly in CNEN laboratories or in other Italian organizations, under CNEN sponsorship. Information is given on a national seismological network and on other installations for these experimental researches

  20. Advanced fuel in the Budapest research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hargitai, T.; Vidovsky, I. [KFKI Atomic Energy Research Inst., Budapest (Hungary)

    1997-07-01

    The Budapest Research Reactor, the first nuclear facility of Hungary, started to operate in 1959. The main goal of the reactor is to serve neutron research, but applications as neutron radiography, radioisotope production, pressure vessel surveillance test, etc. are important as well. The Budapest Research Reactor is a tank type reactor, moderated and cooled by light water. After a reconstruction and upgrading in 1967 the VVR-SM type fuel elements were used in it. These fuel elements provided a thermal power of 5 MW in the period 1967-1986 and 10 MW after the reconstruction from 1992. In the late eighties the Russian vendor changed the fuel elements slightly, i.e. the main parameters of the fuel remained unchanged, however a higher uranium content was reached. This new fuel is called VVR-M2. The geometry of VVR-SM and VVR-M2 are identical, allowing the use to load old and new fuel assemblies together to the active core. The first new type fuel assemblies were loaded to the Budapest Research Reactor in 1996. The present paper describes the operational experience with the new type of fuel elements in Hungary. (author)

  1. EURATOM research framework programmes on reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Deffrennes, M.; Hugon, M.; Manolatos, P.; Van Goethem, G.; Webster, S. [European Commission, DG Research J2 Nuclear Fission and Radiation Protection CDMA 1/55, Brussels (Belgium)

    2007-07-01

    The activities of the European Commission (EC) in the field of nuclear energy are governed by the Treaty establishing the European Atomic Energy Community (EURATOM). The research activities of the European Union (EU) are designed as multi-annual Framework Programmes (FP) managed by the European Commission. The EURATOM Research and Training Programmes cover both nuclear Fusion and Fission. EURATOM-FP6 supports the following projects: -) NULIFE project: Nuclear Plant Life Prediction; -) COVERS project: VVER Safety Research; -) PERFECT project: Prediction of Irradiation Damage Effects on Reactor Components; -) NURESIM project: European Platform for Nuclear Reactor Simulations; -)EC-SARNET project: Sustainable Integration of European Research on Severe Accident Phenomenology; -) RAPHAEL project: Reactor for Process Heat, Hydrogen and Electricity Generation; -)GCFR project: Gas-Cooled Fast Reactor; -) EUROTRANS project: Transmutation of HLW in ADS; -) JHR-CA project: Jules Horowitz Reactor Co-ordination Action; and NEPTUNO project: Nuclear European Platform of Training and University Organisations. Other parts of the EURATOM FP, covering Waste Management and Radiation Protection, as well as Fusion Energy, are not detailed in this paper.

  2. EURATOM research framework programmes on reactor systems

    International Nuclear Information System (INIS)

    The activities of the European Commission (EC) in the field of nuclear energy are governed by the Treaty establishing the European Atomic Energy Community (EURATOM). The research activities of the European Union (EU) are designed as multi-annual Framework Programmes (FP) managed by the European Commission. The EURATOM Research and Training Programmes cover both nuclear Fusion and Fission. EURATOM-FP6 supports the following projects: -) NULIFE project: Nuclear Plant Life Prediction; -) COVERS project: VVER Safety Research; -) PERFECT project: Prediction of Irradiation Damage Effects on Reactor Components; -) NURESIM project: European Platform for Nuclear Reactor Simulations; -)EC-SARNET project: Sustainable Integration of European Research on Severe Accident Phenomenology; -) RAPHAEL project: Reactor for Process Heat, Hydrogen and Electricity Generation; -)GCFR project: Gas-Cooled Fast Reactor; -) EUROTRANS project: Transmutation of HLW in ADS; -) JHR-CA project: Jules Horowitz Reactor Co-ordination Action; and NEPTUNO project: Nuclear European Platform of Training and University Organisations. Other parts of the EURATOM FP, covering Waste Management and Radiation Protection, as well as Fusion Energy, are not detailed in this paper

  3. Biological research for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by {gamma}-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by {gamma}-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate {gamma}-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by {gamma}-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  4. Biological research for radiation protection

    International Nuclear Information System (INIS)

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by γ-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by γ-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate γ-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by γ-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  5. Performance of a multipurpose research electrochemical reactor

    International Nuclear Information System (INIS)

    Highlights: → For this reactor configuration the current distribution is uniform. → For this reactor configuration with bipolar connection the leakage current is small. → The mass-transfer conditions are closely uniform along the electrode. → The fluidodynamic behaviour can be represented by the dispersion model. → This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of ±10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  6. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  7. Biology Education Research: Lessons and Future Directions

    OpenAIRE

    Singer, Susan R.; Nielsen, Natalie R.; Schweingruber, Heidi A.

    2013-01-01

    This feature draws on a 2012 National Research Council report to highlight some of the insights that discipline-based education research in general—and biology education research in particular—have provided into the challenges of undergraduate science education. It identifies strategies for overcoming those challenges and future directions for biology education research.

  8. The Biological Flight Research Facility

    Science.gov (United States)

    Johnson, Catherine C.

    1993-01-01

    NASA Ames Research Center (ARC) is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately thirty years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. Included in the facility are a service unit for providing clean chambers for the specimens and a glovebox for manipulating the plant and animal specimens and for performing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

  9. Facility modernization Annular Core Research Reactor

    International Nuclear Information System (INIS)

    The Annular Core Research Reactor (ACRR) has undergone numerous modifications since its conception in response to program needs. The original reactor fuel, which was special U-ZrH TRIGA fuel designed primarily for pulsing, has been replaced with a higher pulsing capacity BeO fuel. Other advanced operating modes which use this increased capability, in addition to the pulse and steady state, have been incorporated to tailor power histories and fluences to the experiments. Various experimental facilities have been developed that range from a radiography facility to a 50 cm diameter External Fuel Ring Cavity (FREC) using 180 of the original ZrH fuel elements. Currently a digital reactor console is being produced with GA, which will give enhanced monitoring capabilities of the reactor parameters while leaving the safety-related shutdown functions with analog technology. (author)

  10. Corrosion Minimization for Research Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; Gerard Hofman

    2005-06-01

    Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

  11. Research nuclear reactor RA - Annual report 1992

    International Nuclear Information System (INIS)

    Research reactor RA Annual report for year 1992 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection. First part includes 8 annexes describing reactor operation, activities of services for maintenance of reactor components and instrumentation, financial report and staffing. Second annex B is a paper by Z. Vukadin 'Recurrence formulas for evaluating expansion series of depletion functions' published in 'Kerntechnik' 56, (1991) No.6 (INIS record no. 23024136. Second part of the report is devoted to radiation protection issues and contains 4 annexes with data about radiation control of the working environment and reactor environment, description of decontamination activities, collection of radioactive wastes, and meteorology data

  12. Research nuclear reactor RA, Annual Report 2001

    International Nuclear Information System (INIS)

    During 2001, activities at the RA research nuclear reactor in were performed according to the Contract about financing of the RA reactor for the period January-December 2001, signed by the Ministry of Science, technology and development of the Republic of Serbia. RA reactor was not operated since shutdown in August 1984. Although, the most of the planned reconstruction activities were finished until 1991, the most important, which was concerned with exchange of the reactor instrumentation, financed by the IAEA, was interrupted due to international sanctions imposed on the country. Since 1992, all the renewal and reconstruction activities were ceased. Continuous aging and degradation of the equipment and facilities demand decision making about the future status of the Ra reactor. Until this decision is made it is an obligation to maintain control and maintenance of ventilation system, power supply, internal transportation system, spent fuel storage, hot cells, electronic fuel surveillance system, and part of the stationary dosimetry system. In 2001, apart from the mentioned activities, actions were undertaken related to maintenance of the reactor building and installations. The most important tasks fulfilled were: protection of the roof of the ventilation system building, purchase and installing the fire protection system and twelve new battery cells in the reactor building. There were no actions concerned with improvement of the conditions for intermediate spent fuel storage. With the support of IAEA, actions were initiated for possible transport of the spent fuel tu Russia. At the end of 2001, preparations were started for possible future decommissioning of the RA reactor. After, renewal of the membership of our country in the IAEA, the Government of Yugoslavia has declared its attitude about the intention of RA reactor decommissioning at the General Conference in September 2001

  13. Research nuclear reactor RA - Annual Report 1994

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor stared in 1986, were continued in 1991. A number of interventions on the reactor components were finished that are supposed to enable continuous and reliable operation. The last, and at the same time largest action, related to exchange of complete reactor instrumentation is underway, but it is behind the schedule in 1991 because the delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Only 56% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA. In 1991 most of the existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Activities related to improvement of Russian project were continued in 1994. Control and maintenance of the reactor components was done regularly and efficiently. Extensive repair of the secondary coolant loop is almost finished and will be completed in the first part of 1995 according to existing legal procedures and IAEA recommendations. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. There have been on the average 47 employees at the RA reactor which is considered sufficient for maintenance and repair conditions. Research reactor RA Annual report for year 1991 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  14. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    Directory of Open Access Journals (Sweden)

    B. Ayati

    2011-10-01

    Full Text Available Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR and sequencing batch reactors (SBR were investigated. During all experiments, the efficiency of SBR was more than MBBR, but the difference was not significant statistically. According to the results, the best efficiencies were obtained for influent formaldehyde COD of 200 mg/L in MBBR and SBR which were 93% and 99.4%, respectively. The systems were also capable to treat higher formaldehyde concentrations (up to 2500 mg/L with lower removal efficiency. The reaction kinetics followed the Stover-Kincannon second order model. The gram-positive and gram-negative bacillus and coccus as well as the gram-positive binary bacillus were found to be the most dominant species. The results of 13C-NMR analysis have shown that formaldehyde and urea were converted into N-{[(aminocarbonyl amino] methyl}urea and the residual formaldehyde was polymerized at room temperature.

  15. Experience at SAPHIR Research Reactor, Switzerland

    International Nuclear Information System (INIS)

    The former SAPHIR research reactor has been dismantled completely without any significant difficulty. There are several factors underpinning the successful dismantling of SAPHIR: – Good housekeeping during operation and after shutdown; – Good maintenance of the infrastructure before and after shutdown; – Experienced personnel with knowledge of the reactor history; – Stable legal framework; – Close cooperation with the regulatory authority; – Excellent infrastructure of a large research centre; – Stable financing; – Stable organization, motivated personnel; – Support from skilful local companies; – Waste conditioning and treatment routes on-site and approved by the regulatory authority

  16. Biology Education Research 2.0

    OpenAIRE

    Dolan, Erin L.

    2015-01-01

    Biology education research (BER) 2.0 has arrived, and is moving the BER community beyond showing that active learning works to understanding the individual and contextual factors that explain and influence biology teaching and learning.

  17. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room. Reactor

  18. Research reactors: a tool for science and medicine

    International Nuclear Information System (INIS)

    The types and uses of research reactors are reviewed. After an analysis of the world situation, the demand of new research reactors of about 20 MW is foreseen. The experience and competitiveness of INVAP S.E. as designer and constructor of research reactors is outlined and the general specifications of the reactors designed by INVAP for Egypt and Australia are given

  19. Structural Biology and Molecular Applications Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.

  20. Fuel behavior comparison for a research reactor

    Science.gov (United States)

    Negut, Gh.; Mladin, M.; Prisecaru, I.; Danila, N.

    2006-06-01

    The paper presents the behavior and properties analysis of the low enriched uranium fuel, which will be loaded in the Romanian TRIGA 14 MW steady state research reactor compared with the original high enriched uranium fuel. The high and low enriched uranium fuels have similar thermal properties, but different nuclear properties. The research reactor core was modeled with both fuel materials and the reactor behavior was studied during a reactivity insertion accident. The thermal hydraulic analysis results are compared with that obtained from the safety analysis report for high enriched uranium fuel core. The low enriched uranium fuel shows a good behavior during reactivity insertion accident and a revised safety analysis report will be made for the low enriched uranium fuel core.

  1. Fuel behavior comparison for a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Negut, Gh. [Institute for Nuclear Research (ICN), 1, Campului Street, P.O. Box 78, 0300 Mioveni, Pitesti (Romania)]. E-mail: joenegut@yahoo.com; Mladin, M. [Institute for Nuclear Research (ICN), 1, Campului Street, P.O. Box 78, 0300 Mioveni, Pitesti (Romania); Prisecaru, I. [University Politehnica Bucharest (Romania); Danila, N. [University Politehnica Bucharest (Romania)

    2006-06-30

    The paper presents the behavior and properties analysis of the low enriched uranium fuel, which will be loaded in the Romanian TRIGA 14 MW steady state research reactor compared with the original high enriched uranium fuel. The high and low enriched uranium fuels have similar thermal properties, but different nuclear properties. The research reactor core was modeled with both fuel materials and the reactor behavior was studied during a reactivity insertion accident. The thermal hydraulic analysis results are compared with that obtained from the safety analysis report for high enriched uranium fuel core. The low enriched uranium fuel shows a good behavior during reactivity insertion accident and a revised safety analysis report will be made for the low enriched uranium fuel core.

  2. Research nuclear reactor RA - Annual Report 1991

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor stared in 1986, were continued in 1991. A number of interventions on the reactor components were finished that are supposed to enable continuous and reliable operation. The last, and at the same time largest action, related to exchange of complete reactor instrumentation is underway, but it is behind the schedule in 1991 because the delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Only 56% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA. In 1991 most of the existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Construction of some support elements is almost finished by the local staff. The Institute has undertaken this activity in order to speed up the ending of the project. If all the planned instrumentation would not arrive until the end of March 1992, it would not be possible to start the RA reactor testing operation in the first part of 1993, as previously planned. In 1991, 53 staff members took part in the activities during 1991, which is considered sufficient for maintenance and repair conditions. Research reactor RA Annual report for year 1991 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  3. System for forming janus particles

    Science.gov (United States)

    Hong, Liang; Jiang, Shan; Granick, Steve

    2011-01-25

    The invention is a method of forming Janus particles, that includes forming an emulsion that contains initial particles, a first liquid, and a second liquid; solidifying the first liquid to form a solid that contains at least a portion of the initial particles on a surface of the solid; and treating the exposed particle sides with a first surface modifying agent, to form the Janus particles. Each of the initial particles on the surface has an exposed particle side and a blocked particle side.

  4. United membrane biological reactor in the treatment of wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ji-ti; YAN Bin; DU Cui-hong; DONG Xiao-li

    2003-01-01

    The united membrane biological reactor(UMBR) was studied for the treatment of some simulate and municipal wastewater . The removal efficiency for COD and turbidity are greater than 80% and 99% respectively. Effluent COD is less than 100 mg/L while turbidity less than 5. The removal of LAS in bath wastewater is greater than 70%. In treatment of dinning-hall wastewater, removal of fatty oil is greater than 90%, and its concentration in effluent is less than 5 mg/L. The match of biological reactor and the membrane separation component were calculated. The stable performance of wastewater treatment can be maintained by the optimization of operation conditions and the cleanout of membranes.

  5. Proceedings of the Conference on research reactors application in Yugoslavia

    International Nuclear Information System (INIS)

    The Conference on research reactors operation was organised on the occasion of 20 anniversary of the RB zero power reactor start-up. The presentations showed that research reactors in Yugoslavia, RB, RA and TRIGA had an important role in development of nuclear sciences and technology in Yugoslavia. The reactors were applied in non-destructive testing of materials and fuel elements, development of reactor noise techniques, safety analyses, reactor control methods, neutron activation analysis, neutron radiography, dosimetry, isotope production, etc

  6. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    The technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  7. Fast reactor systems for deep sea research

    International Nuclear Information System (INIS)

    Fast reactor (FR) systems have been studied as power units for unmanned bases and research submersibles to monitor various phenomena and as a thermal source for the unmanned base to feed useful microorganisms in the deep sea region. The systems, which are set in pressure hulls, comprise of the FR's and secondary gas loops. Concepts and arrangements of the systems are presented. (author)

  8. Safety status of Russian research reactors

    International Nuclear Information System (INIS)

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety at nuclear research facilities, including research reactors, critical assemblies and sub-critical assemblies. It implies implementing three major activities: 1) establishing the laws and safety standards in the field of research reactors nuclear and radiation safety; 2) research reactors licensing; and 3) inspections (or license conditions tracking and inspection). The database on nuclear research facilities has recently been updated based on the actual status of all facilities. It turned out that many facilities have been shutdown, whether temporary or permanently, waiting for the final decision on their decommissioning. Compared to previous years the situation has been inevitably changing. Now we have 99 nuclear research facilities in total under Gosatomnadzor of Russia supervision (compared to 113 in previous years). Their distribution by types and operating organizations is presented. The licensing and conduct of inspection processes are briefly outlined with emphasis being made on specific issues related to major incidents that happened in 2000, spent fuel management, occupational exposure, effluents and emissions, emergency preparedness and physical protection. Finally, a summary of problems at current Russian research facilities is outlined. (author)

  9. Safety upgrades to the NRU research reactor

    International Nuclear Information System (INIS)

    The NRU (National Research Universal) Reactor is a 135 MW thermal research facility located at Chalk River Laboratories. AECL owns and operates the multi-purpose research reactor that serves as the primary R and D facility for supporting the CANDU business. The reactor is also a major producer of the world's medical radioisotopes. Since NRU was started up in 1957, it has operated in a consistent and safe manner with an overall annual capacity factor of approximately 80 %. The demands on the operation to perform experiments and produce radioisotopes were increased significantly when the NRX (National Research Experimental) shut down in 1992. Radioisotope customers demand an uninterrupted supply of short-lived radioisotopes e g Molybdenum-99, while experimental researchers require frequent shutdowns to accommodate fuel and materials programs. A two year systematic review and assessment of NRU to determine the condition and state of the facility was completed in 1991. This engineering assessment was complemented by safety analyses which focused on systems and components critical to safety. Reactor aging, obsolescence, current codes, and hazards vulnerability (especially, seismic) were emphasized during the analyses. This initial assessment concluded that the overall condition of NRU was good and there was no undue risk to the public or environment with the present operation. In addition, seven major upgrades were identified to enhance reactor safety to satisfy modern standards. In 1992, the AECL executive approved the Upgrades Project. Implementation of the seven upgrades were then included in the Facility Authorization document that defines the limiting conditions for safe operation with the Chalk River site license. The Atomic Energy Control Board would approve and license the upgrades under the change control provisions of the FA. Each upgrade and/or assessment recommendation (minor modification) had to be implemented without adversely affecting the current

  10. Research Status of Molecular Biology in Flax

    Institute of Scientific and Technical Information of China (English)

    Wu Jian-zhong

    2016-01-01

    Flax is a kind of worldwide fiber and oil crops, and it has a very important role in economic crop production in the world. With the development of molecular biology techniques, the research of flax molecular level has a very big breakthrough. But, flax molecular biology researches are less reported due to the later starting. This paper summarized the latest research progress of molecular biology of flax, including molecular marker technology, construction of genetic map, gene engineering and omics researches, in order to provide the reference to understand the development and research status for flax molecular breeding researchers.

  11. Proceedings of the European Research Reactor Conference - RRFM 2012 Transactions

    International Nuclear Information System (INIS)

    In 2012 RRFM, the European Research Reactor Conference will be jointly organised with IGORR, the International Group Operating Research Reactors. This will allow offering engineers and specialised nuclear researchers the chance to focus on the latest technological developments in the field of nuclear research reactors. The conference programme will revolve around a series of Plenary Sessions dedicated to the latest global developments with regards to research reactor technology and management systems, parallel sessions that focused on specific research projects and initiatives. (authors)

  12. MAPLE research reactor safety uncertainty assessment methodology

    International Nuclear Information System (INIS)

    The MAPLE (multipurpose Applied Physics Lattice Experiment) reactor is a low pressure, low temperature, open-tank-in pool type research reactor that operates at a power level of 5 to 35 MW. MAPLE is designed for ease of operation, maintenance, and to meet today's most demanding requirements for safety and licensing. The emphasis is on the use of passive safety systems and environmentally qualified components. Key safety features include two independent and diverse shutdown systems, two parallel and independent cooling loops, fail safe operation, and a building design that incorporates the concepts of primary containment supported by secondary confinement

  13. Using deterministic methods for research reactor studies

    International Nuclear Information System (INIS)

    As an alternative to prohibitive Monte Carlo simulations, deterministic methods can be used to simulate research reactors. Using various microscopic cross section libraries currently available in Canada, flux distributions were obtained from DRAGON cell and supercell transport calculations. Then, homogenization/condensation is done to produce few-group nuclear properties, and diffusion calculations were performed using DONJON core models. In this paper, the multigroup modular environment of the code DONJON is presented, and the various steps required in the modelling of SLOWPOKE hexagonal cores are described. Numerical simulations are also compared with experimental data available for the EPM Slowpoke reactor. (author)

  14. Biology Education Research: Lessons and Future Directions

    Science.gov (United States)

    Singer, Susan R.; Nielsen, Natalie R.; Schweingruber, Heidi A.

    2013-01-01

    Biologists have long been concerned about the quality of undergraduate biology education. Over time, however, biology faculty members have begun to study increasingly sophisticated questions about teaching and learning in the discipline. These scholars, often called biology education researchers, are part of a growing field of inquiry called…

  15. Review of Operation and Maintenance Support Systems for Research Reactors

    International Nuclear Information System (INIS)

    Operation support systems do not directly control the plant but it can aid decision making itself by obtaining and analyzing large amounts of data. Recently, the demand of research reactor is growing and the need for operation support systems is increasing, but it has not been applied for research reactors. This study analyzes operation and maintenance support systems of NPPs and suggests appropriate systems for research reactors based on analysis. In this paper, operation support systems for research reactors are suggested by comparing with those of power reactors. Currently, research reactors do not cover special systems in order to improve safety and operability in comparison with power reactors. Therefore we expect to improve worth to use by introducing appropriate systems for research reactors. In further research, we will develop an appropriate system such as applications or tools that can be applied to the research reactor

  16. Radio Nuclides Release in Research Reactors

    International Nuclear Information System (INIS)

    One of the major topic in nuclear safety is the quantitative evaluation of the radionuclides source term in nuclear reactors under routine and accidental conditions. The present study considers the release paths from fuel to coolant during normal and accidental situations of research reactors. Equivalent full power days approach, has been adopted for implementing reactor operating history in the calculations. Origin II code , recoil and Knock out phenomena, experimental correlations, and mathematical models have been employed in determining source term in fuel, releases to fuel clad interface, release from clad to coolant, and concentration in coolant. Different volatile fission products have been manipulated as: Br-83, Kr-85, I-129, I-131, I-133, Xe-133, Xe-135, Cs-137, Te-127, Te-131 m, Tc-99, Tc 99 m, Mo-99, Sr-90, Ru-106. Normal operation and accidental situation have been studied. The results have been verified against published data during normal operating conditions, it showed a good agreement

  17. Pakistan research reactor-1 and its upgradation

    International Nuclear Information System (INIS)

    In this article the author describes the procedure of renovation and upgradation of a swimming pool type Pakistan Research Reactor-1 (PARR-1) installed at PINSTECH. The reactor originally designed for a thermal power of 5 MW using highly enriched uranium as has been upgraded 10 MW with low enriched uranium as fuel. All the required safety precaution has been also modified with the new requirements. The cooling system of PARR-1 was modified to meet the requirements of upgraded power of 10 MW. In order to ensure safety for upgraded PARR-1 and to bring the reactor the current safety standards, some additional safety systems have been provided. An emergency core cooling system ECCS has been installed to remove core decay heat in case of loss of coolant accident (LOCA). (A.B.)

  18. Operation and utilizations of Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilizations of the reactor is presented. Some aspects of reactor safety are also discussed. (author)

  19. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in the Division of Reactor Engineering in fiscal 1980 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  20. Nuclear reactors for research and radioisotope production in Argentina

    International Nuclear Information System (INIS)

    In Argentina, the construction, operation, and use of research and radioisotope production reactors is and has been an important method of personnel preparation for the nuclear power program. Moreover, it is a very suitable means for technology transfer to countries developing their own nuclear programs. At present, the following research reactors are in operation in Argentina: Argentine Reactor 0 (RA-0); Argentine Reactor 1 (RA-1); Argentine Reactor 2 (RA-2); Argentine Reactor 3 (RA-3); Argentine Reactor 4 (RA-4). The Argentine Reactor 6 (RA-6), under construction, should reach criticality in 1981

  1. Gamma monitoring system 'Hyperion' at the research nuclear reactor RB

    International Nuclear Information System (INIS)

    While performing experiments at the research reactor RB at Vinca institute it is mandatory to measure the intensity of gamma radiation at reactor RB since the reactor has no biological protection. the stationary distributed measurement system 'Hyperion' implemented at reactor RB, performs measurements and monitoring of gamma radiation at 10 specified measuring sites within and in the vicinity of the reactor RB in the required absorbed dose in air range of 50 nGy/h to 10 mGy/h. the 'Hyperion' monitoring system have three hierarchically organized layers. the basic layer consists of the network of 10 intelligent gm probes located at predetermined measuring sites. the medium layer represents the PC-based local control node where measured data from all intelligent probes are separately acquired, stored in the local database and processed for local visualization and printed measurements reports for network operator. the information on the status of the intelligent gm probes are also provided, enabling the verification of measured results at the local control node. the central control node represents the pc-based highest monitoring network layer connected to the local control node using already existing lan infrastructure. the central control node hosts the central database, provides full insight into instantaneous gamma radiation levels at all measuring sites, provides archives on daily bases for all monitored locations and printed reports on measurements for all measuring sites at any time of gamma radiation measurement. (author)

  2. Experience in using a research reactor for the training of power reactor operators

    International Nuclear Information System (INIS)

    A research reactor facility such as the one at the Omaha Veterans Administration Hospital would have much to offer in the way of training reactor operators. Although most of the candidates for the course had either received previous training in the Westinghouse Reactor Operator Training Program, had operated nuclear submarine reactors or had operated power reactors, they were not offered the opportunity to perform the extensive manipulations of a reactor that a small research facility will allow. In addition the AEC recommends 10 research reactor startups per student as a prerequisite for a cold operator?s license and these can easily be obtained during the training period

  3. Monitoring of Biological Nitrogen Removal in Tannery Wastewater Using a Sequencing Batch Reactor

    OpenAIRE

    Carrasquero-Ferrer Sedolfo José; Pire-Sierra María Carolina; Rincón-Lizardo Nancy Coromoto; Díaz-Montiel Altamira Rosa

    2014-01-01

    The objective of this research was to relate the biological nitrogen removal in tannery wastewater with profiles of pH, alkalinity and redox potential (ORP) using a sequencing batch reactor (SBR) with a working volume of 2 L. The reactor worked under two operational sequences: anoxic-aerobic-anoxic (Ax/Ae/Ax) and aerobic-anoxic (Ae/Ax), which were combined with two cell retention times (CRT) (15 and 25 days), with an operation cycle time (OCT) of 11 hours. The profiles were performed by measu...

  4. New developments in transportation for research reactors

    International Nuclear Information System (INIS)

    For more than 30 years, Transnucleaire has been performing safely a large number of national and international transports of radioactive material. Transnucleaire has also designed and supplied numerous packagings for all types of nuclear fuel cycle radioactive materials: for front-end and back-end products and for power and research reactors. Since the last meeting held in Bruges, Transnucleaire has been continuously involved in transportation activities for fresh and irradiated materials for research reactors. We are pleased to take the opportunity in this meeting to share with reactor operators, official bodies and other partners, the on-going developments in transportation and associated services. Special attention will be paid to the starting of transports of MTR spent fuel elements to the La Hague reprocessing plant where COGEMA offers reprocessing services on a long-term basis to reactors operators. Detailed information is provided on regulatory issues, which may affect transport activities: evolution of the regulations, real experiences of recent transportation and development of new packaging designs. Options and solutions will be proposed by Transnucleaire to improve the situation for continuation of national and international transports at an acceptable price whilst maintaining an ultimate level of safety (author)

  5. The current status of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tri Wulan Tjiptono; Syarip

    1998-10-01

    The Kartini reactor reached the first criticality on January 25, 1979. In the first three years, the reactor power is limited up to 50 kW thermal power and on July 1, 1982 has been increased to 100 kW. It has been used as experiments facility by researcher of Atomic Energy National Agency and students of the Universities. Three beam tubes used as experiments facilities, the first, is used as a neutron source for H{sub 2}O-Natural Uranium Subcritical Assembly, the second, is developed for neutron radiography facility and the third, is used for gamma radiography facility. The other facilities are rotary rack and two pneumatic transfer systems, one for delayed neutron counting system and the other for the new Neutron Activation Analysis (NAA) facility. The rotary rack used for isotope production for NAA purpose (for long time irradiation), the delayed neutron counting system used for analysis the Uranium contents of the ores and the new NAA is provided for short live elements analysis. In the last three years the Reactor Division has a joint use program with the Nuclear Component and Engineering Center in research reactor instrumentation and control development. (author)

  6. Radionuclide release from research reactor spent fuel

    International Nuclear Information System (INIS)

    Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO2 fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in 235U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO2-fuel (LWR fuel, enrichment in 235U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Juelich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl2-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAlx-Al and U3Si2-Al) was studied in 400 mL MgCl2-rich salt brine in the presence of Fe2+ under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH)3(s) and Eu(OH)3(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu(IV) oxyhydroxides species due to radiolytic effects cannot completely be

  7. The utility of different reactor types for the research

    International Nuclear Information System (INIS)

    The report presents a general view of the use of the different belgian research reactor i.e. venus reactor, BR-1 reactor, BR-2 reactor and BR-3 reactor. Particular attention is given to the programmes which is in the interest of international collaboration. In order to reach an efficient utilization of such reactors they require a specialized personnel groups to deal with the irradiation devices and radioactive materials and post irradiation examinations, creating a complete material testing station. (A.J.)

  8. Research reactor fuel management in the Czech Republic

    International Nuclear Information System (INIS)

    Fuel management of the Czech research reactors is described. There are three research reactors in the Czech Republic: LVR-15 and LR-0 operated by the Nuclear Research Institute Rez plc, VR-1 operated by the Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering in Prague, and SR-0 reactor of SKODA JS plc which is under decommissioning now. The paper describes the major features of the Czech research reactors, types of fuels used in them, and the spent fuel management principles. The participation of the LVR-15 and VR-1 reactors in the RERTR international programme (Reduced Enrichment for Research and Test Reactors) is also highlighted. (author)

  9. Basic research using the 250 kW research reactor of the Jozef Stefan Institute

    International Nuclear Information System (INIS)

    The 250 kW TRIGA Mark II reactor is a light water reactor with solid fuel elements in which the zirconium hydride moderator is homogeneously distributed between enriched uranium. The reactor therefore has a large prompt negative temperature coefficient of reactivity; the fuel also has a very high retention of radioactive fission products. The experimental facilities include a rotary specimen rack, a central in-core radiation thimble, a pneumatic transfer system and pulsing capability. Other experimental facilities include two radial and two tangential beam tubes, a graphite thermal column and a graphite thermalizing column. At the steady state power of 250 kW the peak flux is 1x1013n/cm2 in the central test position. In addition, pulsing to about 2000 MW is usually provided giving peak fluxes of about 2x1016n/cm2sec. All TRIGA reactors produce a core-average thermal neutron flux of about 107 n.v. per watt. Only with very large accelerators can such high fluxes be achieved. The types of research could be summarized as follows: thermal neutron scattering, neutron radiography, neutron and nuclear physics, activation analysis, radiochemistry, biology and medicine, and teaching and training. Typical applied research with a 250 kW reactor has been conducted in medicine, in biology, archaeology, metallurgy and materials science, engineering and criminology. It is well known that research reactors have been used routinely to produce isotopes for industry and medicine. We can conclude that the 250 kW TRIGA reactor is a useful and wide ranging source of radiation for basic and applied research. The operation cost for this instrument is relatively low. (author)

  10. Current activities at the MIT Research Reactor

    International Nuclear Information System (INIS)

    The MIT Research Reactor (MITR) is a MW nuclear research reactor that is owned and operated by the Massachusetts Institute of Technology to further its educational and research goals at both the undergraduate and graduate level. The reactor first achieved criticality in 1958. It was largely rebuilt in 1973/1974 by MIT staff and students, and its current license expires in August 1999. The current facility, which is designated as the MITR-H, uses a compact core with finned, aluminum-clad, plate-type fuel that is cooled and moderated by light water and reflected by heavy water. The reactor core can hold twenty-seven fuel elements. However, the normal configuration is twenty-four elements. A maximum of four fuel elements can be replaced with in-core experimental facilities. A unique feature of the MITR-II's design is that fixed absorber plates can be inserted in the upper half of the core. These cause the flux to peak in the lower half which benefits experimenters and also facilitates a fuel strategy that involves inversion of fuel elements midway through their life cycle. The MITR-II currently operates continuously for four weeks followed by shutdown of a few days for maintenance. This paper provides an overview of current activities at the MITR including preparations for re-licensing. The status of an on-going Phase-I clinical trial of boron neutron capture therapy for both glioblastoma multiforme and metastatic melanoma is described as well as the design of a fission converter facility for BNCT. Environmental research using neutron activation analysis is summarized as well as in-pile research focussed on LWR water chemistry and structural materials. (author)

  11. EURATOM Research Framework Programme on Reactor Systems

    International Nuclear Information System (INIS)

    The activities of the European Commission (EC) in the field of nuclear energy are governed by the Treaty establishing the European Atomic Energy Community (EURATOM). The research activities of the European Union (EU) are designed as multi-annual Framework Programmes (FP). The EURATOM 6. Framework Programme (EURATOM FP -6), covering the period 2002-2006, is funded with a budget of 1, 230 million Euros and managed by the European Commission. Beyond the general strategic goal of the EURATOM Framework Programmes to help exploit the potential of nuclear energy, in a safe and sustainable manner, FP -6 is designed to contribute also to the development of the 'European Research Area' (ERA), a concept described in the Commission's Communication COM(2000)6, of January 2000. Moreover EURATOM FP-6 contributes to the creation of the conditions for sharing the same nuclear safety culture throughout the EU-25 and the Candidate Countries, fostering the acceptance of nuclear power as an element of the energy mix. This paper gives an overview of the research activities undertaken through EURATOM FP-6 in the area of Reactor Systems, covering the safety of present reactors, the development of future safe reactors, and the needs in terms of research infrastructures and education and training. The actions under FP-6 are presented in their continuity of actions under FP-5. The perspectives under FP -7 are also provided. Other parts of the EURATOM FP, covering Waste Handling and Radiation Protection, as well as Fusion Energy, are not detailed in this paper. (authors)

  12. Janus nanobelts: fabrication, structure and enhanced magnetic-fluorescent bifunctional performance

    Science.gov (United States)

    Ma, Qianli; Yu, Wensheng; Dong, Xiangting; Wang, Jinxian; Liu, Guixia

    2014-02-01

    A new nanostructure of magnetic-fluorescent bifunctional Janus nanobelts with Fe3O4/PMMA as one half and Tb(BA)3phen/PMMA as the other half has been successfully fabricated by a specially designed parallel spinneret electrospinning technology. The morphology and properties of the final products were investigated in detail by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), biological microscopy (BM), vibrating sample magnetometry (VSM) and fluorescence spectroscopy. The results revealed that the [Fe3O4/PMMA]//[Tb(BA)3phen/PMMA] magnetic-fluorescent bifunctional Janus nanobelts possess superior magnetic and fluorescent properties due to their special nanostructure. Compared with Fe3O4/Tb(BA)3phen/PMMA composite nanobelts, the magnetic-fluorescent bifunctional Janus nanobelts provided better performance. The new magnetic-fluorescent bifunctional Janus nanobelts have potential applications in novel nano-bio-label materials, drug target delivery materials and future nanodevices due to their excellent magnetic-fluorescent properties, flexibility and insolubility. Moreover, the construction technique for the Janus nanobelts is of universal significance for the fabrication of other multifunctional Janus nanobelts.A new nanostructure of magnetic-fluorescent bifunctional Janus nanobelts with Fe3O4/PMMA as one half and Tb(BA)3phen/PMMA as the other half has been successfully fabricated by a specially designed parallel spinneret electrospinning technology. The morphology and properties of the final products were investigated in detail by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), biological microscopy (BM), vibrating sample magnetometry (VSM) and fluorescence spectroscopy. The results revealed that the [Fe3O4/PMMA]//[Tb(BA)3phen/PMMA] magnetic-fluorescent bifunctional Janus nanobelts possess superior magnetic and fluorescent properties due to their special

  13. Research Reactors: Decommissioning of a Small Reactor (BR3 Reactor, Belgium). Appendix III

    International Nuclear Information System (INIS)

    Research reactors are nuclear reactors that serve primarily as source of neutrons. They are less complex than power reactors and operate at lower temperatures. Research reactors need far less fuel, and far less fission products build up as the fuel is used. On the other hand, their fuel requires more highly enriched uranium, typically up to 20% 235U. More than 650 research reactors worldwide have been built or are under construction or in a planning phase; of which more than 350 have been shut down and partly or wholly decommissioned. Experience has shown that decommissioning can be undertaken in line with safety standards aimed at protecting human beings or the environment from harm, provided that decommissioning activities are undertaken in accordance with a properly formulated plan. The potential or actual radiological hazards associated with reactors may require the application of special techniques and procedures during decommissioning. The decommissioning of the BR3 reactor in Mol, Belgium, Belgian nuclear research centre SCK•CEN, provides an example of current good practice in decommissioning research reactors.13 Since 1991, the organization’s statutory mission gives priority to research on problems of societal concern such as the safety of nuclear installations, radiation protection, safe treatment and disposal of radioactive waste, fighting against uncontrolled proliferation of fissile materials, and education and training. BR3 was the first European pressurized water reactor (PWR) power plant and was put into service in 1962. It was in that industrial context that the BR3 has played its role as a demonstration unit for the development and improvement of decommissioning related techniques. While the BR3 power level was low (40 MW(th), 10.5 MW(e) net), it contains all the features of commercial PWR power plants. The reactor was used at the beginning of its lifetime as a training facility for future nuclear power plant operators. Later, it was also used

  14. A New Generation of Research Reactors Fuelled with LEU

    International Nuclear Information System (INIS)

    A number of countries have recently shown interest in new research reactors. In response to such willingness to develop nuclear technologies, we have prepared technical proposals on typical research reactors (RR) which will be built as part of nuclear research centres (NRC) according to base design principles. The requirements for such research reactors are defined to represent their competitive service parameters, including capabilities to support a wide spectrum of studies in various areas of theoretical and applied researches. Analysis of the current and projected uses of research reactors and assessment of the external market demands have prompted two design options of a pool-type reactor at a nuclear research centre, namely, a small (up to 0.5 MW) reactor with natural coolant circulation through its core and a reactor with forced coolant circulation scaled up to 10-15 MW. The research reactors under development will run with commercially available and well-proven fuel of low enrichment. (author)

  15. The current status of utilization of research reactors in China

    International Nuclear Information System (INIS)

    Seminars on utilization of research reactors were held to enhance experience exchanging among institutes and universities in China. The status of CARR (China Advanced Research Reactor) project is briefly described. The progress in BNCT program in China is introduced. (author)

  16. Safety Features of the Replacement Research Reactor

    International Nuclear Information System (INIS)

    The paper presents a general description of the development and application of basic safety criteria and the implementation of specific safety features in the design of the 20 MW pool-type research reactor currently being built by INVAP for the Australian Nuclear Science and Technology Organisation (ANSTO). A summary of the results of the preliminary deterministic safety analysis and the probabilistic safety assessment prepared by INVAP on ANSTO's behalf are presented as part of demonstrating the robustness of the design to the wide range of postulated initiating events considered. The paper also briefly describes the licensing process with respect to the way in which the licensing and regulatory regime within Australia influenced the design of the replacement research reactor (RRR). In particular, the reasoning for safety design features that have been incorporated as a result of the specific requirements of ANSTO and the Australian regulator is described. (author)

  17. Decommissioning Experience: Apsara Research Reactor, India

    International Nuclear Information System (INIS)

    Full text: In India, at the Bhabha Atomic Research Centre, a 1 MW(th) pool type research reactor called Apsara was built in 1956 and shut down in 2009. The reactor fuel and internals were removed, leaving the pool available for draining and decontamination. The pool was drained progressively while monitoring for hot spots. Additional material and debris at the bottom were removed. The lining was cleaned by water jetting using detergents. In summary, the defuelling and partial decommissioning were successfully completed in around six months, with a total dose consumption of 23.5 man mSv (approximately 10% of budget). The generation of waste amounted to a solid waste volume of around 20 m3 (low level) and a liquid waste volume of 280 m3 (low level). A detailed description of achievements and plans for the Apsara decommissioning is given. (author)

  18. Australia's new high performance research reactor

    International Nuclear Information System (INIS)

    A contract for the design and construction of the Replacement Research Reactor was signed in July 2000 between ANSTO and INVAP from Argentina. Since then the detailed design has been completed, a construction authorization has been obtained, and construction has commenced. The reactor design embodies modern safety thinking together with innovative solutions to ensure a highly safe and reliable plant. Also significant effort has been placed on providing the facility with diverse and ample facilities to maximize its use for irradiating material for radioisotope production as well as providing high neutron fluxes for neutron beam research. The project management organization and planing is commensurate with the complexity of the project and the number of players involved. (author)

  19. Developing the fuel for research reactors

    International Nuclear Information System (INIS)

    A review of papers dealing with the possibility of research reactor adaptation to moderately and slightly enriched fuel with the 235U content of 45 and 20%, respectively, is presented. The main peculiarities and results of investigations carried out in two main directions, are under consideration: the increase of specific uranium content in traditional fuels (UAlsub(x)-Al, U3O8-Al, U,ZrHsub(x)) by means of improvements in technology and production (USA, FRG and France); the development of new highly dense kinds of fuel, such as U3Si, U3Si-Al, UO2 (USA, France). A conclusion is drawn that the research reactor fuel enrichment may be decreased

  20. A new fuel for research reactors

    International Nuclear Information System (INIS)

    The Replacement Research Reactor (RRR) to be constructed at Lucas Heights will use fuel containing low enriched uranium (LEU), 235U, whereas its predecessor HIFAR operates with fuel fabricated from high-enriched uranium (HEU). The fuel will be based on uranium silicide (U3Si2) with a density of 4.8 g U/cm3. This fuel has been qualified and in use in 20 research reactors worldwide for over 12 years A brief description is given of the metallurgy, behaviour under irradiation, and fabrication methods, all of which are well-understood Progress on development of new, higher density LEU fuel based on uranium molybdenum alloys is also described and the implications for the RRR discussed briefly

  1. Reactor training simulator for the Replacement Research Reactor (RRR)

    International Nuclear Information System (INIS)

    The main features of the ANSTO Replacement Research Reactor (RRR) Reactor Training Simulator (RTS) are presented.The RTS is a full-scope and partial replica simulator.Its scope includes a complete set of plant normal evolutions and malfunctions obtained from the plant design basis accidents list.All the systems necessary to implement the operating procedures associated to these transients are included.Within these systems both the variables connected to the plant SCADA and the local variables are modelled, leading to several thousands input-output variables in the plant mathematical model (PMM).The trainee interacts with the same plant SCADA, a Foxboro I/A Series system.Control room hardware is emulated through graphical displays with touch-screen.The main system models were tested against RELAP outputs.The RTS includes several modules: a model manager (MM) that encapsulates the plant mathematical model; a simulator human machine interface, where the trainee interacts with the plant SCADA; and an instructor console (IC), where the instructor commands the simulation.The PMM is built using Matlab-Simulink with specific libraries of components designed to facilitate the development of the nuclear, hydraulic, ventilation and electrical plant systems models

  2. Thermal calculations for water cooled research reactors

    International Nuclear Information System (INIS)

    The formulae and the more important numerical data necessary for thermic calculations on the core of a research reactor, cooled with low pressure water, are presented. Most of the problems met by the designer and the operator are dealt with (calculations margins, cooling after shut-down). Particular cases are considered (gas release, rough walls, asymmetric cooling slabs etc.), which are not generally envisaged in works on general thermics

  3. Decommissioning of a 5 MW research reactor

    International Nuclear Information System (INIS)

    The complete decommissioning of a research reactor is described. Planning and execution of all activities, including schedules, budgets, waste management, health physics and subcontracted operations are presented. Flexibility in operations was obtained by using the operating staff as the decommissioning progressed. Totals for waste shipments and costs are given. Final site conditions are presented along with a description of the subsequent use of the facility. (author)

  4. Hydrogen problems in reactor safety research

    International Nuclear Information System (INIS)

    The BMFT and BMI have initiated a workshop 'Hydrogen Problems in Reactor Safety Research' that took place October 3./4., 1983. The objective of this workshop was to present the state of the art in the main areas - Hydrogen-Production - Hydrogen-Distribution - Hydrogen-Ignition - Hydrogen-Burning and Containment Behaviour - Mitigation Measures. The lectures on the different areas are compiled. The most important results of the final discussion are summarized as well. (orig.)

  5. Defuelling of the UTR-300 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.D.; Banford, H.M.; East, B.W. [Scottish Universities Research and Reactor Centre, Glasgow (United Kingdom); Ord, M.A.; Gaffka, A.P. [AEA Technology, Harwell, Didcot, Oxfordshire OX11 0RA (United Kingdom)

    1997-12-01

    A description is given of the movement of fuel elements from the core of the UTR-300 research reactor to the UNIFETCH flask, which is normally loaded under water, through a specially designed shielding arrangement which permits a dry transfer. The regulatory requirements and the safety case are summarised along with the predicted and measured doses to operators. The task was successfully completed to a tight time schedule with recorded doses which were well within the allocated dose budget. (orig.) 3 refs.

  6. Safety review, assessment and inspection on research reactors, experimental reactors and nuclear heating reactors

    International Nuclear Information System (INIS)

    The NNSA and its regional office step further strengthened the regulation on the safety of in-service research reactors in 1996. A lot of work has been done on the supervision of safe in rectifying the review and assessment of modified items, the review of operational documents, the treatment of accidents, the establishment of the system for operational experience feedback, daily and routine inspection on nuclear safety. The internal management of the operating organization on nuclear safety was further strengthened, nuclear safety culture was further enhanced, the promotion in nuclear safety and the safety situation for in-service research reactors were improved

  7. Organization and management of operation of the research reactor MARIA

    International Nuclear Information System (INIS)

    The MARIA research reactor belongs to the Institute of Atomic Energy. The MARIA research reactor operation provides basing on the Atomic Law code and requirements of the State Nuclear Safety. Main task of the operation Department is the current MARIA reactor operation and relevant technological systems. The Head of the Reactor bears the direct responsibility for nuclear safety and radiological protection of the reactor plant. Service of reactor operation is accomplished by the Shift Groups. The cooperation with the reactor users is based on the principles defined by the Regulations of MARIA Reactor Operation. In the abnormal and emergency states the procedure is determined by 'Schedule of emergency procedure for the MARIA reactor plant'. Reactor has got valid and actual documents which are compulsory to all the persons being involved in operation and usage of reactor. (author)

  8. The WWR-SM-20 research reactor

    International Nuclear Information System (INIS)

    In this paper the design features and experimental capabilities of the WWR-SM-20 research reactor are described. The reactor uses fuel assemblies consisting of six coaxial fuel tubes with a square cross-section. IRT-3M fuel assemblies can be used with both 90% enriched and 36% enriched uranium. The main characteristics of the IRT-3M fuel assemblies are given, as are the technical and physical parameters of the WWR-SM-20 reactor. The core can hold up to ten ampoule-type channels with a diameter of up to 68 mm. For irradiation purposes, up to 22 26-mm-diameter channels in the fuel assemblies, and up to 48 42-mm-diameter channels in the beryllium blocks of the reflector can be used. In the graphite blanket between the horizontal channels, channels with a diameter of up to 130 mm can be used. The thermal neutron flux density has a maximum value of 1.5 X 1018 m-2 · s-1 in the core and 2.3 X 1018 m-2 · s-1 in the reflector, and the fast neutron flux density (cE > 0.821 MeV) a maximum of 1.9 X 1018 m-2 · s-1. A number of design features have been incorporated in the WWR-SM-20 reactor to make it effectively safe

  9. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in the Division of Reactor Engineering in fiscal 1978 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committees on Reactor Physics and in Decommissioning of Nuclear Facilities. (author)

  10. Materials research with neutron beams from a research reactor

    International Nuclear Information System (INIS)

    Because of the unique ways that neutrons interact with matter, neutron beams from a research reactor can reveal knowledge about materials that cannot be obtained as easily with other scientific methods. Neutron beams are suitable for imaging methods (radiography or tomography), for scattering methods (diffraction, spectroscopy, and reflectometry) and for other possibilities. Neutron-beam methods are applied by students and researchers from academia, industry and government to support their materials research programs in several disciplines: physics, chemistry, materials science and life science. The arising knowledge about materials has been applied to advance technologies that appear in everyday life: transportation, communication, energy, environment and health. This paper illustrates the broad spectrum of materials research with neutron beams, by presenting examples from the Canadian Neutron Beam Centre at the NRU research reactor in Chalk River. (author)

  11. Materials research with neutron beams from a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Root, J.; Banks, D. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario (Canada)

    2015-03-15

    Because of the unique ways that neutrons interact with matter, neutron beams from a research reactor can reveal knowledge about materials that cannot be obtained as easily with other scientific methods. Neutron beams are suitable for imaging methods (radiography or tomography), for scattering methods (diffraction, spectroscopy, and reflectometry) and for other possibilities. Neutron-beam methods are applied by students and researchers from academia, industry and government to support their materials research programs in several disciplines: physics, chemistry, materials science and life science. The arising knowledge about materials has been applied to advance technologies that appear in everyday life: transportation, communication, energy, environment and health. This paper illustrates the broad spectrum of materials research with neutron beams, by presenting examples from the Canadian Neutron Beam Centre at the NRU research reactor in Chalk River. (author)

  12. 78 FR 58575 - Review of Experiments for Research Reactors

    Science.gov (United States)

    2013-09-24

    ... COMMISSION Review of Experiments for Research Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Guide (RG) 2.4, ``Review of Experiments for Research Reactors.'' The guide is being withdrawn because... Experiments for Research Reactors,'' (ADAMS Accession No. ML003740131) because its guidance no longer...

  13. The VVER Core Physics, Reactor Dosimetry, and Shielding Researches in the LR-0 Reactor

    International Nuclear Information System (INIS)

    Zero-power water reactor LR-0 was created by the Nuclear Research Institute Rez, Nuclear Machinery Skoda, and RRC 'Kurchatov Institute' for researches of neutron parameters of the WWER type power reactors core, fuel storages, and-first of all-for researches in the reactor pressure vessel and internals dosimetry. Suitable geometrical conditions and flexible technical arrangements of the LR-0 facility enabled to carry out the wide experimental program on several full-scale models (mock-ups) of the WWER-440 and WWER-1000 reactors. The tasks of that experiments were the measurements of the neutron (from thermal energy up to 10 MeV) and gamma (from 0.1 up to 10 MeV) spectra and integral parameters of neutron and gamma fields in the different representative points of the mock-ups from the core to the outer pressure vessel surface and the biological shielding (including channel for ex-reactor ionizing chamber), as well as the measurement of spatial power distribution in the core. Fast neutron (energy from 0.5 to 10 MeV) and gamma spectra were measured in several representative points of the mock-ups by the two-parameter spectrometer with the cylindrical stilbene scintillation detectors. Measurements in the thermal and epithermal neutron region were carried out with the activation method using a broad set of activation monitors and with the 3He(n,p) counter. Activation measurements with threshold fast neutron detectors enlarge also the proton-recoil spectra measurements, such activation measurements were carried out especially in cases, when a spectrometer couldn't be put in the necessary position. The core fission rate distribution was obtained by means of gamma-scanning of the fuel pins. The calculations were carried out by different methods (deterministic and Monte Carlo). Experimental and calculation results in the core, internals, pressure vessel and shielding are reviewed and compared. (Authors)

  14. Progress activity of Thai Research Reactor in 2002

    International Nuclear Information System (INIS)

    Thai Research Reactor-1/Modification 1 (TRR-1/M1) is a multipurpose research reactor with nominal power of 2 MW. The reactor is a swimming pool type, cooled and moderate with light water, using the LEU-fuel. TRR-1/M1 has been operated and utilized for various applications such as neutron activation analysis, radioisotope production, gem irradiation, neutron radiography and research works. To expand and promote the utilization of research reactor, the new 10 MW Research Reactor will be established in the Ongkarak Nuclear Research Center (ONRC) project and the project will be finished in the near future. (author)

  15. Research reactor status for future nuclear research in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Patrick; Bignan, Gilles; Guidez, Joel [Commissariat a l' Energie Atomique - CEA (France)

    2010-07-01

    During the 1950's and 60's, the European countries built several research reactors, partially to support their emerging nuclear-powered electricity programs. Now, over forty years later, the use and operation of these reactors have both widened and grown more specialized. The irradiation reactors test materials and fuels for power reactors, produce radio-isotopes for medicine, neutro-graphies, doping silicon, and other materials. The neutron beam reactors are crucial to science of matter and provide vital support to the development of nano-technologies. Other reactors are used for other specialized services such as teaching, safety tests, neutron physics measurements... The modifications to the operating uses and the ageing of the nuclear facilities have led to increasing closures year after year. Since last ENC, for example, we have seen, only in France, the closure of the training reactor Ulysse in 2007, the closure of the safety test dedicated reactor Phebus in 2008 and recently the Phenix reactor, last fast breeder in operation in the European Community, has been shut down after a set of 'end of life' technological and physical tests. For other research reactors, safety re-evaluations have had to take place, to enable extension of reactor life. However, in the current context of streamlining and reorganization, new European tools have emerged to optimally meet the changing demands for research. However the operation market of these reactors seems now increasing in all fields. For the neutron beams reactors (FRMII, ORPHEE, ILL, ISIS,..) the experimental needs are increasing years after years, especially for nano sciences and bio sciences new needs. The measurement of residual stress on manufactured materials is also more and more utilised. All these reactors have increasing utilizations, and their future seems promising. A new project project based on a neutron spallation is under definition in Sweden (ESSS: European Spallation Source

  16. The korea multi-purpose research reactor

    International Nuclear Information System (INIS)

    This paper presents and discusses background and status of the design of the 30MW Korea Multi-purpose Research Reactor(KMRR) which is planed to achieve its first criticality in December, 19992, at Daeduk site of the Korea Advanced Energy Research Institute (KAERI). KAERI playing the leading role in Korea's nuclear technology development takes the total responsibility for its design, construction and operation. Number of Korean nuclear industries are, also, actively participating in the project while making the most of their expertise in relevant areas. (Author)

  17. Janus Nematic Colloids with Designable Valence

    Directory of Open Access Journals (Sweden)

    Simon Čopar

    2014-05-01

    Full Text Available Generalized Janus nematic colloids based on various morphologies of particle surface patches imposing homeotropic and planar surface anchoring are demonstrated. By using mesoscopic numerical modeling, multiple types of Janus particles are explored, demonstrating a variety of novel complex colloidal structures. We also show binding of Janus particles to a fixed Janus post in the nematic cell, which acts as a seed and a micro-anchor for the colloidal structure. Janus colloidal structures reveal diverse topological defect configurations, which are effectively combinations of surface boojum and bulk defects. Topological analysis is applied to defects, importantly showing that topological charge is not a well determined topological invariant in such patchy nematic Janus colloids. Finally, this work demonstrates colloidal structures with designable valence, which could allow for targeted and valence-conditioned self-assembly at micro- and nano-scale.

  18. Decommissioning activities for Salaspils research reactor - 59055

    International Nuclear Information System (INIS)

    In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor (SRR). The reactor is out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH at 1998-1999. The Latvian government decided to start the direct dismantling to 'green field' in October 26, 1999. The upgrade of decommissioning and dismantling plan was performed in 2003-2004 years, which change the main goal of decommissioning to the 'brown field'. The paper deals with the SRR decommissioning experience during 1999-2010. The main decommissioning stages are discussed including spent fuel and radioactive wastes management. The legal aspects and procedures for decommissioning of SRR are described in the paper. It was found, that the involvement of stakeholders at the early stages significantly promotes the decommissioning of nuclear facility. Radioactive waste management's main efforts were devoted to collecting and conditioning of 'historical' radioactive wastes from different storages outside and inside of reactor hall. All radioactive materials (more than 96 tons) were conditioned in concrete containers for disposal in the radioactive wastes repository 'Radons' at Baldone site. The dismantling of contaminated and activated components of SRR systems is discussed in paper. The cementation of dismantled radioactive wastes in concrete containers is discussed. Infrastructure of SRR, including personal protective and radiation measurement equipment, for decommissioning purposes was upgraded significantly. Additional attention was devoted to the free release measurement's technique. The certified laboratory was installed for supporting of all decommissioning activities. All non-radioactive equipments and materials outside of reactor buildings were released for clearance and dismantled for reusing or conventional disposing. Weakly contaminated materials from reactor hall were collected

  19. Second trip system for NRU research reactor

    International Nuclear Information System (INIS)

    For the past four decades, the NRU research reactor has played an important role at the Chalk River Laboratories, Atomic Energy of Canada Limited, serving as one of its major research and isotope production facilities. To ensure that it continues as an effective facility, compliant with the current safety standards, a comprehensive upgrade program is underway. Adding a second trip system (STS) is part of this upgrade program, aiming at improving the effectiveness and reliability of the overall shutdown function. This document describes the main features and basic principles of the STS.The STS is an independent, seismically qualified trip system, that guarantees reactor shutdown even if the existing trip system fails. It is designed based on 2 out of 3 general coincidence logic, with minimal interferences and changes to the existing system. In addition to the manual trip in the main control room, a remote manual trip is provided in the new Qualified Emergency Response Centre, which is also seismically qualified and always accessible. Thus, for any reason, if the main control room becomes uninhabitable, the reactor still can be manually shut down from this centre. ((orig.))

  20. Refueling strategy at the Budapest research reactor

    International Nuclear Information System (INIS)

    Refueling strategy is very important for nuclear power plants and for highly utilized research reactors with power level in the megawatt range. New core design shall fulfill several demands and needs which can contradict each other sometimes. The loaded uranium quantity should assure the scheduled operation time (energy generation) and the maneuvering capability even at the end of the campaign. On the other hand the built in excess reactivity cannot be too high, because otherwise it would jeopardize the shutdown margin and reactor safety. Moreover the core arrangement should be optimum for in-core irradiation purposes and for the beam port experiments too. Sometimes this demand can be in contradiction with the desired burnup level. The achieved burnup level is very important from the fresh fuel consumption point of view, which has direct economic significance, however the generated spent fuel quantity is an important issue too. The refueling technique presented here allowed us at the Budapest Research Reactor to reach average burnup levels superseding 60%. (author)

  1. New Research Reactor Project in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    New research reactor project in Korea aims to increase self-sufficiency in terms of medical and industrial radioisotope supply, to enlarge the supply of NTD silicon doping and to make up the advanced technology related to research reactor. As a major national project for nuclear science and engineering in Korea, this project has been officially started on Apr. 2012 funded by the Government and Local Governments, Kijang-Gun and Busan City, that accommodate this facility in their land. It has five years project schedule from design to commissioning just before starting the normal operation in 2017. KAERI, who is the owner contracted with the Government, is doing the design by itself based on our own knowledge and experiences from the KRR-1, KRR-2 and HANARO. The reactor is be composed of 8.0 g/cc U-Mo fuel, which is the First-of-a-kind application in world, and will be enable of operating over 300 days per year and 60% high burn-up pertinently to produce the required neutron flux. It is expected that the construction permit application will be submitted to regulatory body by the first half of 2014 and the first criticality by 2017.

  2. The Janus Head Article - How Much Terminology Theory Can Practical Terminology Management Use?

    Directory of Open Access Journals (Sweden)

    Petra Drewer

    2012-08-01

    Full Text Available The god Janus in Greek mythology was a two-faced god; each face had its own view of the world. Our idea behind the Janus Head article is to give you two different and maybe even contradicting views on a certain topic. This issue’s Janus Head Article, however, features not two but three different views on terminology work, as researchers, professionals and students (the professionals of tomorrow discuss “How Much Terminology Theory Can Practical Terminology Management Use?” at DaimlerChrysler AG. 

  3. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  4. IAEA's Cross Cutting Activities on Research Reactors

    International Nuclear Information System (INIS)

    Full text: For nuclear research and technology development to continue to advance, research reactors (RRs) must be safely and reliably operated, adequately utilized, refurbished when necessary, provided with adequate proliferation-resistant fuel cycle services and safely decommissioned at the end of life. The IAEA has established its competence in the area of RRs with a long history of assistance to Member States in improving their utilization, by taking the lead in the development of safety standards, norms and dissemination of information on good practices for all aspects of the nuclear fuel cycle and in the planning and implementation of decommissioning. IAEA activities on RRs are formulated to cover a broad range of RR issues and to promote the continued development of scientific research and technological development using RRs. Member States look to the IAEA for coordination of the worldwide effort in this area and for help in solving specific problems. Today RR operating organizations need to overcome challenges such as the on-going management of ageing facilities, pressures for increased vigilance with respect to non-proliferation, and shrinking resources (financial as well as human) while fulfilling an expanding role in support of nuclear technology development. The IAEA coordinates and implements an array of activities that together provide broad support for RRs. As with other aspects of nuclear technology, RR activities within the IAEA are spread through diverse groups in different Departments. To ensure harmonized approaches a Cross-cutting coordination Group on Research Reactors (CCCGRR) has been established, with representatives from all IAEA Departments actively supporting RR activities. Utilization and application activities are generally lead from within the Department of Nuclear Sciences and Applications (NA). With respect to RRs, NA is primarily carrying out IAEA activities to assist and advise Member States in assessing their needs for research

  5. A new high performance research reactor

    International Nuclear Information System (INIS)

    A contract for the design, construction and commissioning of the Replacement Research Reactor was signed in July 2000 between Australia authorities and INVAP from Argentina. Since then the detailed design has been completed, an application for a construction license was made in May 2001 and the construction authorisation was issued on 4th April 2002. This paper explains the safety philosophy embedded into the design together with the approach taken for main elements of the design and their relation to the proposed applications of the reactor. Also information is provided on the suit of neutron beam facilities and irradiation facilities being constructed. Finally it is presented an outline of the project management organisation, project planing and schedule. (author)

  6. Radioisotopes and ionizing radiations in biological research

    International Nuclear Information System (INIS)

    This book deals with the use of radioisotopes and ionizing radiations in the various aspects of biological research. The following topics were presented: labelled compounds; conformation-function relationships of hormonal polypeptides and their spectroscopic study; neutron scattering and neutron diffraction for biological studies; high resolution autoradiography; radioimmunoassay; nuclear medicine; transfer of excitation energy in photosynthesis; radioagronomy; radiation preservation of food

  7. TRIGA research reactors with higher power density

    International Nuclear Information System (INIS)

    The recent trend in new or upgraded research reactors is to higher power densities (hence higher neutron flux levels) but not necessarily to higher power levels. The TRIGA LEU fuel with burnable poison is available in small diameter fuel rods capable of high power per rod (∼48 kW/rod) with acceptable peak fuel temperatures. The performance of a 10-MW research reactor with a compact core of hexagonal TRIGA fuel clusters has been calculated in detail. With its light water coolant, beryllium and D2O reflector regions, this reactor can provide in-core experiments with thermal fluxes in excess of 3 x 1014 n/cm2·s and fast fluxes (> 0.1 MeV) of 2 x 1014 n/cm2·s. The core centerline thermal neutron flux in the D2O reflector is about 2 x 1014 n/cm2·s and the average core power density is about 230 kW/liter. Using other TRIGA fuel developed for 25-MW test reactors but arranged in hexagonal arrays, power densities in excess of 300 kW/liter are readily available. A core with TRIGA fuel operating at 15-MW and generating such a power density is capable of producing thermal neutron fluxes in a D2O reflector of 3 x 1014 n/cm2·s. A beryllium-filled central region of the core can further enhance the core leakage and hence the neutron flux in the reflector. (author)

  8. Safe operation and maintenance of research reactor

    International Nuclear Information System (INIS)

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U3O8- Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  9. Shielding design for research and education reactor

    International Nuclear Information System (INIS)

    For the purpose of education and research at the University, 20-KW powered SLOWPOKE-2 research reactor has been chosen as a prototype reactor. In order to study the safety characteristics of the reactor, exposure rate has been estimated at the pool boundary. Reactor core as a radiation source is assumed to be cylindrical volume source. Thus point kernel integration method can be applied to determine the exposure rate. For the sake of simplicity, calculation was done only for the prompt fission gamma rays and fission product gamma rays. As a result, the maximum exposure rate at the pool boundary was estimated to be 18R/min at the same height of the center of the core. In order to examine the accuracy for the point kernel integration method, two shielding experiments were carried out: one for the water tank only and the other for with concrete blocks outside the water tank. Water tank was made of wood pieces which is 13.4cm wide, 1.5cm thick and 2.15m long. Thus the water tank has the total dimension of 1 m radius and 2.1 m height. The experiment was carried out for the radiation source of 0.968 mCi Co-60 at the center of the water tank and the penetrated gamma rays were measured at 5 different detector positions. For the measurement and analysis of the responses, NaI(T1) 3''x3'' detector and 256 channel multichannel analyzer was utilized. To convert pulse height distribution to the exposure rate, Moriuchi conversion factor was adopted. Data from the calculations by point kernel method were well agreed within 10% band with the data from the the experiments. (Author)

  10. Safe operation and maintenance of research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Munsorn, S. [Reactor Operation Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand)

    1999-10-01

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U{sub 3}O{sub 8}- Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  11. Procedures for the medical application of research reactors (Appendix)

    International Nuclear Information System (INIS)

    The Kyoto University Reactor (KUR) is one of the four research reactors in Japan that are currently licensed for medical application, in addition to other research purposes. Taking the KUR as an example, legal and other procedures for using research reactors for boron neutron capture therapy (BNCT) are described, which are practiced in accordance with the 'Provisional Guideline Pertaining to Medical Irradiation by Accelerators and/or Reactors, other than defined by the Medical Service Act' of the Science Council of Japan

  12. Therapeutic targeting of Janus kinases

    OpenAIRE

    Pesu, Marko; Laurence, Arian; Kishore, Nandini; Zwillich, Sam; Chan, Gary; O’Shea, John J.

    2008-01-01

    Cytokines play pivotal roles in immunity and inflammation, and targeting cytokines and their receptors is an effective means of treating such disorders. Type I and II cytokine receptors associate with Janus family kinases (JAKs) to effect intracellular signaling. These structurally unique protein kinases play essential and specific roles in immune cell development and function. One JAK, JAK3, has particularly selective functions. Mutations of this kinase underlie severe combined immunodeficie...

  13. Proceedings of the European Research Reactor Conference - RRFM 2013 Transactions

    International Nuclear Information System (INIS)

    In 2013 RRFM, the European Research Reactor Conference is jointly organised by ENS and Atomexpo LLC. This time the Research Reactor community meet in St. Petersburg, Russia. The conference programme will revolve around a series of Plenary Sessions dedicated to the latest global developments with regards to research reactor technology and management. Parallel sessions will focus on all areas of the Fuel Cycle of Research Reactors, their Utilisation, Operation and Management as well as specific research projects and innovative methods in research reactor analysis and design. In 2013 the European Research Reactor Conference will for the first time give special attention to complementary safety assessments of Research Reactors, following the Fukushima-Dai-Ichi NPP's Accident. (authors)

  14. Utilization experience with research reactors of various power levels

    International Nuclear Information System (INIS)

    Utilization of research reactor, PARR-1 at the power level of 5 MW, and then at 9 MW, after the up gradation and conversion from highly enriched uranium (HEU) to low enriched uranium (LEU), has been described. In addition, the type of work carried out around a smaller facility, PARR-2, with power rating of 27kW has also been discussed. Utilization of PARR-1 in the area of neutron diffraction, neutron capture studies, radioisotope production, neutron activation analysis, reactor physics, and in reactor controls etc has been illustrated. The benefits derived from the up gradation of the power for neutron diffraction studies, radioisotope production and neutron radiography have been discussed. The problem, which can be handed successfully on PARR-2, include neutron activation analysis, production of short-lived radioisotopes, and experimentation in reactor engineering and physics for training purposes. Suitable methodologies have been developed for the analysis of samples of varied nature using neutron activation technique, and the experience gained has been applied to the analysis of geological, environmental and biological samples and high purity materials. (author)

  15. Medical and radiobiological applications at the research reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    At the University of Mainz, Germany, a boron neutron capture therapy (BNCT) project has been started with the aim to expand and advance the research on the basis of the TAOrMINA protocol for the BNCT treatment of liver metastases of colorectal cancer. Irradiations take place at the TRIGA Mark II reactor. Biological and clinical research and surgery take place at the University and its hospital of Mainz. Both are situated in close vicinity to each other, which is an ideal situation for BNCT treatment, as similarly performed in Pavia, in 2001 and 2003. The application of BNCT to auto-transplanted organs requires development in the methodology, as well as regard to the irradiation facility and is part of the complex, interdisciplinary treatment process. The additional high surgical risk of auto-transplantation is only justified when a therapeutic benefit can be achieved. A BNCT protocol including explantation and conservation of the organ, neutron irradiation and re-implantation is logistically a very challenging task. Within the last years, research on all scientific, clinical and logistical aspects for the therapy has been performed. This includes work on computational modelling for the irradiation facility, tissue and blood analysis, radiation biology, dosimetry and surgery. Most recently, a clinical study on boron uptake in both healthy and tumour tissue of the liver and issues regarding dosimetry has been started, as well as a series of cell-biology experiments to obtain concrete results on the relative biological effectiveness (RBE) of ionizing radiation in liver tissue. (author)

  16. Sonochemical synthesis of magnetic Janus nanoparticles.

    Science.gov (United States)

    Teo, Boon M; Suh, Su Kyung; Hatton, T Alan; Ashokkumar, Muthupandian; Grieser, Franz

    2011-01-01

    The sonochemical synthesis of nanosized surface-dissymmetrical (Janus) particles is described. The Janus particles were composed of silica and polystyrene, with the polystyrene portion loaded with nanosized magnetite particles. It is shown that the Janus particles can be used to form kinetically stable oil-in-water emulsions that can be spontaneously broken on application of an external magnetic field. The one-pot synthetic process used to prepare the Janus particles has several advantages over other conventional methods of producing such particles. PMID:21133341

  17. Research reactor utilization in the Philippines

    International Nuclear Information System (INIS)

    The Philippine Research Reactor (PRR-1) has been used since 1963 for a wide spectrum of scientific activities ranging from fundamental research in nuclear physics, nuclear chemistry, and radiobiology to radioisotope production, neutron activation analysis, materials testing, and manpower development. The paper gives a brief history of the establishment of PRR-1 and its utilization. The current research programme of the Philippine Nuclear Research Institute (PNRI) using the PRR-1 is then presented. The main objective of the programme is to accelerate the application of nuclear energy for the industrialization of the country through the utilization of the PRR-1. The paper also presents the PNRI's regulatory protocol which ensures the safe operation of the PRR-1. (author)

  18. Experience and prospects for developing research reactors of different types

    International Nuclear Information System (INIS)

    NIKIET has a 60-year experience in the development of research reactors. Altogether, there have been more than 25 NIKIET-designed plants of different types built in Russia and 20 more in other countries, including pool-type water-cooled and water moderated research reactors, tank-type and pressure-tube research reactors, pressurized high-flux, heavy-water, pulsed and other research reactors. Most of the research reactors were designed as multipurpose plants for operation at research centers in a broad range of applications. Besides, unique research reactors were developed for specific application fields. Apart from the experience in the development of research reactor designs and the participation in the reactor construction, a unique amount of knowledge has been gained on the operation of research reactors. This makes it possible to use highly reliable technical solutions in the designs of new research reactors to ensure increased safety, greater economic efficiency and maintainability of the reactor systems. A multipurpose pool-type research reactor of a new generation is planned to be built at the Center for Nuclear Energy Science & Technology (CNEST) in the Socialist Republic of Vietnam to be used to support a spectrum of research activities, training of skilled personnel for Vietnam nuclear industry and efficient production of isotopes. It is exactly the applications a research reactor is designed for that defines the reactor type, design and capacity, and the selection of fuel and components subject to all requirements of industry regulations. The design of the new research reactor has a great potential in terms of upgrading and installation of extra experimental devices. (author)

  19. Current activities at the MIT research reactor

    International Nuclear Information System (INIS)

    The MIT Research Reactor (MITR) is a 5 MW nuclear research reactor that is owned and operated by the Massachusetts Institute of Technology to further its educational and research goals at both the undergraduate and graduate level. The facility (MITR-II) uses finned, aluminum-clad, plate-type fuel that is cooled and moderated by light water and reflected by heavy water. This paper provides an overview of current activities at the MITR including: (1) The current operating license will expire in August 1999. A decision has been made to pursue a power upgrade to the maximum level (6-7 MW) that can be safely supported by the existing heat removal equipment. Preparation of relicensing documents and results of thermal hydraulic studies are reviewed. (2) The status of an on-going phase-I clinical trial of BNCT for both glioblastoma multiform and metastatic melanoma will be reported. (3) A fission converter facility has been designed for advanced BNCT clinical trials and for routine therapy. This facility will provide a high quality epithermal neutron beam which is capable of treating a patient in a few minutes. Construction of the facility is currently in progress. The facility's design is summarized. (4) A recent study that was completed at the MIT-II using NAA is reported. This study entailed evaluation of the air quality in Upstate New York from October 1991 through September 1993. (5) A number of unique experimental water loop facilities for the study of light water power reactor coolant chemistry have been installed and operated in the MITR-II. The capabilities and the research objectives addressed by these facilities are summarized. (author)

  20. Current activities at the MIT research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lin Wen; Bernard, John A.; Harling, Otto K.; Kohse, Gordon E.; Olmez, Ilhan [MIT, Cambridge (United States)

    1998-07-01

    The MIT Research Reactor (MITR) is a 5 MW nuclear research reactor that is owned and operated by the Massachusetts Institute of Technology to further its educational and research goals at both the undergraduate and graduate level. The facility (MITR-II) uses finned, aluminum-clad, plate-type fuel that is cooled and moderated by light water and reflected by heavy water. This paper provides an overview of current activities at the MITR including: (1) The current operating license will expire in August 1999. A decision has been made to pursue a power upgrade to the maximum level (6-7 MW) that can be safely supported by the existing heat removal equipment. Preparation of relicensing documents and results of thermal hydraulic studies are reviewed. (2) The status of an on-going phase-I clinical trial of BNCT for both glioblastoma multiform and metastatic melanoma will be reported. (3) A fission converter facility has been designed for advanced BNCT clinical trials and for routine therapy. This facility will provide a high quality epithermal neutron beam which is capable of treating a patient in a few minutes. Construction of the facility is currently in progress. The facility's design is summarized. (4) A recent study that was completed at the MIT-II using NAA is reported. This study entailed evaluation of the air quality in Upstate New York from October 1991 through September 1993. (5) A number of unique experimental water loop facilities for the study of light water power reactor coolant chemistry have been installed and operated in the MITR-II. The capabilities and the research objectives addressed by these facilities are summarized. (author)

  1. Fuel Management at the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pham, V.L.; Nguyen, N.D.; Luong, B.V.; Le, V.V.; Huynh, T.N.; Nguyen, K.C. [Nuclear Research Institute, 01 Nguyen Tu Luc Street, Dalat City (Viet Nam)

    2011-07-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the old 250 kW TRIGA-MARK II reactor. The spent fuel storage was newly designed and installed in the place of the old thermalizing column for biological irradiation. The core was loaded by Russian WWR-M2 fuel assemblies (FAs) with 36% enrichment. The reconstructed reactor reached its initial criticality in November 1983 and attained it nominal power of 500 kW in February 1984. The first fuel reloading was executed in April 1994 after more than 10 years of operation with 89 highly enriched uranium (HEU) FAs. The third fuel reloading by shuffling of HEU FAs was executed in June 2004. After the shuffling the working configuration of reactor core kept unchanged of 104 HEU FAs. The fourth fuel reloading was executed in November 2006. The 2 new HEU FAs were loaded in the core periphery, at previous locations of wet irradiation channel and dry irradiation channel. After reloading the working configuration of reactor core consisted of 106 HEU FAs. Contracts for reactor core conversion between USA, Russia, Vietnam and the International Atomic Energy Agency for Nuclear fuel manufacture and supply for DNRR and Return of Russian-origin non-irradiated highly enriched uranium fuel to the Russian Federation have been realized in 2007. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory and Vietnam Atomic Energy Institute the mixed core configurations of irradiated HEU and new low enriched uranium (LEU) FAs has been created on 12 September, 2007 and on 20 July, 2009. After reloading in 2009, the 14 HEU FAs with highest burnup were removed from the core and put in the interim storage in reactor pool. The works on full core conversion for the DNRR are being realized in cooperation with the organizations, DOE and IAEA. Contract for Nuclear fuel manufacture and supply of 66 LEU FAs for DNRR

  2. Operation experience of the research reactor HANARO

    International Nuclear Information System (INIS)

    Operation experiences and the status of utilization facilities are presented in this paper. Problems in the reactor regulating system, diesel generator, cooling fan, and fuel handling are described, along with their causes and the actions taken. Most of the problems were caused by instrument error but the problem in the cooling fan could be classified as a human error. Such problems are minor but give a lesson in reactor operation and maintenance. More kinds of radioisotopes are being produced every year in parallel with improvements in production technology. The number of neutron activation analyses and neutron radiography tasks done for customers is increasing. In the Hanaro reactor five beam tubes are reserved for neutron beam research and in three of them the beam facilities are already installed or are in installation. Non-fissile material testing using a capsule was performed and fissile material tests are planned for the beginning of 1999. The fuel test loop is expected to hold its first fuel test in the year 2000. Fission molybdenum, cold neutron source, and neutron capture therapy are in the stage of conceptual or basic design. The use of HANARO will be more and more in demand as installation of utilization facilities increases year by year. (author)

  3. Monte Carlo modelling of TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    El Bakkari, B., E-mail: bakkari@gmail.co [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Nacir, B. [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); El Bardouni, T. [ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); El Younoussi, C. [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Merroun, O. [ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Htet, A. [Reactor Technology Unit (UTR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); Boulaich, Y. [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Zoubair, M.; Boukhal, H. [ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Chakir, M. [EPTN-LPMR, Faculty of Sciences, Kenitra (Morocco)

    2010-10-15

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucleaires de la Maamora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S({alpha}, {beta}) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file 'up259'. The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  4. Monte Carlo modelling of TRIGA research reactor

    International Nuclear Information System (INIS)

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucleaires de la Maamora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S(α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file 'up259'. The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  5. Monte Carlo modelling of TRIGA research reactor

    Science.gov (United States)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  6. A multipurpose research reactor design using MCNP

    International Nuclear Information System (INIS)

    The Australian Replacement Research Reactor (RRR) is one of the most recently built advanced neutron research facilities. It is a 20 megawatt open-pool reactor fueled with low enriched uranium and cooled by forced light water. The core is located inside a chimney, surrounded by heavy water as reflector. This paper describes modeling and simulation of the RRR using MCNP. Three changes in the core design are also suggested and simulated. Neutron flux distribution and k(eff) for each model is calculated and compared with those of the original model. Model A is the original RRR design. It is modeled as close as possible to the original design for benchmark and comparison purposes. In the second model (Model B), a vertical square cavity is added in the center of the core, thus providing an irradiation channel with high harder-spectrum neutron flux. A simulation shows that a fast flux as high as 3.0*1014 n/cm2.s is available in a cavity whose area is 64 cm2 while minimally disturbing the rest of the core. The original central cross-shaped control blade is split into four smaller pieces and moved to outer regions. In the third model (Model C), control blades are placed asymmetrically, leading to higher thermal flux in some locations in the reflector, which can be used, for example, for cold neutron source. In the last model (Model D), the control blades never occupy the central part of the core leading to a flux trap and higher harder-spectrum flux around z-equals-0 plane in the central cavity. Individual or combination of these changes may be incorporated in future research reactor designs

  7. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

  8. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    International Nuclear Information System (INIS)

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions

  9. TRIGA research reactor activities around the world

    International Nuclear Information System (INIS)

    Recent activities at several overseas TRIGA installations are discussed in this paper, including reactor performance, research programs under way, and plans for future upgrades. The following installations are included: (1) 14,000-kW TRIGA at the Institute for Nuclear Research, Pitesti, Romania; (2) 2,000-kW TRIGA Mark II at the Institute of Nuclear Technology, Dhaka, Bangladesh; (3) 3,000-kW TRIGA conversion, Philippine Nuclear Research Institute, Quezon City, Philippines; and (4) other ongoing installations, including a 1,500-kW TRIGA Mark II at Rabat, Morocco, and a 1,000-kW conversion/upgrade at the Institute Asunto Nucleares, Bogota, Columbia

  10. TRIGA research reactor activities around the world

    Energy Technology Data Exchange (ETDEWEB)

    Chesworth, R.H.; Razvi, J.; Whittemore, W.L. (General Atomics, San Diego, CA (United States))

    1991-11-01

    Recent activities at several overseas TRIGA installations are discussed in this paper, including reactor performance, research programs under way, and plans for future upgrades. The following installations are included: (1) 14,000-kW TRIGA at the Institute for Nuclear Research, Pitesti, Romania; (2) 2,000-kW TRIGA Mark II at the Institute of Nuclear Technology, Dhaka, Bangladesh; (3) 3,000-kW TRIGA conversion, Philippine Nuclear Research Institute, Quezon City, Philippines; and (4) other ongoing installations, including a 1,500-kW TRIGA Mark II at Rabat, Morocco, and a 1,000-kW conversion/upgrade at the Institute Asunto Nucleares, Bogota, Columbia.

  11. Simulation of the TR-1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dayday, N.; Alsan, S.; Erk, S.

    1978-01-01

    TR-1 is a 1 MW pool-type research reactor. A simulation of TR-1 was attempted in order to predict the values and the variations of principal parameters during the normal and accident conditions. A model based on point kinetics was developed and the variations of neutronics and thermal parameters were studied. A computer program was prepared and successfully run on a desktop calculator HP 9821. Thus it has been shown that a digital computer may be used in a simulation problem in contrast to an analog or hybrid type which are commonly used.

  12. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  13. INVAP Experience in the Design and Construction of Research Reactors. (Research Reactors in and from Argentina)

    International Nuclear Information System (INIS)

    Full Text: Argentina has a long tradition in the design and construction of Research Reactors. The first research reactor in Argentina, RA-1, was built by CNEA (Argentina Atomic Energy Commission) in 1958, using drawings lent by USA. RA-2, RA-3, RA-4 and RA-0 followed through. In 1976, a career degree in Nuclear Engineering was started by CNEA and the University of Cuyo in Bariloche. It was decided that there would be a university type reactor to assist with the training of the students. INVAP, a recently created company, was assigned the task of building the reactor in accordance with the engineering developed by CNEA. The RA-6 was a very successful project, which allowed INVAP to build the knowledge for participating in RR projects abroad. Since 1982, INVAP has built research reactors in Algeria, Egypt, Argentina and Australia and had a large participation in the RRs CNEA built in Peru. INVAP has also designed several other RR for different clients, which were not subsequently built. This paper explores this history, giving details of the RR projects in which INVAP has been involved through the years. (author)

  14. The AFR. An approved network of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Gabriele [Mainz Univ. (Germany). Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren (AFR)

    2012-10-15

    AFR (Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren) is the German acronym for 'Association for Research Reactor Operation and Safety Issues' which was founded in 1959. Reactor managers of European research reactors mainly from the German linguistic area meet regularly for their mutual benefit to exchange experience and knowledge in all areas of operating, managing and utilization of research reactors. In the last 2 years joint meetings were held together with the French association of research reactors CER (Club d'Exploitants des Reacteurs). In this contribution the AFR, its members, work and aims as well as the French partner CER are presented. (orig.)

  15. Present status of BNCT at Kyoto University Research Reactor Institute

    International Nuclear Information System (INIS)

    At Kyoto University Research Reactor Institute, we have two facilities for BNCT such as a reactor-based and an accelerator-based neutron source. In this article, we will present the characteristics overview of both facilities. (author)

  16. Taking into account a reactivity accident in research reactors design

    International Nuclear Information System (INIS)

    The particular studies realized in France for research reactors design at a Borax accident type are described. The cases of ORPHEE and RHF reactors are particularly developed. The evolution of the studies and the conservatism used are given

  17. Refurbishment of IRT-2000 research reactor in Sofia

    International Nuclear Information System (INIS)

    The decommissioning strategy of IRT-2000 research reactor, Sofia is subjected to a refurbishment into low-power reactor. Some pre-decommissioning activities of this complicated decommissioning-refurbishment process have been carried out. (author)

  18. Development of the HANARO research reactor simulator for operator training

    International Nuclear Information System (INIS)

    HANARO (High flux Advanced Neutron Application ReactOr) is multi purpose research reactor in Korea Atomic Energy research Institute, and is operating since 1995. It is needed that training and retraining programs for the operating staff, including: reactor manager, shift supervisors, reactor operators, and others working at the research reactor facility. Recently, we developed HANARO research reactor real time simulator for operating staff training to satisfy these programs. The development of computer based training simulator have provided an easy understanding of reactor physics, operation, and control. Real time simulator is recognized as the ultimate training tool because they allow experiencing, in a dynamic mode, every type of operational condition which can be encountered including: start up, variation of power, shut down, operation during accidents, etc. Also, the simulator will be used as a dynamic test-bed for the reactor regulating system control algorithm

  19. Development of the HANARO research reactor simulator for operator training

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Kim, Jang Yeol; Park, Jae Chang; Lee, Seung Wook; Hwang, In Ah; Lee, Dong Young [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    HANARO (High flux Advanced Neutron Application ReactOr) is multi purpose research reactor in Korea Atomic Energy research Institute, and is operating since 1995. It is needed that training and retraining programs for the operating staff, including: reactor manager, shift supervisors, reactor operators, and others working at the research reactor facility. Recently, we developed HANARO research reactor real time simulator for operating staff training to satisfy these programs. The development of computer based training simulator have provided an easy understanding of reactor physics, operation, and control. Real time simulator is recognized as the ultimate training tool because they allow experiencing, in a dynamic mode, every type of operational condition which can be encountered including: start up, variation of power, shut down, operation during accidents, etc. Also, the simulator will be used as a dynamic test-bed for the reactor regulating system control algorithm.

  20. Operation and Utilizations of Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilization of the reactor is presented. Some aspects of reactor safety are also discussed. (author) 2 figs.; 5 refs.; 1 tab

  1. Progress in Promoting Research Reactor Coalitions

    International Nuclear Information System (INIS)

    This presentation treats of the IAEA's role in Promoting Research Reactor (RR) coalitions, presents the strategic view, the types of coalitions, the 2007-2008 activities and Results, and the upcoming activities. The RR Coalitions Progress is presented first (Initial discussions, project design, approval of NTI grant request, informal consultations and development of 'national' proposals, Number of 'models' identified, exploratory missions/meetings, initial implementation of several coalitions, IAEA coordination, ideas/proposals/ventures, initial support. Some countries, institutes, or users want access to reactor capabilities without, or in advance of, building a domestic facility. Some countries, institutes, or users need access to alternative capabilities to permit the closure/consolidation of marginal facilities. Cooperative arrangements will result in increased utilization for each participant. The results from the reactor view are as follows: cover increases in order levels or scientific research; cover facility outages (planned or un-planned); delegate 'less profitable' products and services; access capacity for new products and services; reduce transport needs by geographical optimization; reduce investment needs by contracting for complementary capabilities; reduce costs of medical radio-isotope for R and D; share best practices in operations and safety. The results from the stakeholder View are: Better information on what reactors can offer/provide; greater range of services; more proactive product and service support; greater reliability in supplies of products and services. The types of coalitions are of different forms to meet needs, capabilities, objectives of members. In general they start small, evolve, change form, expand as confidence grows. The role of the Scientific consortium is to: distribute excess demand, test new concepts for implementation at high-flux reactors, direct requests for access to most appropriate RR, share best practices

  2. The World Modeler : the nexus between Janus and Battlefield Distributed Simulation-Developmental

    OpenAIRE

    Johnson, Matthew A.

    1994-01-01

    The United States Army has two disparate combat models; Janus and Battlefield Distributed Simulation-Developmental (BDS-D). Both facilitate training, tactical development and weapons analysis. The major problem addressed by this research is that entities existing in the Janus Combat Modeler cannot interact with entities in BDS-D. If interaction is made possible, it would produce a synergy between the combined models, each model bringing advantages to the other. The approach taken was first to...

  3. Radiological consequence analysis of research reactors

    International Nuclear Information System (INIS)

    The objective of the project is to study the environmental effects of research reactors having low enriched uranium as fuel in case of accident by using standard computer code KORIGEN. The study includes fission product inventory in core, atmospheric dispersion of radioactive effluents and dose rates at different receptor locations in order to determine the boundaries of extension and low population zones. Computer code KORIGEN has been employed to calculate the core inventory. Mathematical models were used to calculate the activity behavior and dose rates. Pakistan research reactor-1 (PARR-1) has been considered for the analysis. A continuous run for 123 days was assumed to achieve the target burn up of core. For a cooling time of 90 days the decay of total activity and decay heat was also studied. During this time activity and decay heat were reduced to 2.63% and 0.847% of their shut down values. The code may also be used to calculate fuel burn up and multiplication factor. (author)

  4. The present status and the prospect of China research reactors

    International Nuclear Information System (INIS)

    A total of 100 reactor operation years' experience of research reactors has now been obtained in China. The type and principal parameters of China research reactors and their operating status are briefly introduced in this paper. Chinese research reactors have been playing an important role in nuclear power and nuclear weapon development, industrial and agricultural production, medicine, basic and applied science research and environmental protection, etc. The utilization scale, benefits and achievements will be given. There is a good safety record in the operation of these reactors. A general safety review is discussed. The important incidents and accidents happening during a hundred reactor operating years are described and analyzed. China has the capability of developing any type of research reactor. The prospective projects are briefly introduced

  5. Molten salt reactor related research in Switzerland

    International Nuclear Information System (INIS)

    Switzerland represented by the Paul Scherrer Institute (PSI) is a member of the Generation IV International Forum (GIF). In the past, the research at PSI focused mainly on HTR, SFR, and GFR. Currently, a research program was established also for Molten Salt Reactors (MSR). Safety is the key point and main interest of the MSR research at the Nuclear Energy and Safety (NES) department of PSI. However, it cannot be evaluated without knowing the system design, fuel chemistry, salt thermal-hydraulics features, safety and fuel cycle approach, and the relevant material and chemical limits. Accordingly, sufficient knowledge should be acquired in the other individual fields before the safety can be evaluated. The MSR research at NES may be divided into four working packages (WP): WP1: MSR core design and fuel cycle, WP2: MSR fuel behavior at nominal and accidental conditions, WP3: MSR thermal-hydraulics and decay heat removal system, WP4: MSR safety, fuel stream, and relevant limits. The WPs are proposed so that there are research topics which can be independently studied within each of them. The work plan of the four WPs is based on several ongoing or past national and international projects relevant to MSR, where NES/PSI participates. At the current stage, the program focuses on several specific and design independent studies. The safety is the key point and main long-term interest of the MSR research at NES. (author)

  6. Research reactor de-fueling and fuel shipment

    International Nuclear Information System (INIS)

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures

  7. Present status of research reactor decommissioning programme in Indonesia

    International Nuclear Information System (INIS)

    At present Indonesia has 3 research reactors, namely the 30 MW MTR-type multipurpose reactor at Serpong Site, two TRIGA-type research reactors, the first one being 1 MW located at Bandung Site and the second one a small reactor of 100 kW at Yogyakarta Site. The TRIGA Reactor at the Bandung Site reached its first criticality at 250 kW in 1964, and then was operated at 1000 kW since 1971. In October 2000 the reactor power was successfully upgraded to 2 MW. This reactor has already been operated for 38 years. There is not yet any decision for the decommissioning of this reactor. However it will surely be an object for the near future decommissioning programme and hence anticipation for the above situation becomes necessary. The regulation on decommissioning of research reactor is already issued by the independent regulatory body (BAPETEN) according to which the decommissioning permit has to be applied by the BATAN. For Indonesia, an early decommissioning strategy for research reactor dictates a restricted re-use of the site for other nuclear installation. This is based on high land price, limited availability of radwaste repository site, and other cost analysis. Spent graphite reflector from the Bandung TRIGA reactor is recommended for a direct disposal after conditioning, without any volume reduction treatment. Development of human resources, technological capability as well as information flow from and exchange with advanced countries are important factors for the future development of research reactor decommissioning programme in Indonesia. (author)

  8. Global estimation of potential unreported plutonium in thermal research reactors

    International Nuclear Information System (INIS)

    As of November, 1993, 303 research reactors (research, test, training, prototype, and electricity producing) were operational worldwide; 155 of these were in non-nuclear weapon states. Of these 155 research reactors, 80 are thermal reactors that have a power rating of 1 MW(th) or greater and could be utilized to produce plutonium. A previously published study on the unreported plutonium production of six research reactors indicates that a minimum reactor power of 40 MW (th) is required to make a significant quantity (SQ), 8 kg, of fissile plutonium per year by unreported irradiations. As part of the Global Nuclear Material Control Model effort, we determined an upper bound on the maximum possible quantity of plutonium that could be produced by the 80 thermal research reactors in the non-nuclear weapon states (NNWS). We estimate that in one year a maximum of roughly one quarter of a metric ton (250 kg) of plutonium could be produced in these 80 NNWS thermal research reactors based on their reported power output. We have calculated the quantity of plutonium and the number of years that would be required to produce an SQ of plutonium in the 80 thermal research reactors and aggregated by NNWS. A safeguards approach for multiple thermal research reactors that can produce less than 1 SQ per year should be conducted in association with further developing a safeguards and design information reverification approach for states that have multiple research reactors

  9. Reactor Design Strategy for Martian Research Base

    International Nuclear Information System (INIS)

    With the discovery of nuclear energy, the manned exploration of the Solar system became technologically feasible. Nuclear powered propulsion systems can provide high propellant utilization efficiency and short transfer times to other planets, while long-life and compact nuclear reactors can provide power-rich environment for the research activities on the planet surface. For example, Reference Mission of the Mars Exploration. developed at NASA relies on the Nuclear Thermal Rocket concept for the men and equipment transfers from Earth to Mars. According to the same mission plan, the nuclear powered In-situ Resource Utilization unit should be set up on the Mars surface and produce methane fuel from the Martian atmosphere for the crew return trip. The members of Mars Homestead Project team are taking the challenge of space exploration one step further and aiming ultimately at establishing a permanent colony on Mars. The success of such enterprise would depend to a large extent on the availability of abundant and reliable energy source capable to satisfy the colony power needs. Considering the solar energy density at the Mars surface and the availability of other local resources, a nuclear power system is, clearly, the only technologically mature option for the near term deployment. The first estimate of the Mars colony energy needs has been recently reported by the Mars Homestead Project team at the 8 International Mars Society Conference(2). The main bulk of the energy is assumed to be supplied by three nuclear reactors 2 M Wth each. This paper outlines the fundamental considerations of such nuclear reactor design

  10. Contributions of research reactors in science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Butt, N.M.; Bashir, J.

    1994-01-01

    In the present paper, after defining a research reactor, its basic constituents, types of reactors, and their distribution in the world, some typical examples of their uses are given. Particular emphasis is placed on the contribution of PARR-1 (Pakistan Research Reactor-1), the 5MW Swimming Pool Research reactor which first became critical at the Pakistan Institute of Nuclear Science and Technology (PINSTECH) in Dec. 1965 and attained its full power in June 1966. This was and still is the major research facility at PINSTECH for research and development.

  11. Contributions of research Reactors in science and technology

    International Nuclear Information System (INIS)

    In the present paper, after defining a research reactor, its basic constituents, types of reactors, their distribution in the world, some typical examples of their uses are given. Particular emphasis in placed on the contribution of PARR-I (Pakistan Research Reactor-I), the 5 MW Swimming Pool Research reactor which first became critical at the Pakistan Institute of Nuclear Science and Technology (PINSTECH) in Dec. 1965 and attained its full power in June 1966. This is still the major research facility at PINSTECH for research and development. (author)

  12. Spherical tokamak research for fusion reactor

    International Nuclear Information System (INIS)

    Between ITER and the commercial fusion reactor, there are many technological problems to be solved such as cost, neutron and steady-state operation. In the conceptual design of VECTOR and Slim CS reactors it was shown that the key is 'low aspect ratio'. The spherical tokamak (ST) has been expected as the base for fusion reactors. In US, ST is considered as a non-superconducting reactor for use in the neutron irradiation facility. Conceptual design of the superconducting ST reactor is conducted in Japan and Korea independently. In the present article, the prospect of the ST reactor design is discussed. (author)

  13. Post reactor researches of fuel pins, tested under alternating NEMF reactor functioning modes

    International Nuclear Information System (INIS)

    Changing of rod ceramic fuel pins state under their exploitation conditions changing influence at alternating of three-mode nuclear energy-moving facility reactor functioning has been examined. There are presented the results of researches of fuel pins, tested in the reactor IRGIT and RA, firstly under moving mode, then - under energy mode of minor power of NEMF reactor. (author)

  14. Research activities on fast reactors in Switzerland

    International Nuclear Information System (INIS)

    The current domestic Swiss electricity supply is primarily based on hydro power (approximately 61%) and nuclear power (about 37%). The contribution of fossil systems is, consequently, minimal (the remaining 2%). In addition, long-term (but limited in time) contracts exist, securing imports of electricity of nuclear origin from France. During the last two years, the electricity consumption has been almost stagnant, although the 80s recorded an average annual increase rate of 2.7%. The future development of the electricity demand is a complex function of several factors with possibly competing effects, like increased efficiency of applications, changes in the industrial structure of the country, increase of population, further automation of industrial processes and services. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually open a gap between the postulated electricity demand and the base supply. The assumed projected demand cases, high and low, as well as the secured yearly electric energy supply are shown. The physics aspects of plutonium burning fast reactor configurations are described including first results of the CIRANO experimental program. Swiss research related to residual heat removal in fast breeder reactors is presented. It consists of experimental ana analytic investigations on the mixing between two horizontal fluid layers of different velocities and temperatures. Development of suitable computer codes for mixing layer calculation are aimed to accurately predict the flow and temperature distribution in the pools. A satisfactory codes validation based on experimental data should be done

  15. Innovation and research in reactor safety

    International Nuclear Information System (INIS)

    In line with the engineered safeguards principle of in-depth safety, the survey article deals with innovation and research in the field of reactor safety, improvements in plant operation, innovation in accident management, and reduction of the consequences of severe accidents. The survey reveals that the development and application of innovative and efficient technologies is aimed primarily at the management of aging and of the operating life, and at simplifying and improving operations processes. Another area of innovation is accident management. In this respect, some of the main areas under development are the expansion of the multi-level safety concept, the introduction of further accident control measures so as to complete the spectrum of accidents covered, the quantification of safety margins by means of the application of modern methods of computation, and the introduction of passive elements reducing the need for fast countermeasures to be initiated by the plant operating personnel. The authors conclude that, on the whole, light water reactors attain a level of safety which, in combination with corresponding efforts in the economic sector, is a precondition for the renaissance of nuclear technology in the century just begun. The second part of the article, which is to be published in July, will deal mainly with the reduction of consequences of severe accidents. (orig.)

  16. Health physics research reactor reference dosimetry

    International Nuclear Information System (INIS)

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs

  17. Defuelling of the UTR-300 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.D.; Banford, H.M.; East, B.W. [Scottish Universities Research and Reactor Centre, Glasgow (United Kingdom)

    1997-07-01

    The UTR-300 reactor at the Scottish Universities Research and Reactor Centre was based on the original Argonaut design with two aluminium core tanks set in a graphite reflector each containing six fuel elements cooled and moderated by water flowing up through the tanks in a closed primary circuit. The fuel plates in the original 13-plate elements were uranium oxide-aluminium with a 22g loading of 90% {sup 235}U. After 7 years of operation at 100 kW (10 kW average), the maximum power was increased to 300 kW (30 kW average) and, in order to maintain the operational excess reactivity, it was necessary to add another plate to each element progressively over the years until they all contained 14 plates. These extra plates were uranium metal-aluminium with 24.5 g of 90% {sup 235}U. No further modification of the elements was possible and so, with reactivity steadily decreasing, and for a variety of other reasons, a decision was taken to cease operation in September 1995. This paper describes the procedures whereby the fuel was unloaded from the core into a UNIFETCH flask equipped with a specially designed rotating gamma ray shield and then transported on two separate loads to Dounreay for reprocessing. (author)

  18. Defuelling of the UTR-300 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.D.; Banford, H.M.; East, B.W. [Scottish Universities Research and Reactor Centre, Glasgow (United Kingdom)

    1997-07-01

    The UTR-300 reactor at the Scottish Universities Research and Reactor Centre was based on the original Argonaut design with two aluminium core tanks set in a graphite reflector each containing six fuel elements cooled and moderated by water flowing up through the tanks in a closed primary circuit. The fuel plates in the original 13-plate elements were uranium oxide-aluminium with a 22g loading of 90% {sup 235}U. After 7 years of operation at 100 kW (10 kW average), the maximum power was increased to 300 kW (30 kW average) and, in order to maintain the operational excess reactivity, it was necessary to add another plate to each element progressively over the years until they all contained 14 plates. These extra plates were uranium metal-aluminium with 24.5 g of 90% {sup 235}U. No further modification of the elements was possible and so, with reactivity steadily decreasing, and for a variety of other reasons, a decision was taken to cease operation in September 1995. This paper describes the procedures whereby the fuel was unloaded from the core into a UNIFETCH flask equipped with a specially designed rotating gamma ray shield and then transported on two separate loads to Dounreay for reprocessing. (author) 2 figs., 2 tabs., refs.

  19. Optimum burnup of BAEC TRIGA research reactor

    International Nuclear Information System (INIS)

    Highlights: ► Optimum loading scheme for BAEC TRIGA core is out-to-in loading with 10 fuels/cycle starting with 5 for the first reload. ► The discharge burnup ranges from 17% to 24% of U235 per fuel element for full power (3 MW) operation. ► Optimum extension of operating core life is 100 MWD per reload cycle. - Abstract: The TRIGA Mark II research reactor of BAEC (Bangladesh Atomic Energy Commission) has been operating since 1986 without any reshuffling or reloading yet. Optimum fuel burnup strategy has been investigated for the present BAEC TRIGA core, where three out-to-in loading schemes have been inspected in terms of core life extension, burnup economy and safety. In considering different schemes of fuel loading, optimization has been searched by only varying the number of fuels discharged and loaded. A cost function has been defined and evaluated based on the calculated core life and fuel load and discharge. The optimum loading scheme has been identified for the TRIGA core, the outside-to-inside fuel loading with ten fuels for each cycle starting with five fuels for the first reload. The discharge burnup has been found ranging from 17% to 24% of U235 per fuel element and optimum extension of core operating life is 100 MWD for each loading cycle. This study will contribute to the in-core fuel management of TRIGA reactor

  20. Cost Estimation for Research Reactor Decommissioning

    International Nuclear Information System (INIS)

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The purpose of this publication is to develop a costing methodology and a software tool in order to support cost estimation for research reactor decommissioning. The costing methodology is intended for the preliminary cost estimation stages for research reactor decommissioning with limited inventory data and other input data available. Existing experience in decommissioning costing is considered. As the basis for the cost calculation structure, the costing model uses the International Structure for Decommissioning Costing (ISDC) that is recommended by the IAEA, the Organisation for

  1. Enhancement of research reactor utilization in the developing countries

    International Nuclear Information System (INIS)

    As the research reactor represents a significant capital investment on the part of any institution and in addition there are recurring annual operating costs, therefore, the subject of its effective utilization has always been of interest. World wide there are about three hundred research reactors. Of these, 92 are located in the developing countries. Together, these reactors represent quite significant research potential. In the present paper, reasons of under utilization, procedures necessary to measure the productivity, ways and means of enhancing the utilization of research reactors are described. In the end, use of two research reactors at PINSTECH are described to illustrate some of the ways in which a successful utilization of a research reactor can made in the developing country. (author) 9 figs

  2. Safety in the utilization and modification of research reactors

    International Nuclear Information System (INIS)

    This Safety Guide presents guidelines, approved by international consensus, for the safe utilization and modification of research reactors. While the Guide is most applicable to existing reactors, it is also recommended for use by organizations planning to put a new reactor into operation. 1 fig

  3. Modeling and kinetics research of IGR reactor

    International Nuclear Information System (INIS)

    The effort addresses issues related to modeling and studying of IGR reactor dynamic behavior; an example of IGR reactor kinetics model realization and study results in time and frequency domains are given. (author)

  4. Research Reactor: A Powerhouse of Nuclear Technology in Korea

    International Nuclear Information System (INIS)

    The nuclear era in Korea was opened with the 100 kW KRR-1 of which construction started in 1959. The second research reactor, 2 MW KRR-2, was finished in 1972, around when the first nuclear power plant project was launched. Then the next research reactor HANARO, a 30 MW multi-purpose reactor, started the operation in 1995 and has made the technologies for the research reactor development and utilization matured. The competitiveness of Korean research reactor technology was acknowledged by being selected as the supplier of 5 MW JRTR for Jordan. In addition, Korea is sharing its research reactor technologies with many other countries in the areas of training, engineering service, neutron beam instrument manufacturing, and supply of RI goods production equipment and of the advanced research reactor fuel material. KAERI, as a nuclear research institute, has a well-established R and D infrastructure together with the research reactor operation and utilization technology. It can contribute for the new comers to establish a research reactor facility as well as a research environment using the facility as a tool to build-up their nuclear technology and service capability for their public. (author)

  5. IAEA/CRP for decommissioning techniques for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities.

  6. Initiatives Supporting Research Reactor in the Asia-Pacific Region

    International Nuclear Information System (INIS)

    The safe and effective operation and utilisation of research reactors in the Asia-Pacific will assist the region as it grows and develops into the world's powerhouse for economic development in the 21st century. This paper explores the drivers for developments in regional research reactor operation and high-level initiatives in safety for some nations. Detailed examples of safety initiatives for research reactors in some Asia-Pacific nations and challenges for the future in the region are given. (author)

  7. Progress in Korea Multi-purpose Research Reactor (KMRR)

    International Nuclear Information System (INIS)

    This paper gives the latest progress in Korea Multi-purpose Research Reactor (KMRR), a 30 MW open-tank-in-pool type reactor designed and being constructed by the Korea Atomic Energy Research Institute (KAERI), expected to take the central role of national nuclear R and D activities beyond the nineties. In this paper, background and necessity of this new research reactor are described. The progress in R and D, construction and commissioning of KMRR follow. (author)

  8. Research Reactor Benchmarking Database: Facility Specification and Experimental Data

    International Nuclear Information System (INIS)

    This web publication contains the facility specifications, experiment descriptions, and corresponding experimental data for nine different research reactors covering a wide range of research reactor types, power levels and experimental configurations. Each data set was prepared in order to serve as a stand-alone resource of well documented experimental data, which can subsequently be used in benchmarking and validation of the neutronic and thermal-hydraulic computational methods and tools employed for improved utilization, operation and safety analysis of research reactors

  9. Research nuclear reactor start-up simulator

    International Nuclear Information System (INIS)

    This work presents the design and FPGA implementation of a research nuclear reactor start-up simulator. Its aim is to generate a set of signals that allow replacing the neutron detector for stimulated signals, to feed the measurement electronic of the start-up channels, to check its operation, together with the start-up security logic. The simulator presented can be configured on three independent channels and adjust the shape of the output pulses. Furthermore, each channel can be configured in 'rate' mode, where you can specify the growth rate of the pulse frequency in %/s. Result and details of the implementation on FPGA of the different functional blocks are given. (author)

  10. Optical inspections of research reactor tanks and tank components

    International Nuclear Information System (INIS)

    By the end of 1987 worldwide there were 326 research reactors in operation, 276 of them operating more than 10 years, and 195 of them operating more than 20 years. The majority of these reactors are swimming-pool type or tank type reactors using aluminium as structural material. Although aluminium has prooven its excellent properties for reactor application in primary system, it is however subjected to various types of corrosion if it gets into contact with other materials such as mild steel in the presence of destilled water. This paper describes various methods of research reactor tank inspections, maintenance and repair possibilities. 9 figs. (Author)

  11. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1978 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  12. Reactor aging research. United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    The reactor ageing research activities in USA described, are focused on the research of reactor vessel integrity, including regulatory issues and technical aspects. Current emphasis are described for fracture analysis, embrittlement research, inspection capabilities, validation od annealing rule, revision of regulatory guide

  13. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1979 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  14. Upgrading of the research reactors FRG-1 and FRG-2

    International Nuclear Information System (INIS)

    In 1972 for the research reactor FRG-2 we applied for a license to increase the power from 15 MW to 21 MW. During this procedure a public laying out of the safety report and an upgrading procedure for both research reactors - FRG-1 (5 MW) and FRG-2 - were required by the licensing authorities. After discussing the legal background for licensing procedures in the Federal Republic of Germany the upgrading for both research reactors is described. The present status and future licensing aspects for changes of our research reactors are discussed, too. (orig.)

  15. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C.; Kanyukt, R.; Pongpat, P. [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  16. Development of Education and Training Programs Using ISIS Research Reactor

    International Nuclear Information System (INIS)

    As a part of the French Alternative Energies and Atomic Energy Commission (CEA), the National Institute for Nuclear Science and Technology (INSTN) carries out various education and training programs on nuclear reactor theory and operation. These programs take advantage of the use of an extensive range of training tools that includes software applications, simulators, as well as the use of research reactors. After a presentation of ISIS reactor, we present the training courses that have been developed on ISIS reactor and their use in education and training programs developed by INSTN. We report on how the training courses carried out on ISIS research reactor ensure a practical and comprehensive understanding of the reactor principle and operation, bringing tremendous benefit to the trainees. We also discuss the future development of education and training programs using the ISIS research reactor as a very powerful tool for the development of the human resources needed by the nuclear industry and the nuclear programs. (author)

  17. Re-engineering the Janus (A) combat simulation system

    OpenAIRE

    Berzins, Valdis Andris

    1999-01-01

    This report describes a case study to determine whether computer- aided prototyping techniques provide a cost-effective means for re-engineering legacy software. The case study consists of developing a high-level modular architecture for the existing US Army Janus combat simulation system, and validating the architecture via an executable prototype using the Computer Aided Prototype System (CAPS), a research tool developed at the Naval Postgraduate School. The case study showed that prototypi...

  18. Proceedings of a symposium(short term research meeting) on research of semiconductors with research reactors

    International Nuclear Information System (INIS)

    This is a proceeding of a symposium (short term research meeting) on research of semiconductors with research reactors held at the Research Reactor Institute, Kyoto University on January 21 and 22 in 1985. At first an introductory talk on reactor neutron fields and semiconductors was given. Then there were four sessions as following: (1) Structure analysis by neutron diffraction. (2) Impurity measurements by neutron activation analysis, radioactive tracer technique and solid state track detector technique. (3) Neutron transmutation doping. (4) Irradiation effects of semiconductor materials and devices. (author)

  19. Core Management of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    The Dalat nuclear research reactor (DNRR) is a pool-type research reactor which was reconstructed from the 250 kW TRIGA-MARK II reactor. The reconstructed reactor reached its initial criticality in November 1983 and attained its nominal power of 500 kW in February 1984. The DNRR uses Russian fuel assemblies, type WWR-SM. The first fuel reloading was executed in April 1994 after more than ten years of operation with 89 fuel assemblies. Research on core management of DNRR with the purpose of maintaining safe operation and effective utilization of reserve fuel assem- blies is being carried out at the Nuclear Research Institute. Calculations of fuel burn-up for the Dalat nuclear research reactor are carried out based on the cell calculation program WIMS and two diffusion calculation programs HEXAGA and HEXNOD. Experimental measurement of fuel burn-up for the Dalat nuclear research reactor was realized by a measurement method of long-life isotopes from fission products. Optimum second fuel reloading and future refuelling for DNRR have been gained. A second fuel reloading for the Dalat nuclear research reactor was realized in March 2002. After reloading the working configuration of the reactor, the core consisted of 104 fuel assemblies. Research results for future refuelling for DNRR show that with 36 reserve fuel assemblies, the reactor will be operated for at least 17 851 h at nominal power since the second fuel reloading. (author)

  20. Off reactor testings. Technological engineering applicative research

    International Nuclear Information System (INIS)

    By the end of year 2000 over 400 nuclear electro-power units were operating world wide, summing up a 350,000 MW total capacity, with a total production of 2,300 TWh, representing 16% of the world's electricity production. Other 36 units, totalizing 28,000 MW, were in construction, while a manifest orientation towards nuclear power development was observed in principal Asian countries like China, India, Japan and Korea. In the same world's trend one find also Romania, the Cernavoda NPP Unit 1 generating electrical energy into the national system beginning with 2 December 1996. Recently, the commercial contract was completed for finishing the Cernavoda NPP Unit 2 and launching it into operation by the end of year 2004. An important role in developing the activity of research and technological engineering, as technical support for manufacturing the CANDU type nuclear fuel and supplying with equipment the Cernavoda units, was played by the Division 7 TAR of the INR Pitesti. Qualification testings were conducted for: - off-reactor CANDU type nuclear fuel; - FARE tools, pressure regulators, explosion proof panels; channel shutting, as well as functional testing for spare pushing facility as a first step in the frame of the qualification tests for the charging/discharging machine (MID) 4 and 5 endings. Testing facilities are described, as well as high pressure hot/cool loops, measuring chains, all of them fulfilling the requirements of quality assurance. The nuclear fuel off-reactor tests were carried out to determine: strength; endurance; impact, pressure fall and wear resistance. For Cernavoda NPP equipment testings were carried out for: the explosion proof panels, pressure regulators, behaviour to vibration and wear of the steam generation tubings, effects of vibration upon different electronic component, channel shutting (for Cernavoda Unit 2), MID operating at 300 and 500 cycles. A number of R and D programs were conducted in the frame of division 7 TAR of INR

  1. Janus kinase inhibitors for rheumatoid arthritis.

    Science.gov (United States)

    Yamaoka, Kunihiro

    2016-06-01

    Treatment of autoimmune diseases, such as rheumatoid arthritis (RA), has advanced substantially over the past decade with the development of biologics targeting inflammatory cytokines. Recent progress in treating RA has been achieved with janus kinase (JAK) inhibitors (Jakinibs), an orally available disease-modifying anti-rheumatic drug targeting the intracellular kinase JAK and with similar efficacy to biologics. The first Jakinib approved for RA was tofacitinib, which exerted superiority to methotrexate and non-inferiority to tumor necrosis factor (TNF) inhibitors. In recent years, the Jakinib baricitinib has demonstrated superiority to both methotrexate and a TNF inhibitor, adalimumab. Given these promising findings, Jakinibs are expected to represent the next generation compounds for treating RA, and a number of Jakinibs are currently in clinical trials. Jakinibs can differ substantially in their selectivity against JAKs; tofacitinib and baricitinib target multiple JAKs, whereas the most recently developed Jakinibs target only a single JAK. The influence of Jakinib selectivity on efficacy and side effects is of great interest, requiring further careful observation. PMID:26994322

  2. Utilization related design features of research reactors: A compendium

    International Nuclear Information System (INIS)

    For more than 50 years, research reactors have played an important role in the development of nuclear science and technology. They have made significant contributions to a large number of disciplines, as well as to the educational and research programmes of about 70 countries worldwide. In the recent past, however, the utilization patterns of research reactors have changed remarkably. At present, new and upgraded research reactors are either facilities specialized in education, materials research and radioisotope production, or state of the art machines designed and equipped to carry out cutting edge research involving neutrons. A significant number of operating research reactors have become service-for-fee facilities producing radioisotopes, and performing neutron radiography, semiconductor doping and neutron activation analysis for a wide range of users while continuing their traditional role in education and training. At the same time, high quality basic research is the driving force for the few new, state of the art and high performance research reactors. There are significant utilization issues being faced by the research reactor community, one being the selection, design and operation of various types of devices in research reactors. Early in 2002, in order to facilitate the exchange of ideas, concepts and experience, the IAEA decided to prepare a publication on facilities and associated devices for selected fields of utilization of research reactors, including constraints and restrictions imposed on design and operation. Pursuing that objective, in December 2002 the IAEA convened a meeting to consider updating the existing documentation on multipurpose research reactors, which was produced in 1988. It was agreed at that meeting that updating the original material, and preserving its organization and contents was not the best response to the actual needs of the research reactor community worldwide. Instead, the recommendation was to prepare a guide on the

  3. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  4. core calculations for ETRR-1 research reactor upgrading

    International Nuclear Information System (INIS)

    nuclear research reactors play an important role in supporting the nuclear energy program for most countries. research reactors are categorized according to the type of fuel, fuel enrichment, type of moderator and reflector, the power of the reactor and its application. most reactors initially operated at low power then an era began to up-rate the power by changing the fuel type, improving the thermal-hydraulic system performance and modifying the control system to comply with the new trends in research reactors and its applications. in this thesis, we carried out static calculation for the egyptian first research reactor ETRR-1 to evaluate its power upgrade possibility. firstly, we carried out cell calculation using WIMSD/4 code to study the variation of the infinite multiplication factor with the variation of fuel enrichment, lattice pitch and adding heavy water by increasing percentage to the ordinary water coolant

  5. Safety review and assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    More operational events were occurred at various research reactors in 1995. The NNSA and its regional offices conducted careful investigation and strict regulation. In order to analyze comprehensively the safety situation of inservice research reactors and find same countermeasures the NNSA convened a meeting of the safety regulation on research reactors and a meeting for change experience of the safety regulation on research reactors that were participated in by the operating organizations in 1995. A lot of work has been done in the respects of propagation of regulations on nuclear safety, education of nuclear safety culture, the investigation and treatment of operational events, the reexamine of operation documents, the implementation of rectifying items on nuclear safety, the daily inspection and routine inspection on nuclear safety and the studying on the extending service life of research reactors etc

  6. Spent fuel management for research reactors

    International Nuclear Information System (INIS)

    There are six research reactors in Argentina using fuel elements uranium enriched from 20 to 90%. Spent fuel elements management is limited to RA-1 (Argonaut type used for training) and RA-3 (for experimentation and radioisotope production), as for the others no changes have been carried out over the cores. The first core of RA-1 was reprocessed and the second core was manufactured with U3O8 obtained from reprocessing, and once spent was transferred to a dry storage. RA-3 is pool type and fuel elements are MTR enriched at 90% 24 fuel elements in the core. Up to now 238 fuel elements have been used with burn-up from 16 to 40% and about 8 gU per plate. At present RA-3 is being remodelled in order to be able to use fuel elements enriched to 20%. After decay in a pool at reactor building, they are transported to a wet storage facility for spent fuel elements. Control rods are treated in the same way. From 15 years of storage facility operation, it follows as a consequence that the proposed objectives have been fulfilled sufficiently well, as shown by radioactivity measurements on the water hole lines (5 x 10-4 Ci/m3 of Cs-137) and the neutron interrogation method on the spent fuel elements tested presented values less than 10-8 gU/cm3, that was considered acceptable). Nevertheless, some corrosion areas were observed. Program activities involve on one hand mainly new chemical and physical controls in order to optimize spent fuel storage and, on the other hand, the study of the corrosion observed with the aim to minimize it and to ensure safe storage. (author). 6 figs, 2 tabs

  7. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  8. Information metric and Euclidean Janus correspondence

    Directory of Open Access Journals (Sweden)

    Dongsu Bak

    2016-05-01

    Full Text Available We consider the quantum information metric of a family of CFTs perturbed by an exactly marginal operator, which has the dual description of the Euclidean Janus geometries. We first clarify its two dimensional case dual to the three dimensional Janus geometry, which recently appeared in arXiv:1507.07555 [2]. We generalize this correspondence to higher dimensions and get a precise agreement between the both sides. We also show that the mixed-state information metric of the same family of CFTs has a dual description in the Euclidean version of the Janus time-dependent black hole geometry.

  9. Information metric and Euclidean Janus corresponence

    CERN Document Server

    Bak, Dongsu

    2015-01-01

    We consider the quantum information metric of a family of CFTs perturbed by an exactly marginal operator, which has the dual description of the Euclidean Janus geometries. We first review its two dimensional case dual to the three dimensional Janus geometry, which is recently proposed in arXiv:1507.07555. We generalize this correspondence to higher dimensions and get a precise agreement of the both sides. We also propose that the mixed-state information metric of the same family of CFTs is dual to the Euclidean version of the Janus time-dependent black hole geometry.

  10. Information metric and Euclidean Janus correspondence

    Science.gov (United States)

    Bak, Dongsu

    2016-05-01

    We consider the quantum information metric of a family of CFTs perturbed by an exactly marginal operator, which has the dual description of the Euclidean Janus geometries. We first clarify its two dimensional case dual to the three dimensional Janus geometry, which recently appeared in arxiv:arXiv:1507.07555[2]. We generalize this correspondence to higher dimensions and get a precise agreement between the both sides. We also show that the mixed-state information metric of the same family of CFTs has a dual description in the Euclidean version of the Janus time-dependent black hole geometry.

  11. Development of Research Reactor Information System for Neighboring Countries

    International Nuclear Information System (INIS)

    As shown in the Fukushima nuclear power plant accident, nuclear accidents bring a direct impact on neighboring countries as well as the country concerned. Because many neighboring countries in northeast Asia have numerous nuclear plants and research reactor, each country needs more detailed information about them for analyzing the effect from nuclear accidents. Therefore this study investigated research reactors information of Japan, China, Taiwan, and North Korea such as reactor details, weather and geography information, related company and institute's information. And then the web based database is established based on such information. So by connecting web pages, details of research reactors in northeast Asia can be easily obtained

  12. Status of research reactor spent fuel world-wide

    International Nuclear Information System (INIS)

    Results compiled in the research reactor spent fuel database are used to assess the status of research reactor spent fuel world-wide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialised and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. (author)

  13. Status of Jordan Research and Training Reactor Project

    International Nuclear Information System (INIS)

    The Jordan Atomic Energy Commission launched a construction project of Jordan's first nuclear reactor in 2010, following a contract with the consortium of Korea Atomic Energy Research Institute and Daewoo E and C. The Jordan Research and Training Reactor (JRTR), a 5 MW multipurpose research reactor, will serve as the focal point for a national nuclear technology center. This article presents the status of the JRTR Project and future plan as well. With the Construction Permit issued by the Jordan Nuclear Regulatory Commission, the construction work of reactor building and service building is underway, while over 95% of design work has been finished

  14. Light-water-reactor safety research agenda

    International Nuclear Information System (INIS)

    The purpose of this paper is to describe the agenda for light water reactor (LWR) safety research as the author sees it from the perspective of the US Nuclear Regulatory Commission (NRC). This research has a good record of accomplishment in the years since the Three Mile Island Unit 2 (TMI-2) accident in systems, materials, the person-machine interface, and in the knowledge of severe accidents. We are well on the way to sufficiency of knowledge for opeating LWRs, but a few important tasks remain. The advanced LWR concepts arise from a well-established base of design and operating experience, but, in their innovation of concepts and systems, they present some new challenges to designers, regulators, and operators, as the latter approach the time of decision in the newly revised process for review and certification of standard designs. This revised process carries with it a larger commitment in the expected number of plants of the same design over a 15-yr period than was the case when commercial nuclear power began its development in the 1960s

  15. Factors affecting nuclear research reactor utilization across countries

    International Nuclear Information System (INIS)

    In view of the worldwide declining trend of research reactor utilization and the fact that many reactors in developing countries are under-utilised, a question naturally arises as to whether the investment in a research reactor is justifiable. Statistical analyses were applied to reveal relationships between the status of reactor utilization and socio-economic conditions among countries, that may provide a guidance for reactor planning and cost benefit assessment. The reactor power has significant regression relationships with size indicators such as GNP, electricity consumption and R and D expenditure. Concerning the effectiveness of investment in research reactors, the number of reactor operation days per year only weakly correlates with electricity consumption and R and D expenditure, implying that there are controlling factors specific of each group of countries. In the case of less developed countries, the low customer demands on reactor operation may be associated with the failure in achieving quality assurance for the reactor products and services, inadequate investment in the infrastructure for reactor exploitation, the shortage of R and D funding and well trained manpower and the lack of measures to get the scientific community involved in the application of nuclear techniques. (author)

  16. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    Baldev Raj

    2009-06-01

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective of providing fast reactor electricity at an affordable and competitive price.

  17. Race in Biological and Biomedical Research

    OpenAIRE

    Richard S Cooper

    2013-01-01

    The concept of race has had a significant influence on research in human biology since the early 19th century. But race was given its meaning and social impact in the political sphere and subsequently intervened in science as a foreign concept, not grounded in the dominant empiricism of modern biology. The uses of race in science were therefore often disruptive and controversial; at times, science had to be retrofitted to accommodate race, and science in turn was often used to explain and jus...

  18. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  19. International topical meeting. Research Reactor Fuel Management (RRFM) and meeting of the International Group on Reactor Research (IGORR)

    International Nuclear Information System (INIS)

    Nuclear research and test reactors have been in operation for over 60 years, over 270 research reactors are currently operating in more than 50 countries. This meeting is dedicated to different aspects of research reactor fuels: new fuels for new reactors, the conversion to low enriched uranium fuels, spent fuel management and computational tools for core simulation. About 80 contributions are reported in this document, they are organized into 7 sessions: 1) international topics and overview on new projects and fuel, 2) new projects and upgrades, 3) fuel development, 4) optimisation and research reactor utilisation, 5) innovative methods in research reactors physics, 6) safety, operation and research reactor conversion, 7) fuel back-end management, and a poster session. Experience from Australian, Romanian, Libyan, Syrian, Vietnamese, South-African and Ghana research reactors are reported among other things. The Russian program for research reactor spent fuel management is described and the status of the American-driven program for the conversion to low enriched uranium fuels is presented. (A.C.)

  20. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    OpenAIRE

    A Mohseni-Bandpi, H Bazari

    2004-01-01

    A bench scale aerobic Sequencing Batch Reactor (SBR) was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optim...

  1. Biological hazards of radioactivity and the biological consequences of radionuclide emissions from routine operation of nuclear power reactors

    International Nuclear Information System (INIS)

    The biological hazards of radioactivity and the biological consequences of radionuclide emissions from the routine operation of nuclear power reactors are reviewed. ICRP and Scandinavian recommendations for the limitation of annual radiation doses are presented. The contribution of environmental conditions to radiation hazard is also discussed. It is concluded that a review of the justification of nuclear power is urgently needed. (H.K.)

  2. Enhancing Safety Performance of Research Reactors at Trombay

    International Nuclear Information System (INIS)

    Based on various national requirements of basic research, material testing, isotope production, criticality experiments and research related to future power reactor program, Indian research reactor program encompasses a variety of reactors from simple pool type reactor Apsara to complex 100 MW reactor like Dhruva. To meet the varied and complex safety requirements of research reactors, a strong safety management system has also been evolved and nurtured. With over 150 reactor years of operating feedback, wealth of experience has been gained and safety enhancement has been kept as a continuously evolving process at Trombay. The 100 MWth research reactor Dhruva has now completed more than two and half decades of operation. Based on a systematic In-Service Inspection (ISI) program, structured system performance monitoring and review and Periodic Safety Review (PSR) certain incipient failures in the system could be noted and corrected in time. Based on these reviews, certain mid-term safety upgrades in various systems of Dhruva were carried out. This paper will provide an overview of overall safety enhancement of research reactors, through refurbishment, and engineering changes. (author)

  3. Status of spent fuels in Japanese research reactors

    International Nuclear Information System (INIS)

    There are now eleven research and test reactors in operation in Japan. Spent fuel issues might cause problems at the JRR-3M and JMTR reactors in the near future. Increasing the number of spent fuel racks at these reactors is now under consideration because the existing capacity is almost filled. The commissioning of extra racks will allow space for the normal discharge of fuel from these reactors for several more years. The current management of spent fuel from the eleven operational reactors is suitable to meet their needs. (author). 3 tabs

  4. Loss of Coolant Accident Analysis for Israel Research Reactor

    International Nuclear Information System (INIS)

    One of the main objectives of reactor safety systems is to keep the reactor core in condition that does not permit any release of radioactivity into the environment. In order to ensure this, the reactor must have sufficient safety margins during all possible operational and accident conditions. This paper focuses on the analysis of loss of coolant accident (LOCA), which is one of the most severe scenarios among other hypothetical events such as reactivity induced accidents, loss of flow accident, etc. The analysis was carried out for the Israel Research Reactor 1 (IRR-1), which is a 5MW swimming pool type research reactor. The IRR-1 core consists of MTR highlyenriched uranium (HEU) fuel type, and is reflected by Graphite elements. During normal operation, the reactor core is cooled by downward forced flow of light water circulated by a primary cooling circuit pump. But during shutdown stage, the reactor core is cooled by upward natural convection flow through a safety flapper valve. There could be several primary causes to initiate a LOCA in research reactors, such as breaks in the piping system, ruptures of the beam tubes, and concrete wall failures of the reactor pool. Although probability of large break accident in research reactors is very low, once the accident occurs, it may cause major core damages, so it must be considered

  5. Circulating fluidized bed biological reactor for nutrients removal

    Institute of Scientific and Technical Information of China (English)

    Yubo CUI; Hongbo LIU; Chunxue BAI

    2008-01-01

    A new biological nitrogen removal process, which is named herein "The circulating fluidized bed bio-reactor (CFBBR)", was developed for simultaneous removal of nitrogen and organic matter. This process was composed of an anaerobic bed (Riser), aerobic bed (Downer) and connecting device. Influent and nitrified liquid from the aerobic bed enters the anaerobic bed from the bottom of the anaerobic bed, completing the removal of nitrogen and organic matter. The system performance under the conditions of different inflow loadings and nitrified liquid recirculation rates ranging from 200% to 600% was examined. From a technical and economic point of view, the optimum nitrified liquid recirculation rate was 400%. With a shortest total retention time of 2.5 h (0.8 h in the anaerobic bed and 1.5 h in the aerobic bed) and a nitrified liquid recir-culation rate of 400% based on the intluent flow rate, the average removal efficiencies of total nitrogen (TN) and sol-uble chemical oxygen demand (SCOD) were found to be 88% and 95%, respectively. The average effluent concentra-tions of TN and SCOD were 3.5 mg/L and 16 mg/L, respectively. The volatile suspended solid (VSS) concentra-tion, nitrification rate and denitrification rate in the system were less than 1.0 g/L, 0.026-0.1 g NH4+-N/g VSS.d, and 0.016-0.074 g NOx--N/g VSS.d, respectively.

  6. Strategy for Sustainable Utilization of IRT-Sofia Research Reactor

    International Nuclear Information System (INIS)

    The Research Reactor IRT-2000 in Sofia is in process of reconstruction into a low-power reactor of 200 kW under the decision of the Council of Ministers of Republic of Bulgaria from 2001. The reactor will be utilized for development and preservation of nuclear science, skills, and knowledge; implementation of applied methods and research; education of students and training of graduated physicists and engineers in the field of nuclear science and nuclear energy; development of radiation therapy facility. Nuclear energy has a strategic place within the structure of the country’s energy system. In that aspect, the research reactor as a material base, and its scientific and technical personnel, represent a solid basis for the development of nuclear energy in our country. The acquired scientific experience and qualification in reactor operation are a precondition for the equal in rights participation of the country in the international cooperation and the approaching to the European structures, and assurance of the national interests. Therefore, the operation and use of the research reactor brings significant economic benefits for the country. For education of students in nuclear energy, reactor physics experiments for measurements of static and kinetic reactor parameters will be carried out on the research reactor. The research reactor as a national base will support training and applied research, keep up the good practice and the preparation of specialists who are able to monitor radioactivity sources, to develop new methods for detection of low quantities of radioactive isotopes which are hard to find, for deactivation and personal protection. The reactor will be used for production of isotopes needed for medical therapy and diagnostics; it will be the neutron source in element activation analysis having a number of applications in industrial production, medicine, chemistry, criminology, etc. The reactor operation will increase the public understanding, confidence

  7. Research reactor 'A' 6.5/10 MW

    International Nuclear Information System (INIS)

    This booklet includes a short description of the RA research reactor with basic properties of its components: control and safety system, heavy water system, technical water cooling system, heavy water distillation system, cover gas system, dosimetry control system, power supply system. It is used for fundamental research in reactor and nuclear physics, isotope production, materials testing

  8. Research reactor collaboration in the Asia-Pacific region

    International Nuclear Information System (INIS)

    The number of research reactors over the world has been decreasing since its peak in the middle of the 1970s, and it is predicted to decrease more rapidly than before in the future. International collaboration on research reactors is an effective way for their continued safe service to human welfare in various technical areas. The number of new research reactors under construction or planned for in the Asia-Pacific region is the greatest in the world. Among the regional collaboration activities on research reactors, safety has been the most important subject followed by neutron activation analysis, radioisotope production and neutron beam applications. It is understood that more regional collaboration on basic technologies important for the safety, management and utilization of the research reactors is demanding. The new project proposal of the Forum for Nuclear Cooperation in Asia on 'Research Reactor Technology for Effective Utilization' is understood to meet the demands. Meanwhile, there is a consensus on the need for research reactor resource sharing in the region. As a result of the review on the international collaboration activities in the region, the author suggests a linkage between the above new project and IAEA/RCA project considering a possible sharing of research reactor resources in the region. (author)

  9. Brief overview of American Nuclear Society's research reactor standards

    International Nuclear Information System (INIS)

    The American Nuclear Society (ANS) established the research reactor standards group in 1968. The standards group, known as ANS-15, was established for the purpose of developing, preparing, and maintaining standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training

  10. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    The research and development work in the field of core thermal-hydraulics, experimental and analytical physics and carbide fuel development carried out 1978 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  11. Fuel cycle for research reactors in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM Nuklear GmbH, Industriestrasse 13, D-63755 Alzenau, (Germany)

    1998-07-01

    In the European Union (EU) there are altogether 77 research reactors in operation, a large number of them being used for teaching and university research proposes as well as for fundamental research. The trend for the remaining and planned reactors is to enlarge their capacity by compact cores in order to increase neutron yields and power. Also the use of research reactors for the production of radioisotopes for medical diagnosis and treatment and therapeutic purposes has become more and more common. In addition to the 77 research reactors in operation (in the EU) there are a number of 72 reactors that have been shut down. To serve the needs of the research reactors in the European Union a vital and self-confident industry has been developed which also exports nuclear technology and fuel for peaceful purposes. The problems today in the fuel cycle lie in the disposal of spent research reactor fuel and the procurement of fresh fuel with U-235 assays above 20%. This paper provides a summary of specific activities by European companies in the individual steps of the fuel cycle for research reactors. (author)

  12. [Practice relevant research in biological psychiatry].

    Science.gov (United States)

    Meyer-Lindenberg, A

    2015-11-01

    The practice of psychiatry would be unthinkable without modern psychopharmacology. Drug treatment, especially of severe psychiatric disorders, is often a precondition of community participation, societal reintegration and recovery. Seen in this context it is understandable that biological psychiatry has long been primarily defined by its close interconnection with psychopharmacology and has been perceived this way by practicing physicians. In recent years, however, the concept of what is "biological" has markedly expanded and so has the outreach of this approach into the practice of psychiatry. This article discusses examples showing that biological research methods provide new impulses for individualized medicine, psychotherapy and understanding environmental risks and therefore provide the basis for a preemptive and preventive approach that will be the key to master the challenges posed by the severe burden of mental illness. PMID:26440519

  13. Safety considerations for research reactors in extended shutdown

    International Nuclear Information System (INIS)

    According to the IAEA Research Reactor Database, in the last 20 years, 367 research reactors have been shut down. Of these, 109 have undergone decommissioning and the rest are in extended shutdown with no clear definition about their future. Still other research reactors are infrequently operated with no meaningful utilization programme. These two situations present concerns related to safety such as loss of corporate memory, personnel qualification, maintenance of components and systems and preparation and maintenance of documentation. There are many reasons to shut down a reactor; these may include: - the need to carry out modifications in the reactor systems; - the need for refurbishment to extend the lifetime of the reactor; - the need to repair reactor structures, systems, or components; - the need to remedy technical problems; - regulatory or public concerns; - local conflicts or wars; - political convenience; - the lack of resources. While any one of these reasons may lead to shutdown of a reactor, each will present unique problems to the reactor management. The large variations from one research reactor to the next also will contribute to the uniqueness of the problems. Any option that the reactor management adopts will affect the future of the facility. Options may include dealing with the cause of the shutdown and returning to normal operation, extending the shutdown period waiting a future decision, or decommissioning. Such options are carefully and properly analysed to ensure that the solution selected is the best in terms of reactor type and size, period of shutdown and legal, economic and social considerations. This publication provides information in support of the IAEA safety standards for research reactors

  14. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical

  15. Reactor Physics Modeling Of Spent Research Reactor Fuel For Technical Nuclear Forensics

    International Nuclear Information System (INIS)

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to ∼93% 235U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The

  16. Influence of specific data on a research reactor probabilistic model

    International Nuclear Information System (INIS)

    Deterministic safety calculations are usually required and included in the Safety Analysis Report of research reactors. To estimate the risk of a research reactor, Probabilistic Safety Assessment (PSA) is rarely used. In this paper, a PSA of a TRIGA Mark II research reactor with generic and specific data is described. The results are discussed to show the need for PSA and the usefulness of specific examination of the research reactor. Beside the deterministic calculations, PSA has proved to be a powerful tool for safety evaluation of the research reactor. It is recommended that as much specific data is used as is possible for initiating event definitions and frequencies estimation. We do not recommend the building of an extensive data base for components. When safety of non-standard technologies is estimated it is recommended that a preliminary PSA is carried out first. It enables definition of needed specific data to be collected and contributes to better employment of human resources

  17. Status of fast reactor research in Germany

    International Nuclear Information System (INIS)

    The paper gives a short survey of fast reactor activities in Germany. The fast reactor activities of FZK are part of the Nuclear Safety Projects. The R and D program include neutron physical and safety calculated, and post-irradiated examination of structural materials. The key issues and tasks of the program concerned safety and transmission of minor activities and fission products. (author)

  18. Magnetic Janus Particles and Their Applications

    Science.gov (United States)

    Ren, Bin

    Magnetic properties are important since they enable the manipulation of particle behavior remotely and therefore provide the means to direct a particle's orientation and translation. Magnetic Janus particles combine magnetic properties with anisotropy and thus are potential building blocks for complex structures that can be assembled from a particle suspension and can be directed through external fields. In this thesis, a method for the fabrication of three types of magnetic Janus particles with distinct magnetic properties is introduced, the assembly behavior of magnetic Janus particles in external magnetic and electric fields is systematically studied, and two potential applications of magnetic Janus particles are successfully tested. Janus particles with different magnetic properties are fabricated by varying the deposition rate of iron in an Ar/O2 atmosphere using physical vapor deposition (PVD). The extent of oxidation for each type of iron oxide is precisely controlled by the time it is exposed to the Ar/O 2 atmosphere during deposition. Two of the three magnetic Janus particles produced show distinct assembly behavior into staggered and double chain structures, whereas the third shows no assembly behavior under an external magnetic field. The effect of the iron oxide cap thickness (≤ 50 nm) on the Janus particle assembly behavior is studied resulting in a deposition rate diagram that shows the relationship between the assembly behavior and the deposition rate. The cap materials for staggered chain, double chain, and no assembly behavior are assigned as Fe1-xO, Fe3O 4, and Fe2O3, respectively, based on optical appearance and physical properties. The assignment is further confirmed by in-depth material characterization with scanning and transmission electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The magnetic hardness of the iron oxides is tested using the magneto-optic Kerr effect

  19. RA research reactor - potentials and prospective

    International Nuclear Information System (INIS)

    Since December 1959, the RA reactor was operated successfully, except for a few shorter periods needed for maintenance and a four longer shutdown periods caused by decrease in the heavy water quality. Accordingly, reconstruction of some reactor systems was started at the beginning of this decad, as well as increase of its experimental potential which would enable its efficient reliable operation in the future period. Reconstruction is concerned with emergency core cooling system, special ventilation system, and modernization of the reactor instrumentation. Improvement of the experimental potential is related to modifications of the neutron scattering instruments. Development of methods for isotope production is described as well. Design of the reactor experimental loop with external cooling system will be of significant importance in improvement of reactor potential in the future

  20. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon

  1. Reactor Physics Modeling Of Spent Nuclear Research Reactor Fuel For SNM Attribution And Nuclear Forensics

    International Nuclear Information System (INIS)

    Nuclear research reactors are the least safeguarded type of reactor; in some cases this may be attributed to low risk and in most cases it is due to difficulty from dynamic operation. Research reactors vary greatly in size, fuel type, enrichment, power and burnup providing a significant challenge to any standardized safeguard system. If a whole fuel assembly was interdicted, based on geometry and other traditional forensics work, one could identify the material's origin fairly accurately. If the material has been dispersed or reprocessed, in-depth reactor physics models may be used to help with the identification. Should there be a need to attribute research reactor fuel material, the Savannah River National Laboratory would perform radiochemical analysis of samples of the material as well as other non-destructive measurements. In depth reactor physics modeling would then be performed to compare to these measured results in an attempt to associate the measured results with various reactor parameters. Several reactor physics codes are being used and considered for this purpose, including: MONTEBURNS/ORIGEN/MCNP5, CINDER/MCNPX and WIMS. In attempt to identify reactor characteristics, such as time since shutdown, burnup, or power, various isotopes are used. Complexities arise when the inherent assumptions embedded in different reactor physics codes handle the isotopes differently and may quantify them to different levels of accuracy. A technical approach to modeling spent research reactor fuel begins at the assembly level upon acquiring detailed information of the reactor to be modeled. A single assembly is run using periodic boundary conditions to simulate an infinite lattice which may be repeatedly burned to produce input fuel isotopic vectors of various burnups for a core level model. A core level model will then be constructed using the assembly level results as inputs for the specific fuel shuffling pattern in an attempt to establish an equilibrium cycle. The

  2. Supply of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Since the RERTR-Meeting in Newport/USA in 1990 recommended in several papers to the research reactor community to agree upon a worldwide unified technical specification for low enriched uranium (LEU) and high enriched uranium (HEU) in order to facilitate supplies of LEU and HEU to fabricators for acceptance and for fabrication of fresh fuel elements. This target for unified and simplified specification has only been partially reached due to different interests of the fabricators because they want to receive the uranium as pure as possible. As a result of various investigations, however, it became clear that both LEU and HEU received from the United States since the late fifties had different qualities which we have to deal with today due to the availability of stocks. We are now one step forward to know more precisely the properties of LEU and HEU we have received in the past. This uranium was never virgin and we have to cope with this situation. Therefore in my present paper I have concentrated on the documentation of analytical work performed on samples of LEU and HEU received in the past. I propose furthermore a frame of unified specifications for so-called virgin LEU and HEU including uranium from a Zero-experiment. In addition I am giving a recommendation for specifications of LEU obtained by blending of reprocessed HEU. Finally I am touching the question of secure supplies of fresh LEU. (author)

  3. Research work at the TRIGA Mainz reactor

    International Nuclear Information System (INIS)

    In the last two years the research activities at the TRIGA Mark II reactor in Mainz have mainly been concentrated on the investigation of short- lived nuclides of medium mass number produced by thermal-neutron induced fission of 235U and other fissile materials. For the identification of these nuclides and for detailed studies of their properties rapid chemical separation procedures in combination with high-resolution gamma-ray and neutron spectroscopy as well as mass-separated samples have been used. Fast, discontinuous separation techniques are illustrated by a procedure for technetium. Continuous separation methods from aqueous solutions and in the gas phase, accomplished by combining a gas jet recoil transport system with an on-line operating solvent extraction technique and a thermo- chromatographic method, are presented. The application of such procedures to decay scheme and delayed neutron studies is demonstrated by a few examples. The experimental set-up and the method for nuclear spin - and magnetic moment measurements on alkali isotopes far from the region of beta-stability applying the nuclear radiation detected optical pumping technique to mass- separated samples of neutron-rich alkali nuclides are briefly described. (author)

  4. Licensing of the Australian replacement research reactor

    International Nuclear Information System (INIS)

    The Australian Nuclear Science and Technology Organisation (ANSTO)'s Replacement Research Reactor has been submitted to a comprehensive licensing process of which peer review has been a fundamental part. Following Australian Regulation, an application for a site licence was the first step supported by an Environmental Impact Statement approved by The Minister for the Environment and Heritage, and a Reference Accident Analysis. After the site licence had been granted and the contract awarded to the Designer and Constructor, INVAP S.E:, a 2500 page Preliminary Safety Analysis Report was submitted by ANSTO to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), which conducted its review. ARPANSA requested that the PSAR be also reviewed by an experts mission from the International Atomic Energy Agency. The PSAR was also reviewed by the Argentine Regulatory Body, it was submitted to public examination in Australia and it was reviewed by international experts hired as consultants by several Australian organisations. A public forum was also held in Sydney. The Regulator, the applicant and the Designer-Constructor maintained constant interaction during the whole process, so that questions, comments and observations that arose from the review of the PSAR were fed back to the designers. This process allowed for a robust, safe design enriched by the results of the safety analysis and review process. (author)

  5. Decommissioning technology development for research reactors

    International Nuclear Information System (INIS)

    Although it is expected that the decommissioning of a nuclear power plant will happen since 2020, the need of partial decommissioning and decontamination for periodic inspection and life extension has been on an increasing trend and domestic market has gradually been extended. Therefore, in this project the decommissioning DB system on the KRR-1 and 2 was developed as establishing the information classification system of the research reactor dismantling and the structural design and optimization of the decommissioning DB system. Also in order to secure the reliability and safety about the dismantling process, the main dismantling simulation technology that can verify the dismantling process before their real dismantling work was developed. And also the underwater cutting equipment was developed to remove these stainless steel parts highly activated from the RSR. First, the its key technologies were developed and then the design, making, and capability analysis were performed. Finally the actual proof was achieved for applying the dismantling site. an automatic surface contamination measuring equipment was developed in order to get the sample automatically and measure the radiation/radioactivity

  6. Licensing of ANSTO's Replacement Research Reactor

    International Nuclear Information System (INIS)

    This paper presents a general description of the licensing of the 20 MW Pool-type Replacement Research Reactor (RRR) currently being built by the Australian Nuclear Science and Technology Organisation (ANSTO) at their Lucas Heights site. The following aspects will be addressed: 1) The influence of ARPANSA's (the Australian regulator) Regulatory Assessment Principles and Design Criteria on the design of the RRR. 2) The Site Licence Application, including the EIS and the supporting siting documentation. 3) The Construction Licence Application, including the PSAR and associated documentation. 4) The review process, including the IAEA Peer Review and the Public Submissions as well as ARPANSA's own review. 5) The interface between ANSTO, INVAP and ARPANSA in relation to the ongoing compliance with ARPANS Regulation 51 and 54. 6) The future Operating Licence Application, including the draft FSAR and associated documentation. These aspects are all addressed from the point of view of the licensee ANSTO and the RRR Project. Particular emphasis will be given to the way in which the licensing process is integrated into the overall project program and how the licensing and regulatory regime within Australia influenced the design of the RRR. In particular, the safety design features that have been incorporated as a result of the specific requirements of ANSTO and the Australian regulator will be briefly described. The paper will close with a description of how the RRR meets, and in many aspects exceeds the requirements of ANSTO and the Australian regulator. (author)

  7. Safety Research Experiment Facility Project. Conceptual design report. Volume V. Reactor vessel and closure

    International Nuclear Information System (INIS)

    The Prestressed Concrete Reactor Vessel (PCRV) will serve as the primary pressure retaining structure for the Safety Research Experiment Facility (SAREF) reactor. The reactor core, control rod drive room, primary heat exchangers, and gas circulators will be located in cavities within the PCRV. The orientation of these cavities, except for the control rod drive room, will be similar to the high-temperature gas-cooled reactor (HTGR) designs that are currently proposed or under design. Due to the nature of this type of structure, all biological and radiological shielding requirements are incorporated into the basic vessel design. At the midcore plane there are three radially oriented slots that will extend from the outside surface of the PCRV to the reactor core liner. These slots will accommodate each of the fuel motion monitoring systems which will be part of the observation apparatus used with the loop experiments

  8. IAEA Sub-Programme on Research Reactor Safety

    International Nuclear Information System (INIS)

    The IAEA has greatly contributed through its programmes and activities to the records of safe operation of research reactors worldwide. Since 2006, the activities of the IAEA sub-programme on research reactor safety have been mainly focusing on supporting Member States (MSs) to enhance the safety of their research reactors mainly through the application of the Code of Conduct on the Safety of Research Reactors for the management of the safety of these facilities. In doing so, the key part of the implementation strategy of the activities included the development of Safety Standards and supporting documents. At present, the corpus of Safety Standards for research reactors has reached maturity. Safety review services, based on the IAEA Safety Standards, were provided, in the field, through the implementation of Integrated Safety Assessment (INSARR) missions and other safety review and expert missions. Since 2006, about one hundred missions were conducted to research reactors worldwide. Fact finding missions were also implemented by the IAEA in MSs establishing their first research reactors in order to identify gaps and define actions to assist them building the necessary technical and safety infrastructures. An important part of the implementation strategy for the IAEA safety enhancement plan included the fostering of regional and international cooperation to enhance operational safety and regulatory supervision of research reactors, and support for the establishment and functioning of regional advisory safety committees and nuclear safety networks. International exchange of information and sharing of operating experience feedback are essential contributors for enhancing safety and have been promoted through the IAEA web-based incident reporting system for research reactors IRSRR which ensures the collection of data and information on events and the dissemination of lessons learned from their analysis. Existing inconsistencies in the safety demonstrations for research

  9. Improvements in the management of safety in research reactor operation through appropriate application of selected power reactor good practices

    International Nuclear Information System (INIS)

    Research reactor managers are increasingly implementing improvements in their management of safety through the application of good practices originally developed as power reactor programs. This paper considers ways to select practices to emulate, effectively incorporate them into a research reactor program and evaluate their contribution to safety. Relative to research reactors, power reactor programs look relatively homogeneous when considering source terms, stored energy, core power density, operating cycles, plant systems and staff sizes. They have potential hazard consequences that require effective safety management programs. Finally, power reactors generate a stream of revenue to fund these programs. The power reactor community has combined their resources with the homogeneity of their challenge to create impressive safety management tools, many of which can be effectively implemented in the research reactor community. However, not all programs can be effectively implemented in all research reactors. number of power reactor programs are analyzed in the paper with consideration of their effective implementation and potential contribution to research reactor. (author)

  10. Research reactors and radiochemistry. Partners in a changing world

    International Nuclear Information System (INIS)

    The raison d'etre of research reactors is based on their role in a number of research fields, including radiochemistry. Inversely, it is in the interest of a healthy development of radiochemistry that a sufficient number of reactors will remain in operation and that the downward trend is in this reversed. In this paper, directions for further developments in reactor based radiochemistry are discussed, taking into account also relevant developments in competing fields. The discussion is focused on neutron activation analysis as well as tracer applications and environmental radiochemistry. Moreover, the consequences for reactor operations will be indicated. (author)

  11. Model Based Cyber Security Analysis for Research Reactor Protection System

    International Nuclear Information System (INIS)

    The study on the qualitative risk due to cyber-attacks into research reactors was performed using bayesian Network (BN). This was motivated to solve the issues of cyber security raised due to digitalization of instrumentation and control (I and C) system. As a demonstrative example, we chose the reactor protection system (RPS) of research reactors. Two scenarios of cyber-attacks on RPS were analyzed to develop mitigation measures against vulnerabilities. The one is the 'insertion of reactor trip' and the other is the 'scram halt'. The six mitigation measures are developed for five vulnerability for these scenarios by getting the risk information from BN

  12. Development of Vibration Diagnostic System in Research Reactors

    International Nuclear Information System (INIS)

    Early failure detection and diagnosis system are an important group with increasing interest with the operating support system. Already existing system to monitor integrity of primary system components are vibration and acoustic monitoring system (2,3). The development of vibration diagnostic system for MARIA reactor (30 MW)-the second research reactor in Poland -was made. The new system is applied for the Egypt research reactor (ETRR-1). This paper represents the result obtained during the operation of this activity that carried out at MARIA and ETRR-1 reactors

  13. Proceedings of the sixth Asian symposium on research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The symposium consisted of 16 sessions with 58 submitted papers. Major fields were: (1) status and future plan of research and testing reactors, (2) operating experiences, (3) design and modification of the facility, and reactor fuels, (4) irradiation studies, (5) irradiation facilities, (6) reactor characteristics and instrumentation, and (7) neutron beam utilization. Panel discussion on the 'New Trends on Application of Research and Test Reactors' was also held at the last of the symposium. About 180 people participated from China, Korea, Indonesia, Thailand, Bangladesh, Vietnam, Chinese Taipei, Belgium, France, USA, Japan and IAEA. The 58 of the presented papers are indexed individually. (J.P.N.)

  14. Proceedings of the sixth Asian symposium on research reactors

    International Nuclear Information System (INIS)

    The symposium consisted of 16 sessions with 58 submitted papers. Major fields were: 1) status and future plan of research and testing reactors, 2) operating experiences, 3) design and modification of the facility, and reactor fuels, 4) irradiation studies, 5) irradiation facilities, 6) reactor characteristics and instrumentation, and 7) neutron beam utilization. Panel discussion on the 'New Trends on Application of Research and Test Reactors' was also held at the last of the symposium. About 180 people participated from China, Korea, Indonesia, Thailand, Bangladesh, Vietnam, Chinese Taipei, Belgium, France, USA, Japan and IAEA. The 58 of the presented papers are indexed individually. (J.P.N.)

  15. Research reactors serving the radiotracer technique: An overlooked opportunity?

    International Nuclear Information System (INIS)

    The unique features of using radiotracers are not always fully explored at nuclear research reactor centers. The radiotracer method is a versatile and powerful tool in the study of a wide variety of applications in e.g. chemistry, biology, agriculture, medicine and (industrial) technology. The big advantage of radiotracers above e.g. stable isotope tracers, commonly applied in e.g. nutritional studies, is that radiotracers allow for non-invasive studies of both steady-state and dynamic systems, in equilibrium situations and for transport and exchange phenomena and thus provide information on the chemical and/or physical status of elements. The radiotracer method does not imply huge equipment investments but rather requires that the four interrelated aspects: experimental designs, data treatment including tracer kinetic analysis and data interpretation are careful considered. Radiotracer production with reactors often implies additional fundamental research to use smart nuclear reactions and chemical separations so as to obtain an almost no-carrier added tracer. Nuclear analytical groups, already equipped with gamma-ray spectrometers, can thus extend their research program. Using Ge-spectrometers, multi-labeling experiments are possible which allow for unique applications if different radionuclides exist for the same element, such as 65Zn and 69mZn or 64Cu and 67Cu. The developments in novel scintillation detectors, room-temperature semiconductor detectors (like CdZnTe) and position-sensitive detectors open the door for an entire new scope of radiotracer applications, such as SPECT. Once applied to in-vitro studies with cell cultures, the nuclear analytical group may position itself into the worlds of medical research, biochemistry and biotechnology. Radiotracers can be used to study the properties of drug-delivering compounds as used in e.g, cancer therapy. Radiotracers can be added as a label to solid particles, to liquids but may also be applied in the gaseous

  16. IGORR 7: Proceedings of the 7. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    According to the subjects covered the papers presented at the meeting were divided into following sessions: New research reactor projects; secondary neutron sources; New research reactor facilities; Improvement of Research Reactors Facilities; Research and Development Needs

  17. Can Tax Compliance Research Profit from Biology?

    OpenAIRE

    Benno Torgler

    2014-01-01

    Historically, tax compliance has been a highly interdisciplinary avenue of research to which economics, psychology, law, sociology, history, political science, and accountancy have made valuable contributions. It is less well understood, however, whether we can glean useful insights into tax compliance by moving beyond the social sciences. In particular, the literature pays little attention to the relevance of biology. This paper attempts to remedy this shortcoming by examining the potential ...

  18. Rationalization and future planning for AECL's research reactor capability

    International Nuclear Information System (INIS)

    AECL's research reactor capability has played a crucial role in the development of Canada's nuclear program. All essential concepts for the CANDU reactors were developed and tested in the NRX and NRU reactors, and in parallel, important contributions to basic physics were made. The technical feasibility of advanced fuel cycles and of the organic-cooled option for CANDU reactors were also demonstrated in the two reactors and the WR-1 reactor. In addition, an important and growing radio-isotope production industry was established and marketed on a world-wide basis. In 1984, however, it was recognized that a review and rationalization of the research reactor capability was required. The commercial success of the CANDU reactor system had reduced the scope and size of the required development program. Limited research and development funding and competition from other research facilities and programs, required that the scope be reduced to a support basis essential to maintain strategic capability. Currently, AECL, is part-way through this rationalization program and completion should be attained during 1992/93 when the MAPLE reactor is operational and decisions on NRX decommissioning will be made. A companion paper describes some of the unique operational and maintenance problems which have resulted from this program and the solutions which have been developed. Future planning must recognize the age of the NRU reactor (currently 32 years) and the need to plan for eventual replacement. Strategy is being developed and supporting studies include a full technical assessment of the NRU reactor and the required age-related upgrading program, evaluation of the performance characteristics and costs of potential future replacement reactors, particularly the advanced MAPLE concept, and opportunities for international co-operation in developing mutually supportive research programs

  19. Monitoring of Biological Nitrogen Removal in Tannery Wastewater Using a Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Carrasquero-Ferrer Sedolfo José

    2014-04-01

    Full Text Available The objective of this research was to relate the biological nitrogen removal in tannery wastewater with profiles of pH, alkalinity and redox potential (ORP using a sequencing batch reactor (SBR with a working volume of 2 L. The reactor worked under two operational sequences: anoxic-aerobic-anoxic (Ax/Ae/Ax and aerobic-anoxic (Ae/Ax, which were combined with two cell retention times (CRT (15 and 25 days, with an operation cycle time (OCT of 11 hours. The profiles were performed by measuring each 15 minutes the following parameters: pH, dissolved oxygen (DO, ORP, and each hour the parameters: total alkalinity, total chemical oxygen demand (DQOT, soluble chemical oxygen demand (DQOS, total Kjeldahl nitrogen (TKN, nitrite (NO2-, nitrate (NO3- and ammonia nitrogen (N-NH4+. Alkalinity and ORP profile were excellent indicators of the processes of biological nitrogen removal. However, pH could not be used as a control parameter, due to the buffering capacity of tannery wastewater. Finally, this research work showed that alkalinity and ORP values can be used as on-line control parameters to monitor the evolution of the nitrogen removal in tannery wastewater (nitrification and denitrification processes.

  20. Comparing failure rates in different research reactors including Romanian TRIGA SSR Reactor

    International Nuclear Information System (INIS)

    Probabilistic Safety Assessment (PSA) is a tool for evaluating and enhancing the safety of a nuclear reactor. In general, the PSA is used to support the system design, configuration decisions and the operational safety management of the plant. Ideally, the failure data used for safety and reliability analyses should be based on site-specific data. The paper presents failure rates for some components, both stand-alone taken from Romanian TRIGA SSR Reactor Data Collection and in comparison with other research reactors, as well as statistics pertaining to the failures and failure modes of the investigated components. Most of the work in the purpose of obtaining reliability data for Romanian TRIGA as well as for different research reactors was performed during IAEA Coordinated Research Project: 'Update and Expand Reliability database for research reactors for PSA use' (2000-2004). (authors)

  1. Korea Research Reactor -1 and 2 Decommissioning Project in Korea

    International Nuclear Information System (INIS)

    Korea Research Reactor 1 (KRR-1), the first research reactor in Korea, has been operated since 1962, and the second one, Korea Research Reactor 2 (KRR-2) since 1972. The operation of both of them was phased out in 1995 due to their lifetime and operation of the new and more powerful research reactor, HANARO (High-flux Advanced Neutron Application Reactor; 30MW). Both are TRIGA Pool type reactors in which the cores are small self-contained units sitting in tanks filled with cooling water. The KRR-1 is a TRIGA Mark II, which could operate at a level of up to 250 kW. The second one, the KRR-2 is a TRIGA Mark III, which could operate at a level of up 2,000 kW. The decontamination and decommissioning (D and D) project of these two research reactors, the first D and D project in Korea, was started in January 1997 and will be completed to stage 3 by 2008. The aim of this decommissioning program is to decommission the KRR-1 and 2 reactors and to decontaminate the residual building structure s and the site to release them as unrestricted areas. KAERI (Korea Atomic Energy Research Institute) submitted the decommissioning plan and the environmental impact assessment reports to the Ministry of Science and Technology (MOST) for the license in December 1998, and was approved in November 2000

  2. Korea Research Reactor -1 & 2 Decommissioning Project in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Chung, U. S.; Jung, K. J.; Park, J. H.

    2003-02-24

    Korea Research Reactor 1 (KRR-1), the first research reactor in Korea, has been operated since 1962, and the second one, Korea Research Reactor 2 (KRR-2) since 1972. The operation of both of them was phased out in 1995 due to their lifetime and operation of the new and more powerful research reactor, HANARO (High-flux Advanced Neutron Application Reactor; 30MW). Both are TRIGA Pool type reactors in which the cores are small self-contained units sitting in tanks filled with cooling water. The KRR-1 is a TRIGA Mark II, which could operate at a level of up to 250 kW. The second one, the KRR-2 is a TRIGA Mark III, which could operate at a level of up 2,000 kW. The decontamination and decommissioning (D & D) project of these two research reactors, the first D & D project in Korea, was started in January 1997 and will be completed to stage 3 by 2008. The aim of this decommissioning program is to decommission the KRR-1 & 2 reactors and to decontaminate the residual building structure s and the site to release them as unrestricted areas. KAERI (Korea Atomic Energy Research Institute) submitted the decommissioning plan and the environmental impact assessment reports to the Ministry of Science and Technology (MOST) for the license in December 1998, and was approved in November 2000.

  3. Research reactor records in the INIS Database - A bibliometric study

    International Nuclear Information System (INIS)

    This report presents a statistical analysis of more than 13,000 records of publications concerned with research and technology in the field of research and/or experimental reactors which are included in the INIS Bibliographic Database for the period from 1970 to 2002. The main objectives of this bibliometric study were: to make an inventory of research reactor related records in the INIS Database; to provide statistics and scientific indicators for the INIS users, namely science managers, researchers, engineers, operators, scientific editors and publishers, decision-makers in the field of research reactors related subjects; to extract other useful information from the INIS Bibliographic Database about articles published in research reactors research and technology. Special attention is devoted to publications related to fuel management and RERTR issues. The quantitative data in this report are obtained for various properties of relevant INIS records such as year of publication, secondary subject categories, countries of publication, language, publication types, literary types, etc. (author)

  4. A microscopic model for chemically-powered Janus motors.

    Science.gov (United States)

    Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond

    2016-07-01

    Very small synthetic motors that make use of chemical reactions to propel themselves in solution hold promise for new applications in the development of new materials, science and medicine. The prospect of such potential applications, along with the fact that systems with many motors or active elements display interesting cooperative phenomena of fundamental interest, has made the study of synthetic motors an active research area. Janus motors, comprising catalytic and noncatalytic hemispheres, figure prominently in experimental and theoretical studies of these systems. While continuum models of Janus motor systems are often used to describe motor dynamics, microscopic models that are able to account for intermolecular interactions, many-body concentration gradients, fluid flows and thermal fluctuations provide a way to explore the dynamical behavior of these complex out-of-equilibrium systems that does not rely on approximations that are often made in continuum theories. The analysis of microscopic models from first principles provides a foundation from which the range of validity and limitations of approximate theories of the dynamics may be assessed. In this paper, a microscopic model for the diffusiophoretic propulsion of Janus motors, where motor interactions with the environment occur only through hard collisions, is constructed, analyzed and compared to theoretical predictions. Microscopic simulations of both single-motor and many-motor systems are carried out to illustrate the results. PMID:27241052

  5. Onchocerciasis control: biological research is still needed

    Directory of Open Access Journals (Sweden)

    Boussinesq M.

    2008-09-01

    Full Text Available Achievements obtained by the onchocerciasis control programmes should not lead to a relaxation in the biological research on Onchocerca volvulus. Issues such as the Loa loa-related postivermectin serious adverse events, the uncertainties as to whether onchocerciasis can be eliminated by ivermectin treatments, and the possible emergence of ivermectin-resistant O. volvulus populations should be addressed proactively. Doxycycline, moxidectin and emodepside appear to be promising as alternative drugs against onchocerciasis but support to researches in immunology and genomics should also be increased to develop new control tools, including both vaccines and macrofilaricidal drugs.

  6. The organization of research reactor safety in the UKAEA

    International Nuclear Information System (INIS)

    The present state of organization and development of research reactor safety in the UKAEA are outlined by addressing the fundamental safety principles which have been adopted in keeping with national health and safety requirement. The organisation, assessment and monitoring of research reactor safety on complex multi-discipline and multi-activity nuclear research and development site are discussed. Methods of safety assessment, such as probabilistic risk assessment and risk acceptance criteria, which have been developed and applied in practice are explained, and some indication of the directions in which some of the current developments in the safety of UKAEA research reactors is also included. (A.J.)

  7. Fast reactor research activities in Brazil

    International Nuclear Information System (INIS)

    Fast reactor activities in Brazil have the objective of establishing a consistent knowledge basis which can serve as a support for a future transitions to the activities more directly related to design, construction and operation of an experimental fast reactor, although its materialization is still far from being decided. Due to the present economic difficulties and uncertainties, the program is modest and all efforts have been directed towards its consolidation, based on the understanding that this class of reactors will play an important role in the future and Brazil needs to be minimally prepared. The text describes the present status of those activities, emphasizing the main progress made in 1996. (author)

  8. Education and Training Programme at the Research Reactor TRIGA Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Gabriele; Eberhardt, Klaus [University of Mainz, Institute for Nuclear Chemistry, D-55099 Mainz (Germany)

    2011-07-01

    Education and training are important elements for the future of nuclear science, technology and safety. Fields of interest include high- technology applications in nuclear techniques and neutron sources, advances in the areas of power reactor safety, establishing the scientific basis of new reactors, training of personnel needed to operate, maintain, regulate and improve reactors or other facilities associated with nuclear power. Also, creating a knowledgeable public through education usually means less opposition and more support. Education and training for safeguards, operators, researchers and quality programmes (calibration services, etc.) are one of the main utilisations of TRIGA research reactors. Use of a reactor as a training tool for university students studying nuclear engineering and/or physics, where there is a growing demand at European Universities, is of vital importance. In particular, the TRIGA Mark II reactor, located at the University of Mainz, one of the largest universities in Germany, offers a broad range of nuclear-related courses for training and education. (author)

  9. Education and Training Programme at the Research Reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    Education and training are important elements for the future of nuclear science, technology and safety. Fields of interest include high- technology applications in nuclear techniques and neutron sources, advances in the areas of power reactor safety, establishing the scientific basis of new reactors, training of personnel needed to operate, maintain, regulate and improve reactors or other facilities associated with nuclear power. Also, creating a knowledgeable public through education usually means less opposition and more support. Education and training for safeguards, operators, researchers and quality programmes (calibration services, etc.) are one of the main utilisations of TRIGA research reactors. Use of a reactor as a training tool for university students studying nuclear engineering and/or physics, where there is a growing demand at European Universities, is of vital importance. In particular, the TRIGA Mark II reactor, located at the University of Mainz, one of the largest universities in Germany, offers a broad range of nuclear-related courses for training and education. (author)

  10. The research reactors their contribution to the reactors physics; Les reacteurs de recherche leur apport sur la physique des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J.C. [Electricite de France (EDF), 75 - Paris (France); Zaetta, A. [CEA/Cadarache, Direction des Reacteurs Nucleaires, DRN, 13 - Saint-Paul-lez-Durance (France); Johner, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Mathoniere, G. [CEA/Saclay, DEN, 91 - Gif sur Yvette (France)] [and others

    2000-07-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  11. The Janus Model of Life-Course Dynamics

    OpenAIRE

    Schroots, Johannes J. F.

    2008-01-01

    In this article, the classic problem of the human life-course, “how can the transition(s) of development into aging be explained?” has been solved. A theoretical model was constructed for the computer simulation of dynamic systems with one or more transitions in biology, psychology, and demography. In constructing the Janus model, it was found that the hypothetical forces of growth and senescence determine the life trajectories of dynamic systems of development and aging in terms of peak time...

  12. Pu-breeding feasibility in irradiation channels of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tomanin, A., E-mail: alice.tomanin@jrc.ec.europa.e [Institute for the Protection and the Security of the Citizen, Joint Research Centre Ispra, Via E. Fermi, 2749, I-21027 ISPRA, Varese (Italy); University Ghent, Engineering Faculty, B-9052 Gent-Zwijnaarde (Belgium); Peerani, P. [Institute for the Protection and the Security of the Citizen, Joint Research Centre Ispra, Via E. Fermi, 2749, I-21027 ISPRA, Varese (Italy); Janssens-Maenhout, G. [Institute for Environment and Sustainability, Joint Research Centre Ispra, Via E. Fermi, 2749, I-21027 ISPRA (Italy); University Ghent, Engineering Faculty, B-9052 Gent-Zwijnaarde (Belgium)

    2011-02-15

    Research highlights: Clandestine plutonium production in irradiation channels of research reactors is a safeguard concern. IAEA concentrates safeguard measures on research reactors with thermal power greater that 25 MWth. The breeding potential in irradiation channels scales with reactor power and available space for irradiation samples. From about 10 MWth and 0.05 m{sup 3} onwards the proliferation concern raises with more than 2 kg of yearly plutonium breeding capability. - Abstract: The breeding potential in the irradiation channels of research reactors is of safeguards concern, because of lacking continuous supervision on the type of experiments in all the irradiation channels. Moreover, the irradiation time can be optimized in order to breed high quality weapon grade plutonium. With regard to the safeguards measures currently adopted, IAEA concentrates its efforts on those reactors whose thermal power is greater than 25 MWth, because it was calculated that a 25 MWth LEU-fuelled reactor produces not more than one Significant Quantity of Pu (8 kg)/year in its spent fuel and a HEU-fuelled reactor of this power would require an annual reload of not more than one Significant Quantity of U{sub 235} (25 kg). In order to investigate whether it would be possible to determine an analogous power level threshold to estimate the clandestine plutonium production capability of different research reactors, the Monte Carlo method was used to determine the neutron flux in the irradiation channels and to calculate the plutonium breeding potential for three different reactor types: (1) a Triga Mark II with 250 kWth, representative for a small size research reactor; (2) a Material Test Reactor (MTR) with 5 MWth, representative for a medium size research reactor; (3) a High Flux Reactor (HFR) with 45 MWth, representative for a large size research reactor. It was observed that the most important factors for plutonium breeding are the neutron flux (to which reaction rates are

  13. Biological sulfuric acid transformation: Reactor design and process optimization.

    Science.gov (United States)

    Stucki, G; Hanselmann, K W; Hürzeler, R A

    1993-02-01

    As an alternative to the current disposal technologies for waste sulfuric acid, a new combination of recycling processes was developed. The strong acid (H(2)SO(4)) is biologically converted with the weak acid (CH(3)COOH) into two volatile weak acids (H(2)S, H(2)CO(3)) by sulfate-reducing bacteria. The transformation is possible without prior neutralization of the sulfuric acid. The microbially mediated transformation can be followed by physiochemical processes for the further conversion of the H(2)S.The reduction of sulfate to H(2)S is carried out under carbon-limited conditions at pH 7.5 to 8.5. A fixed-bed biofilm column reactor is used in conjunction with a separate gas-stripping column which was installed in the recycle stream. Sulfate, total sulfide, and the carbon substrate (in most cases acetate) were determined quantitatively. H(2)S and CO(2) are continually removed by stripping with N(2). Optimal removal is achieved under pH conditions which are adjusted to values below the pK(a)-values of the acids. The H(2)S concentration in the stripped gas was 2% to 8% (v/v) if H(2)SO(4) and CH(3)COOH are fed to the recycle stream just before the stripping column.Microbiol conversion rates of 65 g of sulfate reduced per liter of bioreactor volume per day are achieved and bacterial conversion efficiencies for sulfate of more than 95% can be maintained if the concentration of undissociated H(2)S is kept below 40 to 50 mg/L. Porous glass spheres, lava beads, and polyurethane pellets are useful matrices for the attachment of the bacterial biomass. Theoretical aspects and the dependence of the overall conversion performance on selected process parameters are illustrated in the Appendix to this article. PMID:18609554

  14. Related activities on management of ageing of Dalat Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pham Van Lam [Reactor Dept., Nuclear Research Institute, Dalat (Viet Nam)

    1998-10-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the previous 250 kW TRIGA-MARK II reactor. The reactor core, the control and instrumentation system, the primary and secondary cooling systems as well as other associated systems were newly designed and installed. The renovated reactor reached its initial criticality in November 1983 and attained its nominal power of 500 kW in February 1984. Since then DNRR has been operated safely. Retained structures of the former reactor such as the reactor aluminum tank, the graphite reflector, the thermal column, the horizontal beam tubes and the radiation concrete shielding are 35 years old. During the recent years, in-service inspection has been carried out, the reactor control and instrumentation system were renovated due to ageing and obsolescence of its components, reactor general inspection and refurbishment were performed. Efforts are being made to cope with ageing of old reactor components to maintain safe operation of the DNRR. (author)

  15. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  16. The evaluation of research reactor TRIGA MARK II safety

    International Nuclear Information System (INIS)

    In the paper the Probabilistic Safety Analysis (PSA) of a research reactor is described. Five different initiating events were selected and analyzed with the use of event trees. Seven reactor systems were modeled with fault trees. Three groups of radiation releases were introduced - Success, Reactor-Hall, Environment - and their frequencies were estimated. The importance factors of initiating events, human errors and basic events were calculated regarding the consequence groups. (author)

  17. Research about reactor operator's personality characteristics and performance

    International Nuclear Information System (INIS)

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  18. Report of Nuclear Fusion Reactor Engineering Research Meeting. 6. Advanced reactor engineering technology for nuclear fusion demonstration reactor

    International Nuclear Information System (INIS)

    This research meeting has been held every year, and the 6th meeting was held on January 17, 1995 at University of Tokyo. As the type of a demonstration reactor, tokamak type and helical type were set up, and the topics on the various subjects of their reactor engineering technology were presented, and active discussion was carried out. At the meeting, lectures were given on the reactor engineering technology required for a prototype reactor, the material technology supposed for a demonstration reactor, thermal-electric conversion and the direct electricity generation using Nernst effect, the advanced manufacturing technology of functional, structural materials, the application of high temperature superconductors to nuclear fusion reactors, the reactor engineering technology required for a helical type demonstration reactor, and tokamak demonstration reactor and the common technology of fission and fusion. This report is the summary of these lecture materials. The useful knowledges were obtained for considering the development of nuclear fusion reactor technology hereafter in this meeting. (K.I.)

  19. IAEA Activities supporting education and training at research reactors

    International Nuclear Information System (INIS)

    Full-text: Through the provision of neutrons for experiments and their historical association with universities, research reactors have played a prominent role in nuclear education and training of students, scientists and radiation workers. Today education and training remains the foremost application of research reactors, involving close to 160 facilities out of 246 operational. As part of its mandate to facilitate and expand the contribution of atomic energy to peace, health and prosperity throughout the world, the IAEA administers a number of activities intended to promote nuclear research and enable access to nuclear technology for peaceful purposes, one of which is the support of various education and training measures involving research reactors. In the last 5 years, education and training has formed one pillar for the creation of research reactor coalitions and networks to pool their resources and offer joint programmes, such as the on-going Group Fellowship Training Course. Conducted mainly through the Eastern European Research Reactor Initiative, this programme is a periodic sic week course for young scientists and engineers on nuclear techniques and administration jointly conducted at several member research reactor institutes. Organization of similar courses is under consideration in Latin America and the Asia-Pacific Region, also with support from the IAEA. Additionally, four research reactor institutes have begun offering practical education courses through virtual reactor experiments and operation known as the Internet Reactor Laboratory. Through little more than an internet connection and projection screens, university science departments can be connected regionally or bilaterally with the control room o a research reactor for various training activities. Finally, two publications are being prepared, namely Hands-On Training Courses Using Research Reactors and Accelerators, and Compendium on Education and training Based on Research Reactors. These

  20. Biological effectiveness of neutrons: Research needs

    Energy Technology Data Exchange (ETDEWEB)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  1. Biological effectiveness of neutrons: Research needs

    International Nuclear Information System (INIS)

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy

  2. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  3. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  4. Safety of Research Reactors: View of the NEA Committee on the Safety of Research Installations (CSNI)

    International Nuclear Information System (INIS)

    The safety of research reactors has received global attention recently due to the forced closures of medical radioisotope reactors. Historically, research reactors have been generally treated by regulators and the international community as a subset of power reactors. They possess many of the same or similar safety issues but on a different scale, such as the reactor physics, radiation protection, and the ageing management of equipment and materials. However, while research reactors involve lower risk than power reactors, many of them are ageing, and they are sometimes located in areas with high population density and due attention should be paid to their adequate safety performance. There are some unique issues related to the operation of research reactors. The reactor type, configuration, thermal output, and the utilisation can be significantly different from each other and from power reactors. Regulatory guidance and policy varies from country to country. Additionally, the purpose and uses of research reactors tend to be more international in nature. Certainly, the shutdown of the reactors in Canada and the Netherlands has affected more countries and has created a larger global crisis in the supply of medical radioisotopes than ever seen previously. Following these recent events, the NEA Committee on the Safety of Nuclear Installations (CSNI) has begun to taken a keen interest in determining what in particular it can contribute to the current safety or knowledge gaps pertaining to the safe operation of the current fleet of research reactors

  5. Operation experiences and utilizations of Korean research reactors

    International Nuclear Information System (INIS)

    There are two TRIGA research reactors, MARK-II of 250 KW and MARK-III of 2,000 KW, currently in operation at the Korea Advanced Energy Research Institute in Seoul, Korea. The major utilizations of research reactors in Korea include : (1) radioisotope production and activation analysis, (2) neutron research, and (3) training. The accumulated operation time as of the end of 1985 has totaled 33,084 hours for MARK-II, and 28,807 hours for MARK-III. During this period, 24,983 cases of sample irradiations have been carried out, while the number of trainees reached 2,788. Recently, the KAERI undertook a plan to build a 30 MW multipurpose research reactors at Daeduk research center. At present, this new reactor is in the preliminary design stage. (author)

  6. Neutron beam applications using low power research reactor Malaysia perspectives

    International Nuclear Information System (INIS)

    The TRIGA MARK II Research reactor at the Malaysian Institute for Nuclear Research (MINT) was commissioned in July 1982. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. One area currently focussed on is the utilisation of neutron beam ports available at this 1MW reactor. Projects undertaken are the development and utilisation of the Neutron Radiography (myNR), Small Angle Neutron Scattering (mySANS) and Boron Neutron Capture Therapy (BNCT) - preliminary study. In order to implement active research programmes, a group comprised of researcher from research institutes and academic institutions, has formed: known as Malaysian Reactor Interest Group (MRIG). This paper describes the recent status the above neutron beam facilities and their application in industrial, health and material technology research and education. The related activities of MRIG are also highlighted. (author)

  7. The Lo Aguirre research reactor refurbishment

    International Nuclear Information System (INIS)

    A description is given of the main work which had to be performed on the experimental reactor of the Lo Aguirre nuclear power plant (RECH-2), following which it recently came into operation. In particular, an outline is given of the main changes and improvements made with regard to reactor physics calculations, the systems and components in the facility, and repair of existing fuel elements. Special importance was attached to the definition, application and meeting of nuclear safety requirements and the implementation of a consistent quality assurance programme. Certain aspects of the work performed, by virtue of the scope and importance of the tasks involved, resulted in clear improvements to and modernization of the facility - for example, the construction of a new control room, the construction of a computerized radiation protection and surveillance control room, the reconstruction of the primary coolant circuit, the complete refitting of reactor instrumentation to incorporate a computerized data acquisition system, the redesign and construction of reactor water treatment plants, improvements in experimental devices and the design and construction of new experimental devices. The reactor, construction of which was resumed in 1986, attained criticality on 6 September 1989 using the HEU fuel available. We are now at the stage of characterizing the reactor by measuring process and nuclear parameters prior to commencing power operation

  8. Digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Currently, the use of digital computers in energy producing systems has been limited to data acquisition functions. These computers have greatly reduced human involvement in the moment to moment decision process and the crisis decision process, thereby improving the safety of the dynamic energy producing systems. However, in addition to data acquisition, control of energy producing systems also includes data comparison, decision making, and control actions. The majority of the later functions are accomplished through the use of analog computers in a distributed configuration. The lack of cooperation and hence, inefficiency in distributed control, and the extent of human interaction in critical phases of control have provided the incentive to improve the later three functions of energy systems control. Properly applied, centralized control by digital computers can increase efficiency by making the system react as a single unit and by implementing efficient power changes to match demand. Additionally, safety will be improved by further limiting human involvement to action only in the case of a failure of the centralized control system. This paper presents a hardware and software design for the centralized control of a research nuclear reactor by a digital computer. Current nuclear reactor control philosophies which include redundancy, inherent safety in failure, and conservative yet operational scram initiation were used as the bases of the design. The control philosophies were applied to the power monitoring system, the fuel temperature monitoring system, the area radiation monitoring system, and the overall system interaction. Unlike the single function analog computers that are currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control rod movements to conform with operator requests, automatically log the required physical parameters during reactor

  9. Technical project for reconstruction of the research reactor IRT - Sofia

    International Nuclear Information System (INIS)

    As a result of analyses and investigations and on the basis of the prepared report, the Government has taken the Resolution No. 552/17.05.2001 for refurbishment of the IRT-2000 Research Reactor into a Low Power Reactor up to 200 kW. The IRT-2000 Research Reactor was commissioned in 1961. In this paper the design features and experimental capabilities of the IRT-200 pool-type research reactor are reviewed. In this reactor the IRT-2M type fuel assemblies (FA) containing 36 % enriched uranium will be used instead of the EK-10 fuel elements (FE). The main characteristics of the IRT-2M type FA are given, as are the characteristics of the IRT-200 reactor. Use of the IRT-2M type FA will make it possible to operate the reactor with a core volume of 42-48 litres. The reactor should provide also for possible application of the 'Boron neutron capture therapy/BNCT/' for brain tumors treatment. The selected design features will significantly improve the operational safety of the reactor. For the implementation of this modernization project, the INRNE called upon the services of INTERATOM (consortium of AtomENERGOPROJECT/SKODA/Kurchatov Institute), of the consortium BELGATOM/SCK-CEN, of the NRI-Rez and of the EQE-Sofia. (author)

  10. Ageing Management and Modernization of TR-2 Research Reactor

    International Nuclear Information System (INIS)

    TR-2 is a 5 MW pool type research reactor. It is in the same building and in the same pool of the former TR-1 research reactor. TR-1 was active between 1961 and 1977, and during the construction period of the TR-2 reactor (1977– 1980), TR-1 was partially refurbished. TR-2 started operation in 1981 and continued to operate until 1995. In 1995 operation was stopped because of concern for the seismic safety of the old reactor building. From 1995 to 2009 the reactor was operated at a limited power of 300 kW. In 2009, HEU fuel was shipped to the country of origin, and LEU fuel was provided. Presently, the reactor is in a shutdown state for the seismic reinforcement project of the building. The building was built in the 1950s, and this and the pool are the only structures inherited from TR-1. Other parts of the TR-2 reactor were first installed in the 1980s. During the 15 years of operation certain components of the reactor aged. Considering the future operating programme, modernization of some systems are in planning. In the paper, ageing management and modernization of the TR-2 research reactor are given. (author)

  11. Response to a field of the D = 3 Ising spin glass with Janus and JanusII dedicated computers

    Science.gov (United States)

    Seoane, Beatriz; Janus Collaboration Collaboration

    Using the Janus dedicated computer, and its new generation JanusII, we study the linear response to a field of the Edwards-Anderson model for times that cover twelve orders of magnitude. The fluctuation-dissipation relations are investigated for several values of tw. We observe that the violations of the fluctuation-dissipation theorem can be directly related to the P (q) measured in equilibrium at finite sizes, although a simple statics-dynamics dictionary L ξ (tw) is not enough to account for the behavior at large times. We show that the equivalence can be easily restored by taking into account the growth of ξ (t +tw) . Interestingly, experimental measurements of the spin glass correlation length rely precisely on the response of a spin glass to a field, although a direct relation between the measured object and the real ξ has never been established. In this work, we mimic the experimental protocol with Janus data, which lets us relate the experimental ξ with the length extracted from the spatial correlation function. These results allow us for the first time to make a quantitative comparison between experiments and simulations, finding a surprising good agreement with measurements in superspin glasses. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 654971, the ERC grant CRIPHERASY (no. 247328) and from the MINECO(Spain) (No. FIS2012-35719-C02).

  12. Current tendencies and perspectives of development research reactors of Russia

    International Nuclear Information System (INIS)

    Full text: During more than fifty years many Research Reactors were constructed under Russian projects, and that is a considerable contribution to the world reactor building. The designs of Research Reactors, constructed under Russian projects, appeared to be so successful, that permitted to raise capacity and widen the range of their application. The majority of Russian Research Reactors being middle-aged are far from having their designed resources exhausted and are kept on the intensive run still. In 2000 'Strategy of nuclear power development in Russia in the first half of XXI century' was elaborated and approved. The national nuclear power requirements and possible ways of its development determined in this document demanded to analyze the state of the research reactors base. The analysis results are presented in this report. The main conclusion consists in the following statement: on the one hand quantity and experimental potentialities of domestic Research Reactors are sufficient for the solution of reactor materials science tasks, and on the other hand the reconstruction and modernization appears to be the most preferable way of research reactors development for the near-term outlook. At present time the modernization and reconstruction works and works on extension of operational life of high-powered multipurpose MIR-M1, SM-3, IRV-1M, BOR-60, IVV-2M and others are conducted. There is support for the development of Research Reactors, intended for carrying out the fundamental investigations on the neutron beams. Toward this end the Government of Russia gives financial and professional support with a view to complete the reactor PIK construction in PINPh and the reactor IBR-2 modernization in JINR. In future prospect Research Reactors branch in Russia is to acquire the following trends: - limited number of existent scientific centers, based on the construction sites, with high flux materials testing research reactors, equipped with experimental facilities

  13. Research reactors as sources of atmospheric radioxenon

    International Nuclear Information System (INIS)

    Radioxenon emissions of the TRIGA Mark II research reactor in Vienna were investigated with respect to a possible impact on the verification of the Comprehensive Nuclear Test-Ban-Treaty. Using the Swedish Automatic Unit for Noble Gas Acquisition (SAUNA II), five radioxenon isotopes 125Xe, 131mXe, 133mXe, 133Xe and 135Xe were detected, of which 125Xe is solely produced by neutron capture in stable atmospheric 124Xe and hence acts as an indicator for neutron activation processes. The other nuclides are produced in both fission and neutron capture reactions. The detected activity concentrations ranged from 0.0010 to 190 Bq/m3. The source of the radioxenon is not yet fully clarified, but it could be micro-cracks in the fuel cladding, fission of 235U contaminations on the outside of the fuel elements or neutron activation of atmospheric Xe. Neutron deficient 125Xe with its highly complex decay scheme was seen for the first time in a SAUNA system. In many experiments the activity ratios of the radioxenon nuclides carry the signature of nuclear explosions, if 131mXe is omitted. Only if 131mXe is included into the calculations of the isotopic activity ratios, the majority of the measurements revealed a 'civil' signature (typical for a NPP). A significant contribution of the TRIGA Vienna to the global or European radioxenon inventory can be excluded. Due to the very low activities, the emissions are far below any concern for human health. (author)

  14. Proceedings of first SWCR-KURRI academic seminar on research reactors and related research topics

    International Nuclear Information System (INIS)

    These are the proceedings of an academic seminar on research reactors and related research topics held at the Southwest Centre for Reactor Engineering Research and Design in Chengdu, Sichuan, People's Republic of China in September 24-26 in 1985. Included are the chairmen's addresses and 10 papers presented at the seminar in English. The titles of these papers are: (1) Nuclear Safety and Safeguards, (2) General Review of Thorium Research in Japanese Universities, (3) Comprehensive Utilization and Economic Analysis of the High Flux Engineering Test Reactor, (4) Present States of Applied Health Physics in Japan, (5) Neutron Radiography with Kyoto University Reactor, (6) Topics of Experimental Works with Kyoto University Reactor, (7) Integral Check of Nuclear Data for Reactor Structural Materials, (8) The Reactor Core, Physical Experiments and the Operation Safety Regulation of the Zero Energy Thermal Reactor for PWR Nuclear Power Plant, (9) HFETR Core Physical Parameters at Power, (10) Physical Consideration for Loads of Operated Ten Cycles in HFETR. (author)

  15. Research reactor back-end options - decommissioning: a necessary consideration

    International Nuclear Information System (INIS)

    Decommissioning is a challenge, which all radioactive site licensees eventually need to face and research reactors are no exception. BNFL has completed numerous major decommissioning projects at its own operational sites and has undertaken similar works at customers' sites including the decommissioning of the Universities Research Reactor (URR), Risley and the ICI TRIGA 1-Mk I Reactor at Billingham. Based on the execution of such projects BNFL has gained an understanding of the variety of customer requirements and the effectiveness of specific decommissioning techniques for research reactors. This paper addresses factors to be considered when reviewing the way forward following shut down and how these affect the final decisions for fuel management and the extent of decommissioning. Case studies are described from BNFL's recent experience decommissioning both the URR and ICI TRIGA reactors. (author)

  16. Upgrading I and C for the Es Salam research reactor

    International Nuclear Information System (INIS)

    The Es Salam is a multi-purpose research reactor intended for the production of the radio elements, material tests, education and training. It serves also as a source for neutron beams used by chemists, biologists, metallurgists and physicists for fundamental research and applications. The main task of the Es Salam Reactor Operation Division is to ensure a safe and reliable operation of the reactor. With this objective in hand, the Operation Division is responsible for updating the safety measures and conditions in the installation for the reactor equipments and systems. Due to the increased demand for experiences and to the ageing effects, modification and modernization of some safety items become necessary in comparison with state of the art installations. Furthermore, the technological advances and the development and introduction of new instruments, components and systems increased the need for modification. In this paper, we present the new I and C system which will be used for the Es Salam research reactor

  17. Blade-mixing reactors in the biological treatment of contaminated soils

    International Nuclear Information System (INIS)

    The application of mixing reactors was expected to have a positive effect on the biological turnover of contaminants, especially for cohesive soils. During investigations using blade-mixing reactors, it appeared to be of utmost importance to inhibit or reduce pellet formation during the dynamic treatment of soils. In this connection, a comparison of the degradation kinetics in static and dynamic reactors is of great interest. Contaminants of concern were diesel fuel and lubricating oil

  18. Biological Phosphorus Removal in a Moving Bed Biofilm Reactor

    OpenAIRE

    Helness, Herman

    2007-01-01

    Phosphorus (P) and nitrogen (N) removal from municipal wastewater is performed to prevent or reduce eutrophication in the receiving water.Both P and N can be removed physical/chemically as well as biologically. While biological processes have always dominated in N-removal, chemical P-removal is used in many cases. Biological P-removal using enhanced biological phosphorus removal (EBPR) is normally carried out in suspended culture (activated sludge) processes while biological N-removal (throug...

  19. Biology of Aging: Research Today for a Healthier Tomorrow

    Science.gov (United States)

    ... Home » Biology of Aging Heath and Aging Biology of Aging Preface The National Institute on Aging ( ... major institutions across the United States and internationally. Biology of Aging: Research Today for a Healthier Tomorrow ...

  20. Remediation of Site of Decommissioning Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Danilovich, A.S.; Ivanov, O.P.; Lemus, A.V.; Pavlenko, V.I.; Potapov, V.N.; Semenov, S.G.; Shisha, A.D.; Chesnokov, A.V. [National Research Center ' Kurchatov Institute' , 123182, Moscow (Russian Federation)

    2014-07-01

    In the world the most widespread method of soil decontamination consists of removing the contaminated upper layer and sending it for long-term controlled storage. However, implementation of this soil cleanup method for remediation of large contaminated areas would involve high material and financial expenditures, because it produces large amounts of radioactive waste demanding removal to special storage sites. Contaminated soil extraction and cleanup performed right on the spot of remediation activities represents a more advanced and economically acceptable method. Radiological separation of the radioactive soil allows reducing of amount of radwaste. Studies performed during the liquidation of the Chernobyl accident consequences revealed that a considerable fraction of radioactivity is accumulated in minute soil grains. So, the separation of contaminated soil by size fractions makes it possible to extract and concentrate the major share of radioactivity in the fine fraction. Based on these researches water gravity separation technology was proposed by Bochvar Institute. The method extracts the fine fraction from contaminated soil. Studies carried out by Bochvar Institute experts showed that, together with the fine fraction (amounting to 10-20% of the initial soil), this technology can remove up to 85-90% of contaminating radionuclides. The resulting 'dirty' soil fraction could be packaged into containers and removed as radwaste, and decontaminated fractions returned back to their extraction site. Use of radiological and water gravity separations consequently increases the productivity of decontamination facility. Efficiency of this technology applied for contaminated soil cleanup was confirmed in the course of remediation of the contaminated territories near decommissioning research reactor in the Kurchatov Institute. For soil cleaning purposes, a special facility implementing the technology of water gravity separation and radiometric monitoring of soil