WorldWideScience

Sample records for biological research center

  1. Center for Biologics Evaluation and Research (CBER)

    Data.gov (United States)

    Federal Laboratory Consortium — CBER is the Center within FDA that regulates biological products for human use under applicable federal laws, including the Public Health Service Act and the Federal...

  2. Continuing training program in radiation protection in biological research centers

    International Nuclear Information System (INIS)

    Escudero, R.; Hidalgo, R.M.; Usera, F.; Macias, M.T.; Mirpuri, E.; Perez, J.; Sanchez, A.

    2008-01-01

    The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel maintenance and instrumentation workers, cleaners, administrative personnel, etc. who are associated with the radioactive facility indirectly. These workers are affected by the work in the radioactive facility to varying degrees, and they therefore also require information and training in radiological protection tailored to their level of interaction with the installation. The aim of this study was to design a

  3. Tumor Biology and Immunology | Center for Cancer Research

    Science.gov (United States)

    Tumor Biology and Immunology The Comparative Brain Tumor Consortium is collaborating with National Center for Advanced Translational Sciences to complete whole exome sequencing on canine meningioma samples. Results will be published and made publicly available.

  4. NCI RNA Biology 2017 symposium recap | Center for Cancer Research

    Science.gov (United States)

    The recent discovery of new classes of RNAs and the demonstration that alterations in RNA metabolism underlie numerous human cancers have resulted in enormous interest among CCR investigators in RNA biology. In order to share the latest research in this exciting field, the CCR Initiative in RNA Biology held its second international symposium April 23-24, 2017, in Natcher Auditorium. Learn more...

  5. 76 FR 71045 - Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and...

    Science.gov (United States)

    2011-11-16

    ...] Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information... ``Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information... period for the notice on its report of scientific and medical literature and information concerning the...

  6. 75 FR 6401 - Medical Devices Regulated by the Center for Biologics Evaluation and Research; Availability of...

    Science.gov (United States)

    2010-02-09

    ... Biologics Evaluation and Research (HFM-17), Food and Drug Administration, suite 200N, 1401 Rockville Pike... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2009-M-0513] Medical Devices Regulated by the Center for Biologics Evaluation and Research; Availability of Summaries...

  7. Redox Biology Course Registration Form | Center for Cancer Research

    Science.gov (United States)

    The Redox Biology class is open to all NIH/NCI fellows and staff and will be held Septhember 27 - November 8, 2016. The last day to register is: September 21, 2016. The first 100 registrants will be accepted for the class. Those who plan to participate by Video TeleConference should also register so that you can receive the speaker handouts in advance.

  8. 76 FR 59407 - Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and...

    Science.gov (United States)

    2011-09-26

    ... searching for articles using a PubMed and/or Institute for Scientific Information (ISI) search engine...] Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information... Administration (FDA) is announcing the availability of its report of scientific and medical literature and...

  9. Regulatory administrative databases in FDA's Center for Biologics Evaluation and Research: convergence toward a unified database.

    Science.gov (United States)

    Smith, Jeffrey K

    2013-04-01

    Regulatory administrative database systems within the Food and Drug Administration's (FDA) Center for Biologics Evaluation and Research (CBER) are essential to supporting its core mission, as a regulatory agency. Such systems are used within FDA to manage information and processes surrounding the processing, review, and tracking of investigational and marketed product submissions. This is an area of increasing interest in the pharmaceutical industry and has been a topic at trade association conferences (Buckley 2012). Such databases in CBER are complex, not for the type or relevance of the data to any particular scientific discipline but because of the variety of regulatory submission types and processes the systems support using the data. Commonalities among different data domains of CBER's regulatory administrative databases are discussed. These commonalities have evolved enough to constitute real database convergence and provide a valuable asset for business process intelligence. Balancing review workload across staff, exploring areas of risk in review capacity, process improvement, and presenting a clear and comprehensive landscape of review obligations are just some of the opportunities of such intelligence. This convergence has been occurring in the presence of usual forces that tend to drive information technology (IT) systems development toward separate stovepipes and data silos. CBER has achieved a significant level of convergence through a gradual process, using a clear goal, agreed upon development practices, and transparency of database objects, rather than through a single, discrete project or IT vendor solution. This approach offers a path forward for FDA systems toward a unified database.

  10. Centering research

    DEFF Research Database (Denmark)

    Katan, Lina Hauge; Baarts, Charlotte

    idea, insofar as the ways students read and write need altering to correspond to the practice of research and prepare students accordingly. In the paper, we discuss therefore the possible challenges of grounding research-based teaching in reading, thinking and writing, as indicated by our empirical......’ exercises tend to dominate the common understandings of research-based learning. Here we address a specific area of inquiry overlooked by previous studies: whether and how reading, thinking and writing indeed share the same learning potentials as the practical foundation for research-based teaching....... In the humanities and social sciences, integrated acts of reading, writing and thinking account for an obvious and substantial overlap in student and researcher practices, creating a clear opportunity for research-based teaching. Moreover, our empirical data point to reading, thinking and writing as quintessential...

  11. Centering research

    DEFF Research Database (Denmark)

    Katan, Lina Hauge; Baarts, Charlotte

    ’ exercises tend to dominate the common understandings of research-based learning. Here we address a specific area of inquiry overlooked by previous studies: whether and how reading, thinking and writing indeed share the same learning potentials as the practical foundation for research-based teaching...... and collected 24 portfolios in which students reflect auto-ethnographically on their educational practices. Analyzing this qualitative material, we explore how researchers and students respectively read and write to develop and advance their thinking in those learning processes that the two groups fundamentally...... findings We then propose a set of experimentally designed curricular frameworks that have been shown to alter student engagement in reading and writing, encouraging their learning to become more research-like. Finally, we return to the literature on research-based teaching, asking how an emphasis...

  12. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Science.gov (United States)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  13. Development of a Free-Electron Laser Center and Research in Medicine, Biology and Materials Science,

    Science.gov (United States)

    1992-05-14

    where enhanced nonproton ion movements can be observed during the photocycle ( Marinetti and Mauzerall, 1986). We do not have the possibility to measure...Biological Membranes. C.L. 17 Bolis, E.J.M. Helmreich and H. Passow, editors. Alan R. Liss Inc., NY 39-50. Marinetti , T., and D. Mauzerall 1986. Large

  14. Methods in Molecular Biology: Germline Stem Cells | Center for Cancer Research

    Science.gov (United States)

    The protocols in Germline Stem Cells are intended to present selected genetic, molecular, and cellular techniques used in germline stem cell research. The book is divided into two parts. Part I covers germline stem cell identification and regulation in model organisms. Part II covers current techniques used in in vitro culture and applications of germline stem cells.

  15. Paul Carlson | Center for Cancer Research

    Science.gov (United States)

    Paul Carlson, Ph.D. March 28 Principal Investigator Laboratory of Mucosal Pathogens and Cellular Immunology Center for Biologics Evaluation and Research (CBER), FDA Topic:  "Research and Regulation of novel biologic products at the FDA's Center for Biologics Evaluation and Research"

  16. Northern Prairie Wildlife Research Center

    Science.gov (United States)

    ,

    2009-01-01

    The Northern Prairie Wildlife Research Center (NPWRC) conducts integrated research to fulfill the Department of the Interior's responsibilities to the Nation's natural resources. Located on 600 acres along the James River Valley near Jamestown, North Dakota, the NPWRC develops and disseminates scientific information needed to understand, conserve, and wisely manage the Nation's biological resources. Research emphasis is primarily on midcontinental plant and animal species and ecosystems of the United States. During the center's 40-year history, its scientists have earned an international reputation for leadership and expertise on the biology of waterfowl and grassland birds, wetland ecology and classification, mammalian behavior and ecology, grassland ecosystems, and application of statistics and geographic information systems. To address current science challenges, NPWRC scientists collaborate with researchers from other U.S. Geological Survey centers and disciplines (Biology, Geography, Geology, and Water) and with biologists and managers in the Department of the Interior (DOI), other Federal agencies, State agencies, universities, and nongovernmental organizations. Expanding upon its scientific expertise and leadership, the NPWRC is moving in new directions, including invasive plant species, restoration of native habitats, carbon sequestration and marketing, and ungulate management on DOI lands.

  17. Human embryonic stem cells and good manufacturing practice: Report of a 1- day workshop held at Stem Cell Biology Research Center, Yazd, 27thApril 2017.

    Science.gov (United States)

    Akyash, Fatemeh; Sadeghian-Nodoushan, Fatemeh; Tahajjodi, Somayyeh Sadat; Nikukar, Habib; Farashahi Yazd, Ehsan; Azimzadeh, Mostafa; D Moore, Harry; Aflatoonian, Behrouz

    2017-05-01

    This report explains briefly the minutes of a 1-day workshop entitled; "human embryonic stem cells (hESCs) and good manufacturing practice (GMP)" held by Stem Cell Biology Research Center based in Yazd Reproductive Sciences Institute at Shahid Sadoughi University of Medical Sciences, Yazd, Iran on 27 th April 2017. In this workshop, in addition to the practical sessions, Prof. Harry D. Moore from Centre for Stem Cell Biology, University of Sheffield, UK presented the challenges and the importance of the biotechnology of clinical-grade human embryonic stem cells from first derivation to robust defined culture for therapeutic applications.

  18. Research Associate | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.

  19. RIKEN BNL Research Center

    Science.gov (United States)

    Samios, Nicholas

    2014-09-01

    Since its inception in 1997, the RIKEN BNL Research Center (RBRC) has been a major force in the realms of Spin Physics, Relativistic Heavy Ion Physics, large scale Computing Physics and the training of a new generation of extremely talented physicists. This has been accomplished through the recruitment of an outstanding non-permanent staff of Fellows and Research associates in theory and experiment. RBRC is now a mature organization that has reached a steady level in the size of scientific and support staff while at the same time retaining its vibrant youth. A brief history of the scientific accomplishments and contributions of the RBRC physicists will be presented as well as a discussion of the unique RBRC management structure.

  20. Center for Prostate Disease Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Prostate Disease Research is the only free-standing prostate cancer research center in the U.S. This 20,000 square foot state-of-the-art basic science...

  1. Research Associate | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR).  The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research.  CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES/RESPONSIBILITIES We are seeking a highly motivated Research Associate II to join the newly established Single Cell Analysis Facility (SCAF) of the CCR at NCI.  The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. This person will work under the guidance of SCAF senior staff to carry out single cell sequencing experiments.

  2. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  3. Optoelectronics Research Center

    Science.gov (United States)

    1992-05-16

    ipan byr the Naval teuh Laoratoy. Tentative explanations have been put forth [14], but no B. W. Mufins was with the Center for high Tehnology Materia ad...semiconductor laser in an external cavity. CHAOS IN SEMICONDUCTOR LASERS Hua Li , Jun Ye and John (. Mclnemey Center for High Tehnology Materials The

  4. NRH Neuroscience Research Center

    Science.gov (United States)

    2008-06-01

    indicator of surgical risk in patients with chronic peptic ulcer . JAMA 1936: 106:458-60. 33 Weinsier RL, Hunker EM, Krumdieck CL, Butterworth CE...Individuals were excluded who had an active pulmonary infection or pressure ulcer , a history of liver disease , heart disease , diabetes mellitus, were...assessment, traumatic brain and spinal cord injury, stroke, and Parkinson’s disease . Research supported by the USAMRMC occurred in five research areas

  5. UC Merced Center for Computational Biology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Michael; Watanabe, Masakatsu

    2010-11-30

    Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformation of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs

  6. MIT Space Engineering Research Center

    Science.gov (United States)

    Crawley, Edward F.; Miller, David W.

    1990-01-01

    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report.

  7. Communication Research in Urban Centers.

    Science.gov (United States)

    Hunt, Martin F., Jr.

    Because of the great density of people in cities, residents of urban centers have unique problems of human interaction and communication. Because of population density and the large number of information networks, communication research in urban settings should center on the ways in which residents cope with the variety of message inputs and, at…

  8. Transportation Research & Analysis Computing Center

    Data.gov (United States)

    Federal Laboratory Consortium — The technical objectives of the TRACC project included the establishment of a high performance computing center for use by USDOT research teams, including those from...

  9. Colorado Learning Disabilities Research Center.

    Science.gov (United States)

    DeFries, J. C.; And Others

    1997-01-01

    Results obtained from the center's six research projects are reviewed, including research on psychometric assessment of twins with reading disabilities, reading and language processes, attention deficit-hyperactivity disorder and executive functions, linkage analysis and physical mapping, computer-based remediation of reading disabilities, and…

  10. Tumor Biology and Microenvironment Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research in this area seeks to understand the role of tumor cells and the tumor microenvironment (TME) in driving cancer initiation, progression, maintenance and recurrence.

  11. Engineer Research and Development Center's Materials Testing Center (MTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center's Materials Testing Center (MTC) is committed to quality testing and inspection services that are delivered on time and...

  12. Scientific activities 1980 Nuclear Research Center ''Democritos''

    International Nuclear Information System (INIS)

    1982-01-01

    The scientific activities and achievements of the Nuclear Research Center Democritos for the year 1980 are presented in the form of a list of 76 projects giving title, objectives, responsible of each project, developed activities and the pertaining lists of publications. The 16 chapters of this work cover the activities of the main Divisions of the Democritos NRC: Electronics, Biology, Physics, Chemistry, Health Physics, Reactor, Scientific Directorate, Radioisotopes, Environmental Radioactivity, Soil Science, Computer Center, Uranium Exploration, Medical Service, Technological Applications, Radioimmunoassay and Training. (N.C.)

  13. Advancing vector biology research

    NARCIS (Netherlands)

    Kohl, Alain; Pondeville, Emilie; Schnettler, Esther; Crisanti, Andrea; Supparo, Clelia; Christophides, George K.; Kersey, Paul J.; Maslen, Gareth L.; Takken, Willem; Koenraadt, Constantianus J.M.; Oliva, Clelia F.; Busquets, Núria; Abad, F.X.; Failloux, Anna Bella; Levashina, Elena A.; Wilson, Anthony J.; Veronesi, Eva; Pichard, Maëlle; Arnaud Marsh, Sarah; Simard, Frédéric; Vernick, Kenneth D.

    2016-01-01

    Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target

  14. Space Station Biological Research Project

    Science.gov (United States)

    Johnson, Catherine C.; Hargens, Alan R.; Wade, Charles E.

    1995-01-01

    NASA Ames Research Center is responsible for the development of the Space Station Biological Research Project (SSBRP) which will support non-human life sciences research on the International Space Station Alpha (ISSA). The SSBRP is designed to support both basic research to understand the effect of altered gravity fields on biological systems and applied research to investigate the effects of space flight on biological systems. The SSBRP will provide the necessary habitats to support avian and reptile eggs, cells and tissues, plants and rodents. In addition a habitat to support aquatic specimens will be provided by our international partners. Habitats will be mounted in ISSA compatible racks at u-g and will also be mounted on a 2.5 m diameter centrifuge except for the egg incubator which has an internal centrifuge. The 2.5 m centrifuge will provide artificial gravity levels over the range of 0.01 G to 2 G. The current schedule is to launch the first rack in 1999, the Life Sciences glovebox and a second rack early in 2001, a 4 habitat 2.5 in centrifuge later the same year in its own module, and to upgrade the centrifuge to 8 habitats in 2004. The rodent habitats will be derived from the Advanced Animal Habitat currently under development for the Shuttle program and will be capable of housing either rats or mice individually or in groups (6 rats/group and at least 12 mice/group). The egg incubator will be an upgraded Avian Development Facility also developed for the Shuttle program through a Small Business and Innovative Research grant. The Space Tissue Loss cell culture apparatus, developed by Walter Reed Army Institute of Research, is being considered for the cell and tissue culture habitat. The Life Sciences Glovebox is crucial to all life sciences experiments for specimen manipulation and performance of science procedures. It will provide two levels of containment between the work volume and the crew through the use of seals and negative pressure. The glovebox

  15. Statistical Analysis of Research Data | Center for Cancer Research

    Science.gov (United States)

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general principles of statistical analysis of research data.  The first day will feature univariate data analysis, including descriptive statistics, probability distributions, one- and two-sample inferential statistics.

  16. NASA Airline Operations Research Center

    Science.gov (United States)

    Mogford, Richard H.

    2016-01-01

    This is a PowerPoint presentation NASA airline operations center (AOC) research. It includes information on using IBM Watson in the AOC. It also reviews a dispatcher decision support tool call the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. It should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations with the same title.

  17. History of the department of virology and molecular and biological methods of investigation of pediatric research and clinical center for infectious diseases

    Directory of Open Access Journals (Sweden)

    E. A. Murina

    2017-01-01

    Full Text Available The article deals with the history of formation of virology laboratory since 1963 after the resolution of the Academy of Medical Sciences of the USSR and the Ministry of Public Health on the expansion of virology investigation in the USSR.The results of the research work on studying various infections in children, developing new modified approaches to etiological express-diagnostics of the diseases, including those introduced into practice of the laboratory and regional medical centers are generalized. The laboratory got the name of the Department of Etiological Diagnostics Methods due to the basic direction of the research work. The primary goal of the department is to develop the methods and diagnostic algorithms for definite verification of infectious forms and the prognosis of the development of pathological process that allows determining the direction of further therapeutic approach to improve the disease outcome. In 2008 the Department of Etiological Diagnostics Methods began its «golden age» characterized by cardinal re-equipment and strengthening of the staff. There appeared the devices of expert class which completely replaced the manual testing process, the work connected with interpretation of serous meningitis outbreaks in Russia and the near abroad became more active.Now the department is a hi-technology scientific and practical center on studying viral and invasive forms of diseases with a priority direction of further innovations in laboratory diagnostics. 

  18. Evolutionary Biology Research in India

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Evolutionary Biology Research in India. Information and Announcements Volume 5 Issue 10 October 2000 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/005/10/0102-0104 ...

  19. Evolutionary Biology Research in India

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Evolutionary Biology Research in India. Information and Announcements Volume 5 Issue 10 October 2000 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/10/0102-0104 ...

  20. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  1. Flow Cytometry Scientist | Center for Cancer Research

    Science.gov (United States)

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) in the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (fluorescence cell sorting) with the goal of gaining a more thorough understanding of the biology of the immune system, cancer, and inflammation processes. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. Flow Cytometry Scientist - The individual will be responsible for: Daily management of the Flow Cytometry Core, to include the supervision and guidance of technical staff members Monitor performance of and maintain high-dimensional flow cytometer analyzers and cell sorters Operate high-dimensional flow cytometer analyzers and cell sorters Provide scientific expertise to the user community and facilitate the development of cutting-edge technologies Interact with Flow Core users and customers, and provide technical and scientific advice, and guidance regarding their experiments, including possible collaborations Train staff and scientific end users on the use of flow cytometry in their research, as well as teach them how to operate and troubleshoot the bench-top analyzer instruments Prepare and deliver lectures, as well as one-on-one training sessions, with customers/users Ensure that protocols are up

  2. Cancer research meets evolutionary biology.

    Science.gov (United States)

    Pepper, John W; Scott Findlay, C; Kassen, Rees; Spencer, Sabrina L; Maley, Carlo C

    2009-02-01

    There is increasing evidence that Darwin's theory of evolution by natural selection provides insights into the etiology and treatment of cancer. On a microscopic scale, neoplastic cells meet the conditions for evolution by Darwinian selection: cell reproduction with heritable variability that affects cell survival and replication. This suggests that, like other areas of biological and biomedical research, Darwinian theory can provide a general framework for understanding many aspects of cancer, including problems of great clinical importance. With the availability of raw molecular data increasing rapidly, this theory may provide guidance in translating data into understanding and progress. Several conceptual and analytical tools from evolutionary biology can be applied to cancer biology. Two clinical problems may benefit most from the application of Darwinian theory: neoplastic progression and acquired therapeutic resistance. The Darwinian theory of cancer has especially profound implications for drug development, both in terms of explaining past difficulties, and pointing the way toward new approaches. Because cancer involves complex evolutionary processes, research should incorporate both tractable (simplified) experimental systems, and also longitudinal observational studies of the evolutionary dynamics of cancer in laboratory animals and in human patients. Cancer biology will require new tools to control the evolution of neoplastic cells.

  3. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  4. A cell-centered approach to developmental biology

    Science.gov (United States)

    Merks, Roeland M. H.; Glazier, James A.

    2005-07-01

    Explaining embryonic development of multicellular organisms requires insight into complex interactions between genetic regulation and physical, generic mechanisms at multiple scales. As more physicists move into developmental biology, we need to be aware of the “cultural” differences between the two fields, whose concepts of “explanations” and “models” traditionally differ: biologists aiming to identify genetic pathways and expression patterns, physicists tending to look for generic underlying principles. Here we discuss how we can combine such biological and physical approaches into a cell-centered approach to developmental biology. Genetic information can only indirectly influence the morphology and physiology of multicellular organisms. DNA translates into proteins and regulatory RNA sequences, which steer the biophysical properties of cells, their response to signals from neighboring cells, and the production and properties of extracellular matrix (ECM). We argue that in many aspects of biological development, cells’ inner workings are irrelevant: what matter are the cell's biophysical properties, the signals it emits and its responses to extracellular signals. Thus we can separate questions about genetic regulation from questions about development. First, we ask what effects a gene network has on cell phenomenology, and how it operates. We then ask through which mechanisms such single-cell phenomenology directs multicellular morphogenesis and physiology. This approach treats the cell as the fundamental module of development. We discuss how this cell-centered approach-which requires significant input from computational biophysics-can assist and supplement experimental research in developmental biology. We review cell-centered approaches, focusing in particular on the Cellular Potts Model (CPM), and present the Tissue Simulation Toolkit which implements the CPM.

  5. CSMB | Center For Structural Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Structural Molecular Biologyat ORNL is dedicated to developing instrumentation and methods for determining the 3-dimensional structures of proteins,...

  6. Programmer Analyst | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Advanced Biomedical Computing Center (ABCC) provides technology development, scientific consultation, collaboration, data analysis and training to the National Cancer Institute (NCI) and National Institutes of Health (NIH) scientists and staff. The Core Infrastructure and Systems Biology (CISB) group in ABCC strives to streamline and provide innovative solutions for the NCI/NIH community to access and use biological information collected across different sources and formats. Integrating diverse data sources to enable disease agnostic access and analysis, variant impact annotation, identifier conversions across species, and merging clinical and research data enables translation from basic to the goal of precision medicine. CISB is looking for an experienced analyst to support the database and application management efforts at the NCI’s Molecular Targets Program (MTP). KEY ROLES/RESPONSIBILITIES Provide data management and analysis support Maintain scientific applications and databases on single-user personal computer through the multi-user, multi-processor large memory mainframe Communicate with the experts in the MTP, gather requirements and provide support Provide training to researchers on a variety of platforms and applications Evaluate and develop methodologies to allow utilization of new software tools and generate the information required by MTP researchers Determine methods and procedures on new assignments Document approaches and mechanisms clearly and comprehensively

  7. Review of domestic radiation biology research

    International Nuclear Information System (INIS)

    Zheng Chun; Song Lingli; Ai Zihui

    2011-01-01

    Radiation biology research in China during the past ten years are reviewed. It should be noticed that radiation-biology should focus on microdosimetry, microbeam application, and radiation biological mechanism. (authors)

  8. Current research and development at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Kuesters, H.

    1982-01-01

    The Nuclear Research Center Karlsruhe (KfK) is funded to 90% by the Federal Republic of Germany and to 10% by the State of Baden-Wuerttemberg. Since its foundation in 1956 the main objective of the Center is research and development (R and D) in the aera of the nuclear technology and about 2/3 of the research capacity is now devoted to this field. Since 1960 a major activity of KfK is R and D work for the design of fast breeder reactors, including material research, physics, and safety investigations; a prototype of 300 MWe is under construction now in the lower Rhine Valley. For enrichment of 235 U fissile material KfK developed the separation nozzle process; its technical application is realized within an international contract between the Federal Republic of Germany and Brazil. Within the frame of the European Programme on fusion technology KfK develops and tests superconducting magnets for toroidal fusion systems; a smaller activity deals with research on inertial confinement fusion. A broad research programme is carried through for safety investigations of nuclear installations, especially for PWRs; this activity is supplemented by research and development in the field of nuclear materials' safeguards. Development of fast reactors has to initiate research for the reprocessing of spent fuel and waste disposal. In the pilot plant WAK spent fuel from LKWs is reprocessed; research especially tries e.g. to improve the PUREX-process by electrochemical means, vitrification of high active waste is another main activity. First studies are being performed now to clarify the necessary development for reprocessing fast reactor fuel. About 1/3 of the research capacity of KfK deals with fundamental research in nuclear physics, solid state physics, biology and studies on the impact of technology on environment. Promising new technologies as e.g. the replacement of gasoline by hydrogen cells as vehicle propulsion are investigated. (orig.)

  9. Postdoctoral Fellows | Center for Cancer Research

    Science.gov (United States)

    The Oncogenomics section of the Genetics Branch is a multidisciplinary and interdisciplinary translational research programmatic effort with the goal of utilizing genomics to develop novel immunotherapies for cancer. Our group is applying high throughput applied genomics methods including single cell RNAseq, single cell TCR sequencing, DNA sequencing, CRISPR/Cas9, bioinformatics combined with T cell based therapeutics to identify and develop novel immunotherapeutics for human cancer. We work with other investigators within the intramural program as well as industrial and pharmaceutical partners to rapidly translate our findings to the clinic. The program takes advantage of the uniqueness of the National Cancer Institute, (NCI), Center for Cancer Research (CCR) intramural program in that it spans high-risk basic discovery research in immunology, genomics and tumor biology, through preclinical translational research, to paradigm-shifting clinical trials. The position is available immediately. The appointment duration is up to 5 years. Stipends are commensurate with education and experience. Additional information can be found on Dr. Khan’s profile page: https://ccr.cancer.gov/Genetics-Branch/javed-khan

  10. Center for Prostate Disease Research

    Science.gov (United States)

    ... 25 Years of innovative basic science and clinical research to develop promising detection techniques and treatments for prostate cancer Basic Science Research Program Two of the major activities of the ...

  11. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  12. Accelerator Center for Energy Research (ACER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Accelerator Center for Energy Research (ACER) exploits radiation chemistry techniques to study chemical reactions (and other phenomena) by subjecting samples to...

  13. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  14. The National Homeland Security Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The National Homeland Security Research Center advances our nation's security by providing scientific products and expertise to improve the ability to respond to and...

  15. Information on the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Reuter, H.H.

    1980-01-01

    A short overview is given about the origins of Karlsruhe Nuclear Research Center. The historical development of the different companies operating the Center is shown. Because the original task assigned to the Center was the construction and testing of the first German reactor exclusively built by German companies, a detailed description of this reactor and the changes made afterwards is presented. Next, today's organizational structure of the Center is outlined and the development of the Center's financing since its foundation is shown. A short overview about the structure of employees from the Center's beginning up to now is also included as well as a short description of today's main activities. (orig.)

  16. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  17. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H 2 O 2 (toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H 2 O 2 )-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H 2 O 2 (or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  18. Biological Research for Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-15

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H{sub 2}O{sub 2}(toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H{sub 2}O{sub 2})-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H{sub 2}O{sub 2}(or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells.

  19. Biological research for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by {gamma}-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by {gamma}-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate {gamma}-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by {gamma}-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  20. Center Overview and UAV Highlights at NASA Ames Research Center

    Science.gov (United States)

    Feng, Deborah; Yan, Jerry Chi Yiu

    2017-01-01

    The PowerPoint presentation gives an overview of NASA Ames Research Center and its core competencies, as well as some of the highlights of Unmanned Aerial Vehicle (UAV) and Unmanned Aircraft Systems (UAS) accomplishments and innovations by researchers at Ames.

  1. Technical guide management of waste materials with radioactive contents in biological research centers; Guia tecnica de gestion de materiales residuales con contenido radiactivo en centro de investigacion biologica

    Energy Technology Data Exchange (ETDEWEB)

    Macias, M. T.; Pulido, J.; Sastre, G.; Sanchez, A.; Usera, F.

    2013-07-01

    The guide presented offers significant improvements in the management procedures of waste materials with radioactive contents, in addition to unifying modes of action on radioactive facilities for research and teaching. The guide has been developed within the activities of the SEPR in collaboration with ENRESA. (Author)

  2. Activity report of Computing Research Center

    Energy Technology Data Exchange (ETDEWEB)

    1997-07-01

    On April 1997, National Laboratory for High Energy Physics (KEK), Institute of Nuclear Study, University of Tokyo (INS), and Meson Science Laboratory, Faculty of Science, University of Tokyo began to work newly as High Energy Accelerator Research Organization after reconstructing and converting their systems, under aiming at further development of a wide field of accelerator science using a high energy accelerator. In this Research Organization, Applied Research Laboratory is composed of four Centers to execute assistance of research actions common to one of the Research Organization and their relating research and development (R and D) by integrating the present four centers and their relating sections in Tanashi. What is expected for the assistance of research actions is not only its general assistance but also its preparation and R and D of a system required for promotion and future plan of the research. Computer technology is essential to development of the research and can communize for various researches in the Research Organization. On response to such expectation, new Computing Research Center is required for promoting its duty by coworking and cooperating with every researchers at a range from R and D on data analysis of various experiments to computation physics acting under driving powerful computer capacity such as supercomputer and so forth. Here were described on report of works and present state of Data Processing Center of KEK at the first chapter and of the computer room of INS at the second chapter and on future problems for the Computing Research Center. (G.K.)

  3. Center for Computing Research Summer Research Proceedings 2015.

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Andrew Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-18

    The Center for Computing Research (CCR) at Sandia National Laboratories organizes a summer student program each summer, in coordination with the Computer Science Research Institute (CSRI) and Cyber Engineering Research Institute (CERI).

  4. Evolution-centered teaching of biology.

    Science.gov (United States)

    Burke da Silva, Karen

    2012-01-01

    University teaching remains an area of concern, and perhaps the most difficult discipline for both teaching and learning is evolution. The concepts that underpin evolution, although complex, have been shown to be fairly straightforward, yet students arrive at and leave university with serious misconceptions, misunderstandings related to language, and often a reluctance to learn the subject because of cultural or societal pressures. Because of the unifying power of the theory, however, it is necessary not only for biology students to have a thorough understanding of evolution, but also for them to learn it in their first year so that this knowledge can then be taken into further years of study. Rather than teaching evolution at the end of a degree program, embedding it as a semester-long first-year course will ensure that a far larger number of students are made aware of misconceptions that they have brought with them from high school. Teaching through traditional passive lectures makes learning difficult conceptual material more difficult, and needs to be replaced with more interactive lectures coupled with inquiry-based practicals and small group-learning sessions to increase student engagement and interest in the subject. A new approach in pedagogy, curriculum design, and academic staff professional development is essential, especially at this time, when enrollments across science courses in many countries around the world are in decline.

  5. Structural Biology and Molecular Applications Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.

  6. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  7. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D.B.

    2002-02-28

    The Environmental Sciences Division at Oak Ridge National Laboratory has established a Field Research Center (FRC) to support the Natural and Accelerated Bioremediation Research (NABIR) Program on the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee for the DOE Headquarters Office of Biological and Environmental Research within the Office of Science.

  8. THE CENTER FOR MILITARY BIOMECHANICS RESEARCH

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Military Biomechanics Research is a 7,500 ft2 dedicated laboratory outfitted with state-of-the-art equipment for 3-D analysis of movement, measurement...

  9. Center for Drug Evaluation and Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Drug Evaluation and Research(CDER) performs an essential public health task by making sure that safe and effective drugs are available to improve the...

  10. National Center on Sleep Disorders Research

    Science.gov (United States)

    ... Resources Register for Updates The National Center on Sleep Disorders Research (NCSDR) Located within the National Heart, Lung, ... 60 percent have a chronic disorder. Each year, sleep disorders, sleep deprivation, and sleepiness add an estimated $15. ...

  11. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  12. Research Centers: Ecstasies & Agonies [in HRD].

    Science.gov (United States)

    1995

    These four papers are from a symposium facilitated by Gene Roth on research centers at the 1995 Academy of Human Resource Development (HRD) conference. "Research: The Thin Blue Line between Rigor and Reality" (Michael Leimbach) discusses the need for HRD research to increase its speed and rigor and help organizations focus on capability…

  13. Interdisciplinary research center devoted to molecular environmental science opens

    Science.gov (United States)

    Vaughan, David J.

    In October, a new research center opened at the University of Manchester in the United Kingdom. The center is the product of over a decade of ground-breaking interdisciplinary research in the Earth and related biological and chemical sciences at the university The center also responds to the British governments policy of investing in research infrastructure at key universities.The Williamson Research Centre, the first of its kind in Britain and among the first worldwide, is devoted to the emerging field of molecular environmental science. This field also aims to bring about a revolution in understanding of our environment. Though it may be a less violent revolution than some, perhaps, its potential is high for developments that could affect us all.

  14. Research Universities in Developing Countries: Centers or ...

    African Journals Online (AJOL)

    As one of the key elements in the globalization of science, the research university is at the center of science, scholarship, and the new knowledge economies. The research university educates the new generation of personnel needed for technological and intellectual leadership, develops new knowledge so necessary for ...

  15. The biology of Phytophthora infestans at its center of origin

    NARCIS (Netherlands)

    Grünwald, N.J.; Flier, W.G.

    2005-01-01

    The central highlands of Mexico are considered to be a center of genetic diversity for both the potato late blight pathogen and for tuber-bearing Solanum spp. Recent work conducted in Mexico and South America sheds new light on the biology and evolution of Phytophthora infestans and other related

  16. NASA Propulsion Engineering Research Center, volume 2

    Science.gov (United States)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  17. The poison center role in biological and chemical terrorism.

    Science.gov (United States)

    Krenzelok, E P; Allswede, M P; Mrvos, R

    2000-10-01

    Nuclear, biological and chemical (NBC) terrorism countermeasures are a major priority with municipalities, healthcare providers, and the federal government. Significant resources are being invested to enhance civilian domestic preparedness by conducting education at every response level in anticipation of a NBC terroristic incident. The key to a successful response, in addition to education, is integration of efforts as well as thorough communication and understanding the role that each agency would play in an actual or impending NBC incident. In anticipation of a NBC event, a regional counter-terrorism task force was established to identify resources, establish responsibilities and coordinate the response to NBC terrorism. Members of the task force included first responders, hazmat, law enforcement (local, regional, national), government officials, the health department, and the regional poison information center. Response protocols were developed and education was conducted, culminating in all members of the response task force becoming certified NBC instructors. The poison center participated actively in 3 incidents of suspected biologic and chemical terrorism: an alleged anthrax-contaminated letter sent to a women's health clinic; a possible sarin gas release in a high school: and a potential anthrax/ebola contamination incident at an international airport. All incidents were determined hoaxes. The regional response plan establishes the poison information center as a common repository for all cases in a biological or chemical incident. The poison center is one of several critical components of a regional counterterrorism response force. It can conduct active and passive toxicosurveillance and identify sentinel events. To be responsive, the poison center staff must be knowledgeable about biological and chemical agents. The development of basic protocols and a standardized staff education program is essential. The use of the RaPiD-T (R-recognition, P

  18. CCR Interns | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Interns (CRI) Summer Program was inaugurated in 2004 to provide an open door for students looking for an initial training opportunity. The goal is to enhance diversity within the CCR (Center for Cancer Research) training program and we have placed 338 students from 2004 to 2017, in labs and branches across the division.  The CCR and the Center for Cancer Training’s Office of Training and Education provide stipend support, some Service & Supply funds, and travel support for those students who meet the financial eligibility criteria (

  19. Statistics for Sleep and Biological Rhythms Research.

    Science.gov (United States)

    Klerman, Elizabeth B; Wang, Wei; Phillips, Andrew J K; Bianchi, Matt T

    2017-02-01

    This article is part of a Journal of Biological Rhythms series exploring analysis and statistical topics relevant to researchers in biological rhythms and sleep research. The goal is to provide an overview of the most common issues that arise in the analysis and interpretation of data in these fields. In this article, we address issues related to the collection of multiple data points from the same organism or system at different times, since such longitudinal data collection is fundamental to the assessment of biological rhythms. Rhythmic longitudinal data require additional specific statistical considerations, ranging from curve fitting to threshold definitions to accounting for correlation structure. We discuss statistical analyses of longitudinal data including issues of correlational structure and stationarity, markers of biological rhythms, demasking of biological rhythms, and determining phase, waveform, and amplitude of biological rhythms.

  20. Biological Dual-Use Research and Synthetic Biology of Yeast.

    Science.gov (United States)

    Cirigliano, Angela; Cenciarelli, Orlando; Malizia, Andrea; Bellecci, Carlo; Gaudio, Pasquale; Lioj, Michele; Rinaldi, Teresa

    2017-04-01

    In recent years, the publication of the studies on the transmissibility in mammals of the H5N1 influenza virus and synthetic genomes has triggered heated and concerned debate within the community of scientists on biological dual-use research; these papers have raised the awareness that, in some cases, fundamental research could be directed to harmful experiments, with the purpose of developing a weapon that could be used by a bioterrorist. Here is presented an overview regarding the dual-use concept and its related international agreements which underlines the work of the Australia Group (AG) Export Control Regime. It is hoped that the principles and activities of the AG, that focuses on export control of chemical and biological dual-use materials, will spread and become well known to academic researchers in different countries, as they exchange biological materials (i.e. plasmids, strains, antibodies, nucleic acids) and scientific papers. To this extent, and with the aim of drawing the attention of the scientific community that works with yeast to the so called Dual-Use Research of Concern, this article reports case studies on biological dual-use research and discusses a synthetic biology applied to the yeast Saccharomyces cerevisiae, namely the construction of the first eukaryotic synthetic chromosome of yeast and the use of yeast cells as a factory to produce opiates. Since this organism is considered harmless and is not included in any list of biological agents, yeast researchers should take simple actions in the future to avoid the sharing of strains and advanced technology with suspicious individuals.

  1. Radioisotopes and ionizing radiations in biological research

    International Nuclear Information System (INIS)

    1984-01-01

    This book deals with the use of radioisotopes and ionizing radiations in the various aspects of biological research. The following topics were presented: labelled compounds; conformation-function relationships of hormonal polypeptides and their spectroscopic study; neutron scattering and neutron diffraction for biological studies; high resolution autoradiography; radioimmunoassay; nuclear medicine; transfer of excitation energy in photosynthesis; radioagronomy; radiation preservation of food [fr

  2. Administrative Assistant | Center for Cancer Research

    Science.gov (United States)

    An administrative assistant position is available immediately in the Laboratory of Genome Integrity (LGI) within the Center for Cancer Research (CCR) in the National Cancer Institute (NCI). The LGI is actively looking for someone with administrative skills who will facilitate personnel, travel and related demands that support the laboratory chief, all principal investigators and postdoctoral fellows and laboratory support staff. 

  3. Quebec Research Center on Sustainable Energy (QRCSE)

    International Nuclear Information System (INIS)

    Guay, D.

    2006-01-01

    This paper describes the Quebec Research Center on Sustainable Energy. The Quebec Fuel Cells and Hydrogen Network was established in 2001. It consists of a number academic institutions with academic staff and students. It has established programs in fuel cells, hydrogen production and storage as well as batteries and super capacitors

  4. The Strategic Electrochemical Research Center in Denmark

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels

    2011-01-01

    A 6-year strategic electrochemistry research center (SERC) in fundamental and applied aspects of electrochemical cells with a main emphasis on solid oxide cells was started in Denmark on January 1st, 2007 in cooperation with other Danish and Swedish Universities. Furthermore, 8 Danish companies...

  5. Lewis Research Center R and D Facilities

    Science.gov (United States)

    1991-01-01

    The NASA Lewis Research Center (LeRC) defines and develops advanced technology for high priority national needs. The work of the Center is directed toward new propulsion, power, and communications technologies for application to aeronautics and space, so that U.S. leadership in these areas is ensured. The end product is knowledge, usually in a report, that is made fully available to potential users--the aircraft engine industry, the energy industry, the automotive industry, the space industry, and other NASA centers. In addition to offices and laboratories for almost every kind of physical research in such fields as fluid mechanics, physics, materials, fuels, combustion, thermodynamics, lubrication, heat transfer, and electronics, LeRC has a variety of engineering test cells for experiments with components such as compressors, pumps, conductors, turbines, nozzles, and controls. A number of large facilities can simulate the operating environment for a complete system: altitude chambers for aircraft engines; large supersonic wind tunnels for advanced airframes and propulsion systems; space simulation chambers for electric rockets or spacecraft; and a 420-foot-deep zero-gravity facility for microgravity experiments. Some problems are amenable to detection and solution only in the complete system and at essentially full scale. By combining basic research in pertinent disciplines and generic technologies with applied research on components and complete systems, LeRC has become one of the most productive centers in its field in the world. This brochure describes a number of the facilities that provide LeRC with its exceptional capabilities.

  6. CCR Interns | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Interns (CRI) Summer Program was inaugurated in 2004 to increase the diversity of trainee applicants to the Center for Cancer Research (CCR). We have placed 339 students from 2004 to 2017, in labs and branches across the CCR. The Division provides the training dollars, some Service & Supply funds, and travel support for those students who meet the financial eligibility criteria (View and/or print the 2018 flier).

  7. A National Coordinating Center for Trauma Research

    Science.gov (United States)

    2017-10-01

    Biomedical Research Informatics Computation System (BRICS) to meet the functional needs of the NTRR. BRICS is a NIH-developed, disease agnostic, web... thyroid gland, major arteries and veins Create serial iterations of the models and molds to complete engineering 10-12 60% Research materials for...National Institutes of Health (NIH) roundtables, Centers for Disease Control meetings, and others.1–3 In 2015, the NIH and American College of Surgeons (ACS

  8. Postdoctoral Fellow | Center for Cancer Research

    Science.gov (United States)

    A postdoctoral fellowship is currently available for productive, highly-motivated, and energetic individuals in the Inflammation and Tumorigenesis Section of Dr. Yinling Hu at the NCI-Frederick campus.  A dynamic research environment and outstanding resources are available for enthusiastic individuals.  Requirements include a Ph.D., M.D., or equivalent degree and experience in Immunology, Molecular Biology, and/or Signaling Research. Candidate must have excellent verbal, written communication and organizational skills, and the ability to handle multiple projects simultaneously. The project will be to investigate mechanisms of IKK/NF-B-involved auto-immunity, infection, innate immunity in mouse models of carcinogenesis/cancer biology, tumor initiating cells, and lymphoid organ development.

  9. Proceedings of RIKEN BNL Research Center Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Samios, Nicholas P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-01-24

    The twelfth evaluation of the RIKEN BNL Research Center (RBRC) took place on November 6 – 8, 2012 at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC), present at the meeting, were: Prof. Wit Busza, Prof. Miklos Gyulassy, Prof. Kenichi Imai, Prof. Richard Milner (Chair), Prof. Alfred Mueller, Prof. Charles Young Prescott, and Prof. Akira Ukawa. We are pleased that Dr. Hideto En’yo, the Director of the Nishina Institute of RIKEN, Japan, participated in this meeting both in informing the committee of the activities of the RIKEN Nishina Center for Accelerator- Based Science and the role of RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation: theoretical, experimental and computational physics. In addition, the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN management on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  10. Data Curation Education in Research Centers (DCERC)

    Science.gov (United States)

    Marlino, M. R.; Mayernik, M. S.; Kelly, K.; Allard, S.; Tenopir, C.; Palmer, C.; Varvel, V. E., Jr.

    2012-12-01

    Digital data both enable and constrain scientific research. Scientists are enabled by digital data to develop new research methods, utilize new data sources, and investigate new topics, but they also face new data collection, management, and preservation burdens. The current data workforce consists primarily of scientists who receive little formal training in data management and data managers who are typically educated through on-the-job training. The Data Curation Education in Research Centers (DCERC) program is investigating a new model for educating data professionals to contribute to scientific research. DCERC is a collaboration between the University of Illinois at Urbana-Champaign Graduate School of Library and Information Science, the University of Tennessee School of Information Sciences, and the National Center for Atmospheric Research. The program is organized around a foundations course in data curation and provides field experiences in research and data centers for both master's and doctoral students. This presentation will outline the aims and the structure of the DCERC program and discuss results and lessons learned from the first set of summer internships in 2012. Four masters students participated and worked with both data mentors and science mentors, gaining first hand experiences in the issues, methods, and challenges of scientific data curation. They engaged in a diverse set of topics, including climate model metadata, observational data management workflows, and data cleaning, documentation, and ingest processes within a data archive. The students learned current data management practices and challenges while developing expertise and conducting research. They also made important contributions to NCAR data and science teams by evaluating data management workflows and processes, preparing data sets to be archived, and developing recommendations for particular data management activities. The master's student interns will return in summer of 2013

  11. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  12. Summer Research Internships at Biosphere 2 Center

    Science.gov (United States)

    1998-01-01

    Through the support of NASA's Mission to Planet Earth, Biosphere 2 Center hosted 10 research interns for a 10 week period during the summer of 1998. In addition, we were able to offer scholarships to 10 students for Columbia University summer field courses. Students participating in these programs were involved in numerous earth systems activities, collecting data in the field and conducting analyses in the laboratory. Students enrolled in the field program were expected to design independent research projects as part of their coursework. In addition to laboratory and field research, students participated in weekly research seminars by resident and visiting scientists. Field school students were involved in field trips exposing them to the geology and ecology of the region including Arizona Sonora Desert Museum, Mount Lemmon, Aravaipa Canyon and the Gulf of California. Interns participated in laboratory-based research. All students were expected to complete oral and written presentations of their work during the summer.

  13. Biology Education Research Trends in Turkey

    Science.gov (United States)

    Gul, Seyda; Sozbilir, Mustafa

    2015-01-01

    This paper reports on a content analysis of 633 biology education research [BER] papers published by Turkish science educators in national and international journals. The findings indicate that more research has been undertaken in environment and ecology, the cell and animal form and functions. In addition learning, teaching and attitudes were in…

  14. South African antarctic biological research programme

    CSIR Research Space (South Africa)

    SASCAR

    1981-07-01

    Full Text Available This document provides a description of the past, current and planned South African biological research activities in the sub-Antarctic and Antarctic regions. Future activities will fall under one of the five components of the research programme...

  15. Molecular Science Research Center 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  16. RCOP: Research Center for Optical Physics

    Science.gov (United States)

    Tabibi, Bagher M. (Principal Investigator)

    1996-01-01

    During the five years since its inception, Research Center for Optical Physics (RCOP) has excelled in the goals stated in the original proposal: 1) training of the scientists and engineers needed for the twenty-first century with special emphasis on underrepresented citizens and 2) research and technological development in areas of relevance to NASA. In the category of research training, there have been 16 Bachelors degrees and 9 Masters degrees awarded to African American students working in RCOP during the last five years. RCOP has also provided research experience to undergraduate and high school students through a number of outreach programs held during the summer and the academic year. RCOP has also been instrumental in the development of the Ph.D. program in physics which is in its fourth year at Hampton. There are currently over 40 graduate students in the program and 9 African American graduate students, working in RCOP, that have satisfied all of the requirements for Ph.D. candidancy and are working on their dissertation research. At least three of these students will be awarded their doctoral degrees during 1997. RCOP has also excelled in research and technological development. During the first five years of existence, RCOP researchers have generated well over $3 M in research funding that directly supports the Center. Close ties with NASA Langley and NASA Lewis have been established, and collaborations with NASA scientists, URC's and other universities as well as with industry have been developed. This success is evidenced by the rate of publishing research results in refereed journals, which now exceeds that of the goals in the original proposal (approx. 2 publications per faculty per year). Also, two patents have been awarded to RCOP scientists.

  17. Senior Clinician | Center for Cancer Research

    Science.gov (United States)

    The Center for Cancer Research (CCR), NCI, NIH, HHS is seeking to fill several Senior Clinician positions with outstanding oncologists with research experience and expertise in one of the following areas:  1) genitourinary malignancies, 2) thoracic malignancies; 3) gastrointestinal malignancies; 4) lymphomas; 5) pediatric cancers; or 6) genetic tumor predisposition syndromes. These positions are located at the NIH campus in Bethesda, Maryland. The NIH Clinical Center is the world’s largest research hospital which offers state-of-the-art facilities, collaborative opportunities, and core facilities for advanced technologies.  The Senior Clinician will have available resources including funding for clinical trials, nurse practitioners, research nurses, and patient care coordinators.  In addition, the senior clinician will have access to a robust clinical trials infrastructure including data management, training, protocol support office, regulatory support, information systems and technology, and data safety monitoring.  The CCR’s collaborative culture also offers research staff access to a wide array of intellectual and technological assets, including high-quality technology cores dedicated to pharmacokinetics/pharmacodynamics, protein chemistry, natural products chemistry, biophysics, mass spectrometry, imaging, microscopy, proteomics and genomics, bioinformatics/biostatistics, and flow cytometry.  For an overview of CCR, please visit http://ccr.cancer.gov/.  For more information contact Lori Holliday at hollidal@mail.nih.gov.

  18. Protocol Coordinator | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the consid erable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  19. Postdoctoral Fellow | Center for Cancer Research

    Science.gov (United States)

    Highly motivated postdoctoral fellows sought to work on tumor immunology with a strong background in biology preferentially cellular immunology. The tumor immunology group in the laboratory is exploring mechanisms of improving vaccines and immunotherapy for cancer, especially by discovering new principles to enhance and steer T cell immune responses. The group is focusing on negative immunoregulatory mechanisms used for immune evasion by cancer cells. The postdoctoral fellow will work on a project to understand the negative regulatory mechanisms of tumor immunity especially the mechanisms initiated by NKT cells. Group members also have an opportunity to gain knowledge of HIV/mucosal immunology by interacting with the HIV research group in the lab.

  20. CSBB: synthetic biology research at Newcastle University

    Science.gov (United States)

    Wipat, Anil; Krasnogor, Natalio

    2017-01-01

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties — Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. PMID:28620039

  1. CSBB: synthetic biology research at Newcastle University.

    Science.gov (United States)

    Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio

    2017-06-15

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).

  2. Atomic, Nuclear and Molecular Research Center CICANUM

    International Nuclear Information System (INIS)

    Loria Meneses, Luis Guillermo

    2011-01-01

    CICANUM has a Gamma Spectroscopy Laboratory, has been the laboratory official, appointed by the Ministerio de Agricultura in Costa Rica to analyze export products (for human consumption and animal), also, to determine radioactive contamination. The Laboratory has four systems using germanium detectors and canberra technology, including software Genie 2000 to establish the activity of cesium, iodine and natural gamma emitters in solid or liquid samples for food products, sediments and rocks. This Laboratory belongs to the Universidad de Costa Rica which has different institutes and research centers

  3. Electron Microscopist/Structural Biologist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives. The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR). The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and genetics. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR). CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES/RESPONSIBILITIES - THIS POSITION IS CONTINGENT UPON FUNDING APPROVAL Develop technologies for application on emerging electron microscopy platforms. Operate and optimize performance of TEM microscopes, specifically Titan Krios and Talos Artctica for high-resolution data collection in single particle studies as well as cryo-electron tomography. Assist with maintenance for the Titan Krios and the Talos Arctica as well as associated instruments. Interact closely with and transfer newly developed technical capabilities to CCR Center for Molecular Microscopy (CMM) and CCR collaborators.

  4. Physician Assistant | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  5. Molecular Science Research Center annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  6. Nuclear Criticality Experimental Research Center (NCERC) Overview

    Energy Technology Data Exchange (ETDEWEB)

    Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes, David Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activities that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.

  7. MedAustron - Ion-Beam Therapy and Research Center

    International Nuclear Information System (INIS)

    Schreiner, Thomas; Seemann, Rolf

    2015-01-01

    MedAustron is a synchrotron-based light-ion beam therapy center for cancer treatment as well as for clinical and non-clinical research, currently in the commissioning phase in Wiener Neustadt, Austria. Recently, the first proton beam was transported successfully to one of the four irradiation rooms. Whilst the choice of basic machine parameters was driven by medical requirements, i.e. 60 MeV protons and 120 MeV/A to 400 MeV/A carbon ions, the accelerator complex design was also optimized to offer flexibility for research operation. The potential of the synchrotron is being exploited to increase the maximum proton energy far beyond the medical needs to up to 800 MeV, for experimental physics applications, mainly in the areas of proton scattering and detector research. The accelerator layout allows for the installation of up to four ion source-spectrometer units, to provide various ion types besides the clinical used protons and carbon ions. Besides experimental physics, the two main non-clinical research disciplines are medical radiation physics and radiation biology. To decouple research and medical operation, a dedicated irradiation room for non-clinical research was included providing the installation of different experiments. In addition, several labs have been equipped with appropriate devices for preparing and analyzing radio-biological samples. This presentation gives a status overview over the whole project and highlights the non-clinical research opportunities at MedAustron. (Author)

  8. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  9. Advances in nicotine research in Addiction Biology.

    Science.gov (United States)

    Bernardi, Rick E

    2015-09-01

    The aim of Addiction Biology is to advance our understanding of the action of drugs of abuse and addictive processes via the publication of high-impact clinical and pre-clinical findings resulting from behavioral, molecular, genetic, biochemical, neurobiological and pharmacological research. As of 2013, Addiction Biology is ranked number 1 in the category of Substance Abuse journals (SCI). Occasionally, Addiction Biology likes to highlight via review important findings focused on a particular topic and recently published in the journal. The current review summarizes a number of key publications from Addiction Biology that have contributed to the current knowledge of nicotine research, comprising a wide spectrum of approaches, both clinical and pre-clinical, at the cellular, molecular, systems and behavioral levels. A number of findings from human studies have identified, using imaging techniques, alterations in common brain circuits, as well as morphological and network activity changes, associated with tobacco use. Furthermore, both clinical and pre-clinical studies have characterized a number of mechanistic targets critical to understanding the effects of nicotine and tobacco addiction. Together, these findings will undoubtedly drive future studies examining the dramatic impact of tobacco use and the development of treatments to counter nicotine dependence. © 2015 Society for the Study of Addiction.

  10. Patient Care Coordinator | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  11. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  12. Johnson Space Center Research and Technology Report

    Science.gov (United States)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  13. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  14. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  15. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  16. Developmental Scientist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  17. Together with Research Centers and Universities

    Directory of Open Access Journals (Sweden)

    Nuno Domingos Garrido

    2016-10-01

    Full Text Available The Journal Motricidade has always been walking in parallel with the scientific communities. We found that the affiliation of most authors has, nearly always, a University (Uni or a Research Center (RC. In fact it is almost impossible to conduct research outside these two universes. In this sense, Uni and RC feed the most, if not all, of scientific journals worldwide. By this I mean that is in the interest of Motricidade to be associated with high-quality RC and Uni equally recognized. With regard to RC, Motricidade will publish this year a supplement of the International Congress of Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD. This RC has conducted research in a variety of areas within the Sport Sciences and Health and always with high recognition and associated publications. It was not by chance that this RC was evaluated with ‘very good’ by the Portuguese Foundation for Science and Technology (FCT panel and has been granted funding. This Congress, which takes place every two years, targets to converge research and high level practices within these three areas: Sports, Health and Human Development. The 2016 CIDESD edition is dedicated to "Exercise and Health, Sports and Human Development" and will be held at the University of Évora, between 11 and 12 November of 2016. The readers can check the program in the following link http://gdoc.uevora.pt/450120 and get more information in the Congress Site available at http://www.cidesd2016.uevora.pt/. With regard to Uni, Motricidade signed a cooperation protocol with the University of Beira Interior (UBI in May of 2016, involving the development and dissemination of scientific knowledge in Sports Sciences, Psychology, Human Development and Health. At the present, UBI hosts more than 6,000 students spread across five faculties - Arts & Letters, Sciences, Health Sciences, Humanities and Social Sciences and Engineering. When looking at the rankings, for instance

  18. Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center

    Science.gov (United States)

    Blevins, John; Rodgers, Stephen

    2003-01-01

    The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.

  19. Genomics:GTL Bioenergy Research Centers White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

    2006-08-01

    In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new

  20. Onchocerciasis control: biological research is still needed

    Directory of Open Access Journals (Sweden)

    Boussinesq M.

    2008-09-01

    Full Text Available Achievements obtained by the onchocerciasis control programmes should not lead to a relaxation in the biological research on Onchocerca volvulus. Issues such as the Loa loa-related postivermectin serious adverse events, the uncertainties as to whether onchocerciasis can be eliminated by ivermectin treatments, and the possible emergence of ivermectin-resistant O. volvulus populations should be addressed proactively. Doxycycline, moxidectin and emodepside appear to be promising as alternative drugs against onchocerciasis but support to researches in immunology and genomics should also be increased to develop new control tools, including both vaccines and macrofilaricidal drugs.

  1. Structure and Development of Centers for Nursing Research.

    Science.gov (United States)

    Grey, Margaret

    2002-01-01

    Nursing research centers help strengthen faculty research capability, improve research education, and facilitate collaborations and use of resources. The director plays a pivotal role in securing funding, nurturing new researchers, and overseeing ethical behavior in human subjects research. (SK)

  2. Overview of Stirling Technology Research at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  3. Center for Ecotoxicological Research of Montenegro

    International Nuclear Information System (INIS)

    Vucinic, Z.

    2006-01-01

    PI Center for Ecotoxicological Research of Montenegro (CETI) is founded 1996's in accordance with Government policy, for the purpose to: Unite the problems of protecting the environment in one institution, Organize the monitoring of the all segments of environment (air, waters soils, waste, ionizing and non-ionizing radiation, noise measurements etc.), Organize control of human and animal food and toxicological analysis of all kind of samples, forensic analyses etc. To concentrate the expensive instrumental equipment and human resources in one institution. December 1996 - CETI founded by decision of Montenegrin government 1997-CETI starting with acquisition of equipment and education of the staff March of 1998 - Officially starting with the job and realization with Program's September 2004 - Took the ISO 9001:2000 Certificate and Accreditation under ISO/IEC 17025 in November 2004 Organisation Scheme of CETI: Laboratory For Ecotoxicological Research And Radiation Protection I. Department For Laboratory Diagnostic And Monitoring II. Department For Radiation Protection And Monitoring Sector For Administration Department For Economy Department For Administration Total number of Employs is 63 of permanent staff

  4. Biological effectiveness of neutrons: Research needs

    Energy Technology Data Exchange (ETDEWEB)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  5. Biological effectiveness of neutrons: Research needs

    International Nuclear Information System (INIS)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy

  6. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  7. Gordon Research Conference on Mammary Gland Biology

    International Nuclear Information System (INIS)

    1989-01-01

    The 1989 conference was the tenth in the series of biennial Gordon Research Conferences on Mammary Gland Biology. Traditionally this conference brings together scientists from diverse backgrounds and experience but with a common interest in the biology of the mammary gland. Investigators from agricultural and medical schools, biochemists, cell and molecular biologists, endocrinologists, immunologists, and representatives from the emerging biotechnology industries met to discuss current concepts and results on the function and regulation of the normal and neoplastic mammary gland in a variety of species. Of the participants, approximately three-fourths were engaged in studying the normal mammary gland function, whereas the other quarter were engaged in studying the neoplastic gland. The interactions between scientists, clinicians, veterinarians examining both normal and neoplastic cell function serves to foster the multi-disciplinary goals of the conference and has stimulated many cooperative projects among participants in previous years

  8. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused on the design, generation, characterization and application of genetically engineered and biological animal models of human disease, which are aimed at the development of targeted diagnostics and therapies. LASP contributes to advancing human health, developing new treatments, and improving existing treatments for cancer and other diseases while ensuring safe and humane treatment of animals. KEY ROLES/RESPONSIBILITIES The Senior Laboratory Animal Technician will be responsible for: Daily tasks associated with the care, breeding and treatment of research animals for experimental purposes Management of rodent breeding colonies consisting of multiple, genetically complex strains and associated record keeping and database management Colony management procedures including: tail clipping, animal identification, weaning Data entry consistent with complex colony management Collection of routine diagnostic samples Coordinating shipment of live animals and specimens Performing rodent experimental procedures including basic necropsy and blood collection Observation and recording of physical signs of animal health Knowledge of safe working practices using chemical carcinogen and biological hazards Work schedule may include weekend and holiday hours This position is in support of the Center for Cancer Research (CCR).

  9. Artificial Intelligence Research at NASA Langley Research Center (Research in Progress)

    OpenAIRE

    Orlando, Nancy; Abbott, Kathy; Rogers, James

    1984-01-01

    Research in the field of artificial intelligence is developing rapidly at the various NASA centers, including Langley research Center in Hampton, Virginia. AI studies at Langley involve research for application in aircraft flight management, remote space teleoperators and robots, and structural optimization.

  10. Applied Physics Research at the Idaho Accelerator Center

    International Nuclear Information System (INIS)

    Date, D. S.; Hunt, A. W.; Chouffani, K.; Wells, D. P.

    2011-01-01

    The Idaho Accelerator Center, founded in 1996 and based at Idaho State University, supports research, education, and high technology economic development in the United States. The research center currently has eight electron linear accelerators ranging in energy from 6 to 44 MeV with the latter linear accelerator capable of picosecond pulses, a 2 MeV positive-ion Van de Graaff, a 4 MV Nec tandem Pelletron, and a pulsed-power 8 k A, 10 MeV electron induction accelerator. Current research emphases include, accelerator physics research, accelerator based medical isotope production, active interrogation techniques for homeland security and nuclear nonproliferation applications, non destructive testing and materials science studies in support of industry as well as the development of advanced nuclear fuels, pure and applied radio-biology, and medical physics. This talk will highlight three of these areas including the production of the isotopes 99 Tc and 67 Cu for medical diagnostics and therapy, as well as two new technologies currently under development for nuclear safeguards and homeland security - namely laser Compton scattering and the polarized photofission of actinides

  11. The National Library of Medicine's Disaster Information Management Research Center.

    Science.gov (United States)

    Phillips, Steven J

    2013-12-16

    The Disaster Information Management Research Center (DIMRC) develops and provides access to health information resources and technology for disaster preparedness, response, and recovery. DIMRC focuses on maintaining access to health information at all phases of disasters, developing innovative products and services for emergency personnel, conducting research to support disaster health information management, and collaborating with other agencies and communities. Several tools are available to help emergency responders in hazardous materials or chemical, biological, radiological, or nuclear incidents. Access to the literature is made available through PubMed and the Resource Guide for Disaster Medicine and Public Health, with links to online documents and resources from numerous organizations and government agencies. In addition, DIMRC supports the Disaster Information Specialist Program, a collaborative effort to explore and promote the role of librarians and information specialists in the provision of disaster-related information resources to the workforce and communities.

  12. Applications of NMR in biological metabolic research

    International Nuclear Information System (INIS)

    Nie Jiarui; Li Xiuqin; He Chunjian

    1989-01-01

    The nuclear magnetic resonance has become a powerful means of studying biological metabolism in non-invasive and non-destructive way. Being used to study the metabolic processes of living system in normal physiological conditions as well as in molecular level, the method is better than other conventional approaches. Using important parameters such as NMR-chemical shifts, longitudinal relaxation time and transverse relaxation time, it is possible to probe the metabolic processes as well as conformation, concentration, transportation and distribution of reacting and resulting substances. The NMR spectroscopy of 1 H, 31 P and 13 C nuclei has already been widely used in metabolic researches

  13. On-going research projects at Ankara Nuclear research center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text:The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  14. On-going research projects at Ankara Nuclear Research Center in Agriculture and Animal Science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  15. Cooperative research with CHECIR (CHErnobyl Center for International Research)

    International Nuclear Information System (INIS)

    Nagaoka, T.; Saito, K.; Sakamoto, R.; Tsutsumi, M.; Moriuchi, S.

    1994-01-01

    The Chernobyl Center for International Research (CHECIR) has been established under an agreement among IAEA. Russia, Byelorussia and Ukraine in order to implement various studies on the reactor facilities and on the environment near and around the reactor. JAERI started discussions with a view to join the idea on the research project of study on assessment and analysis of environmental consequences in contaminated area. On June, 1992, JAERI and CHECIR concluded an agreement on the Implementation of Research at the CHECIR. Under the agreement, JAERI has started 'Study on Assessment and Analysis of Environmental Radiological Consequences and Verification of an Assessment System'. This project is scheduled to last until 1996. This study consists of following two subjects. Subject-1: Study on Measurements and Evaluation of Environmental External Exposure after Nuclear Accident. Subject-2: Study on the Validation of Assessment Models in an Environmental Consequence Assessment Methodology for Nuclear Accidents. Subject-3: Study on Migration of Radionuclides Released into Rivers adjacent to the Chernobyl Nuclear Power Plant (planned to start from FY1994). In this workshop, research activity will be introduced with actually measured data. (J.P.N.)

  16. University-Based Research Centers: Characteristics, Organization, and Administrative Implications

    Science.gov (United States)

    Sa, Creso M.

    2008-01-01

    This paper examines the characteristics and organizational issues associated with university-based research centers. The first section sketches general characteristics and functions of centers. The second section examines major issues concerning the organization of centers, including funding and sustainability, center autonomy, and relations with…

  17. Data acquisition and analysis at the Structural Biology Center

    International Nuclear Information System (INIS)

    Westbrook, M.L.; Coleman, T.A.; Daly, R.T.; Pflugrath, J.W.

    1996-01-01

    The Structural Biology Center (SBC), a national user facility for macromolecular crystallography located at Argonne National Laboratory's Advanced Photon Source, is currently being built and commissioned. SBC facilities include a bending-magnet beamline, an insertion-device beamline, laboratory and office space adjacent to the beamlines, and associated instrumentation, experimental apparatus, and facilities. SBC technical facilities will support anomalous dispersion phasing experiments, data collection from microcrystals, data collection from crystals with large molecular structures and rapid data collection from multiple related crystal structures for protein engineering and drug design. The SBC Computing Systems and Software Engineering Group is tasked with developing the SBC Control System, which includes computing systems, network, and software. The emphasis of SBC Control System development has been to provide efficient and convenient beamline control, data acquisition, and data analysis for maximal facility and experimenter productivity. This paper describes the SBC Control System development, specifically data acquisition and analysis at the SBC, and the development methods used to meet this goal

  18. Center Independent Research & Developments: JPL IRAD Program

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative projects are sought in the areas of basic research, fundamental research, applied research, development and systems and other concept formulation studies....

  19. Biological and Environmental Research Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, V. [Princeton Univ., NJ (United States). Earth Science Grid Federation (ESGF); Boden, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowley, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dart, Eli [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Dattoria, Vince [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Desai, Narayan [Argonne National Lab. (ANL), Argonne, IL (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Foster, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Goldstone, Robin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gregurick, Susan [U.S. Dept. of Energy, Washington, DC (United States). Biological Systems Science Division; Houghton, John [U.S. Dept. of Energy, Washington, DC (United States). Biological and Environmental Research (BER) Program; Izaurralde, Cesar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnston, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Joseph, Renu [U.S. Dept. of Energy, Washington, DC (United States). Climate and Environmental Sciences Division; Kleese-van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Monga, Inder [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Pritchard, Matt [British Atmospheric Data Centre (BADC), Oxon (United Kingdom); Rotman, Lauren [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Strand, Gary [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Stuart, Cory [Argonne National Lab. (ANL), Argonne, IL (United States); Tatusova, Tatiana [National Inst. of Health (NIH), Bethesda, MD (United States); Tierney, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Thomas, Brian [Univ. of California, Berkeley, CA (United States); Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zurawski, Jason [Internet2, Washington, DC (United States)

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  20. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  1. Division of Biological and Medical Research annual research summary, 1983

    International Nuclear Information System (INIS)

    Barr, S.H.

    1984-08-01

    This research summary contains brief descriptions of research in the following areas: (1) mechanisms of hepatocarcinogenesis; (2) role of metals in cocarcinogenesis and the use of liposomes for metal mobilization; (3) control of mutagenesis and cell differentiation in cultured cells by tumor promoters; (4) radiation effects in mammalian cells; (5) radiation carcinogenesis and radioprotectors; (6) life shortening, tumor induction, and tissue dose for fission-neutron and gamma-ray irradiations; (7) mammalian genetics and biostatistics; (8) radiation toxicity studies; (9) hematopoiesis in chronic toxicity; (10) molecular biology studies; (11) chemical toxicology; (12) carcinogen identification and metabolism; (13) metal metabolism and toxicity; and (14) neurobehavioral chronobiology

  2. Division of Biological and Medical Research annual research summary, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barr, S.H. (ed.)

    1984-08-01

    This research summary contains brief descriptions of research in the following areas: (1) mechanisms of hepatocarcinogenesis; (2) role of metals in cocarcinogenesis and the use of liposomes for metal mobilization; (3) control of mutagenesis and cell differentiation in cultured cells by tumor promoters; (4) radiation effects in mammalian cells; (5) radiation carcinogenesis and radioprotectors; (6) life shortening, tumor induction, and tissue dose for fission-neutron and gamma-ray irradiations; (7) mammalian genetics and biostatistics; (8) radiation toxicity studies; (9) hematopoiesis in chronic toxicity; (10) molecular biology studies; (11) chemical toxicology; (12) carcinogen identification and metabolism; (13) metal metabolism and toxicity; and (14) neurobehavioral chronobiology. (ACR)

  3. University Research Centers: Heuristic Categories, Issues, and Administrative Strategies

    Science.gov (United States)

    Hall, Kelly

    2011-01-01

    University-based research centers can bring prestige and revenue to the institutions of higher education with which they are affiliated. Collaborating with corporations, units of government, and foundations, centers provide services to organizational leaders, policy makers, and communities. University research centers continue to increase in…

  4. Cellular Imaging | Center for Cancer Research

    Science.gov (United States)

    Innovative imaging methods developed and refined within CCR revealed atomic-level structures of biological molecules and unveiled dynamic views of a cell’s interior that are driving the design of new treatments and diagnostics for cancer.

  5. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  6. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  7. Fisher Center for Alzheimer's Research Foundation

    Science.gov (United States)

    ... FAQ’s Article Finder Videos About The Fisher Center Foundation Our Founders Board of Trustees Our Programs Financials Ask The Experts Article Finder News Videos Resource Locator Old Memory Wall Donate for the Cure Featured Article Fighting for ...

  8. Center Independent Research & Developments: JSC IRAD Program

    Data.gov (United States)

    National Aeronautics and Space Administration — JSC provides and applies its preeminent capabilities in science and technology to develop, operate, and integrate human exploration missions.  The center...

  9. Wave Energy Research, Testing and Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States)

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  10. Molecular biology approaches in bioadhesion research

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-07-01

    Full Text Available The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1 generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2 setting up a BLAST search facility, (3 perform an in situ hybridization screen, and (4 functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.

  11. The Learning of Biology: A Structural Basis for Future Research

    Science.gov (United States)

    Murray, Darrel L.

    1977-01-01

    This article reviews recent research studies and experiences relating the learning theories of Ausubel to biology instruction. Also some suggestions are made for future research on the learning of biology. (MR)

  12. Bastyr/UW Oncomycology Translational Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — Research Area: FungiProgram: Partnerships for CAM Clinical Translational ResearchDescription:Trametes versicolor is an immunologically active medicinal mushroom that...

  13. Physician Assistant | Center for Cancer Research

    Science.gov (United States)

    counseling within the boundaries of his/her specialty area of education and clinical preparation (pediatrics, adults, urologic, surgical, etc.). Review assigned patient resident reports and carry and answer the resident pager. Provide coverage for the post-call resident’s patients, while working closely with the Inpatient/Fellowship staff.  Support in-patient and out-patient care of subjects enrolled in experimental protocols and clinical trials. Work as a member of a multidisciplinary clinical team to provide comprehensive care to patients in a research environment. Write prescriptions. Explain the care management/discharge plan to all members of the covering team (inpatient NPs, attendings) at signout. This position is located in Bethesda, Maryland in support of the Center for Cancer Research (CCR).

  14. U.S. Department of Energy's Genomics: GTL Bioenergy Research Centers White Paper

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-08-01

    The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy’s mission and goals.

  15. DoD Information Operations Center for Research

    OpenAIRE

    2012-01-01

    This memorandum cancels Deputy Secretary of Defense Memorandum, "Information Operations Center of Excellence," dated Septembet 3, 2004, and redesignates the Naval Postgraduate's School (NPS), Information Operations (IO) Center of Excellence, as the DoD Information Operations Cetner for Research. As the DoD Information Operations Center for Research, the NPS shall provide graduate-level IO education and facilitate the exploration of new IO concepts, research, analysis, and field experimentation.

  16. University of Washington Center for Child Environmental Health Risks Research

    Data.gov (United States)

    Federal Laboratory Consortium — The theme of the University of Washington based Center for Child Environmental Health Risks Research (CHC) is understanding the biochemical, molecular and exposure...

  17. Biological research for the radiation protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Chan Kug; Shim, Hae Won; Jung, Il Lae; Byun, Hee Sun; Moon, Myung Sook; Cho, Hye Jeong; Kim, Jin Sik

    2003-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about polyamine effect on cell death triggered ionizing radiation, H 2 O 2 and toxic agents. In this paper, to elucidate the role of polyamines as mediator in lysosomal damage and stress(H 2 O 2 )- induced apoptosis, we utilized α-DiFluoroMethylOrnithine (DFMO), which inhibited ornithine decarboxylase and depleted intracellular putrescine, and investigated the effects of polyamine on the apoptosis caused by H 2 O 2 , ionizing radiation and paraquat. We also showed that MGBG, inhibitor of polyamine biosynthesis, treatment affected intracellular redox steady states, intracellular ROS levels and protein oxidation. Thereafter we also investigated whether MGBG may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation or H 2 O 2 because such compounds are able to potentiate the cell-killing effects. In addition, ceruloplasmin and thioredoxin, possible antioxidant proteins, were shown to have protective effect on radiation- or H 2 O 2 (or chemicals)-induced macromolecular damage or cell death

  18. Biological research for the radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Chan Kug; Shim, Hae Won; Jung, Il Lae; Byun, Hee Sun; Moon, Myung Sook; Cho, Hye Jeong; Kim, Jin Sik

    2003-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about polyamine effect on cell death triggered ionizing radiation, H{sub 2}O{sub 2} and toxic agents. In this paper, to elucidate the role of polyamines as mediator in lysosomal damage and stress(H{sub 2}O{sub 2})- induced apoptosis, we utilized {alpha}-DiFluoroMethylOrnithine (DFMO), which inhibited ornithine decarboxylase and depleted intracellular putrescine, and investigated the effects of polyamine on the apoptosis caused by H{sub 2}O{sub 2}, ionizing radiation and paraquat. We also showed that MGBG, inhibitor of polyamine biosynthesis, treatment affected intracellular redox steady states, intracellular ROS levels and protein oxidation. Thereafter we also investigated whether MGBG may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation or H{sub 2}O{sub 2} because such compounds are able to potentiate the cell-killing effects. In addition, ceruloplasmin and thioredoxin, possible antioxidant proteins, were shown to have protective effect on radiation- or H{sub 2}O{sub 2}(or chemicals)-induced macromolecular damage or cell death.

  19. Radiation chemistry in development and research of radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    During the establishment and development of radiation biology, radiation chemistry acts like bridge which units the spatial and temporal insight coming from radiation physics with radiation biology. The theory, model, and methodology of radiation chemistry play an important role in promoting research and development of radiation biology. Following research development of radiation biology effects towards systems radiation biology the illustration and exploration both diversity of biological responses and complex process of biological effect occurring remain to need the theory, model, and methodology come from radiation chemistry. (authors)

  20. U.S. Dairy Forage Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  1. U.S. DAIRY FORAGE RESEARCH CENTER

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  2. Transportation Research Analysis Computing Center (TRACC)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne National Laboratory initiated a multi-year program with the US Department of Transportation (USDOT) in October 2006, to establish the Transportation Research...

  3. 78 FR 63170 - Biological and Environmental Research Advisory Committee

    Science.gov (United States)

    2013-10-23

    ....-12:15 p.m. ADDRESSES: Hilton Washington DC/Rockville Hotel & Executive Meeting Center, 1750 Rockville... Biological and Environmental Grand Challenges Workshop Reports Science Talks New Business Public Comment...

  4. Establishing a national research center on day care

    DEFF Research Database (Denmark)

    Ellegaard, Tomas

    The paper presents and discusses the current formation of a national research center on ECEC. The center is currently being established. It is partly funded by the Danish union of early childhood and youth educators. It is based on cooperation between a number of Danish universities...... and this national union. The paper discusses some of the political issues that underpins the center and its research program. The center aims at putting teacher practices and participation in the forefront. In some ways, it marks the converging aims of practitioners and critical researchers especially against...

  5. 78 FR 6087 - Biological and Environmental Research Advisory Committee

    Science.gov (United States)

    2013-01-29

    ... Biological and Environmental Research Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Biological and.... Department of Energy, Office of Science, Office of Biological and Environmental Research, SC-23/Germantown...

  6. 77 FR 4028 - Biological and Environmental Research Advisory Committee

    Science.gov (United States)

    2012-01-26

    ... Biological and Environmental Research Advisory Committee AGENCY: Department of Energy; Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Biological and... of Biological and Environmental Research, SC-23/Germantown Building, 1000 Independence Avenue SW...

  7. Annual report of the Management Research Center

    International Nuclear Information System (INIS)

    1987-01-01

    Research on the management of new forms of automation; industrial management; the definition of a new product range; economic management; personnel management; and management of cultural enterprises is presented [fr

  8. The HPV Vaccine | Center for Cancer Research

    Science.gov (United States)

    Two researchers leveraged CCR’s unique environment of investigator-driven inquiry to pursue studies of two cancer-causing genes that eventually led to the development of a vaccine against two forms of human papillomavirus.

  9. Center for Cold Spray Research and Development

    Data.gov (United States)

    Federal Laboratory Consortium — This is the only DoD facility capable of cold spray research and development, production, and field-repair. It features three stationary cold spray systems used for...

  10. Team Members | Center for Cancer Research

    Science.gov (United States)

    Our Team Members The Foregut Team includes experts in the diagnosis and treatment of the diseases listed below. Our clinical experience and active research offers patients the highest quality care in the setting of groundbreaking clinical trials.

  11. Breast Cancer Translational Research Center of Excellence

    Science.gov (United States)

    2015-09-01

    Craig D. Shriver CONTRACTING ORGANIZATION: HENRY M. JACKSON FOUNDATION Bethesda, MD 20817 REPORT DATE: Sept 2015 TYPE OF REPORT: Final Addendum...S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER The Henry M. Jackson Foundation for the Advancement of Military, Inc. 6720A Rockledge...Bronfman,Eileen T Administrative Director 26% Weiss,Raymond B Physician 44% Rigatti, Michael Kevin Research Assistant 7% Smith,Stephanie R Research

  12. The National Center for Atmospheric Research (NCAR) Research Data Archive: a Data Education Center

    Science.gov (United States)

    Peng, G. S.; Schuster, D.

    2015-12-01

    The National Center for Atmospheric Research (NCAR) Research Data Archive (RDA), rda.ucar.edu, is not just another data center or data archive. It is a data education center. We not only serve data, we TEACH data. Weather and climate data is the original "Big Data" dataset and lessons learned while playing with weather data are applicable to a wide range of data investigations. Erroneous data assumptions are the Achilles heel of Big Data. It doesn't matter how much data you crunch if the data is not what you think it is. Each dataset archived at the RDA is assigned to a data specialist (DS) who curates the data. If a user has a question not answered in the dataset information web pages, they can call or email a skilled DS for further clarification. The RDA's diverse staff—with academic training in meteorology, oceanography, engineering (electrical, civil, ocean and database), mathematics, physics, chemistry and information science—means we likely have someone who "speaks your language." Data discovery is another difficult Big Data problem; one can only solve problems with data if one can find the right data. Metadata, both machine and human-generated, underpin the RDA data search tools. Users can quickly find datasets by name or dataset ID number. They can also perform a faceted search that successively narrows the options by user requirements or simply kick off an indexed search with a few words. Weather data formats can be difficult to read for non-expert users; it's usually packed in binary formats requiring specialized software and parameter names use specialized vocabularies. DSs create detailed information pages for each dataset and maintain lists of helpful software, documentation and links of information around the web. We further grow the level of sophistication of the users with tips, tutorials and data stories on the RDA Blog, http://ncarrda.blogspot.com/. How-to video tutorials are also posted on the NCAR Computational and Information Systems

  13. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    Science.gov (United States)

    Campbell, A. Malcolm; Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The "Vision and Change" report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area…

  14. NHRC (Naval Health Research Center) Report 1984.

    Science.gov (United States)

    1984-01-01

    34 LCDR Frederic D. Glogower, MSC, USN, Clinical Psychologist Environmental Medicine Department 15 May 8th Annual Ardle Lubin Memorial Lecture "Sustained...during Navy Basic Training" Sixth Meeting of NATO, Panel VIII, Research Study Group 4: Physical Fitness with Special Reference to Military Forces

  15. Animal Resource Program | Center for Cancer Research

    Science.gov (United States)

    CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Manager:

  16. Proton Therapy Research and Treatment Center

    Energy Technology Data Exchange (ETDEWEB)

    Goodnight, J.E. Jr. (University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center); Alonso, J.R. (Lawrence Berkeley Lab., CA (United States))

    1992-05-01

    This Grant proposal outlines the steps that will be undertaken to bring the UC Davis Proton Therapy Research and Treatment, known locally as the Proton Therapy Facility (PTF), through its design and construction phases. This application concentrates on the design phase of the PTF project.

  17. Writing Essentials | Center for Cancer Research

    Science.gov (United States)

    To effectively communicate research results, the manuscript should be carefully structured to tell a compelling story. As a rule, the introduction should bring the reader from a broad understanding of the topic to the specific question being addressed. In contrast, the discussion should transition the reader from the specific results to their broader implications.

  18. A Community - Centered Astronomy Research Program

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady

    2017-06-01

    The Boyce Research Initiatives and Education Foundation (BRIEF) is providing semester-long, hands-on, astronomy research experiences for students of all ages that results in their publishing peer-reviewed papers. The course in astronomy and double star research has evolved from a face-to-face learning experience with two instructors to an online - hybrid course that simultaneously supports classroom instruction at a variety of schools in the San Diego area. Currently, there are over 65 students enrolled in three community colleges, seven high schools, and one university as well as individual adult learners. Instructional experience, courseware, and supporting systems were developed and refined through experience gained in classroom settings from 2014 through 2016. Topics of instruction include Kepler's Laws, basic astrometry, properties of light, CCD imaging, use of filters for varying stellar spectral types, and how to perform research, scientific writing, and proposal preparation. Volunteer instructors were trained by taking the course and producing their own research papers. An expanded program was launched in the fall semester of 2016. Twelve papers from seven schools were produced; eight have been accepted for publication by the Journal of Double Observations (JDSO) and the remainder are in peer review. Three additional papers have been accepted by the JDSO and two more are in process papers. Three college professors and five advanced amateur astronomers are now qualified volunteer instructors. Supporting tools are provided by a BRIEF server and other online services. The server-based tools range from Microsoft Office and planetarium software to top-notch imaging programs and computational software for data reduction for each student team. Observations are performed by robotic telescopes worldwide supported by BRIEF. With this success, student demand has increased significantly. Many of the graduates of the first semester course wanted to expand their

  19. NHRC (Naval Health Research Center) Report 1982.

    Science.gov (United States)

    1982-01-01

    to blood for measuring steroid hormones. Total plasma and salivary concentrations of cortisol and testos- terone were compared in samples taken twice...distinction was not possible in the pre- *: sent study, but should be an important focus for further research on salivary steroids . 82-6 BECK, D & WM Pugh...station * gyms placed in the Camp Nimitz barracks. This afforded recruits greater access to the machines and eliminated lengthy transit periods to and from

  20. Naval Health Research Center 1985 Annual Report

    Science.gov (United States)

    1985-01-01

    activity related to these occupations may be associated with increased risk of testicular cancer . 85-35 Vickers. Jr., RR & LK Hervig Work Unit #MR041.01.06A...December, Kathleen Doyle 17 June, HMC Robert J. Ev.:4and, USN Library Aide (Temp) Chief Petty Officer of the Command, Transferred 4 October, Carmen Miranda...identifying microbial agents associated with infectious diseases were developed. our current research falls into six major areas: (1) epidemiology and

  1. AHPCRC - Army High Performance Computing Research Center

    Science.gov (United States)

    2010-01-01

    Project 2–3: Design of Antimicrobial Peptides for Nano-Engineered Active Coatings Principal Investigator: Eric Darve (Stanford University) Microbes...naturally occurring or inten-tionally introduced—can cause debili-tating disease outbreaks, food spoilage, and corrosion. Antimicrobial coatings are...also protect the underlying structures from damage due to mold, fungus , bacteria, and the substances that they produce. AHPCRC research in this area

  2. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. (ed.)

    1992-01-01

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  3. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. [ed.

    1992-12-31

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  4. Bioinformatics Analyst | Center for Cancer Research

    Science.gov (United States)

    BASIC QUALIFICATIONS To be considered for this position, you must minimally meet the knowledge, skills, and abilities listed below: Bachelor’s degree in life science/bioinformatics/math/physics/computer related field from an accredited college or university according to the Council for Higher Education Accreditation (CHEA). (Additional qualifying experience may be substituted for the required education). Foreign degrees must be evaluated for U.S. equivalency. In addition to the educational requirements, a minimum of five (5) years of progressively responsible relevant experience. Must be able to obtain and maintain a security clearance. PREFERRED QUALIFICATIONS Candidates with these desired skills will be given preferential consideration: A Masters’ or PhD degree in any quantitative science is preferred. Commitment to solving biological problems and communicating these solutions. Ability to multi-task across projects. Experience in submitting data sets to public repositories. Management of large genomic data sets including integration with data available from public sources. Prior customer-facing role. Record of scientific achievements including journal publications and conference presentations. Expected Competencies: Deep understanding of and experience in processing high throughput biomedical data: data cleaning, normalization, analysis, interpretation and visualization. Ability to understand and analyze data from complex experimental designs. Proficiency in at least two of the following programming languages: Perl, Python, R, Java and C/C++. Experience in at least two of the following areas: metagenomics, ChIPSeq, RNASeq, ExomeSeq, DHS-Seq, microarray analysis. Familiarity with public databases: NCBI, Ensembl, TCGA, cBioPortal, Broad FireHose. Knowledge of working in a cluster environment.

  5. The prevention research centers' managing epilepsy well network.

    Science.gov (United States)

    DiIorio, Colleen K; Bamps, Yvan A; Edwards, Ariele L; Escoffery, Cam; Thompson, Nancy J; Begley, Charles E; Shegog, Ross; Clark, Noreen M; Selwa, Linda; Stoll, Shelley C; Fraser, Robert T; Ciechanowski, Paul; Johnson, Erica K; Kobau, Rosemarie; Price, Patricia H

    2010-11-01

    The Managing Epilepsy Well (MEW) Network was created in 2007 by the Centers for Disease Control and Prevention's (CDC) Prevention Research Centers and Epilepsy Program to promote epilepsy self-management research and to improve the quality of life for people with epilepsy. MEW Network membership comprises four collaborating centers (Emory University, University of Texas Health Science Center at Houston, University of Michigan, and University of Washington), representatives from CDC, affiliate members, and community stakeholders. This article describes the MEW Network's background, mission statement, research agenda, and structure. Exploratory and intervention studies conducted by individual collaborating centers are described, as are Network collaborative projects, including a multisite depression prevention intervention and the development of a standard measure of epilepsy self-management. Communication strategies and examples of research translation programs are discussed. The conclusion outlines the Network's role in the future development and dissemination of evidence-based epilepsy self-management programs. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    International Nuclear Information System (INIS)

    Eisenberg, David S.

    2008-01-01

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  7. Center for Cell Research, Pennsylvania State University

    Science.gov (United States)

    Cronin, Mike

    1991-01-01

    A brief review of Genentech, Inc., is presented. Additionally, the Physiological Systems Experiment (PSE-01) is discussed in terms of its development history. The PSE-01 was developed to investigate the bone wasting, muscle wasting, and immune cell dysfunction that occur in microgravity conditions. Specifically, a number of human disorders are associated with maladaptive changes in bone, muscle, and immune function. The physiological adjustments that the body makes in response to space flight can be monitored and may aid in the discovery of new protein forms and patterns. This research may also provide strategies for protecting the health of flight crews enduring prolonged space flight. Results are discussed.

  8. Social justice and research using human biological material: A ...

    African Journals Online (AJOL)

    Social justice in the context of research using human biological material is an important contemporary legal-ethical issue. A question at the heart of this issue is the following: Is it fair to expect a research participant (a person who participates in such research by, among others, making available biological material from his or ...

  9. Structural biology computing: Lessons for the biomedical research sciences.

    Science.gov (United States)

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields. Copyright © 2013 Wiley Periodicals, Inc.

  10. Radiation protection in biological investigation centers. Problematic, development and perspectives

    International Nuclear Information System (INIS)

    Macias, M.T.; Pina, R.; Usera, F.

    1998-01-01

    The radiological risk derivatives from the radioisotope techniques accomplished in the different investigation lines developed in the Centers object of this work, have necessary made establishing an organization that assure some adequate protection conditions in the use of the ionizing radiations

  11. Administrative Assistant | Center for Cancer Research

    Science.gov (United States)

    We are looking for a pleasant, organized, dependable person to serve as an administrative assistant at the National Cancer Institute on the campus of the National Institutes of Health (NIH).  Work supports a busy clinical program in the world’s largest dedicated research hospital patients call the “House of Hope.”  Tasks involve calendar management, arranging travel, scheduling conferences and meetings, drafting and handling correspondence, timekeeping, placing purchase requests, office property management, greeting visitors, and office work, such as copying, filing, and scanning.  Ability to work with basic computer office software (such as Word, Excel, and PowerPoint) required. Some administrative experience, including calendar management preferred.  Full-time position, business hours. NIH is metro accessible.

  12. Bolivia. The new nuclear research center in El Alto

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2016-05-15

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  13. People-Centered Language Recommendations for Sleep Research Communication.

    Science.gov (United States)

    Fuoco, Rebecca E

    2017-04-01

    The growing embrace of patient-centered outcomes research (PCOR) in sleep medicine is a significant step forward for the field. In engaging and incorporating the unique perspectives of people with sleep disorders, PCOR enhances the relevance of findings and facilitates the uptake of research into practice. While centering research design around what matters most to people with sleep disorders is critical, research communication must be similarly people-centered. One approach is using "people-centered language" in both professional and public communications. People-centered language is rooted in sociolinguistic research demonstrating that language both reflects and shapes attitudes. People-centered language puts people first, is precise and neutral, and respects autonomy. By adhering to the language guidelines described in this article, sleep researchers will better serve the field's most important stakeholders. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  14. Karlsruhe Nuclear Research Center. Research and development program 1991

    International Nuclear Information System (INIS)

    1990-01-01

    The R and D activities of the KfK are classified in 8 main research activities: 1) project nuclear fusion; 2) project pollutant mitigation in the environment; 3) solid state and materials research; 4) nuclear and elementary particle physics; 5) microtechnics e.g. X-ray lithography; 6) materials handling; 7) project nuclear safety research; 8) radioactive waste management. (orig.) [de

  15. Learner Centered Teaching: Putting the Research on Learning into Practice

    Science.gov (United States)

    Doyle, Terry

    2011-01-01

    This book presents the research-based case that Learner Centered Teaching (LCT) offers the best means to optimize student learning in college, and offers examples and ideas for putting it into practice, as well the underlying rationale. It also starts from the premise that many faculty are much closer to being learner centered teachers than they…

  16. Diseño de una estrategia integral para la gestión de la investigación en el Centro de Inmunología y Productos Biológicos de Camagüey An integrated strategy design for managing research at Camagüey's Center of Immunology and Biological Products

    Directory of Open Access Journals (Sweden)

    Imilla Casado Hernández

    2009-12-01

    centers connected to universities. This paper presents the design of an Integrated Strategy to properly include the Center of Immunology and Biological Products in the research activity of Camagüey's Medical School. It also includes a theoretical approach of research management to fully carry out the demands of practice. This research center should become an active institution promoting change from the inside through connections that most likely cause changes in the external environment.

  17. Postharvest biology and technology research and development ...

    African Journals Online (AJOL)

    The applications of biological control agents in pre- and post-harvest operations and modified atmosphere packaging and related technology in post harvest handling of fresh fruits and vegetables, in addition to the use of hot water treatment as a non-chemical alternative in keeping quality during post harvest handling of ...

  18. Haldane's Contributions to Biological Research in India

    Indian Academy of Sciences (India)

    evolutionary biology. Haldane advised that "if you want to excel in science, try to develop the habit of quantitative thinking". Partha P Majumder. After a few brief visits to India in quick succession, J B S. Haldane accepted P C Mahalanobis's invitation and moved to. India to join the Indian Statistical Institute, Calcutta, as a.

  19. Center for Urban Environmental Research and Education (CUERE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Urban Environmental Research and Education (CUERE) at UMBC was created in 2001 with initial support from the U.S. Environmental Protection Agency and...

  20. GSDC: A Unique Data Center in Korea for HEP research

    Directory of Open Access Journals (Sweden)

    Ahn Sang-Un

    2017-01-01

    Full Text Available Global Science experimental Data hub Center (GSDC at Korea Institute of Science and Technology Information (KISTI is a unique data center in South Korea established for promoting the fundamental research fields by supporting them with the expertise on Information and Communication Technology (ICT and the infrastructure for High Performance Computing (HPC, High Throughput Computing (HTC and Networking. GSDC has supported various research fields in South Korea dealing with the large scale of data, e.g. RENO experiment for neutrino research, LIGO experiment for gravitational wave detection, Genome sequencing project for bio-medical, and HEP experiments such as CDF at FNAL, Belle at KEK, and STAR at BNL. In particular, GSDC has run a Tier-1 center for ALICE experiment using the LHC at CERN since 2013. In this talk, we present the overview on computing infrastructure that GSDC runs for the research fields and we discuss on the data center infrastructure management system deployed at GSDC.

  1. San Joaquin Valley Aerosol Health Effects Research Center (SAHERC)

    Data.gov (United States)

    Federal Laboratory Consortium — At the San Joaquin Valley Aerosol Health Effects Center, located at the University of California-Davis, researchers will investigate the properties of particles that...

  2. GSDC: A Unique Data Center in Korea for HEP research

    Science.gov (United States)

    Ahn, Sang-Un

    2017-04-01

    Global Science experimental Data hub Center (GSDC) at Korea Institute of Science and Technology Information (KISTI) is a unique data center in South Korea established for promoting the fundamental research fields by supporting them with the expertise on Information and Communication Technology (ICT) and the infrastructure for High Performance Computing (HPC), High Throughput Computing (HTC) and Networking. GSDC has supported various research fields in South Korea dealing with the large scale of data, e.g. RENO experiment for neutrino research, LIGO experiment for gravitational wave detection, Genome sequencing project for bio-medical, and HEP experiments such as CDF at FNAL, Belle at KEK, and STAR at BNL. In particular, GSDC has run a Tier-1 center for ALICE experiment using the LHC at CERN since 2013. In this talk, we present the overview on computing infrastructure that GSDC runs for the research fields and we discuss on the data center infrastructure management system deployed at GSDC.

  3. Karlsruhe Nuclear Research Center. Research and development program 1992

    International Nuclear Information System (INIS)

    1991-01-01

    The KfK R and D activities are classified by ten point-of-main-effort projects: 1) low-pollution/low-waste methods, 2) environmental energy and mass transfers, 3) nuclear fusion, 4) nuclear saftey research, 5) radioactive waste management, 6) superconduction, 7) microtechnics, 8) materials handling, 9) materials and interfaces, 10) basic physical research. (orig.) [de

  4. Revitalization of the NASA Langley Research Center's Infrastructure

    Science.gov (United States)

    Weiser, Erik S.; Mastaler, Michael D.; Craft, Stephen J.; Kegelman, Jerome T.; Hope, Drew J.; Mangum, Cathy H.

    2012-01-01

    The NASA Langley Research Center (Langley) was founded in 1917 as the nation's first civilian aeronautical research facility and NASA's first field center. For nearly 100 years, Langley has made significant contributions to the Aeronautics, Space Exploration, and Earth Science missions through research, technology, and engineering core competencies in aerosciences, materials, structures, the characterization of earth and planetary atmospheres and, more recently, in technologies associated with entry, descent, and landing. An unfortunate but inevitable outcome of this rich history is an aging infrastructure where the longest serving building is close to 80 years old and the average building age is 44 years old. In the current environment, the continued operation and maintenance of this aging and often inefficient infrastructure presents a real challenge to Center leadership in the trade space of sustaining infrastructure versus not investing in future capabilities. To address this issue, the Center has developed a forward looking revitalization strategy that ties future core competencies and technical capabilities to the Center Master Facility Plan to maintain a viable Center well into the future. This paper documents Langley's revitalization strategy which integrates the Center's missions, the Langley 2050 vision, the Center Master Facility Plan, and the New Town repair-by-replacement program through the leadership of the Vibrant Transformation to Advance Langley (ViTAL) Team.

  5. [Analogies and analogy research in technical biology and bionics].

    Science.gov (United States)

    Nachtigall, Werner

    2010-01-01

    The procedural approaches of Technical Biology and Bionics are characterized, and analogy research is identified as their common basis. The actual creative aspect in bionical research lies in recognizing and exploiting technically oriented analogies underlying a specific biological prototype to indicate a specific technical application.

  6. Karlsruhe Nuclear Research Center. Research and development programme 1988

    International Nuclear Information System (INIS)

    1987-01-01

    A general survey of planned activities and developmental trends of the nuclear research centre is followed by a more detailed account of projects and goals. The various institutes and laboratories are presented together with their specific task schedules. (UA) [de

  7. Karlsruhe Nuclear Research Center. Research and development programme 1989

    International Nuclear Information System (INIS)

    1988-01-01

    The R and D activities of the KfK are classified in 10 main research activities: 1) Project fast breeder; 2) separation nozzle method; 3) project nuclear fusion; 4) project reprocessing and waste processing; 5) ultimate storage; 6) environment and safety; 7) solid-state and materials research; 8) nuclear and elementary particle physics; 9) microtechnics e.g. X-ray lithography; 10) materials handling. (HP) [de

  8. A Task-Centered Approach to Freshman-Level General Biology

    Science.gov (United States)

    Francom, Greg; Bybee, David; Wolfersberger, Mark; Mendenhall, Anne; Merrill, M. David

    2009-01-01

    Many new instructional theories advocate centering instruction around a set of authentic tasks to improve application and transfer of knowledge and help students take more responsibility for their own learning. At BYU-Hawaii, a general education biology course was redesigned to follow this task-centered approach and then taught to two groups of…

  9. The Nursing Research Center on HIV/AIDS Health Disparities.

    Science.gov (United States)

    Holzemer, William L; Méndez, Marta Rivero; Portillo, Carmen; Padilla, Geraldine; Cuca, Yvette; Vargas-Molina, Ricardo L

    2004-01-01

    This report describes the partnership between the schools of nursing at the University of California San Francisco and the University of Puerto Rico to address the need for nursing research on HIV/AIDS health disparities. The partnership led to the creation of the Nursing Research Center on HIV/AIDS Health Disparities with funding from the National Institutes of Health/National Institute of Nursing Research. We provide background information on the disproportionate impact of the HIV/AIDS epidemic on racial and ethnic minorities, describe the major predictors of health disparities in persons at risk for or diagnosed with HIV/AIDS using the Outcomes Model for Health Care Research, and outline the major components of the Nursing Research Center. The center's goal is to improve health outcomes for people living with and affected by HIV/AIDS by enhancing the knowledge base for HIV/AIDS care.

  10. Research Collaboration Workshop for Women in Mathematical Biology

    CERN Document Server

    Miller, Laura

    2017-01-01

    Inspired by the Research Collaboration Workshop for Women in Mathematical Biology, this volume contains research and review articles that cover topics ranging from models of animal movement to the flow of blood cells in the embryonic heart. Hosted by the National Institute for Mathematics and Biological Synthesis (NIMBioS), the workshop brought together women working in biology and mathematics to form four research groups that encouraged multidisciplinary collaboration and lifetime connections in the STEM field. This volume introduces many of the topics from the workshop, including the aerodynamics of spider ballooning; sleep, circadian rhythms, and pain; blood flow regulation in the kidney; and the effects of antimicrobial therapy on gut microbiota and microbiota and Clostridium difficile. Perfect for students and researchers in mathematics and biology, the papers included in this volume offer an introductory glimpse at recent research in mathematical biology. .

  11. A Case Study Documenting the Process by Which Biology Instructors Transition from Teacher-Centered to Learner-Centered Teaching

    Science.gov (United States)

    Marbach-Ad, Gili; Hunt Rietschel, Carly

    2016-01-01

    In this study, we used a case study approach to obtain an in-depth understanding of the change process of two university instructors who were involved with redesigning a biology course. Given the hesitancy of many biology instructors to adopt evidence-based, learner-centered teaching methods, there is a critical need to understand how biology instructors transition from teacher-centered (i.e., lecture-based) instruction to teaching that focuses on the students. Using the innovation-decision model for change, we explored the motivation, decision-making, and reflective processes of the two instructors through two consecutive, large-enrollment biology course offerings. Our data reveal that the change process is somewhat unpredictable, requiring patience and persistence during inevitable challenges that arise for instructors and students. For example, the change process requires instructors to adopt a teacher-facilitator role as opposed to an expert role, to cover fewer course topics in greater depth, and to give students a degree of control over their own learning. Students must adjust to taking responsibility for their own learning, working collaboratively, and relinquishing the anonymity afforded by lecture-based teaching. We suggest implications for instructors wishing to change their teaching and administrators wishing to encourage adoption of learner-centered teaching at their institutions. PMID:27856550

  12. Reduced Crew Operations Research at NASA Ames Research Center

    Science.gov (United States)

    Brandt, Summer L.; Lachter, Joel

    2017-01-01

    In 2012, NASA began exploring the feasibility of single pilot reduced crew operations (SPORCO) in the context of scheduled passenger air carrier operations (i.e., Parts 121 and 135). This research was spurred by two trends in aviation research: the trend toward reducing costs and a shortage of pilots. A series of simulations were conducted to develop tools and a concept of operations to support RCO. This slide deck is a summary of the NASA Ames RCO research prepared for an R T team at Airbus. Airbus is considering moving forward with reducing crew during the cruise phase of flight with long-haul flights and is interested in the work we have completed.

  13. Northwest Hazardous Waste Research, Development, and Demonstration Center: Program Plan

    International Nuclear Information System (INIS)

    1988-02-01

    The Northwest Hazardous Waste Research, Development, and Demonstration Center was created as part of an ongoing federal effort to provide technologies and methods that protect human health and welfare and environment from hazardous wastes. The Center was established by the Superfund Amendments and Reauthorization Act (SARA) to develop and adapt innovative technologies and methods for assessing the impacts of and remediating inactive hazardous and radioactive mixed-waste sites. The Superfund legislation authorized $10 million for Pacific Northwest Laboratory to establish and operate the Center over a 5-year period. Under this legislation, Congress authorized $10 million each to support research, development, and demonstration (RD and D) on hazardous and radioactive mixed-waste problems in Idaho, Montana, Oregon, and Washington, including the Hanford Site. In 1987, the Center initiated its RD and D activities and prepared this Program Plan that presents the framework within which the Center will carry out its mission. Section 1.0 describes the Center, its mission, objectives, organization, and relationship to other programs. Section 2.0 describes the Center's RD and D strategy and contains the RD and D objectives, priorities, and process to be used to select specific projects. Section 3.0 contains the Center's FY 1988 operating plan and describes the specific RD and D projects to be carried out and their budgets and schedules. 9 refs., 18 figs., 5 tabs

  14. An overview of multidisciplinary research resources at the Osaka University Center for Twin Research.

    Science.gov (United States)

    Hayakawa, Kazuo; Iwatani, Yoshinori

    2013-02-01

    Osaka University Center for Twin Research is currently organizing a government-funded, multidisciplinary research project using a large registry of aged twins living in Japan. The purpose of the project is to collect various information as well as biological resources from registered twins, and to establish a biobank and databases for preserving and managing these data and resources. The Center is collecting data from twin pairs, both of whom have agreed to participate in a one-day comprehensive medical examination. The following data are being collected: physical data (e.g., height, body mass, blood pressure, theoretical visceral fat, pulse wave velocity, and bone density), data regarding epidemiology (e.g., medical history, lifestyle, quality of life, mood status, cognitive function, and nutrition), electrocardiogram, ultrasonography (carotid artery and thyroid), dentistry, plastic surgery, positron emission tomography, magnetoencephalogram, and magnetic resonance imaging of brain. These data are then aggregated and systematically stored in specific databases. In addition, peripheral blood is obtained from the participants, and then genomic DNA is purified and sera are stored. A wide variety of studies are ongoing, and more are in the planning stage.

  15. A Case Study Documenting the Process by Which Biology Instructors Transition from Teacher-Centered to Learner-Centered Teaching.

    Science.gov (United States)

    Marbach-Ad, Gili; Hunt Rietschel, Carly

    2016-01-01

    In this study, we used a case study approach to obtain an in-depth understanding of the change process of two university instructors who were involved with redesigning a biology course. Given the hesitancy of many biology instructors to adopt evidence-based, learner-centered teaching methods, there is a critical need to understand how biology instructors transition from teacher-centered (i.e., lecture-based) instruction to teaching that focuses on the students. Using the innovation-decision model for change, we explored the motivation, decision-making, and reflective processes of the two instructors through two consecutive, large-enrollment biology course offerings. Our data reveal that the change process is somewhat unpredictable, requiring patience and persistence during inevitable challenges that arise for instructors and students. For example, the change process requires instructors to adopt a teacher-facilitator role as opposed to an expert role, to cover fewer course topics in greater depth, and to give students a degree of control over their own learning. Students must adjust to taking responsibility for their own learning, working collaboratively, and relinquishing the anonymity afforded by lecture-based teaching. We suggest implications for instructors wishing to change their teaching and administrators wishing to encourage adoption of learner-centered teaching at their institutions. © 2016 G. Marbach-Ad and C. H. Rietschel. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Dystrophin quantification: Biological and translational research implications.

    Science.gov (United States)

    Anthony, Karen; Arechavala-Gomeza, Virginia; Taylor, Laura E; Vulin, Adeline; Kaminoh, Yuuki; Torelli, Silvia; Feng, Lucy; Janghra, Narinder; Bonne, Gisèle; Beuvin, Maud; Barresi, Rita; Henderson, Matt; Laval, Steven; Lourbakos, Afrodite; Campion, Giles; Straub, Volker; Voit, Thomas; Sewry, Caroline A; Morgan, Jennifer E; Flanigan, Kevin M; Muntoni, Francesco

    2014-11-25

    We formed a multi-institution collaboration in order to compare dystrophin quantification methods, reach a consensus on the most reliable method, and report its biological significance in the context of clinical trials. Five laboratories with expertise in dystrophin quantification performed a data-driven comparative analysis of a single reference set of normal and dystrophinopathy muscle biopsies using quantitative immunohistochemistry and Western blotting. We developed standardized protocols and assessed inter- and intralaboratory variability over a wide range of dystrophin expression levels. Results from the different laboratories were highly concordant with minimal inter- and intralaboratory variability, particularly with quantitative immunohistochemistry. There was a good level of agreement between data generated by immunohistochemistry and Western blotting, although immunohistochemistry was more sensitive. Furthermore, mean dystrophin levels determined by alternative quantitative immunohistochemistry methods were highly comparable. Considering the biological function of dystrophin at the sarcolemma, our data indicate that the combined use of quantitative immunohistochemistry and Western blotting are reliable biochemical outcome measures for Duchenne muscular dystrophy clinical trials, and that standardized protocols can be comparable between competent laboratories. The methodology validated in our study will facilitate the development of experimental therapies focused on dystrophin production and their regulatory approval. © 2014 American Academy of Neurology.

  17. Automatic speech recognition research at NASA-Ames Research Center

    Science.gov (United States)

    Coler, Clayton R.; Plummer, Robert P.; Huff, Edward M.; Hitchcock, Myron H.

    1977-01-01

    A trainable acoustic pattern recognizer manufactured by Scope Electronics is presented. The voice command system VCS encodes speech by sampling 16 bandpass filters with center frequencies in the range from 200 to 5000 Hz. Variations in speaking rate are compensated for by a compression algorithm that subdivides each utterance into eight subintervals in such a way that the amount of spectral change within each subinterval is the same. The recorded filter values within each subinterval are then reduced to a 15-bit representation, giving a 120-bit encoding for each utterance. The VCS incorporates a simple recognition algorithm that utilizes five training samples of each word in a vocabulary of up to 24 words. The recognition rate of approximately 85 percent correct for untrained speakers and 94 percent correct for trained speakers was not considered adequate for flight systems use. Therefore, the built-in recognition algorithm was disabled, and the VCS was modified to transmit 120-bit encodings to an external computer for recognition.

  18. Technologies and experimental approaches in the NIH Botanical Research Centers

    Science.gov (United States)

    Barnes, Stephen; Birt, Diane F; Cassileth, Barrie R; Cefalu, William T; Chilton, Floyd H; Farnsworth, Norman R; Raskin, Ilya; van Breemen, Richard B; Weaver, Connie M

    2009-01-01

    There are many similarities between research on combinatorial chemistry and natural products and research on dietary supplements and botanicals in the NIH Botanical Research Centers. The technologies in the centers are similar to those used by other NIH-sponsored investigators. All centers rigorously examine the authenticity of botanical dietary supplements and determine the composition and concentrations of the phytochemicals therein, most often by liquid chromatography–mass spectrometry. Several of the centers specialize in fractionation and high-throughput evaluation to identify the individual bioactive agent or a combination of agents. Some centers are using DNA microarray analyses to determine the effects of botanicals on gene transcription with the goal of uncovering the important biochemical pathways they regulate. Other centers focus on bioavailability and uptake, distribution, metabolism, and excretion of the phytochemicals as for all xenobiotics. Because phytochemicals are often complex molecules, synthesis of isotopically labeled forms is carried out by plant cells in culture, followed by careful fractionation. These labeled phytochemicals allow the use of accelerator mass spectrometry to trace the tissue distribution of 14C-labeled proanthocyanidins in animal models of disease. State-of-the-art proteomics and mass spectrometry are also used to identify proteins in selected tissues whose expression and posttranslational modification are influenced by botanicals and dietary supplements. In summary, the skills needed to carry out botanical centers’ research are extensive and may exceed those practiced by most NIH investigators. PMID:18258642

  19. NASA Space Engineering Research Center for VLSI systems design

    Science.gov (United States)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  20. Demonstration and Research Center for Early Education (DARCEE). Program Report.

    Science.gov (United States)

    Far West Lab. for Educational Research and Development, Berkeley, CA.

    This document is the first in a series of 12 early childhood program descriptions compiled by the Far West Laboratory for Educational Research and Development. The program described here is the Demonstration and Research Center for Early Education (DARCEE) which was established at the George Peabody College for Teachers in Nashville, Tennessee, in…

  1. Expert Panel Reviews of Research Centers: The Site Visit Process

    Science.gov (United States)

    Lawrenz, Frances; Thao, Mao; Johnson, Kelli

    2012-01-01

    Site visits are used extensively in a variety of settings within the evaluation community. They are especially common in making summative value decisions about the quality and worth of research programs/centers. However, there has been little empirical research and guidance about how to appropriately conduct evaluative site visits of research…

  2. Spacecraft Fire Safety Research at NASA Glenn Research Center

    Science.gov (United States)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  3. Current research in Radiation Biology and Biochemistry Division

    International Nuclear Information System (INIS)

    Tarachand, U.; Singh, B.B.

    1995-01-01

    The Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Bombay has been engaged in research in the frontier areas of (i) radiation biology related to tumour therapy and injury caused by free radicals; (ii) molecular basis of diseases of physiological origin; (iii) molecular aspects of chemical carcinogenesis and (iv) structure of genome and genome related functions. The gist of research and development activities carried out in the Division during the last two years are documented

  4. Qualitative Methods in Patient-Centered Outcomes Research.

    Science.gov (United States)

    Vandermause, Roxanne; Barg, Frances K; Esmail, Laura; Edmundson, Lauren; Girard, Samantha; Perfetti, A Ross

    2017-02-01

    The Patient-Centered Outcomes Research Institute (PCORI), created to fund research guided by patients, caregivers, and the broader health care community, offers a new research venue. Many (41 of 50) first funded projects involved qualitative research methods. This study was completed to examine the current state of the science of qualitative methodologies used in PCORI-funded research. Principal investigators participated in phenomenological interviews to learn (a) how do researchers using qualitative methods experience seeking funding for, implementing and disseminating their work; and (b) how may qualitative methods advance the quality and relevance of evidence for patients? Results showed the experience of doing qualitative research in the current research climate as "Being a bona fide qualitative researcher: Staying true to research aims while negotiating challenges," with overlapping patterns: (a) researching the elemental, (b) expecting surprise, and (c) pushing boundaries. The nature of qualitative work today was explicitly described and is rendered in this article.

  5. The role of architectural research centers in addressing climate change

    Directory of Open Access Journals (Sweden)

    John Carmody

    2012-10-01

    Full Text Available ABSTRACT: It is clear that an urgent, major transformation needs to happen in the design of the built environment to respond to impending climate change and other environmental degradation. This paper will explain the potential role of architectural research centers in this transformation and provide examples from the Center for Sustainable Building Research (CSBR at the University of Minnesota. A research center can become a regional hub to coordinate and disseminate critical information. CSBR is leading the establishment of Architecture 2030 standards in Minnesota, assisting local governments in writing green building policy, providing design assistance to local government, developing tools to assist design decision making, providing technical assistance to the affordable housing community inMinnesota, and establishing a regional case study database that includes actual performance information. CSBR is creating a publicly accessible, credible knowledge base on new approaches, technologies and actual performance outcomes. Research centers such as CSBR can be a critical component of the necessary feedback loop often lacking in the building industry. A research center can also fill major gaps in providing in depth professional education as well as be a catalyst for demonstration projects and public education.

  6. Center on Survivability and Lethality (CSL) Research Faculty

    OpenAIRE

    2013-01-01

    NPS has a strong history in teaching and research in aircraft survivability and air defense lethality. On Jan. 30, the Naval Postgraduate School (NPS) announced the creation of the Center for Survivability and Lethality. The new center builds upon the pioneering work of Distinguished Professor Emeritus Robert Ball, who founded the first and only course on all aspects of aircraft combat survivability at NPS in the 1970s and wrote the field’s ‘bible,’ The Fundamentals of Aircraft Comba...

  7. Information communication platform for the NBIC center at the Russian Research Center Kurchatov Institute

    Science.gov (United States)

    Velikhov, V. E.

    2010-12-01

    The problems of developing a unified information communication platform for the Nano-, Bio-, Info-, and Cognitive (NBIC) Technology Center at the Russian Research Center (RRC) Kurchatov Institute are considered. The distributed resources of the NBIC center are used based on grid technologies, which allow one to construct a distributed infrastructure on the basis of existing data transfer networks and computer equipment in accordance with the user's requirements. This infrastructure makes it possible to uniformly offer combined computational resources for various scientific calculations and allows distant users to visually operate with very large amounts of data, high-resolution video streams, experimental equipment, and archival data sets.

  8. Spaceflight revolution: NASA Langley Research Center from Sputnik to Apollo

    Science.gov (United States)

    Hansen, James R.

    1995-01-01

    As part of the transition to the broad research scope of the National Aeronautics and Space Administration (NASA) starting in the late 1950's, the Langley Research Center underwent many changes in program content, organization and management, and areas of personnel expertise. This book describes and evaluates the evolution and activities of the Langley Research Center during the seventeen-year period from 1958 to 1975. The book was based on the analysis of hundreds of written records, both published and unpublished, as well as numerous personal interviews with many of the key individuals involved in the transition of Langley. Some of the projects and research areas covered include Project Echo, magnetoplasmadynamics research, Scout Rocket Program, lunar-orbit rendezvous research, manned space laboratory development, and Apollo and the Lunar Orbiter Project.

  9. CUBED: South Dakota 2010 Research Center For Dusel Experiments

    International Nuclear Information System (INIS)

    Keller, Christina; Alton, Drew; Bai Xinhau; Durben, Dan; Heise, Jaret; Hong Haiping; Howard, Stan; Jiang Chaoyang; Keeter, Kara; McTaggart, Robert; Medlin, Dana; Mei Dongming; Petukhov, Andre; Rauber, Joel; Roggenthen, Bill; Spaans, Jason; Sun Yongchen; Szczerbinska, Barbara; Thomas, Keenan; Zehfus, Michael

    2010-01-01

    With the selection of the Homestake Mine in western South Dakota by the National Science Foundation (NSF) as the site for a national Deep Underground Science and Engineering Laboratory (DUSEL), the state of South Dakota has sought ways to engage its faculty and students in activities planned for DUSEL. One such effort is the creation of a 2010 Research Center focused on ultra-low background experiments or a Center for Ultra-low Background Experiments at DUSEL (CUBED). The goals of this center include to 1) bring together the current South Dakota faculty so that one may begin to develop a critical mass of expertise necessary for South Dakota's full participation in large-scale collaborations planned for DUSEL; 2) to increase the number of research faculty and other research personnel in South Dakota to complement and supplement existing expertise in nuclear physics and materials sciences; 3) to be competitive in pursuit of external funding through the creation of a center which focuses on areas of interest to experiments planned for DUSEL such as an underground crystal growth lab, a low background counting facility, a purification/depletion facility for noble liquids, and an electroforming copper facility underground; and 4) to train and educate graduate and undergraduate students as a way to develop the scientific workforce of the state. We will provide an update on the activities of the center and describe in more detail the scientific foci of the center.

  10. Current research in Canada on biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1980-05-01

    A survey of current research in Canada on the biological effects of ionizing radiation has been compiled. The list of projects has been classified according to structure (organizational state of the test system) as well as according to the type of effects. Using several assumptions, ballpark estimates of expenditures on these activities have been made. Agencies funding these research activities have been tabulated and the break-down of research in government laboratories and in academic institutions has been designated. Wherever possible, comparisons have been made outlining differences or similarities that exist between the United States and Canada concerning biological radiation research. It has been concluded that relevant research in this area in Canada is inadequate. Wherever possible, strengths and weaknesses in radiation biology programs have been indicated. The most promising course for Canada to follow is to support adequately fundamental studies of the biological effects of radiation. (auth)

  11. Contribution to researches in biophysics and biology

    International Nuclear Information System (INIS)

    Luccioni, Catherine

    2000-01-01

    In this accreditation to supervise research, the author indicates its curriculum and scientific works which mainly dealt with the different agents used in chemotherapy. Scientific works addressed anti-carcinogenic pharmacology, applied biophysics, and researches in oncology and radiobiology. Current research projects deal with mechanisms of cellular transformation and the implication of the anti-oxidising metabolism and of nucleotide metabolism in cell radio-sensitivity. Teaching and research supervising activities are also indicated. Several articles are proposed in appendix: Average quality factor and dose equivalent meter based on microdosimetry techniques; Activity of thymidylate synthetase, thymidine kinase and galactokinase in primary and xenografted human colorectal cancers in relation to their chromosomal patterns; Nucleotide metabolism in human gliomas, relation to the chromosomal profile; Pyrimidine nucleotide metabolism in human colon carcinomas: comparison of normal tissues, primary tumors and xenografts; Modifications of the antioxidant metabolism during proliferation and differentiation of colon tumours cell lines; Modulation of the antioxidant enzymes, p21 and p53 expression during proliferation and differentiation of human melanoma cell lines; Purine metabolism in 2 human melanoma cell lines, relation with proliferation and differentiation; Radiation-induced changes in nucleotide metabolism of 2 colon cancer cell lines with different radio-sensitivities

  12. Decline of clinical research in academic medical centers.

    Science.gov (United States)

    Meador, Kimford J

    2015-09-29

    Marked changes in US medical school funding began in the 1960s with progressively increasing revenues from clinical services. The growth of clinical revenues slowed in the mid-1990s, creating a funding crisis for US academic health care centers, who responded by having their faculty increase their clinical duties at the expense of research activities. Surveys document the resultant stresses on the academic clinician researcher. The NIH provides greater funding for basic and translational research than for clinical research, and the new Patient-Centered Outcomes Research Institute is inadequately funded to address the scope of needed clinical research. An increasing portion of clinical research is funded by industry, which leaves many important clinical issues unaddressed. There is an inadequate supply of skilled clinical researchers and a lack of external support for clinical research. The impact on the academic environment in university medical centers is especially severe on young faculty, who have a shrinking potential to achieve successful academic careers. National health care research funding policies should encourage the right balance of life-science investigations. Medical universities need to improve and highlight education on clinical research for students, residents, fellows, and young faculty. Medical universities also need to provide appropriate incentives for clinical research. Without training to ensure an adequate supply of skilled clinical researchers and a method to adequately fund clinical research, discoveries from basic and translational research cannot be clinically tested and affect patient care. Thus, many clinical problems will continue to be evaluated and treated with inadequate or even absent evidence-based knowledge. © 2015 American Academy of Neurology.

  13. Teaching and research on Developmental Biology in Portugal.

    Science.gov (United States)

    Thorsteinsdóttir, Sólveig; Rodrigues, Gabriela; Crespo, Eduardo G

    2009-01-01

    Developmental Biology has established itself as a solid field of teaching and research in Portugal. Its history is recent, generally considered to have started with the pioneering work of Augusto Celestino da Costa at the beginning of the 20th century. However, research groups were very few and, until the early 1990s, teaching beyond morphological and comparative embryology was uncommon. In 1994, the first university course dedicated to Developmental Biology as a separate field from Embryology was created at the Faculty of Sciences of the University of Lisbon and a course on Plant Differentiation and Morphogenesis was also initiated. A Masters programme in Developmental Biology followed at the Lusofona University in 1996. Subsequently, modules of Developmental Biology were included in many Embryology courses and eventually more Developmental Biology courses were created. From 1999 onwards, the number of research groups working in Developmental Biology started to increase, many of which were initiated by researchers who had had the opportunity to pursue their PhD and/or post-doc studies abroad. The Instituto Gulbenkian de Cincia (Gulbenkian Institute of Science) became the first home of most of these groups, but several later spread to other institutions. This increased activity in turn has stimulated teaching of Developmental Biology and more students have been getting interested in the field. This positive feedback loop makes it a nice time to be teaching and working in Developmental Biology in Portugal.

  14. Energy Frontier Research Centers: Impact Report, January 2017

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-31

    Since its inception in 2009, the U. S. Department of Energy’s Energy Frontier Research Center (EFRC) program has become an important research modality in the Department’s portfolio, enabling high impact research that addresses key scientific challenges for energy technologies. Funded by the Office of Science’s Basic Energy Sciences program, the EFRCs are located across the United States and are led by universities, national laboratories, and private research institutions. These multi-investigator, multidisciplinary centers bring together world-class teams of researchers, often from multiple institutions, to tackle the toughest scientific challenges preventing advances in energy technologies. The EFRCs’ fundamental scientific advances are having a significant impact that is being translated to industry. In 2009 five-year awards were made to 46 EFRCs, including 16 that were fully funded by the American Recovery and Reinvestment Act (ARRA). An open recompetition of the program in 2014 resulted in fouryear awards to 32 centers, 22 of which are renewals of existing EFRCs and 10 of which are new EFRCs. In 2016, DOE added four new centers to accelerate the scientific breakthroughs needed to support the Department’s environmental management and nuclear cleanup mission, bringing the total number of active EFRCs to 36. The impact reports in this document describe some of the many scientific accomplishments and greater impacts of the class of 2009 – 2018 EFRCs and early outcomes from a few of the class of 2014 – 2018 EFRCs.

  15. 75 FR 53685 - Biological and Environmental Research Advisory Committee

    Science.gov (United States)

    2010-09-01

    ... 17, 2010, 8:30 a.m. to 12 p.m. ADDRESSES: Hilton Hotel, 620 Perry Parkway, Gaithersburg, MD 20877... the Climate Research Roadmap Workshop, BER Grand Challenge Workshop Report, and Systems Biology...

  16. Stable isotopes: essential tools in biological and medical research

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P. D.; Hachey, D. L.; Kreek, M. J.; Schoeller, D. A.

    1977-01-01

    Recent developments in the use of the stable isotopes, /sup 13/C, /sup 15/N, /sup 17/O, and /sup 18/O, as tracers in research studies in the fields of biology, medicine, pharmacology, and agriculture are briefly reviewed. (CH)

  17. Biological Research in Canisters (BRIC) - Light Emitting Diode (LED)

    Science.gov (United States)

    Levine, Howard G.; Caron, Allison

    2016-01-01

    The Biological Research in Canisters - LED (BRIC-LED) is a biological research system that is being designed to complement the capabilities of the existing BRIC-Petri Dish Fixation Unit (PDFU) for the Space Life and Physical Sciences (SLPS) Program. A diverse range of organisms can be supported, including plant seedlings, callus cultures, Caenorhabditis elegans, microbes, and others. In the event of a launch scrub, the entire assembly can be replaced with an identical back-up unit containing freshly loaded specimens.

  18. La Gestión de Investigación del Centro de Inmunología y productos biológicos en el contexto universitario. Un caso de estudio Research management at the Center of Immunology and Biological Products within the university context. A case study

    Directory of Open Access Journals (Sweden)

    Imilla Casado Hernández

    2009-08-01

    results on the quality of life, especially in Latin America. This paper deals with the assessment of research relations at the Center of Immunology and Biological Products within the context of the Medical University of Camagüey. We carried out a retrospective descriptive study, using the methods of theoretical and empiric knowledge. The characterization of the center’s research process showed unconnected and dependent working style, and an unfavorable work environment. In addition, the center failed to be among the strengths of the Vice-Rector’s Office of Investigations. In a general sense, the Medical University of Camagüey showed a reductionistic scientific culture and little social commitment caused by a lack of vision as well as of knowledge of the specific activities of science and technique. As research management has been considered an essential element for establishing general contexts to integrate research processes with the most inclusive purposes of higher educational centers, we recommend designing a strategy to involve the center in the university’s research activity.

  19. Value of External Reviews of Research at the International Agricultural Research Centers

    OpenAIRE

    Fuglie, Keith; Ruttan, Vernon W.

    1989-01-01

    The Consultative Groups on International Agricultural Research (CGIAR) funds a decentralized system of International Agricultural Research Centers. To monitor the Centers, the CGIAR has instituted a system of program and management reviews. But there is some controversy concerning the proper role, cost, and impact of these reviews. In 1984 we conducted a survey of scientific and administrative staff at the Centers to elicit their perspectives about the benefits and costs of the reviews. We al...

  20. Future Directions in Rotorcraft Technology at Ames Research Center

    Science.gov (United States)

    Aiken, Edwin W.; Ormiston, Robert A; Young, Larry A.

    2000-01-01

    Members of the NASA and Army rotorcraft research community at Ames Research Center have developed a vision for 'Vertical Flight 2025'. This paper describes the development of that vision and the steps being taken to implement it. In an effort to realize the vision, consistent with both NASA and Army Aviation strategic plans, two specific technology development projects have been identified: (1) one focused on a personal transportation system capable of vertical flight (the 'Roto-Mobile') and (2) the other on small autonomous rotorcraft (which is inclusive of vehicles which range in grams of gross weight for 'MicroRotorcraft' to thousands of kilograms for rotorcraft uninhabited aerial vehicles). The paper provides a status report on these projects as well as a summary of other revolutionary research thrusts being planned and executed at Ames Research Center.

  1. List of scientific publications, Nuclear Research Center Karlsruhe 1984

    International Nuclear Information System (INIS)

    1985-04-01

    The report abstracted contains a list of works published in 1984. Papers not in print yet are listed separately. Patent entries take account of all patent rights granted or published in 1984, i.e. patents or patent specifications. The list of publications is classified by institutes. The project category lists but the respective reports and studies carried out and published by members of the project staff concerned. Also listed are publications related to research and development projects of the 'product engineering project' (PFT/Projekt 'Fertigungstechnik'). With different companies and institutes cooperating, PFT is sponsored by Nuclear Research Center Karlsruhe GmbH. The latter is also responsible for printing above publications. Moreover the list contains the publications of a branch of the Bundesforschungsanstalt fuer Ernaehrung which is located on the KfK-premises. The final chapter of the list summarizes publications dealing with guest-experiments and research at Nuclear Research Center Karlsruhe. (orig./PW) [de

  2. Virginia Tech, Navy center sign cooperative research and development agreement

    OpenAIRE

    Trulove, Susan

    2009-01-01

    Almost a year of discussions has resulted in a five-year, $7.5 million indefinite delivery/indefinite quantity contract and a Cooperative Research and Development Agreement (CRADA) between Virginia Tech and the Naval Surface Warfare Center Dahlgren Division (NSWCDD).

  3. Scientific and technical information output of the Langley Research Center

    Science.gov (United States)

    1984-01-01

    Scientific and technical information that the Langley Research Center produced during the calendar year 1983 is compiled. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

  4. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  5. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described

  6. Bituminization of radioactive wastes at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Hild, W.; Kluger, W.; Krause, H.

    1976-05-01

    A summary is given of the main operational experience gained at the Nuclear Research Center Karlsruhe in 4 years operation of the bituminization plant for evaporator concentrates from low- and medium level wastes. At the same time some of the essential results are compiled that have been obtained in the R + D activities on bituminization. (orig.) [de

  7. Biosurveillance at the United States Meat Animal Research Center

    Science.gov (United States)

    The mission of the 50 scientists and 165 support staff at the U.S. Meat Animal Research Center (USMARC) is to develop new technologies to increase the efficiency of livestock production and improve meat safety, quality, and animal health to benefit consumers worldwide. The facilities include 35,000 ...

  8. Implementing multidisciplinary research center infrastructure - A trendsetting example: SUNUM

    OpenAIRE

    Birkan, Burak; Özgüz, Volkan Hüsnü; Ozguz, Volkan Husnu

    2014-01-01

    Sabanci University Nanotechnology Research and Application Center (SUNUM) became operational in January 2012. SUNUM is a trendsetting example of a green and flexible research facility that is a test bed for the cost-effective operation of a Centralized Demand-Controlled Ventilation (CDCV) system, a state-of-the-art cleanroom, and world-class high technology equipment. The total investment in the facility was US$35 million.

  9. [Tissue repositories for research at Sheba Medical Center(SMC].

    Science.gov (United States)

    Cohen, Yehudit; Barshack, Iris; Onn, Amir

    2013-06-01

    Cancer is the number one cause of death in both genders. Breakthroughs in the understanding of cancer biology, the identification of prognostic factors, and the development of new treatments are increasingly dependent on access to human cancer tissues with linked clinicopathological data. Access to human tumor samples and a large investment in translational research are needed to advance this research. The SMC tissue repositories provide researchers with biological materials, which are essential tools for cancer research. SMC tissue repositories for research aim to collect, document and preserve human biospecimens from patients with cancerous diseases. This is in order to provide the highest quality and well annotated biological biospecimens, used as essential tools to achieve the growing demands of scientific research needs. Such repositories are partners in acceLerating biomedical research and medical product development through clinical resources, in order to apply best options to the patients. Following Institutional Review Board approval and signing an Informed Consent Form, the tumor and tumor-free specimens are coLLected by a designated pathologist at the operating room only when there is a sufficient amount of the tumor, in excess of the routine needs. Blood samples are collected prior to the procedure. Other types of specimens collected include ascites fluid, pleural effusion, tissues for Optimal Cutting Temperature [OCT] and primary culture etc. Demographic, clinical, pathologicaL, and follow-up data are collected in a designated database. SMC has already established several organ or disease-specific tissue repositories within different departments. The foundation of tissue repositories requires the concentrated effort of a multidisciplinary team composed of paramedical, medical and scientific professionals. Research projects using these specimens facilitate the development of 'targeted therapy', accelerate basic research aimed at clarifying molecular

  10. The Center for Adventist Research at Andrews University

    Directory of Open Access Journals (Sweden)

    Terry Dwain Robertson

    2015-01-01

    Full Text Available The Center for Adventist Research (CAR, an Andrews University and General Conference of Seventh-day Adventist organization, seeks to promote an understanding and appreciation of the heritage and mission of the Seventh-day Adventist Church (SDA. It combines the resources of the James White Library’s Adventist Heritage Center and the Ellen G. White Estate Branch Office to provide the most extensive collection of Adventist related resources in the world, both physically and digitally. An introduction to the background, collections, and activities of CAR is presented. Of particular interest are the digitization projects.

  11. Waste management at the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Hoehlein, G.; Lins, W.

    1982-01-01

    In the Karlsruhe Nuclear Research Center the responsibility for waste management is concentrated in the Decontamination Department which serves to collect and transport all liquid waste and solid material from central areas in the center for further waste treatment, clean radioactive equipment for repair and re-use or for recycling of material, remove from the liquid effluents any radioactive and chemical pollutants as specified in legislation on the protection of waters, convert radioactive wastes into mechanically and chemically stable forms allowing them to be transported into a repository. (orig./RW)

  12. SWOT analysis in Sina Trauma and Surgery Research Center.

    Science.gov (United States)

    Salamati, Payman; ashraf Eghbali, Ali; Zarghampour, Manijeh

    2014-01-01

    The present study was conducted with the aim of identifying and evaluating the internal and external factors, affecting the Sina Trauma and Surgery Research Center, affiliated to Tehran University of Medical Sciences and propose some of related strategies to senior managers. We used a combined quantitative and qualitative methodology. Our study population consisted of personnel (18 individuals) at Sina Trauma and Surgery Research Center. Data-collection tools were the group discussions and the questionnaires. Data were analyzed with descriptive statistics and SWOT (Strength, Weakness, Opportunities and Threats) analysis. 18 individuals participated in sessions, consisting of 8 women (44.4%) and 10 men (55.6%). The final scores were 2.45 for internal factors (strength-weakness) and 2.17 for external factors (opportunities-threats). In this study, we proposed 36 strategies (10 weakness-threat strategies, 10 weakness-opportunity strategies, 7 strength-threat strategies, and 9 strength-opportunity strategies). The current status of Sina Trauma and Surgery Research Center is threatened weak. We recommend the center to implement the proposed strategies.

  13. Karlsruhe Nuclear Research Center, Central Safety Department. Annual report 1993

    International Nuclear Information System (INIS)

    Koelzer, W.

    1994-04-01

    The Central Safety Department is responsible for handling all tasks of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: behavior of trace elements in the environment and decontamination of soil, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurements and personnel dosimetry. This report gives details of the different duties, indicates the results of 1993 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  14. Project 'European Research Center for Air Pollution Abatement Measures'

    International Nuclear Information System (INIS)

    1985-04-01

    During the 5-7th of March 1985 the first status report of the project 'European Research Center for Air Pollution Control Measures' took place in the Nuclear Research Center, Karlsruhe. Progress reports on the following topics assessment and analysis of the impacts of airborne pollutants on forest trees; distinction from other potential causes of recent forest dieback, research into atmospheric dispersion, conversion and deposition of airborne pollutants, development and optimization of industrial-technical processes to reduce or avoid emissions and providing instruments and making recommendations to the industrial and political sectors were presented. This volume is a collection of the work reported there. 42 papers were entered separately. (orig./MG) [de

  15. Nuclear Research Center Karlsruhe, Central Safety Department. Annual report 1992

    International Nuclear Information System (INIS)

    Koelzer, W.

    1993-05-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, biophysics of multicellular systems, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1992 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  16. Double Star Research: A Student-Centered Community of Practice

    Science.gov (United States)

    Johnson, Jolyon

    2016-06-01

    Project and team-based pedagogies are increasingly augmenting lecture-style science classrooms. Occasionally, university professors will invite students to tangentially partcipate in their research. Since 2006, Dr. Russ Genet has led an astronomy research seminar for community college and high school students that allows participants to work closely with a melange of professional and advanced amatuer researchers. The vast majority of topics have centered on measuring the position angles and searations of double stars which can be readily published in the Journal of Double Star Observations. In the intervening years, a collaborative community of practice (Wenger, 1998) formed with the students as lead researchers on their projects with the guidance of experienced astronomers and educators. The students who join the research seminar are often well prepared for further STEM education in college and career. Today, the research seminar involves multile schools in multiple states with a volunteer educator acting as an assistant instructor at each location. These assistant instructors interface with remote observatories, ensure progress is made, and recruit students. The key deliverables from each student team include a published research paper and a public presentation online or in-person. Citing a published paper on scholarship and college applications gives students' educational carreers a boost. Recently the Journal of Double Star Observations published its first special issue of exlusively student-centered research.

  17. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  18. The experimental teaching reform in biochemistry and molecular biology for undergraduate students in Peking University Health Science Center.

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and participated in some original research work. There is a critical educational need to prepare these students for the increasing accessibility of research experience. The redesigned experimental curriculum of biochemistry and molecular biology was developed to fulfill such a requirement, which keeps two original biochemistry experiments (Gel filtration and Enzyme kinetics) and adds a new two-experiment component called "Analysis of anti-tumor drug induced apoptosis." The additional component, also known as the "project-oriented experiment" or the "comprehensive experiment," consists of Western blotting and a DNA laddering assay to assess the effects of etoposide (VP16) on the apoptosis signaling pathways. This reformed laboratory teaching system aims to enhance the participating students overall understanding of important biological research techniques and the instrumentation involved, and to foster a better understanding of the research process all within a classroom setting. Student feedback indicated that the updated curriculum helped them improve their operational and self-learning capability, and helped to increase their understanding of theoretical knowledge and actual research processes, which laid the groundwork for their future research work. © 2015 The International Union of Biochemistry and Molecular Biology.

  19. Chemistry in the Galapagos Research Center Ltd., Zagreb

    Directory of Open Access Journals (Sweden)

    Kovačević, K.

    2011-12-01

    Full Text Available Galapagos Research Centre d. o. o., is a private research organization, active in the field of chemistry, biology, biomedicine, veterinary science and pharmacy. This article is devoted to the Internationa Year of Chemistry; this review includes the areas of study undertaken by the chemists in the research centre. Also presented are the current techniques and technologies applied in the implementation of research and development projects.The main activities of chemists are directed to the synthesis of new organic compounds resulting in potentially new medicines, their subsequent identification, structural characterization, purification process, magnification (scale up, the applied analysis of biological materials (DMPK – Drug Metabolism and Pharmacokinetics and the pharmaceutical development of preclinical candidates.Project teams at Galapagos incorporate researchers of all relevant professions to explore the potential of new medicines. These include chemists (chemical engineers and technologists, biologists, medical doctors, veterinarians and pharmacists. The ultimate goal of each of the projects is to establish an effective, well-defined preclinical candidate, which is further developed in other parts of the organization (Belgium, France, Great Britain, otherwise in the development laboratories of large partner organizations.This research article includes research and technology supported by concrete examples, and the results published in previous articles.

  20. Subject Didactic Studies of Research Training in Biology and Physics.

    Science.gov (United States)

    Lybeck, Leif

    1984-01-01

    The objectives and design of a 3-year study of research training and supervision in biology and physics are discussed. Scientific problems arising from work on the thesis will be a focus for the postgraduate students and their supervisors. Attention will be focused on supervisors' and students' conceptions of science, subject range, research,…

  1. Social justice and research using human biological material: A ...

    African Journals Online (AJOL)

    and provide that a person from whose body human biological material is withdrawn for research purposes may only be reimbursed for reasonable expenses incurred by him or her.[1,reg11] Accordingly, our law as it currently stands upholds an altruistic paradigm for participation in research and effectively outlaws any form ...

  2. Quarterly report of Biological and Medical Research Division, April 1955

    Energy Technology Data Exchange (ETDEWEB)

    Brues, A.M.

    1955-04-01

    This report is a compilation of 48 investigator prepared summaries of recent progress in individual research programs of the Biology and Medical Division of the Argonne National Laboratory for the quarterly period ending April,1955. Individual reports are about 3-6 pages in length and often contain research data.

  3. Analysis of Nonstationary Time Series for Biological Rhythms Research.

    Science.gov (United States)

    Leise, Tanya L

    2017-06-01

    This article is part of a Journal of Biological Rhythms series exploring analysis and statistics topics relevant to researchers in biological rhythms and sleep research. The goal is to provide an overview of the most common issues that arise in the analysis and interpretation of data in these fields. In this article on time series analysis for biological rhythms, we describe some methods for assessing the rhythmic properties of time series, including tests of whether a time series is indeed rhythmic. Because biological rhythms can exhibit significant fluctuations in their period, phase, and amplitude, their analysis may require methods appropriate for nonstationary time series, such as wavelet transforms, which can measure how these rhythmic parameters change over time. We illustrate these methods using simulated and real time series.

  4. A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility

    Science.gov (United States)

    Jackson, K. E.; Fasanella, E. L.

    2003-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

  5. Bringing the physical sciences into your cell biology research.

    Science.gov (United States)

    Robinson, Douglas N; Iglesias, Pablo A

    2012-11-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences.

  6. Public relations activities of the Karlsruhe Nuclear Research Center - a national research center contributes to opinion forming

    International Nuclear Information System (INIS)

    Koerting, K.

    1988-01-01

    At the Karlsruhe Nuclear Research Center, the Public Relations Department directly reports to the Chief Executive Officer. The head of the Public Relation Department acts as spokesman of the center in the public, which requires him to be fully informed of the work of all units and of the policy goals of the executive board. The key tools used by the Public Relations Department are KfK-Hausmitteilungen, accident information, the scientific journal KfK-Nachrichten, press releases, exhibitions, fairs, guided tours, and nuclear energy information staff. (DG)

  7. New York can be our nation's center for Alzheimer's research.

    Science.gov (United States)

    Vann, Allan S

    2014-09-01

    More than 5 million people in this country have Alzheimer's disease, and more than 300,000 of those with Alzheimer's live in New York. By 2025, it is estimated that there will be 350,000 residents living with Alzheimer's in New York. Congressman Steve Israel and New York Assemblyman Charles Lavine issued a joint proposal in June, 2013 suggesting that New York become this country's center for Alzheimer's research. Obviously, they would both like to see increased federal funding, but they also know that we cannot count on that happening. So Israel and Lavine have proposed a $3 billion state bonding initiative to secure sufficient funding to tackle this disease. It would be similar to the bonding initiatives that have made California and Texas this nation's centers for stem cell and cancer research. The bond would provide a dedicated funding stream to support research to find effective means to treat, cure, and eventually prevent Alzheimer's, and fund programs to help people currently dealing with Alzheimer's and their caregivers. New York already has some of the major "ingredients" to make an Alzheimer's bond initiative a success, including 3 of our nation's 29 Alzheimer's Disease Research Centers and some of the finest research facilities in the nation for genetic and neuroscience research. One can only imagine the synergy of having these world class institutions working on cooperative grants and projects with sufficient funding to attract even more world class researchers and scientists to New York to find ways to prevent, treat, and cure Alzheimer's. © The Author(s) 2014.

  8. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  9. Dissemination of information at the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Miller, A.

    1992-01-01

    Since 1985, also the LASSO catalog database of the Central Library of the Main Department for Library and Communication Services (HBK) has been made available through STN as a private file. All staff members of the Nuclear Research Center requiring information and able to manage STN MESSENGER have since the possibility to use one search language for the LASSO catalog database of the Central Library and for more than 100 databases of FIZ Karlsruhe or STN International. After a rather long startup period, this service is now utilized very effectively, but as yet only by the information professionals or information specialists. In order to familiarize prospective users with the proper way of conducting searches in LASSO via STN MESSENGER, we regularly run half-day courses at the Center for Advanced Technological and Environmental Research. (orig./DG)

  10. Tennessee Valley Authority National Fertilizer and Environmental Research Center

    International Nuclear Information System (INIS)

    Gautney, J.

    1991-01-01

    The National Fertilizer and Environmental Research Center (NFERC) is a unique part of the Tennessee Valley Authority (TVA), a government agency created by an Act of Congress in 1933. The Center, located in Muscle Shoals, Alabama, is a national laboratory for research, development, education and commercialization for fertilizers and related agricultural chemicals including their economic and environmentally safe use, renewable fuel and chemical technologies, alternatives for solving environmental/waste problems, and technologies which support national defense- NFERC projects in the pesticide waste minimization/treatment/disposal areas include ''Model Site Demonstrations and Site Assessments,'' ''Development of Waste Treatment and Site Remediation Technologies for Fertilizer/Agrichemical Dealers,'' ''Development of a Dealer Information/Education Program,'' and ''Constructed Wetlands.''

  11. Research, CME, media relations boost diabetes center's profile.

    Science.gov (United States)

    Rees, Tom

    2002-01-01

    For Boston's Joslin Diabetes Center, media relations rather than formal advertising is the key to a high-profile image. The communications office targets newspaper, magazine and TV reporters and editors with public service announcements and news about research and clinical care advances. Other successful tools include a high-end quarterly magazine, a fact-filled information kit, disease-specific support programs and a catalog of educational materials.

  12. List of scientific publications of Nuclear Research Center Karlsruhe 1983

    International Nuclear Information System (INIS)

    1984-04-01

    This report contains the titles of the publications edited in the year 1983. The scientific and technical-scientific publications of the Nuclear Research Center Karlsruhe are printed as books, as original contributions in scientific or technical specialists' journals, as scripts for habilitation, thesis, scripts for diploma, as patents, as KfK-Reports (KfK=Kernforschungszentrum Karlsruhe) and are being presented as lectures on scientific meetings. No further separate abstracts of this list of publications were prepared. (orig./HBR) [de

  13. A preliminary exploration of the advanced molecular bio-sciences research center

    International Nuclear Information System (INIS)

    Yanai, Takanori; Yamada, Yutaka; Tanaka, Kimio; Yamagami, Mutsumi; Sota, Masahiro; Takemura, Tatsuo; Koyama, Kenji; Sato, Fumiaki

    2001-01-01

    Low dose and low dose rate radiation effects on lifespan, pathological changes, hemopoiesis and cytokine production in mice have been investigated in our laboratory. In the intermediate period of the investigation, an expert committee on radiation biology was organized. The purposes of the committee were to assess previous studies and advise on a future research plan for the Advanced Molecular Bio-Sciences Research Center (AMBIC). The committee emphasized the necessity of molecular research in radiation biology, and proposed the following five subjects: 1) molecular carcinogenesis by low dose radiation; 2) radiation effects on the immune and hemopoietic systems; 3) molecular mechanisms of hereditary effect; 4) noncancer diseases of low dose radiation, and 5) cellular mechanisms by low dose radiation. (author)

  14. NASA Space Biology Plant Research for 2010-2020

    Science.gov (United States)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  15. University of Florida lightning research at the Kennedy Space Center

    Science.gov (United States)

    Uman, Martin A.; Thomson, Ewen M.

    1987-01-01

    A variety of basic and applied research programs are being conducted at the Kennedy Space Center. As an example of this research, the paper describes the University of Florida program to characterize the electric and magnetic fields of lightning and the coupling of those fields to utility power lines. Specifically, detailed consideration is given to the measurements of horizontal and vertical electric fields made during the previous three summers at KSC and the simultaneous measurements of the voltages on a 500 m test line made during the past two summers at KSC. Theory to support these measurements is also presented.

  16. NASA Glenn Research Center Experience with "LENR Phenomenon"

    Science.gov (United States)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  17. NASA Glenn Research Center Experience with LENR Phenomenon

    Science.gov (United States)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  18. Activities in biological radiation research at the AGF

    International Nuclear Information System (INIS)

    1984-01-01

    The AGF is working on a wide spectrum of biological radiation research, with the different scientific disciplines contributing different methodologies to long-term research projects. The following fields are studied: 1. Molecular and cellular modes of action of radiation. 2. Detection and characterisation of biological radiation damage, especially in humans. 3. Medical applications of radiation effects. 4. Concepts and methods of radiation protection. The studies will lead to suggestions for radiation protection and improved radiotherapy. They may also contribute to the development of environmental protection strategies. (orig./MG) [de

  19. 77 FR 40596 - Applications for New Awards: Disability and Rehabilitation Research Projects and Centers Program...

    Science.gov (United States)

    2012-07-10

    ... Applications for New Awards: Disability and Rehabilitation Research Projects and Centers Program; Disability and Rehabilitation Research Projects; Employment of Individuals With Disabilities AGENCY: Office of... Rehabilitation Research Projects and Centers Program-- Disability and Rehabilitation Research Projects (DRRPs...

  20. Applying the community partnership approach to human biology research.

    Science.gov (United States)

    Ravenscroft, Julia; Schell, Lawrence M; Cole, Tewentahawih'tha'

    2015-01-01

    Contemporary human biology research employs a unique skillset for biocultural analysis. This skillset is highly appropriate for the study of health disparities because disparities result from the interaction of social and biological factors over one or more generations. Health disparities research almost always involves disadvantaged communities owing to the relationship between social position and health in stratified societies. Successful research with disadvantaged communities involves a specific approach, the community partnership model, which creates a relationship beneficial for researcher and community. Paramount is the need for trust between partners. With trust established, partners share research goals, agree on research methods and produce results of interest and importance to all partners. Results are shared with the community as they are developed; community partners also provide input on analyses and interpretation of findings. This article describes a partnership-based, 20 year relationship between community members of the Akwesasne Mohawk Nation and researchers at the University at Albany. As with many communities facing health disparity issues, research with Native Americans and indigenous peoples generally is inherently politicized. For Akwesasne, the contamination of their lands and waters is an environmental justice issue in which the community has faced unequal exposure to, and harm by environmental toxicants. As human biologists engage in more partnership-type research, it is important to understand the long term goals of the community and what is at stake so the research circle can be closed and 'helicopter' style research avoided. © 2014 Wiley Periodicals, Inc.

  1. Bibliographical review on the teaching of Biology and research

    Directory of Open Access Journals (Sweden)

    Mª Luz Rodríguez Palmero

    2000-09-01

    Full Text Available This review complements another one done by the same author, in 1997, regarding the role of comprehending the concept of cell in the learning of Biology. In addition, some general papers on science education that provide a better understanding of research approaches used in the investigation of this topic have been included. The reviewed papers have been organized into categories according to the object of study, the relevance assigned to the cell concept, and the framework of analysis. The review shows that the concept of cell is very important in the biological conceptualization, however, it also shows the need of additional research on this matter, from theoretical frameworks that pay more attention to the psychological level, in order to provide some guidance to improve the teaching and learning processes of the biological content that presupose the comprehension of living beings.

  2. Current NDT activities at Cekmece Nuclear Research and Training Center

    International Nuclear Information System (INIS)

    Ekinci, S.

    2004-01-01

    Nondestructive testing (NDT) activities at Cekmece Nuclear Research and Training Center (CNAEM) has been initiated in the Industrial Application Department of the Center which was established in 1976 as the Radioisotope Applications Group for Industry. The Department started its first NDT activity with industrial radiography. The NDT activities have been developed by the support of various national (State Planning Organization (DPT)) and international (IAEA and UNDP) projects. Today, there are five basic NDT techniques (radiography, ultrasonic, magnetic particle, liquid penetrant and eddy current) used in the Industrial Application Department. The Department arranges routinely NDT qualification courses according to ISO 9712 and TS EN 473 standards for level 1 and 2 for Turkish Industry. It also carries out national DPT and IAEA Technical Co-operation projects and gives NDT services in the laboratory and in the field. Digital radiography and digital ultrasonic techniques are being used in advanced NDT applications. This paper describes the NDT activities of CNAEM. (author)

  3. Overview of research in progress at the Center of Excellence

    Science.gov (United States)

    Wandell, Brian A.

    1993-01-01

    The Center of Excellence (COE) was created nine years ago to facilitate active collaboration between the scientists at Ames Research Center and the Stanford Psychology Department. Significant interchange of ideas and personnel continues between Stanford and participating groups at NASA-Ames; the COE serves its function well. This progress report is organized into sections divided by project. Each section contains a list of investigators, a background statement, progress report, and a proposal for work during the coming year. The projects are: Algorithms for development and calibration of visual systems, Visually optimized image compression, Evaluation of advanced piloting displays, Spectral representations of color, Perception of motion in man and machine, Automation and decision making, and Motion information used for navigation and control.

  4. Biological field stations: research legacies and sites for serendipity

    Science.gov (United States)

    William K. Michener; Keith L. Bildstein; Arthur McKee; Robert R. Parmenter; William W. Hargrove; Deedra McClearn; Mark Stromberg

    2009-01-01

    Biological field stations are distributed throughout North America, capturing much of the ecological variability present at the continental scale and encompassing many unique habitats. In addition to their role in supporting research and education, field stations offer legacies of data, specimens, and accumulated knowledge. Such legacies often provide the only...

  5. Cancer systems biology: signal processing for cancer research

    Science.gov (United States)

    Yli-Harja, Olli; Ylipää, Antti; Nykter, Matti; Zhang, Wei

    2011-01-01

    In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts. PMID:21439242

  6. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

  7. Decommissioning of the ASTRA research reactor: Dismantling of the biological shield

    Directory of Open Access Journals (Sweden)

    Meyer Franz

    2006-01-01

    Full Text Available The paper describes the dismantling of the inactive and activated areas of the biological shield of the ASTRA research reactor at the Austrian Research Center in Seibersdorf. The calculation of the parameters determining the activated areas at the shield (reference nuclide, nuclide vector in the barite concrete and horizontal and vertical reduction behaviors of activity concentration and the activation profiles within the biological shield for unrestricted release, release restricted to permanent deposit and radioactive waste are presented. Considerations of located activation anomalies in the shield, e.g. in the vicinities of the beam-tubes, were made according to the reactor's operational history. Finally, an overview of the materials removed from the biological shield is given.

  8. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  9. Technical report from Radioactive Waste Management Funding and Research Center

    International Nuclear Information System (INIS)

    2007-10-01

    As the only one Japanese organization specialized in radioactive waste, RWMC (Radioactive Waste Management Funding and Research Center) has been conducting the two major roles; R and D and the fund administration for radioactive waste management. The focus of its studies includes land disposal of LLW (Low-level radioactive wastes) and it has gradually extended to research on management and disposal techniques for high-level (HLW) and TRU wastes and studies on securing and managing the funds required for disposal of these wastes. The present document is the yearly progress report of 2006 and the main activities and research results are included on spent fuel disposal techniques including radon diffusion and emanation problem, performance studies on underground facilities for radioactive waste disposal and its management, technical assessment for geological environment, remote control techniques, artificial barrier systems proposed and its monitoring systems, and TRU disposals. (S. Ohno)

  10. Biological/paleoecological analysis for modern archaeological research

    International Nuclear Information System (INIS)

    Berglund, B.E.

    1977-01-01

    The importance of biological/geological methods besides geophysical/chemical ones for a multidisciplinary archaeological research is underlined. This is a necessity for a deeper knowledge of prehistoric society, settlement environment and the human landscape development. Dating methods are discussed and archaeological/paleoecological settlement studies are illustrated by a generalized case study. A proposed organization in Sweden of the research cooperation between archaeologists and natural science specialists is also discussed. (author)

  11. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused on the design, generation, characterization and application of genetically engineered and biological animal models of human disease, which are aimed at the development of targeted diagnostics and therapies. LASP contributes to advancing human health, developing new treatments, and improving existing treatments for cancer and other diseases while ensuring safe and humane treatment of animals. Key Roles/Responsibilities The Senior Laboratory Animal Technician will be responsible for: Daily tasks associated with the care, breeding and treatment of research animals for experimental purposes Management of rodent breeding colonies consisting of multiple, genetically complex strains and associated record keeping and database management Colony management procedures including: tail clipping, animal identification, weaning Data entry consistent with complex colony management Collection of routine diagnostic samples Coordinating shipment of live animals and specimens Performing rodent experimental procedures including basic necropsy and blood collection Observation and recording of physical signs of animal health Knowledge of safe working practices using chemical carcinogen and biological hazards Work schedule may include weekend and holiday hours

  12. RNA Nanostructures – Methods and Protocols | Center for Cancer Research

    Science.gov (United States)

    RNA nanotechnology is a young field with many potential applications. The goal is to utilize designed RNA strands, such that the obtained constructs have specific properties in terms of shape and functionality. RNA has potential functionalities that are comparable to that of proteins, but possesses (compared to proteins) simpler design principles akin to DNA. The promise is that designed RNA complexes may make possible novel types of molecular assemblies with applications in medicine (as therapeutics or diagnostics), material science, imaging, structural biology, and basic research.

  13. The Austrian Research Centers activities in energy risks

    International Nuclear Information System (INIS)

    Sdouz, Gert

    1998-01-01

    Among the institutions involved in energy analyses in Austria the risk context is being treated by three different entities: the Energy Consumption Agency, internationally known as EVA, the Federal Environmental Protection Agency, or Urnweltbundesarnt assessing mainly the environmental risks involved and the Austrian Research Centers, working on safety and risk evaluation. The Austrian Research Center Seibersdorf draws form its proficiency in Reactor Safety and Fusion Research, two fields of experience it has been involved in since its foundation, for some 40 years now. Nuclear energy is not well accepted by the Austrian population. Therefore in our country only energy systems with advanced safety level might be accepted in the far future. This means that the development of methods to compare risks is an important task. The characteristics of energy systems featuring advanced safety levels are: A very low hazard potential and a focus on deterministic safety instead of probabilistic safety, meaning to rely on inherently safe physics concepts, confirmed by probabilistic safety evaluation results. This can be achieved by adequate design of fusion reactors, advanced fission reactors and all different renewable sources of energy

  14. Yellow fever vaccination centers: concurrent vaccinations and updates on mosquito biology.

    Science.gov (United States)

    Arya, Subhash C; Agarwal, Nirmala

    2012-09-01

    Mandatory visits to immunization centers that offer pre-travel Yellow fever vaccine to prospective travelers would be useful for briefing the basics of the biology of the mosquito responsible for Yellow fever spread. Pre- travel knowledge on the day-time rather the nocturnal biting habit of the mosquitoes of Aedes species would prevent from bites of the mosquitoes responsible for the spread of viruses causing Yellow fever, dengue or Chikungunya infection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Telecommuting (Work-At-Home) at NASA Lewis Research Center

    Science.gov (United States)

    Srinidhi, Saragur M.

    1994-01-01

    This report presents a study in evaluating the viability of providing a work-at-home (telecommuting) program for Lewis Research Center's corporate employees using Integrated Services Digital Network (ISDN). Case studies have been presented for a range of applications from casual data access to interactive access. The network performance of telemedia applications were studied against future requirements for such level of remote connectivity. Many of the popular ISDN devices were characterized for network and service functionality. A set of recommendations to develop a telecommuting policy have been proposed.

  16. Surface modification and characterization Collaborative Research Center at ORNL

    International Nuclear Information System (INIS)

    1986-01-01

    The Surface Modification and Characterization Collaborative Research Center (SMAC/CRC) is a unique facility for the alteration and characterization of the near-surface properties of materials. The SMAC/CRC facility is equipped with particle accelerators and high-powered lasers which can be used to improve the physical, electrical, and/or chemical properties of solids and to create unique new materials not possible to obtain with conventional ''equilibrium'' processing techniques. Surface modification is achieved using such techniques as ion implantation doping, ion beam mixing, laser mixing, ion deposition, and laser annealing

  17. Collaborative Mission Design at NASA Langley Research Center

    Science.gov (United States)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  18. Stem Cells: A Renaissance in Human Biology Research.

    Science.gov (United States)

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-16

    The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The solar system: Importance of research to the biological sciences

    Science.gov (United States)

    Klein, Harold P.

    1992-01-01

    An attempt is made to describe the scope of scientific areas that comprise the current field of exobiology in the United States. From investigations of astrophysical phenomena that deal with the birth of stars and planetary systems to questions of molecular biology involving phylogenetic relationships among organisms, from attempts to simulate the synthesis of biological precursor molecules in the chemistry laboratory to making measurements of the organic constituents of Titan's atmosphere, these researches all converge toward a common objective--answering the question of how life came about in the universe.

  20. The Role of Computers in Research and Development at Langley Research Center

    Science.gov (United States)

    Wieseman, Carol D. (Compiler)

    1994-01-01

    This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics.

  1. 76 FR 44593 - Identifying the Center for Drug Evaluation and Research's Science and Research Needs...

    Science.gov (United States)

    2011-07-26

    ... Drug Information, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New... for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 21, rm... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-D-0239...

  2. A RESEARCH REPORT ON OPERATIONAL PLANS FOR DEVELOPING REGIONAL EDUCATIONAL MEDIA RESEARCH CENTERS.

    Science.gov (United States)

    CARPENTER, C.R.; AND OTHERS

    THE NEED AND FEASIBILITY OF ESTABLISHING A NUMBER OF "REGIONAL EDUCATIONAL MEDIA RESEARCH CENTERS WITH A PROGRAMMATIC ORIENTATION" WERE INVESTIGATED. A PLANNING GROUP WAS ESTABLISHED TO SERVE AS A STEERING COMMITTEE. CONFERENCES IN WHICH GROUPS IN RESEARCH AND EDUCATION IN WIDELY DISTRIBUTED REGIONS OF THE COUNTRY PARTICIPATED WERE HELD…

  3. Effectiveness and properties of the biological prosthesis Permacol? in pediatric surgery: A large single center experience

    OpenAIRE

    Filisetti, Claudia; Costanzo, Sara; Marinoni, Federica; Vella, Claudio; Klersy, Catherine; Riccipetitoni, Giovanna

    2016-01-01

    Introduction The use of prosthetic patches of non-absorbable materials represents a valid tool in the treatment of abdominal wall and diaphragmatic defects in pediatric age. In recent years research has developed biological dermal scaffolds made from a sheet of acellular matrix that can provide the desired support and reduce the occurrence of complications from non-absorbable implant. We present our experience and a systematic review to evaluate the use of biologic prosthesis for abdominal wa...

  4. Joint development utility and university and utility and research center

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Roberto del Giudice R.; Valgas, Helio Moreira [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    1994-12-31

    This paper shows the background acquired by CEMIG in dealing with projects associated with R and D (Research and Development), carried out as a result of the establishment of contracts or governants with universities and research center for direct application on the solution of problems related to the operation of the system, within the scope of electrical operation planning. The various aspects of a project of this nature such as legal questions, characterization of a contract or a covenant, main developments and new opportunity areas should be covered. Finally the subject shall be dealt with under the Total Quality approach, involving the proposition of control items associated to the process and goals to be reached. (author) 7 refs., 2 figs.

  5. 1998 researchers' conference proceedings, Amarillo College Business and Industry Center

    International Nuclear Information System (INIS)

    1998-01-01

    The first Strategic Arms Reduction Treaties (START 1 and 2) signed by the US and the Soviet Union call for a reduction in strategic nuclear warheads to about one-third of 1990 levels and a complete elimination of land-based, multiple-warhead missiles. As a consequence of dismantling nuclear warheads, a significant portion of the inventory of nuclear materials that were formerly parts of deployed weapon systems was designated to be handled and/or stored at the Pantex Plant near Amarillo, Texas. To facilitate research integration between the national laboratories and the universities, the Center has divided its technical activities into seven focus areas. For Nuclear and Other Materials Studies, the focus areas are Materials Science, Plutonium Processing and handling, Nuclear Materials Storage, and analytical Development. The Environment, Safety and Health focus areas are Environmental Restoration and Protection, Safety and Health, and Waste Management. Research projects within each area are presented

  6. Assessment of Electromagnetic Fields at NASA Langley Research Center

    Science.gov (United States)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  7. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 66

    International Nuclear Information System (INIS)

    OGAWA, A.

    2005-01-01

    The RIKEN BNL Research Center (RSRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the 'Rikagaku Kenkyusho (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has both a theory and experimental component. At present the theoretical group has 4 Fellows and 3 Research Associates as well as 11 RHIC Physics/University Fellows (academic year 2003-2004). To date there are approximately 30 graduates from the program of which 13 have attained tenure positions at major institutions worldwide. The experimental group is smaller and has 2 Fellows and 3 RHIC Physics/University Fellows and 3 Research Associates, and historically 6 individuals have attained permanent positions. Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists, A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center. RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are sixty nine proceedings volumes available. The construction of a 0.6 teraflops parallel processor, dedicated to lattice QCD, begun at the Center on February 19, 1998, was completed on August 28, 1998 and is still

  8. Manufacturing/Cell Therapy Specialist | Center for Cancer Research

    Science.gov (United States)

    Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and blood diseases and

  9. Center for Nuclear Medicine Research in Alzheimer`s Disease Health Sciences Center, West Virginia University. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Environmental Assessment (EA) of the Center for Nuclear Medicine Research in Alzheimer`s Disease (CNMR) at the Health Sciences Center, at West Virginia University in Morgantown, West Virginia for the construction and operation was prepared by DOE. The EA documents analysis of the environmental and socioeconomic impacts that might occur as a result of these actions, and characterizes potential impacts on the environment. In the EA, DOE presents its evaluation of potential impacts of construction and operation of the CNMR on health and safety of both workers and the public, as well as on the external environment. Construction impacts include the effects of erosion, waste disposal, air emissions, noise, and construction traffic and parking. Operational impacts include the effects of waste generation (domestic, sanitary, hazardous, medical/biological, radioactive and mixed wastes), radiation exposures, air emissions (radioactive, criteria, and air toxics), noise, and new workers. No sensitive resources (wetlands, special sources of groundwater, protected species) exist in the area of project effect.

  10. Promoting one health: the University of Missouri Research Center for Human/Animal Interaction.

    Science.gov (United States)

    Johnson, Rebecca A

    2013-01-01

    The University of Missouri's College of Veterinary Medicine is home to the Research Center for Human-Animal Interaction. This center uniquely addresses a growing area of research that focuses on how the human-animal bond impacts health in people and animals. This article highlights the One Health basis for the center, several research projects, and future goals for the center.

  11. Sharing science with the public at a national research center

    Science.gov (United States)

    Johnson, R.; Foster, S.; Carbone, L.; Henderson, S.; Munoz, R.; Ward, D.

    2003-04-01

    The growing consensus that improving science education and public science literacy requires the focused efforts of a wide spectrum of specialists, including scientists, provides the opportunity for national research centers to develop programs that seek to uniquely bring their science to educators and the public. At the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, we have developed a multifaceted program for science education and outreach designed to bring our science to these audiences in a way that builds on our specialized expertise. Education and outreach activities at NCAR include numerous opportunities to engage with the public in informal settings. Our exhibit and tour program offers topically focused interactive activities and opportunities to learn about the science underway at the laboratory. We also hold an annual festival for children and families and lectures for the public through which science principles and content are communicated by hands-on activities, dramatic demonstrations, and rich visual media. Our web sites provide extensive resources including interactives and activities that enable students, educators, and the public to learn on their own about our science. Central to all of these informal science activities is the participation of lab scientists and staff, whose personal enthusiasm and science expertise enriches all aspects of the program for the public.

  12. The Rise of Federally Funded Research and Development Centers

    Energy Technology Data Exchange (ETDEWEB)

    DALE,BRUCE C.; MOY,TIMOTHY D.

    2000-09-01

    Federally funded research and development centers (FFRDCS) area unique class of research and development (R and D) facilities that share aspects of private and public ownership. Some FFRDCS have been praised as national treasures, but FFRDCS have also been the focus of much criticism through the years. This paper traces the history of FFRDCS through four periods: (1) the World War II era, which saw the birth of federal R and D centers that would eventually become FFRDCS; (2) the early Cold War period, which exhibited a proliferation of FFRDCS despite their unclear legislative status and growing tension with an increasingly capable and assertive defense industry, (3) there-evaluation and retrenchment of FFRDCS in the 1960s and early 1970s, which resulted in a dramatic decline in the number of FFRDCS; and (4) the definition and codification of the FFRDC entity in the late 1970s and 1980s, when Congress and the executive branch worked together to formalize regulations to control FFRDCS. The paper concludes with observations on the status of FFRDCS at the end of the twentieth century.

  13. Dryden Flight Research Center Critical Chain Project Management Implementation

    Science.gov (United States)

    Hines, Dennis O.

    2012-01-01

    In Fiscal Year 2011 Dryden Flight Research Center (DFRC) implemented a new project management system called Critical Chain Project Management (CCPM). Recent NASA audits have found that the Dryden workforce is strained under increasing project demand and that multi-tasking has been carried to a whole new level at Dryden. It is very common to have an individual work on 10 different projects during a single pay period. Employee surveys taken at Dryden have identified work/life balance as the number one issue concerning employees. Further feedback from the employees indicated that project planning is the area needing the most improvement. In addition, employees have been encouraged to become more innovative, improve job skills, and seek ways to improve overall job efficiency. In order to deal with these challenges, DFRC management decided to adopt the CCPM system that is specifically designed to operate in a resource constrained multi-project environment. This paper will discuss in detail the rationale behind the selection of CCPM and the goals that will be achieved through this implementation. The paper will show how DFRC is tailoring the CCPM system to the flight research environment as well as laying out the implementation strategy. Results of the ongoing implementation will be discussed as well as change management challenges and organizational cultural changes. Finally this paper will present some recommendations on how this system could be used by selected NASA projects or centers.

  14. Langley Research Center - Soluble Imide (LaRC-SI)

    Science.gov (United States)

    Stang, David

    1995-01-01

    This report is about experimenting and developing uses for the new thermal plastic developed by Dr. Robert Bryant called the 'Langley Research Center - Soluble Imide' (LaRC-SI). The three developments are: the use of the LaRC-SI as a dielectric for thin film sensors, as an adhesive to place diamonds on surfaces to increase thermal conductivity, and as an intermediate layer to allow the placement of metal on aluminum nitride. The LaRC-SI was developed by Dr. Robert G. Bryant, a chemical engineer at NASA Langley Research Center. The unique properties of this material is that it is an amorphous thermoplastic. This means that it can be reformed at elevated temperature and pressures. It can be applied in the form of a spray, spin, dip coating, paint, or spread with a doctors blade. The LaRC-SI has excellent adhesive and dielectric properties. It can also be recycled. Potential applications for this material are resin for mechanical parts such as gears, bearings and valves, advanced composites like carbon fiber, high strength adhesives, thin film circuits, and as a dielectric film for placing electrical components on conductive materials.

  15. Advancing Cancer Systems Biology: Introducing the Center for the Development of a Virtual Tumor, CViT

    Directory of Open Access Journals (Sweden)

    Sean Martin

    2007-01-01

    Full Text Available Integrative cancer biology research relies on a variety of data-driven computational modeling and simulation methods and techniques geared towards gaining new insights into the complexity of biological processes that are of critical importance for cancer research. These include the dynamics of gene-protein interaction networks, the percolation of subcellular perturbations across scales and the impact they may have on tumorigenesis in both experiments and clinics. Such innovative ‘systems’ research will greatly benefi t from enabling Information Technology that is currently under development, including an online collaborative environment, a Semantic Web based computing platform that hosts data and model repositories as well as high-performance computing access. Here, we present one of the National Cancer Institute’s recently established Integrative Cancer Biology Programs, i.e. the Center for the Development of a Virtual Tumor, CViT, which is charged with building a cancer modeling community, developing the aforementioned enabling technologies and fostering multi-scale cancer modeling and simulation.

  16. Invited Review Article: Advanced light microscopy for biological space research

    Energy Technology Data Exchange (ETDEWEB)

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  17. Invited Review Article: Advanced light microscopy for biological space research

    Science.gov (United States)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  18. Invited Review Article: Advanced light microscopy for biological space research

    International Nuclear Information System (INIS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-01-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy

  19. Invited review article: Advanced light microscopy for biological space research.

    Science.gov (United States)

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  20. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    Science.gov (United States)

    Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change. PMID:26086659

  1. [Researches on virology at the Tohoku University Research Center in the Philippines].

    Science.gov (United States)

    Oshitani, Hitoshi; Saito, Mariko; Okamoto, Michiko; Tamaki, Raita; Kamigaki, Taro; Suzuki, Akira

    2013-01-01

    Tohoku University Graduate School of Medicine has established the Tohoku-RITM Collaborative Research Center on Emerging and Re-emerging Diseases at Research Institute for Tropical Medicine (RITM) in the Philippines in 2008. Our aim of the center is to conduct operational researches, which can contribute to control of infectious diseases in the Philippines. Therefore most of our researches in the Philippines are being conducted in the fields. Main research themes include severe acute respiratory infections in children, influenza disease burden study, molecular epidemiology of rabies, and viral etiology of acute diarrhea. The study on severe acute respiratory infections in children in Leyte Island has recruited hospitalized cases with severe pneumonia. We showed that enterovirus 68 was one of important causative agents in severe pneumonia cases. We also conducted other analyses including molecular epidemiology of respiratory syncytial virus (RSV) and pathogenesis of human rhinoviruses (HRV). Based on these studies, we initiated more comprehensive researches in the Philippines since 2010.

  2. Translational Partnership Development Lead | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Frederick National Laboratory for Cancer Research (FNLCR) is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc on behalf of the National Cancer Institute (NCI). The staff of FNLCR support the NCI’s mission in the fight against cancer and HIV/AIDS. Currently we are seeking a Translational Partnership Development Lead (TPDL) who will work closely with the Office of Translational Resources (OTR) within the Office of the Director (OD) of NCI’s Center for Cancer Research (CCR) to facilitate the successful translation of CCR’s basic and preclinical research advances into new therapeutics and diagnostics. The TPDL with be strategically aligned within FNLCR’s Partnership Development Office (PDO), to maximally leverage the critical mass of expertise available within the PDO. CCR comprises the basic and clinical components of the NCI’s Intramural Research Program (IRP) and consists of ~230 basic and clinical Investigators located at either the NIH main campus in Bethesda or the NCI-Frederick campus. CCR Investigators are focused primarily on cancer and HIV/AIDS, with special emphasis on the most challenging and important high-risk/high-reward problems driving the fields. (See https://ccr.cancer.gov for a full delineation of CCR Investigators and their research activities.) The process of developing research findings into new clinical applications is high risk, complex, variable, and requires multiple areas of expertise seldom available within the confines of a single Investigator’s laboratory. To accelerate this process, OTR serves as a unifying force within CCR for all aspects of translational activities required to achieve success and maintain timely progress. A key aspect of OTR’s function is to develop and strengthen essential communications and collaborations within NIH, with extramural partners and with industry to bring together experts in chemistry, human subjects research

  3. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  4. Nurse Practitioner/Physician Assistant | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  5. Multi-Vehicle Cooperative Control Research at the NASA Armstrong Flight Research Center, 2000-2014

    Science.gov (United States)

    Hanson, Curt

    2014-01-01

    A brief introductory overview of multi-vehicle cooperative control research conducted at the NASA Armstrong Flight Research Center from 2000 - 2014. Both flight research projects and paper studies are included. Since 2000, AFRC has been almost continuously pursuing research in the areas of formation flight for drag reduction and automated cooperative trajectories. An overview of results is given, including flight experiments done on the FA-18 and with the C-17. Other multi-vehicle cooperative research is discussed, including small UAV swarming projects and automated aerial refueling.

  6. The evaluation of the individual impact factor of researchers and research centers using the RC algorithm.

    Science.gov (United States)

    Cordero-Villafáfila, Amelia; Ramos-Brieva, Jesus A

    2015-01-01

    The RC algorithm quantitatively evaluates the personal impact factor of the scientific production of isolated researchers. The authors propose an adaptation of RC to evaluate the personal impact factor of research centers, hospitals and other research groups. Thus, these could be classified according to the accredited impact of the results of their scientific work between researchers of the same scientific area. This could be useful for channelling budgets and grants for research. Copyright © 2013 SEP y SEPB. Published by Elsevier España. All rights reserved.

  7. BRIC-60: Biological Research in Canisters (BRIC)-60

    Science.gov (United States)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, Vergel

    2016-01-01

    The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations evaluating the effects of space flight on small organisms. Specimens flown in the BRIC 60 mm petri dish (BRIC-60) hardware include Lycoperscion esculentum (tomato), Arabidopsis thaliana (thale cress), Glycine max (soybean) seedlings, Physarum polycephalum (slime mold) cells, Pothetria dispar (gypsy moth) eggs and Ceratodon purpureus (moss).

  8. Research Applications of Proteolytic Enzymes in Molecular Biology

    OpenAIRE

    Mótyán, János András; Tóth, Ferenc; Tőzsér, József

    2013-01-01

    Proteolytic enzymes (also termed peptidases, proteases and proteinases) are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications ...

  9. A research on the enhancement of research management efficiency for the division of research, Korea cancer center hospital

    International Nuclear Information System (INIS)

    Lee, S. W.; Ma, K. H.; Kim, J. R.; Lee, D. C.; Lee, J. H.

    1999-06-01

    The research activities of Korea Cancer Center Hospital have increased for the past a few years just in proportion to the increase of research budget, but the assisting manpower of the office of research management has never been increased and the indications are that the internal and external circumstances will not allow the recruitment for a fairly long time. It has, therefore, become inevitable to enhance the work efficiency of the office by analyzing the administrative research assistance system, finding out problems and inefficiency factors, and suggesting possible answers to them. The office of research management and international cooperation has conducted this research to suggest possible ways to facilitate the administrative support for the research activities of Korea Cancer Center Hospital By analyzing the change of research budget, organization of the division of research and administrative support, manpower, and the administrative research supporting system of other institutes, we suggested possible ways to enhance the work efficiency for administrative research support and developed a relative database program. The research report will serve as a data for the organization of research support division when the Radiation Medicine Research Center is established. The database program has already been used for research budget management

  10. Langley Research Center Utility Risk from Future Climate Change

    Science.gov (United States)

    De Young, Russell J.; Ganoe, Rene

    2015-01-01

    The successful operation of NASA Langley Research Center (LaRC) depends on services provided by several public utility companies. These include Newport News Waterworks, Dominion Virginia Power, Virginia Natural Gas and Hampton Roads Sanitation District. LaRC's plan to respond to future climate change should take into account how these companies plan to avoid interruption of services while minimizing cost to the customers. This report summarizes our findings from publicly available documents on how each company plans to respond. This will form the basis for future planning for the Center. Our preliminary findings show that flooding and severe storms could interrupt service from the Waterworks and Sanitation District but the potential is low due to plans in place to address climate change on their system. Virginia Natural Gas supplies energy to produce steam but most current steam comes from the Hampton trash burning plant, thus interruption risk is low. Dominion Virginia Power does not address climate change impacts on their system in their public reports. The potential interruption risk is considered to be medium. The Hampton Roads Sanitation District is projecting a major upgrade of their system to mitigate clean water inflow and infiltration. This will reduce infiltration and avoid overloading the pump stations and treatment plants.

  11. Information center as a link between basic and applied research

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1976-01-01

    The National Neutron Cross Section Center (NNCSC) concerns itself with neutron physics information of a basic and applied nature. Computerized files of bibliography to the neutron physics literature, and of experimental and evaluated neutron data are maintained. The NNCSC coordinates a national effort, the Cross Section Evaluation Working Group (CSEWG) with participants from government, private, and academic institutions, to establish a computerized reference data base Evaluated Nuclear Data File (ENDF/B) for national programs. The ENDF/B is useful to basic research because it contains recommended values based on the best available measurements and is often used as reference data for normalization and analysis of experiments. For applied use the reference data are extended through nuclear model calculations or nuclear systematics to include all data of interest with standardized processing codes facilitating the use of ENDF/B in certain types of computations. Initially the main application of ENDF/B was power reactor and shield design and only neutron data were evaluated but due to the fact that for many applications both neutron and nonneutron data are required, ENDF/B has been extended in scope to include radioactive decay data and radiation spectra for the burnup and after decay heat of fission products and photon interaction data for gamma ray transport calculations. Cooperation with other centers takes place both nationally and internationally

  12. TechPort Featured at Glenn Research Center's Technology Day

    Science.gov (United States)

    Owens, Jeannette P.; Diem, Priscilla S.

    2016-01-01

    The NASA Technology Portfolio (TechPort) System was featured at NASA Glenn Research Center's Technology Day on May 24, 2016. This event, which coincided with GRC's 75th Anniversary celebration, drew nearly 250 registered guests including aerospace and technology representatives, local business leaders, state and local government officials, and members of academia. GRC's Director of the Office of Technology Incubation and Innovation and Center Chief Technologist, John Sankovic, presented the opening remarks. Several technical and business-focused panel sessions were convened. NASA's Associate Administrator for the Space Technology Mission Directorate, Steve Jurczyk, GRC's Director of Space Flight Systems, Bryan Smith, and NASA astronaut and U.S. Navy Captain, Sunita Williams, were engaged as a panel for a discussion about "NASA's Journey to Mars: Science Fiction Meets Reality." Another panel moderated by the Executive Director of the Cleveland Water Alliance, Bryan Stubbs, involved a discussion with four GRC technologists on the subject of global water scarcity and water treatment concerns. The GRC panelists shared information on the development of snow-sensing, hyperspectral imaging, and non-equilibrium plasma technologies. Technology Day attendees received overviews of GRC's technologies and partnership objectives, and were introduced to areas for potential collaboration. They were also informed about opportunities to license technologies and how to do business with NASA.

  13. Biological and chemical technologies research. FY 1995 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  14. Operating The Central Process Systems At Glenn Research Center

    Science.gov (United States)

    Weiler, Carly P.

    2004-01-01

    As a research facility, the Glenn Research Center (GRC) trusts and expects all the systems, controlling their facilities to run properly and efficiently in order for their research and operations to occur proficiently and on time. While there are many systems necessary for the operations at GRC, one of those most vital systems is the Central Process Systems (CPS). The CPS controls operations used by GRC's wind tunnels, propulsion systems lab, engine components research lab, and compressor, turbine and combustor test cells. Used widely throughout the lab, it operates equipment such as exhausters, chillers, cooling towers, compressors, dehydrators, and other such equipment. Through parameters such as pressure, temperature, speed, flow, etc., it performs its primary operations on the major systems of Electrical Dispatch (ED), Central Air Dispatch (CAD), Central Air Equipment Building (CAEB), and Engine Research Building (ERB). In order for the CPS to continue its operations at Glenn, a new contract must be awarded. Consequently, one of my primary responsibilities was assisting the Source Evaluation Board (SEB) with the process of awarding the recertification contract of the CPS. The job of the SEB was to evaluate the proposals of the contract bidders and then to present their findings to the Source Selecting Official (SSO). Before the evaluations began, the Center Director established the level of the competition. For this contract, the competition was limited to those companies classified as a small, disadvantaged business. After an industry briefing that explained to qualified companies the CPS and type of work required, each of the interested companies then submitted proposals addressing three components: Mission Suitability, Cost, and Past Performance. These proposals were based off the Statement of Work (SOW) written by the SEB. After companies submitted their proposals, the SEB reviewed all three components and then presented their results to the SSO. While the

  15. Karlsruhe Nuclear Research Center. Progress report on research and development work in 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This summary of R and D work is the scientific annual report to be prepared by the research center in compliance with its statutes. The material is arranged by items of main activities, as given in the overall R and D programme set up for the research center. The various reports prepared by the individual institutes and principal departments are presented under their relevant subject headings. The annual report is intended to demonstrate the progress achieved in the tasks and activities assigned by the R and D programme of the research center, by referring to the purposes and goals stated in the programme, showing the joint or separate efforts and achievements of the institutes. Details and results of activities are found in the scientific-technical publications given in the bibliographical survey, and in the internal primary surveys. The main activities of the research center include the following: Fast Breeder Project (PSB), Nuclear Fusion Project (PKF), Separation Nozzle Project (TDV), and Reprocessing and Waste Treatment Project (PWA), Ultimate Disposal of Radioactive Waste (ELA), Environment and Safety (U and S), Solids and Materials (FM), Nuclear and Particle Physics (KTP), Microtechniques (MT), Materials Handling (HT), Other Research Activities (SF). Organisational aspects and institutes and the list of publications conclude the report. (orig./HK) [de

  16. Division of Biological and Medical Research annual technical report, 1981

    International Nuclear Information System (INIS)

    Rosenthal, M.W.

    1982-06-01

    This report summarizes research during 1981 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Low Level Radiation include comparison of lifetime effects in mice of low level neutron and gamma irradiation, delineation of the responses of dogs to continuous low level gamma irradiation, elucidation of mechanisms of radiation damage and repair in mammalian cells, and study of the genetic effects of high LET radiations. Carcinogenesis research addresses mechanisms of tumor initiation and promotion in rat liver, chemical carcinogenesis in cultured mammalian cells, and molecular and genetic mechanisms of chemical and ultraviolet mutagenesis in bacteria. Research in Toxicology uses a variety of cellular, whole animal, and chronobiological end points, chemical separations, and statistical models to evaluate the hazards and mechanisms of actions of metals, coal gasification by products, and other energy-related pollutants. Human Protein Index studies develop two-dimensional electrophoresis systems for diagnosis and detection of cancer and other disease. Biophysics research includes fundamental structural and biophysical investigations of immunoglobulins and key biological molecules using NMR, crystallographic, and x-ray and neutron small-angle scattering techniques. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies

  17. Division of Biological and Medical Research annual technical report, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.W. (ed.)

    1982-06-01

    This report summarizes research during 1981 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Low Level Radiation include comparison of lifetime effects in mice of low level neutron and gamma irradiation, delineation of the responses of dogs to continuous low level gamma irradiation, elucidation of mechanisms of radiation damage and repair in mammalian cells, and study of the genetic effects of high LET radiations. Carcinogenesis research addresses mechanisms of tumor initiation and promotion in rat liver, chemical carcinogenesis in cultured mammalian cells, and molecular and genetic mechanisms of chemical and ultraviolet mutagenesis in bacteria. Research in Toxicology uses a variety of cellular, whole animal, and chronobiological end points, chemical separations, and statistical models to evaluate the hazards and mechanisms of actions of metals, coal gasification by products, and other energy-related pollutants. Human Protein Index studies develop two-dimensional electrophoresis systems for diagnosis and detection of cancer and other disease. Biophysics research includes fundamental structural and biophysical investigations of immunoglobulins and key biological molecules using NMR, crystallographic, and x-ray and neutron small-angle scattering techniques. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies.

  18. Quality in research centers; Calidad en centros de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Colin Orozco, Leticia [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    In order to be able to survive and to have successful in the globalized market, all the organizations must make an effort in learning and understanding the language of the international trade, of the standards that govern it and the technical specifications that are handled for the quality assurance of products and services. In this paper the importance that the implementation of standards ISO-9000 in the research centers has, is presented. [Spanish] Para poder sobrevivir y tener exito en el mercado globalizado todas las organizaciones tienen que esforzarse en el aprendizaje y comprension del lenguaje del comercio internacional, de las normas que lo rigen y de las especificaciones tecnicas que se manejan para asegurar la calidad de los productos y servicios. En este articulo se presenta la importancia que tiene la implantacion de las normas ISO-9000 en los centros de investigacion.

  19. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  20. An example of a United States Nuclear Research Center

    International Nuclear Information System (INIS)

    Bhattacharyya, S. K.

    1999-01-01

    Under the likely scenario in which public support for nuclear energy remains low and fossil fuels continue to be abundant and cheap, government supported nuclear research centers must adapt their missions to ensure that they tackle problems of current significance. It will be critical to be multidisciplinary, to generate economic value, and to apply nuclear competencies to current problems. Addressing problems in nuclear safety, D and D, nuclear waste management, nonproliferation, isotope production are a few examples of current needs in the nuclear arena. Argonne's original mission, to develop nuclear reactor technology, was a critical need for the U.S. in 1946. It would be wise to recognize that this mission was a special instance of a more general one--to apply unique human and physical capital to long term, high risk technology development in response to society's needs. International collaboration will enhance the collective chances for success as the world moves into the 21st century

  1. 2004 research briefs :Materials and Process Sciences Center

    International Nuclear Information System (INIS)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio

  2. New research resources at the Bloomington Drosophila Stock Center.

    Science.gov (United States)

    Cook, Kevin R; Parks, Annette L; Jacobus, Luke M; Kaufman, Thomas C; Matthews, Kathleen A

    2010-01-01

    The Bloomington Drosophila Stock Center (BDSC) is a primary source of Drosophila stocks for researchers all over the world. It houses over 27,000 unique fly lines and distributed over 160,000 samples of these stocks this past year. This report provides a brief overview of significant recent events at the BDSC with a focus on new stock sets acquired in the past year, including stocks for phiC31 transformation, RNAi knockdown of gene expression, and SNP and quantitative trait loci discovery. We also describe additions to sets of insertions and molecularly defined chromosomal deficiencies, the creation of a new Deficiency Kit, and planned additions of X chromosome duplication sets.

  3. Quality management system of Saraykoy Nuclear Research and Training center

    International Nuclear Information System (INIS)

    Gurellier, R.; Akchay, S.; Zararsiz, S.

    2014-01-01

    Full text : Technical competence and national/international acceptance of independency of laboratories is ensured by going through accreditations. It provides decreasing the risk of a slowdown in international trade due to unnecessary repetition of testing and analyses. It also eliminates the cost of additional experiments and analyses. Saraykoy Nuclear Research and Training Center (SANAEM) has performed intensive studies to establish an effective and well-functioning QMS (Quality Management System) by full accordance with the requirements of ISO/IEC 17025, since the begining of 2006. Laboratories, especially serving to public health studies and important trade duties require urgent accreditation. In this regard, SANAEM has established a quality management system and performed accreditation studies

  4. Coherent Lidar Activities at NASA Langley Research Center

    Science.gov (United States)

    Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.; Singh, Upendra N.; Yu, Jirong

    2007-01-01

    NASA Langley Research Center has been developing and using coherent lidar systems for many years. The current projects at LaRC are the Global Wind Observing Sounder (GWOS) mission preparation, the Laser Risk Reduction Program (LRRP), the Instrument Incubator Program (IIP) compact, rugged Doppler wind lidar project, the Autonomous precision Landing and Hazard detection and Avoidance Technology (ALHAT) project for lunar landing, and the Skywalker project to find and use thermals to extend UAV flight time. These five projects encompass coherent lidar technology development; characterization, validation, and calibration facilities; compact, rugged packaging; computer simulation; trade studies; data acquisition, processing, and display development; system demonstration; and space mission design. This paper will further discuss these activities at LaRC.

  5. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Materials Science and Engineering Dept.

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  6. Physician Assistant/Sr. Nurse Practitioner | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  7. Sustainability indicators to nuclear research centers in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A., E-mail: symonfonseca@yahoo.com.br, E-mail: vmfj@cdtn.br, E-mail: aab@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  8. Sustainability indicators to nuclear research centers in Brazil

    International Nuclear Information System (INIS)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A.

    2015-01-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  9. 77 FR 40590 - Applications for New Awards: Disability and Rehabilitation Research Projects and Centers Program...

    Science.gov (United States)

    2012-07-10

    ... Applications for New Awards: Disability and Rehabilitation Research Projects and Centers Program; Disability and Rehabilitation Research Projects; Burn Model Systems Centers; Correction AGENCY: Office of Special... Rehabilitation Research Projects and Centers Program--Disability and Rehabilitation Research Projects--Burn Model...

  10. Combined Neutron Center for European Research and Technology

    International Nuclear Information System (INIS)

    Lagniel, Jean-Michel

    2002-01-01

    High-power proton linacs are needed as driver for several applications, namely transmutation of nuclear waste using Accelerator Driven Systems (ADS), spallation neutron sources (ESS in Europe) and other fields of basic and applied research (next generation of radioactive ion beam facilities, neutrino factories, muon colliders, irradiation facilities for material testing...). The possible synergies among these projects will be pointed out and the feasibility study of high-power proton linac used as driver of a multi-user facility (CONCERT) will be presented. There was excellent scientific, technical and economic reasons to study a Combined Neutron Center for European Research and Technology (CONCERT) based on a high-power proton accelerator. Such an installation would serve condensed matter studies by spallation neutron scattering, a technological irradiation tool and R and D facility for an hybrid reactor demonstrator, a radioactive ion beam facility for nuclear physics, R and D developments for a muon/neutrino facility. The installation could therefore constitute a European center of excellence in the field of neutronics where a large number of scientific and technical executives could be trained. The CONCERT Project Team has performed the feasibility study of such a multi-user facility with: - a review of the beam needs for the different applications, - an analyze of their compatibility, - the definition of the scope of a site-independent project, - a selection of the most appropriate options regarding scientific, technical, financial, organizational and administrative aspects, - an estimation of the costs for construction, operation and the needs in manpower. The conceptual design report [17] is sufficiently detailed to minimize contingencies on those parts of the project having a large potential impact in terms of performances, costs or delays. (author)

  11. Division of Biological and Medical Research research summary 1984-1985

    Energy Technology Data Exchange (ETDEWEB)

    Barr, S.H. (ed.)

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and the first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group.

  12. Division of Biological and Medical Research research summary 1984-1985

    International Nuclear Information System (INIS)

    Barr, S.H.

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and the first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group

  13. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  14. Research Problems in Data Curation: Outcomes from the Data Curation Education in Research Centers Program

    Science.gov (United States)

    Palmer, C. L.; Mayernik, M. S.; Weber, N.; Baker, K. S.; Kelly, K.; Marlino, M. R.; Thompson, C. A.

    2013-12-01

    The need for data curation is being recognized in numerous institutional settings as national research funding agencies extend data archiving mandates to cover more types of research grants. Data curation, however, is not only a practical challenge. It presents many conceptual and theoretical challenges that must be investigated to design appropriate technical systems, social practices and institutions, policies, and services. This presentation reports on outcomes from an investigation of research problems in data curation conducted as part of the Data Curation Education in Research Centers (DCERC) program. DCERC is developing a new model for educating data professionals to contribute to scientific research. The program is organized around foundational courses and field experiences in research and data centers for both master's and doctoral students. The initiative is led by the Graduate School of Library and Information Science at the University of Illinois at Urbana-Champaign, in collaboration with the School of Information Sciences at the University of Tennessee, and library and data professionals at the National Center for Atmospheric Research (NCAR). At the doctoral level DCERC is educating future faculty and researchers in data curation and establishing a research agenda to advance the field. The doctoral seminar, Research Problems in Data Curation, was developed and taught in 2012 by the DCERC principal investigator and two doctoral fellows at the University of Illinois. It was designed to define the problem space of data curation, examine relevant concepts and theories related to both technical and social perspectives, and articulate research questions that are either unexplored or under theorized in the current literature. There was a particular emphasis on the Earth and environmental sciences, with guest speakers brought in from NCAR, National Snow and Ice Data Center (NSIDC), and Rensselaer Polytechnic Institute. Through the assignments, students

  15. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  16. Technology Transfer from University-Based Research Centers: The University of New Mexico Experience.

    Science.gov (United States)

    Rogers, Everett M.; Hall, Brad; Hashimoto, Michio; Steffensen, Morten; Speakman, Kristen L.; Timko, Molly K.

    1999-01-01

    A study of 55 research centers at the University of New Mexico investigated the nature of the typical center, why funding has risen during the 1990s, reasons for founding the centers, the director's role, how university-based research centers transfer technology to private companies and other organizations, and what determines program…

  17. Assessment team report on flight-critical systems research at NASA Langley Research Center

    Science.gov (United States)

    Siewiorek, Daniel P. (Compiler); Dunham, Janet R. (Compiler)

    1989-01-01

    The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.

  18. Innovation in Flight: Research of the NASA Langley Research Center on Revolutionary Advanced Concepts for Aeronautics

    Science.gov (United States)

    Chambers, Joseph R.

    2005-01-01

    The goal of this publication is to provide an overview of the topic of revolutionary research in aeronautics at Langley, including many examples of research efforts that offer significant potential benefits, but have not yet been applied. The discussion also includes an overview of how innovation and creativity is stimulated within the Center, and a perspective on the future of innovation. The documentation of this topic, especially the scope and experiences of the example research activities covered, is intended to provide background information for future researchers.

  19. Center For Earth's Dynamics Research (cedr) - A Join Venture Towards Research In Geosciences In Cei

    Science.gov (United States)

    Kostelecky, J.; Vondrak, J.; Zeman, A.; Kalvoda, J.; Schenk, V.

    In responce to the call of the government of the Czech Republic for initialization of the new strategy in scientific research coordination the CEDR was established in 2000. The center is joint venture of five institutions oriented to the geodesy, geodynamics, Earth dynamics, geomorphology and gravimetry. The first achievements obtained until the end 2001 are outlined and evaluated.

  20. Translating social and behavioral science research to the AIDS epidemic: a center for AIDS research perspective.

    Science.gov (United States)

    Curran, James W; Hoxie, James A

    2013-06-01

    Integration of innovative social and behavioral science with public health approaches for HIV prevention and treatment is of critical importance for slowing the global HIV epidemic. Strengthening and focusing social and behavioral research linking testing and treatment strategies to populations at greatest risk for HIV is crucial. The Social and Behavioral Science Research Network(SBSRN), originated in 2006, involves twenty NIH-funded CFAR Centers and is responding to this challenge.

  1. Researchers studying alternative to bladder removal for bladder cancer patients | Center for Cancer Research

    Science.gov (United States)

    A new phase I clinical trial conducted by researchers at the Center for Cancer Research (CCR) is evaluating the safety and tolerability, or the degree to which any side effects can be tolerated by patients, of a two-drug combination as a potential alternative to bladder removal for bladder cancer patients. The trial targets patients with non-muscle invasive bladder cancer (NMIBC) whose cancers have stopped responding to traditional therapies. Read more...

  2. Engaging Community Health Centers (CHCs) in research partnerships: the role of prior research experience on perceived needs and challenges.

    Science.gov (United States)

    Beeson, Tishra; Jester, Michelle; Proser, Michelle; Shin, Peter

    2014-04-01

    Despite community health centers' substantial role in local communities and in the broader safety-net healthcare system, very limited research has been conducted on community health center research experience, infrastructure, or needs from a national perspective. A national survey of 386 community health centers was conducted in 2011 and 2012 to assess research engagement among community health centers and their perceived needs, barriers, challenges, and facilitators with respect to their involvement in public health and health services research. This paper analyzes the differences between health centers that currently conduct or participate in research and health centers that have no prior research experience to determine whether prior research experience is indicative of different perceived challenges and research needs in community health center settings. © 2014 Wiley Periodicals, Inc.

  3. Division of Biological and Medical Research annual report 1978

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.W. (ed.)

    1978-01-01

    The research during 1978 in the Division of Biological and Medical Research, Argonne National Laboratory, is summarized. Studies related to nuclear energy include responses of beagles to continuous low-level /sup 60/Co gamma radiation, and development of leukemic indicators; comparison of lifetime effects in mice of low-level neutron and /sup 60/Co gamma radiation; genetic effects of high LET radiations; and metabolic and therapeutic studies of heavy metals. Studies of nonnuclear energy sources deal with characterization and toxicological evaluation of effluents of fluidized bed combustion and coal gasification; electrical storage systems; electric fields associated with energy transmission; and development of population projection models and assessment of human risk. Basic research studies include fundamental structural and biophysical investigations; circadian rhythms; mutagenesis in bacteria and mammalian cells; cell killing, damage, and repair in mammalian cells; carcinogenesis and cocarcinogenesis; the use of liposomes as biological carriers; and studies of environmental influences on life-span, physiological performance, and circadian cycles. In the area of medical development, proteins in urine and tissues of normal and diseased humans are analyzed, and advanced analytical procedures for use of stable isotopes in clinical research and diagnosis are developed and applied. The final sections of the report cover support facilities, educational activities, the seminar program, staff talks, and staff publications.

  4. Division of Biological and Medical Research annual technical report 1982

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.W. (ed.)

    1983-05-01

    This report summarizes research during 1982 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Carcinogenesis address mechanisms of chemical and radiation carcinogenesis including the processes of tumor initiation and promotion. The studies employ rat liver and mouse skin models as well as human rodent cell culture systems. The use of liposomes for metal mobilization is also explored. Low Level Radiation studies include delineation of the hematopoietic and other responses of dogs to continuous low level gamma irradiation, comparison of lifetime effects in mice of low level neutron and gamma irradiation, and study of the genetic effects of high LET radiation. Molecular Biology research develops two-dimensional electrophoresis systems for diagnosis and detection of cancer and other diseases. Fundamental structural and biophysical investigations of immunoglobulins and other key proteins are included, as are studies of cell growth, and of molecular and cellular effects of solar uv light. Research in Toxicology uses cellular, physiological, whole animal, and chronobiological end points and chemical separations to elucidate mechanisms and evaluate hazards of coal conversion by-products, actinides, and toxic metals. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies.

  5. Division of Biological and Medical Research annual technical report 1982

    International Nuclear Information System (INIS)

    Rosenthal, M.W.

    1983-05-01

    This report summarizes research during 1982 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Carcinogenesis address mechanisms of chemical and radiation carcinogenesis including the processes of tumor initiation and promotion. The studies employ rat liver and mouse skin models as well as human rodent cell culture systems. The use of liposomes for metal mobilization is also explored. Low Level Radiation studies include delineation of the hematopoietic and other responses of dogs to continuous low level gamma irradiation, comparison of lifetime effects in mice of low level neutron and gamma irradiation, and study of the genetic effects of high LET radiation. Molecular Biology research develops two-dimensional electrophoresis systems for diagnosis and detection of cancer and other diseases. Fundamental structural and biophysical investigations of immunoglobulins and other key proteins are included, as are studies of cell growth, and of molecular and cellular effects of solar uv light. Research in Toxicology uses cellular, physiological, whole animal, and chronobiological end points and chemical separations to elucidate mechanisms and evaluate hazards of coal conversion by-products, actinides, and toxic metals. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies

  6. Division of Biological and Medical Research annual report 1978

    International Nuclear Information System (INIS)

    Rosenthal, M.W.

    1978-01-01

    The research during 1978 in the Division of Biological and Medical Research, Argonne National Laboratory, is summarized. Studies related to nuclear energy include responses of beagles to continuous low-level 60 Co gamma radiation, and development of leukemic indicators; comparison of lifetime effects in mice of low-level neutron and 60 Co gamma radiation; genetic effects of high LET radiations; and metabolic and therapeutic studies of heavy metals. Studies of nonnuclear energy sources deal with characterization and toxicological evaluation of effluents of fluidized bed combustion and coal gasification; electrical storage systems; electric fields associated with energy transmission; and development of population projection models and assessment of human risk. Basic research studies include fundamental structural and biophysical investigations; circadian rhythms; mutagenesis in bacteria and mammalian cells; cell killing, damage, and repair in mammalian cells; carcinogenesis and cocarcinogenesis; the use of liposomes as biological carriers; and studies of environmental influences on life-span, physiological performance, and circadian cycles. In the area of medical development, proteins in urine and tissues of normal and diseased humans are analyzed, and advanced analytical procedures for use of stable isotopes in clinical research and diagnosis are developed and applied. The final sections of the report cover support facilities, educational activities, the seminar program, staff talks, and staff publications

  7. Research Projects for Interrogations of Biological Systems: Training for the Development of Novel Radiotracers

    International Nuclear Information System (INIS)

    Jurisson, Silvia S.; Lever, Susan Z.; Robertson, J. David

    2016-01-01

    This grant was situated at the University of Missouri to train Ph.D. scientists in radiochemistry and synthetic chemistry in conjunction with Faculty from the Interdisciplinary Plant Group, Division of Biological Sciences, the MU Research Reactor Center, Molecular Biology and the Radiopharmaceutical Sciences Institute. This project was collaborative with Brookhaven National Laboratory (Richard Ferrieri, PI). Projects for the Ph.D. candidates included novel probe development for peptides, nucleosides, small molecules or radiometals, the direct use of radiometals as probes, or nuclear techniques for analysis. The projects for the postdoctoral fellow involved synthetic chemistry for the preparation of precursors for novel tracers that will be radiolabeled with 18 F or other appropriate radionuclides. The skill sets of our team members allowed us to prepare probes with positron or single photon emitters, as well as ones that are dual-labeled (fluorescent and radiolabeled). We focused our technical advances to those that will be broadly applicable to any research field.

  8. Research Projects for Interrogations of Biological Systems: Training for the Development of Novel Radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Jurisson, Silvia S. [Univ. of Missouri, Columbia, MO (United States); Lever, Susan Z. [Univ. of Missouri, Columbia, MO (United States); Robertson, J. David [Univ. of Missouri, Columbia, MO (United States)

    2016-10-04

    This grant was situated at the University of Missouri to train Ph.D. scientists in radiochemistry and synthetic chemistry in conjunction with Faculty from the Interdisciplinary Plant Group, Division of Biological Sciences, the MU Research Reactor Center, Molecular Biology and the Radiopharmaceutical Sciences Institute. This project was collaborative with Brookhaven National Laboratory (Richard Ferrieri, PI). Projects for the Ph.D. candidates included novel probe development for peptides, nucleosides, small molecules or radiometals, the direct use of radiometals as probes, or nuclear techniques for analysis. The projects for the postdoctoral fellow involved synthetic chemistry for the preparation of precursors for novel tracers that will be radiolabeled with 18F or other appropriate radionuclides. The skill sets of our team members allowed us to prepare probes with positron or single photon emitters, as well as ones that are dual-labeled (fluorescent and radiolabeled). We focused our technical advances to those that will be broadly applicable to any research field.

  9. Common data manipulations with R in biological researches.

    Science.gov (United States)

    Chen, Shi-Yi; Liu, Qin; Feng, Zhe

    2017-07-01

    R is a computer language and has been widely used in science community due to the powerful capability in data analysis and visualization; and these functions are mainly provided by the developed packages. Because every package has strict format definitions on the inputted data, it is always required to appropriately manipulate the original data in advance. Unfortunately, users, especially for the beginners, are always confused by the extreme flexibility with R in data manipulation. In the present paper, we roughly categorize the common manipulations with R for biological data into four classes, including overview of data, transformation, summarization, and reshaping. Subsequently, these manipulations are exemplified in a sample data of clinical records of diabetic patients. Our main purpose is to provide a better landscape on the data manipulation with R and hence facilitate the practical applications in biological researches.

  10. Biologically Weighted Quantities in Radiotherapy: an EMRP Joint Research Project

    Directory of Open Access Journals (Sweden)

    Rabus Hans

    2014-01-01

    Full Text Available Funded within the European Metrology Research Programme (EMRP [1], the joint research project “Biologically weighted quantities in radiotherapy” (BioQuaRT [2] aims to develop measurement and simulation techniques for determining the physical properties of ionising particle tracks on different length scales (about 2 nm to 10 μm, and to investigate the correlation of these track structure characteristics with the biological effects of radiation at the cellular level. Work package 1 develops micro-calorimeter prototypes for the direct measurement of lineal energy and will characterise their response for different ion beams by experiment and modelling. Work package 2 develops techniques to measure particle track structure on different length scales in the nanometre range as well as a measurement device integrating a silicon microdosimeter and a nanodosimeter. Work package 3 investigates the indirect effects of radiation based on probes for quantifying particular radical and reactive oxygen species (ROS. Work package 4 focuses on the biological aspects of radiation damage and will produce data on initial DNA damage and late effects for radiotherapy beams of different qualities. Work package 5 provides evaluated data sets of DNA cross-sections and develops a multi-scale model to address microscopic and nanometric track structure properties. The project consortium includes three linked researchers holding so-called Researcher Excellence Grants, who carry out ancillary investigations such as developing and benchmarking a new biophysical model for induction of early radiation damage and developing methods for the translation of quantities derived from particle track structure to clinical applications in ion beam therapy.

  11. Naturalistic Cognition: A Research Paradigm for Human-Centered Design

    Directory of Open Access Journals (Sweden)

    Peter Storkerson

    2010-01-01

    Full Text Available Naturalistic thinking and knowing, the tacit, experiential, and intuitive reasoning of everyday interaction, have long been regarded as inferior to formal reason and labeled primitive, fallible, subjective, superstitious, and in some cases ineffable. But, naturalistic thinking is more rational and definable than it appears. It is also relevant to design. Inquiry into the mechanisms of naturalistic thinking and knowledge can bring its resources into focus and enable designers to create better, human-centered designs for use in real-world settings. This article makes a case for the explicit, formal study of implicit, naturalistic thinking within the fields of design. It develops a framework for defining and studying naturalistic thinking and knowledge, for integrating them into design research and practice, and for developing a more integrated, consistent theory of knowledge in design. It will (a outline historical definitions of knowledge, attitudes toward formal and naturalistic thinking, and the difficulties presented by the co-presence of formal and naturalistic thinking in design, (b define and contrast formal and naturalistic thinking as two distinct human cognitive systems, (c demonstrate the importance of naturalistic cognition in formal thinking and real-world judgment, (d demonstrate methods for researching naturalistic thinking that can be of use in design, and (e briefly discuss the impact on design theory of admitting naturalistic thinking as valid, systematic, and knowable.

  12. Fostering Social Determinants of Health Transdisciplinary Research: The Collaborative Research Center for American Indian Health

    Science.gov (United States)

    Elliott, Amy J.; White Hat, Emily R.; Angal, Jyoti; Grey Owl, Victoria; Puumala, Susan E.; Baete Kenyon, DenYelle

    2015-01-01

    The Collaborative Research Center for American Indian Health (CRCAIH) was established in September 2012 as a unifying structure to bring together tribal communities and health researchers across South Dakota, North Dakota and Minnesota to address American Indian/Alaska Native (AI/AN) health disparities. CRCAIH is based on the core values of transdisciplinary research, sustainability and tribal sovereignty. All CRCAIH resources and activities revolve around the central aim of assisting tribes with establishing and advancing their own research infrastructures and agendas, as well as increasing AI/AN health research. CRCAIH is comprised of three divisions (administrative; community engagement and innovation; research projects), three technical cores (culture, science and bioethics; regulatory knowledge; and methodology), six tribal partners and supports numerous multi-year and one-year pilot research projects. Under the ultimate goal of improving health for AI/AN, this paper describes the overarching vision and structure of CRCAIH, highlighting lessons learned in the first three years. PMID:26703683

  13. Fostering Social Determinants of Health Transdisciplinary Research: The Collaborative Research Center for American Indian Health

    Directory of Open Access Journals (Sweden)

    Amy J. Elliott

    2015-12-01

    Full Text Available The Collaborative Research Center for American Indian Health (CRCAIH was established in September 2012 as a unifying structure to bring together tribal communities and health researchers across South Dakota, North Dakota and Minnesota to address American Indian/Alaska Native (AI/AN health disparities. CRCAIH is based on the core values of transdisciplinary research, sustainability and tribal sovereignty. All CRCAIH resources and activities revolve around the central aim of assisting tribes with establishing and advancing their own research infrastructures and agendas, as well as increasing AI/AN health research. CRCAIH is comprised of three divisions (administrative; community engagement and innovation; research projects, three technical cores (culture, science and bioethics; regulatory knowledge; and methodology, six tribal partners and supports numerous multi-year and one-year pilot research projects. Under the ultimate goal of improving health for AI/AN, this paper describes the overarching vision and structure of CRCAIH, highlighting lessons learned in the first three years.

  14. Critical Appraisal of Translational Research Models for Suitability in Performance Assessment of Cancer Centers

    NARCIS (Netherlands)

    Rajan, Abinaya; Sullivan, Richard; Bakker, Suzanne; van Harten, Willem H.

    2012-01-01

    Background. Translational research is a complex cumulative process that takes time. However, the operating environment for cancer centers engaged in translational research is now financially insecure. Centers are challenged to improve results and reduce time from discovery to practice innovations.

  15. Building Climate Resilience at NASA Ames Research Center

    Science.gov (United States)

    Iraci, L. T.; Mueller, C.; Podolske, J. R.; Milesi, C.

    2016-12-01

    NASA Ames Research Center, located at the southern end of the San Francisco Bay (SFB) estuary, has identified three primary vulnerabilities to changes in climate. The Ames Climate Adaptation Science Investigator (CASI) workgroup has studied each of these challenges to operations and the potential exposure of infrastructure and employees to an increased frequency of hazards. Sea level rise inundation scenarios for the SFB Area generally refer to projected scenarios in mean sea level rather than changes in extreme tides that could occur during future storm conditions. In the summer of 2014, high resolution 3-D mapping of the low-lying portion of Ames was performed. Those data are integrated with improved sea level inundation scenarios to identify the buildings, basements and drainage systems potentially affected. We will also identify the impacts of sea level and storm surge effects on transportation to and from the Center. This information will help Center management develop future master plans. Climate change will also lead to changes in temperature, storm frequency and intensity. These changes have potential impacts on localized floods and ecosystems, as well as on electricity and water availability. Over the coming decades, these changes will be imposed on top of ongoing land use and land cover changes, especially those deriving from continued urbanization and increase in impervious surface areas. These coupled changes have the potential to create a series of cascading impacts on ecosystems, including changes in primary productivity and disturbance of hydrological properties and increased flood risk. The majority of the electricity used at Ames is supplied by hydroelectric dams, which will be influenced by reductions in precipitation or changes in the timing or phase of precipitation which reduces snow pack. Coupled with increased demand for summertime air conditioning and other cooling needs, NASA Ames is at risk for electricity shortfalls. To assess the

  16. Joint Center for Satellite Data Assimilation Overview and Research Activities

    Science.gov (United States)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  17. The National Extreme Events Data and Research Center (NEED)

    Science.gov (United States)

    Gulledge, J.; Kaiser, D. P.; Wilbanks, T. J.; Boden, T.; Devarakonda, R.

    2014-12-01

    The Climate Change Science Institute at Oak Ridge National Laboratory (ORNL) is establishing the National Extreme Events Data and Research Center (NEED), with the goal of transforming how the United States studies and prepares for extreme weather events in the context of a changing climate. NEED will encourage the myriad, distributed extreme events research communities to move toward the adoption of common practices and will develop a new database compiling global historical data on weather- and climate-related extreme events (e.g., heat waves, droughts, hurricanes, etc.) and related information about impacts, costs, recovery, and available research. Currently, extreme event information is not easy to access and is largely incompatible and inconsistent across web sites. NEED's database development will take into account differences in time frames, spatial scales, treatments of uncertainty, and other parameters and variables, and leverage informatics tools developed at ORNL (i.e., the Metadata Editor [1] and Mercury [2]) to generate standardized, robust documentation for each database along with a web-searchable catalog. In addition, NEED will facilitate convergence on commonly accepted definitions and standards for extreme events data and will enable integrated analyses of coupled threats, such as hurricanes/sea-level rise/flooding and droughts/wildfires. Our goal and vision is that NEED will become the premiere integrated resource for the general study of extreme events. References: [1] Devarakonda, Ranjeet, et al. "OME: Tool for generating and managing metadata to handle BigData." Big Data (Big Data), 2014 IEEE International Conference on. IEEE, 2014. [2] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94.

  18. Research in thermal biology: Burning questions for coldwater stream fishes

    Science.gov (United States)

    McCullough, D.A.; Bartholow, J.M.; Jager, H.I.; Beschta, R.L.; Cheslak, E.F.; Deas, M.L.; Ebersole, J.L.; Foott, J.S.; Johnson, S.L.; Marine, K.R.; Mesa, M.G.; Petersen, J.H.; Souchon, Y.; Tiffan, K.F.; Wurtsbaugh, W.A.

    2009-01-01

    With the increasing appreciation of global warming impacts on ecological systems, in addition to the myriad of land management effects on water quality, the number of literature citations dealing with the effects of water temperature on freshwater fish has escalated in the past decade. Given the many biological scales at which water temperature effects have been studied, and the growing need to integrate knowledge from multiple disciplines of thermal biology to fully protect beneficial uses, we held that a survey of the most promising recent developments and an expression of some of the remaining unanswered questions with significant management implications would best be approached collectively by a diverse research community. We have identified five specific topic areas of renewed research where new techniques and critical thought could benefit coldwater stream fishes (particularly salmonids): molecular, organism, population/species, community and ecosystem, and policy issues in water quality. Our hope is that information gained through examination of recent research fronts linking knowledge at various scales will prove useful in managing water quality at a basin level to protect fish populations and whole ecosystems. Standards of the past were based largely on incipient lethal and optimum growth rate temperatures for fish species, while future standards should consider all integrated thermal impacts to the organism and ecosystem. ?? Taylor and Francis Group, LLC.

  19. Research progress in phytochemistry and biology of Aframomum species.

    Science.gov (United States)

    Amadi, Sarah Wambui; Zhang, Yan; Wu, Guanzhong

    2016-11-01

    The African genus Aframomum (Zingiberaceae) is a group of diverse tropical plants frequently collected yet largely neglected taxonomically. The current and unprecedented loss of species due to man-made habitat destruction and climate change adds a desperate urgency not only to understand the phylogenetics, chemotaxonomy and biology, but also to preserve the quickly disappearing species. The present systematic review reports on the research progress in phytochemistry, pharmacology and toxicology of Aframomum species. Scientific databases such as MedSci, PubMed, Scopus, Google Scholar and Web of Knowledge were used to retrieve publications (from the year 1990 to 2014) related to Aframomum plants, isolated compounds and their bioactivity, phytochemistry and toxicology. The keywords combinations for the search were: Aframomum; chemotaxonomy, phylogenetics, pharmacology and bioactive metabolites and toxicology. A total of 71 research articles that report on the biological activity of extracts and chemical constituents were recovered and presented in this review. Most published data related to the potential of Aframomum melegueta, a medicinal plant from West and Central Africa. The potential of phenols and terpenoids isolated from Aframomum plants were generally much better documented than that of arylalkanoids. Aframomum genus represents an enormous resource for novel compounds with a range of medicinal properties. However, these plants are under-researched and their conservation is poor. To unravel their full potential, efforts should be strengthened throughout the continent to establish the taxonomy, preserve the genus and explore novel medicinal properties.

  20. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements.

    Science.gov (United States)

    Kohl, Alain; Pondeville, Emilie; Schnettler, Esther; Crisanti, Andrea; Supparo, Clelia; Christophides, George K; Kersey, Paul J; Maslen, Gareth L; Takken, Willem; Koenraadt, Constantianus J M; Oliva, Clelia F; Busquets, Núria; Abad, F Xavier; Failloux, Anna-Bella; Levashina, Elena A; Wilson, Anthony J; Veronesi, Eva; Pichard, Maëlle; Arnaud Marsh, Sarah; Simard, Frédéric; Vernick, Kenneth D

    2016-01-01

    Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector-pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations.

  1. A new apparatus at hyper irradiation research facility at the Atomic Research Center, University of Tokyo

    International Nuclear Information System (INIS)

    Shibata, Hiromi; Iwai, Takeo; Narui, Makoto; Omata, Takao

    1996-01-01

    In the hyper irradiation research facility at the Atomic Research Center, the University of Tokyo, following apparatuses were newly installed for accelerator relating apparatus on 1995 fiscal year; 1) Hyper ion microbeam analysis apparatus, 2) Fourier conversion infrared microscopy, 3) Pico second two-dimensional fluorescence measuring apparatus, 4) Femto second wave-length reversible pulse laser radiation apparatus, and others. In addition to double irradiation, pulse beam irradiation experiment and so forth characteristic in conventional hyper irradiation research apparatus, upgrading of material irradiation experiments using these new apparatuses are intended. (G.K.)

  2. The joint center for energy storage research: A new paradigm for battery research and development

    International Nuclear Information System (INIS)

    Crabtree, George

    2015-01-01

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments

  3. Research Summaries: The 11th Biennial Rivkin Center Ovarian Cancer Research Symposium.

    Science.gov (United States)

    Armstrong, Deborah K

    2017-11-01

    In September 2016, the 11th biennial ovarian cancer research symposium was presented by the Rivkin Center for Ovarian Cancer and the American Association for Cancer Research. The 2016 symposium focused on 4 broad areas of research: Mechanisms of Initiation and Progression of Ovarian Cancer, Tumor Microenvironment and Models of Ovarian Cancer, Detection and Prevention of Ovarian Cancer, and Novel Therapeutics for Ovarian Cancer. The presentations and abstracts from each of these areas are reviewed in this supplement to the International Journal of Gynecologic Oncology.

  4. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    . This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and

  5. Towards a lightweight generic computational grid framework for biological research

    Directory of Open Access Journals (Sweden)

    Shepherd Adrian J

    2008-10-01

    Full Text Available Abstract Background An increasing number of scientific research projects require access to large-scale computational resources. This is particularly true in the biological field, whether to facilitate the analysis of large high-throughput data sets, or to perform large numbers of complex simulations – a characteristic of the emerging field of systems biology. Results In this paper we present a lightweight generic framework for combining disparate computational resources at multiple sites (ranging from local computers and clusters to established national Grid services. A detailed guide describing how to set up the framework is available from the following URL: http://igrid-ext.cryst.bbk.ac.uk/portal_guide/. Conclusion This approach is particularly (but not exclusively appropriate for large-scale biology projects with multiple collaborators working at different national or international sites. The framework is relatively easy to set up, hides the complexity of Grid middleware from the user, and provides access to resources through a single, uniform interface. It has been developed as part of the European ImmunoGrid project.

  6. A model for evaluating academic research centers: Case study of the Asian/Pacific Islander Youth Violence Prevention Center.

    Science.gov (United States)

    Nishimura, Stephanie T; Hishinuma, Earl S; Goebert, Deborah A; Onoye, Jane M M; Sugimoto-Matsuda, Jeanelle J

    2018-02-01

    To provide one model for evaluating academic research centers, given their vital role in addressing public health issues. A theoretical framework is described for a comprehensive evaluation plan for research centers. This framework is applied to one specific center by describing the center's Logic Model and Evaluation Plan, including a sample of the center's activities. Formative and summative evaluation information is summarized. In addition, a summary of outcomes is provided: improved practice and policy; reduction of risk factors and increase in protective factors; reduction of interpersonal youth violence in the community; and national prototype for prevention of interpersonal youth violence. Research centers are important mechanisms to advance science and improve people's quality of life. Because of their more infrastructure-intensive and comprehensive approach, they also require substantial resources for success, and thus, also require careful accountability. It is therefore important to comprehensively evaluate these centers. As provided herein, a more systematic and structured approach utilizing logic models, an evaluation plan, and successful processes can provide research centers with a functionally useful method in their evaluation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Scientific and technical photography at NASA Langley Research Center

    Science.gov (United States)

    Davidhazy, Andrew

    1994-12-01

    As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are

  8. The National Library of Medicine’s Disaster Information Management Research Center

    Directory of Open Access Journals (Sweden)

    Steven Joseph Phillips

    2013-12-01

    Full Text Available The Disaster Information Management Research Center (DIMRC develops and provides access to health information resources and technology for disaster preparedness, response, and recovery. DIMRC focuses on maintaining access to health information at all phases of disasters, developing innovative products and services for emergency personnel, conducting research to support disaster health information management, and collaborating with other agencies and communities. Several tools are available to help emergency responders in hazardous materials or Chemical, Biological, Radiological, or Nuclear incidents. Access to the literature is made available through PubMed and the Resource Guide for Disaster Medicine and Public Health, with links to online documents and resources from numerous organizations and government agencies. In addition, DIMRC supports the Disaster Information Specialist Program, a collaborative effort to explore and promote the role of librarians and information specialists in the provision of disaster-related information resources to the workforce and communities.

  9. NASA Glenn Research Center Support of the ASRG Project

    Science.gov (United States)

    Wilson, Scott D.; Wong, Wayne A.

    2014-01-01

    A high efficiency radioisotope power system is being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company (LMSSC) to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with DOELockheed Martin to produce ASC-F flight units, and one with GRC for the production of ASC-E3 engineering unit pathfinders that are built to the flight design. In support of those contracts, GRC provided testing, materials expertise, government furnished equipment, inspections, and related data products to DOELockheed Martin and Sunpower. The technical support includes material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests have been performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests have been used to characterize performance under operating conditions that are representative of various mission conditions. Technology transfers enhanced contractor capabilities for specialized production processes and tests. Despite termination of flight ASRG contract, NASA continues to develop the high efficiency ASC conversion technology under the ASC-E3 contract. This paper describes key government furnished services performed for ASRG and future tests used to provide data for ongoing reliability assessments.

  10. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    Science.gov (United States)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  11. "Biology Education"--An Emerging Interdisciplinary Area of Research

    Science.gov (United States)

    Rutledge, Michael

    2013-01-01

    The growing number of faculty positions in biology education, the formation of professional societies focused specifically on biology education, and the increasing number of publications in biology education over the past decade

  12. Cancer Research Center Indiana University School of Medicine

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The Department of Energy (DOE) proposes to authorize the Indiana School of Medicine to proceed with the detailed design, construction and equipping of the proposed Cancer Research Center (CRC). A grant was executed with the University on April 21, 1992. A four-story building with basement would be constructed on the proposed site over a 24-month period. The proposed project would bring together, in one building, three existing hematology/oncology basic research programs, with improved cost-effectiveness through the sharing of common resources. The proposed site is currently covered with asphaltic pavement and is used as a campus parking lot. The surrounding area is developed campus, characterized by buildings, walkways, with minimal lawns and plantings. The proposed site has no history of prior structures and no evidence of potential sources of prior contamination of the soil. Environmental impacts of construction would be limited to minor increases in traffic, and the typical noises associated with standard building construction. The proposed CRC project operation would involve the use radionuclides and various hazardous materials in conducting clinical studies. Storage, removal and disposal of hazardous wastes would be managed under existing University programs that comply with federal and state requirements. Radiological safety programs would be governed by Nuclear Regulatory Commission (NRC) license and applicable Environmental Protection Agency (EPA) regulations. There are no other NEPA reviews currently active which are in relationship to this proposed site. The proposed project is part of a Medical Campus master plan and is consistent with applicable local zoning and land use requirements.

  13. Two new research melters at the Savannah River Technology Center

    International Nuclear Information System (INIS)

    Gordon, J.R.; Coughlin, J.T.; Minichan, R.L.; Zamecnik, J.R.

    2000-01-01

    The Savannah River Technology Center (SRTC) is a US Department of Energy (DOE) complex leader in the development of vitrification technology. To maintain and expand this SRTC core technology, two new melter systems are currently under construction in SRTC. This paper discusses the development of these two new systems, which will be used to support current as well as future vitrification programs in the DOE complex. The first of these is the new minimelter, which is a joule-heated glass melter intended for experimental melting studies with nonradioactive glass waste forms. Testing will include surrogates of Defense Waste processing Facility (DWPF) high-level wastes. To support the DWPF testing, the new minimelter was scaled to the DWPF melter based on melt surface area. This new minimelter will replace an existing system and provide a platform for the research and development necessary to support the SRTC vitrification core technology mission. The second new melter is the British Nuclear Fuels, Inc., research melter system (BNFL melter), which is a scaled version of the BNFL low-activity-waste (LAW) melter proposed for vitrification of LAW at Hanford. It is designed to process a relatively large amount of actual radiative Hanford tank waste and to gather data on the composition of off-gases that will be generated by the LAW melter. Both the minimelter and BNFL melter systems consist of five primary subsystems: melter vessel, off-gas treatment, feed, power supply, and instrumentation and controls. The configuration and design of these subsystems are tailored to match the current system requirements and provide the flexibility to support future DOE vitrification programs. This paper presents a detailed discussion of the unique design challenges represented by these two new melter systems

  14. Cancer Research Center Indiana University School of Medicine

    International Nuclear Information System (INIS)

    1994-08-01

    The Department of Energy (DOE) proposes to authorize the Indiana School of Medicine to proceed with the detailed design, construction and equipping of the proposed Cancer Research Center (CRC). A grant was executed with the University on April 21, 1992. A four-story building with basement would be constructed on the proposed site over a 24-month period. The proposed project would bring together, in one building, three existing hematology/oncology basic research programs, with improved cost-effectiveness through the sharing of common resources. The proposed site is currently covered with asphaltic pavement and is used as a campus parking lot. The surrounding area is developed campus, characterized by buildings, walkways, with minimal lawns and plantings. The proposed site has no history of prior structures and no evidence of potential sources of prior contamination of the soil. Environmental impacts of construction would be limited to minor increases in traffic, and the typical noises associated with standard building construction. The proposed CRC project operation would involve the use radionuclides and various hazardous materials in conducting clinical studies. Storage, removal and disposal of hazardous wastes would be managed under existing University programs that comply with federal and state requirements. Radiological safety programs would be governed by Nuclear Regulatory Commission (NRC) license and applicable Environmental Protection Agency (EPA) regulations. There are no other NEPA reviews currently active which are in relationship to this proposed site. The proposed project is part of a Medical Campus master plan and is consistent with applicable local zoning and land use requirements

  15. 76 FR 32971 - Proposed Priority for the Disability and Rehabilitation Research Projects and Centers Program

    Science.gov (United States)

    2011-06-07

    ... the research findings, or because they lack access to research findings in usable forms. In addition... Proposed Priority for the Disability and Rehabilitation Research Projects and Centers Program AGENCY... Rehabilitation Research (NIDRR)--Disability and Rehabilitation Research Projects and Centers Program--Disability...

  16. 34 CFR 350.1 - What is the Disability and Rehabilitation Research Projects and Centers Program?

    Science.gov (United States)

    2010-07-01

    ... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM General § 350.1 What is the Disability and Rehabilitation Research Projects and Centers Program? The Disability and Rehabilitation Research... Rehabilitation Research and Related Projects: (1) Disability and Rehabilitation Research Projects. (2) Field...

  17. 76 FR 12123 - National Center for Research Resources; Notice of Closed Meeting

    Science.gov (United States)

    2011-03-04

    ....306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389, Research... of Committee: National Center for Research Resources Special Emphasis Panel; Clinical Research. Date... HUMAN SERVICES National Institutes of Health National Center for Research Resources; Notice of Closed...

  18. 75 FR 78212 - Proposed Information Collection; Comment Request; Center for Economic Studies Research Proposal...

    Science.gov (United States)

    2010-12-15

    ... proposal submission process. There are two distinct steps to submit a research proposal. The first step is... Proposal Process Persons wishing to conduct research at a Research Data Center must submit a research... Census Bureau Proposed Information Collection; Comment Request; Center for Economic Studies Research...

  19. Explorations: A Research-Based Program Introducing Undergraduates to Diverse Biology Research Topics Taught by Grad Students and Postdocs

    Science.gov (United States)

    Brownell, Sara E.; Khalfan, Waheeda; Bergmann, Dominique; Simoni, Robert

    2013-01-01

    Undergraduate biology majors are often overwhelmed by and underinformed about the diversity and complexity of biological research that is conducted on research-intensive campuses. We present a program that introduces undergraduates to the diversity and scope of biological research and also provides unique teaching opportunities for graduate…

  20. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  1. Research program on the biological effects of oil pollution

    International Nuclear Information System (INIS)

    Barrett, R.T.

    1991-12-01

    A national research program on the biological effects of oil pollution (FOBO) was initiated by the Norwegian Ministry of Environment in October 1983 in the light of the increasing oil exploration and production activity in the North Sea and northern Norwegian waters. Ambitions were high and five main fields of research were suggested: Seabirds, fish (incl. salmon), marine mammals, the littoral zone and plankton. However, due to the lack of interest on the part of other potential financers, e.g. the Ministry of Fisheries and the oil companies, to participate, the four-year programme had to be limited to the following three topics: Seabirds around bruding colonies and at sea; Higher plants along the shoreline; The littoral zone. The program ran from the autumn of 1985 to the end of 1989 and this report summarizes the main results and conclusions of each project. 95 refs., 52 figs., 9 tabs

  2. 2010 Tetrapyrroles, Chemistry & Biology of Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Angela Wilks

    2010-07-30

    The objective of the Chemistry & Biology of Tetrapyrroles Gordon Conference is to bring together researchers from diverse disciplines that otherwise would not interact. By bringing biologists, chemists, engineers and clinicians with a common interest in tetrapyrroles the conference provides a forum for cross-disciplinary ideas and collaboration. The perspective provided by biologists, chemists, and clinicians working in fields such as newly discovered defects in human porphyrin metabolism, the myriad of strategies for light harvesting in photosynthetic organisms, novel tetrapyrroles that serve as auxiliary chromophores or enzyme cofactors, synthetic strategies in the design of novel tetrapyrrole scaffolds, and tetrapyrrole based cell signaling and regulatory systems, makes this conference unique in the field. Over the years the growing evidence for the role of tetrapyrroles and their reactive intermediates in cell signaling and regulation has been of increasing importance at this conference. The 2010 conference on Chemistry & Biology of Tetrapyrroles will focus on many of these new frontiers as outlined in the preliminary program listed. Speakers will emphasize unpublished results and new findings in the field. The oral sessions will be followed by the highly interactive afternoon poster sessions. The poster sessions provide all conferees with the opportunity to present their latest research and to exchange ideas in a more informal setting. As in the past, this opportunity will continue during the nightly social gathering that takes place in the poster hall following the evening lectures. All conferees are encouraged to submit and present posters. At the conference the best poster in the areas of biology, chemistry and medicine will be selected by a panel of previous conference chairs.

  3. Methods of 15N tracer research in biological systems

    International Nuclear Information System (INIS)

    Hirschberg, K.; Faust, H.

    1985-01-01

    The application of the stable isotope 15 N is of increasing importance in different scientific disciplines, especially in medicine, agriculture, and the biosciences. The close correlation between the growing interest and improvements of analytical procedures resulted in remarkable advances in the 15 N tracer technique. On the basis of the latest results of 15 N tracer research in life sciences and agriculture methods of 15 N tracer research in biological systems are compiled. The 15 N methodology is considered under three headings: Chemical analysis with a description of methods of sample preparation (including different separation and isolation methods for N-containing substances of biological and agricultural origin) and special procedures converting ammonia to molecular nitrogen. Isotopic analysis with a review on the most important methods of isotopic analysis of nitrogen: mass spectrometry (including the GC-MS technique), emission spectrometry, NMR spectroscopy, and other analytical procedures. 15 N-tracer techniques with a consideration of the role of the isotope dilution analysis as well as different labelling techniques and the mathematical interpretation of tracer data (modelling, N turnover experiments). In these chapters also sources of errors in chemical and isotopic analysis, the accuracy of the different methods and its importance on tracer experiments are discussed. Procedures for micro scale 15 N analysis and aspects of 15 N analysis on the level of natural abundance are considered. Furthermore some remarks on isotope effects in 15 N tracer experiments are made. (author)

  4. Application of the selected physical methods in biological research

    Directory of Open Access Journals (Sweden)

    Jaromír Tlačbaba

    2013-01-01

    Full Text Available This paper deals with the application of acoustic emission (AE, which is a part of the non-destructive methods, currently having an extensive application. This method is used for measuring the internal defects of materials. AE has a high potential in further research and development to extend the application of this method even in the field of process engineering. For that matter, it is the most elaborate acoustic emission monitoring in laboratory conditions with regard to external stimuli. The aim of the project is to apply the acoustic emission recording the activity of bees in different seasons. The mission is to apply a new perspective on the behavior of colonies by means of acoustic emission, which collects a sound propagation in the material. Vibration is one of the integral part of communication in the community. Sensing colonies with the support of this method is used for understanding of colonies biological behavior to stimuli clutches, colony development etc. Simulating conditions supported by acoustic emission monitoring system the illustrate colonies activity. Collected information will be used to represent a comprehensive view of the life cycle and behavior of honey bees (Apis mellifera. Use of information about the activities of bees gives a comprehensive perspective on using of acoustic emission in the field of biological research.

  5. The Art of Interpreting Epigenetic Activity | Center for Cancer Research

    Science.gov (United States)

    Even though all the cells of the human body share a common genomic blueprint, epigenetic activity such as DNA methylation, introduces molecular diversity that results in functionally and biologically different cellular constituents. In cancers, this ability of epigenetic activity to introduce molecular diversity is emerging as a powerful classifier of biological aggressiveness.

  6. Proceedings of RIKEN BNL Research Center workwhop on RHIC spin

    Energy Technology Data Exchange (ETDEWEB)

    SOFFER,J.

    1999-10-06

    This RHIC Spin Workshop is the 1999 annual meeting of the RHIC Spin Collaboration, and the second to be hosted at Brookhaven and sponsored by the RIKEN BNL Research Center. The previous meetings were at Brookhaven (1998), Marseille (1996), MIT in 1995, Argonne 1994, Tucson in 1991, and the Polarized Collider Workshop at Penn State in 1990. As noted last year, the Center provides a home for combined work on spin by theorists, experimenters, and accelerator physicists. This proceedings, as last year, is a compilation of 1 page summaries and 5 selected transparencies for each speaker. It is designed to be available soon after the workshop is completed. Speakers are welcome to include web or other references for additional material. The RHIC spin program and RHIC are rapidly becoming reality. RHIC has completed its first commissioning run, as described here by Steve Peggs. The first Siberian Snake for spin has been completed and is being installed in RHIC. A new polarized source from KEK and Triumf with over 1 milliampere of polarized H{sup minus} is being installed, described by Anatoli Zelenski. They have had a successful test of a new polarimeter for RHIC, described by Kazu Kurita and Haixin Huang. Spin commissioning is expected next spring (2000), and the first physics run for spin is anticipated for spring 2001. The purpose of the workshop is to get everyone together about once per year and discuss goals of the spin program, progress, problems, and new ideas. They also have many separate regular forums on spin. There are spin discussion sessions every Tuesday, now organized by Naohito Saito and Werner Vogelsang. The spin discussion schedule and copies of presentations are posted on http://riksg01.rhic.bnl.gov/rsc. Speakers and other spinners are encouraged to come to BNL and to lead a discussion on your favorite idea. They also have regular polarimeter and snake meetings on alternate Thursdays, led by Bill McGahern, the lead engineer for the accelerator spin

  7. Managing environmental enhancement plans for individual research projects at a national primate research center.

    Science.gov (United States)

    Thom, Jinhee P; Crockett, Carolyn M

    2008-05-01

    We describe a method for managing environmental enhancement plans for individual research projects at a national primate research center where most monkeys are assigned to active research projects. The Psychological Well-being Program (PWB) at the University of Washington National Primate Research Center developed an Environmental Enhancement Plan form (EEPL) that allows PWB to quantify and track changes in enrichment allowances over time while ensuring that each animal is provided with as much enrichment as possible without compromising research. Very few projects involve restrictions on toys or perches. Some projects have restrictions on food treats and foraging, primarily involving the provision of these enrichments by research staff instead of husbandry staff. Restrictions are not considered exemptions unless they entirely prohibit an element of the University of Washington Environmental Enhancement Plan (UW EE Plan). All exemptions must be formally reviewed and approved by the institutional animal care and use committee. Most exemptions from elements of the UW EE Plan involve social housing. Between 2004 and 2006, the percentage of projects with no social contact restrictions increased by 1%, but those prohibiting any tactile social contact declined by 7%, and projects permitting tactile social contact during part of the study increased by 9%. The EEPL form has facilitated informing investigators about the enrichment their monkeys will receive if no restrictions or exemptions are requested and approved. The EEPL form also greatly enhances PWB's ability to coordinate the specific enrichment requirements of a project.

  8. Research altruism as motivation for participation in community-centered environmental health research.

    Science.gov (United States)

    Carrera, Jennifer S; Brown, Phil; Brody, Julia Green; Morello-Frosch, Rachel

    2018-01-01

    Protection of human subjects in research typically focuses on extrinsic rather than intrinsic motivations for participation in research. Recent sociological literature on altruism suggests that multiple kinds of altruism exist and are grounded in a sense of connection to common humanity. We interviewed participants in eight community-centered research studies that sampled for endocrine disrupting compounds and that shared research findings with participants. The results of our analysis of participation in these studies indicate that altruistic motivations were commonly held. We found that these sentiments were tied to feeling a sense of connection to society broadly, a sense of connection to science, or a sense of connection with the community partner organization. We develop a new concept of banal altruism to address mundane practices that work towards promoting social benefits. Further, we offer that research altruism is a specific type of banal altruism that is a multi-faceted and important reason for which individuals choose to participate in community-centered research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. On-going research projects at Ankara Nuclear Research Center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    The projects in progress conducted by the Center comprise nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going main projects involving several sub-projects with the above subjects were summarized for possible future collaborations. (author)

  10. [Exposure to occupational biological risks: experience of a toxicology information center].

    Science.gov (United States)

    Cerda, Patricia; Cortés, Sandra; Bettini, Marli; Mieres, Juan José; Paris, Enrique; Ríos, Juan Carlos

    2014-04-01

    Exposure to Biological Agents during work is an emergent type of occupational risk. To characterize occupational biological risk exposure among Chilean workers which have been registered by the Toxicology Information Center, between January 2006 and December 2009. All incoming calls reporting exposure to biological agents during the studied period were analyzed. The information obtained from the caller was registered using the Communication Record Instrument of the WHO International Programme on Chemical Safety (IPCS INTOX). In the studied period, 77 calls were received. The mean age of exposed patients was 35 ± 15 years and 57% of them were females. The most common involved agents were vaccines for veterinary use (42%) followed by Loxosceles laeta bites in 16%. The main routes of exposure were injections, cuts and needle stick injuries in 39% and stings and bites in 38%. The highest exposure rates were observed in Southern Chile due to self-inoculation of veterinary vaccines used in the salmon industry (22.7/100.000 actual workers). Fifty-eight percent of calls were from health care workers, and 51% of them were from health care facilities. Sixty percent of exposures occurred during summer and spring. There was a fourfold higher risk of calls involving women exposed to bites or stings (odds ratio (OR) 4.5 (CI95 1.5-13.9, p < 0.01). Men had a fourfold higher risk of being exposed to vaccines or medications for veterinary use (OR 4.2, CI95 1.4-12.6 p < 0.01). Most calls involving an exposure to a biological agent were caused by self-inoculation of veterinary medications.

  11. Federally Sponsored Multidisciplinary Research Centers: Learning, Evaluation, and Vicious Circles

    Science.gov (United States)

    Youtie, Jan; Corley, Elizabeth A.

    2011-01-01

    Despite the increasing investment in multi-year federally funded science and technology centers in universities, there are few studies of how these centers engage in learning and change based on information submitted from various agents in the oversight and evaluation process. One challenge is how to manage and respond to this evaluative…

  12. Scientific and technical photography at NASA Langley Research Center

    Science.gov (United States)

    Davidhazy, Andrew

    1994-01-01

    As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are

  13. Successes of Small Business Innovation Research at NASA Glenn Research Center

    Science.gov (United States)

    Kim, Walter S.; Bitler, Dean W.; Prok, George M.; Metzger, Marie E.; Dreibelbis, Cindy L.; Ganss, Meghan

    2002-01-01

    This booklet of success stories highlights the NASA Glenn Research Center's accomplishments and successes by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs. These success stories are the results of selecting projects that support NASA missions and also have high commercialization potential. Each success story describes the innovation accomplished, commercialization of the technology, and further applications and usages. This booklet emphasizes the integration and incorporation of technologies into NASA missions and other government projects. The company name and the NASA contact person are identified to encourage further usage and application of the SBIR developed technologies and also to promote further commercialization of these products.

  14. A Survey of Knowledge Management Research & Development at NASA Ames Research Center

    Science.gov (United States)

    Keller, Richard M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This chapter catalogs knowledge management research and development activities at NASA Ames Research Center as of April 2002. A general categorization scheme for knowledge management systems is first introduced. This categorization scheme divides knowledge management capabilities into five broad categories: knowledge capture, knowledge preservation, knowledge augmentation, knowledge dissemination, and knowledge infrastructure. Each of nearly 30 knowledge management systems developed at Ames is then classified according to this system. Finally, a capsule description of each system is presented along with information on deployment status, funding sources, contact information, and both published and internet-based references.

  15. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-07-01

    challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  16. Division of Biological and Medical Research annual report, 1980

    International Nuclear Information System (INIS)

    Rosenthal, M.W.

    1981-08-01

    The research during 1980 in the Division of Biological and Medical Research, Argonne National Laboratory, is summarized. Research related to nuclear energy includes the delineation, in the beagle, of the responses to continuous low level 60 Co gamma radiation and the development of cellular indicators of preclinical phases of leukemia; comparison of lifetime effects in mice of low level neutron and 60 Co gamma radiation; studies of the genetic effects of high LET radiations; and studies of the gastrointestinal absorption of the actinide elements. Research related to nonuclear energy sources deals with characterization and toxicological evaluation of process streams and effluents of coal gasification; with electrical storage systems; and electric fields associated with energy transmission. Proteins in human urine and selected tissues are examined by two-dimensional electrophoresis to detect disease and pollutant related changes. Assessment of human risk associated with nuclearing collective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  17. A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. L.; McDermott, Jason E.; Proll, Sean; Rosenberger, Carrie; Schoolnik, Gary; Katze, Michael G.

    2011-02-01

    The 20th century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and water borne illnesses are frequent, multi-drug resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the past—including the intense focus on individual genes and proteins typical of molecular biology—have not been sufficient to address these challenges. The first decade of the 21st century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program we think that the time is at hand to redefine the pathogen-host research paradigm.

  18. Institutional Memory Preservation at NASA Glenn Research Center

    Science.gov (United States)

    Coffey, J.; Moreman, Douglas; Dyer, J.; Hemminger, J. A.

    1999-01-01

    In this era of downsizing and deficit reduction, the preservation of institutional memory is a widespread concern for U.S. companies and governmental agencies. The National Aeronautical and Space Administration faces the pending retirement of many of the agency's long-term, senior engineers. NASA has a marvelous long-term history of success, but the agency faces a recurring problem caused by the loss of these engineers' unique knowledge and perspectives on NASA's role in aeronautics and space exploration. The current work describes a knowledge elicitation effort aimed at demonstrating the feasibility of preserving the more personal, heuristic knowledge accumulated over the years by NASA engineers, as contrasted with the "textbook" knowledge of launch vehicles. Work on this project was performed at NASA Glenn Research Center and elsewhere, and focused on launch vehicle systems integration. The initial effort was directed toward an historic view of the Centaur upper stage which is powered by two RL-10 engines. Various experts were consulted, employing a variety of knowledge elicitation techniques, regarding the Centaur and RL-10. Their knowledge is represented in searchable Web-based multimedia presentations. This paper discusses the various approaches to knowledge elicitation and knowledge representation employed, and assesses successes and challenges in trying to perform large-scale knowledge preservation of institutional memory. It is anticipated that strategies for knowledge elicitation and representation that have been developed in this grant will be utilized to elicit knowledge in a variety of domains including the complex heuristics that underly use of simulation software packages such as that being explored in the Expert System Architecture for Rocket Engine Numerical Simulators.

  19. Small Radioisotope Power System Testing at NASA Glenn Research Center

    Science.gov (United States)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  20. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  1. Refractory Research Group - U.S. DOE, Albany Research Center [Institution Profile

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, James P.

    2004-09-01

    The refractory research group at the Albany Research Center (ARC) has a long history of conducting materials research within the U.S. Bureau of Mines, and more recently, within the U.S. Dept. of Energy. When under the U.S. Bureau of Mines, research was driven by national needs to develop substitute materials and to conserve raw materials. This mission was accomplished by improving refractory material properties and/or by recycling refractories using critical and strategic materials. Currently, as a U.S. Dept of Energy Fossil Energy field site, research is driven primarily by the need to assist DOE in meeting its vision to develop economically and environmentally viable technologies for the production of electricity from fossil fuels. Research at ARC impacts this vision by: • Providing information on the performance characteristics of materials being specified for the current generation of power systems; • Developing cost-effective, high performance materials for inclusion in the next generation of fossil power systems; and • Solving environmental emission and waste problems related to fossil energy systems. A brief history of past refractory research within the U.S. Bureau of Mines, the current refractory research at ARC, and the equipment and capabilities used to conduct refractory research at ARC will be discussed.

  2. Teams and teamwork at NASA Langley Research Center

    Science.gov (United States)

    Dickinson, Terry L.

    1994-01-01

    The recent reorganization and shift to managing total quality at the NASA Langley Research Center (LaRC) has placed an increasing emphasis on teams and teamwork in accomplishing day-to-day work activities and long-term projects. The purpose of this research was to review the nature of teams and teamwork at LaRC. Models of team performance and teamwork guided the gathering of information. Current and former team members served as participants; their collective experience reflected membership in over 200 teams at LaRC. The participants responded to a survey of open-ended questions which assessed various aspects of teams and teamwork. The participants also met in a workshop to clarify and elaborate on their responses. The work accomplished by the teams ranged from high-level managerial decision making (e.g., developing plans for LaRC reorganization) to creating scientific proposals (e.g., describing spaceflight projects to be designed, sold, and built). Teams typically had nine members who remained together for six months. Member turnover was around 20 percent; this turnover was attributed to heavy loads of other work assignments and little formal recognition and reward for team membership. Team members usually shared a common and valued goal, but there was not a clear standard (except delivery of a document) for knowing when the goal was achieved. However, members viewed their teams as successful. A major factor in team success was the setting of explicit a priori rules for communication. Task interdependencies between members were not complex (e.g., sharing of meeting notes and ideas about issues), except between members of scientific teams (i.e., reliance on the expertise of others). Thus, coordination of activities usually involved scheduling and attendance of team meetings. The team leader was designated by the team's sponsor. This leader usually shared power and responsibilities with other members, such that team members established their own operating

  3. Advances, gaps, and future prospects in biological soil crust research

    Science.gov (United States)

    Weber, Bettina; Büdel, Burkhard; Belnap, Jayne

    2017-04-01

    Research progress has led to the understanding that biological soil crusts (biocrusts) are often complete miniature ecosystems comprising a variety of photosynthesizers (cyanobacteria, algae, lichens, bryophytes), decomposers like bacteria, fungi, and archaea, and heterotrophic organisms, like protozoa, nematodes, and microarthropods feeding on them. Biocrusts are one of the oldest terrestrial ecosystems, playing central roles in the structure and functioning of dryland ecosystems and presumably also influencing global biogeochemical cycles. On the other hand, biocrusts have been shown to be highly sensitive to global change, being easily destroyed by mechanical disturbance and severely threatened by minor changes in climate patterns. Despite the large increase in biocrust research, we still see major knowledge gaps which need to be tackled. Considering biodiversity studies, there are major regions of potential biocrust occurrence, where hardly any studies have been conducted. Molecular identification techniques are increasingly employed, but genetically characterized entities need to be linked with morphologically identified organisms to identify their ecological roles. Although there is a large body of research on the role of biocrusts in water and nutrient budgets, we are still far from closing the overall cycles. Results suggest that not all mechanisms have been identified, yet, leading to sometimes contradictory results between different studies. Knowledge on how to minimize impact to biocrusts during surface-disturbing activities has hardly been gained, and despite research efforts, instructions on effective biocrust restoration are still exemplary. In order to fill these research gaps, novel scientific approaches are needed. We expect that global research networks could be extremely helpful to answer scientific questions by tackling them within different regions, utilizing the same methodological techniques. Global networks could also be used for long

  4. Center for Defect Physics - Energy Frontier Research Center (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Stocks, G. Malcolm

    2011-01-01

    'Center for Defect Physics - Energy Frontier Research Center' was submitted by the Center for Defect Physics (CDP) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; Brown University; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Lawrence Livermore National Laboratory; Ohio State University; and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  5. Computerized based training in nuclear safety in the nuclear research center Negev

    International Nuclear Information System (INIS)

    Ben-Shachar, B.; Krubain, H.; Sberlo, E.

    2002-01-01

    The Department of Human Resources and Training in the Nuclear Research Center, Negev, in collaboration with the Department of Radiation Protection and Safety used to organize different kinds of training and refresher courses for different aspects of safety in nuclear centers (radiation safety, biological effects of ionizing radiation, industrial safety, fire fighting, emergency procedures, etc.). All radiation workers received a training program of several days in all these subjects, each year. The administrative employees received a shorter training, each second year. The training included only frontal lectures and no quiz or exams were done. No feedback of the employees was received after the training, as well. Recently, a new training program was developed by the NRC-Negev and the CET (Center for Educational Technology), in order to perform the refresher courses. The training includes CBT-s (Computer Based Training), e.g. tutorials and quiz. The tutorial is an interactive course in one subject, including animations, video films and photo stills. The employee gets a simple and clear explanation (including pictures). After each tutorial there is a quiz which includes 7 American style questions. In the following lecture different parts from two of the tutorials used for the refresher courses, will be presented

  6. Life lines: An art history of biological research around 1800.

    Science.gov (United States)

    Bruhn, Matthias

    2011-12-01

    Around 1800, the scientific "illustrator" emerged as a new artistic profession in Europe. Artists were increasingly sought after in order to picture anatomical dissections and microscopic observations and to translate drawings into artworks for books and journals. By training and technical expertise, they introduced a particular kind of knowledge into scientific perception that also shaped the common image of nature. Illustrations of scientific publications, often undervalued as a biased interpretation of facts and subordinate to logic and description, thus convey an 'art history' of science in its own right, relevant both for the understanding of biological thought around 1800 as well as for the development of the arts and their historiography. The article is based on an analysis of botanical treatises produced for the Göttingen Society of Sciences in 1803, during an early phase of microscopic cell research, in order to determine the constitutive role of artistic knowledge and the media employed for the visualization and conceptualization of biological issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Growth Analysis of Cancer Biology Research, 2000-2011

    Directory of Open Access Journals (Sweden)

    Keshava,

    2015-09-01

    Full Text Available Methods and Material: The PubMed database was used for retrieving data on 'cancer biology.' Articles were downloaded from the years 2000 to 2011. The articles were classified chronologically and transferred to a spreadsheet application for analysis of the data as per the objectives of the study. Statistical Method: To investigate the nature of growth of articles via exponential, linear, and logistics tests. Result: The year wise analysis of the growth of articles output shows that for the years 2000 to 2005 and later there is a sudden increase in output, during the years 2006 to 2007 and 2008 to 2011. The high productivity of articles during these years may be due to their significance in cancer biology literature, having received prominence in research. Conclusion: There is an obvious need for better compilations of statistics on numbers of publications in the years from 2000 to 2011 on various disciplines on a worldwide scale, for informed critical assessments of the amount of new knowledge contributed by these publications, and for enhancements and refinements of present Scientometric techniques (citation and publication counts, so that valid measures of knowledge growth may be obtained. Only then will Scientometrics be able to provide accurate, useful descriptions and predictions of knowledge growth.

  8. Using biological samples in epidemiological research on drugs of abuse

    Directory of Open Access Journals (Sweden)

    Hallvard Gjerde

    2011-12-01

    Full Text Available Blood, oral fluid (saliva, urine and hair are the most commonly used biological matrices for drug testing in epidemiological drug research. Other biological matrices may also be used for selected purposes. Blood reflects recent drug intake and may be used to assess impairment. Oral fluid reflects drug presence in blood and thereby also recent intake, but drug concentrations in this matrix cannot be used to accurately estimate concentrations in blood. Urine reflects drug use during the last few days and in some cases for a longer period, but does not indicate the dose size or frequency of use. Hair reflects drug use during several months, but is a poor matrix for detecting use of cannabis. If using a single drug dose, this can be detected in blood and urine if the sample is taken within the detection timeframes, in most cases also in oral fluid. Single drug use is most often insufficient for producing a positive test result in a sample of hair. For cocaine and amphetamine, weekly use may be needed, while for cannabis a positive result is not guaranteed even after daily use. Refusal rates are lowest for oral fluid and highest for blood and hair samples. The analytical costs are lowest for urine and highest for hair. Combined use of questionnaires/interviews and drug testing detects more drug use than when using only one of those methods and is therefore expected to give more accurate data.

  9. Phytochemical and biological research of Fritillaria medicine resources.

    Science.gov (United States)

    Hao, Da-Cheng; Gu, Xiao-Jie; Xiao, Pei-Gen; Peng, Yong

    2013-07-01

    The genus Fritillaria is a botanical source for various pharmaceutically active components, which have been commonly used in traditional Chinese medicine for thousands of years. Increasing interest in Fritillaria medicinal resources has led to additional discoveries of steroidal alkaloids, saponins, terpenoids, glycosides and many other compounds in various Fritillaria species, and to investigations on their chemotaxonomy, molecular phylogeny and pharmacology. In continuation of studies on Fritillaria pharmacophylogeny, the phytochemistry, chemotaxonomy, molecular biology and phylogeny of Fritillaria and their relevance to drug efficacy is reviewed. Literature searching is used to characterize the global scientific effort in the flexible technologies being applied. The interrelationship within Chinese Bei Mu species and between Chinese species, and species distributed outside of China, is clarified by the molecular phylogenetic inferences based on nuclear and chloroplast DNA sequences. The incongruence between chemotaxonomy and molecular phylogeny is revealed and discussed. It is essential to study more species for both the sustainable utilization of Fritillaria medicinal resources and for finding novel compounds with potential clinical utility. Systems biology and omics technologies will play an increasingly important role in future pharmaceutical research involving the bioactive compounds of Fritillaria. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  10. 76 FR 25700 - National Center for Research Resources; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-05

    ..., Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389, Research... of Committee: National Center for Research Resources Initial Review Group, Comparative Medicine... HUMAN SERVICES National Institutes of Health National Center for Research Resources; Notice of Closed...

  11. TRANSPORTATION RESEARCH CONTRIBUTIONS TO SOCIETY BY UNIVERSITY TRANSPORTATION CENTERS

    Directory of Open Access Journals (Sweden)

    Robert C. JOHNS

    2003-01-01

    Full Text Available This paper discusses the importance of knowledge in the global economy and reviews the process in which knowledge is applied to develop innovations. It confirms the importance of innovation as a key factor for success in today's competitive environment. The paper discusses the contributions a university can make to the innovation process in the field of transportation, and offers a vision of how a university center can enhance and facilitate these contributions. It then describes the efforts of one center, including three examples of innovations facilitated by the center in traffic detection, regional planning, and pavement management. The paper concludes with suggestions that would strengthen the societal contributions of university transportation centers.

  12. Centro de Biologia Molecular "Severo Ochoa": a center for basic research into Alzheimer's disease.

    Science.gov (United States)

    Avila, Jesus; Hernandez, Felix; Wandosell, Francisco; Lucas, Jose J; Esteban, Jose A; Ledesma, M Dolores; Bullido, Maria J

    2010-01-01

    One important aspect of studies carried out at the Center for Molecular Biology "Severo Ochoa" is focused on basic aspects of Alzheimer's disease, mainly the search for suitable therapeutic targets for this disorder. Several groups at the Center are involved in these studies, and, in this spotlight, the work they are carrying out will be described.

  13. Accelerating cancer systems biology research through Semantic Web technology.

    Science.gov (United States)

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S

    2013-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute's caBIG, so users can interact with the DMR not only through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers' intellectual property. Copyright © 2012 Wiley Periodicals, Inc.

  14. The structural biology center at the APS: an integrated user facility for macromolecular crystallography

    International Nuclear Information System (INIS)

    Rosenbaum, G.; Westbrook, E.M.

    1997-01-01

    The Structural Biology Center (SBC) has developed and operates a sector (undulator and bending magnet) of the APS as a user facility for macromolecular crystallography. Crystallographically determined structures of proteins, nucleic acids and their complexes with proteins, viruses, and complexes between macromolecules and small ligands have become of central importance in molecular and cellular biology. Major design goals were to make the extremely high brilliance of the APS available for brilliance limited studies, and to achieve a high throughput of less demanding studies, as well as optimization for MAS-phasing. Crystal samples will include extremely small crystals, crystals with large unit cells (viruses, ribosomes, etc.) and ensembles of closely similar crystal structures for drug design, protein engineering, etc. Data are recorded on a 3000x3000 pixel CCD-area detector (optionally on image plates). The x-ray optics of both beamlines has been designed to produce a highly demagnified image of the source in order to match the focal size with the sizes of the sample and the resolution element of the detector. Vertical focusing is achieved by a flat, cylindrically bent mirror. Horizontal focusing is achieved by sagitally bending the second crystal of the double crystal monochromator. Monochromatic fluxes of 1.3 * 10 13 ph/s into focal sizes of 0.08 mm (horizontal)x0.04 mm (vertical) FWHM (flux density 3.5 * 10 15 ph/s/mm 2 ) have been recorded.copyright 1997 American Institute of Physics

  15. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Science.gov (United States)

    2010-03-24

    ... (NIST) Center for Nanoscale Science and Technology (CNST) is establishing a financial assistance program... DEPARTMENT OF COMMERCE National Institute of Standards and Technology [Docket Number: 100311136-0140-01] Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

  16. Active learning and student-centered pedagogy improve student attitudes and performance in introductory biology.

    Science.gov (United States)

    Armbruster, Peter; Patel, Maya; Johnson, Erika; Weiss, Martha

    2009-01-01

    We describe the development and implementation of an instructional design that focused on bringing multiple forms of active learning and student-centered pedagogies to a one-semester, undergraduate introductory biology course for both majors and nonmajors. Our course redesign consisted of three major elements: 1) reordering the presentation of the course content in an attempt to teach specific content within the context of broad conceptual themes, 2) incorporating active and problem-based learning into every lecture, and 3) adopting strategies to create a more student-centered learning environment. Assessment of our instructional design consisted of a student survey and comparison of final exam performance across 3 years-1 year before our course redesign was implemented (2006) and during two successive years of implementation (2007 and 2008). The course restructuring led to significant improvement of self-reported student engagement and satisfaction and increased academic performance. We discuss the successes and ongoing challenges of our course restructuring and consider issues relevant to institutional change.

  17. Modeling and Analysis of Multidiscipline Research Teams at NASA Langley Research Center: A Systems Thinking Approach

    Science.gov (United States)

    Waszak, Martin R.; Barthelemy, Jean-Francois; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.

    1998-01-01

    Multidisciplinary analysis and design is inherently a team activity due to the variety of required expertise and knowledge. As a team activity, multidisciplinary research cannot escape the issues that affect all teams. The level of technical diversity required to perform multidisciplinary analysis and design makes the teaming aspects even more important. A study was conducted at the NASA Langley Research Center to develop a model of multidiscipline teams that can be used to help understand their dynamics and identify key factors that influence their effectiveness. The study sought to apply the elements of systems thinking to better understand the factors, both generic and Langley-specific, that influence the effectiveness of multidiscipline teams. The model of multidiscipline research teams developed during this study has been valuable in identifying means to enhance team effectiveness, recognize and avoid problem behaviors, and provide guidance for forming and coordinating multidiscipline teams.

  18. Building intelligent systems: Artificial intelligence research at NASA Ames Research Center

    Science.gov (United States)

    Friedland, P.; Lum, H.

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  19. Building intelligent systems - Artificial intelligence research at NASA Ames Research Center

    Science.gov (United States)

    Friedland, Peter; Lum, Henry

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  20. Overview of Dynamics Integration Research (DIR) program at Langley Research Center

    Science.gov (United States)

    Sliwa, Steven M.; Abel, Irving

    1989-01-01

    Research goals and objectives for an ongoing activity at Langley Research Center (LaRC) are described. The activity is aimed principally at dynamics optimization for aircraft. The effort involves active participation by the Flight Systems, Structures, and Electronics directorates at LaRC. The Functional Integration Technology (FIT) team has been pursuing related goals since 1985. A prime goal has been the integration and optimization of vehicle dynamics through collaboration at the basic principles or equation level. Some significant technical progress has been accomplished since then and is reflected here. An augmentation for this activity, Dynamics Integration Research (DIR), has been proposed to NASA Headquarters and is being considered for funding in FY 1990 or FY 1991.

  1. Biomimetics for NASA Langley Research Center: Year 2000 Report of Findings From a Six-Month Survey

    Science.gov (United States)

    Siochi, Emilie J.; Anders, John B., Jr.; Cox, David E.; Jegley, Dawn C.; Fox, Robert L.; Katzberg, Stephen J.

    2002-01-01

    This report represents an attempt to see if some of the techniques biological systems use to maximize their efficiency can be applied to the problems NASA faces in aeronautics and space exploration. It includes an internal survey of resources available at NASA Langley Research Center for biomimetics research efforts, an external survey of state of the art in biomimetics covering the Materials, Structures, Aerodynamics, Guidance and Controls areas. The Biomimetics Planning team also included ideas for potential research areas, as well as recommendations on how to implement this new program. This six-month survey was conducted in the second half of 1999.

  2. Microgravity research in plant biological systems: Realizing the potential of molecular biology

    Science.gov (United States)

    Lewis, Norman G.; Ryan, Clarence A.

    1993-01-01

    The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.

  3. Institutional profile: integrated center for research and treatment of vertigo, balance and ocular motor disorders.

    Science.gov (United States)

    Brandt, Thomas; Zwergal, Andreas; Jahn, Klaus; Strupp, Michael

    2010-01-01

    transversal network at one site for the management of patients. This should professionalize both the management and the international recruitment of patients (integrated care, telemedicine); to organize the study infrastructure for prospective multicenter clinical studies as well as to free clinical scientists from administrative tasks; to promote translational research with a focus on the innovative topics of molecular, functional and structural imaging, experimental and clinical pharmacotherapy, clinical research of vertigo and balance disorders, mathematical modelling, interaction between biological and technical systems (robotics), and research on functionality and the quality of life; to offer new attractive educational paths and career images for medical doctors, students of the natural sciences, and engineers in clinical research in order to overcome traditional hierarchical structures. This should promote the principles of efficiency and self-reliance; to supplement the existing excellence with up to eight groups of young scientists and up to eight professorships (tenure track). This should also be seen as an incentive that will attract the best young scientists; to incorporate (IFB(LMU)) competence into the existing medical and biological graduate schools. The (IFB(LMU)) is a unique center - worldwide.

  4. Cell Science and Cell Biology Research at MSFC: Summary

    Science.gov (United States)

    2003-01-01

    The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.

  5. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America.

    Science.gov (United States)

    Marcellini, Sylvain; González, Favio; Sarrazin, Andres F; Pabón-Mora, Natalia; Benítez, Mariana; Piñeyro-Nelson, Alma; Rezende, Gustavo L; Maldonado, Ernesto; Schneider, Patricia Neiva; Grizante, Mariana B; Da Fonseca, Rodrigo Nunes; Vergara-Silva, Francisco; Suaza-Gaviria, Vanessa; Zumajo-Cardona, Cecilia; Zattara, Eduardo E; Casasa, Sofia; Suárez-Baron, Harold; Brown, Federico D

    2017-01-01

    Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community. © 2016 Wiley Periodicals, Inc.

  6. Methodology implementation in order to evaluate the biological risks in the Centre for Research and Rehabilitation of Hereditary Ataxias of Cuba: a biosecurity surveillance method

    Directory of Open Access Journals (Sweden)

    Dailín Cobos Valdes

    2014-12-01

    Full Text Available Introduction: The Center for Research and Rehabilitation of Hereditary Ataxias faces biological risks. Nevertheless a Biosafety system was not yet implemented. Objective: To apply the methodology in order to evaluate these risks Materials and Methods: Interview with the researchers of the center and the use of the methodology for evaluating biological risks designed for Cobos, 2009. Results: Fifty-three biological risks were identified and evaluated, 32 as moderated, 18 as tolerable and 3 as trivial. Such classification are crucial to establish its management priorities and represent a way of surveillance in Biosafety field. Conclusion: The results of this research represent an essential factor for the Biosafety documentation development adapted to the Center and according to the legal basis in terms of biological safety in Cuba.

  7. High power electromagnetic propulsion research at the NASA Glenn Research Center

    International Nuclear Information System (INIS)

    LaPointe, Michael R.; Sankovic, John M.

    2000-01-01

    Interest in megawatt-class electromagnetic propulsion has been rekindled to support newly proposed high power orbit transfer and deep space mission applications. Electromagnetic thrusters can effectively process megawatts of power to provide a range of specific impulse values to meet diverse in-space propulsion requirements. Potential applications include orbit raising for the proposed multi-megawatt Space Solar Power Satellite and other large commercial and military space platforms, lunar and interplanetary cargo missions in support of the NASA Human Exploration and Development of Space strategic enterprise, robotic deep space exploration missions, and near-term interstellar precursor missions. As NASA's lead center for electric propulsion, the Glenn Research Center is developing a number of high power electromagnetic propulsion technologies to support these future mission applications. Program activities include research on MW-class magnetoplasmadynamic thrusters, high power pulsed inductive thrusters, and innovative electrodeless plasma thruster concepts. Program goals are highlighted, the status of each research area is discussed, and plans are outlined for the continued development of efficient, robust high power electromagnetic thrusters

  8. General aviation internal combustion engine research programs at NASA-Lewis Research Center

    Science.gov (United States)

    Willis, E. A.

    1978-01-01

    An update is presented of non-turbine general aviation engine programs underway at the NASA-Lewis Research Center in Cleveland, Ohio. The program encompasses conventional, lightweight diesel and rotary engines. Its three major thrusts are: (a) reduced SFC's; (b) improved fuels tolerance; and (c) reducing emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to late 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.

  9. High-performance data centers: A research roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Stein, Jay

    2004-03-30

    This report was developed for the California Energy Commission to document industry input and LBNL research into research topics appropriate for public interest support. Industry experts identified research topics and along with LBNL findings, helped to prioritize the technical areas for future public interest research.

  10. Developing a center for nursing research: an influence on nursing education and research through mentorship.

    Science.gov (United States)

    Krause-Parello, Cheryl A; Sarcone, Annaruth; Samms, Kimika; Boyd, Zakiya N

    2013-03-01

    Nursing research, education, and mentoring are effective strategies to enhance and generate nursing knowledge. In order to explore new opportunities using an international and interdisciplinary approach, a Center for Nursing Research (CNR) was developed at Kean University a public institution for higher education in the United States. At the CNR, nursing professionals and students collaborate in all aspects of nursing education and the research process from a global perspective and across disciplines. The advancement of knowledge and understanding is of absolute importance to the field of nursing and other collaborative fields. The CNR functions to educate nursing faculty and students through scholarly activities with an ongoing commitment to nursing education and research. Mentorship in nursing education and research fosters professional, scholarly, and personal growth for both the mentor and mentee. The CNR serves as a model vehicle of applied, functional mentoring strategies and provides the venue to allow the mentor and mentee to collaborate in all aspects of nursing education and research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Cytokines Synergize to Combat Metastatic Neuroblastoma | Center for Cancer Research

    Science.gov (United States)

    Neuroblastoma is the most common extracranial solid tumor in children, and clinical outcomes of patients with this disease are quite variable. Prognosis is particularly poor for patients with high-risk tumors (classification based on patients’ age, extent of disease spread, and other biological features).

  12. The Implementation of Research-based Learning on Biology Seminar Course in Biology Education Study Program of FKIP UMRAH

    Science.gov (United States)

    Amelia, T.

    2018-04-01

    Biology Seminar is a course in Biology Education Study Program of Faculty of Teacher Training and Education University of Maritim Raja Ali Haji (FKIP UMRAH) that requires students to have the ability to apply scientific attitudes, perform scientific writing and undertake scientific publications on a small scale. One of the learning strategies that can drive the achievement of learning outcomes in this course is Research-Based Learning. Research-Based Learning principles are considered in accordance with learning outcomes in Biology Seminar courses and generally in accordance with the purpose of higher education. On this basis, this article which is derived from a qualitative research aims at describing Research-based Learning on Biology Seminar course. Based on a case study research, it was known that Research-Based Learning on Biology Seminar courses is applied through: designing learning activities around contemporary research issues; teaching research methods, techniques and skills explicitly within program; drawing on personal research in designing and teaching courses; building small-scale research activities into undergraduate assignment; and infusing teaching with the values of researchers.

  13. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  14. 34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering Research...

  15. 75 FR 52536 - National Center for Research Resources; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-26

    .... 93.306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389... of Committee: National Center for Research Resources Initial Review Group, Comparative Medicine... HUMAN SERVICES National Institutes of Health National Center for Research Resources; Notice of Closed...

  16. 75 FR 59720 - Methodology Committee of the Patient-Centered Outcomes Research Institute (PCORI)

    Science.gov (United States)

    2010-09-28

    ... GOVERNMENT ACCOUNTABILITY OFFICE Methodology Committee of the Patient-Centered Outcomes Research... responsibility for appointing not more than 15 members to a Methodology Committee of the Patient- Centered Outcomes Research Institute. In addition, the Directors of the Agency for Healthcare Research and Quality...

  17. Advancing user experience research to facilitate and enable patient-centered research: current state and future directions.

    Science.gov (United States)

    Payne, Philip R O

    2013-01-01

    Human-computer interaction and related areas of user experience (UX) research, such as human factors, workflow evaluation, and data visualization, are thus essential to presenting data in ways that can further the analysis of complex data sets such as those used in patient-centered research. However, a review of available data on the state of UX research as it relates to patient-centered research demonstrates a significant underinvestment and consequently a large gap in knowledge generation. In response, this report explores trends in funding and research productivity focused on UX and patient-centered research and then presents a set of recommendations to advance innovation at this important intersection point. Ultimately, the aim is to catalyze a community-wide dialogue concerning future directions for research and innovation in UX as it applies to patient-centered research.

  18. Roles of radiation chemistry in development and research of radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2009-01-01

    Radiation chemistry acts as a bridge connecting radiation physics with radiation biology in spatial and temporal insight. The theory, model, and methodology coming from radiation chemistry play an important role in the research and development of radiation biology. The chemical changes induced by ionizing radiation are involved not only in early event of biological effects caused by ionizing radiation but in function radiation biology, such as DNA damage and repair, sensitive modification, metabolism and function of active oxygen and so on. Following the research development of radiation biology, systems radiation biology, accurate quality and quantity of radiation biology effects need more methods and perfect tools from radiation chemistry. (authors)

  19. Mesoscopic biology

    Indian Academy of Sciences (India)

    Abstract. In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. ... National Center for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore 560 065, India ...

  20. Using biological control research in the classroom to promote scientific inquiry and literacy

    Science.gov (United States)

    Many scientists who research biological control also teach at universities or more informally through cooperative outreach. The purpose of this paper is to review biological control activities for the classroom in four refereed journals, The American Biology Teacher, Journal of Biological Education...

  1. German Federal Ministry for Research and Technology: 1990 expenditures on energy research and national research centers

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The draft departmental budget No. 30 covering the portfolio of the Federal Minister for Research and Technology (BMFT) within the 1990 federal budget features total expenditures of DM 7855.2 million (as against 7645.4 million in the previous year). DM 112 (119) million has been earmarked for the funding of reactor development. In addition DM 105 (104) million has been planned for reactor safety and general technical safety, DM 2.5 (2.5) million for funding nuclear fuel supply (including uranium enrichment). The sums earmarked for nuclear spent fuel and waste management R and D are DM 43 (55.9) million; for investments, DM 26 (38.1) million, and risk sharing in the nuclear field by the Federal Government, DM 20 (20) million. This adds up to DM 308.5 million, which is 14.2% less than the 1989 target figure of DM 359.5 million. (orig.) [de

  2. Sending the Right Signals | Center for Cancer Research

    Science.gov (United States)

    Diffuse large B-cell lymphomas (DLBCL), the most common type of non-Hodgkin’s lymphoma, causes about 10,000 deaths every year in the United States, even though about half of all patients are cured with current regimens. There are different subtypes of DLBCL that vary biologically and have significantly different rates of patient survival following chemotherapy, with the activated B cell-like (ABC) subtype being the least responsive to current therapies. So Louis M. Staudt M.D., Ph.D., Head of the Molecular Biology of Lymphoid Malignancies Section at CCR, and his team set out to find why patients with this subtype have such unfavorable outcomes and how treatment of this disease can be improved.

  3. Modern Soft Tissue Pathology | Center for Cancer Research

    Science.gov (United States)

    This book comprehensively covers modern soft tissue pathology and includes both tumors and non-neoplastic entities. Soft tissues make up a large bulk of the human body, and they are susceptible to a wide range of diseases. Many soft-tissue tumors are biologically very aggressive, and the chance of them metastasizing to vital organs is quite high. In recent years, the outlook for soft-tissue cancers has brightened dramatically due to the increased accuracy of the pathologist's tools.

  4. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    Science.gov (United States)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  5. BRIC-100VC Biological Research in Canisters (BRIC)-100VC

    Science.gov (United States)

    Richards, Stephanie E.; Levine, Howard G. (Compiler); Romero, Vergel

    2016-01-01

    The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations of the effects of space flight on small specimens. The BRIC 100 mm petri dish vacuum containment unit (BRIC-100VC) has supported Dugesia japonica (flatworm) within spring under normal atmospheric conditions for 29 days in space and Hemerocallis lilioasphodelus L. (daylily) somatic embryo development within a 5% CO2 gaseous environment for 4.5 months in space. BRIC-100VC is a completely sealed, anodized-aluminum cylinder (Fig. 1) providing containment and structural support of the experimental specimens. The top and bottom lids of the canister include rapid disconnect valves for filling the canister with selected gases. These specialized valves allow for specific atmospheric containment within the canister, providing a gaseous environment defined by the investigator. Additionally, the top lid has been designed with a toggle latch and O-ring assembly allowing for prompt sealing and removal of the lid. The outside dimensions of the BRIC-100VC canisters are 16.0 cm (height) x 11.4 cm (outside diameter). The lower portion of the canister has been equipped with sufficient storage space for passive temperature and relative humidity data loggers. The BRIC- 100VC canister has been optimized to accommodate standard 100 mm laboratory petri dishes or 50 mL conical tubes. Depending on storage orientation, up to 6 or 9 canisters have been flown within an International Space Station (ISS) stowage locker.

  6. Gross's anatomy: textual politics in science/biology education research

    Science.gov (United States)

    Reis, Giuliano

    2009-12-01

    In approaching how the grotesque is—or should be—situated within contemporary science (biology) education practices, Weinstein and Broda undertake a passionate reclaim of an education that is at the same time scientific, critical, and liberatory. However legitimate, their work offers more than they probably could have anticipated: It exemplifies how the textual structure of a research article can be such as to "tip-off" readers about how it is supposed to be understood. In this way, what one learns from reading the manuscript is grounded on the way the authors examine the data presented. That is, the findings are not intrinsic to the materials collected, but constructed within the analyses that precede/follow the account of each one of the four "specimens" reported. Therefore, the present commentary seeks to re-consider the original study from an alternative perspective, one that challenges its seemingly objective (re)construction of facts by placing emphasis on how the text contains instructions for its own interpretation and validation. Ultimately, the purpose here is to describe and discuss the interpretive and validation work that is done by this discursive mechanism of self-appraisal rather than discredit the two authors' initiative.

  7. Using Biological-Control Research in the Classroom to Promote Scientific Inquiry & Literacy

    Science.gov (United States)

    Richardson, Matthew L.; Richardson, Scott L.; Hall, David G.

    2012-01-01

    Scientists researching biological control should engage in education because translating research programs into classroom activities is a pathway to increase scientific literacy among students. Classroom activities focused on biological control target all levels of biological organization and can be cross-disciplinary by drawing from subject areas…

  8. Research highlights from the UIC/NIH Center for Botanical Dietary Supplements Research for Women’s Health: Black cohosh from the field to the clinic

    Science.gov (United States)

    Farnsworth, Norman R; Mahady, Gail B.

    2009-01-01

    In 1999, the Department of Medicinal Chemistry and Pharmacognosy at the College of Pharmacy, University of Illinois (UIC) at Chicago was funded to establish a Botanical Dietary Supplements Research Center from the National Institutes of Health (NIH). The emphasis of the UIC/NIH Center for Botanical Dietary Supplements Research (CBDSR) is botanical dietary supplements (BDS) for women's health. Center’s research has focused on BDS that may improve women's health and quality of life, specifically in the areas of menopause, premenstrual syndrome, and persistent urinary tract infections. Center investigators have overcome many challenges associated with botanical dietary supplements research, including acquiring and identifying plant species for investigation, isolating and identifying active constituents, elucidating the mechanisms of action of these botanicals, and conducting phase I and phase II clinical studies. Black cohosh [Actaea racemosa L. (Ranunculaceae)] has been used as a model to illustrate the steps involved in taking a botanical dietary supplement from the field, all the way to clinical trials. Bioassays are described that were necessary to elucidate the pertinent biological studies of plant extracts and their mechanisms of action. The Center has used an innovative multidisciplinary approach to this type of research, and thus has been very successful in fulfilling its specific aims. PMID:20161501

  9. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    Science.gov (United States)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  10. Kaposi's Sarcoma-Associated Herpesvirus | Center for Cancer Research

    Science.gov (United States)

    The discovery of KSHV in 1994 was a historical landmark in tumor virology and human cancer research. KSHV's subsequent identification as a cause of Kaposi sarcoma and its association with primary effusion lymphoma and multicentric Castleman disease soon attracted the attention of hundreds of research laboratories and motivated thousands of virologists and oncologists to switch their research directions. To date, PubMed has collected nearly 5000 papers on KSHV from numerous journal publications throughout the world.

  11. Determining of clearance levels of radioactive biological and Organic wastes from the isotopes center

    International Nuclear Information System (INIS)

    Amador Balbona, Zayda; Cornejo Diaz, Nestor

    2001-01-01

    The use of unsealed sources for production of radiopharmaceuticals and labeled compounds in the Isotopes Center of Cuba results in the generation of various kinds of radioactive wastes. Much of them are segregated into low level activity and have relatively short half-lives. Since 1996 these wastes have disposed of following storage to allow for decay to very conservative clearance levels of the Institutional License of the Regulatory Authority. This paper describes three methods and models for the assessment of the effect of releases of radionuclides to the environment reported by IAEA, NRC and CIEMAT-CPHR. Each methodology were used taking account of site specific factors as meteorological characteristics, which were obtained during observations from last fifteen years, and the design of an industrial incinerator. The determined generic clearance levels for the incineration of biological and organic wastes are similar by any method and the results show that is possible to recommend the change of actual limits and in this case to reduce management costs. Verification of clearance levels was performed within the framework of a quality assurance system. For the first time this kind of work is made in a radioactive facility of our country

  12. Education Research: Education Should Improve Assessments of R&D Centers, Regional Labs, and Comprehensive Centers

    National Research Council Canada - National Science Library

    2002-01-01

    .... Education administers over a thousand grants, cooperative agreements, and contracts that fund educational research, development of materials, new methods of instruction and practices in teaching...

  13. The progress of molecular biology in radiation research

    International Nuclear Information System (INIS)

    Wei Kang

    1989-01-01

    The recent progress in application of molecular biology techniques in the study of radiation biology is reviewed. The three sections are as follows: (1) the study of DNA damage on molecular level, (2) the molecular mechanism of radiation cell genetics, including chromosome abberation and cell mutation, (3) the study on DNA repair gene with DNA mediated gene transfer techniques

  14. Human-Centered Television: Directions In Interactive Television Research

    NARCIS (Netherlands)

    César, P.S.; Bulterman, D.; Soares, L.F.G.

    2008-01-01

    The research area of interactive digital TV is in the midst of a significant revival. Unlike the first generation of digital TV, which focused on producer concerns that effectively limited (re)distribution, the current generation of research is closely linked to the role of the user in selecting,

  15. Research Update: Interfacing ultrasmall metal nanoclusters with biological systems

    Science.gov (United States)

    Shang, Li; Nienhaus, G. Ulrich

    2017-05-01

    Metal nanoclusters (NCs), a new type of nanomaterial with unique physicochemical properties, show great potential in many biomedical applications. Understanding their behavior in the complex biological environment is critical not only for designing highly efficient NC-based nanomedicines but also for elucidating the biological impact (e.g., toxicity) of these emerging nanomaterials. In this review, we give an overview of recent progress in exploring interactions of metal NCs with biological systems, including protein adsorption onto NCs, NC interactions with cells, and also the in vivo behavior of NCs. We also discuss the biological responses to the interactions, key parameters defining the interactions, and current challenges in the exploration of NCs in the complex biological environment.

  16. Innovative Educational Aerospace Research at the Northeast High School Space Research Center

    Science.gov (United States)

    Luyet, Audra; Matarazzo, Anthony; Folta, David

    1997-01-01

    Northeast High Magnet School of Philadelphia, Pennsylvania is a proud sponsor of the Space Research Center (SPARC). SPARC, a model program of the Medical, Engineering, and Aerospace Magnet school, provides talented students the capability to successfully exercise full simulations of NASA manned missions. These simulations included low-Earth Shuttle missions and Apollo lunar missions in the past, and will focus on a planetary mission to Mars this year. At the end of each scholastic year, a simulated mission, lasting between one and eight days, is performed involving 75 students as specialists in seven teams The groups are comprised of Flight Management, Spacecraft Communications (SatCom), Computer Networking, Spacecraft Design and Engineering, Electronics, Rocketry, Robotics, and Medical teams in either the mission operations center or onboard the spacecraft. Software development activities are also required in support of these simulations The objective of this paper is to present the accomplishments, technology innovations, interactions, and an overview of SPARC with an emphasis on how the program's educational activities parallel NASA mission support and how this education is preparing student for the space frontier.

  17. Present status and future plans of the National Atomic Research Center of Malaysia

    International Nuclear Information System (INIS)

    Rashid, N.K.

    1980-01-01

    The Malaysian Atomic Research Center (PUSPATI) was established in 1972 and operates under the Ministry of Science, Technology and the Environment. It is the first research center of this kind in Malaysia. Some of the objectives of this center are: operation and maintenance of the research reactor; research and development in reactor science and technology; production of short-lived radioisotopes for use in medicine, agriculture and industry; coordination of the utilization of the reactor and its experimental facilities among the various research institutes and universities; training in nuclear radiation field; personnel monitoring and environmental surveillance

  18. The San Diego Center for Patient Safety: Creating a Research, Education, and Community Consortium

    National Research Council Canada - National Science Library

    Pratt, Nancy; Vo, Kelly; Ganiats, Theodore G; Weinger, Matthew B

    2005-01-01

    In response to the Agency for Healthcare Research and Quality's Developmental Centers of Education and Research in Patient Safety grant program, a group of clinicians and academicians proposed the San...

  19. Research showcase, winter 2014 : reducing traffic noise impacts, university transportation centers, advanced prismatic sheeting.

    Science.gov (United States)

    2014-01-01

    This issue of Research Showcase features articles on two successful research efforts, one on quiet : pavements and the other on the bene ts of prismatic sign sheeting, and an article on university : transportation center participation in Florida.

  20. 2015 NIEHS/EPA Children's Environmental Health and Disease Prevention Research Centers Annual Meeting

    Science.gov (United States)

    The meeting will feature the researchers and senior scientists from the Children's Centers, the PEHSUs, scientists from federal agencies and others through interdisciplinary presentations and discussions that explore connections between research findings,

  1. New targets for immunotherapy-based treatment of HPV-related cancers | Center for Cancer Research

    Science.gov (United States)

    Scientists at the Center for Cancer Research and three other cancer research institutions show that immunotherapy treatments that resulted in complete regression of metastatic cervical cancer largely targeted two non-viral antigens. Read more…  

  2. Principles and results of environmental surveillance of the Austrian Research Center at Seibersdorf within the last twenty years

    International Nuclear Information System (INIS)

    Steger, F.; Etzersdorfer, E.; Sorantin, H.

    1980-01-01

    The Research Center at Seibersdorf uses its 12 MW- reactor for isotope production, fuel testing and activation analyses and also operates a waste management department, including an incineration plant. Since the center is situated near Vienna and is surrounded by an agricultural area, a strict monitoring program has been maintained. Details about number and places of water-, air-, aerosol- and biological sampling stations are given and the surveillance of uranium and plutonium handling laboratories is described. Also, TL-dosimeters in special casings and calibrated GM counters are installed at various locations in and around the center to measure the immersion doses. Evaluation of the obtained results shows rather small fluctuations and allows an immediate recognition of values over the routine levels. By measurement of the emissions it could also be proved that the measured values were far below the limits set by the authorities. (author)

  3. Biology panel: coming to a clinic near you. Translational research in radiation biology

    International Nuclear Information System (INIS)

    Travis, Elizabeth L.; Thames, Howard D.

    1996-01-01

    The explosion of knowledge in molecular biology coupled with the rapid and continuing development of molecular techniques allow a new level of research in radiation biology aimed at understanding the processes that govern radiation damage and response in both tumors and normal tissues. The challenge to radiation biologists and radiation oncologists is to use this knowledge to improve the therapeutic ratio in the management of human tumors by rapidly translating these new findings into clinical practice. This panel will focus on both sides of the therapeutic ratio coin, the manipulation of tumor control by manipulating the processes that control cell cycle regulation and apoptosis, and the reduction of normal tissue morbidity by applying the emerging information on the genetic basis of radiosensitivity. Apoptosis is a form of cell death believed to represent a minor component of the clinical effects of radiation. However, if apoptosis is regulated by anti-apoptotic mechanisms, then it may be possible to produce a pro-apoptotic phenotype in the tumor cell population by modulating the balance between pro- and anti-apoptotic mechanisms by pharmacological intervention. Thus signaling-based apoptosis therapy, designed to overcome the relative resistance to radiation-induced apoptosis, may improve the therapeutic ratio in the management of human tumors. The explosion of information concerning cell cycle regulation in both normal and tumor cells has provided the opportunity for insights into the mechanism of action of chemotherapeutic agents that can act as radiosensitizers. The second talk will explore the hypothesis that the dysregulation of cell cycle checkpoints in some cancers can be exploited to improve the therapeutic index of radiation sensitizers, specifically the fluoropyrimidines which appear to act at the G1/S transition. Finally, efforts to increase tumor control will be translated into clinical practice only if such treatments do not increase the complication

  4. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    Science.gov (United States)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  5. Proceeding of the Seminar of Research Result of Multipurpose Reactor Center Year of 1997/1998

    International Nuclear Information System (INIS)

    Jujuratisbela, U.

    1998-08-01

    The proceeding contained papers presented in seminar on research results of Multipurpose Reactor Center year 1997/1998 held on June 9-10, 1998 in Serpong, Indonesia. These papers are the significant result of research activities conducted in the Multipurpose Reactor Center, National Atomic Energy Agency during fiscal year of 1997/1998. There are 37 article which have separated index. (ID)

  6. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    Science.gov (United States)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  7. 34 CFR 350.33 - What cooperation requirements must a Rehabilitation Engineering Research Center meet?

    Science.gov (United States)

    2010-07-01

    ... Engineering Research Centers Does the Secretary Assist? § 350.33 What cooperation requirements must a... 34 Education 2 2010-07-01 2010-07-01 false What cooperation requirements must a Rehabilitation Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department...

  8. 77 FR 57569 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Science.gov (United States)

    2012-09-18

    ...] Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  9. 75 FR 57967 - Science Advisory Board to the National Center for Toxicological Research Notice of Meeting

    Science.gov (United States)

    2010-09-23

    ...] Science Advisory Board to the National Center for Toxicological Research Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  10. 76 FR 64355 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Science.gov (United States)

    2011-10-18

    ... future research needs in the area of regulatory science for personalized nutrition. Following the public...] Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for...

  11. 75 FR 34452 - Center for Drug Evaluation and Research Data Standards Plan; Availability for Comment

    Science.gov (United States)

    2010-06-17

    ... HUMAN SERVICES Food and Drug Administration Center for Drug Evaluation and Research Data Standards Plan... development of a comprehensive data standards program in the Center for Drug Evaluation and Research (CDER... Administration (FDA) is announcing the availability for public comment of the draft document entitled ``CDER Data...

  12. Annual report of the Management Research Center, 1985

    International Nuclear Information System (INIS)

    1986-01-01

    Research on the management of new forms of automation; industrial management; the definition of a new product range; economic management; personnel management; and management of cultural enterprises is presented [fr

  13. Protocol, Engineering Research Center, University of California, Santa Barbara

    National Research Council Canada - National Science Library

    Melliar-Smith, P. M

    2005-01-01

    .... More specifically, the research has focused on: (1) the design and evaluation of protocols for real-time performance, fault tolerance and security, as well as protocols for mobile wireless environments; (2...

  14. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  15. Supporting Informed Decision Making - Center for Research Strategy

    Science.gov (United States)

    CRS conducts portfolio analyses and collects data on scientific topics, funding mechanisms, and investigator characteristics to help NCI leadership make data-driven decisions about the scientific research enterprise.

  16. NASA Armstrong Flight Research Center Dynamics and Controls Branch

    Science.gov (United States)

    Jacobson, Steve

    2015-01-01

    NASA Armstrong continues its legacy of exciting work in the area of Dynamics and Control of advanced vehicle concepts. This presentation describes Armstrongs research in control of flexible structures, peak seeking control and adaptive control in the Spring of 2015.

  17. 2005 profile : Turner-Fairbank Highway Research Center

    Science.gov (United States)

    2006-01-01

    Research and innovation are integral to the Federal Highway Administrations (FHWA) mission. One of the primary roles of Federal transportation professionals is to serve as innovators for a better future. This role is supported by the world-class r...

  18. An Engineering Approach to Management of Occupational and Community Noise Exposure at NASA Lewis Research Center

    Science.gov (United States)

    Cooper, Beth A.

    1997-01-01

    Workplace and environmental noise issues at NASA Lewis Research Center are effectively managed via a three-part program that addresses hearing conservation, community noise control, and noise control engineering. The Lewis Research Center Noise Exposure Management Program seeks to limit employee noise exposure and maintain community acceptance for critical research while actively pursuing engineered controls for noise generated by more than 100 separate research facilities and the associated services required for their operation.

  19. Activities report 1991-1992: Nuclear Research Center of Strasbourg

    International Nuclear Information System (INIS)

    1993-01-01

    This activities report of the Nuclear Research Centre of Strasbourg for the years 1991 and 1992, presents nine research axis: theoretical physics, mechanisms of reactions and nuclear structure, extreme forms of nuclei, exotic nuclei, hot and dense nuclear matter, ultra-relativistic heavy ions, physics of LEP (European Large Electron-Positron storage ring) at 'DELPHI', chemistry and physics of radiations, physics and applications of semi-conductors

  20. Pediatric Oncology Branch - training- resident electives | Center for Cancer Research

    Science.gov (United States)

    Resident Electives Select pediatric residents may be approved for a 4-week elective rotation at the Pediatric Oncology Branch. This rotation emphasizes the important connection between research and patient care in pediatric oncology. The resident is supervised directly by the Branch’s attending physician and clinical fellows. Residents attend daily in-patient and out-patient rounds, multiple weekly Branch conferences, and are expected to research relevant topics and present a 30-minute talk toward the end of their rotation.