WorldWideScience

Sample records for biological remediation

  1. Biological approaches to global environment change mitigation and remediation.

    Science.gov (United States)

    Woodward, F Ian; Bardgett, Richard D; Raven, John A; Hetherington, Alistair M

    2009-07-28

    One of the most pressing and globally recognized challenges is how to mitigate the effects of global environment change brought about by increasing emissions of greenhouse gases, especially CO(2). In this review we evaluate the potential contribution of four biological approaches to mitigating global environment change: reducing atmospheric CO(2) concentrations through soil carbon sequestration and afforestation; reducing predicted increases in global surface temperatures through increasing the albedo of crop plants; and fertilizing the oceans to increase primary productivity and CO(2) drawdown. We conclude that none of these biological approaches are 'magic bullets' capable of reversing environmental changes brought about by increasing emissions of greenhouse gases. However, it is possible that increasing crop albedo and soil carbon sequestration might contribute towards mitigation on a regional scale. In the absence of legally binding international agreements to reduce CO(2) emissions, we propose that: increased efforts are made to identify novel biological mitigatory strategies; further research is conducted to minimise the uncertainties present in all four of the biological approaches described; and pilot-level field work is conducted to examine the feasibility of the most promising strategies. Finally, it is essential to engage with the public concerning strategies for mitigating the effects of climate change because the majority of the biological approaches have effects, quite possibly of a negative nature, on ecosystem services and land usage.

  2. Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

  3. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils. PMID:23784058

  4. Remediation of Pb contaminated soils by phytoextraction and amendment induced immobilization : biological aspects

    OpenAIRE

    GEEBELEN, Wouter

    2002-01-01

    This study examines the biological aspects related to alternative remediation strategies for Pb contaminated soils: EDTA induced Pb phytoextraction and amendment induced immobilization of soil Pb by means of inorganic soil amendments. The physiological effects of Pb-EDTA and EDTA were studied on bean plants (Phaseolus vulgaris L. Limburgse vroege), grown under strictly controlled conditions on a Hoagland nutrient solution. Addition of Pb-EDTA to the growth medium increased the capacity of enz...

  5. Benefits of a Biological Monitoring Program for Assessing Remediation Performance and Long-Term Stewardship - 12272

    International Nuclear Information System (INIS)

    The Biological Monitoring and Abatement Program (BMAP) is a long-running program that was designed to evaluate biological conditions and trends in waters downstream of Department of Energy (DOE) facilities in Oak Ridge, Tennessee. BMAP monitoring has focused on aquatic pathways from sources to biota, which is consistent with the sites' clean water regulatory focus and the overall cleanup strategy which divided remediation areas into watershed administrative units. Specific programmatic goals include evaluating operational and legacy impacts to nearby streams and the effectiveness of implemented remediation strategies at the sites. The program is characterized by consistent, long-term sampling and analysis methods in a multidisciplinary and quantitative framework. Quantitative sampling has shown conclusively that at most Oak Ridge stream sites, fish and aquatic macro-invertebrate communities have improved considerably since the 1980s. Monitoring of mercury and PCBs in fish has shown that remedial and abatement actions have also improved stream conditions, although in some cases biological monitoring suggests further actions are needed. Follow-up investigations have been implemented by BMAP to identify sources or causes, consistent with an adaptive management approach. Biological monitoring results to date have not only been used to assess regulatory compliance, but have provided additional benefits in helping address other components of the DOE's mission, including facility operations, natural resource, and scientific goals. As a result the program has become a key measure of long-term trends in environmental conditions and of high value to the Oak Ridge environmental management community, regulators, and the public. Some of the BMAP lessons learned may be of value in the design, implementation, and application of other long-term monitoring and stewardship programs, and assist environmental managers in the assessment and prediction of the effectiveness of remedial

  6. Effects of gentle remediation technologies on soil biological and biochemical activities - a review.

    Science.gov (United States)

    Marschner, B.; Haag, R.; Renella, G.

    2009-04-01

    Remediation technologies for contaminated sites are generally designed to reduce risks for human health, groundwater or plant quality. While some drastic remediation measures such as soil excavation, thermal treatment or soil washing eliminate or strongly reduce soil life, in-situ treatments involving plants or immobilizing additives may also restore soil functionality by establishing or promoting a well structured and active community of soil organisms. Biological parameters that are sensitive to contaminants and other pedo-environmental conditions and which contribute to biogeochemical nutrient cycles, can be used as synthetic indicators of the progress and also the efficiency of given remediation approaches. Data from long-term studies on re-vegetated mine spoils show that biological and biochemical activity is enhanced with increasing plant density and diversity. Among the soil amendments, most measures that introduce organic matter or alkalinity to the contaminated soils also improve microbial or faunal parameters. Only few amendments, such as phosphates and chelators have deleterious effects on soil biota. In this review, soil microbial biomass and the activity of the enzymes phosphatase and arylsulphatase are identified as suitable and sensitive biological indicators for soil health. The results and future research needs are are summarized.

  7. Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents.

    Science.gov (United States)

    Álvarez, M S; Moscoso, F; Rodríguez, A; Sanromán, M A; Deive, F J

    2013-10-01

    In this work, a novel remediation strategy consisting of a sequential biological and physical process is proposed to remove dyes from a textile polluted effluent. The decolorization ability of Anoxybacillus flavithermus in an aqueous effluent containing two representative textile finishing dyes (Reactive Black 5 and Acid Black 48, as di-azo and antraquinone class, respectively) was proved. The decolorization efficiency for a mixture of both dyes reached almost 60% in less than 12h, which points out the suitability of the selected microorganism. In a sequential stage, an aqueous biphasic system consisting of non-ionic surfactants and a potassium-based organic salt, acting as the salting out agent, was investigated. The phase segregation potential of the selected salts was evaluated in the light of different thermodynamic models, and remediation levels higher than 99% were reached.

  8. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE's Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  9. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE`s Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  10. Chemical composition and biological activity of Rubus idaeus shoots – a traditional herbal remedy of Eastern Europe

    OpenAIRE

    Krauze-Baranowska, Mirosława; Głód, Daniel; Kula, Marta; Majdan, Magdalena; Hałasa, Rafał; Matkowski, Adam; Kozłowska, Weronika; Kawiak, Anna

    2014-01-01

    Background The young shoots of Rubus idaeus are traditionally used as a herbal remedy in common cold, fever and flu-like infections yet there is no research concerning this plant material. The aim of the study was to evaluate the chemical composition and biological properties of raspberry shoots from 11 cultivar varieties. Methods The methanol extracts were subjected to chromatographic analysis using HPLC-DAD-ESI-MS, and two-dimensional ‘comprehensive’ LCxLC techniques. The biological activit...

  11. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno

    2006-12-08

    Biological in situ measures can be efficient and cost effective options for the remediation of contaminated sites. However, the accepted application requires a detailed and reliable analysis of potential impacts. An important objective is to quantify the potential of contaminant degradation and metabolite formation. This thesis addresses a quantitative multimedia risk assessment. Methodologies and tools were developed for this objective and applied to evaluate in situ bioremediation of soils contaminated with polychlorinated biphenyls (PCBs). Soil bacteria in conjunction with plant roots were addressed (rhizoremediation) with a focus on the use of genetically modified microorganisms (GMOs). PCBs are known to be harmful compounds that are ubiquitously distributed in the environment. PCB contaminations in soil and groundwater were identified as important problems. 209 different congeners are sterically possible, but not all are of environmental significance. PCB congeners of concern were evaluated with respect to their potential toxicity, environmental occurrence and mobility. For this objective, congener specific data on the toxicity potential and the frequency in environmental matrices were collected. To quantify the mobility potential, multimedia modelling was performed applying deterministic and probabilistic procedures. 56 PCB congeners of concern were evaluated, and multimedia risk assessments of PCB-contaminated soils should concentrate on this group. Kinetics parameters were specified for degradation experiments with individual PCB congeners in solution and different bacterial strains. These laboratory assays were performed with wild-type Burkholderia sp. strain LB400 and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180. The F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere (mesocosm experiments). Therefore, and due to high depletion rates, rhizoremediation with F113L::1180 and willow

  12. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno

    2006-12-08

    Biological in situ measures can be efficient and cost effective options for the remediation of contaminated sites. However, the accepted application requires a detailed and reliable analysis of potential impacts. An important objective is to quantify the potential of contaminant degradation and metabolite formation. This thesis addresses a quantitative multimedia risk assessment. Methodologies and tools were developed for this objective and applied to evaluate in situ bioremediation of soils contaminated with polychlorinated biphenyls (PCBs). Soil bacteria in conjunction with plant roots were addressed (rhizoremediation) with a focus on the use of genetically modified microorganisms (GMOs). PCBs are known to be harmful compounds that are ubiquitously distributed in the environment. PCB contaminations in soil and groundwater were identified as important problems. 209 different congeners are sterically possible, but not all are of environmental significance. PCB congeners of concern were evaluated with respect to their potential toxicity, environmental occurrence and mobility. For this objective, congener specific data on the toxicity potential and the frequency in environmental matrices were collected. To quantify the mobility potential, multimedia modelling was performed applying deterministic and probabilistic procedures. 56 PCB congeners of concern were evaluated, and multimedia risk assessments of PCB-contaminated soils should concentrate on this group. Kinetics parameters were specified for degradation experiments with individual PCB congeners in solution and different bacterial strains. These laboratory assays were performed with wild-type Burkholderia sp. strain LB400 and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180. The F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere (mesocosm experiments). Therefore, and due to high depletion rates, rhizoremediation with F113L::1180 and willow

  13. A novel hybrid nano zerovalent iron initiated oxidation--biological degradation approach for remediation of recalcitrant waste metalworking fluids.

    Science.gov (United States)

    Jagadevan, Sheeja; Jayamurthy, Manickam; Dobson, Peter; Thompson, Ian P

    2012-05-01

    Disposal of operationally exhausted metal working fluids (MWF) through a biological route is an attractive option, since it is effective with relatively low energy demands. However, it is enormously challenging since these fluids are chemically complex, including the addition of toxic biocides which are added specifically to retard bio-deterioration whilst the fluids are operational. Nano-sized elemental iron represents a new generation of environmental remediation technologies. Laboratory scale batch studies were performed to test the degradation ability of a semi-synthetic metalworking fluid (MWF) wastewater (which was found to be resistant to initial bacterial treatment in specifically established bioreactors) by employing a novel hybrid approach. The approach was to combine the synergistic effects of nano zerovalent iron (nZVI) induced oxidation, followed by biodegradation, specifically for the remediation of recalcitrant components of MWF effluent. Addition of nZVI particles to oxygenated wastewater resulted in oxidation of organic contaminants present. Our studies confirmed 78% reduction in chemical oxygen demand (COD) by nZVI oxidation at pH 3.0 and 67% reduction in neutral pH (7.5), and 85% concurrent reduction in toxicity. Importantly, this low toxicity made the nZVI treated effluent more amenable for a second stage biological oxidation step. An overall COD reduction of 95.5% was achieved by the novel combined treatment described, demonstrating that nZVI oxidation can be exploited for enhancing the biodegradability of a recalcitrant wastewater in treatment processes. PMID:22365368

  14. Biological Remediation of Soil: An Overview of Global Market and Available Technologies

    Science.gov (United States)

    Singh, Ajay; Kuhad, Ramesh C.; Ward, Owen P.

    Due to a wide range of industrial and agricultural activities, a high number of chemical contaminants is released into the environment, causing a significant concern regarding potential toxicity, carcinogenicity, and potential for bioaccumulation in living systems of various chemicals in soil. Although microbial activity in soil accounts for most of the degradation of organic contaminants, chemical and physical mechanisms can also provide significant transformation pathways for these compounds. The specific remediation processes that have been applied to clean up contaminated sites include natural attenuation, landfarming, biopiling or composting, contained slurry bioreactor, bioventing, soil vapor extraction, thermal desorption, incineration, soil washing and land filling (USEPA 2004).

  15. Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods

    Science.gov (United States)

    Melekhina, E. N.; Markarova, M. Yu.; Shchemelinina, T. N.; Anchugova, E. M.; Kanev, V. A.

    2015-06-01

    The effects of different bioremediation methods on restoration of the oil-polluted peat soil (Histosol) in the northernmost taiga subzone of European Russia was studied. The population dynamics of microorganisms belonging to different trophic groups (hydrocarbon-oxidizing, ammonifying, nitrifying, and oligonitrophilic) were analyzed together with data on the soil enzyme (catalase and dehydrogenase) activities, population densities of soil microfauna groups, their structures, and states of phytocenoses during a sevenyear-long succession. The remediation with biopreparations Roder composed of oil-oxidizing microorganisms-Roder with Rhodococcus rubber and R. erythropolis and Universal with Rhodotorula glutinis and Rhodococcus sp.-was more efficient than the agrochemical and technical remediation. It was concluded that the biopreparations activate microbiological oil destruction, thereby accelerating restoration succession of phytocenosis and zoocenosis. The succession of dominant microfauna groups was observed: the dipteran larvae and Mesostigmata mites predominant at the early stages were replaced by collembolans at later stages. The pioneer oribatid mite species were Tectocepheus velatus, Oppiella nova, Liochthonius sellnicki, Oribatula tibialis, and Eupelops sp.

  16. Natural remedies in the Canon of Medicine for dentistry and oral biology

    Directory of Open Access Journals (Sweden)

    Pouya Faridi

    2015-03-01

    Full Text Available Ibn Sina is one of the most well know scholars in middle ages. This Persian physician wrote different books in medical filed which his great encyclopedia remained as one the most successful medical encyclopedia during the history. Ibn Sina discussed diseases of oral cavity and dentistry in the 3rd book of The Canon of Medicine. He discussed different conditions such as different types of trauma to the motor nerves, taste sensation, different limitations of tongue movements, Ranula, halitosis, tooth sensation, different types of tooth pain, Bruxism, attrition, loss of enamel, gingival bleeding, recession and hyperplasia. For management of these diseases he introduced more than 80 herbal remedies. Most of this plant species are from essential oil reach families. Generally, Ibn Sina has a deep view in case of dental diseases and his ideas and methods for treatment of this category of disease could be studied for finding new treatment in dental ailments.

  17. Biopiles - demonstration of cost effective biological remediation of furnace oil contaminated soils

    International Nuclear Information System (INIS)

    Approximately 900 tonnes of soil was contaminated at a rural manufacturing facility near Collingwood, Ontario, when a 9000 litre underground furnace oil storage tank sprang a leak. The contaminated soil was excavated and stockpiled at the site and the leak was repaired. The Ontario Ministry of the Environment ordered that the owner treat the soil to the proper criteria or have the soil removed from the site and properly disposed of at a licensed landfill facility. Barenco was hired to treat the soil. Bioremediation began in December 1994 with the creation of nine above-ground biopiles which were constructed through the addition of nutrients (manure from a local farmer). Piping for air injection and treatment were located throughout the biopiles. The biopiles were then covered with 6 mil black HDPE plastic. The progress of the bioremediation was monitored regularly through measurement of carbon dioxide and oxygen concentrations in the biopiles. By October 1995, the soil was treated to within the appropriate criteria. In 10 months, the total petroleum hydrocarbon concentrations in the polluted soil were reduced from an average of 2690 ppm to 275 ppm. This simple and cost effective approach can also be used to remediate soils impacted with diesel fuels

  18. Investigation of biologically-designed metal-specific chelators for potential metal recovery and waste remediation applications.

    Energy Technology Data Exchange (ETDEWEB)

    Criscenti, Louise Jacqueline; Ockwig, Nathan W.

    2009-01-01

    Bacteria, algae and plants produce metal-specific chelators to capture required nutrient or toxic trace metals. Biological systems are thought to be very efficient, honed by evolutionary forces over time. Understanding the approaches used by living organisms to select for specific metals in the environment may lead to design of cheaper and more effective approaches for metal recovery and contaminant-metal remediation. In this study, the binding of a common siderophore, desferrioxamine B (DFO-B), to three aqueous metal cations, Fe(II), Fe(III), and UO{sub 2}(VI) was investigated using classical molecular dynamics. DFO-B has three acetohydroxamate groups and a terminal amine group that all deprotonate with increasing pH. For all three metals, complexes with DFO-B (-2) are the most stable and favored under alkaline conditions. Under more acidic conditions, the metal-DFO complexes involve chelation with both acetohydroxamate and acetylamine groups. The approach taken here allows for detailed investigation of metal binding to biologically-designed organic ligands.

  19. Microbial degradation of trichloroethylene in the rhizosphere: Potential application to biological remediation of waste sites

    International Nuclear Information System (INIS)

    The possibility that vegetation may be used to actively promote microbial restoration of chemically contaminated soils was tested by using rhizosphere and nonvegetated soils collected from a trichloroethylene (TCE)-contaminated field site. Biomass determinations, disappearance of TCE from the headspace of spiked soil slurries, and mineralization of [14C]TCE to 14CO2 all showed that microbial activity is greater in rhizosphere soils and that TCE degradation occurs faster in the rhizosphere than in the edaphosphere. Thus, vegetation may be an important variable in the biological restoration of surface and near-surface soils

  20. The challenge of determining the need for remediation following a wide-area biological release.

    Science.gov (United States)

    Raber, Ellen

    2011-09-01

    Recovering from a biological attack is a complex process requiring the successful resolution of numerous challenges. The Interagency Biological Restoration Demonstration program is one of the first multiagency efforts to develop strategies and tools that could be effective following a wide-area release of B. anthracis spores. Nevertheless, several key policy issues and associated science and technology issues still need to be addressed. For example, more refined risk assessment and management approaches are needed to help evaluate "true" public health risk. Once the risk is understood, that information can be considered along with the types of characterization activities deemed necessary to determine whether the cost and time of decontamination are actually warranted. This commentary offers 5 recommendations associated with decision making regarding decontamination and clearance options that should accompany a comprehensive risk analysis leading to more effective risk management decisions. It summarizes some of the most important technological gaps that still need to be addressed to help decision makers in their objective of reducing health risks to an acceptable level. The risk management approach described should enable decision makers to improve credibility and gain public acceptance, especially when an adequate science and technology base is available to support the required decisions. PMID:21882967

  1. Enrichment and immobilization of sulfide removal microbiota applied for environmental biological remediation of aquaculture area.

    Science.gov (United States)

    Zhao, Yang-Guo; Zheng, Yu; Tian, Weijun; Bai, Jie; Feng, Gong; Guo, Liang; Gao, Mengchun

    2016-07-01

    To remove sulfide in the deteriorating aquaculture sediment and water, sulfide-oxidizing microbiota was enriched from Jiaozhou Bay, China, by using sulfide-rich medium. Composition and structure of microbial communities in the enrichments were investigated by 16S rDNA molecular biotechniques. Results showed that microbial community structure continuously shifted and the abundance of sulfate reducing bacteria, i.e., Desulfobacterium, Desulfococcus and Desulfobacca apparently declined. Several halophile genera, Vibrio, Marinobacter, Pseudomonas, Prochlorococcus, Pediococcus and Thiobacillus predominated finally in the microbiota. The enriched microbiota was capable of removing a maximum of 1000 mg/L sulfide within 12 h with 10% inoculum at pH 7.0, 20-30 °C. After immobilized, the microbiota presented excellent resistance to impact and could completely remove 600 mg/L sulfide in 12 h. Moreover, the immobilized microbiota recovered well even recycled for five times. In conclusion, the immobilized sulfide-removing microbiota showed a quite promising application for biological restoring of sulfide-rich aquaculture environment. PMID:27105167

  2. Assessment of the ecological security of immobilized enzyme remediation process with biological indicators of soil health.

    Science.gov (United States)

    Zhang, Ying; Dong, Xiaonan; Jiang, Zhao; Cao, Bo; Ge, Shijie; Hu, Miao

    2013-08-01

    This study used the enzymes extracted from an atrazine-degrading strain, Arthrobacter sp. DNS10, which had been immobilized by sodium alginate to rehabilitate atrazine-polluted soil. Meanwhile, a range of biological indices were selected to assess the ecological health of contaminated soils and the ecological security of this bioremediation method. The results showed that there was no atrazine detected in soil samples after 28 days in EN+AT (the soil containing atrazine and immobilized enzyme) treatment. However, the residual atrazine concentration of the sample in AT (the soil containing atrazine only) treatment was about 5.02 ± 0.93 mg kg(-1). These results suggest that the immobilized enzyme exhibits an excellent ability in atrazine degradation. Furthermore, the immobilized enzyme could relieve soil microbial biomass carbon and soil microbial respiration intensity to 772.33 ± 34.93 mg C kg(-1) and 5.01 ± 0.17 mg CO(2) g(-1) soil h(-1), respectively. The results of the polymerase chain reaction-degeneration gradient gel electrophoresis experiment indicated that the immobilized enzyme also could make the Shannon-Wiener index and evenness index of the soil sample increase from 1.02 and 0.74 to 1.51 and 0.84, respectively. These results indicated that the immobilized enzymes not only could relieve the impact from atrazine on the soil, but also revealed that the immobilized enzymes did no significant harm on the soil ecological health.

  3. Physical and biological remediation of oil-polluted river bed and hillside sediments resulting from a ruptured oil pipeline in

    International Nuclear Information System (INIS)

    An oil spill of several tens of thousands of liters ocurred when an underground pipeline ruptured next to the Rio Barca, a torrential mountain stream in Italy. The spill ocurred during a time when the Rio Barca was almost totally dry, therefore allowing the fuel-oil to saturate the sediments which form the bed of the watercourse. This paper describes the feasibility study performed to determine the possibility of conducting in situ remediation. In addition, a two-step strategy was developed to remove the hydrocarbons in the stream: (1) Mechanical liberation and recovery of the free-phase hydrocarbon trapped in the sediments; (2) In situ treatment via an Enhanced Natural Bioremediation program. The residual hydrocarbon contamination in the hillside soils were addressed by in situ remediation incorporating air sparging below the water table, soil vapor extraction of the vadose zone and nutrient addition to the soils via infiltration trenches

  4. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    Science.gov (United States)

    Badin, Alice; Broholm, Mette M.; Jacobsen, Carsten S.; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.

  5. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation.

    Science.gov (United States)

    Pardo, T; Clemente, R; Alvarenga, P; Bernal, M P

    2014-07-01

    The feasibility of two organic materials (pig slurry and compost) in combination with hydrated lime for the remediation of a highly acidic trace elements (TEs) contaminated mine soil was assessed in a mesocosm experiment. The effects of the amendments on soil biochemical and ecotoxicological properties were evaluated and related with the main physicochemical characteristics of soil and soil solution. The original soil showed impaired basic ecological functions due to the high availability of TEs, its acidic pH and high salinity. The three amendments slightly reduced the direct and indirect soil toxicity to plants, invertebrates and microorganisms as a consequence of the TEs' mobility decrease in topsoil, reducing therefore the soil associated risks. The organic amendments, especially compost, thanks to the supply of essential nutrients, were able to improve soil health, as they stimulated plant growth and significantly increased enzyme activities related with the key nutrients in soil. Therefore, the use of compost or pig slurry, in combination with hydrated lime, decreased soil ecotoxicity and seems to be a suitable management strategy for the remediation of highly acidic TEs contaminated soils.

  6. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation.

    Science.gov (United States)

    Pardo, T; Clemente, R; Alvarenga, P; Bernal, M P

    2014-07-01

    The feasibility of two organic materials (pig slurry and compost) in combination with hydrated lime for the remediation of a highly acidic trace elements (TEs) contaminated mine soil was assessed in a mesocosm experiment. The effects of the amendments on soil biochemical and ecotoxicological properties were evaluated and related with the main physicochemical characteristics of soil and soil solution. The original soil showed impaired basic ecological functions due to the high availability of TEs, its acidic pH and high salinity. The three amendments slightly reduced the direct and indirect soil toxicity to plants, invertebrates and microorganisms as a consequence of the TEs' mobility decrease in topsoil, reducing therefore the soil associated risks. The organic amendments, especially compost, thanks to the supply of essential nutrients, were able to improve soil health, as they stimulated plant growth and significantly increased enzyme activities related with the key nutrients in soil. Therefore, the use of compost or pig slurry, in combination with hydrated lime, decreased soil ecotoxicity and seems to be a suitable management strategy for the remediation of highly acidic TEs contaminated soils. PMID:24875876

  7. In situ Remediation Technologies

    NARCIS (Netherlands)

    Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2011-01-01

    A summary of two decades of developments of In Situ remediation is presented in this chapter. The basic principles of In Situ technology application are addressed, such as equilibrium relations between contaminant phases, factors controlling biological and geochemical processes, contaminant characte

  8. Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater.

    Science.gov (United States)

    Malachova, Katerina; Rybkova, Zuzana; Sezimova, Hana; Cerven, Jiri; Novotny, Cenek

    2013-12-01

    Use of fungal organisms in rotating biological contactors (RBC) for bioremediation of liquid industrial wastes has so far been limited in spite of their significant biodegradation potential. The purpose was to investigate the power of RBC using Irpex lacteus for decolorization and detoxification of industrial dyes and dyeing textile liquors. Recalcitrant dye Methylene Blue (150 mg L(-1)) was decolorized within 70 days, its mutagenicity removed, and the biological toxicity decreased more than 10-fold. I. lacteus biofilm in the RBC completely decolorized within 26 and 47 days dyeing liquors containing disperse or reactive dyes adjusted to pH4.5 and 5-fold diluted with the growth medium, respectively. Their respective biological toxicity values were reduced 10- to 10(4)-fold in dependence of the test used. A battery of toxicity tests comprising Vibrio fisheri, Lemna minor and Sinapis alba was efficient to monitor the toxicity of textile dyes and wastewaters. Strong decolorization and detoxification power of RBC using I. lacteus biofilms was demonstrated.

  9. Genealogy Remediated

    DEFF Research Database (Denmark)

    Marselis, Randi

    2007-01-01

    Genealogical websites are becoming an increasingly popular genre on the Web. This chapter will examine how remediation is used creatively in the construction of family history. While remediation of different kinds of old memory materials is essential in genealogy, digital technology opens new...

  10. Reimagining Remediation

    Science.gov (United States)

    Handel, Stephen J.; Williams, Ronald A.

    2011-01-01

    In 2007, the College Board's Community College Advisory Panel--a group of college presidents that advises the organization's membership on community college issues--asked these authors to write a paper describing effective remedial education programs. They never wrote the paper. The problem was not the lack of dedicated faculty and staff working…

  11. Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium.

    Directory of Open Access Journals (Sweden)

    Katherine J Robins

    Full Text Available Hexavalent chromium is a serious and widespread environmental pollutant. Although many bacteria have been identified that can transform highly water-soluble and toxic Cr(VI to insoluble and relatively non-toxic Cr(III, bacterial bioremediation of Cr(VI pollution is limited by a number of issues, in particular chromium toxicity to the remediating cells. To address this we sought to develop an immobilized enzymatic system for Cr(VI remediation. To identify novel Cr(VI reductase enzymes we first screened cell extracts from an Escherichia coli library of soluble oxidoreductases derived from a range of bacteria, but found that a number of these enzymes can reduce Cr(VI indirectly, via redox intermediates present in the crude extracts. Instead, activity assays for 15 candidate enzymes purified as His6-tagged proteins identified E. coli NemA as a highly efficient Cr(VI reductase (k(cat/K(M= 1.1×10(5 M(-1 s(-1 with NADH as cofactor. Fusion of nemA to the polyhydroxyalkanoate synthase gene phaC from Ralstonia eutropha enabled high-level biosynthesis of functionalized polyhydroxyalkanoate granules displaying stable and active NemA on their surface. When these granules were combined with either Bacillus subtilis glucose dehydrogenase or Candida boidinii formate dehydrogenase as a cofactor regenerating partner, high levels of chromate transformation were observed with only low initial concentrations of expensive NADH cofactor being required, the overall reaction being powered by consumption of the cheap sacrificial substrates glucose or formic acid, respectively. This system therefore offers promise as an economic solution for ex situ Cr(VI remediation.

  12. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  13. The benefits from environmental remediation

    International Nuclear Information System (INIS)

    Environmental remediation projects inevitably take place against a backdrop of overall social goals and values. These goals can include, for example, full employment, preservation of the cultural, economic and archaeological resources, traditional patterns of land use, spiritual values, quality of life factors, biological diversity, environmental and socio-economic sustainability, protection of public health. Different countries will have different priorities, linked to the overall set of societal goals and the availability of resources, including funding, man-power and skills. These issues are embedded within both a national and local socio-cultural context, and will shape the way in which the remediation process is structured in any one country. The context will shape both the overall objectives of a remediation activity within the framework of competing societal goals, as well as generate constraints on the decision making process. Hence, the overall benefit of a remediation project is determined by its overall efficiency and effectiveness within the given legal, institutional, and governance framework, under the prevailing socio-economic boundary conditions, and balancing technology performance and risk reduction with fixed or limited budgetary resources, and is not simply the result of the technical remediation operation itself. (author)

  14. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    DEFF Research Database (Denmark)

    Badin, Alice; Broholm, Mette Martina; Jacobsen, Carsten S.;

    2016-01-01

    reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined...... documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE...... was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C...

  15. Evaluation of physical, biological and chemical techniques applied to the remediation of an arsenic-polluted soil comming from an old mining area

    Energy Technology Data Exchange (ETDEWEB)

    Clozel-Leloup, B. [BRGM (French Geological Survey), SGR/RHA (Rhone-Alpes Area) Villeurbannde (France); Battaglia-Brunet, F.; Ignatiadis, I. [BRGM (French Geological Survey), Environment and Process Department, Biotechnology Unit, Orleans (France); Conil, P. [BRGM (French Geological Survey), SGR/PAL (Pays-de-Loire Area), Nantes (France)

    2003-07-01

    The purpose of this work is to develop and try out tests having a tree structure aimed at assessing the applicability of different techniques to the remediation of polluted soils. One of the case studies is a soil from an old mining area, heavily polluted by arsenic (As content >3%). The first step in this case study was to determine the arsenic speciation in a sample of the soil so as to determine its potential for treatment. To this purpose, the soil was characterised both physically (through soil fractionation and physical analysis of its constituents) and chemically (through chemical attacks). The results of the physical characterisation show a large variety of arsenic-bearing phases, such as sulphides from the mining activities, slag from the pyrometallurgical processing and, above all, Fe-As oxide phases encrustations on the grains, probably resulting from weathering and oxidation of the sulphides. The encrustations are the main arsenic-carriers in the soil; iron arsenates (like scorodite type) have been identified, but they are generally iron hydroxides on which the arsenic is sorbed or coprecipitated. The development of a test consisting in successive chemical attacks at high and low pH, thus respectively favouring arsenates desorption or iron hydroxides dissolution, has enabled us to demonstrate tht the main mechanism linking the arsenic and the solid is their sorption on the iron hydroxides. An exchange test with phosphates, carried out at neutral pH, supports these observations by releasing 6% of arsenic soil content, and confirms the strong potential risk presented by this soil, even in the absence of physical, chemical modifications or redox conditions. (orig.)

  16. Topical Day on Site Remediation

    International Nuclear Information System (INIS)

    Ongoing activities at the Belgian Nuclear Research Centre relating to site remediation and restoration are summarized. Special attention has been paid to the different phases of remediation including characterization, impact assessment, evaluation of remediation actions, and execution of remediation actions

  17. Topical Day on Site Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, H. [ed.

    1996-09-18

    Ongoing activities at the Belgian Nuclear Research Centre relating to site remediation and restoration are summarized. Special attention has been paid to the different phases of remediation including characterization, impact assessment, evaluation of remediation actions, and execution of remediation actions.

  18. Duct Remediation Program: Remediation operations and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, T.d.; Davis, M.M.; Karas, T.M.

    1992-11-01

    Plutonium holdup material has accumulated in the process ventilation duct systems at Rocky Flats. Non-Destructive Assay (NDA) measurements identified ducts containing this material. The Defense Nuclear Facility Safety Board and the Department of Energy established the criteria for remediation of these ducts. A remediation team was assembled and a program plan created. This program plan included activities such as fissile material accumulation identification, criticality safety assessments, radiation dose determinations, facility safety evaluations, prevention of future accumulation, and removal of holdup material. Several operational considerations had to be evaluated in determining completion of remediation.

  19. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene;

    1999-01-01

    The paper gives an overview of how heavy metals can be found in the soil and the theory of electrodialytic remediation. Basically electrodialytic remediation works by passing electric current through the soil, and the heavy metals in ionic form will carry some of the current. Ion-exchange membranes...... prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...... to remediate soil polluted with heavy metals be this method. When adding desorbing agents or complexing agents, chosing the right current density, electrolyte and membranes, the proces can be optimised for a given remediation situation. Also electroosmosis is influencing the system, and if extra water...

  20. Aquatic environmental remediation approaches

    International Nuclear Information System (INIS)

    The 2011 Fukushima Daiichi Nuclear Plant's nuclear accident contaminated a significant portion of Fukushima Prefecture, and environmental remediation activities have been performed. To reduce the human exposure to the radiation induced by the nuclear contamination, one can reduce the radiation level in the environment, and/or eliminate radionuclide pathways to humans. This paper presents some case studies that are relevant to the Fukushima case. These examples include the Chernobyl nuclear accident's environmental and remediation assessments, U.S. Hanford environmental remediation activities, and the pesticide remediation assessment for the James River Estuary, Virginia, U.S.A. 1-D TODAM, 2-D FETRA and 3-D FLESCOT codes have been applied to the surface waters. TODAM code is currently being applied to the Ukedo and Takase rivers in Fukushima to predict cesium-137 migration in these rivers. A lesson learned from these experiences is that to achieve the effective clean-up, remediation decision makers must include knowledgeable scientists and competent engineers, so that environmental remediation activities are based on a scientifically-valid approach for a given contaminated location. Local participation to the remediation decision making is critically important. (author)

  1. Salmon Site Remedial Investigation Report

    International Nuclear Information System (INIS)

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  2. Site Remediation in Practice

    International Nuclear Information System (INIS)

    This paper describes the remediation of a former uranium mining area in Hungary. The work was carried out using stringent quality controls and special attention was paid to the radiological survey during the cleanup works on the roads, on pipe lines and yards, on the mill site and places used earlier for heap leaching. Groundwater quality control and the related groundwater quality restoration were the most important aspects of the post remediation phase which was aimed at the long term protection of the nearby drinking water aquifer. The expenditure for the remediation was approximately $100 million. The estimated cost for long term monitoring and water treatment is about US $4 million/year. (author)

  3. Effects of remediation amendments on vadose zone microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

  4. Remedial design/remedial action strategy report

    Energy Technology Data Exchange (ETDEWEB)

    Dieffenbacher, R.G.

    1994-06-30

    This draft Regulatory Compliance Strategy (RCS) report will aid the ER program in developing and implementing Remedial Design/Remedial Action (RD/RA) projects. The intent of the RCS is to provide guidance for the implementation of project management requirements and to allow the implementation of a flexible, graded approach to design requirements depending on the complexity, magnitude, schedule, risk, and cost for any project. The RCS provides a functional management-level guidance document for the identification, classification, and implementation of the managerial and regulatory aspects of an ER project. The RCS has been written from the perspective of the ER Design Manager and provides guidance for the overall management of design processes and elements. The RCS does not address the project engineering or specification level of detail. Topics such as project initiation, funding, or construction are presented only in the context in which these items are important as sources of information or necessary process elements that relate to the design project phases.

  5. Challenges in subsurface in situ remediation of chlorinated solvents

    OpenAIRE

    Broholm, Mette Martina; Fjordbøge, Annika Sidelmann; Christiansen, Camilla Maymann; Hønning, J.; B. H. Hansen; Nedergaard, L. W.; Kern, Kristina; Uthuppu, Basil; Jakobsen, Mogens Havsteen; Kjeldsen, Peter; Bjerg, Poul Løgstrup; Ottesen, L.

    2014-01-01

    Chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. In situ remediation of these sites is particularly challenging in heterogeneous fractured media and where the solvents are present as DNAPL. In situ remediation by chemical as well as biological degradation of chlorinated solvents is a contact sport and requires direct contact between the contaminant and the reactants and/or degrading microorganisms. In fractured geologi...

  6. Electrodialytic Soil Remediation

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Lene; Hansen, Henrik K.;

    1997-01-01

    It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective......It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective...

  7. Solutions Remediate Contaminated Groundwater

    Science.gov (United States)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  8. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  9. The Remediation of Nosferatu

    DEFF Research Database (Denmark)

    Ghellal, Sabiha; Morrison, Ann; Hassenzahl, Marc;

    2014-01-01

    In this paper we present The Remediation of Nosferatu, a location based augmented reality horror adventure. Using the theory of fictional universe elements, we work with diverse material from Nosferatu’s horror genre and vampire themes as a case study. In this interdisciplinary research we...

  10. 2014 Ohio Remediation Report

    Science.gov (United States)

    Ohio Board of Regents, 2014

    2014-01-01

    In fulfillment of Ohio Revised Code 3333.041 (A) (1) the Chancellor has published a listing by school district of the number of the 2013 high school graduates who attended a state institution of higher education in academic year 2013-2014 and the percentage of each district's graduates required by the institution to enroll in a remedial course in…

  11. Some aspects of remediation of contaminated soils

    Science.gov (United States)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  12. Microbial Remediation of Metals in Soils

    Science.gov (United States)

    Hietala, K. A.; Roane, T. M.

    Of metal-contaminated systems, metal-contaminated soils present the greatest challenge to remediation efforts because of the structural, physical, chemical, and biological heterogeneities encountered in soils. One of the confounding issues surrounding metal remediation is that metals can be readily re-mobilized, requiring constant monitoring of metal toxicity in sites where metals are not removed. Excessive metal content in soils can impact air, surface water, and groundwater quality. However, our understanding of how metals affect organisms, from bacteria to plants and animals, and our ability to negate the toxicity of metals are in their infancies. The ubiquity of metal contamination in developing and industrialized areas of the world make remediation of soils via removal, containment, and/or detoxification of metals a primary concern. Recent examples of the health and environmental consequences of metal contamination include arsenic in drinking water (Wang and Wai 2004), mercury levels in fish (Jewett and Duffy 2007), and metal uptake by agricultural crops (Howe et al. 2005). The goal of this chapter is to summarize the traditional approaches and recent developments using microorganisms and microbial products to address metal toxicity and remediation.

  13. [Cognitive remediation and nursing care].

    Science.gov (United States)

    Schenin-King, Palmyre; Thomas, Fanny; Braha-Zeitoun, Sonia; Bouaziz, Noomane; Januel, Dominique

    2016-01-01

    Therapies based on cognitive remediation integrate psychiatric care. Cognitive remediation helps to ease cognitive disorders and enable patients to improve their day-to-day lives. It is essential to complete nurses' training in this field. This article presents the example of a patient with schizophrenia who followed the Cognitive Remediation Therapy programme, enabling him to access mainstream employment. PMID:27615702

  14. Bioelectrical Perchlorate Remediation

    Science.gov (United States)

    Thrash, C.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    Several bioreactor designs are currently available for the ex-situ biological attenuation of perchlorate- contaminated waters and recently, some of these reactor designs were conditionally approved by the California Department of Health Services for application in the treatment of perchlorate contaminated drinking water. However, all of these systems are dependent on the continual addition of a chemical electron donor to sustain microbial activity and are always subject to biofouling and downstream water quality issues. In addition, residual labile electron donor in the reactor effluent can stimulate microbial growth in water distribution systems and contribute to the formation of potentially toxic trihalomethanes during disinfection by chlorination. As part of our ongoing studies into microbial perchlorate reduction we investigated the ability of dissimilatory perchlorate reducing bacteria (DPRB) to metabolize perchlorate using a negatively charged electrode (cathode) in the working chamber of a bioelectrical reactor (BER) as the primary electron donor. In this instance the DPRB use the electrons on the electrode surface either directly or indirectly in the form of electrolytically produced H2 as a source of reducing equivalents for nitrate and perchlorate reduction. As part of this investigation our fed-batch studies showed that DPRB could use electrons from a graphite cathode poised at -500mV (vs. Ag/AgCl) for the reduction of perchlorate and nitrate. We isolated a novel organism, Dechlorospirillum strain VDY, from the cathode surface after 70 days operation which readily reduced 100 mg.L-1 perchlorate in a mediatorless batch bioelectrical reactor (BER) in 6 days. Continuous up-flow BERs (UFBERs) seeded with active cultures of strain VDY continuously treated waters containing 100 mg.L-1 perchlorate with almost 100% efficiency throughout their operation achieving a non-optimized volumetric loading of 60 mg.L-1 reactor volume.day-1. The same UFBERs also treated

  15. Remediation Technology Collaboration Development

    Science.gov (United States)

    Mahoney, John; Olsen, Wade

    2010-01-01

    This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.

  16. CENTRAL PLATEAU REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    ROMINE, L.D.

    2006-02-01

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  17. Remediating MGP brownfields

    International Nuclear Information System (INIS)

    Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example

  18. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  19. Electrokinetic remediation prefield test methods

    Science.gov (United States)

    Hodko, Dalibor (Inventor)

    2000-01-01

    Methods for determining the parameters critical in designing an electrokinetic soil remediation process including electrode well spacing, operating current/voltage, electroosmotic flow rate, electrode well wall design, and amount of buffering or neutralizing solution needed in the electrode wells at operating conditions are disclosed These methods are preferably performed prior to initiating a full scale electrokinetic remediation process in order to obtain efficient remediation of the contaminants.

  20. Remediation technologies for oil-contaminated sediments.

    Science.gov (United States)

    Agarwal, Ashutosh; Liu, Yu

    2015-12-30

    Oil-contaminated sediments pose serious environmental hazards for both aquatic and terrestrial ecosystems. Innovative and environmentally compatible technologies are urgently required to remove oil-contaminated sediments. In this paper, various physical, chemical and biological technologies are investigated for the remediation of oil-contaminated sediments such as flotation and washing, coal agglomeration, thermal desorption, ultrasonic desorption, bioremediation, chemical oxidation and extraction using ionic liquids. The basic principles of these technologies as well as their advantages and disadvantages for practical application have been discussed. A combination of two or more technologies is expected to provide an innovative solution that is economical, eco-friendly and adaptable.

  1. Remediating Remediation: From Basic Writing to Writing across the Curriculum

    Science.gov (United States)

    Faulkner, Melissa

    2013-01-01

    This article challenges faculty members and administrators to rethink current definitions of remediation. First year college students are increasingly placed into basic writing courses due to a perceived inability to use English grammar correctly, but it must be acknowledged that all students will encounter the need for remediation as they attempt…

  2. Remedial action technology - arid

    International Nuclear Information System (INIS)

    A summary is presented of the low-level waste remedial action program at Los Alamos. The experimental design and progress is described for the experiments on second generation intrusion barriers, subsidence effects on SLB components, moisture cycling effects on chemical transport, and erosion control methodologies. The soil moisture data from the bio-intrusion and moisture cycling experiments both demonstrate the overwhelming importance of vegetation in minimizing infiltration of water through trench covers and backfill. Evaporation, as a water loss component in trench covers, is only effective in reducing soil moisture within 40 cm of the trench cover surface. Moisture infiltrating past the zone of evaporation in unvegetated or poorly vegetated trench covers is in storage and accumulates until drainage out of the soil profile occurs. Judicious selection of vegetation species for revegetating a low-level waste site may prevent infiltration of moisture into the trench and, when coupled with other design features (i.e. trench cover slope, tilling and seeding practice), may greatly reduce problems with erosion. Standard US Department of Agriculture erosion plots, when coupled with a state-of-the-art water balance and erosion model (CREAMS) promises to be highly useful in screening proposed remedial action cover designs for low-level waste sites. The erosion plot configuration allows for complete accounting of the water balance in a soil profile. This feature enables the user to optimize cover designs to minimize erosion and infiltration of water into the trench

  3. Managing soil remediation problems.

    Science.gov (United States)

    Okx, J P; Hordijk, L; Stein, A

    1996-12-01

    Soil remediation has only a short history but the problem addressed is a significant one. Cost estimates for the clean-up of contaminated sites in the European Union and the United States are in the order of magnitude of 1,400 billion ECU. Such an enormous operation deserves the best management it can get. Reliable cost estimations per contaminated site are an important prerequisite. This paper addresses the problems related to site-wise estimations.When solving soil remediation problems, we have to deal with a large number of scientific disciplines. Too often solutions are presented from the viewpoint of only one discipline. In order to benefit from the combined disciplinary knowledge and experience, we think that it is necessary to describe the interrelations between these disciplines. This can be realized by developing an adequate model of the desired process which enables to consider and evaluate the essential factors as interdependent components of the total system.The resulting model provides a binding paradigm to the contributing disciplines which will result in improved efficiency and effectivity of the decision and the cost estimation process. In the near future, we will release the "Biosparging and Bioventing Expert Support System", an expert support system for problem owners, consultants and authorities dealing with the design and operation of a biosparging and/or a bioventing system.

  4. Electrodialytic remediation of solid waste

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Karlsmose, Bodil;

    1996-01-01

    Electrodialytic remediation of heavy metal polluted solid waste is a method that combines the technique of electrodialysis with the electromigration of ions in the solid waste. Results of laboratory scale remediation experiments of soil are presented and considerations are given on how to secure...... fly ash waste deposits from polluting the ground water....

  5. Fermentative processes for environmental remediation

    OpenAIRE

    Grilli, Selene

    2013-01-01

    The growing interest in environmental protection has led to the development of emerging biotechnologies for environmental remediation also introducing the biorefinery concept. This work mainly aimed to evaluate the applicability of innovative biotechnologies for environmental remediation and bioenergy production, throught fermentative processes. The investigated biotechnologies for waste and wastewater treatment and for the valorisation of specific feedstocks and energy recovery, were m...

  6. Soil remediation: a systems approach.

    NARCIS (Netherlands)

    Okx, J.P.

    1998-01-01

    Soil remediation has only a short history, but the problem addressed is a significant one. When solving soil remediation problems we have to deal with a large number of scientific disciplines, however solutions are often presented from the viewpoint of just one discipline. In order to benefit from t

  7. Remediation of Mercury Contaminated Soils at the Miramas Site - 12243

    International Nuclear Information System (INIS)

    Beneficial 'new' use of the Miramas Site is the remediation objective for a former light isotope manufacturing facility. Remediation operations will remove contaminated soils and materials and deconstruct facilities. The remediation objective is faced with project challenges and regulatory requirements that dictate/influence the outcome. The operation consists of the remediation of approximately 100,000 cubic meters of soil and the decommissioning of facilities. The types and ranges of waste are the result of historical processing activities (chemical facilities, pyrotechnic components storage, mining component treatment and light isotope manufacturing activities). Mercury is the primary component of the waste, but metals and organic compounds are also possible waste components. A thermal desorption process is used to remove Mercury from the polluted soil while a biological treatment is considered to the organic nitrate compound removal. A focus is done on the technologies used to remediate the Mercury contaminated soil. After few months of operation, the first results confirm that the technology choices were relevant and the soil remediation project is a success. The first successful month of operation at an industrial scale demonstrate that the Thermal Desorption is an efficient and relevant process to remediate large quantity of mercury contaminated soils. The project is on cost and the mercury removal should be end by 2014. The scrubbing is a good way to limit the volume of material to be treated with the Thermal Desorption Unit. The biological treatment is a promising process for the organic nitrate compound removal and testing at a pilot scale will be done in 2012. (authors)

  8. Integrated Biological Control

    International Nuclear Information System (INIS)

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  9. Salmon Site Remedial Investigation Report, Main Body

    Energy Technology Data Exchange (ETDEWEB)

    US DOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  10. Salmon Site Remedial Investigation Report, Exhibit 2

    International Nuclear Information System (INIS)

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  11. Salmon Site Remedial Investigation Report, Appendix C

    International Nuclear Information System (INIS)

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  12. Salmon Site Remedial Investigation Report, Exhibit 5

    Energy Technology Data Exchange (ETDEWEB)

    USDOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  13. Salmon Site Remedial Investigation Report, Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    US DOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  14. Salmon Site Remedial Investigation Report, Exhibit 2

    Energy Technology Data Exchange (ETDEWEB)

    USDOE NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  15. Remediation of sediments contaminated by oil spills

    International Nuclear Information System (INIS)

    Recent environmental legislation and increased awareness of the environmental pollution by oil spills have stimulated a demand for invention, development and implementation of effective remediation technologies. There are positive achievements in cleaning up of terrestrial ecosystems but remediation of aquatic ecosystems is still acute problem. Oil contaminated bottom sediments are the chronic contamination source for the aquatic ecosystems. General practice of most oil companies in Russia for treatment of oil spills in rivers and lakes is limited to harvesting of floating oil and treatment of spoiled shore. The pilot project on remediation of Shuchye Lake (Usinsk District, Komi Republic, Arctic European part of Russia) supported by oil production company Lukoil-Comi Ltd. is carried out by NTT Priborservice Ltd. NTT Priborservice Ltd. is R and D enterprise specialized in the contaminated soils, sediments and water remediation, and production of equipments (devices) for this. The project aimed to develop and implement cost-effective technology for cleaning up sediments contaminated by oil hydrocarbons. The technology is based on combination of physico-mechanical and biological approaches. Treatment of bottoms sediments was carried out with usage of the original devices for flotation ('Flotator') and aeration. Usage of 'Flotator' allows to extract petroleum hydrocarbons from sediments excepting mineral particles. Treatment of bottom sediments is combined with aeration of deep layers of water and supplying fertilizers to stimulate microflora, zooplankton and phytoplankton. The project consists of several steps. Survey carried out before the first step of project indicated the average depth of water was ∼4 m (max 7 m), the initial concentration of petroleum hydrocarbons in bottom sediments was ∼55 g/kg dw (max 125 g/kg dw). Total amount of bottom surface treated during the first step of the project (July-August 2004) was 4 ha. Monitoring allows to assess the

  16. Salmon Site Remedial Investigation Report, Appendix D

    International Nuclear Information System (INIS)

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  17. Sources and remediation techniques for mercury contaminated soil.

    Science.gov (United States)

    Xu, Jingying; Bravo, Andrea Garcia; Lagerkvist, Anders; Bertilsson, Stefan; Sjöblom, Rolf; Kumpiene, Jurate

    2015-01-01

    Mercury (Hg) in soils has increased by a factor of 3 to 10 in recent times mainly due to combustion of fossil fuels combined with long-range atmospheric transport processes. Other sources as chlor-alkali plants, gold mining and cement production can also be significant, at least locally. This paper summarizes the natural and anthropogenic sources that have contributed to the increase of Hg concentration in soil and reviews major remediation techniques and their applications to control soil Hg contamination. The focus is on soil washing, stabilisation/solidification, thermal treatment and biological techniques; but also the factors that influence Hg mobilisation in soil and therefore are crucial for evaluating and optimizing remediation techniques are discussed. Further research on bioremediation is encouraged and future study should focus on the implementation of different remediation techniques under field conditions. PMID:25454219

  18. A responsible remediation strategy

    International Nuclear Information System (INIS)

    This paper deals with an approach to cleaning up the residue of 150 years of intense urban and industrial development in the United States. The discussion focuses on several choices and strategies that business can adopt given the existing environmental laws and the socio-economic trends of the 1990's. The thesis of this paper is that the best business strategy for dealing with environmental liabilities is to act affirmatively and aggressively. An aggressive, pro-active approach to environmental remediation liabilities makes good business sense. It allows a company to learn the true size of the problem early. Early assessment and prioritization allows one to control the course and conduct of the cleanup. Early voluntary action is always viewed favorably by agencies. It gives one control over spending patterns which has value in and of itself. Voluntary cleanups are certainly faster and invariably more efficient. And they attain clearly acceptable standards. The volunteering company that takes the lead in a multi-party site finds that the courts are supportive in helping the volunteer collect from recalcitrant polluters. All of these pluses have a direct and positive impact on the bottom line and that means that the aggressive approach is the right thing to do for both stockholders and the communities where a business exists

  19. Opium the Best Remedy

    Directory of Open Access Journals (Sweden)

    Harold Merskey

    2004-01-01

    Full Text Available Sydenham was the leading English physician of the 17th century and probably to the present time. He was using a well tried remedy. It had been known by then for about 4000 years, frequently mentioned by Hippocrates, and recognized in use in medieval Europe where it probably came through Arabic traders and was well established in use in Paris by the 12th century (2. Professional concerns up to the time of Sydenham were not about addiction. As can be seen from his text, they were about whether the drug was available in adequate preparations, whether there was any difference between opium and other narcotics, particularly comparing the natural juice with "its artificial preparations" (1 (all of which he thought to be about equal in effect, whether it was stimulant or restorative and invigorating, and whether it was being properly used for all the conditions in which it could be helpful. Addiction, dependence and insanity are not mentioned, although the fact that it could occasionally promote excitement ("frenzy" was known.

  20. Plant-based remediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dharmendra Kumar (ed.) [Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium). Radiological Impact and Performance Assessment Division

    2013-11-01

    A valuable source of information for scientists in the field of environmental pollution and remediation. Describes the latest biotechnological methods for the treatment of contaminated soils. Includes case studies and protocols. Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.

  1. ICDF Complex Remedial Action Report

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  2. 18 CFR 706.103 - Remedial action.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Remedial action. 706... RESPONSIBILITIES AND CONDUCT General Provisions § 706.103 Remedial action. (a) A violation of this part by an employee or special Government employee may be cause for remedial action. Remedial action may include,...

  3. Electrokinetic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrián; Ottosen, Lisbeth M.

    2007-01-01

    Important process parameters to optimize in electrokinetic soil remediation are those influencing remediation time and power consumption since these directly affect the cost of a remediation action. This work shows how the electrokinetic remediation (EKR) process could be improved by implementing...

  4. Nanocomposite Electrospun Nanofiber Membranes for Environmental Remediation

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2014-02-01

    Full Text Available Rapid worldwide industrialization and population growth is going to lead to an extensive environmental pollution. Therefore, so many people are currently suffering from the water shortage induced by the respective pollution, as well as poor air quality and a huge fund is wasted in the world each year due to the relevant problems. Environmental remediation necessitates implementation of novel materials and technologies, which are cost and energy efficient. Nanomaterials, with their unique chemical and physical properties, are an optimum solution. Accordingly, there is a strong motivation in seeking nano-based approaches for alleviation of environmental problems in an energy efficient, thereby, inexpensive manner. Thanks to a high porosity and surface area presenting an extraordinary permeability (thereby an energy efficiency and selectivity, respectively, nanofibrous membranes are a desirable candidate. Their functionality and applicability is even promoted when adopting a nanocomposite strategy. In this case, specific nanofillers, such as metal oxides, carbon nanotubes, precious metals, and smart biological agents, are incorporated either during electrospinning or in the post-processing. Moreover, to meet operational requirements, e.g., to enhance mechanical stability, decrease of pressure drop, etc., nanofibrous membranes are backed by a microfibrous non-woven forming a hybrid membrane. The novel generation of nanocomposite/hybrid nanofibrous membranes can perform extraordinarily well in environmental remediation and control. This reality justifies authoring of this review paper.

  5. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    geographically dispersed community is united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource.

  6. Hanford Groundwater Remediation

    International Nuclear Information System (INIS)

    united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource. (authors)

  7. Grand Junction Remedial Action Program

    International Nuclear Information System (INIS)

    The Grand Junction Remedial Action Program (hereinafter referred to as the Program) originated in 1972 due to a recognized need to reduce the levels of radiation found in some of the structures identified in Grand Junction, Colorado that were constructed in part with uranium mill tailings. Out of over 640 locations eventually identified as qualifying for corrective action, the Program performed remedial construction on 594 of them. The owners of over 45 unremediated structures either did not wish to participate in the voluntary Program, or the structures were torn down, burned down, or were abandoned before the Program could take action on them. Because this was the first remedial action program of its type, and because its task was to reduce the radiation levels as soon as practical, there was no time for lengthly research and development of remedial methods or techniques. Trial and error combined with basic engineering and health physics produced a Program that learned as it progressed. At a cost of $22.7 million over a 15-year period, a substantial portion of the community had radiation exposure reduced because many public buildings such as schools, churches, and businesses, as well as private residences were remediated. 21 refs., 10 figs., 6 tabs

  8. Autism: Pathophysiology and Promising Herbal Remedies.

    Science.gov (United States)

    Bahmani, Mahmoud; Sarrafchi, Amir; Shirzad, Hedayatollah; Rafieian-Kopaei, Mahmoud

    2016-01-01

    Autism is a comprehensive growth abnormality in which social skills, language, communication, and behavioral skills are developed with delay and as diversionary. The reasons for autism are unclear, but various theories of genetics, immunity, biological, and psychosocial factors have been proffered. In fact, autism is a complex disorder with distinct causes that usually co-occur. Although no medicine has been recognized to treat this disorder, pharmacological treatments can be effective in reducing its signs, such as self-mutilation, aggression, repetitive and stereotyped behaviors, inattention, hyperactivity, and sleeping disorders. Recently, complementary and alternative approaches have been considered to treat autism. Ginkgo biloba is one of the most effective plants with an old history of applications in neuropsychological disorders which recently is used for autism. The present review discusses the recent findings, pathophysiology, and etiology of autism and thereafter addresses the promising results of herbal remedies.

  9. Remedial Action Contacts Directory - 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This document, which was prepared for the US Department of Energy (DOE) Office of Environmental Restoration (ER), is a directory of 2628 individuals interested or involved in environmental restoration and/or remedial actions at radioactively contaminated sites. This directory contains a list of mailing addresses and phone numbers of DOE operations, area, site, project, and contractor offices; an index of DOE operations, area, site, project, and contractor office sorted by state; a list of individuals, presented by last name, facsimile number, and e-mail address; an index of affiliations presented alphabetically, with individual contacts appearing below each affiliation name; and an index of foreign contacta sorted by country and affiliation. This document was generated from the Remedial Action Contacts Database, which is maintained by the Remedial Action Program Information Center (RAPIC).

  10. Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria

    OpenAIRE

    Erable, Benjamin; Goubet, Isabelle; Seltana, Amira; Maugard, Thierry

    2009-01-01

    Traditional biological removal processes are limited by the low solubility of halogenated compounds in aqueous media. A new technology appears very suitable for the remediation of these volatile organic compounds (VOCs). Solid/gas bio-catalysis applied in VOC remediation can transform halogenated compounds directly in the gas phase using dehydrated cells as a bio-catalyst. The hydrolysis of volatile halogenated substrates into the corresponding alcohol was studied in a solid/gas bio...

  11. Use of risk assessment to evaluate effects and plan remediation of abandoned mines

    Science.gov (United States)

    Boyle, T.P.

    2000-01-01

    A framework of risk assessment is elaborated for the evaluation of the effects of abandoned mines and mills. Steps in this process include environmental description, identification and characterization of sources, assessment of exposure, assessment of effects, risk characterization, and risk management of remediation. The development and use of ecological end-points for remediation is discussed in terms of the chemical constituents, toxicity tests and the biological community.

  12. Environmental assessment of remedial action at the Maybell Uranium Mill Tailings Site near Maybell, Colorado

    International Nuclear Information System (INIS)

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS)

  13. Remediation Technologies Eliminate Contaminants

    Science.gov (United States)

    2012-01-01

    groundwater tainted by chlorinated solvents once used to clean rocket engine components. The award-winning innovation (Spinoff 2010) is now NASA s most licensed technology to date. PCBs in paint presented a new challenge. Removing the launch stand for recycling proved a difficult operation; the toxic paint had to be fully stripped from the steel structure, a lengthy and costly process that required the stripped paint to be treated before disposal. Noting the lack of efficient, environmentally friendly options for dealing with PCBs, Quinn and her colleagues developed the Activated Metal Treatment System (AMTS). AMTS is a paste consisting of a solvent solution containing microscale particles of activated zero-valent metal. When applied to a painted surface, the paste extracts and degrades the PCBs into benign byproducts while leaving the paint on the structure. This provides a superior alternative to other methods for PCB remediation, such as stripping the paint or incinerating the structure, which prevents reuse and can release volatized PCBs into the air. Since its development, AMTS has proven to be a valuable solution for removing PCBs from paint, caulking, and various insulation and filler materials in older buildings, naval ships, and former munitions facilities where the presence of PCBs interferes with methods for removing trace explosive materials. Miles of potentially toxic caulking join sections of runways at airports. Any of these materials installed before 1979 potentially contain PCBs, Quinn says. "This is not just a NASA problem," she says. "It s a global problem."

  14. Remediation of former industrial sites

    International Nuclear Information System (INIS)

    The remediation of former industrial sites in now raising serious questions over the points of the sites investigation and of risk assessment, because it is necessary to take into account the ultimate aim of this process, being the reintegration of these sites into the surrounding social-economical context as well as their control. The case of the former uranium treatment units of Seelingstaedt (situated in the former East Germany) is a perfect illustration of the difficulties that may be encountered whilst important remediation projects take place. (author). 5 figs., 2 tabs

  15. On and Off Contract Remedies

    OpenAIRE

    Brooks, Richard; Stremitzer, Alexander

    2009-01-01

    A party dissatisfied with the contractual performance of a counterparty is typically able to pursue a variety of legal recourses. Within this apparent variety lurk two fundamental alternatives. The aggrieved party may (i) “affirm†the contract and seek money damages or specific performance; or (ii) “disaffirm†the contract with the remedy of rescission and restitution. This simple dichotomy of contract remedies applies broadly in both common law and civil law practice. We show here that...

  16. Soil Contamination and Remediation Strategies. Current research and future challenge

    Science.gov (United States)

    Petruzzelli, G.

    2012-04-01

    Soil contamination: the heritage of industrial development Contamination is only a part of a whole set of soil degradation processes, but it is one of paramount importance since soil pollution greatly influences the quality of water, food and human health. Soil contamination has been identified as an important issue for action in the European strategy for soil protection, it has been estimated that 3.5 million of sites are potentially contaminated in Europe. Contaminated soils have been essentially discovered in industrial sites landfills and energy production plants, but accumulation of heavy metals and organic compounds can be found also in agricultural land . Remediation strategies. from incineration to bioremediation The assessment of soil contamination is followed by remedial action. The remediation of contaminated soils started using consolidates technologies (incineration inertization etc.) previously employed in waste treatment,. This has contributed to consider a contaminated soil as an hazardous waste. This rough approximation was unfortunately transferred in many legislations and on this basis soil knowledge have been used only marginally in the clean up procedures. For many years soil quality has been identified by a value of concentration of a contaminant and excavation and landfill disposal of soil has been largely used. In the last years the knowledge of remediation technology has rapidly grown, at present many treatment processes appear to be really feasible at field scale, and soil remediation is now based on risk assessment procedures. Innovative technologies, largely dependent on soil properties, such as in situ chemical oxidation, electroremediation, bioventing, soil vapor extraction etc. have been successfully applied. Hazardous organic compounds are commonly treated by biological technologies, biorememdiation and phytoremediation, being the last partially applied also for metals. Technologies selection is no longer exclusively based on

  17. GROUND WATER REMEDIATION POWERED WITH RENEWABLE ENERGY

    Science.gov (United States)

    Technical challenge: Resource conservation has become a critical concept in the remediation of contaminated ground water supplies. Ground water remedies which include surface discharge of treated ground water are often viewed as wasteful and non-sustainable....

  18. Antihistamines, Decongestants, and Cold Remedies

    Science.gov (United States)

    ... but drying agents, aspirin (or aspirin substitutes), and cough suppressants may also be added. Therefore, consumers should choose remedies with ingredients best suited to combat their own symptoms. If the label does not clearly state the ingredients and their functions, ask the pharmacist to explain them. * May be available over the counter without a prescription, although often obtained at the counter itself. Read ...

  19. Green Chemistry and Environmental Remediation

    Science.gov (United States)

    Abstract: Nutrient remediation and recovery is a growing concern for two key reasons: (i) the prevention of harmful algal bloom proliferation, and (ii) the recycling of nutrients (e.g., phosphates) as they are non-renewable resources which are quickly being depleted. A wide range...

  20. Adolescent Literacy: More than Remediation

    Science.gov (United States)

    Biancarosa, Gina

    2012-01-01

    The challenge of adolescent literacy involves more than providing remediation for students who have not mastered basic reading skills. To become successful learners, adolescents must master complex texts, understand the diverse literacy demands of the different content areas, and navigate digital texts. In this article, Biancarosa reviews what the…

  1. Electrodialytic Remediation of Copper Mine Tailings

    DEFF Research Database (Denmark)

    Hansen, H.K.; Rojo, A.; Ottosen, L.M.

    2012-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields.......This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields....

  2. 40 CFR 85.1803 - Remedial Plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Remedial Plan. 85.1803 Section 85.1803... POLLUTION FROM MOBILE SOURCES Recall Regulations § 85.1803 Remedial Plan. (a) When any manufacturer is... manufacturer shall submit a plan to the Administrator to remedy such nonconformity. The plan shall contain...

  3. 40 CFR 92.705 - Remedial plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Remedial plan. 92.705 Section 92.705... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Recall Regulations § 92.705 Remedial plan. (a) When any... manufacturer or remanufacturer shall submit a plan to the Administrator to remedy such nonconformity. The...

  4. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) DEMONSTRATION BULLETIN

    Science.gov (United States)

    The ElectroChemical Remediation Technologies (ECRTs) process was developed by P2-Soil Remediation, Inc. P-2 Soil Remediation, Inc. formed a partnership with Weiss Associates and ElectroPetroleum, Inc. to apply the technology to contaminated sites. The ECRTs process was evaluated ...

  5. Remediation: Higher Education's Bridge to Nowhere

    Science.gov (United States)

    Complete College America, 2012

    2012-01-01

    The intentions were noble. It was hoped that remediation programs would be an academic bridge from poor high school preparation to college readiness. Sadly, remediation has become instead higher education's "Bridge to Nowhere." This broken remedial bridge is travelled by some 1.7 million beginning students each year, most of whom will…

  6. Removing Remediation Requirements: Effectiveness of Intervention Programs

    Science.gov (United States)

    Fine, Anne; Duggan, Mickle; Braddy, Linda

    2009-01-01

    Remediation of incoming college freshman students is a national concern because remediated students are at higher risk of failing to complete their degrees. Some Oklahoma higher education institutions are working to assist K-12 systems in finding ways to reduce the number of incoming college freshman students requiring remediation. This study…

  7. Causality and Teleology in High School Biology.

    Science.gov (United States)

    Tamir, Pinchas

    1985-01-01

    Ability to distinguish between causal (cause-effect) and teleological (means-ends) explanations was measured in 1905 twelfth-grade biology students and found to be dependent on student knowledge. Although the inability to make these distinctions contributes to misconceptions in biology, appropriate instruction can easily remedy the problem. Sample…

  8. Evaluation of bio-remediation technologies for PAHs contaminated soils

    International Nuclear Information System (INIS)

    Natural attenuation is a new concept related to polluted soil remediation. Can be understood like an 'in situ' bio-remediation process with low technical intervention. This low intervention may be in order to follow the behaviour of pollutants 'monitored natural attenuation' or include an optimisation process to improve biological remediation. The use of this technology is a fact for light hydrocarbon polluted soil, but few is known about the behaviour of polycyclic aromatic hydrocarbons (PAHs) in this process. PAHs are more recalcitrant to bio-remediation due to their physic-chemical characteristics, mainly hydrophobicity and electrochemical stability. PAHs are a kind of pollutants widely distributed in the environment, not only in the proximity of the source. This linked to the characteristics of some of them related to toxicity and mutagenicity implies its inclusion as target compounds from an environmental point of view. Their low availability, solubility and the strong tendency to bind to soil particle, especially to the organic phase affect PAHs biological mineralisation. So, if the pollutant is not available to microorganisms it can not be bio-degraded. Bioavailability can be assessed form several but complementary points of view: physico-chemical and biological. First including the term availability and the second to point out the capacity of soil microorganisms to mineralize PAHs. Availability and Bio-degradability must be determined, as well as the presence and activity of specific degraders among the soil organisms, once settled these points is necessary to study the biological requirements to optimise biodegradation kinetics of these compounds. In this work we present a study carried out on a soil, contaminated by PAHs, the study includes three main topics: bioavailability assessment (both term availability and bio-degradability), bio-remediation assessment, once optimised conditions for natural attenuation and finally a simulation of the

  9. New IAEA guidelines on environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, Sergey [International Atomic Energy Agency, A2444, Seibersdorf (Austria); Howard, Brenda [Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP, Lancaster (United Kingdom); Kashparov, Valery [Ukrainian Institute of Agricultural Radiology, 08162, 7, Mashinobudivnykiv str., Chabany, Kyivo-Svyatoshin region, Kyiv (Ukraine); Sanzharova, Natalie [Russian Institute of Agricultural Radiology and Agroecology, Russian Federation, 249032, Obninsk (Russian Federation); Vidal, Miquel [Analytical Chemistry Department-Universitat de Barcelona, Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    In response to the needs of its Member States, the International Atomic Energy Agency (IAEA) has published many documents covering different aspects of remediation of contaminated environments. These documents range from safety fundamentals and safety requirements to technical documents describing remedial technologies. Almost all the documents on environmental remediation are related to uranium mining areas and decommissioning of nuclear facilities. IAEA radiation safety standards on remediation of contaminated environments are largely based on these two types of remediation. The exception is a document related to accidents, namely the IAEA TRS No. 363 'Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides'. Since the publication of TRS 363, there has been a considerable increase in relevant information. In response, the IAEA initiated the development of a new document, which incorporated new knowledge obtained during last 20 years, lessons learned and subsequent changes in the regulatory framework. The new document covers all aspects related to the environmental remediation from site characterisation to a description of individual remedial actions and decision making frameworks, covering urban, agricultural, forest and freshwater environments. Decisions taken to commence remediation need to be based on an accurate assessment of the amount and extent of contamination in relevant environmental compartments and how they vary with time. Major aspects of site characterisation intended for remediation are described together with recommendations on effective sampling programmes and data compilation for decision making. Approaches for evaluation of remedial actions are given in the document alongside the factors and processes which affect their implementation for different environments. Lessons learned following severe radiation accidents indicate that remediation should be considered with respect to many different

  10. Decontamination formulation with additive for enhanced mold remediation

    Science.gov (United States)

    Tucker, Mark D.; Irvine, Kevin; Berger, Paul; Comstock, Robert

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  11. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  12. Remediation of anionic surfactants and ammonium by biological materials

    OpenAIRE

    Sarıoğlu, Ömer Faruk

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 83-97. Sarıoğlu, Ömer Faruk Master's

  13. Different Strategies for Biological Remediation of Perchlorate Contaminated Groundwater

    OpenAIRE

    Wang, Yue

    2012-01-01

    Perchlorate (ClO4-) has gained attention recently due to its interference with thyroid gland function. In infants and unborn children, inadequate thyroid hormone production can cause mental retardation and thyroid tumors. Since new perchlorate standards will be proposed in 2013, and if a stricter standard is imposed, cost effective technologies will be in high demand. The overall objective of this research was to evaluate two perchlorate bioremediation strategies using indigenous soil bact...

  14. Environmental Remediation Data Management Tools

    Energy Technology Data Exchange (ETDEWEB)

    Wierowski, J. V.; Henry, L. G.; Dooley, D. A.

    2002-02-26

    Computer software tools for data management can improve site characterization, planning and execution of remediation projects. This paper discusses the use of two such products that have primarily been used within the nuclear power industry to enhance the capabilities of radiation protection department operations. Advances in digital imaging, web application development and programming technologies have made development of these tools possible. The Interactive Visual Tour System (IVTS) allows the user to easily create and maintain a comprehensive catalog containing digital pictures of the remediation site. Pictures can be cataloged in groups (termed ''tours'') that can be organized either chronologically or spatially. Spatial organization enables the user to ''walk around'' the site and view desired areas or components instantly. Each photo is linked to a map (floor plan, topographical map, elevation drawing, etc.) with graphics displaying the location on the map and any available tour/component links. Chronological organization enables the user to view the physical results of the remediation efforts over time. Local and remote management teams can view these pictures at any time and from any location. The Visual Survey Data System (VSDS) allows users to record survey and sample data directly on photos and/or maps of areas and/or components. As survey information is collected for each area, survey data trends can be reviewed for any repetitively measured location or component. All data is stored in a Quality Assurance (Q/A) records database with reference to its physical sampling point on the site as well as other information to support the final closeout report for the site. The ease of use of these web-based products has allowed nuclear power plant clients to plan outage work from their desktop and realize significant savings with respect to dose and cost. These same tools are invaluable for remediation and decommissioning

  15. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) - IN SITU REMEDIATION OF CONTAMINATED MARINE SEDIMENTS

    Science.gov (United States)

    This Innovative Technology Evaulation Report summarizes the results of the evaluation of the Electrochemical Remediation Technologies (ECRTs) process, developed by P2-Soil Remediation, Inc. (in partnership with Weiss Associates and Electro-Petroleum, Inc.). This evaluation was co...

  16. Tank Waste Remediation System Guide

    Energy Technology Data Exchange (ETDEWEB)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties.

  17. Night blindness and ancient remedy

    Directory of Open Access Journals (Sweden)

    H.A. Hajar Al Binali

    2014-01-01

    Full Text Available The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A.

  18. Tank waste remediation system (TWRS) mission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  19. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies

  20. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  1. Electrokinetic remediation of oil-contaminated soils.

    Science.gov (United States)

    Korolev, Vladimir A; Romanyukha, Olga V; Abyzova, Anna M

    2008-07-01

    This investigation was undertaken to determine the factors influencing electrokinetic remediation of soils from petroleum pollutants. The remediation method was applied in two versions: (i) static and (ii) flowing, when a sample was washed with leaching solution. It was found that all the soils studied can be purified using this technique. It was also observed that the mineral and grain-size composition of soils, their properties, and other parameters affect the remediation efficiency. The static and flowing versions of the remediation method removed 25-75% and 90-95% of the petroleum pollutants, respectively from the soils under study.

  2. Customizable Biopolymers for Heavy Metal Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred [University of California, Department of Chemical and Environmental Engineering (United States)], E-mail: wilfred@engr.ucr.edu

    2005-10-15

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted.

  3. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D.; Bastiaens, L.; Carpels, M.; Mergaey, M.; Diels, L.

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  4. Risk based treatment selection and optimization of contaminated site remediation

    International Nuclear Information System (INIS)

    During the past few years numerous remediation technologies for the cleanup of contaminated sites have been developed. Because of the associated uncertainties concerning treatment reliability it is important to develop strategies to characterize their risks to achieve the cleanup requirements. For this purpose it is necessary to integrate existing knowledge on treatment efficacy and efficiency into the planning process for the management of contaminated sites. Based on field-scale experience data for the remediation of soils contaminated with petroleum hydrocarbons, two treatment technologies, biological land treatment and phyisco-chemical soil washing, were analyzed with respect to their general performance risks to achieve given cleanup standards. For a specific contamination scenario, efficient application ranges were identified using the method of linear optimization in combination with sensitivity analysis. Various constraints including cleanup standards, available financial budget, amount of contamination and others were taken into account. While land treatment was found to be most efficient at higher cleanup standards and less contaminated soils, soil washing exhibited better efficiency at lower cleanup standards and higher contaminated soils. These results compare favorably with practical experiences and indicate the utility of this approach to support decision making and planning processes for the general management of contaminated sites. In addition, the method allows for the simultaneous integration of various aspects such as risk based characteristics of treatment technologies, cleanup standards and more general ecological and economical remedial action objectives

  5. Characterization and remediation of soils contaminated with uranium.

    Science.gov (United States)

    Gavrilescu, Maria; Pavel, Lucian Vasile; Cretescu, Igor

    2009-04-30

    Environmental contamination caused by radionuclides, in particular by uranium and its decay products is a serious problem worldwide. The development of nuclear science and technology has led to increasing nuclear waste containing uranium being released and disposed in the environment. The objective of this paper is to develop a better understanding of the techniques for the remediation of soils polluted with radionuclides (uranium in particular), considering: the chemical forms of uranium, including depleted uranium (DU) in soil and other environmental media, their characteristics and concentrations, and some of the effects on environmental and human health; research issues concerning the remediation process, the benefits and results; a better understanding of the range of uses and situations for which each is most appropriate. The paper addresses the main features of the following techniques for uranium remediation: natural attenuation, physical methods, chemical processes (chemical extraction methods from contaminated soils assisted by various suitable chelators (sodium bicarbonate, citric acid, two-stage acid leaching procedure), extraction using supercritical fluids such as solvents, permeable reactive barriers), biological processes (biomineralization and microbial reduction, phytoremediation, biosorption), and electrokinetic methods. In addition, factors affecting uranium removal from soils are furthermore reviewed including soil characteristics, pH and reagent concentration, retention time.

  6. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado: Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment and a floodplain/wetlands assessment are included as part of this EA. This report and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

  7. Environmental assessment of remedial action at the Maybell Uranium Mill Tailings Site near Maybell, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

  8. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado: Revision 2

    International Nuclear Information System (INIS)

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment and a floodplain/wetlands assessment are included as part of this EA. This report and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS)

  9. 300-FF-1 remedial design report/remedial action work plan

    International Nuclear Information System (INIS)

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes

  10. Mercury contaminated sediment sites—An evaluation of remedial options

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Chattopadhyay, Sandip, E-mail: Sandip.Chattopadhyay@tetratech.com [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)

    2013-08-15

    Mercury (Hg) is a naturally-occurring element that is ubiquitous in the aquatic environment. Though efforts have been made in recent years to decrease Hg emissions, historically-emitted Hg can be retained in the sediments of aquatic bodies where they may be slowly converted to methylmercury (MeHg). Consequently, Hg in historically-contaminated sediments can result in high levels of significant exposure for aquatic species, wildlife and human populations consuming fish. Even if source control of contaminated wastewater is achievable, it may take a very long time, perhaps decades, for Hg-contaminated aquatic systems to reach relatively safe Hg levels in both water and surface sediment naturally. It may take even longer if Hg is present at higher concentration levels in deep sediment. Hg contaminated sediment results from previous releases or ongoing contributions from sources that are difficult to identify. Due to human activities or physical, chemical, or biological processes (e.g. hydrodynamic flows, bioturbation, molecular diffusion, and chemical transformation), the buried Hg can be remobilized into the overlying water. Hg speciation in the water column and sediments critically affect the reactivity (i.e. conversion of inorganic Hg(II) to MeHg), transport, and its exposure to living organisms. Also, geochemical conditions affect the activity of methylating bacteria and its availability for methylation. This review paper discusses remedial considerations (e.g. key chemical factors in fate and transport of Hg, source characterization and control, environmental management procedures, remediation options, modeling tools) and includes practical case studies for cleaning up Hg-contaminated sediment sites. -- Highlights: ► Managing mercury-contaminated sediment sites are challenging to remediate. ► Remediation technologies are making a difference in managing these sites. ► Partitioning plays a dominant role in the distribution of mercury species. ► Mathematical

  11. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  12. 29 CFR 35.15 - Remedial action.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Remedial action. 35.15 Section 35.15 Labor Office of the Secretary of Labor NONDISCRIMINATION ON THE BASIS OF AGE IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... Remedial action. Even in the absence of a finding of discrimination, a recipient, in administering...

  13. Laboratory Experiment on Electrokinetic Remediation of Soil

    Science.gov (United States)

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  14. Foreword Special Issue on Electrokinetic remediation

    NARCIS (Netherlands)

    Loch, J.P.G.; Lima, A.T.

    2012-01-01

    Since the first symposium on Electro-remediation (EREM) in 1997 at the École des Mines d’Albi, in Albi, France, much international attention, interest and progress have been generated in the science and technology of electro-remediation of contaminated soils, sediments and construction materials...

  15. 14 CFR 1212.800 - Civil remedies.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Civil remedies. 1212.800 Section 1212.800... Comply With Requirements of This Part § 1212.800 Civil remedies. Failure to comply with the requirements of the Privacy Act and this part could subject NASA to civil suit under the provisions of 5...

  16. 32 CFR 310.47 - Civil remedies.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Civil remedies. 310.47 Section 310.47 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Privacy Act Violations § 310.47 Civil remedies. In addition to specific...

  17. 10 CFR 1008.15 - Civil remedies.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Civil remedies. 1008.15 Section 1008.15 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) RECORDS MAINTAINED ON INDIVIDUALS (PRIVACY ACT) Requests for Access or Amendment § 1008.15 Civil remedies. Subsection (g) of the Act provides that an individual may bring...

  18. An Expert support model for ex situ soil remediation

    NARCIS (Netherlands)

    Okx, J.P.; Frankhuizen, E.M.; Wit, de J.C.; Pijls, C.G.J.M.; Stein, A.

    2000-01-01

    This paper presents an expert support model recombining knowledge and experience obtained during ex situ soil remediation. To solve soil remediation problems, an inter-disciplinary approach is required. Responsibilities during the soil remediation process, however, are increasingly decentralised, wh

  19. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    Directory of Open Access Journals (Sweden)

    Bell Iris R

    2012-10-01

    Full Text Available Abstract Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b act by modulating biological function of the allostatic stress response network (c evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS, a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting

  20. Effect of the biofilm detachment pattern on biological phosphorus removal in the biological contact oxidation remediation system purifying contaminated source water%生物膜脱除方式对受污染源水生物接触氧化修复系统除磷性能的影响

    Institute of Scientific and Technical Information of China (English)

    徐向阳; 徐京; 朱亮; 丁炜; 冯丽娟

    2011-01-01

    针对生物接触氧化修复工艺存在的生物膜内磷累积导致系统除磷性能恶化的问题,以受污染源水为对象,开展表层生物膜脱除(SBD)和全层生物膜脱除(FBD)两种排泥方式对系统除磷长效性和运行稳定性的影响研究.结果表明,生物接触氧化修复系统启动1周后除磷效率达46.9%,随后系统除磷性能迅速恶化.采用FBD方式后系统除磷效果得以恢复,溶解性磷酸盐(DP)去除率维持在30%以上近1个月,生物膜饱和吸磷量达(318.5±21.5)mgTPm-2填料表面积.相比而言,采用SBD方式处理后系统除磷性能未能得到有效改善,30%以上DP去除率仅维持1周左右,生物膜饱和吸磷量仅为FBD的0.68倍.推测不同脱除方式对生物膜二次成膜过程微生物菌群结构重建和污染物去除性能影响显著,FBD处理后系统二次成膜过程溶解氧扩散不受限制,聚磷菌相对反硝化菌更易定殖、富集.镜检结果表明,FBD处理后填料表面仍附着少量微生物及其分泌物(如胞外多聚物等),与新填料表面光滑特性相比,其较高的孔隙率和较强的生物亲和性有利于微生物快速附着成膜,保证排泥强化除磷后系统氨氮、高锰酸盐指数、总氮去除性能稳定.%Abstract: Free ion activity of toxic heavy metals has been widely recognized as the most active species for organism, and can be applied for predicting the biological effect of heavy metals. However, the concentration of heavy metal ions at the body surface of organism differs from their free ion activity in the bulk solution, because of cell membrane surface electrical potential (ψ0) which varies with solution compositions. An increase in common cation Ca in culture solutions reduces the negativity ofψ0 by charge screening and ion binding. The reduced negativity could result in reductions in membrane surface activities of cationic toxicants (e.g. Al3+, Cu2+ and Ni2+) and increases in surface activities of anionic

  1. Light Pollution Responses and Remedies

    CERN Document Server

    Mizon, Bob

    2012-01-01

    Light pollution is a major threat to astronomy across the entire developed world. The night sky that most of us can see bears little relationship to the spectacular vistas that our ancestors have gazed at for tens of thousands of years. It is ironic that as our understanding of the universe has improved, our ability to see it has been dramatically reduced by the skyglow of our civilization. In the second edition of Light Pollution - Responses and Remedies, Bob Mizon delves into the history and practice of lighting and how its misue has not only stolen the stars, but blighted our lives and those of our fellow-creatures on this planet. This book suggests how we can win back the night sky and at the same time save energy and money, improve our health, and even lower crime rate! It also includes a list of targets for urban stargazers, and recommendations for ensuring sane lighting worldwide.

  2. Innovative vitrification for soil remediation

    International Nuclear Information System (INIS)

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS trademark) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB's as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology

  3. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  4. Space Debris Environment Remediation Concepts

    Science.gov (United States)

    Johnson, Nicholas L.; Klinkrad, Heiner

    2009-01-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  5. Policy and Strategies for Environmental Remediation

    International Nuclear Information System (INIS)

    In the environmental remediation of a given site, concerned and interested parties have diverse and often conflicting interests with regard to remediation goals, the time frames involved, reuse of the site, the efforts necessary and cost allocation. An environmental remediation policy is essential for establishing the core values on which remediation is to be based. It incorporates a set of principles to ensure the safe and efficient management of remediation situations. Policy is mainly established by the national government and may become codified in the national legislative system. An environmental remediation strategy sets out the means for satisfying the principles and requirements of the national policy. It is normally established by the relevant remediation implementer or by the government in the case of legacy sites. Thus, the national policy may be elaborated in several different strategies. To ensure the safe, technically optimal and cost effective management of remediation situations, countries are advised to formulate an appropriate policy and strategies. Situations involving remediation include remediation of legacy sites (sites where past activities were not stringently regulated or adequately supervised), remediation after emergencies (nuclear and radiological) and remediation after planned ongoing operation and decommissioning. The environmental policy involves the principles of justification, optimization of protection, protection of future generations and the environment, efficiency in the use of resources, and transparent interaction with stakeholders. A typical policy will also take into account the national legal framework and institutional structure and applicable international conventions while providing for the allocation of responsibilities and resources, in addition to safety and security objectives and public information and participation in the decision making process. The strategy reflects and elaborates the goals and requirements set

  6. Emerging Technologies for Environmental Remediation: Integrating Data and Judgment.

    Science.gov (United States)

    Bates, Matthew E; Grieger, Khara D; Trump, Benjamin D; Keisler, Jeffrey M; Plourde, Kenton J; Linkov, Igor

    2016-01-01

    Emerging technologies present significant challenges to researchers, decision-makers, industry professionals, and other stakeholder groups due to the lack of quantitative risk, benefit, and cost data associated with their use. Multi-criteria decision analysis (MCDA) can support early decisions for emerging technologies when data is too sparse or uncertain for traditional risk assessment. It does this by integrating expert judgment with available quantitative and qualitative inputs across multiple criteria to provide relative technology scores. Here, an MCDA framework provides preliminary insights on the suitability of emerging technologies for environmental remediation by comparing nanotechnology and synthetic biology to conventional remediation methods. Subject matter experts provided judgments regarding the importance of criteria used in the evaluations and scored the technologies with respect to those criteria. The results indicate that synthetic biology may be preferred over nanotechnology and conventional methods for high expected benefits and low deployment costs but that conventional technology may be preferred over emerging technologies for reduced risks and development costs. In the absence of field data regarding the risks, benefits, and costs of emerging technologies, structuring evidence-based expert judgment through a weighted hierarchy of topical questions may be helpful to inform preliminary risk governance and guide emerging technology development and policy.

  7. Emerging Technologies for Environmental Remediation: Integrating Data and Judgment.

    Science.gov (United States)

    Bates, Matthew E; Grieger, Khara D; Trump, Benjamin D; Keisler, Jeffrey M; Plourde, Kenton J; Linkov, Igor

    2016-01-01

    Emerging technologies present significant challenges to researchers, decision-makers, industry professionals, and other stakeholder groups due to the lack of quantitative risk, benefit, and cost data associated with their use. Multi-criteria decision analysis (MCDA) can support early decisions for emerging technologies when data is too sparse or uncertain for traditional risk assessment. It does this by integrating expert judgment with available quantitative and qualitative inputs across multiple criteria to provide relative technology scores. Here, an MCDA framework provides preliminary insights on the suitability of emerging technologies for environmental remediation by comparing nanotechnology and synthetic biology to conventional remediation methods. Subject matter experts provided judgments regarding the importance of criteria used in the evaluations and scored the technologies with respect to those criteria. The results indicate that synthetic biology may be preferred over nanotechnology and conventional methods for high expected benefits and low deployment costs but that conventional technology may be preferred over emerging technologies for reduced risks and development costs. In the absence of field data regarding the risks, benefits, and costs of emerging technologies, structuring evidence-based expert judgment through a weighted hierarchy of topical questions may be helpful to inform preliminary risk governance and guide emerging technology development and policy. PMID:26580228

  8. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands assessment (Assessment 2) are included as part of this EA. The following sections and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service.

  9. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado

    International Nuclear Information System (INIS)

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands assessment (Assessment 2) are included as part of this EA. The following sections and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service

  10. Technologies for remediation of radioactively contaminated sites

    International Nuclear Information System (INIS)

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes

  11. Remedial investigations for quarry bulk wastes

    International Nuclear Information System (INIS)

    The US Department of Energy proposes, as a separate operable unit of the Weldon Spring Site Remedial Action Project, to remove contaminated bulk wastes from the Weldon Spring quarry and transport them approximately four miles to the chemical plant portion of the raffinate pits and chemical plant area. The wastes will be held in temporary storage prior to the record of decision for the overall remedial action. The decision on the ultimate disposal of these bulk wastes will be included as part of the decision for management of the waste materials resulting from remedial action activities at the raffinate pits and chemical plant area. 86 refs., 71 figs., 83 tabs

  12. Luminescence study of homeopathic remedies

    Science.gov (United States)

    Lobyshev, Valentin I.; Tomkevitch, Marie

    2001-06-01

    It was shown in our recent papers that distilled water possesses intrinsic luminescence at wavelength of about 400 nm with excitation wavelength 300 nm, which is very sensitive to small amount of dissolved substances. This phenomena was chosen to study homeopathic remedies. Pronounced difference in the intensity of luminescence between several commercial preparations with the same potency and one preparation with various potencies was obtained. Long scale evolution of the spectra was registered and final result was dependent on preparation and its potency. Systematic study of homeopathic preparations of halit (natural sodium chloride) from 1 to 30 decimal dilution was done. A stepwise dilution with mechanical agitation between the dilution steps, the so-called potentisation, was produced specially by homeopathic company Weleda. Luminescence intensity against concentration (potency) of halit is non monotonous function with several maxima, the main maximum is located at 13-14-th dilution. Evolution of the spectra was registered during several months. The analogous potentisation treatment of water without additional substances results also in changes of the luminescence spectra, depending on the number of potentisation. The obtained differences of luminescence spectra at ultra high dilutions and potentisation show that the collective properties of water are really changed in homeopathic preparations.

  13. Compliance monitoring for remediated sites

    International Nuclear Information System (INIS)

    Throughout the world, many countries have experienced problems associated with pollution of the environment. Poorly managed practices in nuclear fuel cycle, medicine, industry, weapons production and testing, research and development activities, as well as accidents, and poor disposal practices have produced a large array of radioactively contaminated facilities and sites. Structures, biota, soils, rocks, and both surface and groundwaters have become contaminated with radionuclides and other associated contaminants, a condition that raises serious concern due to potential health effects to the exposed human populations and the environment. In response to the needs of its Member States in dealing with the problems of radioactive contamination in the environment, the IAEA has established an Environmental Restoration Project. The principal aspects of current IAEA efforts in this area include (1) gathering information and data, performing analyses, and publishing technical summaries, and other documents on key technical aspects of environmental restoration; (2) conducting a Co-ordinated Research Project on Environmental Restoration; and (3) providing direct technical assistance to Member States through technical co-operation programmes. The transfer of technologies to Member States in need of applicable methodologies and techniques for the remediation of contaminated sites is a principal objective of this project

  14. Innovative vitrification for soil remediation

    Energy Technology Data Exchange (ETDEWEB)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  15. List of Contractors to Support Anthrax Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Kathleen S.; Lesperance, Ann M.

    2010-05-14

    This document responds to a need identified by private sector businesses for information on contractors that may be qualified to support building remediation efforts following a wide-area anthrax release.

  16. Civil Remedies Division Administrative Law Judge Decisions

    Data.gov (United States)

    U.S. Department of Health & Human Services — Decisions issued by Administrative Law Judges of the Departmental Appeals Board's Civil Remedies Division concerning fraud and abuse determinations by the Office of...

  17. Porous graphene materials for water remediation.

    Science.gov (United States)

    Niu, Zhiqiang; Liu, Lili; Zhang, Li; Chen, Xiaodong

    2014-09-10

    Water remediation has been a critical issue over the past decades due to the expansion of wastewater discharge to the environment. Currently, a variety of functional materials have been successfully prepared for water remediation applications. Among them, graphene is an attractive candidate due to its high specific surface area, tunable surface behavior, and high strength. This Concept paper summarizes the design strategy of porous graphene materials and their applications in water remediation, such as the cleanup of oil, removal of heavy metal ions, and elimination of water soluble organic contaminants. The progress made so far will guide further development in structure design strategy of porous materials based on graphene and exploration of such materials in environmental remediation.

  18. Green PCB Remediation from Sediment Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPRSS technology is an in situ remediation technique for PCB-contaminated sediments. The technique provides an effective and safe method for sediment cleanup...

  19. ELECTROKINETIC REMEDIATION: BASICS AND TECHNOLOGY STATUS

    Science.gov (United States)

    Electrokinetic remediation, variably named as electrochemical soil processing, electromigration, electrokinetic decontamination or electroreclamation uses electric currents to extract radionuclides, heavy metals, certain organic compounds, or mixed inorganic species and some orga...

  20. Corporate governance: remedying and ratifying directors' breaches

    OpenAIRE

    Worthington, Sarah

    2000-01-01

    Extent to which company may relax scope and content of directors' duties, whether it can exonerate directors who default on their duties and whether it can ratify actions of defaulting directors and determine remedy for breach of duty.

  1. REAL TIME DATA FOR REMEDIATION ACTIVITIES (11505)

    International Nuclear Information System (INIS)

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  2. Natural Remediation at Savannah River Site

    International Nuclear Information System (INIS)

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  3. Water as a Reagent for Soil Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  4. Could Trade Remedy Keep Industry Safe?

    Institute of Scientific and Technical Information of China (English)

    Dennis; K.; Zhao

    2009-01-01

    The world trade is regressing while the trade protectionism is progressing. With this,trade remedies will be more used to protect domestic interests as was seen in Great Depression in history, but also seen in new stimulus program in a few weeks of history of US new administration. Will China be possible to take a new approach to maintaining its industry secured by buying and investing more overseas rather than reacting with the same remedy tool?

  5. International experience in tailings pond remediation

    International Nuclear Information System (INIS)

    Tailings pond remediation is required primarily on mine closure. While mining is an ancient industry, requirement for mine facility remediation is a comparatively new development. Requirement for remediation has come about partly as a result of mans awareness of the environmental impacts of mining and his desire to minimize this, partly, as a result of the ever-increasing scale and production rates of tailings generation and the resulting increased environmental impacts and safety risks. The paper starts with a review of the evolution of mans intolerance of environmental impacts from tailings production and the assignment of liability to remediate such impacts. Many of the tailings ponds currently undergoing remediation were designed and constructed using methods and technology that would be considered inappropriate for new impoundments being designed and developed today. The paper reviews the history of tailings impoundment design and construction practice and the resulting inherent deficiencies that must be remediated. Current practices and future trends in tailings pond remediation are reviewed. The evolution of regulatory requirements is not only in terms of technical and safety criteria, but also in terms of financial and political risk. Perhaps the most substantive driver of risk management is today the requirement for corporate governance at mining company board level and oversight of new project development in the underdeveloped countries by the large financial institutions responsible for funding projects. Embarrassment in the public eye and punishment in the stock markets for poor environmental and safety performance is driving the need for efficient and effective risk management of potential impacts and the remediation to avoid these. A basis for practical risk management is described. (orig.)

  6. Natural Remediation at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C. M.; Van Pelt, R.

    2002-02-25

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  7. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shanklin

    2006-06-01

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  8. Hazardous waste treatment and environmental remediation research

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity

  9. Hanford sitewide grounwater remediation - supporting technical information

    International Nuclear Information System (INIS)

    The Hanford Sitewide Groundwater Remediation Strategy was issued in 1995 to establish overall goals for groundwater remediation on the Hanford Site. This strategy is being refined to provide more detailed justification for remediation of specific plumes and to provide a decision process for long-range planning of remediation activities. Supporting this work is a comprehensive modeling study to predict movement of the major site plumes over the next 200 years to help plan the remediation efforts. The information resulting from these studies will be documented in a revision to the Strategy and the Hanford Site Groundwater Protection Management Plan. To support the modeling work and other studies being performed to refine the strategy, this supporting technical information report has been produced to compile all of the relevant technical information collected to date on the Hanford Site groundwater contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, and description of the contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, description of the contaminant plumes, rate of movement based on the conceptual model and monitoring data, risk assessment, treatability study information, and current approach for plume remediation

  10. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  11. Hazardous waste treatment and environmental remediation research

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  12. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords

  13. Petroleum Hydrocarbon Pollution of Mangrove Swamps: The Promises of Remediation by Enhanced Natural Attenuation

    Directory of Open Access Journals (Sweden)

    F. A. Orji

    2012-01-01

    Full Text Available Problem statement: The Remediation by Enhanced Natural Attenuation (RENA is currently being used as a cleanup technology in polluted environments in the Niger Delta and other parts of the globe. The effectiveness of RENA as a remediation technology in the most recent time has been challenged by few authorities. The deleterious effects of pollutants on the environment have led to increased awareness and vigilance against contamination of the Niger Delta environment. Bio remediation which has been defined as biological response to environmental abuse has continued to receive research attentions across the globe. This study addresses issues against the RENA and recommended ways forward. Approach: The review paper studied published articles and Oil companies routine practices of managing petroleum hydrocarbon polluted Environments including mangrove swamps from 1970 till date. The Remediation by Enhanced Natural Attenuation (RENA is currently being used as a cleanup technology in polluted environments in the Niger Delta including mangrove ecosystems. Results: The study made inputs on the controversial issues around RENA technology and recommended certain ways forward. This revision also reported the ways of managing the concerns raised against RENA. Conclusion/Recommendations: Oil firms, remediation contractors and consultants using this RENA approach should employ strict monitoring during the process and also adhere strictly to standard practices and the mitigation measures for all the cases against RENA as documented in this review study. This is to ensure the achievement of Sustainable Development.

  14. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    Energy Technology Data Exchange (ETDEWEB)

    Simpkin, Thomas J. [CH2M HILL, Denver, Colorado (United States); Favara, Paul [CH2M HILL, Gainesville, Florida (United States)

    2012-07-01

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and

  15. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    International Nuclear Information System (INIS)

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this

  16. Magnetic separation for environmental remediation

    International Nuclear Information System (INIS)

    High Gradient Magnetic Separation (HGMS) is a form of magnetic separation used to separate solids from other solids, liquids or gases. HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles from diamagnetic host materials. The technology relies only on physical properties, and therefore separations can be achieved while producing a minimum of secondary waste. Actinide and fission product wastes within the DOE weapons complex pose challenging problems for environmental remediation. Because the majority of actinide complexes and many fission products are paramagnetic, while most host materials are diamagnetic, HGMS can be used to concentrate the contaminants into a low volume waste stream. The authors are currently developing HGMS for applications to soil decontamination, liquid waste treatment, underground storage tank waste treatment, and actinide chemical processing residue concentration. Application of HGMS usually involves passing a slurry of the contaminated mixture through a magnetized volume. Field gradients are produced in the magnetized volume by a ferromagnetic matrix material, such as steel wool, expanded metal, iron shot, or nickel foam. The matrix fibers become trapping sites for ferromagnetic and paramagnetic particles in the host material. The particles with a positive susceptibility are attracted toward an increasing magnetic field gradient and can be extracted from diamagnetic particles, which react in the opposite direction, moving away from the areas of high field gradients. The extracted paramagnetic contaminants are flushed from the matrix fibers when the magnetic field is reduced to zero or when the matrix canister is removed from the magnetic field. Results are discussed for the removal of uranium trioxide from water, PuO2, U, and Pu from various soils (Fernald, Nevada Test Site), and the waste water treatment of Pu and Am isotopes using HGMS

  17. Magnetic separation for environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Schake, A.R.; Avens, L.R.; Hill, D.D.; Padilla, D.D.; Prenger, F.C.; Romero, D.A.; Worl, L.A. [Los Alamos National Lab., NM (United States); Tolt, T.L. [Lockheed Environmental Systems and Technologies Co., Las Vegas, NV (United States)

    1994-11-01

    High Gradient Magnetic Separation (HGMS) is a form of magnetic separation used to separate solids from other solids, liquids or gases. HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles from diamagnetic host materials. The technology relies only on physical properties, and therefore separations can be achieved while producing a minimum of secondary waste. Actinide and fission product wastes within the DOE weapons complex pose challenging problems for environmental remediation. Because the majority of actinide complexes and many fission products are paramagnetic, while most host materials are diamagnetic, HGMS can be used to concentrate the contaminants into a low volume waste stream. The authors are currently developing HGMS for applications to soil decontamination, liquid waste treatment, underground storage tank waste treatment, and actinide chemical processing residue concentration. Application of HGMS usually involves passing a slurry of the contaminated mixture through a magnetized volume. Field gradients are produced in the magnetized volume by a ferromagnetic matrix material, such as steel wool, expanded metal, iron shot, or nickel foam. The matrix fibers become trapping sites for ferromagnetic and paramagnetic particles in the host material. The particles with a positive susceptibility are attracted toward an increasing magnetic field gradient and can be extracted from diamagnetic particles, which react in the opposite direction, moving away from the areas of high field gradients. The extracted paramagnetic contaminants are flushed from the matrix fibers when the magnetic field is reduced to zero or when the matrix canister is removed from the magnetic field. Results are discussed for the removal of uranium trioxide from water, PuO{sub 2}, U, and Pu from various soils (Fernald, Nevada Test Site), and the waste water treatment of Pu and Am isotopes using HGMS.

  18. Using soil function evaluation in multi-criteria decision analysis for sustainability appraisal of remediation alternatives.

    Science.gov (United States)

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Bergknut, Magnus; Josefsson, Sarah; Söderqvist, Tore; Norberg, Tommy; Wiberg, Karin; Tysklind, Mats

    2014-07-01

    Soil contamination is one of the major threats constraining proper functioning of the soil and thus provision of ecosystem services. Remedial actions typically only address the chemical soil quality by reducing total contaminant concentrations to acceptable levels guided by land use. However, emerging regulatory requirements on soil protection demand a holistic view on soil assessment in remediation projects thus accounting for a variety of soil functions. Such a view would require not only that the contamination concentrations are assessed and attended to, but also that other aspects are taking into account, thus addressing also physical and biological as well as other chemical soil quality indicators (SQIs). This study outlines how soil function assessment can be a part of a holistic sustainability appraisal of remediation alternatives using multi-criteria decision analysis (MCDA). The paper presents a method for practitioners for evaluating the effects of remediation alternatives on selected ecological soil functions using a suggested minimum data set (MDS) containing physical, biological and chemical SQIs. The measured SQIs are transformed into sub-scores by the use of scoring curves, which allows interpretation and the integration of soil quality data into the MCDA framework. The method is demonstrated at a study site (Marieberg, Sweden) and the results give an example of how soil analyses using the suggested MDS can be used for soil function assessment and subsequent input to the MCDA framework.

  19. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  20. Provincial labour market study : mould remediation industry

    International Nuclear Information System (INIS)

    Indoor exposure to mold can be problematic to human health, and some molds are considered to be toxigenic. The emergent mold remediation industry in Ontario is fragmented, with various different standards, training and certification processes. This report investigated the labour market for mold remediation workers, with particular reference to training needs and priorities. Research was derived from a literature review in order to analyze the economic, legal, technical and social context of the mold remediation industry. Data on the organized work force were obtained from records of the International Union of Painters and Allied Trades, the Labour Force Historical Review 2002, and various publications. Population data from the Ontario government and Statistics Canada were also used. Surveys of workers and employers were conducted with questionnaires. Results of the surveys indicated that mold remediation projects currently constitute a minority share of most companies' business. However, the importance of mold remediation projects is expected to increase, and industry self-regulation is the most likely scenario for the development of standards and related training programs. It was suggested that the creation of an industry body representing key stakeholder constituencies or the legitimization of an existing industry organization will reduce fragmentation and facilitate research, standard setting and certification, as well as improve marketing and education. If the demand for mold remediation services increases as anticipated, the industry will face the challenge of remaining competitive in the province's projected labour market due to shortages in personnel. There was a strong consensus between employers and workers in the mold remediation industry regarding the need for skills upgrading and compulsory certification. It was concluded that leadership is needed in the development and delivery of training programs, standard setting, recruitment and retention and

  1. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  2. Non-thermal plasma for air and water remediation.

    Science.gov (United States)

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. PMID:27056469

  3. Remedy for radiation fear - discard the politicized science

    Energy Technology Data Exchange (ETDEWEB)

    Cuttler, J.M. [Cuttler and Associates Inc., Mississauga, Ontario (Canada)

    2013-12-15

    While seeking a remedy for the ongoing crisis of radiation fear in Japan and everywhere else, the author reread a recent article on radiation hormesis. It describes the political motivation for creating this fear and mentions the evidence, in the first UNSCEAR report, of a factor of 3 reduction in leukemia incidence of the Hiroshima a-bomb survivors in the low dose zone. Producing a graph of the tabulated data reveals that they fit a hormetic J-curve, not a straight line as reported. UNSCEAR data on the lifespan reduction of mice and Guinea pigs exposed continuously to radium gamma rays indicate a threshold at about 2 gray per year. This information contradicts the conceptual basis for radiation protection and risk determination that was established in 1956-58. In this paper, beneficial effects and thresholds for harmful effects are discussed, and the biological mechanism is explained. The key point is the discovery that the rate of spontaneous DNA damage (double-strand breaks) is more than 1000 times the rate caused by average background radiation. It is the effect of radiation on an organism's very powerful adaptive protection systems that determines the dose-response characteristic. Low radiation up-regulates adaptive protection systems, while high radiation impairs these systems. The remedy for radiation fear is to expose and discard the politicized science. (author)

  4. EDTA retention and emissions from remediated soil.

    Science.gov (United States)

    Jez, Erika; Lestan, Domen

    2016-05-01

    EDTA-based remediation is reaching maturity but little information is available on the state of chelant in remediated soil. EDTA soil retention was examined after extracting 20 soil samples from Pb contaminated areas in Slovenia, Austria, Czech Republic and USA with 120 mM kg(-1) Na2H2EDTA, CaNa2EDTA and H4EDTA for 2 and 24 h. On average, 73% of Pb was removed from acidic and 71% from calcareous soils (24 h extractions). On average, 15% and up to 64% of applied EDTA was after remediation retained in acidic soils. Much less; in average 1% and up to the 22% of EDTA was retained in calcareous soils. The secondary emissions of EDTA retained in selected remediated soil increased with the acidity of the media: the TCLP (Toxicity Characteristic Leaching Procedure) solution (average pH end point 3.6) released up to 36% of EDTA applied in the soil (28.1 mmol kg(-1)). Extraction with deionised water (pH > 6.0) did not produce measurable EDTA emissions. Exposing soil to model abiotic (thawing/freezing cycles) and biotic (ingestion by earthworms Lumbricus rubellus) ageing factors did not induce additional secondary emissions of EDTA retained in remediated soil. PMID:26943741

  5. ICDF Complex Remedial Action Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2006-12-01

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  6. Salt contamination assessment and remediation guidelines

    International Nuclear Information System (INIS)

    Environmental impacts associated with excess salt in oil and surface water or groundwater (a frequent occurrence in oil and gas production) may be manifested as degradation of soil chemical or physical properties, impaired vegetable growth and degraded surface or groundwater quality. Spill prevention is by far the most effective and most efficient way of avoiding these adverse effects and the attendant remediation costs. However, when spills do occur effective response, based on a comprehensive understanding of impacts, salt movements and remediation procedures can mitigate the adverse environmental effects. This guide is designed to assist those involved in the prevention, assessment, remediation and management of salt-contaminated sites. It summarizes the regulatory requirements in Alberta, including salt remediation objectives, and provides an overview of salt spill problems and effective site assessment and remediation procedures. Background information on the sources of salt, the movement of salt in soil and groundwater, and the adverse effects of salt on soil, vegetation and groundwater is provided in an appendix attached to the Guide. A selected bibliography and a glossary of terms are also included. 42 refs., tabs., figs

  7. Remedial Action Programs annual meeting: Proceedings

    International Nuclear Information System (INIS)

    Within the DOE's Office of Nuclear Energy, the Office of Remedial Action and Waste Technology manages a number of programs whose purposes are to complete remedial actions at DOE facilities and sites located throughout the United States. These programs include the Surplus Facilities Management Program, the Formerly Utilized Sites Remedial Action Program, the Uranium Mill Tailings remedial Action Program and the West Valley Demonstration Project. The programs involve the decontamination and decommissioning of radioactively-contaminated structures and equipment, the disposal of uranium mill tailings, and the cleanup or restoration of soils and ground water that have been contaminated with radioactive hazardous substances. Each year the DOE and DOE-contractor staff who conduct these programs meet to exchange information and experience in common technical areas. This year's meeting was hosted by the Surplus Facilities Management Program and was held near DOE Headquarters, in Gaithersburg, Maryland. This volume of proceedings provides the record for the meeting. The proceedings consist of abstracts for each presentation made at the meeting, and the visual aids (if any) used by the speakers. The material is organized in the following pages according to the five different sessions at the meeting: Session 1: Environmental Compliance--Policy; Session 2: Environmental Compliance--Practice; Session 3: Reports from working groups; Session 4: DandD Technology; and Session 5: Remedial Action Technology. The agenda for the meeting and the list of meeting registrants are provided in Appendix A and B, respectively. Individual papers are processed separately for the data base

  8. Electrokinetic soil remediation--critical overview.

    Science.gov (United States)

    Virkutyt, Jurate; Sillanpää, Mika; Latostenmaa, Petri

    2002-04-22

    In recent years, there has been increasing interest in finding new and innovative solutions for the efficient removal of contaminants from soils to solve groundwater, as well as soil, pollution. The objective of this review is to examine several alternative soil-remediating technologies, with respect to heavy metal remediation, pointing out their strengths and drawbacks and placing an emphasis on electrokinetic soil remediation technology. In addition, the review presents detailed theoretical aspects, design and operational considerations of electrokinetic soil-remediation variables, which are most important in efficient process application, as well as the advantages over other technologies and obstacles to overcome. The review discusses possibilities of removing selected heavy metal contaminants from clay and sandy soils, both saturated and unsaturated. It also gives selected efficiency rates for heavy metal removal, the dependence of these rates on soil variables, and operational conditions, as well as a cost-benefit analysis. Finally, several emerging in situ electrokinetic soil remediation technologies, such as Lasagna, Elektro-Klean, electrobioremediation, etc., are reviewed, and their advantages, disadvantages and possibilities in full-scale commercial applications are examined. PMID:12049409

  9. Biological signals as handicaps.

    Science.gov (United States)

    Grafen, A

    1990-06-21

    An ESS model of Zahavi's handicap principle is constructed. This allows a formal exposition of how the handicap principle works, and shows that its essential elements are strategic. The handicap model is about signalling, and it is proved under fairly general conditions that if the handicap principle's conditions are met, then an evolutionarily stable signalling equilibrium exists in a biological signalling system, and that any signalling equilibrium satisfies the conditions of the handicap principle. Zahavi's major claims for the handicap principle are thus vindicated. The place of cheating is discussed in view of the honesty that follows from the handicap principle. Parallel signalling models in economics are discussed. Interpretations of the handicap principle are compared. The models are not fully explicit about how females use information about male quality, and, less seriously, have no genetics. A companion paper remedies both defects in a model of the handicap principle at work in sexual selection. PMID:2402153

  10. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  11. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings?

    Science.gov (United States)

    Huang, Longbin; Baumgartl, Thomas; Mulligan, David

    2012-01-01

    Background Revegetation of mine tailings (fine-grained waste material) starts with the reconstruction of root zones, consisting of a rhizosphere horizon (mostly topsoil and/or amended tailings) and the support horizon beneath (i.e. equivalent to subsoil – mostly tailings), which must be physically and hydro-geochemically stable. This review aims to discuss key processes involved in the development of functional root zones within the context of direct revegetation of tailings and introduces a conceptual process of rehabilitating structure and function in the root zones based on a state transition model. Scope Field studies on the revegetation of tailings (from processing base metal ore and bauxite residues) are reviewed. Particular focus is given to tailings' properties that limit remediation effectiveness. Aspects of root zone reconstruction and vegetation responses are also discussed. Conclusions When reconstructing a root zone system, it is critical to restore physical structure and hydraulic functions across the whole root zone system. Only effective and holistically restored systems can control hydro-geochemical mobility of acutely and chronically toxic factors from the underlying horizon and maintain hydro-geochemical stability in the rhizosphere. Thereafter, soil biological capacity and ecological linkages (i.e. carbon and nutrient cycling) may be rehabilitated to integrate the root zones with revegetated plant communities into sustainable plant ecosystems. A conceptual framework of system transitions between the critical states of root zone development has been proposed. This will illustrate the rehabilitation process in root zone reconstruction and development for direct revegetation with sustainable plant communities. Sustainable phytostabilization of tailings requires the systematic consideration of hydro-geochemical interactions between the rhizosphere and the underlying supporting horizon. It further requires effective remediation strategies to

  12. Tank waste remediation system operational scenario

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  13. Technology development activities supporting tank waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

  14. Technology development activities supporting tank waste remediation

    International Nuclear Information System (INIS)

    This document summarizes work being conducted under the U.S. Department of Energy's Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation

  15. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie;

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses...... without a short distance between the membranes. The acidification of the suspended soil was fastest and following the mobilization of heavy metals. This may indicate that water splitting at the anion exchange membrane is used more efficiently in the stirred setup........ The first as in-situ or on-site treatment when there is no requirement for fast remediation, as the removal rate of the heavy metals are dependent on the distance between the electrodes (everything else equal) and in such application the electrode spacing must have a certain distance (often meters...

  16. Implementation of Electrokinetic-ISCO Remediation

    Science.gov (United States)

    Wu, M. Z.; Reynolds, D.; Fourie, A.; Prommer, H.; Thomas, D.

    2011-12-01

    Significant challenges remain in the remediation of low-permeability porous media (e.g. clays, silts) contaminated with dissolved and sorbed organic contaminants. Current remediation technologies, such as in-situ chemical oxidation (ISCO), are often ineffective and the treatment region is limited by very slow rates of groundwater flow (advection) or molecular diffusion. At the laboratory-scale several studies (e.g. Reynolds et al. 2008) have highlighted the potential for utilising electrokinetic transport, as induced by the application of an electric field, to deliver a remediation compound (e.g. permanganate, persulfate) within heterogeneous and low-permeability sediments for ISCO (termed EK-ISCO) or other treatments. Process-based numerical modelling of the coupled flow, transport and reaction processes can provide important insights into the prevailing controls and feedback mechanisms and therefore guide the optimisation of EK-ISCO remediation efficacy. In this study, a numerical model was developed that simulates groundwater flow and multi-species reactive transport under both hydraulic and electric gradients (Wu et al. 2010). Coupled into the existing, previously verified reactive transport model PHT3D (Prommer et al. 2003), the model was verified against analytical solutions and data from experimental studies. Using the newly developed model, the sensitivity of electrokinetic, hydraulic and engineering parameters as well as alternative configurations of the EK-ISCO treatment process were investigated. The duration and energy required for remediation was most dependent upon the applied voltage gradient and the natural oxidant demand and all investigated parameters affected the remediation process to some extent. Investigated variants of treatment configurations included several alternative locations for oxidant injection and a series of one-dimensional and two-dimensional electrode configurations.

  17. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    Science.gov (United States)

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.

    2014-12-01

    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  18. Utilization of Electrokinetics in Remediation of Low Permeability Sediments Contaminated With Organic Compounds

    Science.gov (United States)

    Reynolds, D. A.; Thomas, D. G.; Jones, E. H.; Yusoff, I.

    2006-12-01

    Remediation of contaminated sites is an inherently difficult and time consuming process for a large number of reasons, some of the most significant being the complexity of stratigraphy and local scale geology across a wide range of scales; the heterogeneity of sedimentary deposits even when considering small scales, and the ineffectiveness of existing technologies. The traditional use of in situ chemical/biological treatments, while successful for remediation in their own right at some sites, have limited application at sites with complex geology and where NAPL is present. Electrokinetics, the migration of charged compounds under an electrical gradient, was investigated in the context of a remediation technique for dissolved phase contamination in low permeability environments. The target contaminant for the study was Trichloroethene (TCE), and the remediation compound was Potassium Permanganate. Experiments were performed in column scale and tank scale apparatuses, where a voltage potential was placed across or within a porous media, and the migration rate measured or visually observed. TCE contaminated cores were subjected to potassium permanganate remediation through diffusion transport alone, and various formulations of voltage potentials. Electrokinetics was found to migrate a dilute solution of potassium permanganate through low permeability porous media, several orders of magnitude faster than diffusion transport alone. The migration rate was found to be directly proportional to the applied voltage, with significant migration factors occurring for field-scale achievable voltages of 1-2 V/cm. The electrokinetic migration was found to be a threshold phenomenon, with a minimum applied voltage being required to offset electroosmotic flux and pore pressure factors. The demonstrated technique has significant potential for the remediation of contaminated low permeability media, through the use of potassium permanganate, and other approaches.

  19. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse;

    2008-01-01

    This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. A newly designed remediation cell, where the solids were kept in suspension by airflow, was tested. The results show that electric current could remove copper from suspended tailings...... experiment at 40 mA, with approximately 137.5 g mine tailings on dry basis. The removal for a static (baseline) experiment only amounted 15% when passing approximately the same amount of charge through 130 g of mine tailings. The use of air bubbling to keep the tailings suspended increased the removal...

  20. Bioactivity of the Murex Homeopathic Remedy and of Extracts from an Australian Muricid Mollusc against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kirsten Benkendorff

    2011-01-01

    Full Text Available Marine molluscs from the family Muricidae are the source of a homeopathic remedy Murex, which is used to treat a range of conditions, including cancer. The aim of this study was to evaluate the in vitro bioactivity of egg mass extracts of the Australian muricid Dicathais orbita, in comparison to the Murex remedy, against human carcinoma and lymphoma cells. Liquid chromatography coupled with mass spectrometry (LC-MS was used to characterize the chemical composition of the extracts and homeopathic remedy, focusing on biologically active brominated indoles. The MTS (tetrazolium salt colorimetric assay was used to determine effects on cell viability, while necrosis and apoptosis induction were investigated using flow cytometry (propidium iodide and Annexin-V staining, resp.. Cells were treated with varying concentrations (1–0.01 mg/mL of crude and semi-purified extracts or preparations (dilute 1 M and concentrated 4 mg/mL from the Murex remedy (4 h. The Murex remedy showed little biological activity against the majority of cell lines tested. In contrast, the D. orbita egg extracts significantly decreased cell viability in the majority of carcinoma cell lines. Flow cytometry revealed these extracts induce necrosis in HT29 colorectal cancer cells, whereas apoptosis was induced in Jurkat cells. These findings highlight the biomedical potential of Muricidae extracts in the development of a natural therapy for the treatment of neoplastic tumors and lymphomas.

  1. Strategy paper. Remedial design/remedial action 100 Area. Revision 2

    International Nuclear Information System (INIS)

    This strategy paper identifies and defines the approach for remedial design and remedial action (RD/RA) for source waste sites in the 100 Area of the Hanford Site, located in southeastern Washington State. This paper provides the basis for the US Department of Energy (DOE) to assess and approve the Environmental Restoration Contractor's (ERC) approach to RD/RA. Additionally, DOE is requesting review/agreement from the US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) on the strategy presented in this document in order to expedite remedial activities

  2. 32 CFR 516.64 - Comprehensive remedies plan.

    Science.gov (United States)

    2010-07-01

    ... AND PUBLIC RELATIONS LITIGATION Remedies in Procurement Fraud and Corruption § 516.64 Comprehensive... investigation involving fraud or corruption that relates to Army procurement activities. When possible, these.... (4) Consideration of each criminal, civil, contractual, and administrative remedy available,...

  3. Tank waste remediation system mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Acree, C.D.

    1998-01-06

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces.

  4. An ancient greek pain remedy for athletes

    DEFF Research Database (Denmark)

    Bartels, Else M.; Swaddling, Judith; Harrison, Adrian Paul

    2006-01-01

    While Hippocratic writings make no reference to the actual Olympics, there is frequent mention of diet, exercise, and the treatment of injuries sustained by the athletic participants. Indeed, Galen in his Composition of Medicines gives details of a remedy prescribed for the relief of pains and sw...

  5. Detection and Remediation of Groundwater Pollution

    Institute of Scientific and Technical Information of China (English)

    王杰

    2016-01-01

    Groundwater is an important part of the water cycle and is also widely used as sources of drinking water. With the increasing de?velopment of groundwater exploitation, the pollution is becoming more and more serious. This paper talks about the main research direc?tions of groundwater pollution, the detection, the remediation and some conclusions.

  6. Methods of radon remediation in Finnish dwellings

    International Nuclear Information System (INIS)

    A study was made of remedial measures taken in dwellings with high indoor radon concentrations and the results obtained. The data regarding the remedial measures taken in 400 dwellings was obtained from a questionnaire study. The mean annual average indoor radon concentration before the remedies was 1.500 Bq/m3, the concentration exceeding in nearly every house the action level of 400 Bq/m3. After the measures were taken the mean indoor radon concentration was 500 Bq/m3. The resulting indoor radon concentration was less than 400 Bq/m3 in 60 percent of the dwellings. The best results were achieved using sub-slab-suction and radon well. These methods effectively decrease both the flow of radon bearing air from soil into dwellings and the radon concentration of leakage air. Typical reduction rates in radon concentration were 70-95 percent. The action level was achieved in more than 70 percent of the houses. Sealing the entry routes and improvement of the ventilation resulted typically in reduction rates of 10-50 percent. The goal of the report is to give useful information for the house owners, the do-it-yourself-mitigators, the mitigation firms and the local authorities. The report includes practical guidance, price information and examples of remedial measures. (13 refs., 10 figs., 2 tabs.)

  7. Communicative and remedial effects of social blushing

    NARCIS (Netherlands)

    de Jong, Peter

    1999-01-01

    Three experiments (N = 90; N = 78; N = 52) examined the communicative and remedial properties of blushing. in Experiments 1 and 2, participants read scripts describing incidents that took place in shops. Following the mishap the actor left while displaying a blush (target condition), left the shop w

  8. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  9. REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING

    Science.gov (United States)

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, ...

  10. Proceedings: Conference on Compensatory/Remedial Education.

    Science.gov (United States)

    Fea, Henry R., Ed.; And Others

    This document presents the papers and discussions from the Conference on Compensatory/Remedial Education. The contents include: "Institutional Programs for the Low Achievers" by Joan G. Roloff; "Communication in Compensatory Education" by Henry R. Fea; "Seminar: Special Programs for Minorities" by Constance Acholonu; "Seminar: Special Programs for…

  11. Remedial Action Program annual conference: Proceedings

    International Nuclear Information System (INIS)

    Within the DOE's Office of Environmental Restoration ampersand Waste Management, the Office of Environmental Restoration manages a number of programs whose purposes are to complete remedial actions at DOE facilities and sites located throughout the United States. The programs include the Surplus Facilities Management Program, the Formerly Utilized Sites Remedial Action Program, the Uranium Mill Tailings Remedial Action Program, and the West Valley Demonstration Project. These programs involve the decontamination and decommissioning of radioactively-contaminated structures and equipment, the disposal of uranium mill tailings, and the cleanup or restoration of soils and ground water that have been contaminated with radioactive or hazardous substances. Each year the DOE and DOE-contractor staff who conduct these programs meet to exchange information and experience in common technical areas. This year's meeting was hosted by the Uranium Mill Tailings Remedial Action Project, DOE-AL, and was held in Albuquerque, NM. This volume of proceedings is the record of that conference. The proceedings consist of abstracts, summaries, or actual text for each presentation made and any visual aids used by the speakers

  12. The transdisciplinary potential of remediated painting

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    2011-01-01

    "The Transdisciplinary Potential of Remediated Painting" Over the last decades the notion of what painting is has been considerably widened due to intermediality, i.e. crossovers between artistic media such as painting and sculpture, painting and photography, painting and installation, painting a...

  13. Regulatory Aspects Of Implementing Electrokinetic Remediation

    Science.gov (United States)

    A better understanding of the environmental impact of hazardous waste management practices has led to new environmental laws and a comprehensive regulatory program. This program is designed to address remediation of past waste management practices and to ensure that the hazardou...

  14. Remediating Hyperkinetic Behavior with Inpulse Control Procedures.

    Science.gov (United States)

    Berger, Mike

    1981-01-01

    This case study reviews a remediation program developed for a hyperkinetic school child. An important element of the program is the verbal portion of the therapist-student interaction. This consists of training in physical skills, encouragement, challenges, and conditioning the hand and verbal signals. (Author/AL)

  15. 24 CFR 81.46 - Remedial actions.

    Science.gov (United States)

    2010-04-01

    ..., probation, reprimand or settlement, against lenders found to have engaged in discriminatory lending... future fair lending violations; (viii) The extent that a finding of liability against a lender is based...) Following the Secretary's decision concerning the appropriate remedial action(s) that the GSE is to...

  16. Evaluation of Remedial Programs at UC Davis.

    Science.gov (United States)

    Hunziker, Celeste M.

    Efforts at the University of California, Davis, (UC Davis) to develop standard evaluation models for remedial programs are described, and three UC Davis evaluation studies are considered. A standard evaluation model entails a formal orientation, a singular values perspective, and a primary audience of program funders and oversight agencies. The…

  17. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  18. 14 CFR 17.21 - Protest remedies.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Protest remedies. 17.21 Section 17.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES... are allowable to the extent permitted by the Equal Access to Justice Act, 5 U.S.C. 504(a)(1)(EAJA)....

  19. Gamma Ray Imaging for Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    B.F. Philips; R.A. Kroeger: J.D. Kurfess: W.N. Johnson; E.A. Wulf; E. I. Novikova

    2004-11-12

    This program is the development of germanium strip detectors for environmental remediation. It is a collaboration between the Naval Research Laboratory and Lawrence Berkeley National Lab. The goal is to develop detectors that are simultaneously capable of excellent spectroscopy and imaging of gamma radiation.

  20. Using Technology in Remedial Education. ERIC Digest.

    Science.gov (United States)

    Keup, Jennifer Rinella

    This digest discusses two specific computer-aided instruction systems used in two-year colleges in the United States and Canada, and addresses critical points regarding system implementation in remedial education programs. As developed in the Nova Scotia Community College System in Canada, the INVEST computer system provides literacy-based…

  1. Electrodialytic Remediation of Different Cu-Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Hansen, Lene;

    1999-01-01

    Based on characterization of a polluted soil a proper desorbing agent to be added to the soil before the remediation can be found. The desorbing agent can improve the remediation according to both energy consumption and duration of the action......Based on characterization of a polluted soil a proper desorbing agent to be added to the soil before the remediation can be found. The desorbing agent can improve the remediation according to both energy consumption and duration of the action...

  2. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R. [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1993-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  3. TECHNICAL GUIDANCE DOCUMENT: CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    Science.gov (United States)

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...

  4. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  5. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling liquid PCB remediation waste..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single...

  6. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Science.gov (United States)

    2012-02-29

    ... AGENCY PCBs Bulk Product v. Remediation Waste AGENCY: Environmental Protection Agency (EPA). ACTION... remediation waste. The proposed reinterpretation is ] in response to questions EPA received about the... regarding PCB bulk product and PCB remediation waste under regulations promulgated at 40 CFR part 761....

  7. Strategy paper. Remedial design/remedial action 100 Area. Revision 1

    International Nuclear Information System (INIS)

    The purpose of this planning document is to identify and define the approach for remedial design and remedial action (RD/RA) in the 100 Area of the Hanford Site, located in southeastern Washington State. Additionally, this document will support the Hanford Site Environmental Restoration Contract (ERC) team, the US Department of Energy (DOE), and regulatory agencies in identifying and agreeing upon the complete process for expedited cleanup of the 100 Area

  8. Turmeric (curcumin remedies gastroprotective action

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Yadav

    2013-01-01

    Full Text Available The purpose of this review is to summarize the pertinent literature published in the present era regarding the antiulcerogenic property of curcumin against the pathological changes in response to ulcer effectors (Helicobacter pylori infection, chronic ingestion of non-steroidal anti-inflammatory drugs, and exogenous substances. The gastrointestinal problems caused by different etiologies was observed to be associated with the alterations of various physiologic parameters such as reactive oxygen species, nitric oxide synthase, lipid peroxidation, and secretion of excessive gastric acid. Gastrointestinal ulcer results probably due to imbalance between the aggressive and the defensive factors. In 80% of the cases, gastric ulcer is caused primarily due to the use of non-steroidal anti-inflammatory category of drug, 10% by H. pylori, and about 8-10% by the intake of very spicy and fast food. Although a number of antiulcer drugs and cytoprotectants are available, all these drugs have side effects and limitations. In the recent years a widespread search has been launched to identify new antiulcer drugs from synthetic and natural resources. An Indian dietary derivative (curcumin, a yellow pigment found in the rhizome of Curcuma longa, has been widely used for the treatment of several diseases. Epidemiologically, it was suggested that curcumin might reduce the risk of inflammatory disorders, such as cancer and ulcer. These biological effects are attributed to its anti-inflammatory and antioxidant activities. It can, therefore, be reported from the literature that curcumin prevents gastrointestinal-induced ulcer and can be recommended as a novel drug for ulcer treatment.

  9. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Wells

    2006-09-19

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  10. Remedial Principles and Meaningful Engagement in Education Rights Disputes

    Directory of Open Access Journals (Sweden)

    Sandra Liebenberg

    2016-04-01

    Full Text Available This article evaluates the meaningful engagement doctrine in the education rights jurisprudence of the Constitutional Court in the light of a set of normative principles developed by Susan Sturm for evaluating participatory public law remedies. It commences by identifying four principles for evaluating participatory remedies appropriate to South African constitutional law and jurisprudence. Thereafter the relevant jurisprudence is analysed and evaluated in the light of these principles. The article concludes by making proposals for the development of meaningful engagement as a participatory remedy in educational rights disputes. These proposals seek to ensure a better alignment between the meaningful engagement remedy and the four remedial principles identified.

  11. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste

  12. In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

    International Nuclear Information System (INIS)

    In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated

  13. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  14. Electrokinetic remediation of six emerging organic contaminants from soil.

    Science.gov (United States)

    Guedes, Paula; Mateus, Eduardo P; Couto, Nazaré; Rodríguez, Yadira; Ribeiro, Alexandra B

    2014-12-01

    Some organic contaminants can accumulate in organisms and cause irreversible damages in biological systems through direct or indirect toxic effects. In this study the feasibility of the electrokinetic (EK) process for the remediation of 17β-oestradiol (E2), 17α-ethinyloestradiol (EE2), bisphenol A (BPA), nonylphenol (NP), octylphenol (OP) and triclosan (TCS) in soils was studied in a stationary laboratory cell. The experiments were conducted using a silty loam soil (S2) at 0, 10 and 20mA and a sandy soil (S3) at 0 and 10 mA. A pH control in the anolyte reservoir (pH>13) at 10 mA was carried out using S2, too. Photo and electrodegradation experiments were also fulfilled. Results showed that EK is a viable method for the remediation of these contaminants, both through mobilization by electroosmotic flow (EOF) and electrodegradation. As EOF is very sensible to soil pH, the control in the anolyte increased EOF rate, consequently enhancing contaminants mobilization towards the cathode end. The extent of the mobilization towards the electrode end was mainly dependent on compounds solubility and octanol-water partition coefficient. In the last 24h of experiments, BPA presented the highest mobilization rate (ca. 4 μg min(-1)) with NP not being detected in the catholyte. At the end of all experiments the percentage of contaminants that remained in the soil ranged between 17 and 50 for S2, and between 27 and 48 for S3, with no statistical differences between treatments. The mass balance performed showed that the amount of contaminant not detected in the cell is similar to the quantity that potentially may suffer photo and electrodegradation. PMID:24997283

  15. RCRA corrective action ampersand CERCLA remedial action reference guide

    International Nuclear Information System (INIS)

    This reference guide provides a side-by-side comparison of RCRA corrective action and CERCLA Remedial Action, focusing on the statutory and regulatory requirements under each program, criterial and other factors that govern a site's progress, and the ways in which authorities or requirements under each program overlap and/or differ. Topics include the following: Intent of regulation; administration; types of sites and/or facilities; definition of site and/or facility; constituents of concern; exclusions; provisions for short-term remedies; triggers for initial site investigation; short term response actions; site investigations; remedial investigations; remedial alternatives; clean up criterial; final remedy; implementing remedy; on-site waste management; completion of remedial process

  16. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  17. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  18. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  19. Briefing paper -- Remedial Action Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Buelt, J.L.

    1990-04-01

    Congress has mandated a more comprehensive management of hazardous wastes with the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund'') and the Superfund Amendment and Reauthorization Act (SARA). This mandate includes restoration of disposal sites contaminated through past disposal practices. This mandate applies to facilities operated for and by the Department of Energy (DOE), just as it does to industrial and other institutions. To help implement the CERCLA/SARA remedial investigation and feasibility study (RI/FS) process in a consistent, timely, and cost-effective manner, a methodology needs to be developed that will allow definition, sorting, and screening of remediation technologies for each operable unit (waste site). This need is stated specifically in Section 2.2.2.1 of the October 1989 Applied Research, Development, Demonstration, Testing, and Evaluation (RDDT E) Plan of the DOE. This Briefing Paper is prepared to respond to this need. 1 fig.

  20. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications

  1. Enhanced Remediation of a Hydrocarbon Polluted Soil

    Directory of Open Access Journals (Sweden)

    E.C. Wokoma and C.C.Wokocha

    2011-03-01

    Full Text Available The aim of this study was to use NPKs, saw dust and poultry manure as enhanced remediation techniques of a crude oil polluted soil, using a 42-day study period, time length. Polluted soil samples were collected at 0-10 cm depth from different polluted sites of the same area. Physicochemical parametres such as pottasium concentration and total hydrocarbon recorded a decrease at the 6th week, after application and lab testing. Total organic carbon recorded an increase on the 6th week, for treatments containing; PS+SD, PS+NPK and PS+PM. pH ranged between 5.21-10.1. The results suggest that a combination of ammendments in the right proportion w ould be effective in the remediation of crude oil polluted soil.

  2. Radioactive tank waste remediation focus area

    International Nuclear Information System (INIS)

    EM's Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form

  3. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  4. The role of innovative remediation technologies

    International Nuclear Information System (INIS)

    There are currently over 1200 sites on the US Superfund's National Priorities List (NPL) of hazardous waste sites, and there are over 30, 000 sites listed by the Comprehensive Environmental Responsibility, Compensation and Liability Information System (CERCLIS). The traditional approach to remediating sites in the US has been to remove the material and place it in a secure landfill, or in the case of groundwater, pump and treat the effluent. These technologies have proven to be very expensive and don't really fix the problem. The waste is just moved from one place to another. In recent years, however, alternative and innovative technologies have been increasingly used in the US to replace the traditional approaches. This paper will focus on just such innovative remediation technologies in the US, looking at the regulatory drivers, the emerging technologies, some of the problems in deploying technologies, and a case study

  5. ELECTROKINETIC REMEDIATION STUDY FOR CADMIUM CONTAMINATED SOIL

    Directory of Open Access Journals (Sweden)

    P. Bala Ramudu

    2007-09-01

    Full Text Available This paper presents the results of an experimental research undertaken to evaluate different purging solutions to enhance the removal of cadmium from spiked contaminated field soil by electrokinetic remediation. Three experiments were conducted when soil was saturated with deionised water and subsequently deionised water, ammonium citrate and sodium citrate were used as purging solutions at anode end. One experiment was conducted when the soil was saturated with ammonium citrate and itself was used as the purging solution. Results showed that 49% reduction of cadmium concentration was achieved in the case of soil saturated (washed with ammonium citrate as well as purging solution also was ammonium citrate. The soil pH and washing solutions were the most important factors in controlling the removal of cadmium in electrokinetic remediation process.

  6. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety

  7. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  8. Tank waste remediation system mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Acree, C.D.

    1998-01-09

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

  9. Remediation and Recycling of Linde FUSRAP Materials

    International Nuclear Information System (INIS)

    During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community

  10. Remediation of Contaminated Soils by Solvent Flushing

    OpenAIRE

    Augustijn, Denie C.M.; Jessup, Ron E.; Rao, P. Suresh C.; Wood, A. Lynn

    1994-01-01

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, and increases the release rates of the contaminants. A simulation model is developed to predict contaminant elution curves during solvent flushing for the case of one‐dimensional, steady flow through a contaminated me...

  11. Remedial action programs annual meeting: Meeting notes

    International Nuclear Information System (INIS)

    The US Department of Energy Grand Junction Projects Office was pleased to host the 1987 Remedial Action programs Annual Meeting and herein presents notes from that meeting as prepared (on relatively short notice) by participants. These notes are a summary of the information derived from the workshops, case studies, and ad hoc committee reports rather than formal proceedings. The order of the materials in this report follows the actual sequence of presentations during the annual meeting

  12. Remediation of attention deficits in head injury.

    OpenAIRE

    Nag S; Rao S

    1999-01-01

    Head injury is associated with psychological sequelae which impair the patient′s psychosocial functioning. Information processing, attention and memory deficits are seen in head injuries of all severity. We attempted to improve deficits of focused, sustained and divided attention. The principle of overlapping sources of attention resource pools was utilised in devising the remediation programme. Tasks used simple inexpensive materials. Four head injured young adult males with post conc...

  13. Thixotropic gel for vadose zone remediation

    Energy Technology Data Exchange (ETDEWEB)

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  14. Cultural services remediated in Second Life

    DEFF Research Database (Denmark)

    Heilesen, Simon

    2008-01-01

    In 2007, the Danish Public Libraries conducted an experiment in establishing a library in the virtual world Second Life. The Info Island DK provided the framework for a number of online library services and cultural events. This study, based on interviews with most of the active participants in t...... project, discusses the experiences in remediating conventional library services into the new medium and in understanding and redefining the role of the librarian in an online virtual world....

  15. ELECTROKINETIC REMEDIATION STUDY FOR CADMIUM CONTAMINATED SOIL

    OpenAIRE

    P. Bala Ramudu; R. P. Tiwari; Srivastava, R. K.

    2007-01-01

    This paper presents the results of an experimental research undertaken to evaluate different purging solutions to enhance the removal of cadmium from spiked contaminated field soil by electrokinetic remediation. Three experiments were conducted when soil was saturated with deionised water and subsequently deionised water, ammonium citrate and sodium citrate were used as purging solutions at anode end. One experiment was conducted when the soil was saturated with ammonium citrate and itself wa...

  16. Life Cycle Analysis of Soil Remediation Technologies

    OpenAIRE

    Cappuyns, Valérie; Bouckenooghe, Diederik; Van Breuseghem, Lien

    2009-01-01

    Life cycle analysis (LCA) was applied to evaluate remediation technologies for soil and groundwater contaminated with organic components. The environmental impact, cost and risk of three techniques, namely (1) vacuum enhanced recovery, (2) a new in situ thermal treatment technique and (3) soil excavation have been evaluated by means of different tools. Several LCA-based software packages were screened, with special attention for their easiness to use, the amount of data necessary to perform t...

  17. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors' facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission

  18. Thixotropic gel for vadose zone remediation

    Science.gov (United States)

    Rhia, Brian D.

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  19. Triad method for assessing the remediation effect of humic preparations on urbanozems

    Science.gov (United States)

    Pukalchik, M. A.; Terekhova, V. A.; Yakimenko, O. S.; Kydralieva, K. A.; Akulova, M. I.

    2015-06-01

    The data on the pollutant content, ecological toxicity, and structural and functional specifics of soil microbial communities in urbanozem sampled in the city of Kirov were used to describe the remediation effect of humic substances (lignohumate and nanomagnetitohumate). The integral index of environmental risk on contaminated and background soil sites was calculated using the triad method. Based on varying Chemical Risk Index, Ecotoxicological Risk Index, and Ecological Risk Index, this method proved that humic substances are able to reduce ecological toxicity and transform the ecophysiological indices of biota in urban soils. The most vivid effect of humic products has been revealed on introduction of 0.0025 and 0.01% mass. The biological activity of nanomagnetitohumate and lignohumate, rather than their ability to bind toxicants, is apparently the principal factor controlling their remediating effect.

  20. Arsenic: A Review of the Element's Toxicity, Plant Interactions, and Potential Methods of Remediation.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; French, Amanda D; Klein, David M

    2015-08-19

    Arsenic is a naturally occurring element with a long history of toxicity. Sites of contamination are found worldwide as a result of both natural processes and anthropogenic activities. The broad scope of arsenic toxicity to humans and its unique interaction with the environment have led to extensive research into its physicochemical properties and toxic behavior in biological systems. The purpose of this review is to compile the results of recent studies concerning the metalloid and consider the chemical and physical properties of arsenic in the broad context of human toxicity and phytoremediation. Areas of focus include arsenic's mechanisms of human toxicity, interaction with plant systems, potential methods of remediation, and protocols for the determination of metals in experimentation. This assessment of the literature indicates that controlling contamination of water sources and plants through effective remediation and management is essential to successfully addressing the problems of arsenic toxicity and contamination.

  1. Indoor radon remediation : effect of ventilation

    International Nuclear Information System (INIS)

    Radon and its progeny are the major contributors to the natural radiation dose received by human beings. As per the ICRP recommendations, it becomes necessary to take remedial steps for the reduction of radon daughters in a dwelling place if the level is found to be more than 200 Bqm-3. Ventilation process can simulate the conditions generated through advection or diffusion, therefore it may be major factors that control the indoor radon concentration is the room. In the present investigations, the effects of natural ventilation in a room having an external source of radon have been studied. The variation in radon concentration with operative time of exhaust fan has also been studied. For radon concentration measurement the LR-115 type II solid state nuclear track detectors (SSNTDs) were use. The radon reduction factor, which is the ratio of radon concentrations before and after remediation has been calculated. The radon reduction factor was found to vary 1.08 to 1.17 due to natural ventilation where as 1.17 to 3.01 due to forced ventilation. The results indicate that optimized ventilation (natural or forced) can be simple mean of radon remediation in dwellings. (author)

  2. Methodology to remediate a mixed waste site

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  3. Laboratory/industry partnerships for environmental remediation

    International Nuclear Information System (INIS)

    There are two measures of ''successful'' technology transfer in DOE's environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized

  4. An unmanned ground vehicle for landmine remediation

    Science.gov (United States)

    Wasson, Steven R.; Guilberto, Jose; Ogg, Wade; Wedeward, Kevin; Bruder, Stephen; El-Osery, Aly

    2004-09-01

    Anti-tank (AT) landmines slow down and endanger military advances and present sizeable humanitarian problems. The remediation of these mines by direct human intervention is both dangerous and costly. The Intelligent Systems & Robotics Group (ISRG) at New Mexico Tech has provided a partial solution to this problem by developing an Unmanned Ground Vehicle (UGV) to remediate these mines without endangering human lives. This paper presents an overview of the design and operation of this UGV. Current results and future work are also described herein. To initiate the remediation process the UGV is given the GPS coordinates of previously detected landmines. Once the UGV autonomously navigates to an acceptable proximity of the landmine, a remote operator acquires control over a wireless network link using a joystick on a base station. Utilizing two cameras mounted on the UGV, the operator is able to accurately position the UGV directly over the landmine. The UGV houses a self-contained drill system equipped with its own processing resources, sensors, and actuators. The drill system deploys a neutralizing device over the landmine to neutralize it. One such device, developed by Science Applications International Corporation (SAIC), employs incendiary materials to melt through the container of the landmine and slowly burn the explosive material, thereby safely and remotely disabling the landmine.

  5. Innovative technologies for in-situ remediation

    International Nuclear Information System (INIS)

    LLNL is developing several innovative remediation technologies as long-term improvements to the current pump and treat approaches to cleaning up contaminated soils and groundwater. These technologies include dynamic underground stripping, in-situ microbial filters, and remediation using bremsstrahlung radiation. Concentrated underground organic contaminant plumes are one of the most prevalent groundwater contamination sources. The solvent or fuel can percolate deep into the earth, often into water-bearing regions. Collecting as a separate, liquid organic phase called dense non-aqueous-phase liquids (DNAPLs), or light NAPLs (LNAPLs), these contaminants provide a source term that continuously compromises surrounding groundwater. This type of spill is one of the most difficult environmental problems to remediate. Attempts to remove such material requires a huge amount of water which must be washed through the system to clean it, requiring decades. Traditional pump and treat approaches have not been successful. LLNL has developed several innovative technologies to clean up NAPL contamination. Detailed descriptions of these technologies are given

  6. Reading program-Remedial, integrated, and innovative.

    Science.gov (United States)

    Butler, S R

    1991-01-01

    An innovative integrated remedial reading program has been developed based on recent research findings. My longitudinal studies have revealed that poor reading compounds itself over the years. The majority of children with reading disabilities currently remain in regular classrooms with varying techniques being used depending upon individual school directives and current educational theory.Despite current remedial techniques, the poorer reader tends to remain so throughout the school years. Innovative techniques must be developed in the hope of altering this pattern.This paper presents one alternative strategy which can be used to upgrade reading skills and break the cycle of reading failure. The Reading Assistance Tutorial Pack (R.A.T. Pack) is a carefully sequenced series of activities that enables the learner to experience the motivating and reinforcing properties of success through all stages of phonetic and reading skills development.It is a systematic, multidisciplinary remedial reading program based on sound behavior, psycholinguistic and cognitive theories of learning-incorporating listening, speaking, seeing, writing, thinking, and comprehension skills. The R.A.T. Pack demands a high percentage of on-task behavior and trains phonological processing strategies. Functional language use is promoted through enjoyable activities involving sentence construction, cloze passages, puzzles, games, and other creative manipulations of the surface features of languages. The program has proven successful in schools, homes, and clinics. PMID:24233760

  7. Methodology to remediate a mixed waste site

    International Nuclear Information System (INIS)

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ''lessons learned'' from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors

  8. Drug interactions in African herbal remedies.

    Science.gov (United States)

    Cordier, Werner; Steenkamp, Vanessa

    2011-01-01

    Herbal usage remains popular as an alternative or complementary form of treatment, especially in Africa. However, the misconception that herbal remedies are safe due to their "natural" origins jeopardizes human safety, as many different interactions can occur with concomitant use with other pharmaceuticals on top of potential inherent toxicity. Cytochrome P450 enzymes are highly polymorphic, and pose a problem for pharmaceutical drug tailoring to meet an individual's specific metabolic activity. The influence of herbal remedies further complicates this. The plants included in this review have been mainly researched for determining their effect on cytochrome P450 enzymes and P-glycoprotein drug transporters. Usage of herbal remedies, such as Hypoxis hemerocallidea, Sutherlandia frutescens and Harpagophytum procumbensis popular in Africa. The literature suggests that there is a potential for drug-herb interactions, which could occur through alterations in metabolism and transportation of drugs. Research has primarily been conducted in vitro, whereas in vivo data are lacking. Research concerning the effect of African herbals on drug metabolism should also be approached, as specific plants are especially popular in conjunction with certain treatments. Although these interactions can be beneficial, the harm they pose is just as great. PMID:21756221

  9. Uranium Mill Tailings Remediation in Central Asia

    International Nuclear Information System (INIS)

    Uranium ore is a naturally occurring radioactive material which is often regarded as something separate to NORM due to its place at the front end of the nuclear fuel cycle. Uranium mining and processing was a significant industry in the Central Asian countries of the former Soviet Union. When the Soviet Union broke up in 1989 these countries gained their independence but the uranium mining industry now had to try and survive in a new economic environment. In Tajikistan and Kyrgyzstan this proved too great a challenge. Production stopped and sites were simply abandoned with little or no attention paid to remediation. Skilled personnel departed and both physical and regulatory infrastructure decayed. Consequently, the legacies of the former times remained throughout Central Asia to become an issue of considerable concern to many. The sites were generally uncontrolled and the NORM residues from the mining and processing were a source of environmental contamination which also threatened public health in a number of ways. In recent years there has been considerable activity by a number of international agencies and Governments working towards solutions for these issues. Much of the effort has been undertaken by the IAEA and this paper describes the original situation, the development of remediation strategies and the various remediation related projects, their outcomes to date, and plans for the future in both the political and scientific arenas. (author)

  10. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives.

    Science.gov (United States)

    Lemming, Gitte; Hauschild, Michael Z; Chambon, Julie; Binning, Philip J; Bulle, Cécile; Margni, Manuele; Bjerg, Poul L

    2010-12-01

    The environmental impacts of remediation of a chloroethene-contaminated site were evaluated using life cycle assessment (LCA). The compared remediation options are (i) in situ bioremediation by enhanced reductive dechlorination (ERD), (ii) in situ thermal desorption (ISTD), and (iii) excavation of the contaminated soil followed by off-site treatment and disposal. The results showed that choosing the ERD option will reduce the life-cycle impacts of remediation remarkably compared to choosing either ISTD or excavation, which are more energy-demanding. In addition to the secondary impacts of remediation, this study includes assessment of local toxic impacts (the primary impact) related to the on-site contaminant leaching to groundwater and subsequent human exposure via drinking water. The primary human toxic impacts were high for ERD due to the formation and leaching of chlorinated degradation products, especially vinyl chloride during remediation. However, the secondary human toxic impacts of ISTD and excavation are likely to be even higher, particularly due to upstream impacts from steel production. The newly launched model, USEtox, was applied for characterization of primary and secondary toxic impacts and combined with a site-dependent fate model of the leaching of chlorinated ethenes from the fractured clay till site. PMID:21053954

  11. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  12. ANNUAL REPORT FOR THE FINAL GROUNDWATER REMEDIATION, TEST AREA NORTH, OPERABLE UNIT 1-07B, FISCAL YEAR 2009

    Energy Technology Data Exchange (ETDEWEB)

    FORSYTHE, HOWARD S

    2010-04-14

    This Annual Report presents the data and evaluates the progress of the three-component remedy implemented for remediation of groundwater contamination at Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory Site. Overall, each component is achieving progress toward the goal of total plume remediation. In situ bioremediation operations in the hot spot continue to operate as planned. Progress toward the remedy objectives is being made, as evidenced by continued reduction in the amount of accessible residual source and decreases in downgradient contaminant flux, with the exception of TAN-28. The injection strategy is maintaining effective anaerobic reductive dechlorination conditions, as evidenced by complete degradation of trichloroethene and ethene production in the biologically active wells. In the medial zone, the New Pump and Treat Facility operated in standby mode. Trichloroethene concentrations in the medial zone wells are significantly lower than the historically defined concentration range of 1,000 to 20,000 μg/L. The trichloroethene concentrations in TAN-33, TAN-36, and TAN-44 continue to be below 200 μg/L. Monitoring in the distal zone wells outside and downgradient of the plume boundary demonstrate that some plume expansion has occurred, but less than the amount allowed in the Record of Decision Amendment. Additional data need to be collected for wells in the monitored natural attenuation part of the plume to confirm that the monitored natural attenuation part of the remedy is proceeding as predicted in the modeling.

  13. ERT monitoring of environmental remediation processes

    Science.gov (United States)

    La Brecque, D. J.; Ramirez, A. L.; Daily, W. D.; Binley, A. M.; Schima, S. A.

    1996-03-01

    The use of electrical resistance tomography (ERT) to monitor new environmental remediation processes is addressed. An overview of the ERT method, including design of surveys and interpretation, is given. Proper design and lay-out of boreholes and electrodes are important for successful results. Data are collected using an automated collection system and interpreted using a nonlinear least squares inversion algorithm. Case histories are given for three remediation technologies: Joule (ohmic) heating, in which clay layers are heated electrically; air sparging, the injection of air below the water table; and electrokinetic treatment, which moves ions by applying an electric current. For Joule heating, a case history is given for an experiment near Savannah River, Georgia, USA. The target for Joule heating was a clay layer of variable thickness. During the early stages of heating, ERT images show increases in conductivity due to the increased temperatures. Later, the conductivities decreased as the system became dehydrated. For air sparging, a case history from Florence, Oregon, USA is described. Air was injected into a sandy aquifer at the site of a former service station. Successive images clearly show the changes in shape of the region of air saturation with time. The monitoring of an electrokinetic laboratory test on core samples is shown. The electrokinetic treatment creates a large change in the core resistivity, decreasing near the anode and increasing near the cathode. Although remediation efforts were successful both at Savannah River and at Florence, in neither case did experiments progress entirely as predicted. At Savannah River, the effects of heating and venting were not uniform and at Florence the radius of air flow was smaller than expected. Most sites are not as well characterized as these two sites. Improving remediation methods requires an understanding of the movements of heat, air, fluids and ions in the sub-surface which ERT can provide. The

  14. Field Implementation of Electrokinetic-ISCO Remediation

    Science.gov (United States)

    Wu, M. Z.; Reynolds, D. A.; Fourie, A.; Thomas, D.; Prommer, H.

    2010-12-01

    Challenges remain in the remediation of low-permeability porous media (e.g. clays, silts) contaminated with dissolved and sorbed organic contaminants. Current remediation technologies, such as in-situ chemical oxidation (ISCO), are often ineffective and the treatment region is limited by very slow rates of groundwater flow (advection) or molecular diffusion. Several studies (e.g. Reynolds et al. 2008) have highlighted the potential at a laboratory scale for utilising electrokinetic transport, through the application of an electric field, to deliver a remediation compound (e.g. permanganate, persulfate) within heterogeneous and low-permeability sediments for ISCO (termed EK-ISCO) or other treatments. A numerical modelling approach is highly beneficial to optimise the efficacy of EK-ISCO remediation. A numerical model was developed that simulates groundwater flow and multi-species reactive transport under hydraulic and electric gradients (Wu et al. 2010). Coupled into the existing, previously verified reactive transport model PHT3D (Prommer, Barry and Zheng 2003), the model was verified against analytical and experimental studies. This study, through numerical modelling, investigated the feasibility of various factors, such as electrode configurations, applied voltage and oxidant loading, for EK-ISCO treatment at several field sites. Successful in situ oxidation is dependent upon the electrokinetic transport and dispersal of oxidant through the contaminated region, however this is limited by modelled conditions such as natural oxidant demand and contaminant phase. Electrode configurations investigated included one-dimensional or two-dimensional configurations, unidirectional, bidirectional or rotational operations, and position of oxidant injection. References Prommer, H, Barry, DA and Zheng, C 2003, 'MODFLOW/MT3DMS-Based Reactive Multicomponent Transport Modeling', Ground Water, vol. 41, no. 2, pp. 247-257. Reynolds, DA, Jones, EH, Gillen, M, Yusoff, I and Thomas

  15. Remediation of Site of Decommissioning Research Reactor

    International Nuclear Information System (INIS)

    In the world the most widespread method of soil decontamination consists of removing the contaminated upper layer and sending it for long-term controlled storage. However, implementation of this soil cleanup method for remediation of large contaminated areas would involve high material and financial expenditures, because it produces large amounts of radioactive waste demanding removal to special storage sites. Contaminated soil extraction and cleanup performed right on the spot of remediation activities represents a more advanced and economically acceptable method. Radiological separation of the radioactive soil allows reducing of amount of radwaste. Studies performed during the liquidation of the Chernobyl accident consequences revealed that a considerable fraction of radioactivity is accumulated in minute soil grains. So, the separation of contaminated soil by size fractions makes it possible to extract and concentrate the major share of radioactivity in the fine fraction. Based on these researches water gravity separation technology was proposed by Bochvar Institute. The method extracts the fine fraction from contaminated soil. Studies carried out by Bochvar Institute experts showed that, together with the fine fraction (amounting to 10-20% of the initial soil), this technology can remove up to 85-90% of contaminating radionuclides. The resulting 'dirty' soil fraction could be packaged into containers and removed as radwaste, and decontaminated fractions returned back to their extraction site. Use of radiological and water gravity separations consequently increases the productivity of decontamination facility. Efficiency of this technology applied for contaminated soil cleanup was confirmed in the course of remediation of the contaminated territories near decommissioning research reactor in the Kurchatov Institute. For soil cleaning purposes, a special facility implementing the technology of water gravity separation and radiometric monitoring of soil

  16. Physiochemical technologies for HCB remediation and disposal: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Man [State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074 (China); Yuan, Songhu, E-mail: yuansonghu622@hotmail.com [State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer HCB contamination is still a serious environmental problem. Black-Right-Pointing-Pointer Physiochemical technologies for HCB remediation and disposal are reviewed. Black-Right-Pointing-Pointer Perspectives for most remediation technologies are proposed. Black-Right-Pointing-Pointer Pilot and large scale remediation and disposal are presented. - Abstract: Hexachlorobenzene (HCB) is one of the 12 persistent organic pollutants (POPs) listed in 'Stockholm Convention'. It is hydrophobic, toxic and persistent in the environment. Due to extensive use in the past, HCB contamination is still a serious environmental problem. Strong adsorption on solid particles makes the remediation difficult. This paper presents an overview of the physiochemical technologies for HCB remediation and disposal. The adsorption/desorption behavior of HCB is firstly described because it comprises the fundamental for most remediation technologies. Physiochemical technologies concerned mostly for HCB remediation and disposal, i.e., chemical enhanced washing, electrokinetic remediation, reductive dechlorination and thermal decomposition, are reviewed in terms of fundamentals, state of the art and perspectives. The other physiochemical technologies including chemical oxidation, radiation induced catalytic dechlorination, ultrasonic assisted treatment and mechanochemical dechlorination are also reviewed. The pilot and large scale tests on HCB remediation or disposal are summarized in the end. This review aims to provide useful information to researchers and practitioners regarding HCB remediation and disposal.

  17. DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION

    Energy Technology Data Exchange (ETDEWEB)

    VONGARGEN BH

    2009-11-03

    The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon

  18. In-Service Teachers Perception about Their Competencies in Delivery of Biology Lessons

    OpenAIRE

    Ms. Zakia Khatoon Ph.D Scholar; Dr. Muhammad Tayyab Alam; Dr. Maqsud Alam Bukhari; Muhammad Mushtaq

    2014-01-01

    This paper explores in-service teacher perception of their competencies in delivery of biology lessons at secondary level.The objectives of the study were to examine the perception of biology teachers about their competencies in lesson delivery, to make analysis of their competencies at four formal steps as mentioned by Herbart (1776-1841), and to suggest remedial steps for improvement of present teaching competencies of biology teachers. The study is significant for biology teachers, curricu...

  19. Quantum Biology

    CERN Document Server

    Sergi, Alessandro

    2009-01-01

    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledge...

  20. Deconstructing Remediation in Community Colleges: Exploring Associations between Course-Taking Patterns, Course Outcomes, and Attrition from the Remedial Math and Remedial Writing Sequences

    Science.gov (United States)

    Bahr, Peter Riley

    2012-01-01

    Each year, a sizeable percentage of community college students enroll in remedial coursework to address skill deficiencies in math, writing, and/or reading. Unfortunately, the majority of these students do not attain college-level competency in the subjects in which they require remedial assistance. Moreover, students whose point of entry into the…

  1. Eisenia fetida avoidance behavior as a tool for assessing the efficiency of remediation of Pb, Zn and Cd polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Udovic, Metka [Centre for Soil and Environmental Science, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Sl-1000 Ljubljana (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.s [Centre for Soil and Environmental Science, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Sl-1000 Ljubljana (Slovenia)

    2010-08-15

    Remediation by means of soil leaching with ethylenediaminetetraacetic acid (EDTA) is capable of extracting the most labile soil fractions, leaving the residual metals in biologically non-available forms. We evaluated the feasibility of the standardized earthworm (Eisenia fetida) avoidance test for assessing the efficiency of soil remediation of Pb, Zn and Cd polluted soil. Chemical extraction tests (six-step sequential extraction, toxicity characteristic leaching procedure, physiologically based extraction test, diethylenediaminepentaacetic acid extraction) indicated that the mobility, oral bioaccessibility and phytoavailability of Pb, Zn and Cd were consistently reduced. However, the avoidance test showed no significant avoidance of polluted soil in favor of that which had been remediated. Pb, Zn and Cd accumulation in E. fetida mirrored the decreasing pattern of metal potential bioavailability gained by leaching the soil with increasing EDTA concentrations. The calculated bioaccumulation factors indicated the possibility of underestimating the metal bioavailability in soil using chemical extraction tests. - Tests with indicator organisms should be used for a more meaningful and holistic assessment of metal biological availability in polluted and remediated soil.

  2. Dnapl Site Remediation: Status and Research Needs (Invited)

    Science.gov (United States)

    Stroo, H. F.; Kueper, B. H.

    2013-12-01

    Remediation of sites impacted by dense, non-aqueous phase liquids (DNAPLs) such as chlorinated solvents remains technically challenging despite significant advances over the past 30 years. Contaminants are difficult to locate in the subsurface, and it is difficult to deliver remedial agents to the contamination effectively. If lower permeability media are present, these can act as diffusive sinks for aqueous and sorbed phase constituents, further complicating characterization and cleanup. DNAPL source zones are particularly difficult to remediate, and even after treatment these sources can persist for many decades, if not centuries, and it is difficult to transition sites to a passive management strategy. A recent expert panel on source zone remediation identified three overriding objectives for future remediation - to be more surgical, more sustainable, and more certain. Surgical remediation refers to precise delineation of contaminants and hydrogeology, with more targeted remediation efforts. Sustainable remediation refers to the growing need to consider all environmental impacts when developing remediation strategies, including energy use, greenhouse gas emissions, lifecycle impacts, and the increasing demand for clean water. Although considerable uncertainty is inherent in subsurface remediation, there is potential to reduce this uncertainty through improved monitoring and modeling. Specific characterization and remediation needs will be summarized separately. Improved technologies for source characterization are critical because inadequate characterization is common given the costs and limitations of current techniques. As a result, the performance of field-scale remediation technologies is frequently disappointing. Specific research needs to improve source zone characterization include: (i) better delineation and mass estimation, (ii) source zone architecture characterization methods, and (iii) increased resolution and fine-scale mapping of geologic

  3. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    International Nuclear Information System (INIS)

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  4. Gas: A Neglected Phase in Remediation of Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Denham, Miles E.; Looney, Brian B

    2005-09-28

    The gas phase is generally ignored in remediation of metals and radionuclides because it is assumed that there is no efficient way to exploit it. In the literal sense, all remediations involve the gas phase because this phase is linked to the liquid and solid phases by vapor pressure and thermodynamic relationships. Remediation methods that specifically use the gas phase as a central feature have primarily targeted volatile organic contaminants, not metals and radionuclides. Unlike many organic contaminants, the vapor pressure and Henry's Law constants of metals and radionuclides are not generally conducive to direct air stripping of dissolved contaminants. Nevertheless, the gas phase can play an important role in remediation of inorganic contaminants and provide opportunities for efficient, cost effective remediation. The objective here is to explore ways in which manipulation of the gas phase can be used to facilitate remediation of metals and radionuclides.

  5. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  6. Sustainability: A new imperative in contaminated land remediation

    International Nuclear Information System (INIS)

    Highlights: • Reviewed the emerging green and sustainable remediation movement in the US and Europe. • Identified three sources of pressures for emphasizing sustainability in the remediation field. • Presented a holistic view of sustainability considerations in remediation. • Developed an integrated framework for sustainability assessment and decision making. - Abstract: Land is not only a critical component of the earth's life support system, but also a precious resource and an important factor of production in economic systems. However, historical industrial operations have resulted in large areas of contaminated land that are only slowly being remediated. In recent years, sustainability has drawn increasing attention in the environmental remediation field. In Europe, there has been a movement towards sustainable land management; and in the US, there is an urge for green remediation. Based on a questionnaire survey and a review of existing theories and empirical evidence, this paper suggests the expanding emphasis on sustainable remediation is driven by three general factors: (1) increased recognition of secondary environmental impacts (e.g., life-cycle greenhouse gas emissions, air pollution, energy consumption, and waste production) from remediation operations, (2) stakeholders’ demand for economically sustainable brownfield remediation and “green” practices, and (3) institutional pressures (e.g., social norm and public policy) that promote sustainable practices (e.g., renewable energy, green building, and waste recycling). This paper further argues that the rise of the “sustainable remediation” concept represents a critical intervention point from where the remediation field will be reshaped and new norms and standards will be established for practitioners to follow in future years. This paper presents a holistic view of sustainability considerations in remediation, and an integrated framework for sustainability assessment and decision making

  7. The effect of Soil Temperature on Electrodialytic Remediation

    DEFF Research Database (Denmark)

    Kristensen, Iben Vernegren

    1999-01-01

    The electrodialytic remediation of copper, zinc and lead contaminated kaolin was studied at three different temperatures (0-39 degrees centrigrate). It is shown that an increase in temperature increases the rate of remediation for all three metals. Copper and zinc shows similar rate constants......, while for lead, the rate constant obtained are significantly smaller. The increased remediation rate is presumed to be due mainly to the lowering of the viscosity....

  8. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  9. Historical hydronuclear testing: Characterization and remediation technologies

    International Nuclear Information System (INIS)

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer trademark, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made

  10. Geostatistics and cost-effective environmental remediation

    International Nuclear Information System (INIS)

    Numerous sites within the U.S. Department of Energy (DOE) complex have been contaminated with various radioactive and hazardous materials by defense-related activities during the post-World War II era. The perception is that characterization and remediation of these contaminated sites will be too costly using currently available technology. Consequently, the DOE Office of Technology Development has funded development of a number of alternative processes for characterizing and remediating these sites. The former Feed-Materials Processing Center near Fernald, Ohio (USA), was selected for demonstrating several innovative technologies. Contamination at the Fernald site consists principally of particulate uranium and derivative compounds in surficial soil. A field-characterization demonstration program was conducted during the summer of 1994 specifically to demonstrate the relative economic performance of seven proposed advanced-characterization tools for measuring uranium activity of in-situ soils. These innovative measurement technologies are principally radiation detectors of varied designs. Four industry-standard measurement technologies, including conventional, regulatory-agency-accepted soil sampling followed by laboratory geochemical analysis, were also demonstrated during the program for comparative purposes. A risk-based economic-decision model has been used to evaluate the performance of these alternative characterization tools. The decision model computes the dollar value of an objective function for each of the different characterization approaches. The methodology not only can assist site operators to choose among engineering alternatives for site characterization and/or remediation, but also can provide an objective and quantitative basis for decisions with respect to the completeness of site characterization

  11. Cognitive remediation for vocational rehabilitation nonresponders.

    Science.gov (United States)

    McGurk, Susan R; Mueser, Kim T; Xie, Haiyi; Feldman, Karin; Shaya, Yaniv; Klein, Leslie; Wolfe, Rosemarie

    2016-08-01

    Cognitive remediation in people with severe mental illnesses (SMI) that interfere with work, but less research has evaluated its effects in those who have not benefitted from vocational services. Participants with SMI (83% schizophrenia) who had not benefitted from vocational rehabilitation were randomized to vocational services enhanced by training vocational specialists in recognizing cognitive difficulties and providing job-relevant cognitive coping strategies (Enhanced Vocational Rehabilitation: E-VR), or similarly enhanced vocational services and cognitive remediation (Thinking Skills Work: TSW). Cognition and symptoms were assessed at baseline, post-treatment (9months), and follow-up (18months), with work tracked weekly for 3years. Fifty-four participants were randomized to E-VR (N=26) or TSW (N=28). Participants in TSW had high rates of exposure to the program (89%) and improved more than those in E-VR on cognitive functioning post-training, with attenuation of some gains at the 18-months. Participants in TSW and E-VR did not differ significantly in competitive work (57% vs. 48%) or paid employment (61% vs. 48%) over the 3-year study, although those in TSW were more likely to be engaged in any work activity, including paid or volunteer work (75% vs. 50%, p=0.057), and had more weeks of work activity (23.04 vs. 48.82, p=0.051), and improved marginally more on the clinical symptoms. The significantly higher education level of participants in E-VR than TSW at baseline may have obscured the effects of TSW. This study supports the feasibility and potential benefits of cognitive remediation for persons who have not benefited from vocational rehabilitation. PMID:27209526

  12. Historical hydronuclear testing: Characterization and remediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  13. Rail transportation of Fernald remediation waste

    Energy Technology Data Exchange (ETDEWEB)

    Fellman, R.T.; Lojek, D.A.; Motl, G.P.; Weddendorf, W.K.

    1995-01-24

    Remediation of the Department of Energy (DOE) Fernald site located north of Cincinnati will generate large quantities of low-level radwaste. This volume includes approximately 1,050,000 tons of material to be removed from eight waste pits comprising Operable Unit 1 (OU-1). The remedial alternative selected includes waste material excavation, drying and transportation by rail to a burial site in the arid west for disposal. Rail transportation was selected not only because rail transportation is safer than truck transportation, but also because of the sheer magnitude of the project and the availability of bulk rail car unloading facilities at a representative disposal site. Based upon current waste quantity estimates as presented in the Feasibility Study for OUI, a fully-loaded 47-car unit train would depart the Fernald site weekly for five years. This paper illustrates the steps taken to obtain agency and public acceptance of the Record of Decision for the remedy which hinged on rail transportation. A preliminary, but detailed, rail transportation plan was prepared for the project to support a series of CERCLA public meetings conducted in late 1994. Some of the major issues addressed in the plan included the following: (1) Scope of project leading to selection of rail transportation; (2) Waste classification; (3) Rail Company overview; (4) Train configuration and rail car selection; (5) Routing; (6) Safety; (7) Prior Notification Requirements (8) Emergency Response. A series of three public meetings identified a number of issues of prime concern to Fernald stakeholders. Following resolution of these issues during the public comment period, a Record of Decision (ROD) approving implementation of the rail transportation strategy was approved pending incorporation of EPA and State of Ohio comments on December 22, 1994.

  14. Defense remediations: Two glimpses into the future

    International Nuclear Information System (INIS)

    As the Department of Defense (DoD) embarks on the closure of dozens of military installations, a major obstacle to release of the sites is the presence of hazardous materials. Activities such as test firing of depleted uranium munitions, research and development of weapons and ammunition, and on-post disposal of material has resulted in large scale contamination. The U.S. Army's Radioactive Waste Disposal Office, as the DoD's Executive Agent for Radioactive Waste, manages the disposition of DoD's low-level radioactive waste. Two of the initial remediation projects offer a good look into the type of situations the DoD faces

  15. Innovative mathematical modeling in environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Gour T. [Taiwan Typhoon and Flood Research Institute (Taiwan); National Central Univ. (Taiwan); Univ. of Central Florida (United States); Gwo, Jin Ping [Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Siegel, Malcolm D. [Sandia National Laboratories, Albuquerque, NM (United States); Li, Ming-Hsu [National Central Univ. (Taiwan); ; Fang, Yilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhang, Fan [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Luo, Wensui [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Yabusaki, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2013-05-01

    There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models

  16. Baking soda: a potentially fatal home remedy.

    Science.gov (United States)

    Nichols, M H; Wason, S; Gonzalez del Rey, J; Benfield, M

    1995-04-01

    We present a case of a six-week-old infant who developed life-threatening complications after unintentional sodium bicarbonate intoxication. Baking soda was being used by the mother as a home remedy to "help the baby burp." A review of the literature regarding the use (or misuse) of baking soda follows. Our patient, along with the other noted case reports, emphasizes the need for warnings on baking soda products whose labels recommend its use as an antacid. Poisonings must be high in the differential diagnosis of any patient, regardless of age, who presents with altered mental status or status epilepticus. PMID:7596870

  17. Monitoring engineered remediation with borehole radar

    Science.gov (United States)

    Lane, J.W., Jr.; Day-Lewis, F. D.; Joesten, P.K.

    2007-01-01

    The success of engineered remediation is predicated on correct emplacement of either amendments (e.g., vegetable-oil emulsion, lactate, molasses, etc.) or permeable reactive barriers (e.g., vegetable oil, zero-valent iron, etc.) to enhance microbial or geochemical breakdown of contaminants and treat contaminants. Currently, site managers have limited tools to provide information about the distribution of injected materials; the existence of gaps or holes in barriers; and breakdown or transformation of injected materials over time. ?? 2007 Society of Exploration Geophysicists.

  18. Sediment Remediation for Ecosystem in Eutrophic Lakes

    Directory of Open Access Journals (Sweden)

    Y. Amano

    2002-01-01

    Full Text Available The remediation method — namely, a hybrid system combined with DAF and CRM — is studied in this paper for the size reduction of aqua-ecological circulation and for the elution control in lakes. Results show that two effects on water quality purification, the sediment washout effect and the elution control effect, can be induced by this system, and the biota inhabiting the lake is therefore shifted into an oligotrophic aspect, from blue algae to green algae and/or diatoms.

  19. Tank Waste Remediation System optimized processing strategy

    International Nuclear Information System (INIS)

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  20. Radiation induced oxidation for water remediation

    International Nuclear Information System (INIS)

    The action of ionizing radiation on halogenated hydrocarbons, in the presence and absence of ozone, was studied in water and wastewater. The combined ozone/electron-beam irradiation process was found especially suited for remediation of low-level contaminated groundwater. This combined treatment was often more effective than irradiation alone for wastewater decontamination. It reduced the COD without a simultaneous increase of BOD. Introduction of gaseous ozone directly into the irradiation chamber improved the water-flow turbulence, allowing treatment in layers thicker than the penetration range of the electrons, with increased decontamination efficiency. (author)

  1. Tank Waste Remediation System optimized processing strategy

    Energy Technology Data Exchange (ETDEWEB)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  2. The Effects of Remedial Mathematics on the Learning of Economics

    DEFF Research Database (Denmark)

    Lagerlöf, Johan N. M.; Seltzer, Andrew J.

    2009-01-01

    The authors examined the effects of remedial mathematics on performance in university-level economics courses using a natural experiment. They studied exam results prior and subsequent to the implementation of a remedial mathematics course that was compulsory for a subset of students and unavaila......The authors examined the effects of remedial mathematics on performance in university-level economics courses using a natural experiment. They studied exam results prior and subsequent to the implementation of a remedial mathematics course that was compulsory for a subset of students and...

  3. 200 Areas soil remediation strategy -- Environmental Restoration Program

    International Nuclear Information System (INIS)

    The remediation and waste management activities in the 200 Areas of the Hanford Site (located in Richland, Washington) currently range from remediating groundwater, remediating source units (contaminated soils), decontaminating and decommissioning of buildings and structures, maintaining facilities, managing transuranic, low-level and mixed waste, and operating tank farms that store high-level waste. This strategy focuses on the assessment and remediation of soil that resulted from the discharge of liquids and solids from processing facilities to the ground (e.g., ponds, ditches, cribs, burial grounds) in the 200 Areas and addresses only those waste sites assigned to the Environmental Restoration Program

  4. Studies on Fast Remediation of Soda Meadow Alkaline Soil

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lianren; SUN Yankun; LI Dawei

    2010-01-01

    Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cover of those years through the artificial planting, mixed seeding lymc grass (Elymus dahuricus Turcz) and melilot in the mode of rotary tillage and deep loosening in lower and medium saline soils. The results showed that there was remarkable relationship between net evaporation (difference of precipitation and evaporation) and total salt content in the soil. The net evaporation could be used as a new method to forecast the dynamics variation of salt to ensure the pasture optimum sowing time. Realize the autumnal vegetation cover of those years through direct planting on the bourgeon layer of soda meadow alkaline soil, on the other hand, the covered pasture made the function of restraining salt and alkaline content to realize the biology reverse succession quickly. Forage seeds were seeded directly on the seeding bed of soda alkaline meadow at the end of July. In fall of the same year, a certain amount of biomass was obtained. The model, which has remarkable economical efficiency and use widely, represented the innovative model for the fast vegetation restoration on the soda alkaline meadow soil.

  5. Chamomile an Adjunctive Herbal Remedy for Rheumatoid Arthritis Treatment

    Directory of Open Access Journals (Sweden)

    Afshin Gharakhani

    2013-07-01

    Full Text Available One of the most frequently consumed herbal remedies available today is the chamomile preparations prepared from Matricaria chamomilla (MC. The medicinal preparations of MC are composed of several classes of biological active compounds with inhibitory effects on inflammation including essential oil and flavonoids. Apigenin, quercetin and luteolin are the major flavonoids of MC which exhibit their anti-inflammatory effects through different mechanisms. Apigenin exhibits anti-inflammatory activity via inhibition of proinflammatory cytokines production, whilst luteolin suppresses production of nitric oxide (NO, prostaglandin E2 and expression of inducible NO synthase and cyclooxygenase-2 all of which are associated with inflammatory responses. However, there are also some additional components of the MC preparations which have a role on the anti-inflammatory actions of the plant through other pathways. The mentioned mechanisms are in reference with the authors' concept that MC would be of value in alleviating inflammation and pain in rheumatoid arthritis.Keywords: Essential oil; flavonoids; Matricaria chamomilla; polyphenols; rheumatoid arthritis

  6. Enzymatic technologies for remediation of hydrophobic organic pollutants in soil.

    Science.gov (United States)

    Eibes, G; Arca-Ramos, A; Feijoo, G; Lema, J M; Moreira, M T

    2015-11-01

    Worldwide there are numerous contaminated sites as a result of the widespread production and use of chemicals in industrial and military activities as well as poor schemes of waste disposal and accidental spillages. The implementation of strategies for decontamination and restoration of polluted sites has become a priority, being bioremediation with biological agents a promising alternative. Enzyme-based technologies offer several advantages over the use of microbial cells, provided that the biocatalyst meets specific requirements: efficiency to remove the target pollutant/s, non-dependency on expensive coenzymes or cofactors, enzyme stability, and an affordable production system. In this mini-review, the direct application of enzymes for in situ soil bioremediation is explored, and also novel ex situ enzymatic technologies are presented. This new perspective provides a valuable insight into the different enzymatic alternatives for decontamination of soils. Examples of recent applications are reported, including pilot-scale treatments and patented technologies, and the principles of operation and the main requirements associated are described. Furthermore, the main challenges regarding the applicability of enzymatic technologies for remediation of hydrophobic organic pollutants from soil are discussed. PMID:26293336

  7. Biological Oceanography

    Science.gov (United States)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  8. Life cycle framework for assessment of site remediation options: Investigation of six remedial options

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, M.L.; Page, C.A. [Univ. of Toronto, Ontario (Canada). Dept. of Geography; Campbell, M. [Metro Toronto Teaching Health Units, North York, Ontario (Canada); McKenna, S. [City of Toronto, Ontario (Canada). Dept. of Public Health

    1997-12-31

    A Life Cycle Framework (LCF), incorporating Life Cycle Assessment (LCA) and Life Cycle Management (LCM) methodologies, has been developed to investigate environmental and human health burdens associated with contaminated sites and issuing from site remediation activities. The objective is to provide a tool that can guide decisions on the choice of methods that minimize environmental burden and/or to identify particular activities or processes within a remediation method that contribute most to that burden. The LCF approach is useful because it provides a systematic means of encompassing most activities within a remediation method, including those occurring beyond the contaminated site per se, and over the long term. The LCA component is used for in-depth, quantitative study of remediation options, while the more streamlined LCM is used where qualitative information and analysis is sought. The following generic remedial options were investigated using the LCM approach: no action, encapsulation, excavation and disposal, vapor extraction, in-site bioremediation, and soil washing. The analysis highlighted potential impacts for no-action, encapsulation, and excavation and disposal that involve land use and land consumption; no-action and encapsulation also effect ecosystem and human health through contaminants remaining on-site; and excavation and disposal potentially contribute to acid rain, global warming, air pollution and depletion of primary energy sources through transportation. Important potential impacts, associated with in-situ bioremediation and vapor extraction relate to contaminants remaining on-site. In addition, for in-situ bioremediation and soil washing there is concern for potential discharge of process chemicals, while for soil washing there is potential for airborne transport of contaminants to other media.

  9. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  10. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  11. Factors affecting cognitive remediation response in schizophrenia: the role of COMT gene and antipsychotic treatment.

    Science.gov (United States)

    Bosia, Marta; Zanoletti, Andrea; Spangaro, Marco; Buonocore, Mariachiara; Bechi, Margherita; Cocchi, Federica; Pirovano, Adele; Lorenzi, Cristina; Bramanti, Placido; Smeraldi, Enrico; Cavallaro, Roberto

    2014-06-30

    Cognitive remediation is the best available tool to treat cognitive deficits in schizophrenia and has evidence of biological validity; however results are still heterogeneous and significant predictors are lacking. Previous studies showed that cognitive remediation is able to induce changes in PFC function and dopaminergic transmission and thus the study of possible sources of variability at these levels (i.e. antipsychotic treatments and genetic variability) might help to gain a deeper understanding of neurobiological correlates and translate into optimization and personalization of interventions. In the present study, we analyzed the interaction between pharmacological treatment (clozapine vs typical/atypical D2 blockers) and COMT rs4680 polymorphism on cognitive changes after cognitive remediation therapy, in a sample of 98 clinically stabilized patients with schizophrenia. The General Linear Model showed a significant interaction of pharmacological treatment and COMT polymorphism on the improvement in "Symbol Coding" subtest, a global measure of speed of processing. Post-hoc analysis revealed a significant difference between COMT genotypes, when treated with D2 blockers, with worse results among Val/Val patients. These preliminary results suggest that genetic variability, influencing prefrontal dopamine, might affect individual capacity to improve with different patterns, depending on antipsychotic treatment.

  12. The Use of Waste Materials in the Passive Remediation of Mine Water Polution

    Science.gov (United States)

    Batty, Lesley C.; Younger, Paul L.

    2004-01-01

    The contamination and resulting degradation of water courses by effluents from abandoned and active mines is a world-wide problem. Traditional methods of remediating the discharges from mines involve the addition of chemicals and the utilisation of artificial energy sources. Over the last 15-20 years passive treatment systems have been developed that harness natural chemical and biological processes to ameliorate the potentially toxic effects of such discharges. There are many different types of passive system, including compost wetlands, reducing and alkalinity producing systems (RAPS), permeable reactive barriers and inorganic media passive systems. Different waste materials can be utilised as reactive media within each of these systems, dependent upon the type of mine water and treatment technology. In many cases the reactivity of these recycled waste materials is key to the remedial performance of these systems. The materials used may be organic (e.g., composts) or inorganic (e.g., blast furnace slag) and where possible are sourced locally in order to minimise transport costs. The remediation of mine waters in itself can produce large quantities of waste products in the form of iron oxide sludge. Potential uses of this material in the production of pigments and in the treatment of phosphate contaminated waters is also currently under investigation. The exploitation of what are traditionally thought of as waste materials within treatment systems for polluted waters is an expanding technology which provides great scope for recycling.

  13. Expeditious remediation of a leaking underground tank

    International Nuclear Information System (INIS)

    An inactive leaking diesel fuel tank, at a TV transmitter site in Memphis, Tennessee, was removed just prior to transfer of ownership. The removal of contaminated soil resulted in an excavated to a depth of about 5.5 m (18 ft) by a contractor from Memphis. This excavation partially undermined the building, and furthermore exposed two friction pilings which supported the transmitter building. Rogers and Associates Engineering (RAE) accepted project management. The excavation was backfilled with gravel to stabilize the site and prevent damage to the foundation of the building. Site characterization, including bore holes and groundwater monitoring wells indicated that essentially all of the remaining contamination was in the area immediately beneath where the tank had been located. Final mitigation was performed using a 1.5-m (5-ft) diameter caisson auger to excavate the material to a depth of 11 m beneath the surface. A steel casing was driven behind the auger to the full depth to provide site stability and prevent caving. Simultaneous drilling and driving the casing resulted in essentially no mixing of material and removal of the contaminated soil, without impact on the building. Sampling from the excavation and additional groundwater monitoring verified full remediation had been accomplished. The monitoring wells were plugged according to Tennessee requirements and the area of the excavation was capped. This phase of the site characterization and remediation were completed within about one month and the State verified the closure

  14. Overview of innovative remediation of emerging contaminants

    Science.gov (United States)

    Keller, A. A.; Adeleye, A. S.; Huang, Y.; Garner, K.

    2015-12-01

    The application of nanotechnology in drinking water treatment and pollution cleanup is promising, as demonstrated by a number of field-based (pilot and full scale) and bench scale studies. A number of reviews exist for these nanotechnology-based applications; but to better illustrate its importance and guide its development, a direct comparison between traditional treatment technologies and emerging approaches using nanotechnology is needed. In this review, the performances of traditional technologies and nanotechnology for water treatment and environmental remediation were compared with the goal of providing an up-to-date reference on the state of treatment techniques for researchers, industry, and policy makers. Pollutants were categorized into broad classes, and the most cost-effective techniques (traditional and nanotechnology-based) in each category reported in the literature were compared. Where information was available, cost and environmental implications of both technologies were also compared. Traditional treatment technologies were found to currently offer the most cost-effective choices for removal of several common pollutants from drinking water and polluted sites. Nano-based techniques may however become important in complicated remediation conditions and meeting increasingly stringent water quality standards, especially in removal of emerging pollutants and low levels of contaminants. We also discuss challenges facing environmental application of nanotechnology were also discussed and potential solutions.

  15. The atmospheric implications of radiation belt remediation

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2006-08-01

    Full Text Available High altitude nuclear explosions (HANEs and geomagnetic storms can produce large scale injections of relativistic particles into the inner radiation belts. It is recognised that these large increases in >1 MeV trapped electron fluxes can shorten the operational lifetime of low Earth orbiting satellites, threatening a large, valuable population. Therefore, studies are being undertaken to bring about practical human control of the radiation belts, termed "Radiation Belt Remediation" (RBR. Here we consider the upper atmospheric consequences of an RBR system operating over either 1 or 10 days. The RBR-forced neutral chemistry changes, leading to NOx enhancements and Ox depletions, are significant during the timescale of the precipitation but are generally not long-lasting. The magnitudes, time-scales, and altitudes of these changes are no more significant than those observed during large solar proton events. In contrast, RBR-operation will lead to unusually intense HF blackouts for about the first half of the operation time, producing large scale disruptions to radio communication and navigation systems. While the neutral atmosphere changes are not particularly important, HF disruptions could be an important area for policy makers to consider, particularly for the remediation of natural injections.

  16. Mine Waste Characterization, Management and Remediation

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson-Edwards

    2015-01-01

    Full Text Available Mining is a vital part of the Global economy, but the extraction of metals, metalloids, and other mineral products generates vast quantities of liquid and solid waste. Currently the volume is estimated at several thousand million tons per annum, but is increasing exponentially as demand and exploitation of lower-grade deposits increases. The high concentrations of potentially toxic elements in these wastes can pose risks to ecosystems and humans, but these risks can be mitigated by implementing appropriate management or remediation schemes. Although there are a large number of such schemes available, there is still a need to research the processes, products, and effectiveness of implementation, as well as the nature of the mine wastes themselves. This Special Issue is aimed at bringing together studies in the areas of mine waste characterization, management, and remediation, to review the current state of knowledge and to develop improvements in current schemes. Fourteen manuscripts are published for this Special Issue, and these are summarized below.[...

  17. New technologies in decommissioning and remediation

    International Nuclear Information System (INIS)

    New and emerging technologies are making decommissioning and remediation more cost effective, faster and safer. From planning to execution and control, the use of new technologies is on the rise. Before starting decommissioning or environmental remediation, experts need to plan each step of the process, and to do that, they first need a clear idea of the characteristics of the structure and the level of radiation that they can expect to encounter. While characterization for planning purposes can be done using manual approaches, such as drawing up blueprints and taking measurements and photos, laser scanning technologies are now allowing decommissioning teams to more quickly and accurately map out the physical characteristics of a facility’s structures, systems and components. This is complemented by highly sensitive measurements taken with high-tech devices, such as remotely operated gamma cameras that can precisely and efficiently measure the radiological characteristics of the facility, including the amount and type of radiation. Similar measurements are needed once the contamination has been removed, to verify that any residual radiation levels are indeed insignificant

  18. PCB remediation in schools: a review.

    Science.gov (United States)

    Brown, Kathleen W; Minegishi, Taeko; Cummiskey, Cynthia Campisano; Fragala, Matt A; Hartman, Ross; MacIntosh, David L

    2016-02-01

    Growing awareness of polychlorinated biphenyls (PCBs) in legacy caulk and other construction materials of schools has created a need for information on best practices to control human exposures and comply with applicable regulations. A concise review of approaches and techniques for management of building-related PCBs is the focus of this paper. Engineering and administrative controls that block pathways of PCB transport, dilute concentrations of PCBs in indoor air or other exposure media, or establish uses of building space that mitigate exposure can be effective initial responses to identification of PCBs in a building. Mitigation measures also provide time for school officials to plan a longer-term remediation strategy and to secure the necessary resources. These longer-term strategies typically involve removal of caulk or other primary sources of PCBs as well as nearby masonry or other materials contaminated with PCBs by the primary sources. The costs of managing PCB-containing building materials from assessment through ultimate disposal can be substantial. Optimizing the efficacy and cost-effectiveness of remediation programs requires aligning a thorough understanding of sources and exposure pathways with the most appropriate mitigation and abatement methods. PMID:25994266

  19. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  20. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  1. Biology Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  2. Environmental management: integrating ecological evaluation, remediation, restoration, natural resource damage assessment and long-term stewardship on contaminated lands.

    Science.gov (United States)

    Burger, Joanna

    2008-08-01

    Ecological evaluation is essential for remediation, restoration, and Natural Resource Damage Assessment (NRDA), and forms the basis for many management practices. These include determining status and trends of biological, physical, or chemical/radiological conditions, conducting environmental impact assessments, performing remedial actions should remediation fail, managing ecosystems and wildlife, and assessing the efficacy of remediation, restoration, and long-term stewardship. The objective of this paper is to explore the meanings of these assessments, examine the relationships among them, and suggest methods of integration that will move environmental management forward. While remediation, restoration, and NRDA, among others, are often conducted separately, it is important to integrate them for contaminated land where the risks to ecoreceptors (including humans) can be high, and the potential damage to functioning ecosystems great. Ecological evaluations can range from inventories of local plants and animals, determinations of reproductive success of particular species, levels of contaminants in organisms, kinds and levels of effects, and environmental impact assessments, to very formal ecological risk assessments for a chemical or other stressor. Such evaluations can range from the individual species to populations, communities, ecosystems or the landscape scale. Ecological evaluations serve as the basis for making decisions about the levels and kinds of remediation, the levels and kinds of restoration possible, and the degree and kinds of natural resource injuries that have occurred because of contamination. Many different disciplines are involved in ecological evaluation, including biologists, conservationists, foresters, restoration ecologists, ecological engineers, economists, hydrologist, and geologists. Since ecological evaluation forms the basis for so many different types of environmental management, it seems reasonable to integrate management options

  3. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    Energy Technology Data Exchange (ETDEWEB)

    D. Vandel

    2003-09-01

    This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

  4. SF Box--a tool for evaluating the effects on soil functions in remediation projects.

    Science.gov (United States)

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Norberg, Tommy

    2014-10-01

    Although remediation is usually aimed at reducing the risks posed by contaminants to human health and the environment, it is also desirable that the remediated soil within future green spaces is capable of providing relevant ecological functions, e.g., basis for primary production. Yet while addressing a contamination problem by reducing contaminant concentration and/or amounts in the soil, the remedial action itself can lead to soil structure disturbances, decline in organic matter and nutrient deficiencies, and in turn affect a soil's capacity to carry out its ecological soil functions. This article presents the Soil Function Box (SF Box) tool that is aimed to facilitate integration of information from suggested soil quality indicators (SQIs) into a management process in remediation using a scoring method. The scored SQIs are integrated into a soil quality index corresponding to 1 of 5 classes. SF Box is applied to 2 cases from Sweden (Kvillebäcken and Hexion), explicitly taking into consideration uncertainties in the results by means of Monte Carlo simulations. At both sites the generated soil quality indices corresponded to a medium soil performance (soil class 3) with a high certainty. The main soil constraints at both Kvillebäcken and Hexion were associated with biological activity in the soil, as soil organisms were unable to supply plant-available N. At the Kvillebäcken site the top layer had a content of coarse fragment (ø > 2 mm) higher than 35%, indicating plant rooting limitations. At the Hexion site, the soil had limited amount of organic matter, thus poor aggregate stability and nutrient cycling potential. In contrast, the soil at Kvillebäcken was rich in organic matter. The soils at both sites were capable of storing a sufficient amount of water for soil organisms between precipitation events. PMID:24903441

  5. Integrated phytobial remediation for sustainable management of arsenic in soil and water.

    Science.gov (United States)

    Roy, Madhumita; Giri, Ashok K; Dutta, Sourav; Mukherjee, Pritam

    2015-02-01

    Arsenic (As), cited as the most hazardous substance by the U.S. Agency for Toxic Substance and Disease Registry (ATSDR, 2005), is an ubiquitous metalloid which when ingested for prolonged periods cause extensive health effects leading to ultimate untimely death. Plants and microbes can help mitigate soil and groundwater As problem since they have evolved elaborate detoxification machineries against this toxic metalloid as a result of their coexistence with this since the origin of life on earth. Utilization of the phytoremediation and bioremediation potential of the plants and microbes, respectively, is now regarded as two innovative tools that encompass biology, geology, biotechnology and allied sciences with cutting edge applications for sustainable mitigation of As epidemic. Discovery of As hyperaccumulating plants that uptake and concentrate large amounts of this toxic metalloid in their shoots or roots offered new hope to As phytoremediation, solar power based nature's own green remediation. This review focuses on how phytoremediation and bioremediation can be merged together to form an integrated phytobial remediation which could synergistically achieve the goal of large scale removal of As from soil, sediment and groundwater and overcome the drawbacks of the either processes alone. The review also points to the feasibility of the introduction of transgenic plants and microbes that bring new hope for more efficient treatment of As. The review identifies one critical research gap on the importance of remediation of As contaminated groundwater not only for drinking purpose but also for irrigation purpose and stresses that more research should be conducted on the use of constructed wetland, one of the most suitable areas of application of phytobial remediation. Finally the review has narrowed down on different phytoinvestigation and phytodisposal methods, which constitute the most essential and the most difficult part of pilot scale and field scale applications

  6. Integrated phytobial remediation for sustainable management of arsenic in soil and water.

    Science.gov (United States)

    Roy, Madhumita; Giri, Ashok K; Dutta, Sourav; Mukherjee, Pritam

    2015-02-01

    Arsenic (As), cited as the most hazardous substance by the U.S. Agency for Toxic Substance and Disease Registry (ATSDR, 2005), is an ubiquitous metalloid which when ingested for prolonged periods cause extensive health effects leading to ultimate untimely death. Plants and microbes can help mitigate soil and groundwater As problem since they have evolved elaborate detoxification machineries against this toxic metalloid as a result of their coexistence with this since the origin of life on earth. Utilization of the phytoremediation and bioremediation potential of the plants and microbes, respectively, is now regarded as two innovative tools that encompass biology, geology, biotechnology and allied sciences with cutting edge applications for sustainable mitigation of As epidemic. Discovery of As hyperaccumulating plants that uptake and concentrate large amounts of this toxic metalloid in their shoots or roots offered new hope to As phytoremediation, solar power based nature's own green remediation. This review focuses on how phytoremediation and bioremediation can be merged together to form an integrated phytobial remediation which could synergistically achieve the goal of large scale removal of As from soil, sediment and groundwater and overcome the drawbacks of the either processes alone. The review also points to the feasibility of the introduction of transgenic plants and microbes that bring new hope for more efficient treatment of As. The review identifies one critical research gap on the importance of remediation of As contaminated groundwater not only for drinking purpose but also for irrigation purpose and stresses that more research should be conducted on the use of constructed wetland, one of the most suitable areas of application of phytobial remediation. Finally the review has narrowed down on different phytoinvestigation and phytodisposal methods, which constitute the most essential and the most difficult part of pilot scale and field scale applications

  7. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  8. 33 CFR 331.12 - Exhaustion of administrative remedies.

    Science.gov (United States)

    2010-07-01

    ..., DEPARTMENT OF DEFENSE ADMINISTRATIVE APPEAL PROCESS § 331.12 Exhaustion of administrative remedies. No... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Exhaustion of administrative... administrative remedies under this part. The appellant is considered to have exhausted all...

  9. The Costs of Remedial and Developmental Education in Postsecondary Education

    Science.gov (United States)

    Martinez, Maria Emilia; Bain, Steve Frank

    2014-01-01

    Current research and policy literature indicate an increase in remediation courses nationwide (Tierney & Garcia, 2011; Parsad & Lewis, 2003). However, the most critical theme in research suggests variability and possible inaccuracies in remedial and developmental education data (Kirst, 2007; Venezia, Kirst & Antonio, 2004). In…

  10. Reaction Paper on Remediation in the Community College Mathematics Curriculum.

    Science.gov (United States)

    Robinson, Shawn

    Remedial mathematics has taken several forms over the years--across the nation, within departments, and among mathematics instructors. There is a growing debate over the effectiveness of remedial courses in relationship to eventual student matriculation, which increases institution funding. The use of technology, real-life problems and projects,…

  11. 12 CFR 1291.8 - Remedial actions for noncompliance.

    Science.gov (United States)

    2010-01-01

    ... LOAN BANKS' AFFORDABLE HOUSING PROGRAM § 1291.8 Remedial actions for noncompliance. (a) Recovery of AHP... benefit of the first Bank's members, under such terms and conditions as the FHFA may prescribe. (i) FHFA... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Remedial actions for noncompliance....

  12. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  13. An Empirical Measure of Computer Security Strength for Vulnerability Remediation

    Science.gov (United States)

    Villegas, Rafael

    2010-01-01

    Remediating all vulnerabilities on computer systems in a timely and cost effective manner is difficult given that the window of time between the announcement of a new vulnerability and an automated attack has decreased. Hence, organizations need to prioritize the vulnerability remediation process on their computer systems. The goal of this…

  14. FEASIBILITY OF ELECTROKINETIC SOIL REMEDIATION IN HORIZONTAL LASAGNA CELLS

    Science.gov (United States)

    An integrated soil remediation technology called Lasagna has been developed that combines electrokinetics with treatment zones for use in low permeability soils where the rates of hydraulic and electrokinetic transport are too low to be useful for remediation of contaminants. The...

  15. Remediation of lead contaminated soil at Greenbury Point, Annapolis, Md

    OpenAIRE

    Stewart, Kathryn A.

    1997-01-01

    The remedial investigation is satisfied through compilation of information required to adequately characterize Greenbury Point. Information includes data on lead, applicable regulatory requirements, soils types, contamination, site maps, field investigations, utility drawings, history, archeology, and natural resources. The feasibility study is satisfied through examination of remedial options. Various treatment technologies are screened for effectiveness in reducing the lead contamination or...

  16. Process for determining the remediation category of hazardous substance sites

    International Nuclear Information System (INIS)

    An evaluation process has been developed that aids in selecting the appropriate remediation category of hazardous substance sites. Three general remediation categories have been established: No further Action: Potential Early Action: and Defer for RI/FS or Transition/Decontamination and Decommissioning. This evaluation method is a preliminary screening process only and will not identify the most appropriate remediation alternative for each site. The remedy selection process can proceed only after a remediation category is determined for each site. All sites are evaluated at a preliminary screening level to determine the general remediation category. After the first screen, a secondary evaluation is performed on both the PEA sites and the DEFER sites. For PEAs, this secondary evaluation will incorporate additional specific factors, such as a screening level risk assessment. For the DEFER sites feasibility factors will be used to distinguish between the sites which should undergo a normal RI/FS and the sites which will be recommended to be remediated in association with D ampersand D of buildings. Ultimately, all of the sites will be placed into one of four remediation categories

  17. 40 CFR 761.61 - PCB remediation waste.

    Science.gov (United States)

    2010-07-01

    ..., but is not limited to, the following non-liquid PCB remediation waste: soil, sediments, dredged... proximity to areas such as residential dwellings, hospitals, schools, nursing homes, playgrounds, parks, day... bulk PCB remediation waste on-site using a soil washing process may do so without EPA approval,...

  18. Remedial-Math Workshop: Opening Doors to Graduation

    Science.gov (United States)

    Dabkowska, Ewa; Sosnovski, Bianca

    2016-01-01

    About half of students attending community colleges leave school before finishing their intended goals. To increase students' retention and to prevent the multiple-repeater problem, Queensborough Community College (QCC) offered a short-term workshop for remedial-mathematics students. This was another chance to exit remediation instead of repeating…

  19. 40 CFR 35.6100 - Eligibility for remedial Cooperative Agreements.

    Science.gov (United States)

    2010-07-01

    ... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response Actions Remedial Response Cooperative Agreements § 35.6100 Eligibility for... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Eligibility for remedial...

  20. Remediation of Math Anxiety in Preservice Elementary School Teachers

    Science.gov (United States)

    Dunkle, Susan M.

    2010-01-01

    The purpose of this study was to measure the level of math anxiety in preservice elementary teachers, and then to determine if remediation methods would lower the measured level of anxiety in these same preservice teachers. The 10-day study provided an intense remediation using a time-series design to measure change on the Revised Math Anxiety…

  1. Multi-objective decision-making for soil remediation problems

    NARCIS (Netherlands)

    Drunen, van M.A.; Beinat, E.; Nijboer, M.; Okx, J.P.

    2005-01-01

    After deciding whether or not a soil clean-up operation is necessary, the question remains which remedial strategy and technique should be applied. Traditionally, remediation techniques aim at reaching environmental threshold values within the shortest possible time. There is, however, a growing awa

  2. In-situ remediation of contaminated sediments : conceivable and feasible?!

    NARCIS (Netherlands)

    Joziasse, J.; Gun, J. van der

    2000-01-01

    In-situ remediation has assumed large proportions in dealing with terrestrial soil pollution. Although implementation of in-situ remediation for contaminated sediments is restricted by the fact that dredging is necessary for nautical or water management reasons, it should not be discarded beforehand

  3. Improving the Targeting of Treatment: Evidence from College Remediation

    Science.gov (United States)

    Scott-Clayton, Judith; Crosta, Peter M.; Belfield, Clive R.

    2014-01-01

    Remediation is one of the largest single interventions intended to improve outcomes for underprepared college students, yet little is known about the remedial screening process. Using administrative data and a rich predictive model, we find that severe mis-assignments are common using current test-score-cutoff-based policies, with…

  4. Applying multivariate analysis as decision tool for evaluating sediment-specific remediation strategies

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Lejon, Tore; Jensen, Pernille Erland;

    2016-01-01

    Multivariate methodology was employed for finding optimum remediation conditions for electrodialytic remediation of harbour sediment from an Arctic location in Norway. The parts of the experimental domain in which both sediment- and technology-specific remediation objectives were met were...

  5. Remediation of sandy soils using surfactant solutions and foams.

    Science.gov (United States)

    Couto, Hudson J B; Massarani, Guilio; Biscaia, Evaristo C; Sant'Anna, Geraldo L

    2009-05-30

    Remediation of sandy soils contaminated with diesel oil was investigated in bench-scale experiments. Surfactant solution, regular foams and colloidal gas aphrons were used as remediation fluids. An experimental design technique was used to investigate the effect of relevant process variables on remediation efficiency. Soils prepared with different average particle sizes (0.04-0.12 cm) and contaminated with different diesel oil contents (40-80 g/kg) were used in experiments conducted with remediation fluids. A mathematical model was proposed allowing for the determination of oil removal rate-constant (k(v)) and oil content remaining in the soil after remediation (C(of)) as well as estimation of the percentage of oil removed. Oil removal efficiencies obtained under the central experimental design conditions were 96%, 88% and 35% for aphrons, regular foams and surfactant solutions, respectively. High removal efficiencies were obtained using regular foams and aphrons, demanding small amounts of surfactant.

  6. [Feasibility of applying ornamental plants in contaminated soil remediation].

    Science.gov (United States)

    Liu, Jia-Nü; Zhou, Qi-Xing; Sun, Ting; Wang, Xiao-Fei

    2007-07-01

    Phytoremediation is one of the effective ways in resolving problems of contaminated soils, but limited hyperaccumulation plant species were reported and documented. This shortage could be offset if remediation plants can be screened out from various ornamental plants. In addition, such doing can beautify the environment while bring some economic effects. Starting from the importance of phytoremediation, this paper generalized the characters and standards of remediation plants. Through describing the resources of ornamental plants and their functions on environmental protection, particularizing their superiorities to other plants, and analyzing their endurance, accumulation traits and remediation types, the feasibility of applying ornamental plants in the practices of contaminated soil remediation was discussed. To screening out hyperaccumulators from ornamental plants would be an entirely new research area in the remediation of contaminated soils.

  7. Nodal failure index approach to groundwater remediation design

    Science.gov (United States)

    Lee, J.; Reeves, H.W.; Dowding, C.H.

    2008-01-01

    Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.

  8. In situ remediation technologies for mercury-contaminated soil.

    Science.gov (United States)

    He, Feng; Gao, Jie; Pierce, Eric; Strong, P J; Wang, Hailong; Liang, Liyuan

    2015-06-01

    Mercury from anthropogenic activities is a pollutant that poses significant risks to humans and the environment. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. This paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic, and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. Two emerging technologies, phytoremediation and nanotechnology, are also discussed in this review. PMID:25850737

  9. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    Energy Technology Data Exchange (ETDEWEB)

    Barry L. Burks

    2002-12-01

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  10. Herbal remedies in depression – state of the art

    Directory of Open Access Journals (Sweden)

    Szafrański, Tomasz

    2014-02-01

    Full Text Available Recent decades have seen development of research and an increased interest in the psychopharmacology of natural remedies. More than 20 herbal remedies have been identified that may potentially be applied in medicine as antidepressive, anxiety relieving or sleep-inducing agents. Patients often prefer to take herbal remedies and often take them on their own, without consulting a physician. The aim of the study is to present the state of the art concerning the use of natural remedies in the treatment of depression. Following a literature review, 7 herbal remedies for which preclinical and clinical trials suggest their antidepressive influence have been identified: hypericum, lavender, borage, roseroot, chamomile, saffron and ginseng. For two of these, i.e. hypericum and saffron extracts, antidepressive effect in subjects with mild or moderate depression has been confirmed in controlled randomized clinical trials.

  11. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23

    former Yucca Mountain disposal facilities. The objectives of this report are to: (1) compile the background information necessary to understand behavior of {sup 129}I in the environment, (2) discuss sustainable remediation approaches to {sup 129}I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of {sup 129}I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating {sup 129}I environmental remediation and reducing uncertainty associated with disposal of {sup 129}I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater {sup 129}I. (2) Develop analytical techniques for measurement of total {sup 129}I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize {sup 129}I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various {sup 129}I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on {sup 129}I flux.

  12. Mesoscopic biology

    Indian Academy of Sciences (India)

    G V Shivashankar

    2002-02-01

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological systems. In recent years advances in technology have led to the study of some of the design principles of these machines; in particular at the level of an individual molecule. For example, the forces that operate in molecular interactions, the stochasticity involved in these interactions and their spatio-temporal dynamics are beginning to be explored. Understanding such design principles is opening new possibilities in mesoscopic physics with potential applications.

  13. Remediating effluent sludge with earthworms:changes in heavy metal speciation and associated chemical and biological properties%蚯蚓作用下污泥重金属形态变化及其与化学生物学性质变化的关系

    Institute of Scientific and Technical Information of China (English)

    周波; 唐晶磊; 代金君; 许欢; 杨小雪; 陈旭飞; 张池; 戴军

    2015-01-01

    城市污泥处理是一项世界性难题,污泥农业利用是其最简单有效的资源化利用方式之一,但污泥中较高的重金属含量限制了其实际推广应用,利用蚯蚓-超富集植物联合修复污泥重金属的方法已引起国内外研究者的关注。以新鲜城市脱水污泥为研究对象,接种赤子爱胜蚓( Eisenia fetida)进行室内培养试验,系统研究蚯蚓作用下污泥重金属形态的变化,及其与污泥氧化还原条件、化学和微生物性质变化的关系,以期为蚯蚓-超富集植物联合修复技术在污泥重金属处理中的应用提供理论依据。结果表明,试验前期蚯蚓在污泥中能正常生长和存活,前20 d总生物量增加了52%。蚯蚓可以显著促进污泥中的Cu、Zn、Cd、Ni等重金属从残渣态和铁锰态等稳定形态向交换态和水溶态等有效形态转化。还可以显著降低污泥中还原性物质的含量,减缓pH值下降速度,降低总有机碳含量,促进铵态氮向硝态氮转化,减少污泥微生物的数量并增加其种群活性。蚯蚓作用下,污泥中重金属的活化程度与还原性物质的含量呈显著负相关,而与微生物种群的活性呈显著正相关(P <0.05)。综上所述,蚯蚓可以促进污泥重金属的活化,并改善污泥的肥力条件,为修复植物在污泥中的正常生长和对重金属离子的快速吸收提供有利条件。%The disposal of effluent sludge is a difficult problem throughout the world. Agricultural utilization of sludge as resources is one option. However, high levels of heavy metals pose difficulties in the safe use of sludge. To reduce the heavy metal content of sludge, a technique combining remediation with earthworms and hyperaccumulators has been suggested to be effective and is drawing the attention of scientists in the field. Therefore, an experiment was conducted to evaluate effect of earthworms on heavy metals in sludge. In the

  14. Imidazole: Having Versatile Biological Activities

    Directory of Open Access Journals (Sweden)

    Amita Verma

    2013-01-01

    Full Text Available Imidazoles have occupied a unique position in heterocyclic chemistry, and its derivatives have attracted considerable interests in recent years for their versatile properties in chemistry and pharmacology. Imidazole is nitrogen-containing heterocyclic ring which possesses biological and pharmaceutical importance. Thus, imidazole compounds have been an interesting source for researchers for more than a century. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine, and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus is used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. There are several methods used for the synthesis of imidazole-containing compounds, and also their various structure reactions offer enormous scope in the field of medicinal chemistry. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. This paper aims to review the biological activities of imidazole during the past years.

  15. Crusts: biological

    Science.gov (United States)

    Belnap, Jayne; Elias, Scott A.

    2013-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  16. Biological programming

    OpenAIRE

    Ramsden, Jeremy J.; Bándi, Gergely

    2010-01-01

    Biology offers a tremendous set of concepts that are potentially very powerfully usable for the software engineer, but they have been barely exploited hitherto. In this position paper we propose a fresh attempt to create the building blocks of a programming technology that could be as successful as life. A key guiding principle is to develop and make use of unambiguous definitions of the essential features of life.

  17. Remedial action and waste disposal project -- 300-FF-1 remedial action readiness assessment report

    International Nuclear Information System (INIS)

    This report documents the readiness assessment for initial startup of the 300-FF-1 Remedial Action Task. A readiness assessment verifies and documents that field activities are ready to start (or restart) safely. The 300-FF-1 assessment was initiated in April 1997. Readiness assessment activities included confirming the completion of project-specific procedures and permits, training staff, obtaining support equipment, receipt and approval of subcontractor submittals, and mobilization and construction of site support systems. The scope of the 300-FF-1 Remedial Action Task includes excavation and disposal of contaminated soils at liquid waste disposal facilities and of waste in the 618-4 Burial Ground and the 300-FF-1 landfills. The scope also includes excavation of test pits and test trenches

  18. Remediation programme in the North Bohemia region

    International Nuclear Information System (INIS)

    The Bohemian Massif belongs to a very important uranium province where mining activities started in 1840. Since the end of World War II large mining operations have taken place resulting in a large accumulation of waste dumps and tailings. In 1969, the Straz sandstone type uranium deposits were exploited by in situ leaching methods. 3.8 million tonnes of H2SO4, 270,000 tonnes of HNO3 and 103,000 tonnes of NH4 were injected into the Cenomanian aquifer. It affects 188 million cubic metres of water and 28 km2. The problem is compounded by the presence of an underground mine next to the Straz deposit. The paper describes the environmental remediation programme established by the government. The present estimation of the time necessary for the decontamination of the Straz deposit lies between 50 and 70 years. (author). 5 refs, 5 figs, 1 tab

  19. Irritable Bowel Syndrome: Yoga as Remedial Therapy

    Directory of Open Access Journals (Sweden)

    Vijaya Kavuri

    2015-01-01

    Full Text Available Irritable bowel syndrome (IBS is a group of symptoms manifesting as a functional gastrointestinal (GI disorder in which patients experience abdominal pain, discomfort, and bloating that is often relieved with defecation. IBS is often associated with a host of secondary comorbidities such as anxiety, depression, headaches, and fatigue. In this review, we examined the basic principles of Pancha Kosha (five sheaths of human existence concept from an Indian scripture Taittiriya Upanishad and the pathophysiology of a disease from the Yoga approach, Yoga Vasistha’s Adhi (originated from mind and Vyadhi (ailment/disease concept. An analogy between the age old, the most profound concept of Adhi-Vyadhi, and modern scientific stress-induced dysregulation of brain-gut axis, as it relates to IBS that could pave way for impacting IBS, is emphasized. Based on these perspectives, a plausible Yoga module as a remedial therapy is provided to better manage the primary and secondary symptoms of IBS.

  20. DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C.; Crawford, C.

    2013-06-18

    On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPF’s proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

  1. Environmental remediation and waste management information systems

    International Nuclear Information System (INIS)

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency's (EPA's) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA's CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information

  2. Speech Remediation of Long-Term Stuttering

    Directory of Open Access Journals (Sweden)

    Betty L. McMicken

    2012-09-01

    Full Text Available This research article describes the remediation of moderate stuttering in an adult client who experienced speech dysfluency for more than 40 years. Treatment took place at an urban residential rehabilitation mission where the client was court sentenced for a history of felonies and current narcotic sales and use. In conjunction with the operant conditioning instruction of the rehabilitation mission, the Ryan Fluency Program was implemented along with the initial use of pause time in response to the complex needs of the client. The article provides an overview of the assessment (Fluency Interviews, Criterion Tests and treatment program. At present, 2.5 years post-initiation of treatment, the client has reported and been observed to have achieved smooth, forward-flowing, natural sounding speech throughout his work environment, family interaction, and daily life.

  3. Electrodialytic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, A.; Ottpsen, Lisbeth M.

    2005-01-01

    electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4......, and the copper by this reason was released in the solution. Furthermore, with acidic tailing the potential gradient was less than 2V/cm.The maximum copper removal reached in the anode side was 53% with addition of sulphuric acid in 21 days experiment at 20V using approximately 1.8kg mine tailing on dry basis....... In addition, experiments with acidic tailing show that the copper removal is proportional with time....

  4. Geomaterials: their application to environmental remediation

    Directory of Open Access Journals (Sweden)

    Hirohisa Yamada, Kenji Tamura, Yujiro Watanabe, Nobuo Iyi and Kazuya Morimoto

    2011-01-01

    Full Text Available Geomaterials are materials inspired by geological systems originating from the billion years long history of the Earth. This article reviews three important classes of geomaterials. The first one is smectites—layered silicates with a cation-exchange capacity. Smectites are useful for removing pollutants and as intercalation compounds, catalysts and polymer nanocomposites. The second class is layered double hydroxides (LDHs. They have an anion-exchange capacity and are used as catalysts, catalyst precursors, sorbents and scavengers for halogens. The third class of geomaterials is zeolites—microporous materials with a cation-exchange capacity which are used for removing harmful cations. Zeolite composites with LDHs can absorb ammonium and phosphate ions in rivers and lakes, whereas zeolite/apatite composites can immobilize the radioactive iodine. These geomaterials are essential for environmental remediation.

  5. Environmental remediation and waste management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  6. Pulse current enhanced electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian R.; Ottosen, Lisbeth M.; Jensen, Pernille E.

    2012-01-01

    extent depending on the pulse frequency. The experiment with the frequency of 16 cycles per day showed the best restoration of equilibrium and lowest energy consumption. The energy consumption per removed heavy metals was lower in pulse current experiments than constant current and increased...... in a dramatic decrease in energy consumption, but this change impeded the acidification process and thus the removal of heavy metals decreased significantly. (C) 2012 Elsevier B.V. All rights reserved.......Energy consumption is an important factor influencing the cost of electrodialytic soil remediation (EDR). It has been indicated that the pulse current (in low frequency range) could decrease the energy consumption during EDR. This work is focused on the comparison of energy saving effect...

  7. Remedial activities effectiveness verification in tailing areas

    International Nuclear Information System (INIS)

    The complex radiological study of the basin of sludge from the uranium ore mining and preprocessing was done. Air kerma rates (including its spectral analysis) at the reference height of 1 m above ground over the whole area were measured and radiation fields mapped during two measuring campaigns (years 2009 and 2014). K, U and Th concentrations in sludge and concentrations in depth profiles (including radon concentration and radon exhalation rates) in selected points were determined using gamma spectrometry for in situ as well as laboratory samples measurement. Results were used for the analysis, design evaluation and verification of the efficiency of the remediation measures. Efficiency of the sludge basin covering by the inert material was modelled using MicroShield code. (authors)

  8. Marine biology

    International Nuclear Information System (INIS)

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  9. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  10. Use of Activated Carbon in Sediment Remediation : AC quantification techniques and remediation effects

    OpenAIRE

    2007-01-01

    Studies have demonstrated that hydrophobic organic compounds (HOC) show strong sorption to black carbon (BC). Therefore presence of BC in HOC contaminated sediment reduces the in situ freely dissolved aqueous concentration hence decrease uptake in biota. In connection with the research project “stability of polluted sediment” by the Norwegian Geotechnical Institute (NGI), sediment remediation with use of activated carbon (AC), which is a type of BC, is investigated. This thesis concentrates o...

  11. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    International Nuclear Information System (INIS)

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field

  12. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  13. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    International Nuclear Information System (INIS)

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section

  14. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  15. An evaluation of technologies for the heavy metal remediation of dredged sediments.

    Science.gov (United States)

    Mulligan, C N; Yong, R N; Gibbs, B F

    2001-07-30

    Sediments dewatering is frequently necessary after dredging to remediate and treat contaminants. Methods include draining of the water in lagoons with or without coagulants and flocculants, or using presses or centrifuges. Treatment methods are similar to those used for soil and include pretreatment, physical separation, thermal processes, biological decontamination, stabilization/solidification and washing. However, compared to soil treatment, few remediation techniques have been commercially used for sediments. In this paper, a review of the methods that have been used and an evaluation of developed and developing technologies is made. Sequential extraction technique can be a useful tool for determining metal speciation before and after washing. Solidification/stabilization techniques are successful but significant monitoring is required, since the solidification process can be reversible. In addition, the presence of organics can reduce treatment efficiency. Vitrification is applicable for sediments but expensive. Only if a useful glass product can be sold will this process be economically viable. Thermal processes are only applicable for removal of volatile metals, such as mercury and costs are high. Biological processes are under development and have the potential to be low cost. Since few low cost metal treatment processes for sediments are available, there exists significant demand for further development. Pretreatment may be one of the methods that can reduce costs by reducing the volumes of sediments that need to be treated. PMID:11463508

  16. Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria.

    Science.gov (United States)

    Erable, Benjamin; Goubet, Isabelle; Seltana, Amira; Maugard, Thierry

    2009-06-01

    Traditional biological removal processes are limited by the low solubility of halogenated compounds in aqueous media. A new technology appears very suitable for the remediation of these volatile organic compounds (VOCs). Solid/gas bio-catalysis applied in VOC remediation can transform halogenated compounds directly in the gas phase using dehydrated cells as a bio-catalyst. The hydrolysis of volatile halogenated substrates into the corresponding alcohol was studied in a solid/gas biofilter where lyophilised bacterial cultures were used as the catalyst. Four strains containing dehalogenase enzymes were tested for the hydrolysis of 1-chlorobutane. The highest removal yield was obtained using the dhaA-containing strains, the maximal reaction rate of 0.8 micromol min(-1)g(-1) being observed with Escherichia coli BL21(DE3)(dhaA). Various treatments such as cell disruption by lysozyme or alkaline gas addition in the bio-filter could stabilise the dehalogenase activity of the bacteria. A pre-treatment of the dehydrated bacterial cells by ammonia vapour improved the stability of the catalyst and a removal activity of 0.9 micromol min(-1)g(-1) was then obtained for 60h. Finally, the process was extended to a range of halogenated substrates including bromo- and chloro-substrates. It was shown that the removal capacity for long halogenated compounds (C(5)-C(6)) was greatly increased relative to traditional biological processes.

  17. Assessment of Canadian Regulations and Remediation Methods for Diesel Oil Contaminated Soils

    Directory of Open Access Journals (Sweden)

    D. G. Rushton

    2007-01-01

    Full Text Available Diesel fuel released into the environment can contaminate ground water, degrade potable water supplies and cause the collapse of fisheries. They are toxic to both animals and humans and can affect the liver, lungs, kidneys, and nervous system leading to cancer as well as immunological and reproductive effects. The objectives of this study were to review current Canadian regulations pertaining to diesel fuel and to evaluate the current remediation methods using five criteria: efficiency, applicability, cost, time and cleanliness. PAHs are deemed toxic under the Canadian Environmental Protection Act but no standards have been set for PAHs in diesel. The Canadian Council of Ministers of the Environment (CCME has developed Canada-Wide Standards for Petroleum Hydrocarbons in Soil (CWS PHCS while the Atlantic PIRI has implemented a Risk Based Corrective Action (RBCA for the Atlantic region. The remediation methods included soil washing, landfilling, incineration, thermal desorption, radio frequency heating, chemical addition, landfarming, biopiling, composting, bioventing, liquid delivery and bioreactors. The bioreactors studied included: static bed, continuous mix, horizontal drum, fungal compost, slurry-phase, DITS, biofilters and packed bed bioreactors. The results showed that the biological methods were more effective than nonbiological ones and the bioreactors scored the highest among the biological methods. Eight criteria were then used for the evaluation of bioreactors: efficiency, time, cost, maintenance, simplicity, release of VOCs to the atmosphere, containment of contaminants and control of operating parameters The results showed that the continuous mix bioreactor was the most effective system.

  18. Physiochemical technologies for HCB remediation and disposal: a review.

    Science.gov (United States)

    Tong, Man; Yuan, Songhu

    2012-08-30

    Hexachlorobenzene (HCB) is one of the 12 persistent organic pollutants (POPs) listed in "Stockholm Convention". It is hydrophobic, toxic and persistent in the environment. Due to extensive use in the past, HCB contamination is still a serious environmental problem. Strong adsorption on solid particles makes the remediation difficult. This paper presents an overview of the physiochemical technologies for HCB remediation and disposal. The adsorption/desorption behavior of HCB is firstly described because it comprises the fundamental for most remediation technologies. Physiochemical technologies concerned mostly for HCB remediation and disposal, i.e., chemical enhanced washing, electrokinetic remediation, reductive dechlorination and thermal decomposition, are reviewed in terms of fundamentals, state of the art and perspectives. The other physiochemical technologies including chemical oxidation, radiation induced catalytic dechlorination, ultrasonic assisted treatment and mechanochemical dechlorination are also reviewed. The pilot and large scale tests on HCB remediation or disposal are summarized in the end. This review aims to provide useful information to researchers and practitioners regarding HCB remediation and disposal. PMID:22709849

  19. Cognitive Remediation in Schizophrenia: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Stefano Barlati

    2013-01-01

    Full Text Available Objectives. This study is aimed to review the current scientific literature on cognitive remediation in schizophrenia. In particular, the main structured protocols of cognitive remediation developed for schizophrenia are presented and the main results reported in recent meta-analyses are summarized. Possible benefits of cognitive remediation in the early course of schizophrenia and in subjects at risk for psychosis are also discussed. Methods. Electronic search of the relevant studies which appeared in the PubMed database until April 2013 has been performed and all the meta-analyses and review articles on cognitive remediation in schizophrenia have been also taken into account. Results. Numerous intervention programs have been designed, applied, and evaluated, with the objective of improving cognition and social functioning in schizophrenia. Several quantitative reviews have established that cognitive remediation is effective in reducing cognitive deficits and in improving functional outcome of the disorder. Furthermore, the studies available support the usefulness of cognitive remediation when applied in the early course of schizophrenia and even in subjects at risk of the disease. Conclusions. Cognitive remediation is a promising approach to improve real-world functioning in schizophrenia and should be considered a key strategy for early intervention in the psychoses.

  20. Biological Databases

    Directory of Open Access Journals (Sweden)

    Kaviena Baskaran

    2013-12-01

    Full Text Available Biology has entered a new era in distributing information based on database and this collection of database become primary in publishing information. This data publishing is done through Internet Gopher where information resources easy and affordable offered by powerful research tools. The more important thing now is the development of high quality and professionally operated electronic data publishing sites. To enhance the service and appropriate editorial and policies for electronic data publishing has been established and editors of article shoulder the responsibility.

  1. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  2. EREM 2001 - 3. symposium and status report on electrokinetic remediation

    Energy Technology Data Exchange (ETDEWEB)

    Czurda, C.; Haus, R. (eds.); Hoetzl, H.

    2001-07-01

    Papers have been submitted by authors from around the world, reflecting the worldwide interest in electrokinetic remediation techniques. Therefore the symposium series plays a significant role in the presentation of recent advancements in electrochemical decontamination of polluted sediments on both scientific and technical level. In the field of potential cost-saving, innovative in-situ remediation technologies electrokinetics are already identified throughout the world. The main topics of the symposium are: electrokinetic models, electrokinetic transport processes, technical installation, combination of electroremediation with different remediation methods and the application in various electrokinetic field test demonstrations.

  3. Program for providing engineering technical assistance to site remediation managers

    International Nuclear Information System (INIS)

    The Office of Research and Development (ORD) of the U.S. Environmental Protection Agency (USEPA) provides technical support to USEPA Regional Offices which are responsible for overseeing and/or implementing the remediation of contaminated sites. As a result, ORD has developed a number of effective mechanisms for prividing timely, practical and high quality technical support on such site remediation projects, and has produced a variety of technology transfer documents on the topic. The paper describes these activities, with particular emphasis on the program of the USEPA ORD Risk Reduction Engineering Laboratory's program to deal with engineering remediation problems

  4. Bach flower remedies: a systematic review of randomised clinical trials.

    Science.gov (United States)

    Ernst, Edzard

    2010-01-01

    Bach flower remedies continue to be popular and its proponents make a range of medicinal claims for them. The aim of this systematic review was to critically evaluate the evidence for these claims. Five electronic databases were searched without restrictions on time or language. All randomised clinical trials of flower remedies were included. Seven such studies were located. All but one were placebo-controlled. All placebo-controlled trials failed to demonstrate efficacy. It is concluded that the most reliable clinical trials do not show any differences between flower remedies and placebos. PMID:20734279

  5. DWPF SMECT PVV sample characterization and remediation

    International Nuclear Information System (INIS)

    On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (HLW-DWPFTAR-2013-002). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using remediation methods proposed by DWPF. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage. Based upon the SRNL analysis of the SMECT PVV jumper sample material, the following conclusions are put forth: a) The sample material is a heterogeneous mixture of crystalline and noncrystalline species comprising approximately 82 wt.% total solids; b) The order of abundance of elements in the sample is: Hg>>Al>Fe>Si>Th>Ni. The Hg species is non-crystalline and was not identified; c) The material is completely solubilized using a peroxide fusion digestion; mostly solubilized with a hot, pressurized aqua regia digestion leaving primarily Bohmite [AlO(OH)] undissolved; partially solubilized with 8M nitric acid leaving predominately Bohmite and Magnetite [Fe3O4] undissolved along with other trace species; and a bit less partially solubilized with 90% formic acid leaving predominately Bohmite, Magnetite, and Hg species undissolved along with other trace species; d) The dissolution test with 8M nitric acid resulted in significant dissolution of Hg from the material and an overall mass reduction of

  6. WATER AS A REAGENT FOR SOIL REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-03-29

    SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology or hot water extraction (HWE) technology for remediating petroleum-contaminated soils. Most current remediation practices either fail to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites, are too costly, or require the use of organic solvents at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. SRI has conducted experiments to measure the solubility and rate of solubilization of selected PAHs (fluoranthene, pyrene, chrysene, 9,10-dimethylanthracene) in water using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. SRI data shows a very rapid increase in solubility of PAHs with increase in temperature in the range 25-275 C. SRI also measured the rate of solubilization, which is a key factor in determining the reactor parameters. SRI results for fluoranthene, pyrene, chrysene, and 9,10-dimethylanthracene show a linear relationship between rate of solubilization and equilibrium solubility. Also, we have found the rate of solubilization of pyrene at 275 C to be 6.5 ppm/s, indicating that the equilibrium solubilization will be reached in less than 3 min at 275 C; equilibrium solubility of pyrene at 275 C is 1000 ppm. Also, pyrene and fluoranthene appear to have higher solubilities in the presence of sodium carbonate. In addition to this study, SRI studied the rate of removal of selected PAHs from spiked samples under varying conditions (temperature, pore sizes, and pH). We have found a higher removal of PAHs in the presence of sodium carbonate in both sand

  7. What is the prevalence and success of remediation of Emergency Medicine residents?

    Directory of Open Access Journals (Sweden)

    Mark Silverberg

    2015-10-01

    Full Text Available Introduction: The primary objective of this study was to determine the prevalence of remediation, competency domains for remediation, the length, and success rates of remediation in emergency medicine (EM. Methods: We developed the survey in SurveymonkeyTM with attention to content and response process validity. EM program directors responded how many residents had been placed on remediation in the last three years. Details regarding the remediation were collected including indication, length and success. We reported descriptive data and estimated a multinomial logistic regression model. Results: We obtained 126/158 responses (79.7%. Ninety percent of programs had at least one resident on remediation in the last three years. The prevalence of remediation was 4.4%. Indications for remediation ranged from difficulties with one core competency to all six competencies (mean 1.9. The most common were medical knowledge (MK (63.1% of residents, patient care (46.6% and professionalism (31.5%. Mean length of remediation was eight months (range 1-36 months. Successful remediation was 59.9% of remediated residents; 31.3% reported ongoing remediation. In 8.7%, remediation was deemed “unsuccessful.” Training year at time of identification for remediation (post-graduate year [PGY] 1, longer time spent in remediation, and concerns with practice-based learning (PBLI and professionalism were found to have statistically significant association with unsuccessful remediation. Conclusion: Remediation in EM residencies is common, with the most common areas being MK and patient care. The majority of residents are successfully remediated. PGY level, length of time spent in remediation, and the remediation of the competencies of PBLI and professionalism were associated with unsuccessful remediation.

  8. Remedies by competitors for false advertising.

    Science.gov (United States)

    Hirsch, B D; Wilcox, D P

    1990-05-01

    Patients who are victimized as a consequence of false medical advertising are not the only ones who can sue for damages. Under section 43(a) of the Lanham Act, effective November 17, 1989, anyone "who believes that he or she is or is likely to be damaged" by deceptive advertising may bring a civil action for damages (1). Competing physicians may sue other physicians who falsely advertise that they possess unique skills and achieve better results than other physicians because they employ exclusive methods of treatment or claim that certain surgical procedures they perform in the office are absolutely safe and without risk or who advertise false professional credentials to lure patients. Voluntary informed consent excludes the use of deceit. Misrepresentation through advertising deprives a patient of the right to exercise an informed consent (2). A patient who relies on a doctor's false advertising in agreeing to a procedure that causes the patient injury may sue for malpractice even if the procedure was performed without negligence. False medical advertising also exposes the advertiser to litigation by competitors for unfair competition. This article is concerned with the remedy that may be available for instituting private litigation against physicians and other health care providers who engage in untruthful advertising. PMID:2343426

  9. WATER AS A REAGENT FOR SOIL REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  10. Contaminants in Sediments - Remediation and Management

    Directory of Open Access Journals (Sweden)

    Knox A. S.

    2013-04-01

    Full Text Available Metals and organic contaminants are common in many marine and fresh water environments as a result of industrial and military activities. Traditional remediation/risk management options for sediments contaminated with these materials include no action, monitored natural recovery, institutional controls (land use restrictions, etc., in situ treatment and management, and ex situ treatment and management. Active capping is a newer approach for treating contaminated sediments that involves applying chemically reactive amendments to the sediment surface. The mobile, soluble forms of contaminants are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This can be achieved through the application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan in active caps. Active caps can stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column thereby providing an economical and effective alternative to traditional treatments.

  11. Toxic industrial deposit remediation by ant activity

    Science.gov (United States)

    Jilkova, Veronika; Frouz, Jan

    2016-04-01

    Toxic industrial deposits are often contaminated by heavy metals and the substrates have low pH values. In such systems, soil development is thus slowed down by high toxicity and acidic conditions which are unfavourable to soil fauna. Ants (Hymenoptera, Formicidae) are considered tolerant to heavy metal pollution and are known to increase organic matter content and microbial activity in their nests. Here, we focused on soil remediation caused by three ant species (Formica sanguinea, Lasius niger, and Tetramorium sp.) in an ore-washery sedimentation basin near Chvaletice (Czech Republic). Soil samples were taken from the centre of ant nests and from the nest surroundings (>3 m from nests). Samples were then analyzed for microbial activity and biomass and contents of organic matter and nutrients. As a result, ant species that most influenced soil properties was F. sanguinea as there were higher microbial activity and total nitrogen and ammonia contents in ant nests than in the surrounding soil. We expected such a result because F. sanguinea builds conspicuous large nests and is a carnivorous species that brings substantial amounts of nitrogen in insect prey to their nests. Effects of the other two ant species might be lower because of smaller nests and different feeding habits as they rely mainly on honeydew from aphids or on plant seeds that do not contain much nutrients.

  12. Family cognitive remediation therapy for anorexia nervosa.

    Science.gov (United States)

    Lask, Bryan; Roberts, Alice

    2015-04-01

    Anorexia nervosa (AN) in childhood and adolescence has a poor prognosis. It is possible that this may in part be due to the fact that cognitive weaknesses that appear to be risk factors for its development and maintenance are not being targeted in treatment. Through its focus on these deficits, cognitive remediation therapy (CRT) has been shown to be a promising intervention for AN. Furthermore, family interventions are widely recommended for this patient population, but to date no studies have reported the use of CRT in a family setting. This paper presents a case series in which family-based CRT was a significant component of the management. It was well received by patients and their families and previously treatment resistant patients became more engaged with the entire treatment process. In addition, all patients receiving family-based CRT went on to make progress towards recovery. These initial clinical observations suggest family-based CRT is likely to be a useful addition to treatment for child and adolescent AN and justifies formal evaluation. PMID:24096368

  13. Inorganic ion exchangers for nuclear waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  14. Uranium Mining and Remediation in India

    International Nuclear Information System (INIS)

    The paper describes the present situation of uranium mining and remediation in India. In India, the nuclear energy sector encompassing the complete fuel cycle is under the control of Department of Atomic Energy, Government of India. Uranium Corporation of India Ltd. (UCIL), a public sector undertaking under Department of Atomic Energy, with its headquarter at Jaduguda has been operating four underground mines, one opencast mine and two ore processing plants in East Singhbhum district of Jharkhand state. All these units are located in a geologically significant province - called Singhbhum Shear Zone, known for its uranium-copper resources. In addition, two large uranium mining and processing projects have been planned in the States of Andhra Pradesh and Meghalaya. These mines will be brought into production during the period between 2007 and 2012, and thereby increase the uranium production in the country for India's nuclear power programme. Though the mining operations for uranium in India commenced way back in the year 1968, no uranium mine has been closed so far in India. (author)

  15. Coupling risk-based remediation with innovative technology

    International Nuclear Information System (INIS)

    Tiered risk-based cleanup approaches have been effectively used at petroleum sites, pesticide sites and other commercial/industrial facilities. For example, the Illinois Environmental Protection Agency (IEPA) has promulgated guidance for a Tiered Approach to Corrective action Objectives (TACO) to establish site-specific remediation goals for contaminated soil and groundwater. As in the case of many other state programs, TACO is designed to provide for adequate protection of human health and the environment based on potential risks posed by site conditions. It also incorporates site-related information that may allow more cost-effective remediation. IEPA developed TACO to provide flexibility to site owners/operators when formulating site-specific remediation activities, as well as to hasten property redevelopment to return sites to more productive use. Where appropriate, risk-based cleanup objectives as set by TACO-type programs may be coupled with innovative remediation technologies such as air sparging, bioremediation and soil washing

  16. Titania: a material-based approach to oil spill remediation?

    Directory of Open Access Journals (Sweden)

    Roger Narayan

    2010-09-01

    Full Text Available The anatase phase of titania is being considered for use in oil spill remediation due to its high photocatalytic efficiency and its activity under a wide range of environmental conditions.

  17. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene.

    Science.gov (United States)

    Jha, Kshitij C; Liu, Zhuonan; Vijwani, Hema; Nadagouda, Mallikarjuna; Mukhopadhyay, Sharmila M; Tsige, Mesfin

    2016-01-01

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants. PMID:27455218

  18. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Kshitij C. Jha

    2016-07-01

    Full Text Available Adsorption of chlorinated organic contaminants (COCs on carbon nanotubes (CNTs has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE, the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants.

  19. Use of herbal remedies among patients undergoing hemodialysis.

    Science.gov (United States)

    Roozbeh, Jamshid; Hashempur, Mohammad Hashem; Heydari, Mojtaba

    2013-11-01

    This study aims to determine the prevalence, types, and associated factors for the use of herbal remedies in hemodialysis patients. Two hundred participants were selected by stratified sampling and were systematically interviewed. One hundred and twenty-six patients (63%) had used herbal remedies some time since their initiation of dialysis treatment. The users of herbal remedies had a significantly older age than nonusers, but no other significant differences were observed. The most prevalent complaints that led to herbal remedies use were gastroenterological complaints, flushing, and excessive thirst. Cichorium intybus, Borage officinalis, Mentha longifolia, and Matricaria recutita were the most prevalently used herbs in our patients. More study should be done on safety and efficacy of these herbs for hemodialysis patients. PMID:24241097

  20. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  1. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    Science.gov (United States)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  2. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  3. Creating biological nanomaterials using synthetic biology

    Directory of Open Access Journals (Sweden)

    MaryJoe K Rice

    2014-01-01

    Full Text Available Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  4. The Impact of Remediation on Persistence of Under-Prepared College Students

    Science.gov (United States)

    Kreysa, Peter G.

    2007-01-01

    This study examined the influence of individual attributes, high school experience, and college experience upon persistence for remedial and non-remedial students. The subjects were 438 first-time true freshmen who graduated from a large private university on the West Coast. In addition to finding that remedial and non-remedial students did not…

  5. Environmental impact of soil remediation activities: evaluation of quantitative and qualitative tools

    OpenAIRE

    Cappuyns, Valérie

    2012-01-01

    When evaluating remediation technologies for contaminated soil and groundwater, the beneficial effect of the remediation, namely cleaner soil and groundwater, are mostly emphasized without consideration of the environmental impact of the remediation activities themselves. Nevertheless, different qualitative, semi-quantitative and quantitative methods to estimate the environmental impact of soil remediation activities are available. Within the framework of contaminated site management, an envi...

  6. A Guide to Just and Fair Remediation of Counseling Students with Professional Performance Deficiencies

    Science.gov (United States)

    McAdams, Charles R.; Foster, Victoria A.

    2007-01-01

    Ethical standards for counselor training require remediation of students with professional performance deficiencies. However, standards fail to specify the type or extent of remediation necessary to safeguard students' legal rights or justify dismissal if remediation is unsuccessful. Critical assessment of remedial practices in counselor…

  7. Remedial action and waste disposal project: 100-B/C remedial action readiness report

    International Nuclear Information System (INIS)

    This Readiness Evaluation Report presents the results of the project readiness evaluation to assess the readiness of the 100-B/C source sites remediation. The 100-B/C Area is located at the Hanford Site in Richland, Washington. The evaluation was conducted at the conclusion of a series of readiness activities that began in May 1996. These activities included confirming the completion of project specific procedures, training of staff, obtaining support equipment, receipt of subcontractor submittals, approval of subcontractor submittals, and mobilization and construction of site support systems

  8. Remediation of Uranium Impacted Sediments in a Watercourse - 12486

    International Nuclear Information System (INIS)

    In 2009, remediation was initiated for a non-operational fuel cycle facility previously used for government contract work. Between 2009 and the spring of 2011, remediation efforts were focused on demolition of contaminated buildings and removal of contaminated soil. In the late spring of 2011, the last phase of remediation commenced involving the removal of contaminated sediments from portions of a 1,200 meter long gaining stream. Planning and preparation for remediation of the stream began in 2009 with submittal of permit applications to undertake construction activities in a wetland area. The permitting process was lengthy and involved securing permits from multiple agencies. However, early and frequent communication with stakeholders played an integral role in efficiently obtaining the permit approvals. Frequent communication with stakeholders throughout the planning and remediation process also proved to be a key factor in timely completion of the project. The remediation of the stream involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste packaging, transportation and disposal. Many safeguards were employed to protect several species of concern in the work area, water management during project activities, challenges encountered during the project, methods of Final Status Survey, and stream restoration. The planning and permitting effort for the Site Brook remediation began in May 2009 and permits were approved and in place by February 2011. The remediation and restoration of the Site Brook began in April 2011 and was completed in November 2011. The remediation of the Site Brook involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste

  9. Enhancing the Efficiency of Electrokinetic Remediation through Technology Integration

    Science.gov (United States)

    Zhang, M.; Komai, T.

    2009-12-01

    Remediation or cleanup of soils and groundwater polluted by heavy metals remains a challenge in the field of geo-environmental engineering. Many sites, like ore dressing plants, electroplating plants and battery factories may be polluted by heavy metals. In addition, some natural factors like metal deposits or abundant metal mines, hot springs and volcanic eruptions may also cause heavy metal pollutions. Unlike organic pollutants, heavy metals do not decay naturally, and active approaches to remediation are generally necessary. Although electrokinetic method is considered to be the only technique that is highly-perspective for in situ remediation of heavy metals, and numerous bench-scale studies as well as a few pilot scale experiments illustrated its applicability, this technique has not yet been widely used in practice due to the low efficiencies and/or unacceptable long remediation periods. To enhance the total efficiency of electrokinetic remediation, a systematic approach by integrating different technologies is proposed. This systematic approach includes 1) on-site quick mapping for screening out localized pollution areas, characterizing chemical composition of polluted soils, and for examining the progress of in situ remediation; 2) electrical resistivity tomography(ERT) or electrical resistivity imaging(ERI) for predicting geological structure and hydrogeological boundaries conditions of a polluted site, and for optimizing parameters like voltage and current density for an effective remediation; 3) the use of solar energy to increase flexibility in and applicability of electrokinetic technique; 4) combination with large scale modeling tests for a pertinent evaluation of the feasibility related to electrokinetic remediation for a given soil type taken from a specific polluted site; 5) combination with risk-assessment method to determine feasible cleanup levels; and 6) recovery of heavy metals deposited on electrode plates for possible use as resources

  10. K basins interim remedial action health and safety plan

    Energy Technology Data Exchange (ETDEWEB)

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  11. Radio frequency heating for in-situ remediation of DNAPL

    Energy Technology Data Exchange (ETDEWEB)

    Kasevich, R.S. [KAI Technologies, Woburn, MA (United States)

    1996-08-01

    In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.

  12. Electrodialytic Remediation of Soil Polluted with Copper from Wood Preservation

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik; Laursen, Søren;

    1997-01-01

    The principle of electrodialytic soil remediation was tested in six experiments on a copper polluted loamy sand. It was possible to decontaminate from 1360 to below 40 mg of Cu/kg of dry soil......The principle of electrodialytic soil remediation was tested in six experiments on a copper polluted loamy sand. It was possible to decontaminate from 1360 to below 40 mg of Cu/kg of dry soil...

  13. Structural Biology Fact Sheet

    Science.gov (United States)

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  14. Development of a green remediation tool in Japan.

    Science.gov (United States)

    Yasutaka, Tetsuo; Zhang, Hong; Murayama, Koki; Hama, Yoshihito; Tsukada, Yasuhisa; Furukawa, Yasuhide

    2016-09-01

    The green remediation assessment tool for Japan (GRATJ) presented in this study is a spreadsheet-based software package developed to facilitate comparisons of the environmental impacts associated with various countermeasures against contaminated soil in Japan. This tool uses a life-cycle assessment-based model to calculate inventory inputs/outputs throughout the activity life cycle during remediation. Processes of 14 remediation methods for heavy metal contamination and 12 for volatile organic compound contamination are built into the tool. This tool can evaluate 130 inventory inputs/outputs and easily integrate those inputs/outputs into 9 impact categories, 4 integrated endpoints, and 1 index. Comparative studies can be performed by entering basic data associated with a target site. The integrated results can be presented in a simpler and clearer manner than the results of an inventory analysis. As a case study, an arsenic-contaminated soil remediation site was examined using this tool. Results showed that the integrated environmental impacts were greater with onsite remediation methods than with offsite ones. Furthermore, the contributions of CO2 to global warming, SO2 to urban air pollution, and crude oil to resource consumption were greater than other inventory inputs/outputs. The GRATJ has the potential to improve green remediation and can serve as a valuable tool for decision makers and practitioners in selecting countermeasures in Japan. PMID:26803220

  15. Strategic Considerations for the Sustainable Remediation of Nuclear Installations

    International Nuclear Information System (INIS)

    Nuclear sites around the world are being decommissioned and remedial actions are being undertaken to enable sites, or parts of sites, to be reused. Although such activities are relatively straightforward for most sites, experience has suggested that preventative action is needed to minimise the impact of remediation activities on the environment and the potential burden to future generations. Removing all contamination in order to make a site suitable for any use generates waste and has associated environmental, social and economic drawbacks and benefits. Site remediation should thus be sustainable and result in an overall net benefit. This report draws on recent experience of NEA member countries in nuclear site remediation during decommissioning in order to identify strategic considerations for the sustainable remediation of subsurface contamination - predominantly contaminated soil and groundwater - to describe good practice, and to make recommendations for further research and development. It provides insights for the decision makers, regulators, implementers and stakeholders involved in nuclear site decommissioning so as to ensure the sustainable remediation of nuclear sites, now and in the future. (authors)

  16. Functioning of metal contaminated garden soil after remediation

    International Nuclear Information System (INIS)

    The effect of remediation using three EDTA doses (10, 30, 60 mmol kg−1) on soil functioning was assessed using column experiment and Brassica rapa. Soil washing removed up to 77, 29 and 72% of metals from soil contaminated with 1378, 578 and 8.5 mg kg−1 of Pb, Zn and Cd, respectively. Sequential extraction indicated removal from the carbonate soil fraction. Metal oral-accessibility from the stomach phase was reduced by up to 75 and from the small intestine by up to 79% (Pb). Part of metals (up to 0.8% Cd) was lost due to leaching from columns. Remediation reduced toxic metal soil-root transfer by up to 61% but did not prevent metal accumulation in leaves. The fitness of plants grown on EDTA washed soils (gas exchange, fluorescence) was not compromised. Remediation initially reduced the soil DNA content (up to 29%, 30 mmol kg−1 EDTA) and changed the structure of microbial population. -- Highlights: ► Toxic metals contaminated garden soil was remediated in a pilot-scale. ► EDTA washing reduced soil Pb, Zn and Cd content and bioavailability. ► Remediated soil preserved the function of plant and microbial substrate. ► Remediation didn't prevent the accumulation of toxic metals in the test plant. -- EDTA soil washing effectively removed toxic metals and reduced their transfer from the soil to plant roots but did not prevent their accumulation in leaves

  17. Environmental remediation and waste management in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Muntzing, L. Manning; Person, John C.

    1995-12-31

    Environmental remediation of radioactively and chemically contaminated sites represents one of the most complex challenges of our age. From a practical view point, if contaminated sites can not be successfully remediated, the future of the nuclear industry and of other industries could be challenged. From a moral standpoint, this generation has an obligation to remedy the harmful by-products of the otherwise necessary and beneficial activities in which is has engaged. The task is challenging for several reasons. First, standards governing remedial action are complex and constantly evolving. Second, unless contaminated material is to be stabilized in place, it must be removed and sent to another facility for storage and ultimate disposal. Yet, there is a shortage of such facilities and it is becoming increasingly difficult to develop additional ones. Third, the task is technically demanding. Fourth, the challenge is a risky one, Those who seek to remediate past contamination may find themselves exposed to expanding and unfair allegations of liability for that very contamination. Finally, there is often a basis crisis of public confidence regarding remediation efforts which overshadows and permeates the foregoing considerations. (author).

  18. The problem resident behavior guide: strategies for remediation.

    Science.gov (United States)

    Williamson, Kelly; Quattromani, Erin; Aldeen, Amer

    2016-04-01

    In 2012, the ACGME supplemented the core competencies with outcomes-based milestones for resident performance within the six competency domains. These milestones address the knowledge, skills, abilities, attitudes, and experiences that a resident is expected to progress through during the course of training. Even prior to the initiation of the milestones, there was a paucity of EM literature addressing the remediation of problem resident behaviors and there remain few readily accessible tools to aid in the implementation of a remediation plan. The goal of the "Problem Resident Behavior Guide" is to provide specific strategies for resident remediation based on deficiencies identified within the framework of the EM milestones. The "Problem Resident Behavior Guide" is a written instructional manual that provides concrete examples of remediation strategies to address specific milestone deficiencies. The more than 200 strategies stem from the experiences of the authors who have professional experience at three different academic hospitals and emergency medicine residency programs, supplemented by recommendations from educational leaders as well as utilization of valuable education adjuncts, such as focused simulation exercises, lecture preparation, and themed ED shifts. Most recommendations require active participation by the resident with guidance by faculty to achieve the remediation expectations. The ACGME outcomes-based milestones aid in the identification of deficiencies with regards to resident performance without providing recommendations on remediation. The Problem Resident Behavior Guide can therefore have a significant impact by filling in this gap.

  19. Bioelectrochemical system platform for sustainable environmental remediation and energy generation.

    Science.gov (United States)

    Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason

    2015-01-01

    The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development. PMID:25886880

  20. Development of a green remediation tool in Japan.

    Science.gov (United States)

    Yasutaka, Tetsuo; Zhang, Hong; Murayama, Koki; Hama, Yoshihito; Tsukada, Yasuhisa; Furukawa, Yasuhide

    2016-09-01

    The green remediation assessment tool for Japan (GRATJ) presented in this study is a spreadsheet-based software package developed to facilitate comparisons of the environmental impacts associated with various countermeasures against contaminated soil in Japan. This tool uses a life-cycle assessment-based model to calculate inventory inputs/outputs throughout the activity life cycle during remediation. Processes of 14 remediation methods for heavy metal contamination and 12 for volatile organic compound contamination are built into the tool. This tool can evaluate 130 inventory inputs/outputs and easily integrate those inputs/outputs into 9 impact categories, 4 integrated endpoints, and 1 index. Comparative studies can be performed by entering basic data associated with a target site. The integrated results can be presented in a simpler and clearer manner than the results of an inventory analysis. As a case study, an arsenic-contaminated soil remediation site was examined using this tool. Results showed that the integrated environmental impacts were greater with onsite remediation methods than with offsite ones. Furthermore, the contributions of CO2 to global warming, SO2 to urban air pollution, and crude oil to resource consumption were greater than other inventory inputs/outputs. The GRATJ has the potential to improve green remediation and can serve as a valuable tool for decision makers and practitioners in selecting countermeasures in Japan.

  1. Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, William [Navarro Research and Engineering

    2016-05-23

    The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uranium processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.

  2. Cost benefit analysis for remediation of a nuclear industry landfill

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Tom; Hardisty, Paul [WorleyParsons Komex, Bristol (United Kingdom); Dennis, Frank; Liddiard, Mark; McClelland, Paul [UKAEA, Dounreay (United Kingdom)

    2006-09-15

    An old landfill site, licensed to receive inert construction waste, is situated on the top of hard rock cliffs adjacent to the sea at the Dounreay nuclear facility in Scotland. During restoration and investigation work at the landfill, radioactively contaminated material and asbestos was identified. UKAEA subsequently investigated the feasibility of remediating the landfill with the aim of removing any remaining radioactive or otherwise-contaminated material. The cost of landfill remediation would be considerable, making Cost Benefit Analysis (CBA) an ideal tool for assessing remediation options. The overall conclusion of the CBA, from a remedial decision making point of view, is that the remediation objective for the landfill should be to reduce any impacts to the current receptors through a comprehensive pathway control scheme. This would be considerably less expensive than even a limited source removal approach. Aggressive source removal objectives are not likely to be economic, even under the most conservative assumptions. A natural monitored attenuation approach will not be economic. All remediation options are considered assuming compliance with the existing regulatory requirements to monitor and cap the landfill before and after closure.

  3. Bioelectrochemical system platform for sustainable environmental remediation and energy generation.

    Science.gov (United States)

    Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason

    2015-01-01

    The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development.

  4. [Optimization of electrode configuration in soil electrokinetic remediation].

    Science.gov (United States)

    Liu, Fang; Fu, Rong-Bing; Xu, Zhen

    2015-02-01

    Electric field distributions of several different electrode configurations in non-uniform electric field were simulated using MATLAB software, and the electrokinetic remediation device was constructed according to the best electrode configuration. The changes of soil pH and heavy metal residues in different parts of the device during the electrokinetic remediation were also studied. The results showed that, in terms of the effectiveness of the electric field strength, the square (1-D-1) and hexagonal (2-D-3) were the optimal electrode configurations for one-dimensional and two-dimensional respectively and the changes of soil pH, the removal of heavy metals and the distribution of electric field were closely related to one another. An acidic migration band, which could prevent premature precipitation of heavy metals to a certain extent and promote electrokinetic removal of heavy metals, was formed gradually along with the remediation in the whole hexagon device when the cathodic pH was controlled during the remediation of the four cationic metallic ions, Cd2+, Ni2+, Pb2+ and Cu2+. After 480-hour remediation, the total removals of Cd, Ni, Pb and Cu were 86.6%, 86.2%, 67.7% and 73.0%, respectively. Remediation duration and replacement frequency of the electrodes could be adjusted according to the repair target. PMID:26031098

  5. Integrated technologies for expedited soil and groundwater remediation

    International Nuclear Information System (INIS)

    A fast-track and economic approach was necessary to meet the needs of a property transfer agreement and to minimize impact to future usage of a site in the Los Angeles Basin. Woodward-Clyde responded by implementing site investigation, remedial action plan preparation for soil and groundwater, and selection and installation of remedial alternatives in an aggressive schedule of overlapped tasks. Assessment of soil and groundwater was conducted at the site, followed by design and construction of remediation systems. This phase of activity was completed within 2 years. Soil and groundwater were found to be impacted by chlorinated solvents and petroleum hydrocarbons. A vapor extraction system (2,000 scfm capacity) was installed for soil remediation, and an innovative air sparging system was installed for cost effective groundwater cleanup. A bioventing system was also applied in selected areas. The vapor extraction wellfield consists of 26 extraction and monitoring well points, with multiple screened casings. The air sparging wellfield consists of 32 sparging wells with a designed maximum flow of 400 scfm. The systems began operation in 1993, and have resulted in the estimated removal of approximately 30,000 pounds of contaminants, or about 90% of the estimated mass in place. The combined vapor extraction/air sparging system is expected to reduce the time for on-site groundwater remediation from 1/3 to 1/6 the time when compared to the conventional pump and treat method for groundwater remediation

  6. The problem resident behavior guide: strategies for remediation.

    Science.gov (United States)

    Williamson, Kelly; Quattromani, Erin; Aldeen, Amer

    2016-04-01

    In 2012, the ACGME supplemented the core competencies with outcomes-based milestones for resident performance within the six competency domains. These milestones address the knowledge, skills, abilities, attitudes, and experiences that a resident is expected to progress through during the course of training. Even prior to the initiation of the milestones, there was a paucity of EM literature addressing the remediation of problem resident behaviors and there remain few readily accessible tools to aid in the implementation of a remediation plan. The goal of the "Problem Resident Behavior Guide" is to provide specific strategies for resident remediation based on deficiencies identified within the framework of the EM milestones. The "Problem Resident Behavior Guide" is a written instructional manual that provides concrete examples of remediation strategies to address specific milestone deficiencies. The more than 200 strategies stem from the experiences of the authors who have professional experience at three different academic hospitals and emergency medicine residency programs, supplemented by recommendations from educational leaders as well as utilization of valuable education adjuncts, such as focused simulation exercises, lecture preparation, and themed ED shifts. Most recommendations require active participation by the resident with guidance by faculty to achieve the remediation expectations. The ACGME outcomes-based milestones aid in the identification of deficiencies with regards to resident performance without providing recommendations on remediation. The Problem Resident Behavior Guide can therefore have a significant impact by filling in this gap. PMID:26667256

  7. Simulating Biological and Non-Biological Motion

    Science.gov (United States)

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  8. Biological Literacy in a College Biology Classroom.

    Science.gov (United States)

    Demastes, Sherry; Wandersee, James H.

    1992-01-01

    Examines the proposed definition of biological literacy as the understanding of a small number of pervasive biological principles appropriate to making informed personal and societal decisions. Utilizes the content of a major daily newspaper to adjust biology instruction to focus on this notion of biological literacy. Discusses benefits and…

  9. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  10. Enhancing a Groundwater Remedy for TCE with ISCO

    International Nuclear Information System (INIS)

    This paper will describe the results of an in situ chemical oxidation (ISCO) remedial action currently in progress to address subsurface contamination by trichloroethene (TCE). The U.S. Department of Energy is responsible for the cleanup of environmental media at the Portsmouth Gaseous Diffusion Plant (PORTS) in southern Ohio. During construction of the PORTS facility in the early 1950's, an electrical substation was constructed in the area of the X-740 Solid Waste Management Unit. The switchyard was removed upon completion of the X-530A Switchyard located directly north of the area. Adjacent to the area, the X-740 Waste Oil Handling Facility was constructed in 1982 and was in operation until 1992. Groundwater contamination at the X-740 area was first discovered during the Quadrant III RCRA Facility Investigation (RFI) Phase I field investigation conducted in 1992. The size of the TCE plume has remained relatively unchanged since 1999. The maximum detection of TCE concentration in a single monitoring well is 7600 ug/L. The RFI process began in 1992 and was completed in 1997. The Cleanup Alternatives Study/Corrective Measures Study (CAS/CMS) report was approved on July 1998. The selected remedy for the X-740 groundwater plume, phyto-remediation, was presented in the Decision Document for Quadrant III, approved in May of 1999. The major components of the selected remedy include phyto-remediation by planting one-year-old hybrid poplar trees in the area of groundwater contamination; groundwater monitoring to confirm that the containment and treatment of contaminants sufficiently protect human health and the environment; and site deed restrictions that include retaining the existing security fencing to restrict access to prevent exposure to contaminated media, and to limit disturbance of the area, ensuring the integrity of the remedial action. The X-740 Phyto-remediation System was constructed and implemented in 1999. Based on the monitoring results, the 2007 evaluation

  11. What is the Prevalence and Success of Remediation of Emergency Medicine Residents?

    OpenAIRE

    Mark Silverberg; Moshe Weizberg; Tiffany Murano; Smith, Jessica L.; John C. Burkhardt; Santen, Sally A.

    2015-01-01

    Introduction: The primary objective of this study was to determine the prevalence of remediation, competency domains for remediation, the length, and success rates of remediation in emergency medicine (EM). Methods: We developed the survey in SurveymonkeyTM with attention to content and response process validity. EM program directors responded how many residents had been placed on remediation in the last three years. Details regarding the remediation were collected inclu...

  12. Evaluation of social aspects within the sustainability assessment of soil remediation projects

    OpenAIRE

    Cappuyns, Valérie; Vande Cauter, Lore

    2015-01-01

    Sustainable remediation requires a balanced decision-making process in which environmental, economic and social aspects of different remediation options are all considered together and the optimum remediation solution is selected. Usually more attention is paid to the evaluation of environmental and economic aspects, in particular to reduce the human and environmental risks and to the remediation costs, to the detriment of social aspects of remediation. This paper investigates, how socia...

  13. Programmatic Environmental Report for remedial actions at UMTRA (Uranium Mill Tailings Remedial Action) Project vicinity properties

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    This Environmental Report (ER) examines the environmental consequences of implementing a remedial action that would remove radioactive uranium mill tailings and associated contaminated materials from 394 vicinity properties near 14 inactive uranium processing sites included in the Uranium Mill Tailings Remedial Action (UMTRA) Project pursuant to Public Law 95--604, the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Vicinity properties are those properties in the vicinity of the UMTRA Project inactive mill sites, either public or private, that are believed to be contaminated by residual radioactive material originating from one of the 14 inactive uranium processing sites, and which have been designated under Section 102(a)(1) of UMTRCA. The principal hazard associated with the contaminated properties results from the production of radon, a radioactive decay product of the radium contained in the tailings. Radon, a radioactive gas, can diffuse through the contaminated material and be released into the atmosphere where it and its radioactive decay products may be inhaled by humans. A second radiation exposure pathway results from the emission of gamma radiation from uranium decay products contained in the tailings. Gamma radiation emitted from contaminated material delivers an external exposure to the whole body. If the concentration of radon and its decay products is high enough and the exposure time long enough, or if the exposure to direct gamma radiation is long enough, cancers (i.e., excess health effects) may develop in persons living and working at the vicinity properties. 3 refs., 7 tabs.

  14. Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies.

    Science.gov (United States)

    Gomes, Helena I; Dias-Ferreira, Celia; Ribeiro, Alexandra B

    2012-06-01

    Electrokinetic remediation has been increasingly used in soils and other matrices for numerous contaminants such as inorganic, organic, radionuclides, explosives and their mixtures. Several strategies were tested to improve this technology effectiveness, namely techniques to solubilize contaminants, control soil pH and also couple electrokinetics with other remediation technologies. This review focus in the experimental work carried out in organochlorines soil electroremediation, aiming to systemize useful information to researchers in this field. It is not possible to clearly state what technique is the best, since experimental approaches and targeted contaminants are different. Further research is needed in the application of some of the reviewed techniques. Also a number of technical and environmental issues will require evaluation for full-scale application. Removal efficiencies reported in real contaminated soils are much lower than the ones obtained with spiked kaolinite, showing the influence of other factors like aging of the contamination and adsorption to soil particles, resulting in important challenges when transferring technologies into the field. PMID:22386462

  15. Environmental impact of differently remediated hard coal overburden and tailings dumps a few decades after remediation

    Energy Technology Data Exchange (ETDEWEB)

    Willscher, S. [Technical Univ. of Dresden (Germany). Inst. of Waste Management and Contaminated Site Treatment; Hertwig, T. [BEAK Consultants GmbH, Freiburg (Germany); Felix, M.; Sohr, A. [Saxonian State Dept. of Environment, Agriculture and Geology, Freiburg (Germany)

    2010-07-01

    Coal mining in the Saxony region of Germany has caused heavy metal and arsenic pollution in adjacent groundwater and surface waters. Coal waste dumping sites are leaching heavy metals and metalloids in the form of fine precipitates into local rivers. This paper studied the different remediation strategies used at 3 different dump sites in the area. The aim of the study was to determine the environmental impact of the dumps and evaluate the long-term effects of remediation measures. The dumps consisted of coarse to fine-grained materials from former processing activities, and contained pyrite in varying concentrations. Samples from different depth as well as groundwater samples were taken from the sites and investigated for their mechanical, geological, geochemical, biogeochemical, and physico-chemical characteristics. Seepage formation rates and contaminant loads at the dump sites were compared. The study showed that the revegetation of dump surfaces can help to prevent against erosion, but cannot prevent acid mine drainage (AMD) generation. The additional seals and covers placed at 2 of the dumps resulted in a high reduction of seepage waters, and almost no acidification of dump materials. 5 refs., 1 fig.

  16. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    OpenAIRE

    Rongjun Su; Guangshan Zhang; Peng Wang; Shixiong Li; Ryan M. Ravenelle; JOHN C. CRITTENDEN

    2015-01-01

    Rotating biological contactors (RBC) are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW). The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%....

  17. Hazardous wastes in aquatic environments: Biological uptake and metabolism studies

    Energy Technology Data Exchange (ETDEWEB)

    Barber, J.; Apblett, A.; Ensley, H. [and others

    1996-05-02

    The projects discussed in this article include the following: the uptake, accumulation, metabolism, toxicity and physiological effects of various environmentally-important contaminants, inorganic and organic, in several wetland species that are interrelated through food webs; and investigation of the potential for developing and linking chemical and biological methods of remediation so as to encapsulate bioaccummulated ions in stable wasteforms such as ceramics and/or zeolites. 24 refs.

  18. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities

    OpenAIRE

    Shukranul Mawa; Khairana Husain; Ibrahim Jantan

    2013-01-01

    This paper describes the botanical features of Ficus carica L. (Moraceae), its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is l...

  19. Electrostatic Tractor Analysis for GEO Debris Remediation

    Science.gov (United States)

    Hogan, Erik A.

    The high value of operating in the geostationary ring, coupled with increasing numbers of orbital debris, highlights the need for GEO debris remediation techniques. One recent proposed technique for GEO debris mitigation is the electrostatic tractor. Here, a tug vehicle approaches a target debris object and emits a focused electron beam onto it. This results in a negative charge on the debris, and a positive charge on the tug vehicle. Due to the near proximity of the highly charged objects (20 meters or less) an attractive electrostatic force on the order of milliNewtons results. This electrostatic force is used in conjunction with low thrusting by the tug vehicle to tow the debris object into a disposal orbit 200-300 kilometers above the GEO belt. During the tugging period, the charged relative motion between tug and deputy is stabilized through a feedback control law. This is accomplished using a novel relative motion description that isolates separation distance from the relative orientation. The equations of motion for the relative motion description are derived from the Clohessy-Wiltshire equations, assuming the debris object is in a nearly circular orbit. Lyapunov stability theory is used to derive an asymptotically stable control law for the tug thrusters during the towing period. The control law requires an estimate of the electrostatic force magnitude, and the impacts of improperly modeled charging on control response are determined. If the electrostatic force is under-predicted too severely, a collision may result. A bound on the control gains is determined to prevent such a collision. Expected reorbiting performance levels achievable with the electrostatic tractor are computed. An open-loop analytical performance study is performed where variational equations are used to predict how much general orbital elements may be changed using the electrostatic tractor over one orbital period for a towed object at geosynchronous altitude. In contrast to earlier

  20. Creating biological nanomaterials using synthetic biology

    OpenAIRE

    MaryJoe K Rice; Ruder, Warren C.

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic bi...

  1. Site characterisation and monitoring for environmental remediation

    International Nuclear Information System (INIS)

    Available in abstract form only. Full text of publication follows: Radioactive contamination of nuclear and mineral processing sites can be very varied. Early work in the extraction of uranium and thorium led to the disposal of large amounts of waste containing a variety of daughter radioisotopes. Later, the development of nuclear weapon programs led to large scale processing of uranium and thorium ores, physical separation of isotopes, and the initiation of nuclear fission with the resulting production of fission product radionuclides and activated metals. Weapons testing and reprocessing of reactor fuel again led to the release of fission and activation products, together with radioelements from the chemistry of fuel extraction. Finally the recovery of oil and gas reserves have once again led to renewed interest in NORM (naturally occurring radioactive materials) in the form of Pb-210/Po-210 scales in gas pipelines and Ra-226/Ra-228 in oil pipelines. Methods of monitoring for the contamination generated from all of these processes are considered together with recommended monitoring options for contamination products using gamma, beta and alpha measuring techniques. Specific examples of several site characterisation and monitoring projects are given - covering site investigation through to in-situ and on-site monitoring during the actual remediation. Many of the projects described are of a large scale, typically involving many thousands of tons of waste material. The rapid identification and sentencing into the relevant waste categories is essential in support of on-site civil engineering processes. Consideration of tailoring the monitoring process to achieve such high throughput rates is given. (authors)

  2. Source apportionment in oil spill remediation.

    Science.gov (United States)

    Muñoz, Jorge; Mudge, Stephen M; Loyola-Sepulveda, Rodrigo; Muñoz, Gonzalo; Bravo-Linares, Claudio

    2012-05-01

    A pipe rupture during unloading led to a spillage of 350-700 tonnes of Caño Limon, a light sweet crude oil, into San Vicente Bay in 2007. Initial clean-up methods removed the majority of the oil from the sandy beaches although some oil remained on the rocky shores. It was necessary for the responsible party to clean the spilled oil even though at this location there were already crude oil hydrocarbons from previous industrial activity. A biosolvent based on vegetable oil derivatives was used to solubilise the remaining oil and a statistical approach to source apportionment was used to determine the efficacy of the cleaning. Sediment and contaminated rock samples were taken prior to cleaning and again at the same locations two days after application of the biosolvent. The oil was extracted using a modified USEPA Method 3550B. The alkanes were quantified together with oil biomarkers on a GC-MS. The contribution that Caño Limon made to the total oil hydrocarbons was calculated from a Partial Least Squares (PLS) analysis using Caño Limon crude oil as the source. By the time the biosolvent was applied, there had already been some attenuation of the oil with all alkanes remediation unnecessary. PMID:22588176

  3. Source apportionment in oil spill remediation.

    Science.gov (United States)

    Muñoz, Jorge; Mudge, Stephen M; Loyola-Sepulveda, Rodrigo; Muñoz, Gonzalo; Bravo-Linares, Claudio

    2012-05-01

    A pipe rupture during unloading led to a spillage of 350-700 tonnes of Caño Limon, a light sweet crude oil, into San Vicente Bay in 2007. Initial clean-up methods removed the majority of the oil from the sandy beaches although some oil remained on the rocky shores. It was necessary for the responsible party to clean the spilled oil even though at this location there were already crude oil hydrocarbons from previous industrial activity. A biosolvent based on vegetable oil derivatives was used to solubilise the remaining oil and a statistical approach to source apportionment was used to determine the efficacy of the cleaning. Sediment and contaminated rock samples were taken prior to cleaning and again at the same locations two days after application of the biosolvent. The oil was extracted using a modified USEPA Method 3550B. The alkanes were quantified together with oil biomarkers on a GC-MS. The contribution that Caño Limon made to the total oil hydrocarbons was calculated from a Partial Least Squares (PLS) analysis using Caño Limon crude oil as the source. By the time the biosolvent was applied, there had already been some attenuation of the oil with all alkanes oil in this case and the contribution that Caño Limon made to the total oil ranged from 0% to 74%. The total hydrocarbon concentrations were lower after cleaning indicating an efficacy of 90% although the reduction in Caño Limon oil was smaller. This was sufficient to make further remediation unnecessary.

  4. Hydrogeological modeling of prb for remediation of a contaminated site

    Science.gov (United States)

    Yang, Y. S.; McGeogh, K. L.; Kalin, R. M.

    2003-04-01

    In recent decades great effort has been spent on restoration of contaminated environment and considerable progress has been made in improving environmental quality. However, challenges still exist in some areas, such as remediation of contaminated land and groundwater. To provide sufficient remediation and protection for land and groundwater underneath, minimize environmental risk in infrastructure maintenance and urban re-development in terms of contamination remediation, it is necessary to incorporate understanding of the sub-surface conditions in the decision-making process. Characterization of regional and site-specific hydrogeological systems plays an important role in remediation of contaminated sites. Advanced modeling techniques can realize and improve characterization of complex hydrogeological systems. Numerical models can provide straightforward approaches for remediation designs. In this paper, a case study on hydrogeologic modeling of Permeable Reactive Barriers (PRB) for remediation of a contaminated site in the dockland area of Dublin, Ireland, is presented. The groundwater modeling maneuvers were carried out in three strands: regional characterization, zoom-in model in a smaller area; and detailed site-specific study. The regional hydrogeology and groundwater systems were characterized to form a regional conceptual model; a more detailed zoom-in 3-D model was further constructed in the quayside area to simulate the impact of adjacent remedial action and diurnally tidal fluctuation; finally, a site-specific model was built to study the detailed flow field and design the best remediation option. This site model was calibrated with field-monitored data under natural condition; hydraulic parameter, time varying river boundary and head-dependant boundary conditions were calibrated to achieve best fits between modeled and observed groundwater heads. The calibrated model then was used to carry out a remediation plan design using Permeable Reactive Barriers

  5. Systems Biology Knowledgebase for a New Era in Biology A Genomics:GTL Report from the May 2008 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Gregurick, S.; Fredrickson, J. K.; Stevens, R.

    2009-03-01

    Biology has entered a systems-science era with the goal to establish a predictive understanding of the mechanisms of cellular function and the interactions of biological systems with their environment and with each other. Vast amounts of data on the composition, physiology, and function of complex biological systems and their natural environments are emerging from new analytical technologies. Effectively exploiting these data requires developing a new generation of capabilities for analyzing and managing the information. By revealing the core principles and processes conserved in collective genomes across all biology and by enabling insights into the interplay between an organism's genotype and its environment, systems biology will allow scientific breakthroughs in our ability to project behaviors of natural systems and to manipulate and engineer managed systems. These breakthroughs will benefit Department of Energy (DOE) missions in energy security, climate protection, and environmental remediation.

  6. Magnetic biosensor system to detect biological targets

    KAUST Repository

    Li, Fuquan

    2012-09-01

    Magneto-resistive sensors in combination with magnetic beads provide sensing platforms, which are small in size and highly sensitive. These platforms can be fully integrated with microchannels and electronics to enable devices capable of performing complex tasks. Commonly, a sandwich method is used that requires a specific coating of the sensor\\'s surface to immobilize magnetic beads and biological targets on top of the sensor. This paper concerns a micro device to detect biological targets using magnetic concentration, magnetic as well as mechanical trapping and magnetic sensing. Target detection is based on the size difference between bare magnetic beads and magnetic beads with targets attached. This method remedies the need for a coating layer and reduces the number of steps required to run an experiment. © 2012 IEEE.

  7. Cost-effectiveness analysis of radon remediation in schools

    International Nuclear Information System (INIS)

    Indoor radon is an important source of radiation dosage in the general population and has been recognised as a world-wide environmental and public health challenge. Governments in many Western and Eastern European and North American countries are undertaking active radon-risk reduction policies, including the remediation of existing residential and work place building stocks (1). These endeavours include a priority of remediating school buildings. Epidemiological and technical radon research has produced information which has enabled attention to be turned to specific effectiveness and optimisation questions regarding radon identification and remediation programmes in buildings, including schools. Decision making about policy implementation has been an integral part of these programmes and questions have been raised about the economic implications of the regulations and optimisation strategies for workplace action level policy (2,3). (the action level applied to schools is 400 Bq m-3). No previous study has estimated the cost-effectiveness of a radon remediation programme for schools using the methodological framework now considered appropriate in the economic evaluation of health interventions. It is imperative that this should be done, in order that the resources required to obtain health gain from radon remediation in schools can be systematically compared with equivalent data for other health interventions and radon remediation programmes. In this study a cost-effectiveness analysis of radon remediation in schools was undertaken, using the best available national data and information from Northamptonshire on the costs and effectiveness of radon identification and remediation in schools, and the costs and health impact of lung cancer cases. A model based on data from Northamptonshire is presented (where 6.3% of residential stock is over 200 Bq m-3). The resultant cost-effectiveness ratio was pound 7,550 per life year gained in pound 1997. Results from the

  8. Spectral induced polarization for monitoring electrokinetic remediation processes

    Science.gov (United States)

    Masi, Matteo; Losito, Gabriella

    2015-12-01

    Electrokinetic remediation is an emerging technology for extracting heavy metals from contaminated soils and sediments. This method uses a direct or alternating electric field to induce the transport of contaminants toward the electrodes. The electric field also produces pH variations, sorption/desorption and precipitation/dissolution of species in the porous medium during remediation. Since heavy metal mobility is pH-dependent, the accurate control of pH inside the material is required in order to enhance the removal efficiency. The common approach for monitoring the remediation process both in laboratory and in the field is the chemical analysis of samples collected from discrete locations. The purpose of this study is the evaluation of Spectral Induced Polarization as an alternative method for monitoring geochemical changes in the contaminated mass during remediation. The advantage of this technique applied to field-scale is to offer higher resolution mapping of the remediation site and lower cost compared to the conventional sampling procedure. We carried out laboratory-scale electrokinetic remediation experiments on fine-grained marine sediments contaminated by heavy metal and we made Spectral Induced Polarization measurements before and after each treatment. Measurements were done in the frequency range 10- 3-103 Hz. By the deconvolution of the spectra using the Debye Decomposition method we obtained the mean relaxation time and total chargeability. The main finding of this work is that a linear relationship exists between the local total chargeability and pH, with good agreement. The observed behaviour of chargeability is interpreted as a direct consequence of the alteration of the zeta potential of the sediment particles due to pH changes. Such relationship has a significant value for the interpretation of induced polarization data, allowing the use of this technique for monitoring electrokinetic remediation at field-scale.

  9. Systematic effects in radon mitigation by sump/pump remediation

    Energy Technology Data Exchange (ETDEWEB)

    Groves-Kirkby, C.J.; Denman, A.R. [Northampton General Hospital, Medical Physics Dept. (United Kingdom); Groves-Kirkby, C.J.; Woolridge, A.C. [Northampton Univ., School of Health (United Kingdom); Woolridge, A.C.; Phillips, P.S.; Crockett, R.G.M. [Northampton Univ., School of Applied Sciences (United Kingdom); Tornberg, R. [Radon Centres Ltd., Grove Farm, Moulton, Northampton (United Kingdom)

    2006-07-01

    Sump/Pump remediation is widely used in the United Kingdom to mitigate indoor radon gas levels in residential properties. To quantify the effectiveness of this technology, a study was made of radon concentration data from a set of 173 homes situated in radon Affected Areas in and around Northamptonshire, U.K., re-mediated using conventional sump/pump tology. This approach is characterised by a high incidence of satisfactory mitigation outcomes, with more than 75% of the sample exhibiting mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) of 0.2 or better. There is evidence of a systematic trend, where houses with higher initial radon concentrations have higher mitigation factors, suggesting that the total indoor radon concentration within a dwelling can be represented by two components, one susceptible to mitigation by sump/pump remediation, the other remaining essentially unaffected by these remediation strategies. The first component can be identified with ground-radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, potentially capable of being attenuated by sump/pump or radon-barrier remediation. The second contribution is attributed to radon emanating from materials used in the construction of the dwelling, principally concrete and gypsum plaster-board, with a further small contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of such a two-component radon dependency using realistic ground-radon attenuation factors in conjunction with typical structural-radon levels yields behaviour in good agreement with the observed inverse-power dependence of mitigation factor on initial radon concentration. (authors)

  10. EM-54 Technology Development In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of Environmental Restoration and Waste Management (EM) in November 1989. EM manages remediation of all DOE sites as well as wastes from current operations. The goal of the EM program is to minimize risks to human health, safety and the environment, and to bring all DOE sites into compliance with Federal, state, and local regulations by 2019. EM-50 is charged with developing new technologies that are safer, more effective and less expensive than current methods. The In Situ Remediation Integrated Program (the subject of this report) is part of EM-541, the Environmental Restoration Research and Development Division of EM-54. The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: Significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces; in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP tends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years

  11. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils

    Directory of Open Access Journals (Sweden)

    Ying eTeng

    2015-02-01

    Full Text Available Environmental pollutants have received considerable attention due to their serious effects on human health. There are physical, chemical, and biological means to remediate pollution; among them, bioremediation has become increasingly popular. The nitrogen-fixing rhizobia are widely distributed in the soil and root ecosystems and can increase legume growth and production by supplying nitrogen, resulting in the reduced need for fertilizer applications. Rhizobia also possess the biochemical and ecological capacity to degrade organic pollutants and are resistant to heavy metals, making them useful for rehabilitating contaminated soils. Moreover, rhizobia stimulate the survival and action of other biodegrading bacteria, thereby lowering the concentration of pollutants. The synergistic action of multiple rhizobial strains enhances both plant growth and the availability of pollutants ranging from heavy metals to persistent organic pollutants. Because phytoremediation has some restrictions, the beneficial interaction between plants and rhizobia provides a promising option for remediation. This review describes recent advances in the exploitation of rhizobia for the rehabilitation of contaminated soil and the biochemical and molecular mechanisms involved, thereby promoting further development of this novel bioremediation strategy into a widely accepted technique.

  12. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-16

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate

  13. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    International Nuclear Information System (INIS)

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, 'Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,' submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to (1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, (2) study the sediment air permeability influence on injection pressure, (3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, (4) test amendment distance (and mass) delivery by foam from the injection point, (5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and (6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate

  14. Remediation of uranium mill tailings by an integrated biological and chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.

    1992-01-01

    Dilute calcium chloride brine solution was found to be effective in the solubilization of toxic heavy metals and long half-life radionuclides (Th-230, Ra-226 and Pb-210) from uranium ores and mill tailings. The recovery of heavy metals and radionuclides from uranium mill tailing effluents was studied with calcium alginate beads. The maximum cadmium and zinc uptakes by calcium alginate beads were determined to be 2.8 [times] 10[sup [minus]3] and 2.3 [times] 10[sup [minus]3] mol/dry weight of alginate. The kinetic values, V[sub m] and K, were calculated for uranium uptake by calcium alginate to be 96.2 mg/l/s and 0.125 g/l, respectively.

  15. Remediation of uranium mill tailings by an integrated biological and chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.

    1992-12-31

    Dilute calcium chloride brine solution was found to be effective in the solubilization of toxic heavy metals and long half-life radionuclides (Th-230, Ra-226 and Pb-210) from uranium ores and mill tailings. The recovery of heavy metals and radionuclides from uranium mill tailing effluents was studied with calcium alginate beads. The maximum cadmium and zinc uptakes by calcium alginate beads were determined to be 2.8 {times} 10{sup {minus}3} and 2.3 {times} 10{sup {minus}3} mol/dry weight of alginate. The kinetic values, V{sub m} and K, were calculated for uranium uptake by calcium alginate to be 96.2 mg/l/s and 0.125 g/l, respectively.

  16. Natural remedies in the Canon of Medicine for dentistry and oral biology

    OpenAIRE

    Pouya Faridi; Milad Moatamedi; Mohammad M. Zarshenas; Zohreh Abolhassanzadeh; Abdolali Mohagheghzadeh

    2015-01-01

    Ibn Sina is one of the most well know scholars in middle ages. This Persian physician wrote different books in medical filed which his great encyclopedia remained as one the most successful medical encyclopedia during the history. Ibn Sina discussed diseases of oral cavity and dentistry in the 3rd book of The Canon of Medicine. He discussed different conditions such as different types of trauma to the motor nerves, taste sensation, different limitations of tongue movements, Ranula, halitosis,...

  17. [Biological toxicity effect of petroleum contaminated soil before and after physicochemical remediation].

    Science.gov (United States)

    Lian, Jing-Yan; Ha, Ying; Huang, Lei; Ju, Yi; Shi, Shuo; Liu, Lei; Zhang, Rui-Ling; Sui, Hong; Li, Xin-Gang

    2011-03-01

    Toxicity analysis was studied from using seed germination as an ecological indicator, and the earthworm was considered as a suitable biomonitor animal to determine the ecological hazard of polluted soil. The main results are as follows: These crop seeds have significantly different responses to petroleum pollution. Compared with those plants in clean soil, the germination of most crop seeds planted in contaminated soils is obviously inhabited. Soybean, horse bean and maize are the crop affected most adversely. Fortunately, strong endurance is observed for green soybean under 4 different levels of petroleum pollution, and the seed germination rate are all above 90%. When exposed to pollutants, earthworms could be changed obviously on the level of physiology. That might affect the survival and growth capacity of earthworms, and changed population finally. In high petroleum contaminated soil (concentration of petroleum > 30 000 mg/kg) earthworms can only survive about 5 days. The results suggest that petroleum pollution has great poison to earthworms and can kill earthworms finally. Because pollutants make them dehydrate. Even on the low pollution level, the survival time of earthworm is still very short (3 d or so) in the treated petroleum-contaminated soil. Because after a petroleum ether-treated, the nutrients of soil are disposed with the oil, and the organic matter and other nutrients of the soil have a great impact on the survival of earthworms.

  18. Cell biology perspectives in phage biology.

    Science.gov (United States)

    Ansaldi, Mireille

    2012-01-01

    Cellular biology has long been restricted to large cellular organisms. However, as the resolution of microscopic methods increased, it became possible to study smaller cells, in particular bacterial cells. Bacteriophage biology is one aspect of bacterial cell biology that has recently gained insight from cell biology. Despite their small size, bacteriophages could be successfully labeled and their cycle studied in the host cells. This review aims to put together, although non-extensively, several cell biology studies that recently pushed the elucidation of key mechanisms in phage biology, such as the lysis-lysogeny decision in temperate phages or genome replication and transcription, one step further.

  19. Environmental Modelling of Remediation of Urban Contaminated Areas. Report of the Urban Remediation Working Group of EMRAS Theme 2

    International Nuclear Information System (INIS)

    The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for RAdiation Safety) programme was concerned with remediation assessment for urban areas contaminated with dispersed radionuclides. Types of events that could result in dispersal or deposition of radionuclides in an urban situation include both intentional and unintentional events, and releases could range from major events involving a nuclear facility to small events such as a transportation accident. The primary objective of the Urban Remediation Working Group was (1) to test and improve the prediction of dose rates and cumulative doses to humans for urban areas contaminated with dispersed radionuclides, including prediction of changes in radionuclide concentrations or dose rates as a function of location and time; (2) to identify the most important pathways for human exposure; and (3) to predict the reduction in radionuclide concentrations, dose rates, or doses expected to result from various countermeasures or remediation efforts. Specific objectives of the Working Group have included (1) the identification of realistic scenarios for a wide variety of situations, (2) comparison and testing of approaches and models for assessing the significance of a given contamination event and for guiding decisions about countermeasures or remediation measures implemented to reduce doses to humans or to clean up the contaminated area, and (3) improving the understanding of processes and situations that affect the spread of contamination to aid in the development of appropriate models and parameter values for use in assessment of these situations. The major activities of the Working Group have included three areas. The first of these was a review of the available modelling approaches and computer models for use in assessing urban contamination and potential countermeasures or remediation activities. The second area of work was a modelling exercise based on data

  20. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose

    2009-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water

  1. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 μg=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 μg=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100

  2. Summary of Remediated Nitrate Salt Surrogate Formulation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leonard, Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hartline, Ernest Leon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tian, Hongzhao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    High Explosives Science and Technology (M-7) completed all required formulation and testing of Remediated Nitrate Salt (RNS) surrogates on April 27, 2016 as specified in PLAN-TA9-2443 Rev B, "Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing Standard Procedure", released February 16, 2016. This report summarizes the results of the work and also includes additional documentation required in that test plan. All formulation and testing was carried out according to PLAN-TA9-2443 Rev B. The work was carried out in three rounds, with the full matrix of samples formulated and tested in each round. Results from the first round of formulation and testing were documented in memorandum M7-J6-6042, " Results from First Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Results from the second round of formulation and testing were documented in M7-16-6053 , "Results from the Second Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Initial results from the third round were documented in M7-16-6057, "Initial Results from the Third Round of Remediated Nitrate Salt Formulation and Testing."

  3. Remediation plan for fluorescent light fixtures containing polychlorinated biphenyls (PCBs)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-04-30

    This report describes the remedial action to achieve compliance with 29 CFR 1910 Occupational Safety and Health Administration (OSHA) requirements of fluorescent light fixtures containing PCBs at K-25 site. This remedial action is called the Remediation Plan for Fluorescent Light Fixtures Containing PCBs at the K-25 Site (The Plan). The Plan specifically discusses (1) conditions of non-compliance, (2) alternative solutions, (3) recommended solution, (4) remediation plan costs, (5) corrective action, (6) disposal of PCB waste, (7) training, and (8) plan conclusions. The results from inspections by Energy Systems personnel in 2 buildings at K-25 site and statistical extension of this data to 91 selected buildings at the K-25 site indicates that there are approximately 28,000 fluorescent light fixtures containing 47,036 ballasts. Approximately 38,531 contain PCBs and 2,799 of the 38,531 ballasts are leaking PCBs. Review of reportable occurrences at K-25 for the 12 month period of September 1990 through August 1991 shows that Energy Systems personnel reported 69 ballasts leaking PCBs. Each leaking ballast is in non-compliance with 29 CFR 1910 - Table Z-1-A. The age of the K-25 facilities indicate a continued and potential increase in ballasts leaking PCBs. This report considers 4 alternative solutions for dealing with the ballasts leaking PCBs. The advantages and disadvantages of each alternative solution are discussed and ranked using cost of remediation, reduction of health risks, and compliance with OSHA as criteria.

  4. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    International Nuclear Information System (INIS)

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints

  5. Radioactive Tank Waste Remediation Focus Area. Technology summary

    International Nuclear Information System (INIS)

    In February 1991, DOE's Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina

  6. Remediating Sellafield - A New Focus for the Site

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, N. D.

    2003-02-24

    The structure of the ownership and management of nuclear liabilities on civil sites in the United Kingdom is undergoing fundamental change. The UK Government will take responsibility for the liabilities on the UKAEA, BNFL Sellafield and Capenhurst sites and the Magnox Generation sites. When fully implemented the accountability for long term strategy will rest with the new Government Nuclear Decommissioning Authority (NDA), and contracts will be placed on M&O contractors to manage the site and implement the liabilities discharge plans. At Sellafield whilst the commercial reprocessing and MOX contracts continue, it is clear that the overall focus of the site has changed to remediation. Until the NDA is established the task of undertaking the planning is the responsibility of BNFL. To address this task the Site Remediation Team has been established. The production of the Sellafield Lifecycle Baseline Plan requires the existing long term decommissioning and waste management plans (primarily produced for provisioning purposes) together with several other specific strategies to be combined and developed into a coordinated and optimized plan for the remediation of the Sellafield Site, recognizing the ongoing reprocessing, MOX manufacture and long term fuel storage activities. An important principle within the plan is to achieve early hazard reduction whilst demonstrating value for money. The paper will address the scale of the remediation challenge and the process being followed to develop the necessary strategy. The paper will appeal to those involved in managing remediation of large, complex and interdependent nuclear sites.

  7. Hydrocarbon impacts and remedial action at an active service station

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, S.A. [Keystone Environmental, Burnaby, BC (Canada); Linke, J. [Chevron Canada Ltd., Vancouver, BC (Canada)

    2006-07-01

    This presentation discussed a project that examined the hydrocarbon impacts and remedial action at an active service station. The presentation identified the project partners, discussed the background on the project and project goals. Chevron Canada was the site involved in the study and Keystone Environmental was responsible for testing soil samples, developing the detailed conceptual site model, and for conducting indoor air quality monitoring. The presentation also provided illustrations of the site layout, investigated areas, and soil and groundwater plume. The evaluation and selection of remedial options were also discussed as well as other project planning activities such as assembling the project team, obtaining agreement with stakeholders, and coordinating with the municipality, utility companies, residents, and neighbours. Remediation efforts that were described and illustrated in the presentation included: underpinning and shoring; excavation; and, barrier wall installation. Last, post remediation activities were identified including the installation of post remediation confirmatory wells; reinstating structures; reinstating rear yards, fences, and garages; reconnecting utilities; performance monitoring of barrier wall; and, preparing closure reports for certificates of compliance on off-site properties. 6 figs.

  8. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  9. Remediation of copper in vineyards – A mini review

    International Nuclear Information System (INIS)

    Viticulturists use copper fungicide to combat Downy Mildew. Copper, a non-degradable heavy metal, can accumulate in soil or leach into water sources. Its accumulation in topsoil has impacted micro and macro organisms, spurring scientists to research in situ copper removal methods. Recent publications suggest that microorganism assisted phytoextraction, using plants and bacteria to actively extract copper, is most promising. As vineyards represent moderately polluted sites this technique has great potential. Active plant extraction and chelate assisted remediation extract too little copper or risk leaching, respectively. However, despite interesting pot experiment results using microorganism assisted phytoextraction, it remains a challenge to find plants that primarily accumulate copper in their shoots, a necessity in vineyards where whole plant removal would be time consuming and financially cumbersome. Vineyard remediation requires a holistic approach including sustainable soil management, proper plant selection, increasing biodiversity and microorganisms. - Highlights: ► We describe copper distribution and availability in vineyards. ► We explain the environmental impact of copper on organisms, plants and processes. ► We detail possible remediation methods within vineyards. ► Microbially assisted phytoremediation is the most promising remediation method. ► A solution requires an interdisciplinary approach between plants, soil and vines. - This review is significant because it highlights prospective remediation methods usable in copper contaminated vineyards.

  10. In situ remediation of atrazine contaminated groundwater

    OpenAIRE

    Pearson, Robert

    2006-01-01

    The natural attenuation of groundwater pesticides by biological degradation, is widely accepted to occur at concentrations > 1 mg 1-1. However from observations of groundwater monitoring data it can be indicated that the occurrence of pesticides in groundwater is primarily at trace μg 1-1 concentrations, with 45 % of UK groundwater samples that failed the EC Drinking Water Directives PV of 0.1 μg 1-1 between 1995 – 2000, accounting for an average concentration of 64 μg 1-1. However, there are...

  11. [Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality].

    Science.gov (United States)

    Sun, Yue-Bing; Wang, Peng-Chao; Xu, Ying-Ming; Sun, Yang; Qin, Xu; Zhao, Li-Jie; Wang, Lin; Liang, Xue-Feng

    2014-12-01

    A pot experiment was conducted to investigate the immobilization remediation effects of sepiolite on soils artificially combined contamination by Cd and Pb using a set of various pH and speciation of Cd and Pb in soil, heavy metal concentration in Oryza sativa L., and soil enzyme activity and microbial quantity. Results showed that the addition of sepiolite increased the soil pH, and the exchangeable fraction of heavy metals was converted into Fe-Mn oxide, organic and residual forms, the concentration of exchangeable form of Cd and Pb reduced by 1.4% - 72.9% and 11.8% - 51.4%, respectively, when compared with the control. The contents of heavy metals decreased with increasing sepiolite, with the maximal Cd reduction of 39.8%, 36.4%, 55.2% and 32.4%, respectively, and 22.1%, 54.6%, 43.5% and 17.8% for Pb, respectively, in the stems, leaves, brown rice and husk in contrast to CK. The addition of sepiolite could improve the soil environmental quality, the catalase and urease activities and the amount of bacteria and actinomycete were increased to some extents. Although the fungi number and invertase activity were inhibited compared with the control group, it was not significantly different (P > 0.05). The significant correlation between pH, available heavy metal content, urease and invertase activities and heavy metal concentration in the plants indicated that these parameters could be used to evaluate the effectiveness of stabilization remediation of heavy metal contaminated soil. PMID:25826946

  12. Phytotoxicity assay of diesel fuel-spiked substrates remediated with Pleurotus tuberregium using Zea mays

    Directory of Open Access Journals (Sweden)

    E M Ogbo

    2010-06-01

    biologically by the use of white rot fungi which is more environments friendly and cheaper for a developing country like Nigeria. The assessment of the improvement of contaminated soil by the fungus is tested by using Zea mays easily obtained and cheaper too. The fungus Pleurotus tuber-regium is indigenous to Nigeria and can be used for the remediation of diesel fuel contaminated soils or substrates.

  13. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    Energy Technology Data Exchange (ETDEWEB)

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  14. Science Letters:Remediation of Cr(Ⅵ) in solution using vitamin C

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; XU Xin-hua; HE Ping

    2005-01-01

    The effectiveness of vitamin C in treating Cr(Ⅵ)-contaminated water is being evaluated. Cr(Ⅵ) is an identified pollutant of some soils and groundwater. Vitamin C, an important biological reductant in humans and animals, can be used to transform Cr(Ⅵ) to essentially nontoxic Cr(Ⅲ). The removal efficiency was 89% when the mass concentration of vitamin C was 80 mg/L in 60 min, and nearly 100% Cr(Ⅵ) was removed when the mass concentration was 100 mg/L. Our data demonstrated that the removal efficiency was affected by vitamin C concentration, the reaction temperature and the dissolved oxygen concentration.The reaction mechanism of Cr(Ⅵ) by vitamin C was presented. Our study opens the way to use vitamin C to remediate Cr(Ⅵ)-contaminated soils and groundwater.

  15. Hydraulic fracturing to enhance the remediation of DNAPL in low permeability soils

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, L. [Univ. of Cincinnati, OH (United States); Slack, B. [FRX Inc., Cincinnati, OH (United States)

    1996-08-01

    Meager rates of fluid flow are a major obstacle to in situ remediation of low permeability soils. This paper describes methods designed to avoid that obstacle by creating fractures and filling them with sand to increase well discharge and change paths of fluid flow in soil. Gently dipping fractures 10 m in maximum dimension and 1 to 2 cm thick can be created in some contaminated soils at depths of a few in or greater. Hydraulic fractures can also be used to create electrically conductive layers or to deliver granules of chemically or biologically active compounds that will degrade contaminants in place. Benefits of applying hydraulic fractures to DNAPL recovery include rates of fluid recovery, enhancing upward gradients to improve hydrodynamic stabilization, forming flat-lying reactive curtains to intersect compounds moving downward, or improving the performance of electrokinetics intended to recover compounds dissolved in water. 30 refs., 7 figs., 1 tab.

  16. Environmental and radiological remediation under Canada's global partnership program 2004-11 - 59185

    International Nuclear Information System (INIS)

    Following the '911' attack on the USA in 2001 the international community under Canada's G8 leadership established a $20 billion Global Partnership initiative in 2002 to collaboratively address threats to global security posed by the proliferation and potential terrorist use of Weapons and Materials of Mass Destruction (WMMD) and related materials and knowledge. This major international initiative addressed four priority areas: (1) Chemical Weapon Destruction (2) Nuclear powered submarine eliminations (3) Nuclear and radiological security; and (4) Employment for former weapon scientists. Additionally the initiative has addressed Biological Non- Proliferation. Canada's execution of all these program areas has resulted in substantial environmental benefits aside from the eradication and securing of WMMD. This paper reviews the environmental and radiological remediation achievements of the four primary Global Partnership program areas addressed under Canadian funding 2004 through 2011. (author)

  17. STUDY ON BIODEGRADATION TECHNOLOGY APPLICATION IN BULK IN THE REMEDIATION OF SOILS CONTAMINATED WITH POLYCYCLIC AROMATIC HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Irina Ramona PECINGINĂ

    2015-05-01

    Full Text Available Biodecontaminare methods are based on biodegradation in the subsurface presence of microorganisms capable of degrading most of carbonaceous organic pollutants and much of inorganic pollutants. Biodegradation in bulk meet that principle biological decontamination several ways. These methods are intended solely for solids, and is often used for on-site remediation of soils contaminated with organic products. Station bioremediation ensure reducing the harmfulness of residues from oil exploitation activities considered hazardous, using a bioremediation process. Bioremediation process will lead to reduction of oil content and thus reducing the hazard of waste.

  18. Biological effects of radiation

    International Nuclear Information System (INIS)

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  19. On-site and in situ remediation technologies applicable to metal-contaminated sites in Antarctica and the Arctic: a review

    OpenAIRE

    Danielle Camenzuli; Freidman, Benjamin L.; Tom M. Statham; Mumford, Kathryn A.; Gore, Damian B.

    2013-01-01

    Effective management of contaminated land requires a sound understanding of site geology, chemistry and biology. This is particularly the case for Antarctica and the Arctic, which function using different legislative frameworks to those of industrialized, temperate environments and are logistically challenging environments to operate in. This paper reviews seven remediation technologies currently used, or demonstrating potential for on-site or in situ use at metal-contaminated sites in polar ...

  20. On-site and in situ remediation technologies applicable to metal-contaminated sites in Antarctica and the Arctic: a review

    OpenAIRE

    Camenzuli, Danielle; Freidman, Benjamin L.; Tom M. Statham; Mumford, Kathryn A.; Gore, Damian B.

    2013-01-01

    Effective management of contaminated land requires a sound understanding of site geology, chemistry and biology. This is particularly the case for Antarctica and the Arctic, which function using different legislative frame- works to those of industrialized, temperate environments and are logistically challenging environments to operate in. This paper reviews seven remediation technologies currently used, or demonstrating potential for on-site or in situ use at metal-contaminated sites in pola...

  1. Remediation Technologies for Marine Oil Spills: A Critical Review and Comparative Analysis

    Directory of Open Access Journals (Sweden)

    D. Dave

    2011-01-01

    Full Text Available Problem statement: Anthropogenic activities pollute the oceans with oil through land run off, vessels accidents, periodic tanker discharges and bilge discharges. Oil spills are environmental disasters that impact human, plants and wild life including birds, fish and mammals. Approach: In this study, the International Guidelines for Preventing Oils Spills and Response to Disasters were reviewed and the characteristics of oil spills were discussed. The advantages and disadvantages of various oil spill response methods were evaluated. A comparative analysis were performed on the currently available remediation technologies using 10 evaluation criteria that included cost, efficiency, time, impact on wild life, reliability, level of difficulty, oil recovery, weather, effect on physical/chemical characteristics of oil and the need for further treatment. The advantages and disadvantages of each response method were used to determine the score assigned to that method. Results: There are many government regualtions for individual countries that serve as prevention mesures for oil spills in the offshore environment. They have to do with the design of equipment and machinery used in the offshore environment and performing the necessary safety inspections. The primary objectives of response to oil spill are: to prevent the spill from moving onto shore, reduce the impact on marine life and speed the degradation of any unrecovered oil. There are several physical, chemical, thermal and biological remediation technologies for oil spills including booms, skimmers, sorbents, dispersants, in-situ burning and bioremediation. Each technique has its advantages and disadvantages and the choice of a particular technique will depend on: type of oil, physical, biological and economical characteristics of the spill, location, weather and sea conditions, amount spilled and rate of spillage, depth of water column, time of the year and effectiveness of technique. Coclusion

  2. A Fuzzy Simulation-Based Optimization Approach for Groundwater Remediation Design at Contaminated Aquifers

    Directory of Open Access Journals (Sweden)

    A. L. Yang

    2012-01-01

    Full Text Available A fuzzy simulation-based optimization approach (FSOA is developed for identifying optimal design of a benzene-contaminated groundwater remediation system under uncertainty. FSOA integrates remediation processes (i.e., biodegradation and pump-and-treat, fuzzy simulation, and fuzzy-mean-value-based optimization technique into a general management framework. This approach offers the advantages of (1 considering an integrated remediation alternative, (2 handling simulation and optimization problems under uncertainty, and (3 providing a direct linkage between remediation strategies and remediation performance through proxy models. The results demonstrate that optimal remediation alternatives can be obtained to mitigate benzene concentration to satisfy environmental standards with a minimum system cost.

  3. Electrodialytic remediation of copper mine tailings: Comparing different operational conditions

    DEFF Research Database (Denmark)

    Rojo, Adrian; Hansen, Henrik K.; Ottosen, Lisbeth M.

    2006-01-01

    current could remove copper from watery tailings slowly. With addition of sulphuric acid, the process was improved due to a pH decrease from 6.7 to around 4, and the copper by this reason was released in the solution. Moreover, with citric acid addition the process was further improved due to a formation......, adding sulphuric acid total copper removal reached 39%. Adding citric acid, total copper removal was improved in terms of remediation time: after 5h experiment copper removal was 16% instead of 9% obtained after 72h with sulphuric acid addition. Using pulsed electric fields total copper removal was also...... of copper citrate complexes. Using pulsed electric fields the remediation process with sulphuric acid addition was also improved by a decrease in the polarization cell. Main results: considering remediation with watery tailing as the base line, for three weeks experiments no copper removal was observed...

  4. Monitoring and remediation technologies of organochlorine pesticides in drainage water

    Directory of Open Access Journals (Sweden)

    Ismail Ahmed

    2015-03-01

    Full Text Available This study was carried out to monitor the presence of organochlorine in drainage water in Kafr-El-Sheikh Governorate, Egypt. Furthermore, to evaluate the efficiencies of different remediation techniques (advanced oxidation processes [AOPs] and bioremediation for removing the most frequently detected compound (lindane in drainage water. The results showed the presence of several organochlorine pesticides in all sampling sites. Lindane was detected with high frequency relative to other detected organochlorine in drainage water. Nano photo-Fenton like reagent was the most effective treatment for lindane removal in drainage water. Bioremediation of lindane by effective microorganisms (EMs removed 100% of the lindane initial concentration. There is no remaining toxicity in lindane contaminated-water after remediation on treated rats relative to control with respect to histopathological changes in liver and kidney. Advanced oxidation processes especially with nanomaterials and bioremediation using effective microorganisms can be regarded as safe and effective remediation technologies of lindane in water.

  5. Clean-up criteria for remediation of contaminated soils

    International Nuclear Information System (INIS)

    'How clean is clean?' is a question commonly raised in the remediation of contaminated soils. To help with the answer, criteria are proposed to serve as guidelines for remedial actions and to define a clean-up level such that the remaining contaminant residuals in the soil will not violate the Drinking Water Standards (DWS). The equations for computing those criteria are developed from the principle of conservation of mass and are functions of the maximum concentration level in the water (MCL) and the sorption coefficient. A multiplier, ranging from 10 to 1000, is also factored into the soil standard equation to reflect the effectiveness of various remediation techniques. Maximum allowable concentration in the soil (MSCL) is presented for several contaminants which are being regulated at the present time. Future modifications are recommended for better estimates of the MSCLs as additional transport mechanisms are incorporated to account for other potentially dominant effects

  6. Remediation of radionuclide pollutants through biosorption - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nilanjana [Environmental Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore (India)

    2012-01-15

    The development of nuclear science and technology has led to the increase of nuclear wastes containing radionuclides to be released and disposed in the environment. Pollution caused by radionuclides is a serious problem throughout the world. To solve the problem, substantial research efforts have been directed worldwide to adopt sustainable technologies for the treatment of radionuclide containing wastes. Biosorption represents a technological innovation as well as a cost effective excellent remediation technology for cleaning up radionuclides from aqueous environment. A variety of biomaterials viz. algae, fungi, bacteria, plant biomass, etc. have been reported for radionuclide remediation with encouraging results. This paper reviews the achievements and current status of radionuclide remediation through biosorption which will provide insights into this research frontier. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Can sustainability be applied to our remediation challenges? - 59148

    International Nuclear Information System (INIS)

    There are many environmental remediation challenges around the world today with a radiological connotation. These in turn relate to all aspects of the nuclear industry life cycle as well as the NORM industries and consequences of accidents /incidents. In reality, apart from one or two major exceptions in a few counties who have extensive budgets allocated to environmental remediation, we do not generally see a lot of real progress in the protection of human health and the environment from legacy issues. It is important therefore to determine why this is the case and if there is anything that can be undertaken to improve the situation. There are a number of reasons potentially leading to this lack of progress, namely; - A lack of available funding; - The diversion of funds to other issues deemed to be a greater priority; - No practical experience in resolving such problems; - Lack of established regulatory and/or procedural infrastructure. More often than not when environmental remediation challenges exist, the decision makers only tend to look for final solutions. If such final solutions can't be achieved, often because of funding restrictions, then little or no progress is generally made. However, there is the potential through the phasing of environmental remediation work to find some early winners and to start to reduce the risk and detriment to human health and the environment, even if the improvement seen is in the short term initially. When further funding becomes available or technology improves then the longer term solutions could be implemented. It is important to ensure that any interim solutions are implemented in a manner such that further options or final solutions are not jeopardised. In reality therefore it should be possible to introduce greater sustainability into how we approach environmental remediation, rather than admit defeat at the outset. There are many different definitions for the term sustainability but a useful one can be referenced from

  8. The Remedial Action Priority System (RAPS): Mathematical formulations

    International Nuclear Information System (INIS)

    The Remedial Action Priority System (RAPS) represents a methodology that prioritizes inactive hazardous and radioactive mixed-waste disposal sites in a scientific and objective manner based on limited site information. This methodology is intended to bridge the technology gap between the initial site evaluation using the Hazard Ranking System (HRS) and the time-consuming process of actual field site characterization, assessment, and remediation efforts. The RAPS methodology provides the US Department of Energy with a management tool for assistance in prioritizing funding and human resource allocations for further investigations and possible remediations at its inactive waste sites. Use of RAPS will help DOE ensure that those sites posing the highest potential risk are addressed first. Chapters 1 through 10 were processed separately for the Energy Data Base

  9. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    International Nuclear Information System (INIS)

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  10. Current state and future prospects of remedial soil protection. Background

    Energy Technology Data Exchange (ETDEWEB)

    Frauenstein, Joerg

    2009-08-15

    The legal basis for soil protection in the Federal Republic of Germany is: -The Act on Protection against Harmful Changes to Soil and on Rehabilitation of Contaminated Sites (Federal Soil Protection Act) (Bundes-Bodenschutzgesetz - BBodSchG) of 1998 [1] -The Federal Soil Protection and Contaminated Sites Ordinance (BBodSchV) of 1999 [2]. In Germany, the Federal Government has legislative competence in the field of soil protection. The Lander (German federal states), in turn, are responsible for enforcement of the BBodSchG and the BBodSchV; they may also issue supplementary procedural regulations. According to Article 1 BBodschG, the purpose of the Act is inter alia to protect and restore the functions of the soil on a permanent sustainable basis. These actions shall include prevention of harmful soil changes as well as rehabilitating soil, contaminated sites and waters contaminated by such sites in such a way that any contamination remains permanently below the hazard threshold. Whilst prevention aims to protect and preserve soil functions on a long-term basis, the object of remediation is mainly to avert concrete hazards in a spatial, temporal and manageable causative context. ''Remedial soil protection'' encompasses a tiered procedure in which a suspicion is verified successively and with least-possible effort and in which the circumstances of the individual case at hand are taken into account in deciding whether or not a need for remediation exists. It comprises the systematic stages of identifying, investigating and assessing suspect sites and sites suspected of being contaminated with a view to their hazard potential, determining whether remediation is necessary, remediating identified harmful soil changes and contaminated sites, and carrying out, where necessary, aftercare measures following final inspection of the remedial measure. (orig.)

  11. Sustainable Remediation for Enhanced NAPL Recovery from Groundwater

    Science.gov (United States)

    Javaher, M.

    2012-12-01

    Sustainable remediation relates to the achievement of balance between environmental, social, and economic elements throughout the remedial lifecycle. A significant contributor to this balance is the use of green and sustainable technologies which minimize environmental impacts, while maximizing social and economic benefits of remedial implementation. To this end, a patented mobile vapor energy generation (VEG) technology has been developed targeting variable applications, including onsite soil remediation for unrestricted reuse and enhanced non-aqueous phase liquid (NAPL) recover at the water table. At the core of the mobile VEG technology is a compact, high efficiency vapor generator, which utilizes recycled water and propane within an entirely enclosed system to generate steam as high as 1100°F. Operating within a fully enclosed system and capturing all heat that is generated within this portable system, the VEG technology eliminates all emissions to the atmosphere and yields an undetected carbon footprint with resulting carbon dioxide concentrations that are below ambient levels. Introduction of the steam to the subsurface via existing wells results in a desired change in the NAPL viscosity and the interfacial tension at the soil, water, NAPL interface; in turn, this results in mobilization and capture of the otherwise trapped, weathered NAPL. Approved by the California Air Resources Control Board (and underlying Air Quality Management Districts) and applied in California's San Joaquin Valley, in-well heating of NAPLs trapped at the water table using the VEG technology has proven as effective as electrical resistivity heating (ERH) in changing the viscosity of and mobilizing NAPLs in groundwater in support of recovery, but has achieved these results while minimizing the remedial carbon footprint by 90%, reducing energy use by 99%, and reducing remedial costs by more than 95%. NAPL recovery using VEG has also allowed for completion of source removal historically

  12. Ficus carica L. (Moraceae: Phytochemistry, Traditional Uses and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shukranul Mawa

    2013-01-01

    Full Text Available This paper describes the botanical features of Ficus carica L. (Moraceae, its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents.

  13. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities.

    Science.gov (United States)

    Mawa, Shukranul; Husain, Khairana; Jantan, Ibrahim

    2013-01-01

    This paper describes the botanical features of Ficus carica L. (Moraceae), its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents.

  14. Tank SY-102 remediation project summary report: ASPEN modeling

    International Nuclear Information System (INIS)

    The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. As a part of this program, personnel at Los Alamos National Laboratory (LANL) have developed and demonstrated a flow sheet to remediate tank SY-102, which is located in the 200 West Area and contains high-level radioactive waste. In the conceptual design report issued earlier, an ASPEN plus trademark computer model of the flow sheet was presented. This report documents improvements in the flow sheet model after additional thermodynamic data for the actinide species were incorporated

  15. Tank Farm Contractor Waste Remediation System and Utilization Plan

    International Nuclear Information System (INIS)

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy

  16. Rheology enhancement for remediated PX6 melter feed

    International Nuclear Information System (INIS)

    This document is referenced in WSRC-TR-94-0556. This memorandum summarizes results of experimental work performed on the original IDMS PX6 melter feed, the remediated IDMS PX6 melter feed, and melter feeds produced in a laboratory simulation to duplicate the IDMS remediation as well as the experimental results on the caustic treatment to enhance the rheology. Characterization of the products of excess caustic addition and what steps to take if excess caustic is inadvertently added to the IDMS PX6 melter feed are also discussed

  17. Integrated approach to hazardous and radioactive waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R.A.; Reece, W.J.

    1994-11-01

    The US Department of Energy Office of Technology Development is supporting the demonstration, and evaluation of a suite of waste retrieval technologies. An integration of leading-edge technologies with commercially available baseline technologies will form a comprehensive system for effective and efficient remediation of buried waste throughout the complex of DOE nuclear facilities. This paper discusses the complexity of systems integration, addressing organizational and engineering aspects of integration as well as the impact of human operators, and the importance of using integrated systems in remediating buried hazardous and radioactive waste.

  18. Remediation of gasoline-contaminated soil and groundwater

    International Nuclear Information System (INIS)

    This presentation describes the selection, implementation, and initial performance of the S.A.V.E. Spray Aeration, Vacuum Extraction system, manufactured by Remediation Service, Int'l for the remediation of fuel-impacted soil and groundwater at a former leaking underground fuel tank site in San Jose, California. The site addressed in the presentation is a commercial facility involved in the manufacturing of finished wood products. The present and previous operators of the facility operated underground fuel storage tanks at the site to fuel vehicles used in their business

  19. Lead Contamination of Soil Along Road and Its Remediation

    Institute of Scientific and Technical Information of China (English)

    徐佩; 廖超林

    2004-01-01

    With a rapid development of road systems and an associated drastic increase in number of automobiles, the traffic has induced more and more obvious environmental pollution such as noise, dust, emission and heavy metal contamination. Lead, as one of the most harmful heavy metal contaminants, can execute a significant impact on soil quality and plant growth, depending on its form, as well as its transport and accumulation in soil. This paper describes the source and characteristics of Pb contaminant in soil along a road, and reviews the results of research on remediation of Pb-contaminated soils, aiming at identifying promising approaches to soil remediation along roads.

  20. A Conceptual Framework to use Remediation of Errors Based on Multiple External Remediation Applied to Learning Objects

    Directory of Open Access Journals (Sweden)

    Maici Duarte Leite

    2014-09-01

    Full Text Available This paper presents the application of some concepts of Intelligent Tutoring Systems (ITS to elaborate a conceptual framework that uses the remediation of errors with Multiple External Representations (MERs in Learning Objects (LO. To this is demonstrated a development of LO for teaching the Pythagorean Theorem through this framework. This study explored the remediation process of error by a classification of error in mathematical, providing support for the use of MERs with the remediation of error. The main objective of the proposed framework is to assist the individual learner in the recovery of a mistake made during the interaction with the LO, either through carelessness or lack of knowledge. Initially, we present the compilation of the classification of mathematical errors and their relationship with MERs. Later the concepts involved with conceptual framework proposed. Finally, an experiment with LO developed with a authoring tool called FARMA, using the conceptual framework for teaching the Pythagorean Theorem is presented.