WorldWideScience

Sample records for biological regulatory networks

  1. Bayesian variable selection and data integration for biological regulatory networks

    OpenAIRE

    Jensen, Shane T; Chen, Guang; Stoeckert, Jr, Christian J.

    2007-01-01

    A substantial focus of research in molecular biology are gene regulatory networks: the set of transcription factors and target genes which control the involvement of different biological processes in living cells. Previous statistical approaches for identifying gene regulatory networks have used gene expression data, ChIP binding data or promoter sequence data, but each of these resources provides only partial information. We present a Bayesian hierarchical model that integrates all three dat...

  2. Oscillatory Activities in Regulatory Biological Networks and Hopf Bifurcation

    Institute of Scientific and Technical Information of China (English)

    YAN Shi-Wei; WANG Qi; XIE Bai-Song; ZHANG Feng-Shou

    2007-01-01

    Exploiting the nonlinear dynamics in the negative feedback loop, we propose a statistical signal-response model to describe the different oscillatory behaviour in a biological network motif. By choosing the delay as a bifurcation parameter, we discuss the existence of Hopf bifurcation and the stability of the periodic solutions of model equations with the centre manifold theorem and the normal form theory. It is shown that a periodic solution is born in a Hopf bifurcation beyond a critical time delay, and thus the bifurcation phenomenon may be important to elucidate the mechanism of oscillatory activities in regulatory biological networks.

  3. Minimum network constraint on reverse engineering to develop biological regulatory networks.

    Science.gov (United States)

    Shao, Bin; Wu, Jiayi; Tian, Binghui; Ouyang, Qi

    2015-09-01

    Reconstructing the topological structure of biological regulatory networks from microarray expression data or data of protein expression profiles is one of major tasks in systems biology. In recent years, various mathematical methods have been developed to meet this task. Here, based on our previously reported reverse engineering method, we propose a new constraint, i.e., the minimum network constraint, to facilitate the reconstruction of biological networks. Three well studied regulatory networks (the budding yeast cell cycle network, the fission yeast cell cycle network, and the SOS network of Escherichia coli) were used as the test sets to verify the performance of this method. Numerical results show that the biological networks prefer to use the minimal networks to fulfill their functional tasks, making it possible to apply minimal network criteria in the network reconstruction process. Two scenarios were considered in the reconstruction process: generating data using different initial conditions; and generating data from knock out and over-expression experiments. In both cases, network structures are revealed faithfully in a few steps using our approach.

  4. Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks

    Institute of Scientific and Technical Information of China (English)

    Guixia Liu; Lei Liu; Chunyu Liu; Ming Zheng; Lanying Su; Chunguang Zhou

    2011-01-01

    Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly, in this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.

  5. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory.

  6. Investigating noise tolerance in an efficient engine for inferring biological regulatory networks.

    Science.gov (United States)

    Komori, Asako; Maki, Yukihiro; Ono, Isao; Okamoto, Masahiro

    2015-06-01

    Biological systems are composed of biomolecules such as genes, proteins, metabolites, and signaling components, which interact in complex networks. To understand complex biological systems, it is important to be capable of inferring regulatory networks from experimental time series data. In previous studies, we developed efficient numerical optimization methods for inferring these networks, but we have yet to test the performance of our methods when considering the error (noise) that is inherent in experimental data. In this study, we investigated the noise tolerance of our proposed inferring engine. We prepared the noise data using the Langevin equation, and compared the performance of our method with that of alternative optimization methods. PMID:25790786

  7. A Systems’ Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression, we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts.

  8. Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks.

    Directory of Open Access Journals (Sweden)

    Jacob Beal

    Full Text Available BACKGROUND: The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. METHODOLOGY/PRINCIPAL FINDINGS: To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes (~ 50% and latency of the optimized engineered gene networks. CONCLUSIONS/SIGNIFICANCE: Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.

  9. Social insect colony as a biological regulatory system: modelling information flow in dominance networks.

    Science.gov (United States)

    Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal

    2014-12-01

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. PMID:25320069

  10. Formal modeling and analysis of ER-α associated Biological Regulatory Network in breast cancer

    Science.gov (United States)

    Tareen, Samar H.K.; Siddiqa, Amnah; Bibi, Zurah; Ahmad, Jamil

    2016-01-01

    Background Breast cancer (BC) is one of the leading cause of death among females worldwide. The increasing incidence of BC is due to various genetic and environmental changes which lead to the disruption of cellular signaling network(s). It is a complex disease in which several interlinking signaling cascades play a crucial role in establishing a complex regulatory network. The logical modeling approach of René Thomas has been applied to analyze the behavior of estrogen receptor-alpha (ER-α) associated Biological Regulatory Network (BRN) for a small part of complex events that leads to BC metastasis. Methods A discrete model was constructed using the kinetic logic formalism and its set of logical parameters were obtained using the model checking technique implemented in the SMBioNet software which is consistent with biological observations. The discrete model was further enriched with continuous dynamics by converting it into an equivalent Petri Net (PN) to analyze the logical parameters of the involved entities. Results In-silico based discrete and continuous modeling of ER-α associated signaling network involved in BC provides information about behaviors and gene-gene interaction in detail. The dynamics of discrete model revealed, imperative behaviors represented as cyclic paths and trajectories leading to pathogenic states such as metastasis. Results suggest that the increased expressions of receptors ER-α, IGF-1R and EGFR slow down the activity of tumor suppressor genes (TSGs) such as BRCA1, p53 and Mdm2 which can lead to metastasis. Therefore, IGF-1R and EGFR are considered as important inhibitory targets to control the metastasis in BC. Conclusion The in-silico approaches allow us to increase our understanding of the functional properties of living organisms. It opens new avenues of investigations of multiple inhibitory targets (ER-α, IGF-1R and EGFR) for wet lab experiments as well as provided valuable insights in the treatment of cancers such as BC.

  11. Social insect colony as a biological regulatory system: Information flow in dominance networks

    OpenAIRE

    Nandi, Anjan K.; Sumana, Annagiri; Bhattacharya, Kunal

    2014-01-01

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the...

  12. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function

    Science.gov (United States)

    Martin, O. C.; Krzywicki, A.; Zagorski, M.

    2016-07-01

    Living cells can maintain their internal states, react to changing environments, grow, differentiate, divide, etc. All these processes are tightly controlled by what can be called a regulatory program. The logic of the underlying control can sometimes be guessed at by examining the network of influences amongst genetic components. Some associated gene regulatory networks have been studied in prokaryotes and eukaryotes, unveiling various structural features ranging from broad distributions of out-degrees to recurrent "motifs", that is small subgraphs having a specific pattern of interactions. To understand what factors may be driving such structuring, a number of groups have introduced frameworks to model the dynamics of gene regulatory networks. In that context, we review here such in silico approaches and show how selection for phenotypes, i.e., network function, can shape network structure.

  13. Computer-assisted curation of a human regulatory core network from the biological literature

    NARCIS (Netherlands)

    Thomas, P.; Durek, P.; Solt, I.; Klinger, B.; Witzel, F.; Schulthess, P.; Mayer, Y.; Tikk, D.; Blüthgen, N.; Leser, U.

    2015-01-01

    Motivation: A highly interlinked network of transcription factors (TFs) orchestrates the context-dependent expression of human genes. ChIP-chip experiments that interrogate the binding of particular TFs to genomic regions are used to reconstruct gene regulatory networks at genome-scale, but are plag

  14. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    OpenAIRE

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased...

  15. A systems biology approach identifies a regulatory network in parotid acinar cell terminal differentiation.

    Directory of Open Access Journals (Sweden)

    Melissa A Metzler

    Full Text Available The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process.A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation.Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1 activates the Mist1 promoter [corrected]. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation.This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  16. Networks in Cell Biology

    Science.gov (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  17. Synthetic biological networks

    International Nuclear Information System (INIS)

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  18. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    Martinetz Thomas

    2009-01-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  19. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  20. Understanding regulatory networks requires more than computing a multitude of graph statistics. Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin et al.

    Science.gov (United States)

    Tkačik, Gašper

    2016-07-01

    The article by O. Martin and colleagues provides a much needed systematic review of a body of work that relates the topological structure of genetic regulatory networks to evolutionary selection for function. This connection is very important. Using the current wealth of genomic data, statistical features of regulatory networks (e.g., degree distributions, motif composition, etc.) can be quantified rather easily; it is, however, often unclear how to interpret the results. On a graph theoretic level the statistical significance of the results can be evaluated by comparing observed graphs to "randomized" ones (bravely ignoring the issue of how precisely to randomize!) and comparing the frequency of appearance of a particular network structure relative to a randomized null expectation. While this is a convenient operational test for statistical significance, its biological meaning is questionable. In contrast, an in-silico genotype-to-phenotype model makes explicit the assumptions about the network function, and thus clearly defines the expected network structures that can be compared to the case of no selection for function and, ultimately, to data.

  1. MicroRNA-1 properties in cancer regulatory networks and tumor biology.

    Science.gov (United States)

    Weiss, Martin; Brandenburg, Lars-Ove; Burchardt, Martin; Stope, Matthias B

    2016-08-01

    Short non-coding microRNAs have been identified to orchestrate crucial mechanisms in cancer progression and treatment resistance. MicroRNAs are involved in posttranscriptional modulation of gene expression and therefore represent promising targets for anticancer therapy. As mircoRNA-1 (miR-1) exerted to be predominantly downregulated in the majority of examined tumors, miR-1 is classified to be a tumor suppressor with high potential to diminish tumor development and therapy resistance. Here we review the complex functionality of miR-1 in tumor biology. PMID:27286699

  2. Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Directory of Open Access Journals (Sweden)

    Gidrol Xavier

    2008-02-01

    Full Text Available Abstract Background Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge. Results We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC devoted to BN structure learning. Conclusion We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.

  3. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  4. Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications.

    Science.gov (United States)

    Sengupta, Urmi; Ukil, Sanchaita; Dimitrova, Nevenka; Agrawal, Shipra

    2009-01-01

    Type 2 diabetes mellitus (T2D) is a multifactorial and genetically heterogeneous disease which leads to impaired glucose homeostasis and insulin resistance. The advanced form of disease causes acute cardiovascular, renal, neurological and microvascular complications. Thus there is a constant need to discover new and efficient treatment against the disease by seeking to uncover various novel alternate signalling mechanisms that can lead to diabetes and its associated complications. The present study allows detection of molecular targets by unravelling their role in altered biological pathways during diabetes and its associated risk factors and complications. We have used an integrated functional networks concept by merging co-expression network and interaction network to detect the transcriptionally altered pathways and regulations involved in the disease. Our analysis reports four novel significant networks which could lead to the development of diabetes and other associated dysfunctions. (a) The first network illustrates the up regulation of TGFBRII facilitating oxidative stress and causing the expression of early transcription genes via MAPK pathway leading to cardiovascular and kidney related complications. (b) The second network demonstrates novel interactions between GAPDH and inflammatory and proliferation candidate genes i.e., SUMO4 and EGFR indicating a new link between obesity and diabetes. (c) The third network portrays unique interactions PTPN1 with EGFR and CAV1 which could lead to an impaired vascular function in diabetic nephropathy condition. (d) Lastly, from our fourth network we have inferred that the interaction of beta-catenin with CDH5 and TGFBR1 through Smad molecules could contribute to endothelial dysfunction. A probability of emergence of kidney complication might be suggested in T2D condition. An experimental investigation on this aspect may further provide more decisive observation in drug target identification and better understanding of

  5. Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications.

    Directory of Open Access Journals (Sweden)

    Urmi Sengupta

    Full Text Available Type 2 diabetes mellitus (T2D is a multifactorial and genetically heterogeneous disease which leads to impaired glucose homeostasis and insulin resistance. The advanced form of disease causes acute cardiovascular, renal, neurological and microvascular complications. Thus there is a constant need to discover new and efficient treatment against the disease by seeking to uncover various novel alternate signalling mechanisms that can lead to diabetes and its associated complications. The present study allows detection of molecular targets by unravelling their role in altered biological pathways during diabetes and its associated risk factors and complications. We have used an integrated functional networks concept by merging co-expression network and interaction network to detect the transcriptionally altered pathways and regulations involved in the disease. Our analysis reports four novel significant networks which could lead to the development of diabetes and other associated dysfunctions. (a The first network illustrates the up regulation of TGFBRII facilitating oxidative stress and causing the expression of early transcription genes via MAPK pathway leading to cardiovascular and kidney related complications. (b The second network demonstrates novel interactions between GAPDH and inflammatory and proliferation candidate genes i.e., SUMO4 and EGFR indicating a new link between obesity and diabetes. (c The third network portrays unique interactions PTPN1 with EGFR and CAV1 which could lead to an impaired vascular function in diabetic nephropathy condition. (d Lastly, from our fourth network we have inferred that the interaction of beta-catenin with CDH5 and TGFBR1 through Smad molecules could contribute to endothelial dysfunction. A probability of emergence of kidney complication might be suggested in T2D condition. An experimental investigation on this aspect may further provide more decisive observation in drug target identification and better

  6. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  7. Extracting protein regulatory networks with graphical models.

    Science.gov (United States)

    Grzegorczyk, Marco

    2007-09-01

    During the last decade the development of high-throughput biotechnologies has resulted in the production of exponentially expanding quantities of biological data, such as genomic and proteomic expression data. One fundamental problem in systems biology is to learn the architecture of biochemical pathways and regulatory networks in an inferential way from such postgenomic data. Along with the increasing amount of available data, a lot of novel statistical methods have been developed and proposed in the literature. This article gives a non-mathematical overview of three widely used reverse engineering methods, namely relevance networks, graphical Gaussian models, and Bayesian networks, whereby the focus is on their relative merits and shortcomings. In addition the reverse engineering results of these graphical methods on cytometric protein data from the RAF-signalling network are cross-compared via AUROC scatter plots. PMID:17893851

  8. Functional Aspects of Biological Networks

    Science.gov (United States)

    Sneppen, Kim

    2007-03-01

    We discuss biological networks with respect to 1) relative positioning and importance of high degree nodes, 2) function and signaling, 3) logic and dynamics of regulation. Visually the soft modularity of many real world networks can be characterized in terms of number of high and low degrees nodes positioned relative to each other in a landscape analogue with mountains (high-degree nodes) and valleys (low-degree nodes). In these terms biological networks looks like rugged landscapes with separated peaks, hub proteins, which each are roughly as essential as any of the individual proteins on the periphery of the hub. Within each sup-domain of a molecular network one can often identify dynamical feedback mechanisms that falls into combinations of positive and negative feedback circuits. We will illustrate this with examples taken from phage regulation and bacterial uptake and regulation of small molecules. In particular we find that a double negative regulation often are replaced by a single positive link in unrelated organisms with same functional requirements. Overall we argue that network topology primarily reflects functional constraints. References: S. Maslov and K. Sneppen. ``Computational architecture of the yeast regulatory network." Phys. Biol. 2:94 (2005) A. Trusina et al. ``Functional alignment of regulatory networks: A study of temerate phages". Plos Computational Biology 1:7 (2005). J.B. Axelsen et al. ``Degree Landscapes in Scale-Free Networks" physics/0512075 (2005). A. Trusina et al. ``Hierarchy and Anti-Hierarchy in Real and Scale Free networks." PRL 92:178702 (2004) S. Semsey et al. ``Genetic Regulation of Fluxes: Iron Homeostasis of Escherichia coli". (2006) q-bio.MN/0609042

  9. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  10. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  11. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    Science.gov (United States)

    Gonçalves, Joana P; Aires, Ricardo S; Francisco, Alexandre P; Madeira, Sara C

    2012-01-01

    Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched

  12. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    Directory of Open Access Journals (Sweden)

    Joana P Gonçalves

    Full Text Available Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1 apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2 ignore local patterns, abundant in most interesting cases of transcriptional activity; (3 neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4 limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots. Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in

  13. Information transmission in genetic regulatory networks: a review.

    Science.gov (United States)

    Tkačik, Gašper; Walczak, Aleksandra M

    2011-04-20

    Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.

  14. Construction of gene regulatory networks using biclustering and bayesian networks

    OpenAIRE

    Alakwaa Fadhl M; Solouma Nahed H; Kadah Yasser M

    2011-01-01

    Abstract Background Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA mi...

  15. Information transmission in genetic regulatory networks: a review

    CERN Document Server

    Walczak, Aleksandra M

    2011-01-01

    Genetic regulatory networks enable cells to respond to the changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between network's inputs and its outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary to understand recent work. We then discuss the functional complexity of gene regulation which arrises from the molecular nature of the regulatory interactions. We end by reviewing som...

  16. Design principles in biological networks

    Science.gov (United States)

    Goyal, Sidhartha

    Much of biology emerges from networks of interactions. Even in a single bacterium such as Escherichia coli, there are hundreds of coexisting gene and protein networks. Although biological networks are the outcome of evolution, various physical and biological constraints limit their functional capacity. The focus of this thesis is to understand how functional constraints such as optimal growth in mircoorganisms and information flow in signaling pathways shape the metabolic network of bacterium E. coli and the quorum sensing network of marine bacterium Vibrio harveyi, respectively. Metabolic networks convert basic elemental sources into complex building-blocks eventually leading to cell's growth. Therefore, typically, metabolic pathways are often coupled both by the use of a common substrate and by stoichiometric utilization of their products for cell growth. We showed that such a coupled network with product-feedback inhibition may exhibit limit-cycle oscillations which arise via a Hopf bifurcation. Furthermore, we analyzed several representative metabolic modules and find that, in all cases, simple product-feedback inhibition allows nearly optimal growth, in agreement with the predicted growth-rate by the flux-balance analysis (FBA). Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum sensing (QS) systems. The QS circuit of V. harveyi integrates and funnels different ecological information through a common phosphorelay cascade to a set of small regulatory RNAs (sRNAs) that enables collective behavior. We analyzed the signaling properties and information flow in the QS circuit, which provides a model for information flow in signaling networks more generally. A comparative study of post-transcriptional and conventional transcriptional regulation suggest a niche for sRNAs in allowing cells to transition quickly yet reliably between distinct states. Furthermore, we develop a new framework for analyzing signal

  17. Population Dynamics of Genetic Regulatory Networks

    Science.gov (United States)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  18. Genetic flexibility of regulatory networks.

    Science.gov (United States)

    Hunziker, Alexander; Tuboly, Csaba; Horváth, Péter; Krishna, Sandeep; Semsey, Szabolcs

    2010-07-20

    Gene regulatory networks are based on simple building blocks such as promoters, transcription factors (TFs) and their binding sites on DNA. But how diverse are the functions that can be obtained by different arrangements of promoters and TF binding sites? In this work we constructed synthetic regulatory regions using promoter elements and binding sites of two noninteracting TFs, each sensing a single environmental input signal. We show that simply by combining these three kinds of elements, we can obtain 11 of the 16 Boolean logic gates that integrate two environmental signals in vivo. Further, we demonstrate how combination of logic gates can result in new logic functions. Our results suggest that simple elements of transcription regulation form a highly flexible toolbox that can generate diverse functions under natural selection.

  19. Modeling parsimonious putative regulatory networks: complexity and heuristic approach

    OpenAIRE

    Acuña, Vicente; Aravena, Andrés; Maass, Alejandro; Siegel, Anne

    2014-01-01

    International audience A relevant problem in systems biology is the description of the regulatory interactions between genes. It is observed that pairs of genes have significant correlation through several experimental conditions. The question is to find causal relationships that can explain this experimental evidence. A putative regulatory network can be represented by an oriented weighted graph, where vertices represent genes, arcs represent predicted regulatory interactions and the arc ...

  20. Evolutionary algorithms in genetic regulatory networks model

    CERN Document Server

    Raza, Khalid

    2012-01-01

    Genetic Regulatory Networks (GRNs) plays a vital role in the understanding of complex biological processes. Modeling GRNs is significantly important in order to reveal fundamental cellular processes, examine gene functions and understanding their complex relationships. Understanding the interactions between genes gives rise to develop better method for drug discovery and diagnosis of the disease since many diseases are characterized by abnormal behaviour of the genes. In this paper we have reviewed various evolutionary algorithms-based approach for modeling GRNs and discussed various opportunities and challenges.

  1. Networks in Cell Biology = Modelling cell biology with networks

    OpenAIRE

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, M.

    2010-01-01

    The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It ...

  2. Dynamics of network motifs in genetic regulatory networks

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Liu Zeng-Rong; Zhang Jian-Bao

    2007-01-01

    Network motifs hold a very important status in genetic regulatory networks. This paper aims to analyse the dynamical property of the network motifs in genetic regulatory networks. The main result we obtained is that the dynamical property of a single motif is very simple with only an asymptotically stable equilibrium point, but the combination of several motifs can make more complicated dynamical properties emerge such as limit cycles. The above-mentioned result shows that network motif is a stable substructure in genetic regulatory networks while their combinations make the genetic regulatory network more complicated.

  3. Metabolic constraint-based refinement of transcriptional regulatory networks.

    Science.gov (United States)

    Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    There is a strong need for computational frameworks that integrate different biological processes and data-types to unravel cellular regulation. Current efforts to reconstruct transcriptional regulatory networks (TRNs) focus primarily on proximal data such as gene co-expression and transcription factor (TF) binding. While such approaches enable rapid reconstruction of TRNs, the overwhelming combinatorics of possible networks limits identification of mechanistic regulatory interactions. Utilizing growth phenotypes and systems-level constraints to inform regulatory network reconstruction is an unmet challenge. We present our approach Gene Expression and Metabolism Integrated for Network Inference (GEMINI) that links a compendium of candidate regulatory interactions with the metabolic network to predict their systems-level effect on growth phenotypes. We then compare predictions with experimental phenotype data to select phenotype-consistent regulatory interactions. GEMINI makes use of the observation that only a small fraction of regulatory network states are compatible with a viable metabolic network, and outputs a regulatory network that is simultaneously consistent with the input genome-scale metabolic network model, gene expression data, and TF knockout phenotypes. GEMINI preferentially recalls gold-standard interactions (p-value = 10(-172)), significantly better than using gene expression alone. We applied GEMINI to create an integrated metabolic-regulatory network model for Saccharomyces cerevisiae involving 25,000 regulatory interactions controlling 1597 metabolic reactions. The model quantitatively predicts TF knockout phenotypes in new conditions (p-value = 10(-14)) and revealed potential condition-specific regulatory mechanisms. Our results suggest that a metabolic constraint-based approach can be successfully used to help reconstruct TRNs from high-throughput data, and highlights the potential of using a biochemically-detailed mechanistic framework to

  4. A genomic regulatory network for development

    Science.gov (United States)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; Otim, Ochan; Brown, C. Titus; Livi, Carolina B.; Lee, Pei Yun; Revilla, Roger; Rust, Alistair G.; Pan, Zheng jun; Schilstra, Maria J.; Clarke, Peter J C.; Arnone, Maria I.; Rowen, Lee; Cameron, R. Andrew; McClay, David R.; Hood, Leroy; Bolouri, Hamid

    2002-01-01

    Development of the body plan is controlled by large networks of regulatory genes. A gene regulatory network that controls the specification of endoderm and mesoderm in the sea urchin embryo is summarized here. The network was derived from large-scale perturbation analyses, in combination with computational methodologies, genomic data, cis-regulatory analysis, and molecular embryology. The network contains over 40 genes at present, and each node can be directly verified at the DNA sequence level by cis-regulatory analysis. Its architecture reveals specific and general aspects of development, such as how given cells generate their ordained fates in the embryo and why the process moves inexorably forward in developmental time.

  5. Review of biological network data and its applications.

    Science.gov (United States)

    Yu, Donghyeon; Kim, Minsoo; Xiao, Guanghua; Hwang, Tae Hyun

    2013-12-01

    Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

  6. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  7. Chaotic motifs in gene regulatory networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.

  8. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  9. Inference of Gene Regulatory Network Based on Local Bayesian Networks

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Chen, Luonan

    2016-01-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  10. ReNE: a cytoscape plugin for regulatory network enhancement.

    Science.gov (United States)

    Politano, Gianfranco; Benso, Alfredo; Savino, Alessandro; Di Carlo, Stefano

    2014-01-01

    One of the biggest challenges in the study of biological regulatory mechanisms is the integration, americanmodeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs) are widely investigated in current research, their usage and visualization in biological networks is very limited. Regulatory networks are commonly limited to gene entities. To integrate networks with post transcriptional regulatory data, researchers are therefore forced to manually resort to specific third party databases. In this context, we introduce ReNE, a Cytoscape 3.x plugin designed to automatically enrich a standard gene-based regulatory network with more detailed transcriptional, post transcriptional, and translational data, resulting in an enhanced network that more precisely models the actual biological regulatory mechanisms. ReNE can automatically import a network layout from the Reactome or KEGG repositories, or work with custom pathways described using a standard OWL/XML data format that the Cytoscape import procedure accepts. Moreover, ReNE allows researchers to merge multiple pathways coming from different sources. The merged network structure is normalized to guarantee a consistent and uniform description of the network nodes and edges and to enrich all integrated data with additional annotations retrieved from genome-wide databases like NCBI, thus producing a pathway fully manageable through the Cytoscape environment. The normalized network is then analyzed to include missing transcription factors, miRNAs, and proteins. The resulting enhanced network is still a fully functional Cytoscape network where each regulatory element (transcription factor, miRNA, gene, protein) and regulatory mechanism (up-regulation/down-regulation) is clearly visually identifiable, thus enabling a better visual understanding of its role and the effect in the network behavior. The enhanced network produced by Re

  11. ReNE: a cytoscape plugin for regulatory network enhancement.

    Directory of Open Access Journals (Sweden)

    Gianfranco Politano

    Full Text Available One of the biggest challenges in the study of biological regulatory mechanisms is the integration, americanmodeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs are widely investigated in current research, their usage and visualization in biological networks is very limited. Regulatory networks are commonly limited to gene entities. To integrate networks with post transcriptional regulatory data, researchers are therefore forced to manually resort to specific third party databases. In this context, we introduce ReNE, a Cytoscape 3.x plugin designed to automatically enrich a standard gene-based regulatory network with more detailed transcriptional, post transcriptional, and translational data, resulting in an enhanced network that more precisely models the actual biological regulatory mechanisms. ReNE can automatically import a network layout from the Reactome or KEGG repositories, or work with custom pathways described using a standard OWL/XML data format that the Cytoscape import procedure accepts. Moreover, ReNE allows researchers to merge multiple pathways coming from different sources. The merged network structure is normalized to guarantee a consistent and uniform description of the network nodes and edges and to enrich all integrated data with additional annotations retrieved from genome-wide databases like NCBI, thus producing a pathway fully manageable through the Cytoscape environment. The normalized network is then analyzed to include missing transcription factors, miRNAs, and proteins. The resulting enhanced network is still a fully functional Cytoscape network where each regulatory element (transcription factor, miRNA, gene, protein and regulatory mechanism (up-regulation/down-regulation is clearly visually identifiable, thus enabling a better visual understanding of its role and the effect in the network behavior. The enhanced

  12. Topology of transcriptional regulatory networks: testing and improving.

    Directory of Open Access Journals (Sweden)

    Dicle Hasdemir

    Full Text Available With the increasing amount and complexity of data generated in biological experiments it is becoming necessary to enhance the performance and applicability of existing statistical data analysis methods. This enhancement is needed for the hidden biological information to be better resolved and better interpreted. Towards that aim, systematic incorporation of prior information in biological data analysis has been a challenging problem for systems biology. Several methods have been proposed to integrate data from different levels of information most notably from metabolomics, transcriptomics and proteomics and thus enhance biological interpretation. However, in order not to be misled by the dominance of incorrect prior information in the analysis, being able to discriminate between competing prior information is required. In this study, we show that discrimination between topological information in competing transcriptional regulatory network models is possible solely based on experimental data. We use network topology dependent decomposition of synthetic gene expression data to introduce both local and global discriminating measures. The measures indicate how well the gene expression data can be explained under the constraints of the model network topology and how much each regulatory connection in the model refuses to be constrained. Application of the method to the cell cycle regulatory network of Saccharomyces cerevisiae leads to the prediction of novel regulatory interactions, improving the information content of the hypothesized network model.

  13. Efficient, sparse biological network determination

    Directory of Open Access Journals (Sweden)

    Papachristodoulou Antonis

    2009-02-01

    Full Text Available Abstract Background Determining the interaction topology of biological systems is a topic that currently attracts significant research interest. Typical models for such systems take the form of differential equations that involve polynomial and rational functions. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data much harder. The use of linear dynamics and linearization techniques that have been proposed in the past can circumvent this, but the general problem of developing efficient algorithms for models that provide more accurate system descriptions remains open. Results We present a network determination algorithm that can treat model descriptions with polynomial and rational functions and which does not make use of linearization. For this purpose, we make use of the observation that biochemical networks are in general 'sparse' and minimize the 1-norm of the decision variables (sum of weighted network connections while constraints keep the error between data and the network dynamics small. The emphasis of our methodology is on determining the interconnection topology rather than the specific reaction constants and it takes into account the necessary properties that a chemical reaction network should have – something that techniques based on linearization can not. The problem can be formulated as a Linear Program, a convex optimization problem, for which efficient algorithms are available that can treat large data sets efficiently and uncertainties in data or model parameters. Conclusion The presented methodology is able to predict with accuracy and efficiency the connectivity structure of a chemical reaction network with mass action kinetics and of a gene regulatory network from simulation data even if the dynamics of these systems are non-polynomial (rational and uncertainties in the data are taken into account. It also produces a network structure that can

  14. Complex Networks: from Graph Theory to Biology

    Science.gov (United States)

    Lesne, Annick

    2006-12-01

    The aim of this text is to show the central role played by networks in complex system science. A remarkable feature of network studies is to lie at the crossroads of different disciplines, from mathematics (graph theory, combinatorics, probability theory) to physics (statistical physics of networks) to computer science (network generating algorithms, combinatorial optimization) to biological issues (regulatory networks). New paradigms recently appeared, like that of ‘scale-free networks’ providing an alternative to the random graph model introduced long ago by Erdös and Renyi. With the notion of statistical ensemble and methods originally introduced for percolation networks, statistical physics is of high relevance to get a deep account of topological and statistical properties of a network. Then their consequences on the dynamics taking place in the network should be investigated. Impact of network theory is huge in all natural sciences, especially in biology with gene networks, metabolic networks, neural networks or food webs. I illustrate this brief overview with a recent work on the influence of network topology on the dynamics of coupled excitable units, and the insights it provides about network emerging features, robustness of network behaviors, and the notion of static or dynamic motif.

  15. Towards a predictive theory for genetic regulatory networks

    Science.gov (United States)

    Tkacik, Gasper

    When cells respond to changes in the environment by regulating the expression levels of their genes, we often draw parallels between these biological processes and engineered information processing systems. One can go beyond this qualitative analogy, however, by analyzing information transmission in biochemical ``hardware'' using Shannon's information theory. Here, gene regulation is viewed as a transmission channel operating under restrictive constraints set by the resource costs and intracellular noise. We present a series of results demonstrating that a theory of information transmission in genetic regulatory circuits feasibly yields non-trivial, testable predictions. These predictions concern strategies by which individual gene regulatory elements, e.g., promoters or enhancers, read out their signals; as well as strategies by which small networks of genes, independently or in spatially coupled settings, respond to their inputs. These predictions can be quantitatively compared to the known regulatory networks and their function, and can elucidate how reproducible biological processes, such as embryonic development, can be orchestrated by networks built out of noisy components. Preliminary successes in the gap gene network of the fruit fly Drosophila indicate that a full ab initio theoretical prediction of a regulatory network is possible, a feat that has not yet been achieved for any real regulatory network. We end by describing open challenges on the path towards such a prediction.

  16. Dissecting microregulation of a master regulatory network

    Directory of Open Access Journals (Sweden)

    Kaimal Vivek

    2008-02-01

    Full Text Available Abstract Background The master regulator p53 tumor-suppressor protein through coordination of several downstream target genes and upstream transcription factors controls many pathways important for tumor suppression. While it has been reported that some of the p53's functions are microRNA-mediated, it is not known as to how many other microRNAs might contribute to the p53-mediated tumorigenesis. Results Here, we use bioinformatics-based integrative approach to identify and prioritize putative p53-regulated miRNAs, and unravel the miRNA-based microregulation of the p53 master regulatory network. Specifically, we identify putative microRNA regulators of a transcription factors that are upstream or downstream to p53 and b p53 interactants. The putative p53-miRs and their targets are prioritized using current knowledge of cancer biology and literature-reported cancer-miRNAs. Conclusion Our predicted p53-miRNA-gene networks strongly suggest that coordinated transcriptional and p53-miR mediated networks could be integral to tumorigenesis and the underlying processes and pathways.

  17. Functional alignment of regulatory networks: a study of temperate phages.

    Directory of Open Access Journals (Sweden)

    Ala Trusina

    2005-12-01

    Full Text Available The relationship between the design and functionality of molecular networks is now a key issue in biology. Comparison of regulatory networks performing similar tasks can provide insights into how network architecture is constrained by the functions it directs. Here, we discuss methods of network comparison based on network architecture and signaling logic. Introducing local and global signaling scores for the difference between two networks, we quantify similarities between evolutionarily closely and distantly related bacteriophages. Despite the large evolutionary separation between phage lambda and 186, their networks are found to be similar when difference is measured in terms of global signaling. We finally discuss how network alignment can be used to pinpoint protein similarities viewed from the network perspective.

  18. Stability depends on positive autoregulation in Boolean gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Ricardo Pinho

    2014-11-01

    Full Text Available Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs. The most basic motif, autoregulation, has been associated with bistability (when positive and with homeostasis and robustness to noise (when negative, but its general importance in network behavior is poorly understood. Moreover, how specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection, including mutation and recombination. Each generation simulated the development of a population of organisms modeled by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals.

  19. Simplified models of biological networks.

    Science.gov (United States)

    Sneppen, Kim; Krishna, Sandeep; Semsey, Szabolcs

    2010-01-01

    The function of living cells is controlled by complex regulatory networks that are built of a wide diversity of interacting molecular components. The sheer size and intricacy of molecular networks of even the simplest organisms are obstacles toward understanding network functionality. This review discusses the achievements and promise of a bottom-up approach that uses well-characterized subnetworks as model systems for understanding larger networks. It highlights the interplay between the structure, logic, and function of various types of small regulatory circuits. The bottom-up approach advocates understanding regulatory networks as a collection of entangled motifs. We therefore emphasize the potential of negative and positive feedback, as well as their combinations, to generate robust homeostasis, epigenetics, and oscillations. PMID:20192769

  20. Logical impossibilities in biological networks

    Directory of Open Access Journals (Sweden)

    Monendra Grover

    2011-10-01

    Full Text Available Biological networks are complex and involve several kinds of molecules. For proper biological function it is important for these biomolecules to act at an individual level and act at the level of interaction of these molecules. In this paper some of the logical impossibilities that may arise in the biological networks and their possible solutions are discussed. It may be important to understand these paradoxes and their possible solutions in order to develop a holistic view of biological function.

  1. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  2. Overview of methods of reverse engineering of gene regulatory networks: Boolean and Bayesian networks

    Directory of Open Access Journals (Sweden)

    Frolova A. O.

    2012-06-01

    Full Text Available Reverse engineering of gene regulatory networks is an intensively studied topic in Systems Biology as it reconstructs regulatory interactions between all genes in the genome in the most complete form. The extreme computational complexity of this problem and lack of thorough reviews on reconstruction methods of gene regulatory network is a significant obstacle to further development of this area. In this article the two most common methods for modeling gene regulatory networks are surveyed: Boolean and Bayesian networks. The mathematical description of each method is given, as well as several algorithmic approaches to modeling gene networks using these methods; the complexity of algorithms and the problems that arise during its implementation are also noted.

  3. Network benchmarking: a happy marriage between systems and synthetic biology.

    Science.gov (United States)

    Minty, Jeremy J; Varedi K, S Marjan; Nina Lin, Xiaoxia

    2009-03-27

    In their new Cell paper, Cantone et al. (2009) present exciting results on constructing and utilizing a small synthetic gene regulatory network in yeast that draws from two rapidly developing fields of systems and synthetic biology.

  4. Noise Control in Gene Regulatory Networks with Negative Feedback.

    Science.gov (United States)

    Hinczewski, Michael; Thirumalai, D

    2016-07-01

    Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.

  5. Linking network topology to function. Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki and M. Zagorski

    Science.gov (United States)

    di Bernardo, Diego

    2016-07-01

    The review by Martin et al. deals with a long standing problem at the interface of complex systems and molecular biology, that is the relationship between the topology of a complex network and its function. In biological terms the problem translates to relating the topology of gene regulatory networks (GRNs) to specific cellular functions. GRNs control the spatial and temporal activity of the genes encoded in the cell's genome by means of specialised proteins called Transcription Factors (TFs). A TF is able to recognise and bind specifically to a sequence (TF biding site) of variable length (order of magnitude of 10) found upstream of the sequence encoding one or more genes (at least in prokaryotes) and thus activating or repressing their transcription. TFs can thus be distinguished in activator and repressor. The picture can become more complex since some classes of TFs can form hetero-dimers consisting of a protein complex whose subunits are the individual TFs. Heterodimers can have completely different binding sites and activity compared to their individual parts. In this review the authors limit their attention to prokaryotes where the complexity of GRNs is somewhat reduced. Moreover they exploit a unique feature of living systems, i.e. evolution, to understand whether function can shape network topology. Indeed, prokaryotes such as bacteria are among the oldest living systems that have become perfectly adapted to their environment over geological scales and thus have reached an evolutionary steady-state where the fitness of the population has reached a plateau. By integrating in silico analysis and comparative evolution, the authors show that indeed function does tend to shape the structure of a GRN, however this trend is not always present and depends on the properties of the network being examined. Interestingly, the trend is more apparent for sparse networks, i.e. where the density of edges is very low. Sparsity is indeed one of the most prominent features

  6. Querying Large Biological Network Datasets

    Science.gov (United States)

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  7. Linking network topology to function. Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki and M. Zagorski

    Science.gov (United States)

    di Bernardo, Diego

    2016-07-01

    The review by Martin et al. deals with a long standing problem at the interface of complex systems and molecular biology, that is the relationship between the topology of a complex network and its function. In biological terms the problem translates to relating the topology of gene regulatory networks (GRNs) to specific cellular functions. GRNs control the spatial and temporal activity of the genes encoded in the cell's genome by means of specialised proteins called Transcription Factors (TFs). A TF is able to recognise and bind specifically to a sequence (TF biding site) of variable length (order of magnitude of 10) found upstream of the sequence encoding one or more genes (at least in prokaryotes) and thus activating or repressing their transcription. TFs can thus be distinguished in activator and repressor. The picture can become more complex since some classes of TFs can form hetero-dimers consisting of a protein complex whose subunits are the individual TFs. Heterodimers can have completely different binding sites and activity compared to their individual parts. In this review the authors limit their attention to prokaryotes where the complexity of GRNs is somewhat reduced. Moreover they exploit a unique feature of living systems, i.e. evolution, to understand whether function can shape network topology. Indeed, prokaryotes such as bacteria are among the oldest living systems that have become perfectly adapted to their environment over geological scales and thus have reached an evolutionary steady-state where the fitness of the population has reached a plateau. By integrating in silico analysis and comparative evolution, the authors show that indeed function does tend to shape the structure of a GRN, however this trend is not always present and depends on the properties of the network being examined. Interestingly, the trend is more apparent for sparse networks, i.e. where the density of edges is very low. Sparsity is indeed one of the most prominent features

  8. Inferring slowly-changing dynamic gene-regulatory networks.

    Science.gov (United States)

    Wit, Ernst C; Abbruzzo, Antonino

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a class of models that connect the network with a conditional independence relationships between random variables. By interpreting these random variables as gene activities and the conditional independence relationships as functional non-relatedness, graphical models have been used to describe gene-regulatory networks. Whereas the literature has been focused on static networks, most time-course experiments are designed in order to tease out temporal changes in the underlying network. It is typically reasonable to assume that changes in genomic networks are few, because biological systems tend to be stable. We introduce a new model for estimating slow changes in dynamic gene-regulatory networks, which is suitable for high-dimensional data, e.g. time-course microarray data. Our aim is to estimate a dynamically changing genomic network based on temporal activity measurements of the genes in the network. Our method is based on the penalized likelihood with l1-norm, that penalizes conditional dependencies between genes as well as differences between conditional independence elements across time points. We also present a heuristic search strategy to find optimal tuning parameters. We re-write the penalized maximum likelihood problem into a standard convex optimization problem subject to linear equality constraints. We show that our method performs well in simulation studies. Finally, we apply the proposed model to a time-course T-cell dataset.

  9. HIDEN: Hierarchical decomposition of regulatory networks

    Directory of Open Access Journals (Sweden)

    Gülsoy Günhan

    2012-09-01

    Full Text Available Abstract Background Transcription factors regulate numerous cellular processes by controlling the rate of production of each gene. The regulatory relations are modeled using transcriptional regulatory networks. Recent studies have shown that such networks have an underlying hierarchical organization. We consider the problem of discovering the underlying hierarchy in transcriptional regulatory networks. Results We first transform this problem to a mixed integer programming problem. We then use existing tools to solve the resulting problem. For larger networks this strategy does not work due to rapid increase in running time and space usage. We use divide and conquer strategy for such networks. We use our method to analyze the transcriptional regulatory networks of E. coli, H. sapiens and S. cerevisiae. Conclusions Our experiments demonstrate that: (i Our method gives statistically better results than three existing state of the art methods; (ii Our method is robust against errors in the data and (iii Our method’s performance is not affected by the different topologies in the data.

  10. Additive functions in boolean models of gene regulatory network modules.

    Science.gov (United States)

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  11. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You

    2014-01-01

    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  12. Gene Regulatory Network Reconstruction Using Conditional Mutual Information

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2008-06-01

    Full Text Available The inference of gene regulatory network from expression data is an important area of research that provides insight to the inner workings of a biological system. The relevance-network-based approaches provide a simple and easily-scalable solution to the understanding of interaction between genes. Up until now, most works based on relevance network focus on the discovery of direct regulation using correlation coefficient or mutual information. However, some of the more complicated interactions such as interactive regulation and coregulation are not easily detected. In this work, we propose a relevance network model for gene regulatory network inference which employs both mutual information and conditional mutual information to determine the interactions between genes. For this purpose, we propose a conditional mutual information estimator based on adaptive partitioning which allows us to condition on both discrete and continuous random variables. We provide experimental results that demonstrate that the proposed regulatory network inference algorithm can provide better performance when the target network contains coregulated and interactively regulated genes.

  13. Construction of gene regulatory networks using biclustering and bayesian networks

    Directory of Open Access Journals (Sweden)

    Alakwaa Fadhl M

    2011-10-01

    Full Text Available Abstract Background Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling. Results In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method. Conclusions Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods.

  14. Shaping Formal Networks throug the Regulatory Process

    NARCIS (Netherlands)

    Hall, Thad E.; O'Toole, Laurence J.

    2004-01-01

    Recent research has shown that, at the federal level, new or amended programs typically create networks consisting of multiactor structures spanning governments, sectors, and/or agencies. This study examines the implementation structures created through the regulatory process. We find that in a majo

  15. Topological effects of data incompleteness of gene regulatory networks

    CERN Document Server

    Sanz, J; Borge-Holthoefer, J; Moreno, Y

    2012-01-01

    The topological analysis of biological networks has been a prolific topic in network science during the last decade. A persistent problem with this approach is the inherent uncertainty and noisy nature of the data. One of the cases in which this situation is more marked is that of transcriptional regulatory networks (TRNs) in bacteria. The datasets are incomplete because regulatory pathways associated to a relevant fraction of bacterial genes remain unknown. Furthermore, direction, strengths and signs of the links are sometimes unknown or simply overlooked. Finally, the experimental approaches to infer the regulations are highly heterogeneous, in a way that induces the appearance of systematic experimental-topological correlations. And yet, the quality of the available data increases constantly. In this work we capitalize on these advances to point out the influence of data (in)completeness and quality on some classical results on topological analysis of TRNs, specially regarding modularity at different level...

  16. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  17. The comprehensive updated regulatory network of Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2006-01-01

    Full Text Available Abstract Background Escherichia coli is the model organism for which our knowledge of its regulatory network is the most extensive. Over the last few years, our project has been collecting and curating the literature concerning E. coli transcription initiation and operons, providing in both the RegulonDB and EcoCyc databases the largest electronically encoded network available. A paper published recently by Ma et al. (2004 showed several differences in the versions of the network present in these two databases. Discrepancies have been corrected, annotations from this and other groups (Shen-Orr et al., 2002 have been added, making the RegulonDB and EcoCyc databases the largest comprehensive and constantly curated regulatory network of E. coli K-12. Results Several groups have been using these curated data as part of their bioinformatics and systems biology projects, in combination with external data obtained from other sources, thus enlarging the dataset initially obtained from either RegulonDB or EcoCyc of the E. coli K12 regulatory network. We kindly obtained from the groups of Uri Alon and Hong-Wu Ma the interactions they have added to enrich their public versions of the E. coli regulatory network. These were used to search for original references and curate them with the same standards we use regularly, adding in several cases the original references (instead of reviews or missing references, as well as adding the corresponding experimental evidence codes. We also corrected all discrepancies in the two databases available as explained below. Conclusion One hundred and fifty new interactions have been added to our databases as a result of this specific curation effort, in addition to those added as a result of our continuous curation work. RegulonDB gene names are now based on those of EcoCyc to avoid confusion due to gene names and synonyms, and the public releases of RegulonDB and EcoCyc are henceforth synchronized to avoid confusion due to

  18. Modeling Emergence in Neuroprotective Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.; Stevens, S.L.; Stenzel-Poore, Mary

    2013-01-05

    The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatory networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.

  19. New scaling relation for information transfer in biological networks.

    Science.gov (United States)

    Kim, Hyunju; Davies, Paul; Walker, Sara Imari

    2015-12-01

    We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781-4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös-Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883

  20. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  1. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research.

    Science.gov (United States)

    Li, Junyi; Li, Yi-Xue; Li, Yuan-Yuan

    2016-01-01

    With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA) based on gene coexpression network (GCN) increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review the paradigm of differential regulatory analysis based on GCN. We also focus on the applications of differential regulatory analysis based on GCN in cancer research and point out that DRA is necessary and extraordinary to reveal underlying molecular mechanism in large-scale carcinogenesis studies. PMID:27597964

  2. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research

    Directory of Open Access Journals (Sweden)

    Junyi Li

    2016-01-01

    Full Text Available With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA based on gene coexpression network (GCN increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review the paradigm of differential regulatory analysis based on GCN. We also focus on the applications of differential regulatory analysis based on GCN in cancer research and point out that DRA is necessary and extraordinary to reveal underlying molecular mechanism in large-scale carcinogenesis studies.

  3. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  4. Modeling Regulatory Networks to Understand Plant Development: Small Is Beautiful

    Science.gov (United States)

    Middleton, Alistair M.; Farcot, Etienne; Owen, Markus R.; Vernoux, Teva

    2012-01-01

    We now have unprecedented capability to generate large data sets on the myriad genes and molecular players that regulate plant development. Networks of interactions between systems components can be derived from that data in various ways and can be used to develop mathematical models of various degrees of sophistication. Here, we discuss why, in many cases, it is productive to focus on small networks. We provide a brief and accessible introduction to relevant mathematical and computational approaches to model regulatory networks and discuss examples of small network models that have helped generate new insights into plant biology (where small is beautiful), such as in circadian rhythms, hormone signaling, and tissue patterning. We conclude by outlining some of the key technical and modeling challenges for the future. PMID:23110896

  5. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    OpenAIRE

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen met...

  6. Global analysis of photosynthesis transcriptional regulatory networks.

    OpenAIRE

    Saheed Imam; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen met...

  7. Adaptation by Plasticity of Genetic Regulatory Networks

    Science.gov (United States)

    Brenner, Naama

    2007-03-01

    Genetic regulatory networks have an essential role in adaptation and evolution of cell populations. This role is strongly related to their dynamic properties over intermediate-to-long time scales. We have used the budding yeast as a model Eukaryote to study the long-term dynamics of the genetic regulatory system and its significance in evolution. A continuous cell growth technique (chemostat) allows us to monitor these systems over long times under controlled condition, enabling a quantitative characterization of dynamics: steady states and their stability, transients and relaxation. First, we have demonstrated adaptive dynamics in the GAL system, a classic model for a Eukaryotic genetic switch, induced and repressed by different carbon sources in the environment. We found that both induction and repression are only transient responses; over several generations, the system converges to a single robust steady state, independent of external conditions. Second, we explored the functional significance of such plasticity of the genetic regulatory network in evolution. We used genetic engineering to mimic the natural process of gene recruitment, placing the gene HIS3 under the regulation of the GAL system. Such genetic rewiring events are important in the evolution of gene regulation, but little is known about the physiological processes supporting them and the dynamics of their assimilation in a cell population. We have shown that cells carrying the rewired genome adapted to a demanding change of environment and stabilized a population, maintaining the adaptive state for hundreds of generations. Using genome-wide expression arrays we showed that underlying the observed adaptation is a global transcriptional programming that allowed tuning expression of the recruited gene to demands. Our results suggest that non-specific properties reflecting the natural plasticity of the regulatory network support adaptation of cells to novel challenges and enhance their evolvability.

  8. Inferring biological networks by sparse identification of nonlinear dynamics

    OpenAIRE

    Mangan, Niall M.; Brunton, Steven L.; Proctor, Joshua L.; Kutz, J Nathan

    2016-01-01

    Inferring the structure and dynamics of network models is critical to understanding the functionality and control of complex systems, such as metabolic and regulatory biological networks. The increasing quality and quantity of experimental data enable statistical approaches based on information theory for model selection and goodness-of-fit metrics. We propose an alternative method to infer networked nonlinear dynamical systems by using sparsity-promoting $\\ell_1$ optimization to select a sub...

  9. Modeling genomic regulatory networks with big data.

    Science.gov (United States)

    Bolouri, Hamid

    2014-05-01

    High-throughput sequencing, large-scale data generation projects, and web-based cloud computing are changing how computational biology is performed, who performs it, and what biological insights it can deliver. I review here the latest developments in available data, methods, and software, focusing on the modeling and analysis of the gene regulatory interactions in cells. Three key findings are: (i) although sophisticated computational resources are increasingly available to bench biologists, tailored ongoing education is necessary to avoid the erroneous use of these resources. (ii) Current models of the regulation of gene expression are far too simplistic and need updating. (iii) Integrative computational analysis of large-scale datasets is becoming a fundamental component of molecular biology. I discuss current and near-term opportunities and challenges related to these three points.

  10. Noise Control in Gene Regulatory Networks with Negative Feedback.

    Science.gov (United States)

    Hinczewski, Michael; Thirumalai, D

    2016-07-01

    Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise. PMID:27095600

  11. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  12. Analysis of deterministic cyclic gene regulatory network models with delays

    CERN Document Server

    Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian

    2015-01-01

    This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.

  13. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Science.gov (United States)

    Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu

    2014-01-01

    In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  14. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Directory of Open Access Journals (Sweden)

    Wensheng Guo

    Full Text Available In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  15. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens.

    Directory of Open Access Journals (Sweden)

    Deborah Chasman

    2016-07-01

    Full Text Available Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection.

  16. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens

    Science.gov (United States)

    Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-01-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523

  17. Research of Gene Regulatory Network with Multi-Time Delay Based on Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    LIU Bei; MENG Fanjiang; LI Yong; LIU Liyan

    2008-01-01

    The gene regulatory network was reconstructed according to time-series microarray data getting from hybridization at different time between gene chips to analyze coordination and restriction between genes. An algorithm for controlling the gene expression regulatory network of the whole cell was designed using Bayesian network which provides an effective aided analysis for gene regulatory network.

  18. On the Interplay between Entropy and Robustness of Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2010-05-01

    Full Text Available The interplay between entropy and robustness of gene network is a core mechanism of systems biology. The entropy is a measure of randomness or disorder of a physical system due to random parameter fluctuation and environmental noises in gene regulatory networks. The robustness of a gene regulatory network, which can be measured as the ability to tolerate the random parameter fluctuation and to attenuate the effect of environmental noise, will be discussed from the robust H∞ stabilization and filtering perspective. In this review, we will also discuss their balancing roles in evolution and potential applications in systems and synthetic biology.

  19. Inferring slowly-changing dynamic gene-regulatory networks

    NARCIS (Netherlands)

    Wit, Ernst C.; Abbruzzo, Antonino

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a cla

  20. Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling.

    Directory of Open Access Journals (Sweden)

    Masanao Sato

    Full Text Available Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2. This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i the components of the network are highly interconnected; and (ii negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a "sector

  1. Bottom-up GGM algorithm for constructing multiple layered hierarchical gene regulatory networks

    Science.gov (United States)

    Multilayered hierarchical gene regulatory networks (ML-hGRNs) are very important for understanding genetics regulation of biological pathways. However, there are currently no computational algorithms available for directly building ML-hGRNs that regulate biological pathways. A bottom-up graphic Gaus...

  2. The gene regulatory network for breast cancer: Integrated regulatory landscape of cancer hallmarks

    Directory of Open Access Journals (Sweden)

    Frank eEmmert-Streib

    2014-02-01

    Full Text Available In this study, we infer the breast cancer gene regulatory network from gene expression data. This network is obtained from the application of the BC3Net inference algorithm to a large-scale gene expression data set consisting of $351$ patient samples. In order to elucidate the functional relevance of the inferred network, we are performing a Gene Ontology (GO analysis for its structural components. Our analysis reveals that most significant GO-terms we find for the breast cancer network represent functional modules of biological processes that are described by known cancer hallmarks, including translation, immune response, cell cycle, organelle fission, mitosis, cell adhesion, RNA processing, RNA splicing and response to wounding. Furthermore, by using a curated list of census cancer genes, we find an enrichment in these functional modules. Finally, we study cooperative effects of chromosomes based on information of interacting genes in the beast cancer network. We find that chromosome $21$ is most coactive with other chromosomes. To our knowledge this is the first study investigating the genome-scale breast cancer network.

  3. Evolution of regulatory networks towards adaptability and stability in a changing environment

    Science.gov (United States)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  4. Comparison of Gene Regulatory Networks via Steady-State Trajectories

    Directory of Open Access Journals (Sweden)

    Seungchan Kim

    2007-05-01

    Full Text Available The modeling of genetic regulatory networks is becoming increasingly widespread in the study of biological systems. In the abstract, one would prefer quantitatively comprehensive models, such as a differential-equation model, to coarse models; however, in practice, detailed models require more accurate measurements for inference and more computational power to analyze than coarse-scale models. It is crucial to address the issue of model complexity in the framework of a basic scientific paradigm: the model should be of minimal complexity to provide the necessary predictive power. Addressing this issue requires a metric by which to compare networks. This paper proposes the use of a classical measure of difference between amplitude distributions for periodic signals to compare two networks according to the differences of their trajectories in the steady state. The metric is applicable to networks with both continuous and discrete values for both time and state, and it possesses the critical property that it allows the comparison of networks of different natures. We demonstrate application of the metric by comparing a continuous-valued reference network against simplified versions obtained via quantization.

  5. Comparison of Gene Regulatory Networks via Steady-State Trajectories

    Directory of Open Access Journals (Sweden)

    Choi Woonjung

    2007-01-01

    Full Text Available The modeling of genetic regulatory networks is becoming increasingly widespread in the study of biological systems. In the abstract, one would prefer quantitatively comprehensive models, such as a differential-equation model, to coarse models; however, in practice, detailed models require more accurate measurements for inference and more computational power to analyze than coarse-scale models. It is crucial to address the issue of model complexity in the framework of a basic scientific paradigm: the model should be of minimal complexity to provide the necessary predictive power. Addressing this issue requires a metric by which to compare networks. This paper proposes the use of a classical measure of difference between amplitude distributions for periodic signals to compare two networks according to the differences of their trajectories in the steady state. The metric is applicable to networks with both continuous and discrete values for both time and state, and it possesses the critical property that it allows the comparison of networks of different natures. We demonstrate application of the metric by comparing a continuous-valued reference network against simplified versions obtained via quantization.

  6. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  7. Duplication: a Mechanism Producing Disassortative Mixing Networks in Biology

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; LIU Zeng-Rong; WANG Jia-Zeng

    2007-01-01

    Assortative/disassortative mixing is an important topological property of a network. A network is called assortative mixing if the nodes in the network tend to connect to their connectivity peers, or disassortative mixing if nodes with low degrees are more likely to connect with high-degree nodes. We have known that biological networks such as protein-protein interaction networks (PPI), gene regulatory networks, and metabolic networks tend to be disassortative. On the other hand, in biological evolution, duplication and divergence are two fundamental processes. In order to make the relationship between the property of disassortative mixing and the two basic biological principles clear and to study the cause of the disassortative mixing property in biological networks, we present a random duplication model and an anti-preference duplication model. Our results show that disassortative mixing networks can be obtained by both kinds of models from uncorrelated initial networks.Moreover, with the growth of the network size, the disassortative mixing property becomes more obvious.

  8. Complex Dynamic Behavior in Simple Gene Regulatory Networks

    Science.gov (United States)

    Santillán Zerón, Moisés

    2007-02-01

    Knowing the complete genome of a given species is just a piece of the puzzle. To fully unveil the systems behavior of an organism, an organ, or even a single cell, we need to understand the underlying gene regulatory dynamics. Given the complexity of the whole system, the ultimate goal is unattainable for the moment. But perhaps, by analyzing the most simple genetic systems, we may be able to develop the mathematical techniques and procedures required to tackle more complex genetic networks in the near future. In the present work, the techniques for developing mathematical models of simple bacterial gene networks, like the tryptophan and lactose operons are introduced. Despite all of the underlying assumptions, such models can provide valuable information regarding gene regulation dynamics. Here, we pay special attention to robustness as an emergent property. These notes are organized as follows. In the first section, the long historical relation between mathematics, physics, and biology is briefly reviewed. Recently, the multidisciplinary work in biology has received great attention in the form of systems biology. The main concepts of this novel science are discussed in the second section. A very slim introduction to the essential concepts of molecular biology is given in the third section. In the fourth section, a brief introduction to chemical kinetics is presented. Finally, in the fifth section, a mathematical model for the lactose operon is developed and analyzed..

  9. Inferring gene regulatory networks from asynchronous microarray data with AIRnet

    Directory of Open Access Journals (Sweden)

    Lai Chun Wan J

    2010-11-01

    Full Text Available Abstract Background Modern approaches to treating genetic disorders, cancers and even epidemics rely on a detailed understanding of the underlying gene signaling network. Previous work has used time series microarray data to infer gene signaling networks given a large number of accurate time series samples. Microarray data available for many biological experiments is limited to a small number of arrays with little or no time series guarantees. When several samples are averaged to examine differences in mean value between a diseased and normal state, information from individual samples that could indicate a gene relationship can be lost. Results Asynchronous Inference of Regulatory Networks (AIRnet provides gene signaling network inference using more practical assumptions about the microarray data. By learning correlation patterns for the changes in microarray values from all pairs of samples, accurate network reconstructions can be performed with data that is normally available in microarray experiments. Conclusions By focussing on the changes between microarray samples, instead of absolute values, increased information can be gleaned from expression data.

  10. Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data.

    Science.gov (United States)

    Liu, Zhi-Ping

    2015-02-01

    Transcriptional regulation plays vital roles in many fundamental biological processes. Reverse engineering of genome-wide regulatory networks from high-throughput transcriptomic data provides a promising way to characterize the global scenario of regulatory relationships between regulators and their targets. In this review, we summarize and categorize the main frameworks and methods currently available for inferring transcriptional regulatory networks from microarray gene expression profiling data. We overview each of strategies and introduce representative methods respectively. Their assumptions, advantages, shortcomings, and possible improvements and extensions are also clarified and commented.

  11. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  12. Passing messages between biological networks to refine predicted interactions.

    Directory of Open Access Journals (Sweden)

    Kimberly Glass

    Full Text Available Regulatory network reconstruction is a fundamental problem in computational biology. There are significant limitations to such reconstruction using individual datasets, and increasingly people attempt to construct networks using multiple, independent datasets obtained from complementary sources, but methods for this integration are lacking. We developed PANDA (Passing Attributes between Networks for Data Assimilation, a message-passing model using multiple sources of information to predict regulatory relationships, and used it to integrate protein-protein interaction, gene expression, and sequence motif data to reconstruct genome-wide, condition-specific regulatory networks in yeast as a model. The resulting networks were not only more accurate than those produced using individual data sets and other existing methods, but they also captured information regarding specific biological mechanisms and pathways that were missed using other methodologies. PANDA is scalable to higher eukaryotes, applicable to specific tissue or cell type data and conceptually generalizable to include a variety of regulatory, interaction, expression, and other genome-scale data. An implementation of the PANDA algorithm is available at www.sourceforge.net/projects/panda-net.

  13. Noncommutative Biology: Sequential Regulation of Complex Networks

    Science.gov (United States)

    Letsou, William; Cai, Long

    2016-01-01

    Single-cell variability in gene expression is important for generating distinct cell types, but it is unclear how cells use the same set of regulatory molecules to specifically control similarly regulated genes. While combinatorial binding of transcription factors at promoters has been proposed as a solution for cell-type specific gene expression, we found that such models resulted in substantial information bottlenecks. We sought to understand the consequences of adopting sequential logic wherein the time-ordering of factors informs the final outcome. We showed that with noncommutative control, it is possible to independently control targets that would otherwise be activated simultaneously using combinatorial logic. Consequently, sequential logic overcomes the information bottleneck inherent in complex networks. We derived scaling laws for two noncommutative models of regulation, motivated by phosphorylation/neural networks and chromosome folding, respectively, and showed that they scale super-exponentially in the number of regulators. We also showed that specificity in control is robust to the loss of a regulator. Lastly, we connected these theoretical results to real biological networks that demonstrate specificity in the context of promiscuity. These results show that achieving a desired outcome often necessitates roundabout steps. PMID:27560383

  14. Small-scale universality and large-scale diversity. Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki, and M. Zagorski

    Science.gov (United States)

    Ispolatov, Yaroslav

    2016-07-01

    Martin et al. undertook an arduous task of reviewing vast literature on evolution and functionality of directed biological networks and gene networks in particular. The literature is assessed addressing a question of whether a set of features particular for gene networks is repeatedly recreated among unrelated species driven by selection pressure or has evolved once and is being inherited. To argue for the former mechanism, Martin and colleagues explore the following examples: Scale-free out-degree distribution.

  15. Local graph alignment and motif search in biological networks

    Science.gov (United States)

    Berg, Johannes; Lässig, Michael

    2004-10-01

    Interaction networks are of central importance in postgenomic molecular biology, with increasing amounts of data becoming available by high-throughput methods. Examples are gene regulatory networks or protein interaction maps. The main challenge in the analysis of these data is to read off biological functions from the topology of the network. Topological motifs, i.e., patterns occurring repeatedly at different positions in the network, have recently been identified as basic modules of molecular information processing. In this article, we discuss motifs derived from families of mutually similar but not necessarily identical patterns. We establish a statistical model for the occurrence of such motifs, from which we derive a scoring function for their statistical significance. Based on this scoring function, we develop a search algorithm for topological motifs called graph alignment, a procedure with some analogies to sequence alignment. The algorithm is applied to the gene regulation network of Escherichia coli.

  16. Self-sustained oscillations of complex genomic regulatory networks

    Science.gov (United States)

    Ye, Weiming; Huang, Xiaodong; Huang, Xuhui; Li, Pengfei; Xia, Qinzhi; Hu, Gang

    2010-05-01

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) [1] to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  17. Extended evolution: A conceptual framework for integrating regulatory networks and niche construction.

    Science.gov (United States)

    Laubichler, Manfred D; Renn, Jürgen

    2015-11-01

    This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path-dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems.

  18. Delay-independent stability of genetic regulatory networks.

    Science.gov (United States)

    Wu, Fang-Xiang

    2011-11-01

    Genetic regulatory networks can be described by nonlinear differential equations with time delays. In this paper, we study both locally and globally delay-independent stability of genetic regulatory networks, taking messenger ribonucleic acid alternative splicing into consideration. Based on nonnegative matrix theory, we first develop necessary and sufficient conditions for locally delay-independent stability of genetic regulatory networks with multiple time delays. Compared to the previous results, these conditions are easy to verify. Then we develop sufficient conditions for global delay-independent stability for genetic regulatory networks. Compared to the previous results, this sufficient condition is less conservative. To illustrate theorems developed in this paper, we analyze delay-independent stability of two genetic regulatory networks: a real-life repressilatory network with three genes and three proteins, and a synthetic gene regulatory network with five genes and seven proteins. The simulation results show that the theorems developed in this paper can effectively determine the delay-independent stability of genetic regulatory networks.

  19. Network systems biology for targeted cancer therapies

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Zhou

    2012-01-01

    The era of targeted cancer therapies has arrived.However,due to the complexity of biological systems,the current progress is far from enough.From biological network modeling to structural/dynamic network analysis,network systems biology provides unique insight into the potential mechanisms underlying the growth and progression of cancer cells.It has also introduced great changes into the research paradigm of cancer-associated drug discovery and drug resistance.

  20. Biological network motif detection: principles and practice.

    Science.gov (United States)

    Wong, Elisabeth; Baur, Brittany; Quader, Saad; Huang, Chun-Hsi

    2012-03-01

    Network motifs are statistically overrepresented sub-structures (sub-graphs) in a network, and have been recognized as 'the simple building blocks of complex networks'. Study of biological network motifs may reveal answers to many important biological questions. The main difficulty in detecting larger network motifs in biological networks lies in the facts that the number of possible sub-graphs increases exponentially with the network or motif size (node counts, in general), and that no known polynomial-time algorithm exists in deciding if two graphs are topologically equivalent. This article discusses the biological significance of network motifs, the motivation behind solving the motif-finding problem, and strategies to solve the various aspects of this problem. A simple classification scheme is designed to analyze the strengths and weaknesses of several existing algorithms. Experimental results derived from a few comparative studies in the literature are discussed, with conclusions that lead to future research directions. PMID:22396487

  1. One hub-one process: a tool based view on regulatory network topology

    Directory of Open Access Journals (Sweden)

    Sneppen Kim

    2008-03-01

    Full Text Available Abstract Background The relationship between the regulatory design and the functionality of molecular networks is a key issue in biology. Modules and motifs have been associated to various cellular processes, thereby providing anecdotal evidence for performance based localization on molecular networks. Results To quantify structure-function relationship we investigate similarities of proteins which are close in the regulatory network of the yeast Saccharomyces Cerevisiae. We find that the topology of the regulatory network only show weak remnants of its history of network reorganizations, but strong features of co-regulated proteins associated to similar tasks. These functional correlations decreases strongly when one consider proteins separated by more than two steps in the regulatory network. The network topology primarily reflects the processes that is orchestrated by each individual hub, whereas there is nearly no remnants of the history of protein duplications. Conclusion Our results suggests that local topological features of regulatory networks, including broad degree distributions, emerge as an implicit result of matching a number of needed processes to a finite toolbox of proteins.

  2. Regulatory networks contributing to psoriasis susceptibility.

    Science.gov (United States)

    Szabó, Kornélia; Bata-Csörgő, Zsuzsanna; Dallos, Attila; Bebes, Attila; Francziszti, László; Dobozy, Attila; Kemény, Lajos; Széll, Márta

    2014-07-01

    The non-involved, healthy-looking skin of psoriatic patients displays inherent characteristics that make it prone to develop typical psoriatic symptoms. Our primary aim was to identify genes and proteins that are differentially regulated in the non-involved psoriatic and the normal epidermis, and to discover regulatory networks responsible for these differences. A cDNA microarray experiment was performed to compare the gene expression profiles of 4 healthy and 4 psoriatic non-involved epidermis samples in response to T-cell lymphokine induction in organotypic cultures. We identified 61 annotated genes and another 11 expressed transcripts that were differentially regulated in the psoriatic tissues. Bioinformatics analysis suggested that the regulation of cell morphology, development and cell death is abnormal, and that the metabolism of small molecules and lipids is differentially regulated in psoriatic epidermis. Our results indicate that one of the early steps of psoriasis pathogenesis may be the abnormal regulation of IL-23A and IL-1B genes in psoriatic keratinocytes.

  3. Small Rna Regulatory Networks In Pseudomonas Putida

    DEFF Research Database (Denmark)

    Bojanovic, Klara; Long, Katherine

    2015-01-01

    chemicals and has a potential to be used as an efficient cell factory for various products. P. putida KT2240 is a genome-sequenced strain and a well characterized pseudomonad. Our major aim is to identify small RNA molecules (sRNAs) and their regulatory networks. A previous study has identified 37 sRNAs...... in this strain, while in other pseudomonads many more sRNAs have been found so far.P. putida KT2440 has been grown in different conditions which are likely to be encountered in industrial fermentations with the aim of using sRNAs for generation of improved cell factories. For that, cells have been grown in LB...... and harvested in different growth phases, as well as osmotic, membrane and oxidative stress conditions. RNA sequencing data has been analysed with the open source software system Rockhopper, and it has revealed over 180 putative sRNAs. Most of them (86%) seem to be novel and uncharacterized. The majority...

  4. Global analysis of photosynthesis transcriptional regulatory networks.

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  5. How difficult is inference of mammalian causal gene regulatory networks?

    Directory of Open Access Journals (Sweden)

    Djordje Djordjevic

    Full Text Available Gene regulatory networks (GRNs play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect, which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference

  6. How difficult is inference of mammalian causal gene regulatory networks?

    Science.gov (United States)

    Djordjevic, Djordje; Yang, Andrian; Zadoorian, Armella; Rungrugeecharoen, Kevin; Ho, Joshua W K

    2014-01-01

    Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for

  7. Biologically inspired self-organizing networks

    Institute of Scientific and Technical Information of China (English)

    Naoki WAKAMIYA; Kenji LEIBNITZ; Masayuki MURATA

    2009-01-01

    Information networks are becoming more and more complex to accommodate a continuously increasing amount of traffic and networked devices, as well as having to cope with a growing diversity of operating environments and applications. Therefore, it is foreseeable that future information networks will frequently face unexpected problems, some of which could lead to the complete collapse of a network. To tackle this problem, recent attempts have been made to design novel network architectures which achieve a high level of scalability, adaptability, and robustness by taking inspiration from self-organizing biological systems. The objective of this paper is to discuss biologically inspired networking technologies.

  8. Optimizing Nutrient Uptake in Biological Transport Networks

    Science.gov (United States)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  9. C. elegans Metabolic Gene Regulatory Networks Govern the Cellular Economy

    Science.gov (United States)

    Watson, Emma; Walhout, Albertha J.M.

    2014-01-01

    Diet greatly impacts metabolism in health and disease. In response to the presence or absence of specific nutrients, metabolic gene regulatory networks sense the metabolic state of the cell and regulate metabolic flux accordingly, for instance by the transcriptional control of metabolic enzymes. Here we discuss recent insights regarding metazoan metabolic regulatory networks using the nematode Caenorhabditis elegans as a model, including the modular organization of metabolic gene regulatory networks, the prominent impact of diet on the transcriptome and metabolome, specialized roles of nuclear hormone receptors in responding to dietary conditions, regulation of metabolic genes and metabolic regulators by microRNAs, and feedback between metabolic genes and their regulators. PMID:24731597

  10. Large-scale modeling of condition-specific gene regulatory networks by information integration and inference.

    Science.gov (United States)

    Ellwanger, Daniel Christian; Leonhardt, Jörn Florian; Mewes, Hans-Werner

    2014-12-01

    Understanding how regulatory networks globally coordinate the response of a cell to changing conditions, such as perturbations by shifting environments, is an elementary challenge in systems biology which has yet to be met. Genome-wide gene expression measurements are high dimensional as these are reflecting the condition-specific interplay of thousands of cellular components. The integration of prior biological knowledge into the modeling process of systems-wide gene regulation enables the large-scale interpretation of gene expression signals in the context of known regulatory relations. We developed COGERE (http://mips.helmholtz-muenchen.de/cogere), a method for the inference of condition-specific gene regulatory networks in human and mouse. We integrated existing knowledge of regulatory interactions from multiple sources to a comprehensive model of prior information. COGERE infers condition-specific regulation by evaluating the mutual dependency between regulator (transcription factor or miRNA) and target gene expression using prior information. This dependency is scored by the non-parametric, nonlinear correlation coefficient η(2) (eta squared) that is derived by a two-way analysis of variance. We show that COGERE significantly outperforms alternative methods in predicting condition-specific gene regulatory networks on simulated data sets. Furthermore, by inferring the cancer-specific gene regulatory network from the NCI-60 expression study, we demonstrate the utility of COGERE to promote hypothesis-driven clinical research.

  11. Graphlet Based Metrics for the Comparison of Gene Regulatory Networks

    Science.gov (United States)

    Martin, Alberto J. M.; Dominguez, Calixto; Contreras-Riquelme, Sebastián; Holmes, David S.; Perez-Acle, Tomas

    2016-01-01

    Understanding the control of gene expression remains one of the main challenges in the post-genomic era. Accordingly, a plethora of methods exists to identify variations in gene expression levels. These variations underlay almost all relevant biological phenomena, including disease and adaptation to environmental conditions. However, computational tools to identify how regulation changes are scarce. Regulation of gene expression is usually depicted in the form of a gene regulatory network (GRN). Structural changes in a GRN over time and conditions represent variations in the regulation of gene expression. Like other biological networks, GRNs are composed of basic building blocks called graphlets. As a consequence, two new metrics based on graphlets are proposed in this work: REConstruction Rate (REC) and REC Graphlet Degree (RGD). REC determines the rate of graphlet similarity between different states of a network and RGD identifies the subset of nodes with the highest topological variation. In other words, RGD discerns how th GRN was rewired. REC and RGD were used to compare the local structure of nodes in condition-specific GRNs obtained from gene expression data of Escherichia coli, forming biofilms and cultured in suspension. According to our results, most of the network local structure remains unaltered in the two compared conditions. Nevertheless, changes reported by RGD necessarily imply that a different cohort of regulators (i.e. transcription factors (TFs)) appear on the scene, shedding light on how the regulation of gene expression occurs when E. coli transits from suspension to biofilm. Consequently, we propose that both metrics REC and RGD should be adopted as a quantitative approach to conduct differential analyses of GRNs. A tool that implements both metrics is available as an on-line web server (http://dlab.cl/loto). PMID:27695050

  12. Harnessing diversity towards the reconstructing of large scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Takeshi Hase

    Full Text Available Elucidating gene regulatory network (GRN from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks.

  13. Inferring Drosophila gap gene regulatory network: A parameter sensitivity and perturbation analysis

    NARCIS (Netherlands)

    Y. Fomekong-Nanfack; M. Postma; J.A. Kaandorp

    2009-01-01

    Background: Inverse modelling of gene regulatory networks (GRNs) capable of simulating continuous spatio-temporal biological processes requires accurate data and a good description of the system. If quantitative relations between genes cannot be extracted from direct measurements, an efficient metho

  14. Reconstruction of large-scale gene regulatory networks using Bayesian model averaging.

    Science.gov (United States)

    Kim, Haseong; Gelenbe, Erol

    2012-09-01

    Gene regulatory networks provide the systematic view of molecular interactions in a complex living system. However, constructing large-scale gene regulatory networks is one of the most challenging problems in systems biology. Also large burst sets of biological data require a proper integration technique for reliable gene regulatory network construction. Here we present a new reverse engineering approach based on Bayesian model averaging which attempts to combine all the appropriate models describing interactions among genes. This Bayesian approach with a prior based on the Gibbs distribution provides an efficient means to integrate multiple sources of biological data. In a simulation study with maximum of 2000 genes, our method shows better sensitivity than previous elastic-net and Gaussian graphical models, with a fixed specificity of 0.99. The study also shows that the proposed method outperforms the other standard methods for a DREAM dataset generated by nonlinear stochastic models. In brain tumor data analysis, three large-scale networks consisting of 4422 genes were built using the gene expression of non-tumor, low and high grade tumor mRNA expression samples, along with DNA-protein binding affinity information. We found that genes having a large variation of degree distribution among the three tumor networks are the ones that see most involved in regulatory and developmental processes, which possibly gives a novel insight concerning conventional differentially expressed gene analysis. PMID:22987132

  15. Global analysis of photosynthesis transcriptional regulatory networks.

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  16. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  17. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    Directory of Open Access Journals (Sweden)

    Corcos Laurent

    2008-11-01

    Full Text Available Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivotal role in dislypidemia and, ultimately, in cancer through intermediates such as mevalonate, farnesyl pyrophosphate and geranyl geranyl pyrophosphate, but no dynamic model of this pathway has been proposed until now. Results We set up a computational framework to dynamically analyze large biological networks. This framework associates a classical and computationally efficient synchronous Boolean analysis with a newly introduced method based on Markov chains, which identifies spurious cycles among the results of the synchronous simulation. Based on this method, we present here the results of the analysis of the cholesterol biosynthesis pathway and its physiological regulation by the Sterol Response Element Binding Proteins (SREBPs, as well as the modeling of the action of statins, inhibitor drugs, on this pathway. The in silico experiments show the blockade of the cholesterol endogenous synthesis by statins and its regulation by SREPBs, in full agreement with the known biochemical features of the pathway. Conclusion We believe that the method described here to identify spurious cycles opens new routes to compute large and biologically relevant models, thanks to the computational efficiency of synchronous simulation. Furthermore, to the best of our knowledge, we present here the first dynamic systems biology model of the human cholesterol pathway and several of its key regulatory control elements, hoping it would provide a good basis to perform in silico

  18. Banks' Regulatory Buffers, Liquidity Networks and Monetary Policy Transmission

    OpenAIRE

    Merkl, Christian; Stolz, Stéphanie

    2009-01-01

    Abstract Based on a quarterly regulatory dataset for German banks from 1999 to 2004, this paper analyzes the effects of banks? regulatory capital on the transmission of monetary policy in a system of liquidity networks. The dynamic panel regression results provide evidence in favour of the bank capital channel theory. Banks holding less regulatory capital and less interbank liquidity react more restrictively to a monetary tightening than their peers.

  19. Dynamical Analysis of Protein Regulatory Network in Budding Yeast Nucleus

    Institute of Scientific and Technical Information of China (English)

    LI Fang-Ting; JIA Xun

    2006-01-01

    @@ Recent progresses in the protein regulatory network of budding yeast Saccharomyces cerevisiae have provided a global picture of its protein network for further dynamical research. We simplify and modularize the protein regulatory networks in yeast nucleus, and study the dynamical properties of the core 37-node network by a Boolean network model, especially the evolution steps and final fixed points. Our simulation results show that the number of fixed points N(k) for a given size of the attraction basin k obeys a power-law distribution N(k)∝k-2.024. The yeast network is more similar to a scale-free network than a random network in the above dynamical properties.

  20. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks

    DEFF Research Database (Denmark)

    Soberano de Oliveira, Ana Paula; Patil, Kiran Raosaheb; Nielsen, Jens

    2008-01-01

    Factors, Reporter Proteins and Reporter Complexes, and use this to decipher the logic of regulatory circuits playing a key role in yeast glucose repression and human diabetes. Conclusion: Reporter Features offer the opportunity to identify regulatory hot-spots in bio-molecular interaction networks...... that are significantly affected between or across conditions. Results of the Reporter Feature analysis not only provide a snapshot of the transcriptional regulatory program but also are biologically easy to interpret and provide a powerful way to generate new hypotheses. Our Reporter Features analyses of yeast glucose...

  1. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A [Sanford-Burnham Medical Research Institute; Novichkov, Pavel S [Lawrence Berkeley National Laboratory

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated in RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.

  2. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Chemmangattuvalappil Nishanth

    2012-09-01

    Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

  3. The impact of measurement errors in the identification of regulatory networks

    Directory of Open Access Journals (Sweden)

    Sato João R

    2009-12-01

    Full Text Available Abstract Background There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent and non-time series (independent data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models and dependent (autoregressive models data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error. The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.

  4. CoryneRegNet 4.0 – A reference database for corynebacterial gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Baumbach Jan

    2007-11-01

    transcriptional regulatory networks to predict putative contradictions or further gene regulatory interactions. Furthermore, it integrates protein clusters by means of heuristically solving the weighted graph cluster editing problem. In addition, it provides Web Service based access to up to date gene annotation data from GenDB. Conclusion The release 4.0 of CoryneRegNet is a comprehensive system for the integrated analysis of procaryotic gene regulatory networks. It is a versatile systems biology platform to support the efficient and large-scale analysis of transcriptional regulation of gene expression in microorganisms. It is publicly available at http://www.CoryneRegNet.DE.

  5. Understanding biological functions through molecular networks

    Institute of Scientific and Technical Information of China (English)

    Jing-Dong Jackie Han

    2008-01-01

    The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future.

  6. Identification of transcriptional regulatory networks specific to pilocytic astrocytoma

    Directory of Open Access Journals (Sweden)

    Gutmann David H

    2011-07-01

    Full Text Available Abstract Background Pilocytic Astrocytomas (PAs are common low-grade central nervous system malignancies for which few recurrent and specific genetic alterations have been identified. In an effort to better understand the molecular biology underlying the pathogenesis of these pediatric brain tumors, we performed higher-order transcriptional network analysis of a large gene expression dataset to identify gene regulatory pathways that are specific to this tumor type, relative to other, more aggressive glial or histologically distinct brain tumours. Methods RNA derived from frozen human PA tumours was subjected to microarray-based gene expression profiling, using Affymetrix U133Plus2 GeneChip microarrays. This data set was compared to similar data sets previously generated from non-malignant human brain tissue and other brain tumour types, after appropriate normalization. Results In this study, we examined gene expression in 66 PA tumors compared to 15 non-malignant cortical brain tissues, and identified 792 genes that demonstrated consistent differential expression between independent sets of PA and non-malignant specimens. From this entire 792 gene set, we used the previously described PAP tool to assemble a core transcriptional regulatory network composed of 6 transcription factor genes (TFs and 24 target genes, for a total of 55 interactions. A similar analysis of oligodendroglioma and glioblastoma multiforme (GBM gene expression data sets identified distinct, but overlapping, networks. Most importantly, comparison of each of the brain tumor type-specific networks revealed a network unique to PA that included repressed expression of ONECUT2, a gene frequently methylated in other tumor types, and 13 other uniquely predicted TF-gene interactions. Conclusions These results suggest specific transcriptional pathways that may operate to create the unique molecular phenotype of PA and thus opportunities for corresponding targeted therapeutic

  7. 4th IEA International CCS Regulatory Network Meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    On 9 and 10 May 2012, the IEA International CCS Regulatory Network (Network), launched in Paris in May 2008 to provide a neutral forum for CCS regulators, policy makers and stakeholders to share updates and views on CCS regulatory developments, held its fourth meeting at the International Energy Agency (IEA) offices in Paris, France. The aim of the meeting was to: provide an update on government efforts to develop and implement carbon capture and storage (CCS) legal and regulatory frameworks; and consider ways in which governments are dealing with some of the more difficult or complex aspects of CCS regulation. This report summarises the proceedings of the meeting.

  8. Systematic Approach to Computational Design of Gene Regulatory Networks with Information Processing Capabilities.

    Science.gov (United States)

    Moskon, Miha; Mraz, Miha

    2014-01-01

    We present several measures that can be used in de novo computational design of biological systems with information processing capabilities. Their main purpose is to objectively evaluate the behavior and identify the biological information processing structures with the best dynamical properties. They can be used to define constraints that allow one to simplify the design of more complex biological systems. These measures can be applied to existent computational design approaches in synthetic biology, i.e., rational and automatic design approaches. We demonstrate their use on a) the computational models of several basic information processing structures implemented with gene regulatory networks and b) on a modular design of a synchronous toggle switch.

  9. Electricity distribution networks: Changing regulatory approaches

    Science.gov (United States)

    Cambini, Carlo

    2016-09-01

    Increasing the penetration of distributed generation and smart grid technologies requires substantial investments. A study proposes an innovative approach that combines four regulatory tools to provide economic incentives for distribution system operators to facilitate these innovative practices.

  10. Mapping the Regulatory Network for Salmonella enterica Serovar Typhimurium Invasion

    Science.gov (United States)

    Smith, Carol; Stringer, Anne M.; Mao, Chunhong; Palumbo, Michael J.

    2016-01-01

    ABSTRACT Salmonella enterica pathogenicity island 1 (SPI-1) encodes proteins required for invasion of gut epithelial cells. The timing of invasion is tightly controlled by a complex regulatory network. The transcription factor (TF) HilD is the master regulator of this process and senses environmental signals associated with invasion. HilD activates transcription of genes within and outside SPI-1, including six other TFs. Thus, the transcriptional program associated with host cell invasion is controlled by at least 7 TFs. However, very few of the regulatory targets are known for these TFs, and the extent of the regulatory network is unclear. In this study, we used complementary genomic approaches to map the direct regulatory targets of all 7 TFs. Our data reveal a highly complex and interconnected network that includes many previously undescribed regulatory targets. Moreover, the network extends well beyond the 7 TFs, due to the inclusion of many additional TFs and noncoding RNAs. By comparing gene expression profiles of regulatory targets for the 7 TFs, we identified many uncharacterized genes that are likely to play direct roles in invasion. We also uncovered cross talk between SPI-1 regulation and other regulatory pathways, which, in turn, identified gene clusters that likely share related functions. Our data are freely available through an intuitive online browser and represent a valuable resource for the bacterial research community. PMID:27601571

  11. Rigidity and flexibility of biological networks

    CERN Document Server

    Gaspar, Merse E

    2012-01-01

    The network approach became a widely used tool to understand the behaviour of complex systems in the last decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explaining allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity. Finally, we show the importance of the balance between functional flexibility and rigidity in protein-protein interaction, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts of flexibility and rigidity can be generalized to all networks.

  12. Rigidity and flexibility of biological networks.

    Science.gov (United States)

    Gáspár, Merse E; Csermely, Peter

    2012-11-01

    The network approach became a widely used tool to understand the behaviour of complex systems in the last decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explaining allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity. Finally, we show the importance of the balance between functional flexibility and rigidity in protein-protein interaction, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts of flexibility and rigidity can be generalized to all networks. PMID:23165349

  13. Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells

    Directory of Open Access Journals (Sweden)

    Guthke Reinhard

    2010-11-01

    Full Text Available Abstract Background Reverse engineering of gene regulatory networks can be used to predict regulatory interactions of an organism faced with environmental changes, but can prove problematic, especially when focusing on complicated multi-factorial processes. Candida albicans is a major human fungal pathogen. During the infection process, this fungus is able to adapt to conditions of very low iron availability. Such adaptation is an important virulence attribute of virtually all pathogenic microbes. Understanding the regulation of iron acquisition genes will extend our knowledge of the complex regulatory changes during the infection process and might identify new potential drug targets. Thus, there is a need for efficient modelling approaches predicting key regulatory events of iron acquisition genes during the infection process. Results This study deals with the regulation of C. albicans iron uptake genes during adhesion to and invasion into human oral epithelial cells. A reverse engineering strategy is presented, which is able to infer regulatory networks on the basis of gene expression data, making use of relevant selection criteria such as sparseness and robustness. An exhaustive use of available knowledge from different data sources improved the network prediction. The predicted regulatory network proposes a number of new target genes for the transcriptional regulators Rim101, Hap3, Sef1 and Tup1. Furthermore, the molecular mode of action for Tup1 is clarified. Finally, regulatory interactions between the transcription factors themselves are proposed. This study presents a model describing how C. albicans may regulate iron acquisition during contact with and invasion of human oral epithelial cells. There is evidence that some of the proposed regulatory interactions might also occur during oral infection. Conclusions This study focuses on a typical problem in Systems Biology where an interesting biological phenomenon is studied using a small

  14. Biological Networks for Cancer Candidate Biomarkers Discovery

    Science.gov (United States)

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field.

  15. Biological Networks for Cancer Candidate Biomarkers Discovery.

    Science.gov (United States)

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field. PMID:27625573

  16. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Joshi Anagha

    2009-05-01

    Full Text Available Abstract Background A myriad of methods to reverse-engineer transcriptional regulatory networks have been developed in recent years. Direct methods directly reconstruct a network of pairwise regulatory interactions while module-based methods predict a set of regulators for modules of coexpressed genes treated as a single unit. To date, there has been no systematic comparison of the relative strengths and weaknesses of both types of methods. Results We have compared a recently developed module-based algorithm, LeMoNe (Learning Module Networks, to a mutual information based direct algorithm, CLR (Context Likelihood of Relatedness, using benchmark expression data and databases of known transcriptional regulatory interactions for Escherichia coli and Saccharomyces cerevisiae. A global comparison using recall versus precision curves hides the topologically distinct nature of the inferred networks and is not informative about the specific subtasks for which each method is most suited. Analysis of the degree distributions and a regulator specific comparison show that CLR is 'regulator-centric', making true predictions for a higher number of regulators, while LeMoNe is 'target-centric', recovering a higher number of known targets for fewer regulators, with limited overlap in the predicted interactions between both methods. Detailed biological examples in E. coli and S. cerevisiae are used to illustrate these differences and to prove that each method is able to infer parts of the network where the other fails. Biological validation of the inferred networks cautions against over-interpreting recall and precision values computed using incomplete reference networks. Conclusion Our results indicate that module-based and direct methods retrieve largely distinct parts of the underlying transcriptional regulatory networks. The choice of algorithm should therefore be based on the particular biological problem of interest and not on global metrics which cannot be

  17. Phenotype accessibility and noise in random threshold gene regulatory networks.

    Science.gov (United States)

    Pinho, Ricardo; Garcia, Victor; Feldman, Marcus W

    2014-01-01

    Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes

  18. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence.

    Science.gov (United States)

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.

  19. Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks

    Science.gov (United States)

    Ben-Tabou de-Leon, Smadar

    2016-01-01

    Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change. PMID:26913048

  20. Modular genetic regulatory networks increase organization during pattern formation.

    Science.gov (United States)

    Mohamadlou, Hamid; Podgorski, Gregory J; Flann, Nicholas S

    2016-08-01

    Studies have shown that genetic regulatory networks (GRNs) consist of modules that are densely connected subnetworks that function quasi-autonomously. Modules may be recognized motifs that comprise of two or three genes with particular regulatory functions and connectivity or be purely structural and identified through connection density. It is unclear what evolutionary and developmental advantages modular structure and in particular motifs provide that have led to this enrichment. This study seeks to understand how modules within developmental GRNs influence the complexity of multicellular patterns that emerge from the dynamics of the regulatory networks. We apply an algorithmic complexity to measure the organization of the patterns. A computational study was performed by creating Boolean intracellular networks within a simulated epithelial field of embryonic cells, where each cell contains the same network and communicates with adjacent cells using contact-mediated signaling. Intracellular networks with random connectivity were compared to those with modular connectivity and with motifs. Results show that modularity effects network dynamics and pattern organization significantly. In particular: (1) modular connectivity alone increases complexity in network dynamics and patterns; (2) bistable switch motifs simplify both the pattern and network dynamics; (3) all other motifs with feedback loops increase multicellular pattern complexity while simplifying the network dynamics; (4) negative feedback loops affect the dynamics complexity more significantly than positive feedback loops.

  1. Design of artificial genetic regulatory networks with multiple delayed adaptive responses

    CERN Document Server

    Kaluza, Pablo

    2016-01-01

    Genetic regulatory networks with adaptive responses are widely studied in biology. Usually, models consisting only of a few nodes have been considered. They present one input receptor for activation and one output node where the adaptive response is computed. In this work, we design genetic regulatory networks with many receptors and many output nodes able to produce delayed adaptive responses. This design is performed by using an evolutionary algorithm of mutations and selections that minimizes an error function defined by the adaptive response in signal shapes. We present several examples of network constructions with a predefined required set of adaptive delayed responses. We show that an output node can have different kinds of responses as a function of the activated receptor. Additionally, complex network structures are presented since processing nodes can be involved in several input-output pathways.

  2. Communication on the structure of biological networks

    Indian Academy of Sciences (India)

    Deyasi Krishanu; Upadhyay Shashankaditya; Banerjee Anirban

    2016-03-01

    Networks are widely used to represent interaction pattern among the components in complex systems. Structures of real networks from different domains may vary quite significantly. As there is an interplay between network architecture and dynamics, structure plays an important role in communication and spreading of information in a network. Here we investigate the underlying undirected topology of different biological networks which support faster spreading of information and are better in communication. We analyse the good expansion property by using the spectral gap and communicability between nodes. Different epidemic models are also used to study the transmission of information in terms of spreading of disease through individuals (nodes)in those networks. Moreover, we explore the structural conformation and properties which may be responsible for better communication. Among all biological networks studied here, the undirected structure of neuronal networks not only possesses the small-world property but the same is also expressed remarkably to a higher degree compared to any randomly generated network which possesses the same degree sequence. A relatively high percentage of nodes, in neuronal networks, form a higher core in their structure. Our study shows that the underlying undirected topology in neuronal networks, in a significant way, is qualitatively different from the same in other biologicalnetworks and that they may have evolved in such a way that they inherit a (undirected) structure which is excellent and robust in communication.

  3. MAPPING OF NATURAL KAPOSI SARCOMA INHIBITOR USING NETWORK BIOLOGY APPROACH

    Directory of Open Access Journals (Sweden)

    Jayadeepa R. M.

    2012-03-01

    Full Text Available Identification of protein-ligand interaction networks on a proteome scale is crucial to address a wide range of biological problems such as correlating molecular functions to physiological processes and designing safe and efficient therapeutics. In this study we have developed a novel computational strategy to identify ligand binding profiles of proteins across gene families and applied it to predicting protein functions, elucidating molecular mechanisms of drug adverse effects, and repositioning safe pharmaceuticals to treat different diseases The resultant network is then extrapolated to proteomics level to sort out the genes only expressed in the specific cancer types. The network is statistically analyzed and represented by the graphical interpretation to encounter the hub nodes. The objective of developing a biological networking is for the evaluation and validation of cancer drugs and their targets. In the field of cancer biology, the drug and their targets holds a role of paramount importance. With the work conducted here it shows the study of relation between drug target networks. Kaposi’s sarcoma (KS is a systemic disease which can present with cutaneous lesions with or without internal involvement. Genes belonging to the group of proto-oncogenes and tumor suppressors are best targeted for cancer studies. Biological networks like gene regulatory networks, protein interaction network is usually created to simplify the studies. In the present study, 26 proteins as receptor were selected for the study; all the receptors were responsible for the cause of Kaposi’s sarcoma. Also, 121 natural anti-Kaposi Sarcoma compounds were selected from different sources the natural components were the best component for blocking of abnormal activity.

  4. Predicting biological networks from genomic data

    DEFF Research Database (Denmark)

    Harrington, Eoghan D; Jensen, Lars J; Bork, Peer

    2008-01-01

    Continuing improvements in DNA sequencing technologies are providing us with vast amounts of genomic data from an ever-widening range of organisms. The resulting challenge for bioinformatics is to interpret this deluge of data and place it back into its biological context. Biological networks...... provide a conceptual framework with which we can describe part of this context, namely the different interactions that occur between the molecular components of a cell. Here, we review the computational methods available to predict biological networks from genomic sequence data and discuss how they relate...

  5. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe.

    Science.gov (United States)

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  6. T Regulatory Cell Biology in Health and Disease.

    Science.gov (United States)

    Alroqi, Fayhan J; Chatila, Talal A

    2016-04-01

    Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency. PMID:26922942

  7. T Regulatory Cell Biology in Health and Disease.

    Science.gov (United States)

    Alroqi, Fayhan J; Chatila, Talal A

    2016-04-01

    Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency.

  8. Mosaic gene network modelling identified new regulatory mechanisms in HCV infection.

    Science.gov (United States)

    Popik, Olga V; Petrovskiy, Evgeny D; Mishchenko, Elena L; Lavrik, Inna N; Ivanisenko, Vladimir A

    2016-06-15

    Modelling of gene networks is widely used in systems biology to study the functioning of complex biological systems. Most of the existing mathematical modelling techniques are useful for analysis of well-studied biological processes, for which information on rates of reactions is available. However, complex biological processes such as those determining the phenotypic traits of organisms or pathological disease processes, including pathogen-host interactions, involve complicated cross-talk between interacting networks. Furthermore, the intrinsic details of the interactions between these networks are often missing. In this study, we developed an approach, which we call mosaic network modelling, that allows the combination of independent mathematical models of gene regulatory networks and, thereby, description of complex biological systems. The advantage of this approach is that it allows us to generate the integrated model despite the fact that information on molecular interactions between parts of the model (so-called mosaic fragments) might be missing. To generate a mosaic mathematical model, we used control theory and mathematical models, written in the form of a system of ordinary differential equations (ODEs). In the present study, we investigated the efficiency of this method in modelling the dynamics of more than 10,000 simulated mosaic regulatory networks consisting of two pieces. Analysis revealed that this approach was highly efficient, as the mean deviation of the dynamics of mosaic network elements from the behaviour of the initial parts of the model was less than 10%. It turned out that for construction of the control functional, data on perturbation of one or two vertices of the mosaic piece are sufficient. Further, we used the developed method to construct a mosaic gene regulatory network including hepatitis C virus (HCV) as the first piece and the tumour necrosis factor (TNF)-induced apoptosis and NF-κB induction pathways as the second piece. Thus

  9. Quantifying evolvability in small biological networks

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Mugler, Andrew [COLUMBIA UNIV; Ziv, Etay [COLUMBIA UNIV; Wiggins, Chris H [COLUMBIA UNIV

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  10. Propagation of genetic variation in gene regulatory networks.

    Science.gov (United States)

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W

    2013-08-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network's feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation.

  11. Statistical inference of regulatory networks for circadian regulation.

    Science.gov (United States)

    Aderhold, Andrej; Husmeier, Dirk; Grzegorczyk, Marco

    2014-06-01

    We assess the accuracy of various state-of-the-art statistics and machine learning methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Our study draws on the increasing availability of gene expression and protein concentration time series for key circadian clock components in Arabidopsis thaliana. In addition, gene expression and protein concentration time series are simulated from a recently published regulatory network of the circadian clock in A. thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to different light-dark cycles and the knock-out of various key regulatory genes. Our study provides relative network reconstruction accuracy scores for a critical comparative performance evaluation, and sheds light on a series of highly relevant questions: it quantifies the influence of systematically missing values related to unknown protein concentrations and mRNA transcription rates, it investigates the dependence of the performance on the network topology and the degree of recurrency, it provides deeper insight into when and why non-linear methods fail to outperform linear ones, it offers improved guidelines on parameter settings in different inference procedures, and it suggests new hypotheses about the structure of the central circadian gene regulatory network in A. thaliana. PMID:24864301

  12. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  13. A functional and regulatory network associated with PIP expression in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Marie-Anne Debily

    Full Text Available BACKGROUND: The PIP (prolactin-inducible protein gene has been shown to be expressed in breast cancers, with contradictory results concerning its implication. As both the physiological role and the molecular pathways in which PIP is involved are poorly understood, we conducted combined gene expression profiling and network analysis studies on selected breast cancer cell lines presenting distinct PIP expression levels and hormonal receptor status, to explore the functional and regulatory network of PIP co-modulated genes. PRINCIPAL FINDINGS: Microarray analysis allowed identification of genes co-modulated with PIP independently of modulations resulting from hormonal treatment or cell line heterogeneity. Relevant clusters of genes that can discriminate between [PIP+] and [PIP-] cells were identified. Functional and regulatory network analyses based on a knowledge database revealed a master network of PIP co-modulated genes, including many interconnecting oncogenes and tumor suppressor genes, half of which were detected as differentially expressed through high-precision measurements. The network identified appears associated with an inhibition of proliferation coupled with an increase of apoptosis and an enhancement of cell adhesion in breast cancer cell lines, and contains many genes with a STAT5 regulatory motif in their promoters. CONCLUSIONS: Our global exploratory approach identified biological pathways modulated along with PIP expression, providing further support for its good prognostic value of disease-free survival in breast cancer. Moreover, our data pointed to the importance of a regulatory subnetwork associated with PIP expression in which STAT5 appears as a potential transcriptional regulator.

  14. p42.3 gene expression in gastric cancer cell and its protein regulatory network analysis

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2012-12-01

    Full Text Available Abstract Background To analyze the p42.3 gene expression in gastric cancer (GC cell, find the relationship between protein structure and function, establish the regulatory network of p42.3 protein molecule and then to obtain the optimal regulatory pathway. Methods The expression of p42.3 gene was analyzed by RT-PCR, Western Blot and other biotechnologies. The relationship between the spatial conformation of p42.3 protein molecule and its function was analyzed using bioinformatics, MATLAB and related knowledge about protein structure and function. Furthermore, based on similarity algorithm of spatial layered spherical coordinate, we compared p42.3 molecule with several similar structured proteins which are known for the function, screened the characteristic nodes related to tumorigenesis and development, and established the multi variable relational model between p42.3 protein expression, cell cycle regulation and biological characteristics in the level of molecular regulatory networks. Finally, the optimal regulatory network was found by using Bayesian network. Results (1 The expression amount of p42.3 in G1 and M phase was higher than that in S and G2 phase; (2 The space coordinate systems of different structural domains of p42.3 protein were established in Matlab7.0 software; (3 The optimal pathway of p42.3 gene in protein regulatory network in gastric cancer is Ras protein, Raf-1 protein, MEK, MAPK kinase, MAPK, tubulin, spindle protein, centromere protein and tumor. Conclusion It is of vital significance for mechanism research to find out the action pathway of p42.3 in protein regulatory network, since p42.3 protein plays an important role in the generation and development of GC.

  15. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  16. A parallel implementation of the network identification by multiple regression (NIR algorithm to reverse-engineer regulatory gene networks.

    Directory of Open Access Journals (Sweden)

    Francesco Gregoretti

    Full Text Available The reverse engineering of gene regulatory networks using gene expression profile data has become crucial to gain novel biological knowledge. Large amounts of data that need to be analyzed are currently being produced due to advances in microarray technologies. Using current reverse engineering algorithms to analyze large data sets can be very computational-intensive. These emerging computational requirements can be met using parallel computing techniques. It has been shown that the Network Identification by multiple Regression (NIR algorithm performs better than the other ready-to-use reverse engineering software. However it cannot be used with large networks with thousands of nodes--as is the case in biological networks--due to the high time and space complexity. In this work we overcome this limitation by designing and developing a parallel version of the NIR algorithm. The new implementation of the algorithm reaches a very good accuracy even for large gene networks, improving our understanding of the gene regulatory networks that is crucial for a wide range of biomedical applications.

  17. Discriminative topological features reveal biological network mechanisms

    Directory of Open Access Journals (Sweden)

    Levovitz Chaya

    2004-11-01

    Full Text Available Abstract Background Recent genomic and bioinformatic advances have motivated the development of numerous network models intending to describe graphs of biological, technological, and sociological origin. In most cases the success of a model has been evaluated by how well it reproduces a few key features of the real-world data, such as degree distributions, mean geodesic lengths, and clustering coefficients. Often pairs of models can reproduce these features with indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these few target features are insufficient to distinguish which of the different models best describes real world networks of interest; moreover, it is not clear a priori that any of the presently-existing algorithms for network generation offers a predictive description of the networks inspiring them. Results We present a method to assess systematically which of a set of proposed network generation algorithms gives the most accurate description of a given biological network. To derive discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional (in principle infinite-dimensional "word space". This map defines an input space for classification schemes which allow us to state unambiguously which models are most descriptive of a given network of interest. Our training sets include networks generated from 17 models either drawn from the literature or introduced in this work. We show that different duplication-mutation schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and the C. elegans neuronal network, out of a set of network models including a linear preferential attachment model and a small-world model. Conclusions Our method is a first step towards systematizing network models and assessing their predictability, and we anticipate its usefulness for a number of communities.

  18. Propagation of genetic variation in gene regulatory networks

    OpenAIRE

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W.

    2013-01-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing h...

  19. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    OpenAIRE

    Corcos Laurent; Kervizic Gwenael

    2008-01-01

    Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivo...

  20. Attentional Networks and Biological Motion

    OpenAIRE

    Chandramouli Chandrasekaran; Lucy Turner; Heinrich H Bülthoff; Thornton, Ian M.

    2010-01-01

    Our ability to see meaningful actions when presented with pointlight traces of human movement is commonly referred to as the perception of biological motion. While traditionalexplanations have emphasized the spontaneous and automatic nature of this ability, morerecent findings suggest that attention may play a larger role than is typically assumed. Intwo studies we show that the speed and accuracy of responding to point-light stimuli is highly correlated with the ability to control selective ...

  1. Stable Gene Regulatory Network Modeling From Steady-State Data

    Directory of Open Access Journals (Sweden)

    Joy Edward Larvie

    2016-04-01

    Full Text Available Gene regulatory networks represent an abstract mapping of gene regulations in living cells. They aim to capture dependencies among molecular entities such as transcription factors, proteins and metabolites. In most applications, the regulatory network structure is unknown, and has to be reverse engineered from experimental data consisting of expression levels of the genes usually measured as messenger RNA concentrations in microarray experiments. Steady-state gene expression data are obtained from measurements of the variations in expression activity following the application of small perturbations to equilibrium states in genetic perturbation experiments. In this paper, the least absolute shrinkage and selection operator-vector autoregressive (LASSO-VAR originally proposed for the analysis of economic time series data is adapted to include a stability constraint for the recovery of a sparse and stable regulatory network that describes data obtained from noisy perturbation experiments. The approach is applied to real experimental data obtained for the SOS pathway in Escherichia coli and the cell cycle pathway for yeast Saccharomyces cerevisiae. Significant features of this method are the ability to recover networks without inputting prior knowledge of the network topology, and the ability to be efficiently applied to large scale networks due to the convex nature of the method.

  2. Prior knowledge driven Granger causality analysis on gene regulatory network discovery

    OpenAIRE

    Yao, Shun; Yoo, Shinjae; Yu, Dantong

    2015-01-01

    Background Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>>T. Results In this study, we proposed a new method, viz., CGC-2SPR (CGC ...

  3. Modularity of gene-regulatory networks revealed in sea-star development

    OpenAIRE

    Degnan Bernard M; McDougall Carmel

    2011-01-01

    Abstract Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star), but in a completely different developmental context (the animal-vegetal axis). This observation has implications for h...

  4. Application of Graph Coloring to Biological Networks

    CERN Document Server

    Khor, Susan

    2009-01-01

    We explore the application of graph coloring to biological networks, specifically protein-protein interaction (PPI) networks. First, we find that given similar conditions (i.e. number of nodes, number of links, degree distribution and clustering), fewer colors are needed to color disassortative (high degree nodes tend to connect to low degree nodes and vice versa) than assortative networks. Fewer colors create fewer independent sets which in turn imply higher concurrency potential for a network. Since PPI networks tend to be disassortative, we suggest that in addition to functional specificity and stability proposed previously by Maslov and Sneppen (Science 296, 2002), the disassortative nature of PPI networks may promote the ability of cells to perform multiple, crucial and functionally diverse tasks concurrently. Second, since graph coloring is closely related to the presence of cliques in a graph, the significance of node coloring information to the problem of identifying protein complexes, i.e. dense subg...

  5. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks

    Science.gov (United States)

    Zhu, Shijia; Wang, Yadong

    2015-12-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  6. Extended evolution: A conceptual framework for integrating regulatory networks and niche construction.

    Science.gov (United States)

    Laubichler, Manfred D; Renn, Jürgen

    2015-11-01

    This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path-dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems. PMID:26097188

  7. Biological and Environmental Research Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, V. [Princeton Univ., NJ (United States). Earth Science Grid Federation (ESGF); Boden, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowley, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dart, Eli [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Dattoria, Vince [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Desai, Narayan [Argonne National Lab. (ANL), Argonne, IL (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Foster, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Goldstone, Robin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gregurick, Susan [U.S. Dept. of Energy, Washington, DC (United States). Biological Systems Science Division; Houghton, John [U.S. Dept. of Energy, Washington, DC (United States). Biological and Environmental Research (BER) Program; Izaurralde, Cesar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnston, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Joseph, Renu [U.S. Dept. of Energy, Washington, DC (United States). Climate and Environmental Sciences Division; Kleese-van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Monga, Inder [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Pritchard, Matt [British Atmospheric Data Centre (BADC), Oxon (United Kingdom); Rotman, Lauren [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Strand, Gary [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Stuart, Cory [Argonne National Lab. (ANL), Argonne, IL (United States); Tatusova, Tatiana [National Inst. of Health (NIH), Bethesda, MD (United States); Tierney, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Thomas, Brian [Univ. of California, Berkeley, CA (United States); Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zurawski, Jason [Internet2, Washington, DC (United States)

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  8. Learning Gene Regulatory Networks Computationally from Gene Expression Data Using Weighted Consensus

    KAUST Repository

    Fujii, Chisato

    2015-04-16

    Gene regulatory networks analyze the relationships between genes allowing us to un- derstand the gene regulatory interactions in systems biology. Gene expression data from the microarray experiments is used to obtain the gene regulatory networks. How- ever, the microarray data is discrete, noisy and non-linear which makes learning the networks a challenging problem and existing gene network inference methods do not give consistent results. Current state-of-the-art study uses the average-ranking-based consensus method to combine and average the ranked predictions from individual methods. However each individual method has an equal contribution to the consen- sus prediction. We have developed a linear programming-based consensus approach which uses learned weights from linear programming among individual methods such that the methods have di↵erent weights depending on their performance. Our result reveals that assigning di↵erent weights to individual methods rather than giving them equal weights improves the performance of the consensus. The linear programming- based consensus method is evaluated and it had the best performance on in silico and Saccharomyces cerevisiae networks, and the second best on the Escherichia coli network outperformed by Inferelator Pipeline method which gives inconsistent results across a wide range of microarray data sets.

  9. Information theoretical methods to deconvolute genetic regulatory networks applied to thyroid neoplasms

    Science.gov (United States)

    Hernández-Lemus, Enrique; Velázquez-Fernández, David; Estrada-Gil, Jesús K.; Silva-Zolezzi, Irma; Herrera-Hernández, Miguel F.; Jiménez-Sánchez, Gerardo

    2009-12-01

    Most common pathologies in humans are not caused by the mutation of a single gene, rather they are complex diseases that arise due to the dynamic interaction of many genes and environmental factors. This plethora of interacting genes generates a complexity landscape that masks the real effects associated with the disease. To construct dynamic maps of gene interactions (also called genetic regulatory networks) we need to understand the interplay between thousands of genes. Several issues arise in the analysis of experimental data related to gene function: on the one hand, the nature of measurement processes generates highly noisy signals; on the other hand, there are far more variables involved (number of genes and interactions among them) than experimental samples. Another source of complexity is the highly nonlinear character of the underlying biochemical dynamics. To overcome some of these limitations, we generated an optimized method based on the implementation of a Maximum Entropy Formalism (MaxEnt) to deconvolute a genetic regulatory network based on the most probable meta-distribution of gene-gene interactions. We tested the methodology using experimental data for Papillary Thyroid Cancer (PTC) and Thyroid Goiter tissue samples. The optimal MaxEnt regulatory network was obtained from a pool of 25,593,993 different probability distributions. The group of observed interactions was validated by several (mostly in silico) means and sources. For the associated Papillary Thyroid Cancer Gene Regulatory Network (PTC-GRN) the majority of the nodes (genes) have very few links (interactions) whereas a small number of nodes are highly connected. PTC-GRN is also characterized by high clustering coefficients and network heterogeneity. These properties have been recognized as characteristic of topological robustness, and they have been largely described in relation to biological networks. A number of biological validity outcomes are discussed with regard to both the

  10. Genetic regulatory networks that count to 3.

    Science.gov (United States)

    Lehmann, Malte; Sneppen, Kim

    2013-07-21

    Sensing a graded input and differentiating between its different levels is at the core of many developmental decisions. Here, we want to examine how this can be realized for a simple system. We model gene regulatory circuits that reach distinct states when setting the underlying gene copy number to 1, 2 and 3. This distinction can be considered as counting the copy number. We explore different circuits that allow for counting and keeping memory of the count after resetting the copy number to 1. For this purpose, we sample different architectures and parameters, only considering circuits that contain repressive links, which we model by Michaelis-Menten terms. Interestingly, we find that counting to 3 does not require a hierarchy in Hill coefficients, in contrast to counting to 2, which is known from lambda phage. Furthermore, we find two main circuit architectures: one design also found in the vertebrate neural tube in a development governed by the sonic hedgehog morphogen and the more robust design of a repressilator supplemented with a weak repressilator acting in the opposite direction. PMID:23567648

  11. Development of Bioinformatic and Experimental Technologies for Identification of Prokaryotic Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Charles E; McCue, Lee Ann

    2008-07-31

    The transcription regulatory network is arguably the most important foundation of cellular function, since it exerts the most fundamental control over the abundance of virtually all of a cell’s functional macromolecules. The two major components of a prokaryotic cell’s transcription regulation network are the transcription factors (TFs) and the transcription factor binding sites (TFBS); these components are connected by the binding of TFs to their cognate TFBS under appropriate environmental conditions. Comparative genomics has proven to be a powerful bioinformatics method with which to study transcription regulation on a genome-wide level. We have further extended comparative genomics technologies that we introduced over the last several years. Specifically, we developed and applied statistical approaches to analysis of correlated sequence data (i.e., sequences from closely related species). We also combined these technologies with functional genomic, proteomic and sequence data from multiple species, and developed computational technologies that provide inferences on the regulatory network connections, identifying the cognate transcription factor for predicted regulatory sites. Arguably the most important contribution of this work emerged in the course of the project. Specifically, the development of novel procedures of estimation and prediction in discrete high-D settings has broad implications for biology, genomics and well beyond. We showed that these procedures enjoy advantages over existing technologies in the identification of TBFS. These efforts are aimed toward identifying a cell’s complete transcription regulatory network and underlying molecular mechanisms.

  12. Modeling of regulatory networks: theory and applications in the study of the Drosophila circadian clock.

    Science.gov (United States)

    Scribner, Elizabeth Y; Fathallah-Shaykh, Hassan M

    2011-01-01

    Biological networks can be very complex. Mathematical modeling and simulation of regulatory networks can assist in resolving unanswered questions about these complex systems, which are often impossible to explore experimentally. The network regulating the Drosophila circadian clock is particularly amenable to such modeling given its complexity and what we call the clockwork orange (CWO) anomaly. CWO is a protein whose function in the network as an indirect activator of genes per, tim, vri, and pdp1 is counterintuitive--in isolated experiments, CWO inhibits transcription of these genes. Although many different types of modeling frameworks have recently been applied to the Drosophila circadian network, this chapter focuses on the application of continuous deterministic dynamic modeling to this network. In particular, we present three unique systems of ordinary differential equations that have been used to successfully model different aspects of the circadian network. The last model incorporates the newly identified protein CWO, and we explain how this model's unique mathematical equations can be used to explore and resolve the CWO anomaly. Finally, analysis of these equations gives rise to a new network regulatory rule, which clarifies the unusual role of CWO in this dynamical system.

  13. Dense module enumeration in biological networks

    International Nuclear Information System (INIS)

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  14. myGRN: a database and visualisation system for the storage and analysis of developmental genetic regulatory networks

    Directory of Open Access Journals (Sweden)

    Bacha Jamil

    2009-06-01

    Full Text Available Abstract Background Biological processes are regulated by complex interactions between transcription factors and signalling molecules, collectively described as Genetic Regulatory Networks (GRNs. The characterisation of these networks to reveal regulatory mechanisms is a long-term goal of many laboratories. However compiling, visualising and interacting with such networks is non-trivial. Current tools and databases typically focus on GRNs within simple, single celled organisms. However, data is available within the literature describing regulatory interactions in multi-cellular organisms, although not in any systematic form. This is particularly true within the field of developmental biology, where regulatory interactions should also be tagged with information about the time and anatomical location of development in which they occur. Description We have developed myGRN (http://www.myGRN.org, a web application for storing and interrogating interaction data, with an emphasis on developmental processes. Users can submit interaction and gene expression data, either curated from published sources or derived from their own unpublished data. All interactions associated with publications are publicly visible, and unpublished interactions can only be shared between collaborating labs prior to publication. Users can group interactions into discrete networks based on specific biological processes. Various filters allow dynamic production of network diagrams based on a range of information including tissue location, developmental stage or basic topology. Individual networks can be viewed using myGRV, a tool focused on displaying developmental networks, or exported in a range of formats compatible with third party tools. Networks can also be analysed for the presence of common network motifs. We demonstrate the capabilities of myGRN using a network of zebrafish interactions integrated with expression data from the zebrafish database, ZFIN. Conclusion Here we

  15. Characterizing disease states from topological properties of transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Kluger Harriet M

    2006-05-01

    Full Text Available Abstract Background High throughput gene expression experiments yield large amounts of data that can augment our understanding of disease processes, in addition to classifying samples. Here we present new paradigms of data Separation based on construction of transcriptional regulatory networks for normal and abnormal cells using sequence predictions, literature based data and gene expression studies. We analyzed expression datasets from a number of diseased and normal cells, including different types of acute leukemia, and breast cancer with variable clinical outcome. Results We constructed sample-specific regulatory networks to identify links between transcription factors (TFs and regulated genes that differentiate between healthy and diseased states. This approach carries the advantage of identifying key transcription factor-gene pairs with differential activity between healthy and diseased states rather than merely using gene expression profiles, thus alluding to processes that may be involved in gene deregulation. We then generalized this approach by studying simultaneous changes in functionality of multiple regulatory links pointing to a regulated gene or emanating from one TF (or changes in gene centrality defined by its in-degree or out-degree measures, respectively. We found that samples can often be separated based on these measures of gene centrality more robustly than using individual links. We examined distributions of distances (the number of links needed to traverse the path between each pair of genes in the transcriptional networks for gene subsets whose collective expression profiles could best separate each dataset into predefined groups. We found that genes that optimally classify samples are concentrated in neighborhoods in the gene regulatory networks. This suggests that genes that are deregulated in diseased states exhibit a remarkable degree of connectivity. Conclusion Transcription factor-regulated gene links and

  16. Metanetworks of artificially evolved regulatory networks

    CERN Document Server

    Danacı, Burçin

    2014-01-01

    We study metanetworks arising in genotype and phenotype spaces, in the context of a model population of Boolean graphs evolved under selection for short dynamical attractors. We define the adjacency matrix of a graph as its genotype, which gets mutated in the course of evolution, while its phenotype is its set of dynamical attractors. Metanetworks in the genotype and phenotype spaces are formed, respectively, by genetic proximity and by phenotypic similarity, the latter weighted by the sizes of the basins of attraction of the shared attractors. We find that populations of evolved networks form giant clusters in genotype space, have Poissonian degree distributions but exhibit hierarchically organized $k$-core decompositions, while random populations of Boolean graphs are typically so far removed from each other genetically that they cannot form a metanetwork. In phenotype space, the metanetworks of evolved populations are super robust both under the elimination of weak connections and random removal of nodes. ...

  17. Statins as Modulators of Regulatory T-Cell Biology

    Directory of Open Access Journals (Sweden)

    David A. Forero-Peña

    2013-01-01

    Full Text Available Statins are pharmacological inhibitors of the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR, an enzyme responsible for the synthesis of cholesterol. Some recent experimental studies have shown that besides their effects on the primary and secondary prevention of cardiovascular diseases, statins may also have beneficial anti-inflammatory effects through diverse mechanisms. On the other hand, the induction and activity of regulatory T cells (Treg are key processes in the prevention of pathology during chronic inflammatory and autoimmune diseases. Hence, strategies oriented towards the therapeutic expansion of Tregs are gaining special attention among biomedical researchers. The potential effects of statins on the biology of Treg are of particular importance because of their eventual application as in vivo inducers of Treg in the treatment of multiple conditions. In this paper we review the experimental evidence pointing out to a potential effect of statins on the role of regulatory T cells in different conditions and discuss its potential clinical significance.

  18. Network biology concepts in complex disease comorbidities

    DEFF Research Database (Denmark)

    Hu, Jessica Xin; Thomas, Cecilia Engel; Brunak, Søren

    2016-01-01

    The co-occurrence of diseases can inform the underlying network biology of shared and multifunctional genes and pathways. In addition, comorbidities help to elucidate the effects of external exposures, such as diet, lifestyle and patient care. With worldwide health transaction data now often bein...

  19. Modeling gene expression regulatory networks with the sparse vector autoregressive model

    Directory of Open Access Journals (Sweden)

    Miyano Satoru

    2007-08-01

    Full Text Available Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters originating from a smaller number of microarray experiments (samples. Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is

  20. A gene regulatory network armature for T-lymphocyte specification

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Elizabeth-sharon [Los Alamos National Laboratory

    2008-01-01

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.

  1. Network biology methods integrating biological data for translational science

    OpenAIRE

    Bebek, Gurkan; Koyutürk, Mehmet; Nathan D Price; Mark R Chance

    2012-01-01

    The explosion of biomedical data, both on the genomic and proteomic side as well as clinical data, will require complex integration and analysis to provide new molecular variables to better understand the molecular basis of phenotype. Currently, much data exist in silos and is not analyzed in frameworks where all data are brought to bear in the development of biomarkers and novel functional targets. This is beginning to change. Network biology approaches, which emphasize the interactions betw...

  2. Unraveling gene regulatory networks from time-resolved gene expression data -- a measures comparison study

    Directory of Open Access Journals (Sweden)

    Koseska Aneta

    2011-07-01

    Full Text Available Abstract Background Inferring regulatory interactions between genes from transcriptomics time-resolved data, yielding reverse engineered gene regulatory networks, is of paramount importance to systems biology and bioinformatics studies. Accurate methods to address this problem can ultimately provide a deeper insight into the complexity, behavior, and functions of the underlying biological systems. However, the large number of interacting genes coupled with short and often noisy time-resolved read-outs of the system renders the reverse engineering a challenging task. Therefore, the development and assessment of methods which are computationally efficient, robust against noise, applicable to short time series data, and preferably capable of reconstructing the directionality of the regulatory interactions remains a pressing research problem with valuable applications. Results Here we perform the largest systematic analysis of a set of similarity measures and scoring schemes within the scope of the relevance network approach which are commonly used for gene regulatory network reconstruction from time series data. In addition, we define and analyze several novel measures and schemes which are particularly suitable for short transcriptomics time series. We also compare the considered 21 measures and 6 scoring schemes according to their ability to correctly reconstruct such networks from short time series data by calculating summary statistics based on the corresponding specificity and sensitivity. Our results demonstrate that rank and symbol based measures have the highest performance in inferring regulatory interactions. In addition, the proposed scoring scheme by asymmetric weighting has shown to be valuable in reducing the number of false positive interactions. On the other hand, Granger causality as well as information-theoretic measures, frequently used in inference of regulatory networks, show low performance on the short time series analyzed in

  3. Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements

    Directory of Open Access Journals (Sweden)

    Sara J.C. Gosline

    2016-01-01

    Full Text Available MicroRNAs (miRNAs regulate diverse biological processes by repressing mRNAs, but their modest effects on direct targets, together with their participation in larger regulatory networks, make it challenging to delineate miRNA-mediated effects. Here, we describe an approach to characterizing miRNA-regulatory networks by systematically profiling transcriptional, post-transcriptional and epigenetic activity in a pair of isogenic murine fibroblast cell lines with and without Dicer expression. By RNA sequencing (RNA-seq and CLIP (crosslinking followed by immunoprecipitation sequencing (CLIP-seq, we found that most of the changes induced by global miRNA loss occur at the level of transcription. We then introduced a network modeling approach that integrated these data with epigenetic data to identify specific miRNA-regulated transcription factors that explain the impact of miRNA perturbation on gene expression. In total, we demonstrate that combining multiple genome-wide datasets spanning diverse regulatory modes enables accurate delineation of the downstream miRNA-regulated transcriptional network and establishes a model for studying similar networks in other systems.

  4. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.

    Directory of Open Access Journals (Sweden)

    Xiaodong Cai

    Full Text Available Integrating genetic perturbations with gene expression data not only improves accuracy of regulatory network topology inference, but also enables learning of causal regulatory relations between genes. Although a number of methods have been developed to integrate both types of data, the desiderata of efficient and powerful algorithms still remains. In this paper, sparse structural equation models (SEMs are employed to integrate both gene expression data and cis-expression quantitative trait loci (cis-eQTL, for modeling gene regulatory networks in accordance with biological evidence about genes regulating or being regulated by a small number of genes. A systematic inference method named sparsity-aware maximum likelihood (SML is developed for SEM estimation. Using simulated directed acyclic or cyclic networks, the SML performance is compared with that of two state-of-the-art algorithms: the adaptive Lasso (AL based scheme, and the QTL-directed dependency graph (QDG method. Computer simulations demonstrate that the novel SML algorithm offers significantly better performance than the AL-based and QDG algorithms across all sample sizes from 100 to 1,000, in terms of detection power and false discovery rate, in all the cases tested that include acyclic or cyclic networks of 10, 30 and 300 genes. The SML method is further applied to infer a network of 39 human genes that are related to the immune function and are chosen to have a reliable eQTL per gene. The resulting network consists of 9 genes and 13 edges. Most of the edges represent interactions reasonably expected from experimental evidence, while the remaining may just indicate the emergence of new interactions. The sparse SEM and efficient SML algorithm provide an effective means of exploiting both gene expression and perturbation data to infer gene regulatory networks. An open-source computer program implementing the SML algorithm is freely available upon request.

  5. Qualitative networks: a symbolic approach to analyze biological signaling networks

    Directory of Open Access Journals (Sweden)

    Henzinger Thomas A

    2007-01-01

    Full Text Available Abstract Background A central goal of Systems Biology is to model and analyze biological signaling pathways that interact with one another to form complex networks. Here we introduce Qualitative networks, an extension of Boolean networks. With this framework, we use formal verification methods to check whether a model is consistent with the laboratory experimental observations on which it is based. If the model does not conform to the data, we suggest a revised model and the new hypotheses are tested in-silico. Results We consider networks in which elements range over a small finite domain allowing more flexibility than Boolean values, and add target functions that allow to model a rich set of behaviors. We propose a symbolic algorithm for analyzing the steady state of these networks, allowing us to scale up to a system consisting of 144 elements and state spaces of approximately 1086 states. We illustrate the usefulness of this approach through a model of the interaction between the Notch and the Wnt signaling pathways in mammalian skin, and its extensive analysis. Conclusion We introduce an approach for constructing computational models of biological systems that extends the framework of Boolean networks and uses formal verification methods for the analysis of the model. This approach can scale to multicellular models of complex pathways, and is therefore a useful tool for the analysis of complex biological systems. The hypotheses formulated during in-silico testing suggest new avenues to explore experimentally. Hence, this approach has the potential to efficiently complement experimental studies in biology.

  6. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Thomas, Edward Victor; Slepoy, Alexander; Zhang, Zhaoduo; May, Elebeoba Eni; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-12-01

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.

  7. Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions.

    Science.gov (United States)

    Werhli, Adriano V; Husmeier, Dirk

    2008-06-01

    There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al. where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. We have derived and tested a Markov chain Monte Carlo (MCMC) scheme for sampling networks and hyperparameters simultaneously from the posterior distribution, thereby automatically learning how to trade off information from the prior knowledge and the data. We have extended this approach to a Bayesian coupling scheme for learning gene regulatory networks from a combination of related data sets, which were obtained under different experimental conditions and are therefore potentially associated with different active subpathways. The proposed coupling scheme is a compromise between (1) learning networks from the different subsets separately, whereby no information between the different experiments is shared; and (2) learning networks from a monolithic fusion of the individual data sets, which does not provide any mechanism for uncovering differences between the network structures associated with the different experimental conditions. We have assessed the viability of all proposed methods on data related to the Raf signaling pathway, generated both synthetically and in cytometry experiments. PMID:18574862

  8. Application of graph colouring to biological networks.

    Science.gov (United States)

    Khor, S

    2010-05-01

    The author explores the application of graph colouring to biological networks, specifically protein-protein interaction (PPI) networks. First, the author finds that given similar conditions (i.e. graph size, degree distribution and clustering), fewer colours are needed to colour disassortative than assortative networks. Fewer colours create fewer independent sets which in turn imply higher concurrency potential for a network. Since PPI networks tend to be disassortative, the author suggests that in addition to functional specificity and stability proposed previously by Maslov and Sneppen (Science, 296, 2002), the disassortative nature of PPI networks may promote the ability of cells to perform multiple, crucial and functionally diverse tasks concurrently. Second, because graph colouring is closely related to the presence of cliques in a graph, the significance of node colouring information to the problem of identifying protein complexes (dense subgraphs in PPI networks), is investigated. The author finds that for PPI networks where 1-11% of nodes participate in at least one identified protein complex, such as H. sapien, DSATUR (a well-known complete graph colouring algorithm) node colouring information can improve the quality (homogeneity and separation) of initial candidate complexes. This finding may help improve existing protein complex detection methods, and/or suggest new methods. [Includes supplementary material]. PMID:20499999

  9. Gene regulatory network reconstruction using Bayesian networks, the Dantzig Selector, the Lasso and their meta-analysis.

    Directory of Open Access Journals (Sweden)

    Matthieu Vignes

    Full Text Available Modern technologies and especially next generation sequencing facilities are giving a cheaper access to genotype and genomic data measured on the same sample at once. This creates an ideal situation for multifactorial experiments designed to infer gene regulatory networks. The fifth "Dialogue for Reverse Engineering Assessments and Methods" (DREAM5 challenges are aimed at assessing methods and associated algorithms devoted to the inference of biological networks. Challenge 3 on "Systems Genetics" proposed to infer causal gene regulatory networks from different genetical genomics data sets. We investigated a wide panel of methods ranging from Bayesian networks to penalised linear regressions to analyse such data, and proposed a simple yet very powerful meta-analysis, which combines these inference methods. We present results of the Challenge as well as more in-depth analysis of predicted networks in terms of structure and reliability. The developed meta-analysis was ranked first among the 16 teams participating in Challenge 3A. It paves the way for future extensions of our inference method and more accurate gene network estimates in the context of genetical genomics.

  10. DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data

    Directory of Open Access Journals (Sweden)

    Schulz Marcel H

    2012-08-01

    Full Text Available Abstract Background Modeling dynamic regulatory networks is a major challenge since much of the protein-DNA interaction data available is static. The Dynamic Regulatory Events Miner (DREM uses a Hidden Markov Model-based approach to integrate this static interaction data with time series gene expression leading to models that can determine when transcription factors (TFs activate genes and what genes they regulate. DREM has been used successfully in diverse areas of biological research. However, several issues were not addressed by the original version. Results DREM 2.0 is a comprehensive software for reconstructing dynamic regulatory networks that supports interactive graphical or batch mode. With version 2.0 a set of new features that are unique in comparison with other softwares are introduced. First, we provide static interaction data for additional species. Second, DREM 2.0 now accepts continuous binding values and we added a new method to utilize TF expression levels when searching for dynamic models. Third, we added support for discriminative motif discovery, which is particularly powerful for species with limited experimental interaction data. Finally, we improved the visualization to support the new features. Combined, these changes improve the ability of DREM 2.0 to accurately recover dynamic regulatory networks and make it much easier to use it for analyzing such networks in several species with varying degrees of interaction information. Conclusions DREM 2.0 provides a unique framework for constructing and visualizing dynamic regulatory networks. DREM 2.0 can be downloaded from: http://www.sb.cs.cmu.edu/drem.

  11. Dynamic Regulatory Network Reconstruction for Alzheimer’s Disease Based on Matrix Decomposition Techniques

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia and leads to irreversible neurodegenerative damage of the brain. Finding the dynamic responses of genes, signaling proteins, transcription factor (TF activities, and regulatory networks of the progressively deteriorative progress of AD would represent a significant advance in discovering the pathogenesis of AD. However, the high throughput technologies of measuring TF activities are not yet available on a genome-wide scale. In this study, based on DNA microarray gene expression data and a priori information of TFs, network component analysis (NCA algorithm is applied to determining the TF activities and regulatory influences on TGs of incipient, moderate, and severe AD. Based on that, the dynamical gene regulatory networks of the deteriorative courses of AD were reconstructed. To select significant genes which are differentially expressed in different courses of AD, independent component analysis (ICA, which is better than the traditional clustering methods and can successfully group one gene in different meaningful biological processes, was used. The molecular biological analysis showed that the changes of TF activities and interactions of signaling proteins in mitosis, cell cycle, immune response, and inflammation play an important role in the deterioration of AD.

  12. Changing the p53 master regulatory network: ELEMENTary, my dear Mr Watson.

    Science.gov (United States)

    Menendez, D; Inga, A; Jordan, J J; Resnick, M A

    2007-04-01

    The p53 master regulatory network provides for the stress-responsive direct control of a vast number of genes in humans that can be grouped into several biological categories including cell-cycle control, apoptosis and DNA repair. Similar to other sequence-specific master regulators, there is a matrix of key components, which provide for variation within the p53 master regulatory network that include p53 itself, target response element sequences (REs) that provide for p53 regulation of target genes, chromatin, accessory proteins and transcription machinery. Changes in any of these can impact the expression of individual genes, groups of genes and the eventual biological responses. The many REs represent the core of the master regulatory network. Since defects or altered expression of p53 are associated with over 50% of all cancers and greater than 90% of p53 mutations are in the sequence-specific DNA-binding domain, it is important to understand the relationship between wild-type or mutant p53 proteins and the target response elements. In the words of the legendary detective Sherlock Holmes, it is 'Elementary, my dear Mr. Watson'. PMID:17401428

  13. Inference of asynchronous Boolean network from biological pathways.

    Science.gov (United States)

    Das, Haimabati; Layek, Ritwik Kumar

    2015-01-01

    Gene regulation is a complex process with multiple levels of interactions. In order to describe this complex dynamical system with tractable parameterization, the choice of the dynamical system model is of paramount importance. The right abstraction of the modeling scheme can reduce the complexity in the inference and intervention design, both computationally and experimentally. This article proposes an asynchronous Boolean network framework to capture the transcriptional regulation as well as the protein-protein interactions in a genetic regulatory system. The inference of asynchronous Boolean network from biological pathways information and experimental evidence are explained using an algorithm. The suitability of this paradigm for the variability of several reaction rates is also discussed. This methodology and model selection open up new research challenges in understanding gene-protein interactive system in a coherent way and can be beneficial for designing effective therapeutic intervention strategy.

  14. Insights into the organization of biochemical regulatory networks using graph theory analyses.

    Science.gov (United States)

    Ma'ayan, Avi

    2009-02-27

    Graph theory has been a valuable mathematical modeling tool to gain insights into the topological organization of biochemical networks. There are two types of insights that may be obtained by graph theory analyses. The first provides an overview of the global organization of biochemical networks; the second uses prior knowledge to place results from multivariate experiments, such as microarray data sets, in the context of known pathways and networks to infer regulation. Using graph analyses, biochemical networks are found to be scale-free and small-world, indicating that these networks contain hubs, which are proteins that interact with many other molecules. These hubs may interact with many different types of proteins at the same time and location or at different times and locations, resulting in diverse biological responses. Groups of components in networks are organized in recurring patterns termed network motifs such as feedback and feed-forward loops. Graph analysis revealed that negative feedback loops are less common and are present mostly in proximity to the membrane, whereas positive feedback loops are highly nested in an architecture that promotes dynamical stability. Cell signaling networks have multiple pathways from some input receptors and few from others. Such topology is reminiscent of a classification system. Signaling networks display a bow-tie structure indicative of funneling information from extracellular signals and then dispatching information from a few specific central intracellular signaling nexuses. These insights show that graph theory is a valuable tool for gaining an understanding of global regulatory features of biochemical networks. PMID:18940806

  15. Insights into the organization of biochemical regulatory networks using graph theory analyses.

    Science.gov (United States)

    Ma'ayan, Avi

    2009-02-27

    Graph theory has been a valuable mathematical modeling tool to gain insights into the topological organization of biochemical networks. There are two types of insights that may be obtained by graph theory analyses. The first provides an overview of the global organization of biochemical networks; the second uses prior knowledge to place results from multivariate experiments, such as microarray data sets, in the context of known pathways and networks to infer regulation. Using graph analyses, biochemical networks are found to be scale-free and small-world, indicating that these networks contain hubs, which are proteins that interact with many other molecules. These hubs may interact with many different types of proteins at the same time and location or at different times and locations, resulting in diverse biological responses. Groups of components in networks are organized in recurring patterns termed network motifs such as feedback and feed-forward loops. Graph analysis revealed that negative feedback loops are less common and are present mostly in proximity to the membrane, whereas positive feedback loops are highly nested in an architecture that promotes dynamical stability. Cell signaling networks have multiple pathways from some input receptors and few from others. Such topology is reminiscent of a classification system. Signaling networks display a bow-tie structure indicative of funneling information from extracellular signals and then dispatching information from a few specific central intracellular signaling nexuses. These insights show that graph theory is a valuable tool for gaining an understanding of global regulatory features of biochemical networks.

  16. Algorithmic and analytical methods in network biology.

    Science.gov (United States)

    Koyutürk, Mehmet

    2010-01-01

    During the genomic revolution, algorithmic and analytical methods for organizing, integrating, analyzing, and querying biological sequence data proved invaluable. Today, increasing availability of high-throughput data pertaining to functional states of biomolecules, as well as their interactions, enables genome-scale studies of the cell from a systems perspective. The past decade witnessed significant efforts on the development of computational infrastructure for large-scale modeling and analysis of biological systems, commonly using network models. Such efforts lead to novel insights into the complexity of living systems, through development of sophisticated abstractions, algorithms, and analytical techniques that address a broad range of problems, including the following: (1) inference and reconstruction of complex cellular networks; (2) identification of common and coherent patterns in cellular networks, with a view to understanding the organizing principles and building blocks of cellular signaling, regulation, and metabolism; and (3) characterization of cellular mechanisms that underlie the differences between living systems, in terms of evolutionary diversity, development and differentiation, and complex phenotypes, including human disease. These problems pose significant algorithmic and analytical challenges because of the inherent complexity of the systems being studied; limitations of data in terms of availability, scope, and scale; intractability of resulting computational problems; and limitations of reference models for reliable statistical inference. This article provides a broad overview of existing algorithmic and analytical approaches to these problems, highlights key biological insights provided by these approaches, and outlines emerging opportunities and challenges in computational systems biology.

  17. Grouped graphical Granger modeling for gene expression regulatory networks discovery

    OpenAIRE

    Lozano, Aurélie C.; Abe, Naoki; Yan LIU; Rosset, Saharon

    2009-01-01

    We consider the problem of discovering gene regulatory networks from time-series microarray data. Recently, graphical Granger modeling has gained considerable attention as a promising direction for addressing this problem. These methods apply graphical modeling methods on time-series data and invoke the notion of ‘Granger causality’ to make assertions on causality through inference on time-lagged effects. Existing algorithms, however, have neglected an important aspect of the problem—the grou...

  18. Developmental evolution in social insects: regulatory networks from genes to societies.

    Science.gov (United States)

    Linksvayer, Timothy A; Fewell, Jennifer H; Gadau, Jürgen; Laubichler, Manfred D

    2012-05-01

    The evolution and development of complex phenotypes in social insect colonies, such as queen-worker dimorphism or division of labor, can, in our opinion, only be fully understood within an expanded mechanistic framework of Developmental Evolution. Conversely, social insects offer a fertile research area in which fundamental questions of Developmental Evolution can be addressed empirically. We review the concept of gene regulatory networks (GRNs) that aims to fully describe the battery of interacting genomic modules that are differentially expressed during the development of individual organisms. We discuss how distinct types of network models have been used to study different levels of biological organization in social insects, from GRNs to social networks. We propose that these hierarchical networks spanning different organizational levels from genes to societies should be integrated and incorporated into full GRN models to elucidate the evolutionary and developmental mechanisms underlying social insect phenotypes. Finally, we discuss prospects and approaches to achieve such an integration.

  19. Mapping and Dynamics of Regulatory DNA and Transcription Factor Networks in A. thaliana

    Directory of Open Access Journals (Sweden)

    Alessandra M. Sullivan

    2014-09-01

    Full Text Available Our understanding of gene regulation in plants is constrained by our limited knowledge of plant cis-regulatory DNA and its dynamics. We mapped DNase I hypersensitive sites (DHSs in A. thaliana seedlings and used genomic footprinting to delineate ∼700,000 sites of in vivo transcription factor (TF occupancy at nucleotide resolution. We show that variation associated with 72 diverse quantitative phenotypes localizes within DHSs. TF footprints encode an extensive cis-regulatory lexicon subject to recent evolutionary pressures, and widespread TF binding within exons may have shaped codon usage patterns. The architecture of A. thaliana TF regulatory networks is strikingly similar to that of animals in spite of diverged regulatory repertoires. We analyzed regulatory landscape dynamics during heat shock and photomorphogenesis, disclosing thousands of environmentally sensitive elements and enabling mapping of key TF regulatory circuits underlying these fundamental responses. Our results provide an extensive resource for the study of A. thaliana gene regulation and functional biology.

  20. Biological impacts and context of network theory

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-05

    Many complex systems can be represented and analyzed as networks, and examples that have benefited from this approach span the natural sciences. For instance, we now know that systems as disparate as the World-Wide Web, the Internet, scientific collaborations, food webs, protein interactions and metabolism all have common features in their organization, the most salient of which are their scale-free connectivity distributions and their small-world behavior. The recent availability of large scale datasets that span the proteome or metabolome of an organism have made it possible to elucidate some of the organizational principles and rules that govern their function, robustness and evolution. We expect that combining the currently separate layers of information from gene regulatory-, signal transduction-, protein interaction- and metabolic networks will dramatically enhance our understanding of cellular function and dynamics.

  1. Novel topological descriptors for analyzing biological networks

    Directory of Open Access Journals (Sweden)

    Varmuza Kurt K

    2010-06-01

    Full Text Available Abstract Background Topological descriptors, other graph measures, and in a broader sense, graph-theoretical methods, have been proven as powerful tools to perform biological network analysis. However, the majority of the developed descriptors and graph-theoretical methods does not have the ability to take vertex- and edge-labels into account, e.g., atom- and bond-types when considering molecular graphs. Indeed, this feature is important to characterize biological networks more meaningfully instead of only considering pure topological information. Results In this paper, we put the emphasis on analyzing a special type of biological networks, namely bio-chemical structures. First, we derive entropic measures to calculate the information content of vertex- and edge-labeled graphs and investigate some useful properties thereof. Second, we apply the mentioned measures combined with other well-known descriptors to supervised machine learning methods for predicting Ames mutagenicity. Moreover, we investigate the influence of our topological descriptors - measures for only unlabeled vs. measures for labeled graphs - on the prediction performance of the underlying graph classification problem. Conclusions Our study demonstrates that the application of entropic measures to molecules representing graphs is useful to characterize such structures meaningfully. For instance, we have found that if one extends the measures for determining the structural information content of unlabeled graphs to labeled graphs, the uniqueness of the resulting indices is higher. Because measures to structurally characterize labeled graphs are clearly underrepresented so far, the further development of such methods might be valuable and fruitful for solving problems within biological network analysis.

  2. Inferring regulatory networks from expression data using tree-based methods.

    Directory of Open Access Journals (Sweden)

    Vân Anh Huynh-Thu

    Full Text Available One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene is predicted from the expression patterns of all the other genes (input genes, using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.

  3. Identifying gene regulatory network rewiring using latent differential graphical models.

    Science.gov (United States)

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-09-30

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions.

  4. Porcine tissue-specific regulatory networks derived from meta-analysis of the transcriptome.

    Science.gov (United States)

    Pérez-Montarelo, Dafne; Hudson, Nicholas J; Fernández, Ana I; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P; Reverter, Antonio

    2012-01-01

    The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species.

  5. Porcine tissue-specific regulatory networks derived from meta-analysis of the transcriptome.

    Directory of Open Access Journals (Sweden)

    Dafne Pérez-Montarelo

    Full Text Available The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species.

  6. Network Biology (http://www.iaees.org/publications/journals/nb/online-version.asp

    Directory of Open Access Journals (Sweden)

    networkbiology@iaees.org

    Full Text Available Network Biology ISSN 2220-8879 URL: http://www.iaees.org/publications/journals/nb/online-version.asp RSS: http://www.iaees.org/publications/journals/nb/rss.xml E-mail: networkbiology@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope NETWORK BIOLOGY (ISSN 2220-8879; CODEN NBEICS is an open access, peer-reviewed international journal that considers scientific articles in all different areas of network biology. It is the transactions of the International Society of Network Biology. It dedicates to the latest advances in network biology. The goal of this journal is to keep a record of the state-of-the-art research and promote the research work in these fast moving areas. The topics to be covered by Network Biology include, but are not limited to: •Theories, algorithms and programs of network analysis •Innovations and applications of biological networks •Ecological networks, food webs and natural equilibrium •Co-evolution, co-extinction, biodiversity conservation •Metabolic networks, protein-protein interaction networks, biochemical reaction networks, gene networks, transcriptional regulatory networks, cell cycle networks, phylogenetic networks, network motifs •Physiological networksNetwork regulation of metabolic processes, human diseases and ecological systems •Social networks, epidemiological networks •System complexity, self-organized systems, emergence of biological systems, agent-based modeling, individual-based modeling, neural network modeling, and other network-based modeling, etc. We are also interested in short communications that clearly address a specific issue or completely present a new ecological network, food web, or metabolic or gene network, etc. Authors can submit their works to the email box of this journal, networkbiology@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal

  7. The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks.

    Science.gov (United States)

    Greenbury, Sam F; Johnston, Iain G; Smith, Matthew A; Doye, Jonathan P K; Louis, Ard A

    2010-11-01

    We investigate how scale-free (SF) and Erdos-Rényi (ER) topologies affect the interplay between evolvability and robustness of model gene regulatory networks with Boolean threshold dynamics. In agreement with Oikonomou and Cluzel (2006) we find that networks with SF(in) topologies, that is SF topology for incoming nodes and ER topology for outgoing nodes, are significantly more evolvable towards specific oscillatory targets than networks with ER topology for both incoming and outgoing nodes. Similar results are found for networks with SF(both) and SF(out) topologies. The functionality of the SF(out) topology, which most closely resembles the structure of biological gene networks (Babu et al., 2004), is compared to the ER topology in further detail through an extension to multiple target outputs, with either an oscillatory or a non-oscillatory nature. For multiple oscillatory targets of the same length, the differences between SF(out) and ER networks are enhanced, but for non-oscillatory targets both types of networks show fairly similar evolvability. We find that SF networks generate oscillations much more easily than ER networks do, and this may explain why SF networks are more evolvable than ER networks are for oscillatory phenotypes. In spite of their greater evolvability, we find that networks with SF(out) topologies are also more robust to mutations (mutational robustness) than ER networks. Furthermore, the SF(out) topologies are more robust to changes in initial conditions (environmental robustness). For both topologies, we find that once a population of networks has reached the target state, further neutral evolution can lead to an increase in both the mutational robustness and the environmental robustness to changes in initial conditions.

  8. A developmental systems perspective on epistasis: computational exploration of mutational interactions in model developmental regulatory networks.

    Directory of Open Access Journals (Sweden)

    Jayson Gutiérrez

    Full Text Available The way in which the information contained in genotypes is translated into complex phenotypic traits (i.e. embryonic expression patterns depends on its decoding by a multilayered hierarchy of biomolecular systems (regulatory networks. Each layer of this hierarchy displays its own regulatory schemes (i.e. operational rules such as +/- feedback and associated control parameters, resulting in characteristic variational constraints. This process can be conceptualized as a mapping issue, and in the context of highly-dimensional genotype-phenotype mappings (GPMs epistatic events have been shown to be ubiquitous, manifested in non-linear correspondences between changes in the genotype and their phenotypic effects. In this study I concentrate on epistatic phenomena pervading levels of biological organization above the genetic material, more specifically the realm of molecular networks. At this level, systems approaches to studying GPMs are specially suitable to shed light on the mechanistic basis of epistatic phenomena. To this aim, I constructed and analyzed ensembles of highly-modular (fully interconnected networks with distinctive topologies, each displaying dynamic behaviors that were categorized as either arbitrary or functional according to early patterning processes in the Drosophila embryo. Spatio-temporal expression trajectories in virtual syncytial embryos were simulated via reaction-diffusion models. My in silico mutational experiments show that: 1 the average fitness decay tendency to successively accumulated mutations in ensembles of functional networks indicates the prevalence of positive epistasis, whereas in ensembles of arbitrary networks negative epistasis is the dominant tendency; and 2 the evaluation of epistatic coefficients of diverse interaction orders indicates that, both positive and negative epistasis are more prevalent in functional networks than in arbitrary ones. Overall, I conclude that the phenotypic and fitness effects of

  9. LmSmdB: an integrated database for metabolic and gene regulatory network in Leishmania major and Schistosoma mansoni

    OpenAIRE

    Priyanka Patel; Vineetha Mandlik; Shailza Singh

    2015-01-01

    A database that integrates all the information required for biological processing is essential to be stored in one platform. We have attempted to create one such integrated database that can be a one stop shop for the essential features required to fetch valuable result. LmSmdB (L. major and S. mansoni database) is an integrated database that accounts for the biological networks and regulatory pathways computationally determined by integrating the knowledge of the genome sequences of the ment...

  10. Characterization of WRKY co-regulatory networks in rice and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kikuchi Shoshi

    2009-09-01

    Full Text Available Abstract Background The WRKY transcription factor gene family has a very ancient origin and has undergone extensive duplications in the plant kingdom. Several studies have pointed out their involvement in a range of biological processes, revealing that a large number of WRKY genes are transcriptionally regulated under conditions of biotic and/or abiotic stress. To investigate the existence of WRKY co-regulatory networks in plants, a whole gene family WRKYs expression study was carried out in rice (Oryza sativa. This analysis was extended to Arabidopsis thaliana taking advantage of an extensive repository of gene expression data. Results The presented results suggested that 24 members of the rice WRKY gene family (22% of the total were differentially-regulated in response to at least one of the stress conditions tested. We defined the existence of nine OsWRKY gene clusters comprising both phylogenetically related and unrelated genes that were significantly co-expressed, suggesting that specific sets of WRKY genes might act in co-regulatory networks. This hypothesis was tested by Pearson Correlation Coefficient analysis of the Arabidopsis WRKY gene family in a large set of Affymetrix microarray experiments. AtWRKYs were found to belong to two main co-regulatory networks (COR-A, COR-B and two smaller ones (COR-C and COR-D, all including genes belonging to distinct phylogenetic groups. The COR-A network contained several AtWRKY genes known to be involved mostly in response to pathogens, whose physical and/or genetic interaction was experimentally proven. We also showed that specific co-regulatory networks were conserved between the two model species by identifying Arabidopsis orthologs of the co-expressed OsWRKY genes. Conclusion In this work we identified sets of co-expressed WRKY genes in both rice and Arabidopsis that are functionally likely to cooperate in the same signal transduction pathways. We propose that, making use of data from co-regulatory

  11. Regulatory Compliance in Multi-Tier Supplier Networks

    Science.gov (United States)

    Goossen, Emray R.; Buster, Duke A.

    2014-01-01

    Over the years, avionics systems have increased in complexity to the point where 1st tier suppliers to an aircraft OEM find it financially beneficial to outsource designs of subsystems to 2nd tier and at times to 3rd tier suppliers. Combined with challenging schedule and budgetary pressures, the environment in which safety-critical systems are being developed introduces new hurdles for regulatory agencies and industry. This new environment of both complex systems and tiered development has raised concerns in the ability of the designers to ensure safety considerations are fully addressed throughout the tier levels. This has also raised questions about the sufficiency of current regulatory guidance to ensure: proper flow down of safety awareness, avionics application understanding at the lower tiers, OEM and 1st tier oversight practices, and capabilities of lower tier suppliers. Therefore, NASA established a research project to address Regulatory Compliance in a Multi-tier Supplier Network. This research was divided into three major study efforts: 1. Describe Modern Multi-tier Avionics Development 2. Identify Current Issues in Achieving Safety and Regulatory Compliance 3. Short-term/Long-term Recommendations Toward Higher Assurance Confidence This report presents our findings of the risks, weaknesses, and our recommendations. It also includes a collection of industry-identified risks, an assessment of guideline weaknesses related to multi-tier development of complex avionics systems, and a postulation of potential modifications to guidelines to close the identified risks and weaknesses.

  12. A novel model-free approach for reconstruction of time-delayed gene regulatory networks

    Institute of Scientific and Technical Information of China (English)

    JIANG; Wei; LI; Xia; GUO; Zheng; LI; Chuanxing; WANG; Lihong

    2006-01-01

    Reconstruction of genetic networks is one of the key scientific challenges in functional genomics. This paper describes a novel approach for addressing the regulatory dependencies between genes whose activities can be delayed by multiple units of time. The aim of the proposed approach termed TdGRN (time-delayed gene regulatory networking) is to reversely engineer the dynamic mechanisms of gene regulations, which is realized by identifying the time-delayed gene regulations through supervised decision-tree analysis of the newly designed time-delayed gene expression matrix, derived from the original time-series microarray data. A permutation technique is used to determine the statistical classification threshold of a tree, from which a gene regulatory rule(s) is extracted. The proposed TdGRN is a model-free approach that attempts to learn the underlying regulatory rules without relying on any model assumptions. Compared with model-based approaches, it has several significant advantages: it requires neither any arbitrary threshold for discretization of gene transcriptional values nor the definition of the number of regulators (k). We have applied this novel method to the publicly available data for budding yeast cell cycling. The numerical results demonstrate that most of the identified time-delayed gene regulations have current biological knowledge supports.

  13. Statistical identification of gene association by CID in application of constructing ER regulatory network

    Directory of Open Access Journals (Sweden)

    Lien Huang-Chun

    2009-03-01

    Full Text Available Abstract Background A variety of high-throughput techniques are now available for constructing comprehensive gene regulatory networks in systems biology. In this study, we report a new statistical approach for facilitating in silico inference of regulatory network structure. The new measure of association, coefficient of intrinsic dependence (CID, is model-free and can be applied to both continuous and categorical distributions. When given two variables X and Y, CID answers whether Y is dependent on X by examining the conditional distribution of Y given X. In this paper, we apply CID to analyze the regulatory relationships between transcription factors (TFs (X and their downstream genes (Y based on clinical data. More specifically, we use estrogen receptor α (ERα as the variable X, and the analyses are based on 48 clinical breast cancer gene expression arrays (48A. Results The analytical utility of CID was evaluated in comparison with four commonly used statistical methods, Galton-Pearson's correlation coefficient (GPCC, Student's t-test (STT, coefficient of determination (CoD, and mutual information (MI. When being compared to GPCC, CoD, and MI, CID reveals its preferential ability to discover the regulatory association where distribution of the mRNA expression levels on X and Y does not fit linear models. On the other hand, when CID is used to measure the association of a continuous variable (Y against a discrete variable (X, it shows similar performance as compared to STT, and appears to outperform CoD and MI. In addition, this study established a two-layer transcriptional regulatory network to exemplify the usage of CID, in combination with GPCC, in deciphering gene networks based on gene expression profiles from patient arrays. Conclusion CID is shown to provide useful information for identifying associations between genes and transcription factors of interest in patient arrays. When coupled with the relationships detected by GPCC, the

  14. Data-driven integration of genome-scale regulatory and metabolic network models

    Directory of Open Access Journals (Sweden)

    Saheed eImam

    2015-05-01

    Full Text Available Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription and signaling have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert – a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  15. Multitask Learning of Signaling and Regulatory Networks with Application to Studying Human Response to Flu

    Science.gov (United States)

    Jain, Siddhartha; Gitter, Anthony; Bar-Joseph, Ziv

    2014-01-01

    Reconstructing regulatory and signaling response networks is one of the major goals of systems biology. While several successful methods have been suggested for this task, some integrating large and diverse datasets, these methods have so far been applied to reconstruct a single response network at a time, even when studying and modeling related conditions. To improve network reconstruction we developed MT-SDREM, a multi-task learning method which jointly models networks for several related conditions. In MT-SDREM, parameters are jointly constrained across the networks while still allowing for condition-specific pathways and regulation. We formulate the multi-task learning problem and discuss methods for optimizing the joint target function. We applied MT-SDREM to reconstruct dynamic human response networks for three flu strains: H1N1, H5N1 and H3N2. Our multi-task learning method was able to identify known and novel factors and genes, improving upon prior methods that model each condition independently. The MT-SDREM networks were also better at identifying proteins whose removal affects viral load indicating that joint learning can still lead to accurate, condition-specific, networks. Supporting website with MT-SDREM implementation: http://sb.cs.cmu.edu/mtsdrem PMID:25522349

  16. Multitask learning of signaling and regulatory networks with application to studying human response to flu.

    Directory of Open Access Journals (Sweden)

    Siddhartha Jain

    2014-12-01

    Full Text Available Reconstructing regulatory and signaling response networks is one of the major goals of systems biology. While several successful methods have been suggested for this task, some integrating large and diverse datasets, these methods have so far been applied to reconstruct a single response network at a time, even when studying and modeling related conditions. To improve network reconstruction we developed MT-SDREM, a multi-task learning method which jointly models networks for several related conditions. In MT-SDREM, parameters are jointly constrained across the networks while still allowing for condition-specific pathways and regulation. We formulate the multi-task learning problem and discuss methods for optimizing the joint target function. We applied MT-SDREM to reconstruct dynamic human response networks for three flu strains: H1N1, H5N1 and H3N2. Our multi-task learning method was able to identify known and novel factors and genes, improving upon prior methods that model each condition independently. The MT-SDREM networks were also better at identifying proteins whose removal affects viral load indicating that joint learning can still lead to accurate, condition-specific, networks. Supporting website with MT-SDREM implementation: http://sb.cs.cmu.edu/mtsdrem.

  17. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation.

    Science.gov (United States)

    Goode, Debbie K; Obier, Nadine; Vijayabaskar, M S; Lie-A-Ling, Michael; Lilly, Andrew J; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-03-01

    Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  18. Inferring the role of transcription factors in regulatory networks

    Directory of Open Access Journals (Sweden)

    Le Borgne Michel

    2008-05-01

    Full Text Available Abstract Background Expression profiles obtained from multiple perturbation experiments are increasingly used to reconstruct transcriptional regulatory networks, from well studied, simple organisms up to higher eukaryotes. Admittedly, a key ingredient in developing a reconstruction method is its ability to integrate heterogeneous sources of information, as well as to comply with practical observability issues: measurements can be scarce or noisy. In this work, we show how to combine a network of genetic regulations with a set of expression profiles, in order to infer the functional effect of the regulations, as inducer or repressor. Our approach is based on a consistency rule between a network and the signs of variation given by expression arrays. Results We evaluate our approach in several settings of increasing complexity. First, we generate artificial expression data on a transcriptional network of E. coli extracted from the literature (1529 nodes and 3802 edges, and we estimate that 30% of the regulations can be annotated with about 30 profiles. We additionally prove that at most 40.8% of the network can be inferred using our approach. Second, we use this network in order to validate the predictions obtained with a compendium of real expression profiles. We describe a filtering algorithm that generates particularly reliable predictions. Finally, we apply our inference approach to S. cerevisiae transcriptional network (2419 nodes and 4344 interactions, by combining ChIP-chip data and 15 expression profiles. We are able to detect and isolate inconsistencies between the expression profiles and a significant portion of the model (15% of all the interactions. In addition, we report predictions for 14.5% of all interactions. Conclusion Our approach does not require accurate expression levels nor times series. Nevertheless, we show on both data, real and artificial, that a relatively small number of perturbation experiments are enough to determine

  19. Computational methods to dissect cis-regulatory transcriptional networks

    Indian Academy of Sciences (India)

    Vibha Rani

    2007-12-01

    The formation of diverse cell types from an invariant set of genes is governed by biochemical and molecular processes that regulate gene activity. A complete understanding of the regulatory mechanisms of gene expression is the major function of genomics. Computational genomics is a rapidly emerging area for deciphering the regulation of metazoan genes as well as interpreting the results of high-throughput screening. The integration of computer science with biology has expedited molecular modelling and processing of large-scale data inputs such as microarrays, analysis of genomes, transcriptomes and proteomes. Many bioinformaticians have developed various algorithms for predicting transcriptional regulatory mechanisms from the sequence, gene expression and interaction data. This review contains compiled information of various computational methods adopted to dissect gene expression pathways.

  20. Comparing artificial and biological dynamical neural networks

    Science.gov (United States)

    McAulay, Alastair D.

    2006-05-01

    Modern computers can be made more friendly and otherwise improved by making them behave more like humans. Perhaps we can learn how to do this from biology in which human brains evolved over a long period of time. Therefore, we first explain a commonly used biological neural network (BNN) model, the Wilson-Cowan neural oscillator, that has cross-coupled excitatory (positive) and inhibitory (negative) neurons. The two types of neurons are used for frequency modulation communication between neurons which provides immunity to electromagnetic interference. We then evolve, for the first time, an artificial neural network (ANN) to perform the same task. Two dynamical feed-forward artificial neural networks use cross-coupling feedback (like that in a flip-flop) to form an ANN nonlinear dynamic neural oscillator with the same equations as the Wilson-Cowan neural oscillator. Finally we show, through simulation, that the equations perform the basic neural threshold function, switching between stable zero output and a stable oscillation, that is a stable limit cycle. Optical implementation with an injected laser diode and future research are discussed.

  1. MicroRNA and transcription factor mediated regulatory network for ovarian cancer: regulatory network of ovarian cancer.

    Science.gov (United States)

    Ying, Huanchun; Lv, Jing; Ying, Tianshu; Li, Jun; Yang, Qing; Ma, Yuan

    2013-10-01

    A better understanding on the regulatory interactions of microRNA (miRNA) target genes and transcription factor (TF) target genes in ovarian cancer may be conducive for developing early diagnosis strategy. Thus, gene expression data and miRNA expression data were downloaded from The Cancer Genome Atlas in this study. Differentially expressed genes and miRNAs were selected out with t test, and Gene Ontology enrichment analysis was performed with DAVID tools. Regulatory interactions were retrieved from miRTarBase, TRED, and TRANSFAC, and then networks for miRNA target genes and TF target genes were constructed to globally present the mechanisms. As a result, a total of 1,939 differentially expressed genes were identified, and they were enriched in 28 functions, among which cell cycle was affected to the most degree. Besides, 213 differentially expressed miRNAs were identified. Two regulatory networks for miRNA target genes and TF target genes were established and then both were combined, in which E2F transcription factor 1, cyclin-dependent kinase inhibitor 1A, cyclin E1, and miR-16 were the hub genes. These genes may be potential biomarkers for ovarian cancer.

  2. Identifying Gene Regulatory Networks in Arabidopsis by In Silico Prediction, Yeast-1-Hybrid, and Inducible Gene Profiling Assays.

    Science.gov (United States)

    Sparks, Erin E; Benfey, Philip N

    2016-01-01

    A system-wide understanding of gene regulation will provide deep insights into plant development and physiology. In this chapter we describe a threefold approach to identify the gene regulatory networks in Arabidopsis thaliana that function in a specific tissue or biological process. Since no single method is sufficient to establish comprehensive and high-confidence gene regulatory networks, we focus on the integration of three approaches. First, we describe an in silico prediction method of transcription factor-DNA binding, then an in vivo assay of transcription factor-DNA binding by yeast-1-hybrid and lastly the identification of co-expression clusters by transcription factor induction in planta. Each of these methods provides a unique tool to advance our understanding of gene regulation, and together provide a robust model for the generation of gene regulatory networks.

  3. Learning and coding in biological neural networks

    Science.gov (United States)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and

  4. Adaptive Immune Evolutionary Algorithms Based on Immune Network Regulatory Mechanism

    Institute of Scientific and Technical Information of China (English)

    HE Hong; QIAN Feng

    2007-01-01

    Based on immune network regulatory mechanism, a new adaptive immune evolutionary algorithm (AIEA) is proposed to improve the performance of genetic algorithms (GA) in this paper. AIEA adopts novel selection operation according to the stimulation level of each antibody. A memory base for good antibodies is devised simultaneously to raise the convergent rapidity of the algorithm and adaptive adjusting strategy of antibody population is used for preventing the loss of the population adversity. The experiments show AIFA has better convergence performance than standard genetic algorithm and is capable of maintaining the adversity of the population and solving function optimization problems in an efficient and reliable way.

  5. Modularity of gene-regulatory networks revealed in sea-star development

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2011-01-01

    Full Text Available Abstract Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star, but in a completely different developmental context (the animal-vegetal axis. This observation has implications for hypotheses on the type of development present in the deuterostome common ancestor. See research article: http://www.biomedcentral.com/1741-7007/8/143/abstract

  6. Using graphical adaptive lasso approach to construct transcription factor and microRNA's combinatorial regulatory network in breast cancer.

    Science.gov (United States)

    Su, Naifang; Dai, Ding; Deng, Chao; Qian, Minping; Deng, Minghua

    2014-06-01

    Discovering the regulation of cancer-related gene is of great importance in cancer biology. Transcription factors and microRNAs are two kinds of crucial regulators in gene expression, and they compose a combinatorial regulatory network with their target genes. Revealing the structure of this network could improve the authors' understanding of gene regulation, and further explore the molecular pathway in cancer. In this article, the authors propose a novel approach graphical adaptive lasso (GALASSO) to construct the regulatory network in breast cancer. GALASSO use a Gaussian graphical model with adaptive lasso penalties to integrate the sequence information as well as gene expression profiles. The simulation study and the experimental profiles verify the accuracy of the authors' approach. The authors further reveal the structure of the regulatory network, and explore the role of feedforward loops in gene regulation. In addition, the authors discuss the combinatorial regulatory effect between transcription factors and microRNAs, and select miR-155 for detailed analysis of microRNA's role in cancer. The proposed GALASSO approach is an efficient method to construct the combinatorial regulatory network. It also provides a new way to integrate different data sources and could find more applications in meta-analysis problem.

  7. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology

    OpenAIRE

    Grzegorczyk, M.; Husmeier, D.

    2012-01-01

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint pr...

  8. Polynomial-Time Algorithm for Controllability Test of a Class of Boolean Biological Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2010-01-01

    Full Text Available In recent years, Boolean-network-model-based approaches to dynamical analysis of complex biological networks such as gene regulatory networks have been extensively studied. One of the fundamental problems in control theory of such networks is the problem of determining whether a given substance quantity can be arbitrarily controlled by operating the other substance quantities, which we call the controllability problem. This paper proposes a polynomial-time algorithm for solving this problem. Although the algorithm is based on a sufficient condition for controllability, it is easily computable for a wider class of large-scale biological networks compared with the existing approaches. A key to this success in our approach is to give up computing Boolean operations in a rigorous way and to exploit an adjacency matrix of a directed graph induced by a Boolean network. By applying the proposed approach to a neurotransmitter signaling pathway, it is shown that it is effective.

  9. Molecular Regulatory Network of Flowering by Photoperiod and Temperature in Rice

    Institute of Scientific and Technical Information of China (English)

    SONG Yuan-li; LUAN Wei-jiang

    2012-01-01

    Plants have an ability to flower under optimal seasonal conditions to ensure reproductive success.Photoperiod and temperature are two important season-dependent factors of plant flowering.The floral transition of plants depends on accurate measurement of changes in photoperiod and temperature.Recent advances in molecular biology and genetics on Arabidopsis and rice reveals that the regulation of plant flowering by photoperiod and temperature are involved in a complicated gene network with different regulatory pathways,and new evidence and understanding were provided in the regulation of rice flowering.Here,we summarize and analyze different flowering regulatory pathways in detail in rice based on previous studies and our results,including short-day promotion,long-day suppression,long-day induction of flowering,night break,different light-quality and temperature regulation pathways.

  10. Design of artificial genetic regulatory networks with multiple delayed adaptive responses*

    Science.gov (United States)

    Kaluza, Pablo; Inoue, Masayo

    2016-06-01

    Genetic regulatory networks with adaptive responses are widely studied in biology. Usually, models consisting only of a few nodes have been considered. They present one input receptor for activation and one output node where the adaptive response is computed. In this work, we design genetic regulatory networks with many receptors and many output nodes able to produce delayed adaptive responses. This design is performed by using an evolutionary algorithm of mutations and selections that minimizes an error function defined by the adaptive response in signal shapes. We present several examples of network constructions with a predefined required set of adaptive delayed responses. We show that an output node can have different kinds of responses as a function of the activated receptor. Additionally, complex network structures are presented since processing nodes can be involved in several input-output pathways. Supplementary material in the form of one nets file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-70172-9

  11. A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks

    Directory of Open Access Journals (Sweden)

    Page Michel

    2009-12-01

    Full Text Available Abstract Background The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces. Formal verification based on temporal logic and model checking provides promising methods to automate and scale the analysis of the models. However, a framework that tightly integrates modeling and simulation tools with model checkers is currently missing, on both the conceptual and the implementational level. Results We have developed a generic and modular web service, based on a service-oriented architecture, for integrating the modeling and formal verification of genetic regulatory networks. The architecture has been implemented in the context of the qualitative modeling and simulation tool GNA and the model checkers NUSMV and CADP. GNA has been extended with a verification module for the specification and checking of biological properties. The verification module also allows the display and visual inspection of the verification results. Conclusions The practical use of the proposed web service is illustrated by means of a scenario involving the analysis of a qualitative model of the carbon starvation response in E. coli. The service-oriented architecture allows modelers to define the model and proceed with the specification and formal verification of the biological properties by means of a unified graphical user interface. This guarantees a transparent access to formal verification technology for modelers of genetic regulatory networks.

  12. A Non-Homogeneous Dynamic Bayesian Network with Sequentially Coupled Interaction Parameters for Applications in Systems and Synthetic Biology

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-01-01

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homog

  13. Local versus global biological network alignment

    Science.gov (United States)

    Meng, Lei; Striegel, Aaron; Milenković, Tijana

    2016-01-01

    Motivation: Network alignment (NA) aims to find regions of similarities between species’ molecular networks. There exist two NA categories: local (LNA) and global (GNA). LNA finds small highly conserved network regions and produces a many-to-many node mapping. GNA finds large conserved regions and produces a one-to-one node mapping. Given the different outputs of LNA and GNA, when a new NA method is proposed, it is compared against existing methods from the same category. However, both NA categories have the same goal: to allow for transferring functional knowledge from well- to poorly-studied species between conserved network regions. So, which one to choose, LNA or GNA? To answer this, we introduce the first systematic evaluation of the two NA categories. Results: We introduce new measures of alignment quality that allow for fair comparison of the different LNA and GNA outputs, as such measures do not exist. We provide user-friendly software for efficient alignment evaluation that implements the new and existing measures. We evaluate prominent LNA and GNA methods on synthetic and real-world biological networks. We study the effect on alignment quality of using different interaction types and confidence levels. We find that the superiority of one NA category over the other is context-dependent. Further, when we contrast LNA and GNA in the application of learning novel protein functional knowledge, the two produce very different predictions, indicating their complementarity. Our results and software provide guidelines for future NA method development and evaluation. Availability and implementation: Software: http://www.nd.edu/~cone/LNA_GNA Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27357169

  14. Epidermal differentiation gene regulatory networks controlled by MAF and MAFB.

    Science.gov (United States)

    Labott, Andrew T; Lopez-Pajares, Vanessa

    2016-06-01

    Numerous regulatory factors in epidermal differentiation and their role in regulating different cell states have been identified in recent years. However, the genetic interactions between these regulators over the dynamic course of differentiation have not been studied. In this Extra-View article, we review recent work by Lopez-Pajares et al. that explores a new regulatory network in epidermal differentiation. They analyze the changing transcriptome throughout epidermal regeneration to identify 3 separate gene sets enriched in the progenitor, early and late differentiation states. Using expression module mapping, MAF along with MAFB, are identified as transcription factors essential for epidermal differentiation. Through double knock-down of MAF:MAFB using siRNA and CRISPR/Cas9-mediated knockout, epidermal differentiation was shown to be impaired both in-vitro and in-vivo, confirming MAF:MAFB's role to activate genes that drive differentiation. Lopez-Pajares and collaborators integrated 42 published regulator gene sets and the MAF:MAFB gene set into the dynamic differentiation gene expression landscape and found that lncRNAs TINCR and ANCR act as upstream regulators of MAF:MAFB. Furthermore, ChIP-seq analysis of MAF:MAFB identified key transcription factor genes linked to epidermal differentiation as downstream effectors. Combined, these findings illustrate a dynamically regulated network with MAF:MAFB as a crucial link for progenitor gene repression and differentiation gene activation. PMID:27097296

  15. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach

    Directory of Open Access Journals (Sweden)

    Buer Jan

    2004-12-01

    Full Text Available Abstract Background Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. Results In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. Conclusion The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E

  16. Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    2013-02-01

    Full Text Available The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I observational gene expression data: normal environmental condition, (II interventional gene expression data: growth in rich media, (III interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.

  17. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures. PMID:21576756

  18. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.

  19. Dynamics and control at feedback vertex sets. II: a faithful monitor to determine the diversity of molecular activities in regulatory networks.

    Science.gov (United States)

    Mochizuki, Atsushi; Fiedler, Bernold; Kurosawa, Gen; Saito, Daisuke

    2013-10-21

    Modern biology provides many networks describing regulations between many species of molecules. It is widely believed that the dynamics of molecular activities based on such regulatory networks are the origin of biological functions. However, we currently have a limited understanding of the relationship between the structure of a regulatory network and its dynamics. In this study we develop a new theory to provide an important aspect of dynamics from information of regulatory linkages alone. We show that the "feedback vertex set" (FVS) of a regulatory network is a set of "determining nodes" of the dynamics. The theory is powerful to study real biological systems in practice. It assures that (i) any long-term dynamical behavior of the whole system, such as steady states, periodic oscillations or quasi-periodic oscillations, can be identified by measurements of a subset of molecules in the network, and that (ii) the subset is determined from the regulatory linkage alone. For example, dynamical attractors possibly generated by a signal transduction network with 113 molecules can be identified by measurement of the activity of only 5 molecules, if the information on the network structure is correct. Our theory therefore provides a rational criterion to select key molecules to control a system. We also demonstrate that controlling the dynamics of the FVS is sufficient to switch the dynamics of the whole system from one attractor to others, distinct from the original.

  20. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviours

    Directory of Open Access Journals (Sweden)

    Daria eMolodtsova

    2014-12-01

    Full Text Available It is increasingly apparent that genes and networks that influence complex behaviour are evolutionary conserved, which is paradoxical considering that behaviour is labile over evolutionary timescales. How does adaptive change in behaviour arise if behaviour is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behaviour, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behaviour of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

  1. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum.

    Science.gov (United States)

    Guo, Li; Zhao, Guoyi; Xu, Jin-Rong; Kistler, H Corby; Gao, Lixin; Ma, Li-Jun

    2016-07-01

    Head blight caused by Fusarium graminearum threatens world-wide wheat production, resulting in both yield loss and mycotoxin contamination. We reconstructed the global F. graminearum gene regulatory network (GRN) from a large collection of transcriptomic data using Bayesian network inference, a machine-learning algorithm. This GRN reveals connectivity between key regulators and their target genes. Focusing on key regulators, this network contains eight distinct but interwoven modules. Enriched for unique functions, such as cell cycle, DNA replication, transcription, translation and stress responses, each module exhibits distinct expression profiles. Evolutionarily, the F. graminearum genome can be divided into core regions shared with closely related species and variable regions harboring genes that are unique to F. graminearum and perform species-specific functions. Interestingly, the inferred top regulators regulate genes that are significantly enriched from the same genomic regions (P control strategies involving the targeting of master regulators in pathogens. The program can be used to construct GRNs of other plant pathogens. PMID:26990214

  2. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis

    Science.gov (United States)

    Harel, Itamar; Maezawa, Yoshiro; Avraham, Roi; Rinon, Ariel; Ma, Hsiao-Yen; Cross, Joe W.; Leviatan, Noam; Hegesh, Julius; Roy, Achira; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Carvajal, Jaime; Tole, Shubha; Kioussi, Chrissa; Quaggin, Susan; Tzahor, Eldad

    2012-01-01

    The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects. PMID:23112163

  3. Augmenting microarray data with literature-based knowledge to enhance gene regulatory network inference.

    Directory of Open Access Journals (Sweden)

    Guocai Chen

    2014-06-01

    Full Text Available Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions. The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a

  4. Effective identification of conserved pathways in biological networks using hidden Markov models.

    Directory of Open Access Journals (Sweden)

    Xiaoning Qian

    Full Text Available BACKGROUND: The advent of various high-throughput experimental techniques for measuring molecular interactions has enabled the systematic study of biological interactions on a global scale. Since biological processes are carried out by elaborate collaborations of numerous molecules that give rise to a complex network of molecular interactions, comparative analysis of these biological networks can bring important insights into the functional organization and regulatory mechanisms of biological systems. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we present an effective framework for identifying common interaction patterns in the biological networks of different organisms based on hidden Markov models (HMMs. Given two or more networks, our method efficiently finds the top matching paths in the respective networks, where the matching paths may contain a flexible number of consecutive insertions and deletions. CONCLUSIONS/SIGNIFICANCE: Based on several protein-protein interaction (PPI networks obtained from the Database of Interacting Proteins (DIP and other public databases, we demonstrate that our method is able to detect biologically significant pathways that are conserved across different organisms. Our algorithm has a polynomial complexity that grows linearly with the size of the aligned paths. This enables the search for very long paths with more than 10 nodes within a few minutes on a desktop computer. The software program that implements this algorithm is available upon request from the authors.

  5. A new method for discovering disease-specific MiRNA-target regulatory networks.

    Directory of Open Access Journals (Sweden)

    Miriam Baglioni

    Full Text Available Genes and their expression regulation are among the key factors in the comprehension of the genesis and development of complex diseases. In this context, microRNAs (miRNAs are post-transcriptional regulators that play an important role in gene expression since they are frequently deregulated in pathologies like cardiovascular disease and cancer. In vitro validation of miRNA--targets regulation is often too expensive and time consuming to be carried out for every possible alternative. As a result, a tool able to provide some criteria to prioritize trials is becoming a pressing need. Moreover, before planning in vitro experiments, the scientist needs to evaluate the miRNA-target genes interaction network. In this paper we describe the miRable method whose purpose is to identify new potentially relevant genes and their interaction networks associate to a specific pathology. To achieve this goal miRable follows a system biology approach integrating together general-purpose medical knowledge (literature, Protein-Protein Interaction networks, prediction tools and pathology specific data (gene expression data. A case study on Prostate Cancer has shown that miRable is able to: 1 find new potential miRNA-targets pairs, 2 highlight novel genes potentially involved in a disease but never or little studied before, 3 reconstruct all possible regulatory subnetworks starting from the literature to expand the knowledge on the regulation of miRNA regulatory mechanisms.

  6. Transcriptional regulatory networks for CD4 T cell differentiation.

    Science.gov (United States)

    Christie, Darah; Zhu, Jinfang

    2014-01-01

    CD4(+) T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4(+) T cells differentiate into at least four subsets, Th1Th1 , Th2Th2 , Th17Th17 , and inducible regulatory T cellsregulatory T cells , each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factorstranscription factors . In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4(+) T cell differentiation.

  7. Eric Davidson: Steps to a gene regulatory network for development.

    Science.gov (United States)

    Rothenberg, Ellen V

    2016-04-15

    Eric Harris Davidson was a unique and creative intellectual force who grappled with the diversity of developmental processes used by animal embryos and wrestled them into an intelligible set of principles, then spent his life translating these process elements into molecularly definable terms through the architecture of gene regulatory networks. He took speculative risks in his theoretical writing but ran a highly organized, rigorous experimental program that yielded an unprecedentedly full characterization of a developing organism. His writings created logical order and a framework for mechanism from the complex phenomena at the heart of advanced multicellular organism development. This is a reminiscence of intellectual currents in his work as observed by the author through the last 30-35 years of Davidson's life. PMID:26825392

  8. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Science.gov (United States)

    Meng, Jia; Zhang, Jianqiu(Michelle); Qi, Yuan(Alan); Chen, Yidong; Huang, Yufei

    2010-12-01

    The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ([InlineEquation not available: see fulltext.]) status and Estrogen Receptor negative ([InlineEquation not available: see fulltext.]) status, respectively.

  9. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Directory of Open Access Journals (Sweden)

    Qi Yuan(Alan

    2010-01-01

    Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.

  10. The role of master regulators in gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Enrique Hernández Lemus

    2015-05-01

    Full Text Available Gene regulatory networks present a wide variety of dynamical responses to intrinsic and extrinsic perturbations. Arguably, one of the most important of such coordinated responses is the one of amplification cascades, in which activation of a few key-responsive transcription factors (termed master regulators, MRs lead to a large series of transcriptional activation events. This is so since master regulators are transcription factors controlling the expression of other transcription factor molecules and so on. MRs hold a central position related to transcriptional dynamics and control of gene regulatory networks and are often involved in complex feedback and feedforward loops inducing non-trivial dynamics. Recent studies have pointed out to the myocyte enhancing factor 2C (MEF2C, also known as MADS box transcription enhancer factor 2, polypeptide C as being one of such master regulators involved in the pathogenesis of primary breast cancer. In this work, we perform an integrative genomic analysis of the transcriptional regulation activity of MEF2C and its target genes to evaluate to what extent are these molecules inducing collective responses leading to gene expression deregulation and carcinogenesis. We also analyzed a number of induced dynamic responses, in particular those associated with transcriptional bursts, and nonlinear cascading to evaluate the influence they may have in malignant phenotypes and cancer. Received: 20 Novembre 2014, Accepted: 24 June 2015; Edited by: C. A. Condat, G. J. Sibona; DOI: http://dx.doi.org/10.4279/PIP.070011 Cite as: E Hernández-Lemus, K Baca-López, R Lemus, R García-Herrera, Papers in Physics 7, 070011 (2015

  11. Gene regulatory network analysis in sea urchin embryos.

    Science.gov (United States)

    Oliveri, Paola; Davidson, Eric H

    2004-01-01

    It may safely be predicted that GRN analysis will become increasingly important. It will come to underlie the causal study of development, the major effort underway to understand the regulatory code built into animal genomes and also the evolution of these genomes. Partly by serendipity, sea urchin embryos turn out to be a superb experimental material for GRN analysis. Their natural properties have, in turn, influenced the predilections of those who work on them, and between them and us, so to speak, this is now a developmental system of which we are rapidly gaining an unusually complete understanding. The causal linkages that control development of the whole embryo will be revealed, leading all the way from the heritable genomic regulatory code to the events of embryology. The fundamental experimental operation is the perturbation analysis: Here is where causality permeates the exploration. We have in this chapter summarized in some detail the requirements for perturbation GRN analysis in sea urchin embryos. But that is not all, nor is it enough to enable the assembly of a GRN: What is required is the combined application of elegant computational methods, of gene regulation molecular biology, of genomic sequence data, and of experimental embryology. As the results crystallize together, we can begin to see how far this powerful combination of methods and ideas is going to carry us. PMID:15575631

  12. LmSmdB: an integrated database for metabolic and gene regulatory network in Leishmania major and Schistosoma mansoni.

    Science.gov (United States)

    Patel, Priyanka; Mandlik, Vineetha; Singh, Shailza

    2016-03-01

    A database that integrates all the information required for biological processing is essential to be stored in one platform. We have attempted to create one such integrated database that can be a one stop shop for the essential features required to fetch valuable result. LmSmdB (L. major and S. mansoni database) is an integrated database that accounts for the biological networks and regulatory pathways computationally determined by integrating the knowledge of the genome sequences of the mentioned organisms. It is the first database of its kind that has together with the network designing showed the simulation pattern of the product. This database intends to create a comprehensive canopy for the regulation of lipid metabolism reaction in the parasite by integrating the transcription factors, regulatory genes and the protein products controlled by the transcription factors and hence operating the metabolism at genetic level.

  13. Antagonistic Coevolution Drives Whack-a-Mole Sensitivity in Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Jeewoen Shin

    2015-10-01

    Full Text Available Robustness, defined as tolerance to perturbations such as mutations and environmental fluctuations, is pervasive in biological systems. However, robustness often coexists with its counterpart, evolvability--the ability of perturbations to generate new phenotypes. Previous models of gene regulatory network evolution have shown that robustness evolves under stabilizing selection, but it is unclear how robustness and evolvability will emerge in common coevolutionary scenarios. We consider a two-species model of coevolution involving one host and one parasite population. By using two interacting species, key model parameters that determine the fitness landscapes become emergent properties of the model, avoiding the need to impose these parameters externally. In our study, parasites are modeled on species such as cuckoos where mimicry of the host phenotype confers high fitness to the parasite but lower fitness to the host. Here, frequent phenotype changes are favored as each population continually adapts to the other population. Sensitivity evolves at the network level such that point mutations can induce large phenotype changes. Crucially, the sensitive points of the network are broadly distributed throughout the network and continually relocate. Each time sensitive points in the network are mutated, new ones appear to take their place. We have therefore named this phenomenon "whack-a-mole" sensitivity, after a popular fun park game. We predict that this type of sensitivity will evolve under conditions of strong directional selection, an observation that helps interpret existing experimental evidence, for example, during the emergence of bacterial antibiotic resistance.

  14. Reverse engineering of gene regulatory networks based on S-systems and Bat algorithm.

    Science.gov (United States)

    Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat Kumar

    2016-06-01

    The correct inference of gene regulatory networks for the understanding of the intricacies of the complex biological regulations remains an intriguing task for researchers. With the availability of large dimensional microarray data, relationships among thousands of genes can be simultaneously extracted. Among the prevalent models of reverse engineering genetic networks, S-system is considered to be an efficient mathematical tool. In this paper, Bat algorithm, based on the echolocation of bats, has been used to optimize the S-system model parameters. A decoupled S-system has been implemented to reduce the complexity of the algorithm. Initially, the proposed method has been successfully tested on an artificial network with and without the presence of noise. Based on the fact that a real-life genetic network is sparsely connected, a novel Accumulative Cardinality based decoupled S-system has been proposed. The cardinality has been varied from zero up to a maximum value, and this model has been implemented for the reconstruction of the DNA SOS repair network of Escherichia coli. The obtained results have shown significant improvements in the detection of a greater number of true regulations, and in the minimization of false detections compared to other existing methods.

  15. Regulatory Networks and Complex Interactions between the Insulin and Angiotensin II Signalling Systems: Models and Implications for Hypertension and Diabetes

    OpenAIRE

    Çizmeci, Deniz; Arkun, Yaman

    2013-01-01

    Regulatory Networks and Complex Interactions between the Insulin and Angiotensin II Signalling Systems: Models and Implications for Hypertension and Diabetes Deniz Cizmeci, Yaman Arkun* Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey Abstract The cross-talk between insulin and angiotensin II signalling pathways plays a significant role in the co-occurrence of diabetes and hypertension. We developed a mathematical model of the system of ...

  16. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks

    Directory of Open Access Journals (Sweden)

    Baliga Nitin S

    2006-06-01

    Full Text Available Abstract Background The learning of global genetic regulatory networks from expression data is a severely under-constrained problem that is aided by reducing the dimensionality of the search space by means of clustering genes into putatively co-regulated groups, as opposed to those that are simply co-expressed. Be cause genes may be co-regulated only across a subset of all observed experimental conditions, biclustering (clustering of genes and conditions is more appropriate than standard clustering. Co-regulated genes are also often functionally (physically, spatially, genetically, and/or evolutionarily associated, and such a priori known or pre-computed associations can provide support for appropriately grouping genes. One important association is the presence of one or more common cis-regulatory motifs. In organisms where these motifs are not known, their de novo detection, integrated into the clustering algorithm, can help to guide the process towards more biologically parsimonious solutions. Results We have developed an algorithm, cMonkey, that detects putative co-regulated gene groupings by integrating the biclustering of gene expression data and various functional associations with the de novo detection of sequence motifs. Conclusion We have applied this procedure to the archaeon Halobacterium NRC-1, as part of our efforts to decipher its regulatory network. In addition, we used cMonkey on public data for three organisms in the other two domains of life: Helicobacter pylori, Saccharomyces cerevisiae, and Escherichia coli. The biclusters detected by cMonkey both recapitulated known biology and enabled novel predictions (some for Halobacterium were subsequently confirmed in the laboratory. For example, it identified the bacteriorhodopsin regulon, assigned additional genes to this regulon with apparently unrelated function, and detected its known promoter motif. We have performed a thorough comparison of cMonkey results against other

  17. Discovery of microRNA regulatory networks by integrating multidimensional high-throughput data.

    Science.gov (United States)

    Yang, Jian-Hua; Qu, Liang-Hu

    2013-01-01

    MicroRNAs (miRNAs) are endogenous non-coding RNAs (ncRNAs) of approximately 22 nt that regulate the expression of a large fraction of genes by targeting messenger RNAs (mRNAs). However, determining the biologically significant targets of miRNAs is an ongoing challenge. In this chapter, we describe how to identify miRNA-target interactions and miRNA regulatory networks from high-throughput deep sequencing, CLIP-Seq (HITS-CLIP, PAR-CLIP) and degradome sequencing data using starBase platforms. In starBase, several web-based and stand-alone computational tools were developed to discover Argonaute (Ago) binding and cleavage sites, miRNA-target interactions, perform enrichment analysis of miRNA target genes in Gene Ontology (GO) categories and biological pathways, and identify combinatorial effects between Ago and other RNA-binding proteins (RBPs). Investigating target pathways of miRNAs in human CLIP-Seq data, we found that many cancer-associated miRNAs modulate cancer pathways. Performing an enrichment analysis of genes targeted by highly expressed miRNAs in the mouse brain showed that many miRNAs are involved in cancer-associated MAPK signaling and glioma pathways, as well as neuron-associated neurotrophin signaling and axon guidance pathways. Moreover, thousands of combinatorial binding sites between Ago and RBPs were identified from CLIP-Seq data suggesting RBPs and miRNAs coordinately regulate mRNA transcripts. As a means of comprehensively integrating CLIP-Seq and Degradome-Seq data, the starBase platform is expected to identify clinically relevant miRNA-target regulatory relationships, and reveal multi-dimensional post-transcriptional regulatory networks involving miRNAs and RBPs. starBase is available at http://starbase.sysu.edu.cn/ . PMID:23377977

  18. Bayesian Inference of Genetic Regulatory Networks from Time Series Microarray Data Using Dynamic Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Yufei Huang

    2007-06-01

    Full Text Available Reverse engineering of genetic regulatory networks from time series microarray data are investigated. We propose a dynamic Bayesian networks (DBNs modeling and a full Bayesian learning scheme. The proposed DBN directly models the continuous expression levels and also is associated with parameters that indicate the degree as well as the type of regulations. To learn the network from data, we proposed a reversible jump Markov chain Monte Carlo (RJMCMC algorithm. The RJMCMC algorithm can provide not only more accurate inference results than the deterministic alternative algorithms but also an estimate of the a posteriori probabilities (APPs of the network topology. The estimated APPs provide useful information on the confidence of the inferred results and can also be used for efficient Bayesian data integration. The proposed approach is tested on yeast cell cycle microarray data and the results are compared with the KEGG pathway map.

  19. Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network

    Directory of Open Access Journals (Sweden)

    Eugenio eAzpeitia

    2013-04-01

    Full Text Available AbstractOver the last few decades, the Arabidopsis thaliana root stem cell niche has become a model system for the study of plant development and the stem cell niche. Currently, many of the molecular mechanisms involved in root stem cell niche maintenance and development have been described. A few years ago, we published a gene regulatory network model integrating this information. This model suggested that there were missing components or interactions. Upon updating the model, the observed stable gene configurations of the root stem cell niche could not be recovered, indicating that there are additional missing components or interactions in the model. In fact, due to the lack of experimental data, gene regulatory networks inferred from published data are usually incomplete. However, predicting the location and nature of the missing data is a not trivial task. Here, we propose a set of procedures for detecting and predicting missing interactions in Boolean networks. We used these procedures to predict putative missing interactions in the A. thaliana root stem cell niche network model. Using our approach, we identified three necessary interactions to recover the reported gene activation configurations that have been experimentally uncovered for the different cell types within the root stem cell niche: 1 a regulation of PHABULOSA to restrict its expression domain to the vascular cells, 2 a self-regulation of WOX5, possibly by an indirect mechanism through the auxin signalling pathway and 3 a positive regulation of JACKDAW by MAGPIE. The procedures proposed here greatly reduce the number of possible Boolean functions that are biologically meaningful and experimentally testable and that do not contradict previous data. We believe that these procedures can be used on any Boolean network. However, because the procedures were designed for the specific case of the root stem cell niche, formal demonstrations of the procedures should be shown in future

  20. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Alina Sîrbu

    2015-05-01

    Full Text Available Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions. Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  1. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors

    DEFF Research Database (Denmark)

    Österlund, Tobias; Bordel, Sergio; Nielsen, Jens

    2015-01-01

    Transcriptional regulation is the most committed type of regulation in living cells where transcription factors (TFs) control the expression of their target genes and TF expression is controlled by other TFs forming complex transcriptional regulatory networks that can be highly interconnected. Here...... we analyze the topology and organization of nine transcriptional regulatory networks for E. coli, yeast, mouse and human, and we evaluate how the structure of these networks influences two of their key properties, namely controllability and stability. We calculate the controllability for each network...... as a measure of the organization and interconnectivity of the network. We find that the number of driver nodes n(D) needed to control the whole network is 64% of the TFs in the E. coli transcriptional regulatory network in contrast to only 17% for the yeast network, 4% for the mouse network and 8...

  2. Biological data warehousing system for identifying transcriptional regulatory sites from gene expressions of microarray data.

    Science.gov (United States)

    Tsou, Ann-Ping; Sun, Yi-Ming; Liu, Chia-Lin; Huang, Hsien-Da; Horng, Jorng-Tzong; Tsai, Meng-Feng; Liu, Baw-Juine

    2006-07-01

    Identification of transcriptional regulatory sites plays an important role in the investigation of gene regulation. For this propose, we designed and implemented a data warehouse to integrate multiple heterogeneous biological data sources with data types such as text-file, XML, image, MySQL database model, and Oracle database model. The utility of the biological data warehouse in predicting transcriptional regulatory sites of coregulated genes was explored using a synexpression group derived from a microarray study. Both of the binding sites of known transcription factors and predicted over-represented (OR) oligonucleotides were demonstrated for the gene group. The potential biological roles of both known nucleotides and one OR nucleotide were demonstrated using bioassays. Therefore, the results from the wet-lab experiments reinforce the power and utility of the data warehouse as an approach to the genome-wide search for important transcription regulatory elements that are the key to many complex biological systems.

  3. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    Science.gov (United States)

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed.

  4. Comparison of two different stochastic models for extracting protein regulatory pathways using Bayesian networks.

    Science.gov (United States)

    Grzegorczyk, Marco

    2008-01-01

    Toxicoproteomics integrates traditional toxicology and systems biology and seeks to infer the architecture of biochemical pathways in biological systems that are affected by and respond to chemical and environmental exposures. Different reverse engineering methods for extracting biochemical regulatory networks from data have been proposed and it is important to understand their relative strengths and weaknesses. To shed some light onto this problem, Werhli et al. (2006) cross-compared three widely used methodologies, relevance networks, graphical Gaussian models, and Bayesian networks (BN), on real cytometric and synthetic expression data. This study continues with the evaluation and compares the learning performances of two different stochastic models (BGe and BDe) for BN. Cytometric protein expression data from the RAF-signaling pathway were used for the cross-method comparison. Understanding this pathway is an important task, as it is known that RAF is a critical signaling protein whose deregulation leads to carcinogenesis. When the more flexible BDe model is employed, a data discretization, which usually incurs an inevitable information loss, is needed. However, the results of the study reveal that the BDe model is preferable to the BGe model when a sufficiently large number of observations from the pathway are available. PMID:18569581

  5. OWL reasoning framework over big biological knowledge network.

    Science.gov (United States)

    Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong

    2014-01-01

    Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity.

  6. OWL Reasoning Framework over Big Biological Knowledge Network

    Directory of Open Access Journals (Sweden)

    Huajun Chen

    2014-01-01

    Full Text Available Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM and western medicine (WM is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity.

  7. A joint model of regulatory and metabolic networks

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2006-07-01

    Full Text Available Abstract Background Gene regulation and metabolic reactions are two primary activities of life. Although many works have been dedicated to study each system, the coupling between them is less well understood. To bridge this gap, we propose a joint model of gene regulation and metabolic reactions. Results We integrate regulatory and metabolic networks by adding links specifying the feedback control from the substrates of metabolic reactions to enzyme gene expressions. We adopt two alternative approaches to build those links: inferring the links between metabolites and transcription factors to fit the data or explicitly encoding the general hypotheses of feedback control as links between metabolites and enzyme expressions. A perturbation data is explained by paths in the joint network if the predicted response along the paths is consistent with the observed response. The consistency requirement for explaining the perturbation data imposes constraints on the attributes in the network such as the functions of links and the activities of paths. We build a probabilistic graphical model over the attributes to specify these constraints, and apply an inference algorithm to identify the attribute values which optimally explain the data. The inferred models allow us to 1 identify the feedback links between metabolites and regulators and their functions, 2 identify the active paths responsible for relaying perturbation effects, 3 computationally test the general hypotheses pertaining to the feedback control of enzyme expressions, 4 evaluate the advantage of an integrated model over separate systems. Conclusion The modeling results provide insight about the mechanisms of the coupling between the two systems and possible "design rules" pertaining to enzyme gene regulation. The model can be used to investigate the less well-probed systems and generate consistent hypotheses and predictions for further validation.

  8. iRegulon: from a gene list to a gene regulatory network using large motif and track collections.

    Directory of Open Access Journals (Sweden)

    Rekin's Janky

    2014-07-01

    Full Text Available Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes. iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org.

  9. A generic algorithm for layout of biological networks

    Directory of Open Access Journals (Sweden)

    Dwyer Tim

    2009-11-01

    Full Text Available Abstract Background Biological networks are widely used to represent processes in biological systems and to capture interactions and dependencies between biological entities. Their size and complexity is steadily increasing due to the ongoing growth of knowledge in the life sciences. To aid understanding of biological networks several algorithms for laying out and graphically representing networks and network analysis results have been developed. However, current algorithms are specialized to particular layout styles and therefore different algorithms are required for each kind of network and/or style of layout. This increases implementation effort and means that new algorithms must be developed for new layout styles. Furthermore, additional effort is necessary to compose different layout conventions in the same diagram. Also the user cannot usually customize the placement of nodes to tailor the layout to their particular need or task and there is little support for interactive network exploration. Results We present a novel algorithm to visualize different biological networks and network analysis results in meaningful ways depending on network types and analysis outcome. Our method is based on constrained graph layout and we demonstrate how it can handle the drawing conventions used in biological networks. Conclusion The presented algorithm offers the ability to produce many of the fundamental popular drawing styles while allowing the exibility of constraints to further tailor these layouts.

  10. Biology Question Generation from a Semantic Network

    Science.gov (United States)

    Zhang, Lishan

    Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions. To boost students' learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student's current competence so that a suitable question could be selected based on the student's previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group. To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators. A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from

  11. An estimation method for inference of gene regulatory net-work using Bayesian network with uniting of partial problems

    Directory of Open Access Journals (Sweden)

    Watanabe Yukito

    2012-01-01

    Full Text Available Abstract Background Bayesian networks (BNs have been widely used to estimate gene regulatory networks. Many BN methods have been developed to estimate networks from microarray data. However, two serious problems reduce the effectiveness of current BN methods. The first problem is that BN-based methods require huge computational time to estimate large-scale networks. The second is that the estimated network cannot have cyclic structures, even if the actual network has such structures. Results In this paper, we present a novel BN-based deterministic method with reduced computational time that allows cyclic structures. Our approach generates all the combinational triplets of genes, estimates networks of the triplets by BN, and unites the networks into a single network containing all genes. This method decreases the search space of predicting gene regulatory networks without degrading the solution accuracy compared with the greedy hill climbing (GHC method. The order of computational time is the cube of number of genes. In addition, the network estimated by our method can include cyclic structures. Conclusions We verified the effectiveness of the proposed method for all known gene regulatory networks and their expression profiles. The results demonstrate that this approach can predict regulatory networks with reduced computational time without degrading the solution accuracy compared with the GHC method.

  12. BioNSi: A Discrete Biological Network Simulator Tool.

    Science.gov (United States)

    Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny

    2016-08-01

    Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found. PMID:27354160

  13. Power Laws, Scale-Free Networks and Genome Biology

    CERN Document Server

    Koonin, Eugene V; Karev, Georgy P

    2006-01-01

    Power Laws, Scale-free Networks and Genome Biology deals with crucial aspects of the theoretical foundations of systems biology, namely power law distributions and scale-free networks which have emerged as the hallmarks of biological organization in the post-genomic era. The chapters in the book not only describe the interesting mathematical properties of biological networks but moves beyond phenomenology, toward models of evolution capable of explaining the emergence of these features. The collection of chapters, contributed by both physicists and biologists, strives to address the problems in this field in a rigorous but not excessively mathematical manner and to represent different viewpoints, which is crucial in this emerging discipline. Each chapter includes, in addition to technical descriptions of properties of biological networks and evolutionary models, a more general and accessible introduction to the respective problems. Most chapters emphasize the potential of theoretical systems biology for disco...

  14. An efficient approach of attractor calculation for large-scale Boolean gene regulatory networks.

    Science.gov (United States)

    He, Qinbin; Xia, Zhile; Lin, Bin

    2016-11-01

    Boolean network models provide an efficient way for studying gene regulatory networks. The main dynamics of a Boolean network is determined by its attractors. Attractor calculation plays a key role for analyzing Boolean gene regulatory networks. An approach of attractor calculation was proposed in this study, which improved the predecessor-based approach. Furthermore, the proposed approach combined with the identification of constant nodes and simplified Boolean networks to accelerate attractor calculation. The proposed algorithm is effective to calculate all attractors for large-scale Boolean gene regulatory networks. If the average degree of the network is not too large, the algorithm can get all attractors of a Boolean network with dozens or even hundreds of nodes.

  15. The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions

    Science.gov (United States)

    Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng

    2016-05-01

    The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met5]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met5]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.

  16. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems.

    Science.gov (United States)

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com

  17. Layers of epistasis: genome-wide regulatory networks and network approaches to genome-wide association studies

    Science.gov (United States)

    Cowper-Sal·lari, Richard; Cole, Michael D.; Karagas, Margaret R.; Lupien, Mathieu; Moore, Jason H.

    2010-01-01

    The conceptual foundation of the genome-wide association study (GWAS) has advanced unchecked since its conception. A revision might seem premature as the potential of GWAS has not been fully realized. Multiple technical and practical limitations need to be overcome before GWAS can be fairly criticized. But with the completion of hundreds of studies and a deeper understanding of the genetic architecture of disease, warnings are being raised. The results compiled to date indicate that risk-associated variants lie predominantly in non-coding regions of the genome. Additionally, alternative methodologies are uncovering large and heterogeneous sets of rare variants underlying disease. The fear is that, even in its fulfilment, the current GWAS paradigm might be incapable of dissecting all kinds of phenotypes. In the following text we review several initiatives that aim to overcome these limitations. The overarching theme of these studies is the inclusion of biological knowledge to both the analysis and interpretation of genotyping data. GWAS is uninformed of biology by design and although there is some virtue in its simplicity it is also its most conspicuous deficiency. We propose a framework in which to integrate these novel approaches, both empirical and theoretical, in the form of a genome-wide regulatory network (GWRN). By processing experimental data into networks, emerging data types based on chromatin-immunoprecipitation are made computationally tractable. This will give GWAS re-analysis efforts the most current and relevant substrates, and root them firmly on our knowledge of human disease. PMID:21197657

  18. In silico transcriptional regulatory networks involved in tomato fruit ripening

    Directory of Open Access Journals (Sweden)

    Stilianos Arhondakis

    2016-08-01

    Full Text Available ABSTRACTTomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37 and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  19. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening.

    Science.gov (United States)

    Arhondakis, Stilianos; Bita, Craita E; Perrakis, Andreas; Manioudaki, Maria E; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  20. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening.

    Science.gov (United States)

    Arhondakis, Stilianos; Bita, Craita E; Perrakis, Andreas; Manioudaki, Maria E; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening. PMID:27625653

  1. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening

    Science.gov (United States)

    Arhondakis, Stilianos; Bita, Craita E.; Perrakis, Andreas; Manioudaki, Maria E.; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  2. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    Directory of Open Access Journals (Sweden)

    Yeh Cheng-Yu

    2009-12-01

    . Conclusions We provide a computational framework to reconstruct the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment.

  3. Transcriptional Regulatory Network for the Development of Innate Lymphoid Cells

    Directory of Open Access Journals (Sweden)

    Chao Zhong

    2015-01-01

    Full Text Available Recent studies on innate lymphoid cells (ILCs have expanded our knowledge about the innate arm of the immune system. Helper-like ILCs share both the “innate” feature of conventional natural killer (cNK cells and the “helper” feature of CD4+ T helper (Th cells. With this combination, helper-like ILCs are capable of initiating early immune responses similar to cNK cells, but via secretion of a set of effector cytokines similar to those produced by Th cells. Although many studies have revealed the functional similarity between helper-like ILCs and Th cells, some aspects of ILCs including the development of this lineage remain elusive. It is intriguing that the majority of transcription factors involved in multiple stages of T cell development, differentiation, and function also play critical roles during ILC development. Regulators such as Id2, GATA-3, Nfil3, TOX, and TCF-1 are expressed and function at various stages of ILC development. In this review, we will summarize the expression and functions of these transcription factors shared by ILCs and Th cells. We will also propose a complex transcriptional regulatory network for the lineage commitment of ILCs.

  4. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo

    Science.gov (United States)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; Otim, Ochan; Brown, C. Titus; Livi, Carolina B.; Lee, Pei Yun; Revilla, Roger; Schilstra, Maria J.; Clarke, Peter J C.; Rust, Alistair G.; Pan, Zhengjun; Arnone, Maria I.; Rowen, Lee; Cameron, R. Andrew; McClay, David R.; Hood, Leroy; Bolouri, Hamid

    2002-01-01

    We present the current form of a provisional DNA sequence-based regulatory gene network that explains in outline how endomesodermal specification in the sea urchin embryo is controlled. The model of the network is in a continuous process of revision and growth as new genes are added and new experimental results become available; see http://www.its.caltech.edu/mirsky/endomeso.htm (End-mes Gene Network Update) for the latest version. The network contains over 40 genes at present, many newly uncovered in the course of this work, and most encoding DNA-binding transcriptional regulatory factors. The architecture of the network was approached initially by construction of a logic model that integrated the extensive experimental evidence now available on endomesoderm specification. The internal linkages between genes in the network have been determined functionally, by measurement of the effects of regulatory perturbations on the expression of all relevant genes in the network. Five kinds of perturbation have been applied: (1) use of morpholino antisense oligonucleotides targeted to many of the key regulatory genes in the network; (2) transformation of other regulatory factors into dominant repressors by construction of Engrailed repressor domain fusions; (3) ectopic expression of given regulatory factors, from genetic expression constructs and from injected mRNAs; (4) blockade of the beta-catenin/Tcf pathway by introduction of mRNA encoding the intracellular domain of cadherin; and (5) blockade of the Notch signaling pathway by introduction of mRNA encoding the extracellular domain of the Notch receptor. The network model predicts the cis-regulatory inputs that link each gene into the network. Therefore, its architecture is testable by cis-regulatory analysis. Strongylocentrotus purpuratus and Lytechinus variegatus genomic BAC recombinants that include a large number of the genes in the network have been sequenced and annotated. Tests of the cis-regulatory predictions of

  5. A unified biological modeling and simulation system for analyzing biological reaction networks

    Science.gov (United States)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2013-12-01

    In order to understand the biological response in a cell, a researcher has to create a biological network and design an experiment to prove it. Although biological knowledge has been accumulated, we still don't have enough biological models to explain complex biological phenomena. If a new biological network is to be created, integrated modeling software supporting various biological models is required. In this research, we design and implement a unified biological modeling and simulation system, called ezBioNet, for analyzing biological reaction networks. ezBioNet designs kinetic and Boolean network models and simulates the biological networks using a server-side simulation system with Object Oriented Parallel Accelerator Library framework. The main advantage of ezBioNet is that a user can create a biological network by using unified modeling canvas of kinetic and Boolean models and perform massive simulations, including Ordinary Differential Equation analyses, sensitivity analyses, parameter estimates and Boolean network analysis. ezBioNet integrates useful biological databases, including the BioModels database, by connecting European Bioinformatics Institute servers through Web services Application Programming Interfaces. In addition, we employ Eclipse Rich Client Platform, which is a powerful modularity framework to allow various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool and a simulation system for understanding the control mechanism by monitoring the change of each component in a biological network. The simulation result can be managed and visualized on ezBioNet, which is available free of charge at http://ezbionet.sourceforge.net or http://ezbionet.cbnu.ac.kr.

  6. Statistical properties and robustness of biological controller-target networks.

    Directory of Open Access Journals (Sweden)

    Jacob D Feala

    Full Text Available Cells are regulated by networks of controllers having many targets, and targets affected by many controllers, in a "many-to-many" control structure. Here we study several of these bipartite (two-layer networks. We analyze both naturally occurring biological networks (composed of transcription factors controlling genes, microRNAs controlling mRNA transcripts, and protein kinases controlling protein substrates and a drug-target network composed of kinase inhibitors and of their kinase targets. Certain statistical properties of these biological bipartite structures seem universal across systems and species, suggesting the existence of common control strategies in biology. The number of controllers is ∼8% of targets and the density of links is 2.5%±1.2%. Links per node are predominantly exponentially distributed. We explain the conservation of the mean number of incoming links per target using a mathematical model of control networks, which also indicates that the "many-to-many" structure of biological control has properties of efficient robustness. The drug-target network has many statistical properties similar to the biological networks and we show that drug-target networks with biomimetic features can be obtained. These findings suggest a completely new approach to pharmacological control of biological systems. Molecular tools, such as kinase inhibitors, are now available to test if therapeutic combinations may benefit from being designed with biomimetic properties, such as "many-to-many" targeting, very wide coverage of the target set, and redundancy of incoming links per target.

  7. State of the Art of Fuzzy Methods for Gene Regulatory Networks Inference

    Directory of Open Access Journals (Sweden)

    Tuqyah Abdullah Al Qazlan

    2015-01-01

    Full Text Available To address one of the most challenging issues at the cellular level, this paper surveys the fuzzy methods used in gene regulatory networks (GRNs inference. GRNs represent causal relationships between genes that have a direct influence, trough protein production, on the life and the development of living organisms and provide a useful contribution to the understanding of the cellular functions as well as the mechanisms of diseases. Fuzzy systems are based on handling imprecise knowledge, such as biological information. They provide viable computational tools for inferring GRNs from gene expression data, thus contributing to the discovery of gene interactions responsible for specific diseases and/or ad hoc correcting therapies. Increasing computational power and high throughput technologies have provided powerful means to manage these challenging digital ecosystems at different levels from cell to society globally. The main aim of this paper is to report, present, and discuss the main contributions of this multidisciplinary field in a coherent and structured framework.

  8. G-quadruplexes and their regulatory roles in biology

    OpenAIRE

    Rhodes, Daniela; Lipps, Hans J

    2015-01-01

    ‘If G-quadruplexes form so readily in vitro, Nature will have found a way of using them in vivo’ (Statement by Aaron Klug over 30 years ago). During the last decade, four-stranded helical structures called G-quadruplex (or G4) have emerged from being a structural curiosity observed in vitro, to being recognized as a possible nucleic acid based mechanism for regulating multiple biological processes in vivo. The sequencing of many genomes has revealed that they are rich in sequence motifs that ...

  9. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    Directory of Open Access Journals (Sweden)

    Guo Zheng

    2006-01-01

    Full Text Available Abstract Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network to address the underlying regulations of genes that can span any unit(s of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex

  10. Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast.

    Directory of Open Access Journals (Sweden)

    Chun Ye

    2009-03-01

    Full Text Available Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active transcription factors. We devise a method that extends Network Component Analysis (NCA to determine how genetic variations in the form of single nucleotide polymorphisms (SNPs perturb these two properties. Applying our method to a segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms discussed in this work is available as a MATLAB package upon request.

  11. SBEToolbox: A Matlab Toolbox for Biological Network Analysis.

    Science.gov (United States)

    Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J

    2013-01-01

    We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases.

  12. Inference of gene regulatory networks from time series by Tsallis entropy

    Directory of Open Access Journals (Sweden)

    de Oliveira Evaldo A

    2011-05-01

    Full Text Available Abstract Background The inference of gene regulatory networks (GRNs from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information, a new criterion function is here proposed. Results In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5

  13. Controllability and observability of Boolean networks arising from biology.

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  14. Controllability and observability of Boolean networks arising from biology

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  15. Signaling and Gene Regulatory Networks Governing Definitive Endoderm Derivation From Pluripotent Stem Cells.

    Science.gov (United States)

    Mohammadnia, Abdulshakour; Yaqubi, Moein; Pourasgari, Farzaneh; Neely, Eric; Fallahi, Hossein; Massumi, Mohammad

    2016-09-01

    The generation of definitive endoderm (DE) from pluripotent stem cells (PSCs) is a fundamental stage in the formation of highly organized visceral organs, such as the liver and pancreas. Currently, there is a need for a comprehensive study that illustrates the involvement of different signaling pathways and their interactions in the derivation of DE cells from PSCs. This study aimed to identify signaling pathways that have the greatest influence on DE formation using analyses of transcriptional profiles, protein-protein interactions, protein-DNA interactions, and protein localization data. Using this approach, signaling networks involved in DE formation were constructed using systems biology and data mining tools, and the validity of the predicted networks was confirmed experimentally by measuring the mRNA levels of hub genes in several PSCs-derived DE cell lines. Based on our analyses, seven signaling pathways, including the BMP, ERK1-ERK2, FGF, TGF-beta, MAPK, Wnt, and PIP signaling pathways and their interactions, were found to play a role in the derivation of DE cells from PSCs. Lastly, the core gene regulatory network governing this differentiation process was constructed. The results of this study could improve our understanding surrounding the efficient generation of DE cells for the regeneration of visceral organs. J. Cell. Physiol. 231: 1994-2006, 2016. © 2016 Wiley Periodicals, Inc. PMID:26755186

  16. Linking experimental results, biological networks and sequence analysis methods using Ontologies and Generalised Data Structures.

    Science.gov (United States)

    Koehler, Jacob; Rawlings, Chris; Verrier, Paul; Mitchell, Rowan; Skusa, Andre; Ruegg, Alexander; Philippi, Stephan

    2005-01-01

    The structure of a closely integrated data warehouse is described that is designed to link different types and varying numbers of biological networks, sequence analysis methods and experimental results such as those coming from microarrays. The data schema is inspired by a combination of graph based methods and generalised data structures and makes use of ontologies and meta-data. The core idea is to consider and store biological networks as graphs, and to use generalised data structures (GDS) for the storage of further relevant information. This is possible because many biological networks can be stored as graphs: protein interactions, signal transduction networks, metabolic pathways, gene regulatory networks etc. Nodes in biological graphs represent entities such as promoters, proteins, genes and transcripts whereas the edges of such graphs specify how the nodes are related. The semantics of the nodes and edges are defined using ontologies of node and relation types. Besides generic attributes that most biological entities possess (name, attribute description), further information is stored using generalised data structures. By directly linking to underlying sequences (exons, introns, promoters, amino acid sequences) in a systematic way, close interoperability to sequence analysis methods can be achieved. This approach allows us to store, query and update a wide variety of biological information in a way that is semantically compact without requiring changes at the database schema level when new kinds of biological information is added. We describe how this datawarehouse is being implemented by extending the text-mining framework ONDEX to link, support and complement different bioinformatics applications and research activities such as microarray analysis, sequence analysis and modelling/simulation of biological systems. The system is developed under the GPL license and can be downloaded from http://sourceforge.net/projects/ondex/

  17. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference

  18. Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfural tolerance for ethanologenic yeast

    Science.gov (United States)

    Composed of linear difference equations, a discrete dynamic system model was designed to reconstruct transcriptional regulations in gene regulatory networks in response to 5-hydroxymethylfurfural, a bioethanol conversion inhibitor for ethanologenic yeast Saccharomyces cerevisiae. The modeling aims ...

  19. ezBioNet: A modeling and simulation system for analyzing biological reaction networks

    Science.gov (United States)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2012-10-01

    To achieve robustness against living environments, a living organism is composed of complicated regulatory mechanisms ranging from gene regulations to signal transduction. If such life phenomena are to be understand, an integrated analysis tool that should have modeling and simulation functions for biological reactions, as well as new experimental methods for measuring biological phenomena, is fundamentally required. We have designed and implemented modeling and simulation software (ezBioNet) for analyzing biological reaction networks. The software can simultaneously perform an integrated modeling of various responses occurring in cells, ranging from gene expressions to signaling processes. To support massive analysis of biological networks, we have constructed a server-side simulation system (VCellSim) that can perform ordinary differential equations (ODE) analysis, sensitivity analysis, and parameter estimates. ezBioNet integrates the BioModel database by connecting the european bioinformatics institute (EBI) servers through Web services APIs and supports the handling of systems biology markup language (SBML) files. In addition, we employed eclipse RCP (rich client platform) which is a powerful modularity framework allowing various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool, as well as a simulation system, to understand the control mechanism by monitoring the change of each component in a biological network. A researcher may perform the kinetic modeling and execute the simulation. The simulation result can be managed and visualized on ezBioNet, which is freely available at http://ezbionet.cbnu.ac.kr.

  20. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem;

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response...... fundamental cellular processes linked to iron metabolism in order to coordinate the overall response of E. coli to iron availability....

  1. Avoiding spurious feedback loops in the reconstruction of gene regulatory networks with dynamic bayesian networks

    OpenAIRE

    Grzegorczyk, M.; Husmeier, D.

    2009-01-01

    Feedback loops and recurrent structures are essential to the regulation and stable control of complex biological systems. The application of dynamic as opposed to static Bayesian networks is promising in that, in principle, these feedback loops can be learned. However, we show that the widely applied BGe score is susceptible to learning spurious feedback loops, which are a consequence of non-linear regulation and autocorrelation in the data. We propose a non-linear generalisation of the BGe m...

  2. Toward Network Biology in E. coli Cell.

    Science.gov (United States)

    Mori, Hirotada; Takeuchi, Rikiya; Otsuka, Yuta; Bowden, Steven; Yokoyama, Katsushi; Muto, Ai; Libourel, Igor; Wanner, Barry L

    2015-01-01

    E. coli has been a critically important model research organism for more than 50 years, particularly in molecular biology. In 1997, the E. coli draft genome sequence was published. Post-genomic techniques and resources were then developed that allowed E. coli to become a model organism for systems biology. Progress made since publication of the E. coli genome sequence will be summarized.

  3. The Structure and Function of Biological Networks

    Science.gov (United States)

    Wu, Daniel Duanqing

    2010-01-01

    Biology has been revolutionized in recent years by an explosion in the availability of data. Transforming this new wealth of data into meaningful biological insights and clinical breakthroughs requires a complete overhaul both in the questions being asked and the methodologies used to answer them. A major challenge in organizing and understanding…

  4. Assessment of regression methods for inference of regulatory networks involved in circadian regulation

    OpenAIRE

    Aderhold, A.; Husmeier, D.; Smith, V A; Millar, A. J.; Grzegorczyk, M.

    2013-01-01

    We assess the accuracy of three established regression methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Data are simulated from a recently published regulatory network of the circadian clock in Arabidopsis thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to dif...

  5. Recruitment and Remodeling of an ancient gene regulatory network during land plant evolution

    OpenAIRE

    Pires, Nuno D.; Yi, Keke; Breuninger, Holger; Catarino, Bruno; Menand, Benoît; Dolan, Liam

    2013-01-01

    The evolution of multicellular organisms was made possible by the evolution of underlying gene regulatory networks. In animals, the core of gene regulatory networks consists of kernels, stable subnetworks of transcription factors that are highly conserved in distantly related species. However, in plants it is not clear when and how kernels evolved. We show here that RSL (ROOT HAIR DEFECTIVE SIX-LIKE) transcription factors form an ancient land plant kernel controlling caulonema differentiation...

  6. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    Science.gov (United States)

    Christensen, Claire Petra

    's own publications have contributed network inference, simulation, modeling, and analysis methods to the much larger body of work in systems biology, and indeed, in network science. The aim of this thesis is therefore twofold: to present this original work in the historical context of network science, but also to provide sufficient review and reference regarding complex systems (with an emphasis on complex networks in systems biology) and tools and techniques for their inference, simulation, analysis, and modeling, such that the reader will be comfortable in seeking out further information on the subject. The review-like Chapters 1, 2, and 4 are intended to convey the co-evolution of network science and the slow but noticeable breakdown of boundaries between disciplines in academia as research and comparison of diverse systems has brought to light the shared properties of these systems. It is the author's hope that theses chapters impart some sense of the remarkable and rapid progress in complex systems research that has led to this unprecedented academic synergy. Chapters 3 and 5 detail the author's original work in the context of complex systems research. Chapter 3 presents the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. These networks are then analyzed from a graph theoretical perspective, and their biological viability is critiqued by comparing the networks' graph theoretical properties to those of other biological systems. The results of topological perturbation analyses revealing commonalities in behavior at multiple levels of complexity are also presented, and are shown to be an invaluable means by which to ascertain the level of complexity to which the network inference process is robust to noise. Chapter 5 outlines a learning algorithm for the development of a realistic, evolving social

  7. An improved Escherichia coli strain to host gene regulatory networks involving both the AraC and LacI inducible transcription factors

    OpenAIRE

    Kogenaru, Manjunatha; Tans, Sander J

    2014-01-01

    Many of the gene regulatory networks used within the field of synthetic biology have extensively employed the AraC and LacI inducible transcription factors. However, there is no Escherichia coli strain that provides a proper background to use both transcription factors simultaneously. We have engineered an improved E. coli strain by knocking out the endogenous lacI from a strain optimal for AraC containing networks, and thoroughly characterized the strain both at molecular and functional leve...

  8. What Transcription Factors Can't Do: On the Combinatorial Limits of Gene Regulatory Networks

    OpenAIRE

    Werner, Eric

    2013-01-01

    A proof is presented that gene regulatory networks (GRNs) based solely on transcription factors cannot control the development of complex multicellular life. GRNs alone cannot explain the evolution of multicellular life in the Cambrian Explosion. Networks are based on addressing systems which are used to construct network links. The more complex the network the greater the number of links and the larger the required address space. It has been assumed that combinations of transcription factors...

  9. Epigenetics and Why Biological Networks are More Controllable than Expected

    Science.gov (United States)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  10. Systematic Functional Annotation and Visualization of Biological Networks.

    Science.gov (United States)

    Baryshnikova, Anastasia

    2016-06-22

    Large-scale biological networks represent relationships between genes, but our understanding of how networks are functionally organized is limited. Here, I describe spatial analysis of functional enrichment (SAFE), a systematic method for annotating biological networks and examining their functional organization. SAFE visualizes the network in 2D space and measures the continuous distribution of functional enrichment across local neighborhoods, producing a list of the associated functions and a map of their relative positioning. I applied SAFE to annotate the Saccharomyces cerevisiae genetic interaction similarity network and protein-protein interaction network with gene ontology terms. SAFE annotations of the genetic network matched manually derived annotations, while taking less than 1% of the time, and proved robust to noise and sensitive to biological signal. Integration of genetic interaction and chemical genomics data using SAFE revealed a link between vesicle-mediate transport and resistance to the anti-cancer drug bortezomib. These results demonstrate the utility of SAFE for examining biological networks and understanding their functional organization. PMID:27237738

  11. Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes

    Directory of Open Access Journals (Sweden)

    Kaznessis Yiannis N

    2007-01-01

    Full Text Available Abstract Background Tightly regulated gene networks, precisely controlling the expression of protein molecules, have received considerable interest by the biomedical community due to their promising applications. Among the most well studied inducible transcription systems are the tetracycline regulatory expression systems based on the tetracycline resistance operon of Escherichia coli, Tet-Off (tTA and Tet-On (rtTA. Despite their initial success and improved designs, limitations still persist, such as low inducer sensitivity. Instead of looking at these networks statically, and simply changing or mutating the promoter and operator regions with trial and error, a systematic investigation of the dynamic behavior of the network can result in rational design of regulatory gene expression systems. Sophisticated algorithms can accurately capture the dynamical behavior of gene networks. With computer aided design, we aim to improve the synthesis of regulatory networks and propose new designs that enable tighter control of expression. Results In this paper we engineer novel networks by recombining existing genes or part of genes. We synthesize four novel regulatory networks based on the Tet-Off and Tet-On systems. We model all the known individual biomolecular interactions involved in transcription, translation, regulation and induction. With multiple time-scale stochastic-discrete and stochastic-continuous models we accurately capture the transient and steady state dynamics of these networks. Important biomolecular interactions are identified and the strength of the interactions engineered to satisfy design criteria. A set of clear design rules is developed and appropriate mutants of regulatory proteins and operator sites are proposed. Conclusion The complexity of biomolecular interactions is accurately captured through computer simulations. Computer simulations allow us to look into the molecular level, portray the dynamic behavior of gene regulatory

  12. Stability of biological networks as represented in Random Boolean Nets.

    Energy Technology Data Exchange (ETDEWEB)

    Slepoy, Alexander; Thompson, Marshall

    2004-09-01

    We explore stability of Random Boolean Networks as a model of biological interaction networks. We introduce surface-to-volume ratio as a measure of stability of the network. Surface is defined as the set of states within a basin of attraction that maps outside the basin by a bit-flip operation. Volume is defined as the total number of states in the basin. We report development of an object-oriented Boolean network analysis code (Attract) to investigate the structure of stable vs. unstable networks. We find two distinct types of stable networks. The first type is the nearly trivial stable network with a few basins of attraction. The second type contains many basins. We conclude that second type stable networks are extremely rare.

  13. Biologically Inspired Optimization of Building District Heating Networks

    OpenAIRE

    Leiming Shang; Xiaomin Zhao

    2013-01-01

    In this paper we show that a biologically inspired model can be successfully applied to problems of building optimal district heating network. The model is based on physiological observations of the true slime mold Physarumpolycephalum, but can also be used for path-finding in the complicated networks of mazes and road maps. A strategy of optimally building heating distribution network was guided by the model and a well-tuned ant colony algorithm and genetic algorithm. The results indicate th...

  14. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    Directory of Open Access Journals (Sweden)

    Liangdong Hu

    Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  15. [Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis].

    Science.gov (United States)

    Lu, Zhenghui; Zhou, Yuling; Zhang, Xiaozhou; Zhang, Guimin

    2015-11-01

    Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed. PMID:26939438

  16. The effect of network biology on drug toxicology

    DEFF Research Database (Denmark)

    Gautier, Laurent; Taboureau, Olivier; Audouze, Karine Marie Laure

    2013-01-01

    biology has the opportunity to contribute to a better understanding of a drug's safety profile. The authors believe that considering a drug action and protein's function in a global physiological environment may benefit our understanding of the impact some chemicals have on human health and toxicity. The...... network biology. The authors specifically assess this approach across different biological scales when it is applied to toxicity. Expert opinion: There has been much progress made with the amount of data that is generated by various omics technologies. With this large amount of useful data, network...

  17. Regulatory MicroRNA Networks: Complex Patterns of Target Pathways for Disease-related and Housekeeping MicroRNAs

    Directory of Open Access Journals (Sweden)

    Sachli Zafari

    2015-06-01

    Full Text Available Blood-based microRNA (miRNA signatures as biomarkers have been reported for various pathologies, including cancer, neurological disorders, cardiovascular diseases, and also infections. The regulatory mechanism behind respective miRNA patterns is only partially understood. Moreover, “preserved” miRNAs, i.e., miRNAs that are not dysregulated in any disease, and their biological impact have been explored to a very limited extent. We set out to systematically determine their role in regulatory networks by defining groups of highly-dysregulated miRNAs that contribute to a disease signature as opposed to preserved housekeeping miRNAs. We further determined preferential targets and pathways of both dysregulated and preserved miRNAs by computing multi-layer networks, which were compared between housekeeping and dysregulated miRNAs. Of 848 miRNAs examined across 1049 blood samples, 8 potential housekeepers showed very limited expression variations, while 20 miRNAs showed highly-dysregulated expression throughout the investigated blood samples. Our approach provides important insights into miRNAs and their role in regulatory networks. The methodology can be applied to systematically investigate the differences in target genes and pathways of arbitrary miRNA sets.

  18. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    lattice at zero temperature and then we apply this formalism to the K-SAT problem defined in Chapter 1. The phase transition which physicists study often corresponds to a change in the computational complexity of the corresponding computer science problem. Chapter 3 presents phase transitions which are specific to the problems discussed in Chapter 1 and also known results for the K-SAT problem. We discuss the replica method and experimental evidences of replica symmetry breaking. The physics approach to hard problems is based on replica methods which are difficult to understand. In Chapter 4 we develop novel methods for studying hard problems using methods similar to the message passing techniques that were discussed in Chapter 2. Although we concentrated on the symmetric case, cavity methods show promise for generalizing our methods to the un-symmetric case. As has been highlighted by John Hopfield, several key features of biological systems are not shared by physical systems. Although living entities follow the laws of physics and chemistry, the fact that organisms adapt and reproduce introduces an essential ingredient that is missing in the physical sciences. In order to extract information from networks many algorithm have been developed. In Chapter 5 we apply polynomial algorithms like minimum spanning tree in order to study and construct gene regulatory networks from experimental data. As future work we propose the use of algorithms like min-cut/max-flow and Dijkstra for understanding key properties of these networks.

  19. Visual analysis of transcriptome data in the context of anatomical structures and biological networks

    Directory of Open Access Journals (Sweden)

    Astrid eJunker

    2012-11-01

    Full Text Available The complexity and temporal as well as spatial resolution of transcriptome datasets is constantly increasing due to extensive technological developments. Here we present methods for advanced visualization and intuitive exploration of transcriptomics data as necessary prerequisites in order to facilitate the gain of biological knowledge. Color-coding of structural images based on the expression level enables a fast visual data analysis in the background of the examined biological system. The network-based exploration of these visualizations allows for comparative analysis of genes with specific transcript patterns and supports the extraction of functional relationships even from large datasets. In order to illustrate the presented methods, the tool HIVE was applied for visualization and exploration of database-retrieved expression data for master regulators of Arabidopsis thaliana flower and seed development in the context of corresponding tissue-specific regulatory networks.

  20. Anticipated Ethics and Regulatory Challenges in PCORnet: The National Patient-Centered Clinical Research Network.

    Science.gov (United States)

    Ali, Joseph; Califf, Robert; Sugarman, Jeremy

    2016-01-01

    PCORnet, the National Patient-Centered Clinical Research Network, seeks to establish a robust national health data network for patient-centered comparative effectiveness research. This article reports the results of a PCORnet survey designed to identify the ethics and regulatory challenges anticipated in network implementation. A 12-item online survey was developed by leadership of the PCORnet Ethics and Regulatory Task Force; responses were collected from the 29 PCORnet networks. The most pressing ethics issues identified related to informed consent, patient engagement, privacy and confidentiality, and data sharing. High priority regulatory issues included IRB coordination, privacy and confidentiality, informed consent, and data sharing. Over 150 IRBs and five different approaches to managing multisite IRB review were identified within PCORnet. Further empirical and scholarly work, as well as practical and policy guidance, is essential if important initiatives that rely on comparative effectiveness research are to move forward.

  1. Using biological networks to improve our understanding of infectious diseases

    Directory of Open Access Journals (Sweden)

    Nicola J. Mulder

    2014-08-01

    Full Text Available Infectious diseases are the leading cause of death, particularly in developing countries. Although many drugs are available for treating the most common infectious diseases, in many cases the mechanism of action of these drugs or even their targets in the pathogen remain unknown. In addition, the key factors or processes in pathogens that facilitate infection and disease progression are often not well understood. Since proteins do not work in isolation, understanding biological systems requires a better understanding of the interconnectivity between proteins in different pathways and processes, which includes both physical and other functional interactions. Such biological networks can be generated within organisms or between organisms sharing a common environment using experimental data and computational predictions. Though different data sources provide different levels of accuracy, confidence in interactions can be measured using interaction scores. Connections between interacting proteins in biological networks can be represented as graphs and edges, and thus studied using existing algorithms and tools from graph theory. There are many different applications of biological networks, and here we discuss three such applications, specifically applied to the infectious disease tuberculosis, with its causative agent Mycobacterium tuberculosis and host, Homo sapiens. The applications include the use of the networks for function prediction, comparison of networks for evolutionary studies, and the generation and use of host–pathogen interaction networks.

  2. A comparative analysis on computational methods for fitting an ERGM to biological network data

    Directory of Open Access Journals (Sweden)

    Sudipta Saha

    2015-03-01

    Full Text Available Exponential random graph models (ERGM based on graph theory are useful in studying global biological network structure using its local properties. However, computational methods for fitting such models are sensitive to the type, structure and the number of the local features of a network under study. In this paper, we compared computational methods for fitting an ERGM with local features of different types and structures. Two commonly used methods, such as the Markov Chain Monte Carlo Maximum Likelihood Estimation and the Maximum Pseudo Likelihood Estimation are considered for estimating the coefficients of network attributes. We compared the estimates of observed network to our random simulated network using both methods under ERGM. The motivation was to ascertain the extent to which an observed network would deviate from a randomly simulated network if the physical numbers of attributes were approximately same. Cut-off points of some common attributes of interest for different order of nodes were determined through simulations. We implemented our method to a known regulatory network database of Escherichia coli (E. coli.

  3. Relevance of Dynamic Clustering to Biological Networks

    CERN Document Server

    Kaneko, K

    1993-01-01

    Abstract Network of nonlinear dynamical elements often show clustering of synchronization by chaotic instability. Relevance of the clustering to ecological, immune, neural, and cellular networks is discussed, with the emphasis of partially ordered states with chaotic itinerancy. First, clustering with bit structures in a hypercubic lattice is studied. Spontaneous formation and destruction of relevant bits are found, which give self-organizing, and chaotic genetic algorithms. When spontaneous changes of effective couplings are introduced, chaotic itinerancy of clusterings is widely seen through a feedback mechanism, which supports dynamic stability allowing for complexity and diversity, known as homeochaos. Second, synaptic dynamics of couplings is studied in relation with neural dynamics. The clustering structure is formed with a balance between external inputs and internal dynamics. Last, an extension allowing for the growth of the number of elements is given, in connection with cell differentiation. Effecti...

  4. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Xiangyun Xiao

    Full Text Available The reconstruction of gene regulatory networks (GRNs from high-throughput experimental data has been considered one of the most important issues in systems biology research. With the development of high-throughput technology and the complexity of biological problems, we need to reconstruct GRNs that contain thousands of genes. However, when many existing algorithms are used to handle these large-scale problems, they will encounter two important issues: low accuracy and high computational cost. To overcome these difficulties, the main goal of this study is to design an effective parallel algorithm to infer large-scale GRNs based on high-performance parallel computing environments. In this study, we proposed a novel asynchronous parallel framework to improve the accuracy and lower the time complexity of large-scale GRN inference by combining splitting technology and ordinary differential equation (ODE-based optimization. The presented algorithm uses the sparsity and modularity of GRNs to split whole large-scale GRNs into many small-scale modular subnetworks. Through the ODE-based optimization of all subnetworks in parallel and their asynchronous communications, we can easily obtain the parameters of the whole network. To test the performance of the proposed approach, we used well-known benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge (DREAM, experimentally determined GRN of Escherichia coli and one published dataset that contains more than 10 thousand genes to compare the proposed approach with several popular algorithms on the same high-performance computing environments in terms of both accuracy and time complexity. The numerical results demonstrate that our parallel algorithm exhibits obvious superiority in inferring large-scale GRNs.

  5. Course 10: Three Lectures on Biological Networks

    Science.gov (United States)

    Magnasco, M. O.

    1 Enzymatic networks. Proofreading knots: How DNA topoisomerases disentangle DNA 1.1 Length scales and energy scales 1.2 DNA topology 1.3 Topoisomerases 1.4 Knots and supercoils 1.5 Topological equilibrium 1.6 Can topoisomerases recognize topology? 1.7 Proposal: Kinetic proofreading 1.8 How to do it twice 1.9 The care and proofreading of knots 1.10 Suppression of supercoils 1.11 Problems and outlook 1.12 Disquisition 2 Gene expression networks. Methods for analysis of DNA chip experiments 2.1 The regulation of gene expression 2.2 Gene expression arrays 2.3 Analysis of array data 2.4 Some simplifying assumptions 2.5 Probeset analysis 2.6 Discussion 3 Neural and gene expression networks: Song-induced gene expression in the canary brain 3.1 The study of songbirds 3.2 Canary song 3.3 ZENK 3.4 The blush 3.5 Histological analysis 3.6 Natural vs. artificial 3.7 The Blush II: gAP 3.8 Meditation

  6. Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Ricardo de Matos Simoes

    Full Text Available The inference of gene regulatory networks from gene expression data is a difficult problem because the performance of the inference algorithms depends on a multitude of different factors. In this paper we study two of these. First, we investigate the influence of discrete mutual information (MI estimators on the global and local network inference performance of the C3NET algorithm. More precisely, we study 4 different MI estimators (Empirical, Miller-Madow, Shrink and Schürmann-Grassberger in combination with 3 discretization methods (equal frequency, equal width and global equal width discretization. We observe the best global and local inference performance of C3NET for the Miller-Madow estimator with an equal width discretization. Second, our numerical analysis can be considered as a systems approach because we simulate gene expression data from an underlying gene regulatory network, instead of making a distributional assumption to sample thereof. We demonstrate that despite the popularity of the latter approach, which is the traditional way of studying MI estimators, this is in fact not supported by simulated and biological expression data because of their heterogeneity. Hence, our study provides guidance for an efficient design of a simulation study in the context of network inference, supporting a systems approach.

  7. Subnuclear organization and trafficking of regulatory proteins: implications for biological control and cancer.

    Science.gov (United States)

    Stein, G S; van Wijnen, A J; Stein, J L; Lian, J B; Montecino, M; Zaidi, K; Javed, A

    2000-01-01

    The regulated and regulatory components that interrelate nuclear structure and function must be experimentally established. A formidable challenge is to define further the control of transcription factor targeting to acceptor sites associated with the nuclear matrix. It will be important to determine whether acceptor proteins are associated with a pre-existing core-filament structural lattice or whether a compositely organized scaffold of regulatory factors is dynamically assembled. An inclusive model for all steps in the targeting of proteins to subnuclear sites cannot yet be proposed. However, this model must account for the apparent diversity of intranuclear targeting signals. It is also important to assess the extent to which regulatory discrimination is mediated by subnuclear domain-specific trafficking signals. Furthermore, the checkpoints that monitor subnuclear distribution of regulatory factors and the sorting steps that ensure both structural and functional fidelity of nuclear domains in which replication and expression of genes occur must be biochemically and mechanistically defined. There is emerging recognition that placement of regulatory components of gene expression must be temporally and spatially coordinated to facilitate biological control. The consequences of breaches in nuclear structure-function relationships are observed in an expanding series of diseases that include cancer [Weis et al., 1994; Rogaia et al., 1997; Yano et al., 1997; Rowley, 1998; Zeng et al., 1998; McNeil et al., 1999; Tao and Levine, 1999a] and neurological disorders [Skinner et al., 1997]. As the repertoire of architecture-associated regulatory factors and cofactors expands, workers in the field are becoming increasingly confident that nuclear organization contributes significantly to control of transcription. To gain increased appreciation for the complexities of subnuclear organization and gene regulation, we must continue to characterize mechanisms that direct

  8. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2006-11-01

    Full Text Available Many biological processes are controlled by intricate networks of transcriptional regulators. With the development of microarray technology, transcriptional changes can be examined at the whole-genome level. However, such analysis often lacks information on the hierarchical relationship between components of a given system. Systemic acquired resistance (SAR is an inducible plant defense response involving a cascade of transcriptional events induced by salicylic acid through the transcription cofactor NPR1. To identify additional regulatory nodes in the SAR network, we performed microarray analysis on Arabidopsis plants expressing the NPR1-GR (glucocorticoid receptor fusion protein. Since nuclear translocation of NPR1-GR requires dexamethasone, we were able to control NPR1-dependent transcription and identify direct transcriptional targets of NPR1. We show that NPR1 directly upregulates the expression of eight WRKY transcription factor genes. This large family of 74 transcription factors has been implicated in various defense responses, but no specific WRKY factor has been placed in the SAR network. Identification of NPR1-regulated WRKY factors allowed us to perform in-depth genetic analysis on a small number of WRKY factors and test well-defined phenotypes of single and double mutants associated with NPR1. Among these WRKY factors we found both positive and negative regulators of SAR. This genomics-directed approach unambiguously positioned five WRKY factors in the complex transcriptional regulatory network of SAR. Our work not only discovered new transcription regulatory components in the signaling network of SAR but also demonstrated that functional studies of large gene families have to take into consideration sequence similarity as well as the expression patterns of the candidates.

  9. Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2011-10-01

    Full Text Available Abstract Background Transcriptional regulation by transcription factor (TF controls the time and abundance of mRNA transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a difficult task. Results We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks. Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs sampling solution was developed to infer the underlying network structure and the unknown TF activities simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample clustering result shows superior performance over previous molecular based clustering method. Conclusions The results demonstrated the validity and effectiveness of the proposed approach in reconstructing transcriptional networks mediated by TFs through simulated systems and real data.

  10. Non-Hermitian localization in biological networks

    Science.gov (United States)

    Amir, Ariel; Hatano, Naomichi; Nelson, David R.

    2016-04-01

    We explore the spectra and localization properties of the N -site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N , the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90∘ rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.

  11. Discriminating direct and indirect connectivities in biological networks.

    Science.gov (United States)

    Kang, Taek; Moore, Richard; Li, Yi; Sontag, Eduardo; Bleris, Leonidas

    2015-10-13

    Reverse engineering of biological pathways involves an iterative process between experiments, data processing, and theoretical analysis. Despite concurrent advances in quality and quantity of data as well as computing resources and algorithms, difficulties in deciphering direct and indirect network connections are prevalent. Here, we adopt the notions of abstraction, emulation, benchmarking, and validation in the context of discovering features specific to this family of connectivities. After subjecting benchmark synthetic circuits to perturbations, we inferred the network connections using a combination of nonparametric single-cell data resampling and modular response analysis. Intriguingly, we discovered that recovered weights of specific network edges undergo divergent shifts under differential perturbations, and that the particular behavior is markedly different between topologies. Our results point to a conceptual advance for reverse engineering beyond weight inference. Investigating topological changes under differential perturbations may address the longstanding problem of discriminating direct and indirect connectivities in biological networks. PMID:26420864

  12. Yeast systems biology to unravel the network of life

    DEFF Research Database (Denmark)

    Mustacchi, Roberta; Hohmann, S; Nielsen, Jens

    2006-01-01

    of advanced cell factories for production of fuels, chemicals, food ingredients and pharmaceuticals. The yeast Saccharomyces cerevisiae represents an excellent model system; the density of biological information available on this organism allows it to serve as a eukaryotic model for studying human diseases....... Furthermore, it serves as an industrial workhorse for production of a wide range of chemicals and pharmaceuticals. Systems biology involves the combination of novel experimental techniques from different disciplines as well as functional genomics, bioinformatics and mathematical modelling, and hence no single...... appropriate guidelines, establish an appropriate infrastructure for the network and organize courses, meetings and conferences that will consolidate the network and promote systems biology. This paper discusses the impacts of systems biology and how YSBN may play a role in the future development of the field...

  13. Using biological networks to integrate, visualize and analyze genomics data.

    Science.gov (United States)

    Charitou, Theodosia; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Network biology is a rapidly developing area of biomedical research and reflects the current view that complex phenotypes, such as disease susceptibility, are not the result of single gene mutations that act in isolation but are rather due to the perturbation of a gene's network context. Understanding the topology of these molecular interaction networks and identifying the molecules that play central roles in their structure and regulation is a key to understanding complex systems. The falling cost of next-generation sequencing is now enabling researchers to routinely catalogue the molecular components of these networks at a genome-wide scale and over a large number of different conditions. In this review, we describe how to use publicly available bioinformatics tools to integrate genome-wide 'omics' data into a network of experimentally-supported molecular interactions. In addition, we describe how to visualize and analyze these networks to identify topological features of likely functional relevance, including network hubs, bottlenecks and modules. We show that network biology provides a powerful conceptual approach to integrate and find patterns in genome-wide genomic data but we also discuss the limitations and caveats of these methods, of which researchers adopting these methods must remain aware. PMID:27036106

  14. Topology of transcriptional regulatory networks: testing and improving

    NARCIS (Netherlands)

    D. Hasdemir; G.J. Smits; J.A. Westerhuis; A.K. Smilde

    2012-01-01

    With the increasing amount and complexity of data generated in biological experiments it is becoming necessary to enhance the performance and applicability of existing statistical data analysis methods. This enhancement is needed for the hidden biological information to be better resolved and better

  15. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery.

    Directory of Open Access Journals (Sweden)

    Sapna Kumari

    Full Text Available BACKGROUND: Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. METHODS AND RESULTS: In this study, we compared eight gene association methods - Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson - and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. CONCLUSIONS: We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction.

  16. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis.

    Science.gov (United States)

    Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E; Balázsi, Gábor; Gennaro, Maria Laura

    2016-03-31

    Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics.

  17. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    DEFF Research Database (Denmark)

    Barah, Pankaj; Jayavelu, Naresh Doni; Rasmussen, Simon;

    2013-01-01

    ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted regulatory network model was able to identify new ecotype specific transcription factors and their regulatory interactions, which might...... using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p expression pattern. By using sequence data...

  18. Meta-analysis on gene regulatory networks discovered by pairwise Granger causality

    OpenAIRE

    Tam, GHF; Hung, YS; Chang, C.

    2013-01-01

    Identifying regulatory genes partaking in disease development is important to medical advances. Since gene expression data of multiple experiments exist, combining results from multiple gene regulatory network discoveries offers higher sensitivity and specificity. However, data for multiple experiments on the same problem may not possess the same set of genes, and hence many existing combining methods are not applicable. In this paper, we approach this problem using a number of meta-analysis ...

  19. The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks

    Directory of Open Access Journals (Sweden)

    Wingender Edgar

    2008-05-01

    Full Text Available Abstract Background Currently, there is a gap between purely theoretical studies of the topology of large bioregulatory networks and the practical traditions and interests of experimentalists. While the theoretical approaches emphasize the global characterization of regulatory systems, the practical approaches focus on the role of distinct molecules and genes in regulation. To bridge the gap between these opposite approaches, one needs to combine 'general' with 'particular' properties and translate abstract topological features of large systems into testable functional characteristics of individual components. Here, we propose a new topological parameter – the pairwise disconnectivity index of a network's element – that is capable of such bridging. Results The pairwise disconnectivity index quantifies how crucial an individual element is for sustaining the communication ability between connected pairs of vertices in a network that is displayed as a directed graph. Such an element might be a vertex (i.e., molecules, genes, an edge (i.e., reactions, interactions, as well as a group of vertices and/or edges. The index can be viewed as a measure of topological redundancy of regulatory paths which connect different parts of a given network and as a measure of sensitivity (robustness of this network to the presence (absence of each individual element. Accordingly, we introduce the notion of a path-degree of a vertex in terms of its corresponding incoming, outgoing and mediated paths, respectively. The pairwise disconnectivity index has been applied to the analysis of several regulatory networks from various organisms. The importance of an individual vertex or edge for the coherence of the network is determined by the particular position of the given element in the whole network. Conclusion Our approach enables to evaluate the effect of removing each element (i.e., vertex, edge, or their combinations from a network. The greatest potential value of

  20. Towards the understanding of network information processing in biology

    Science.gov (United States)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  1. Uncovering Biological Network Function via Graphlet Degree Signatures

    Directory of Open Access Journals (Sweden)

    Nataša Pržulj

    2008-01-01

    Full Text Available Motivation: Proteins are essential macromolecules of life and thus understanding their function is of great importance. The number of functionally unclassified proteins is large even for simple and well studied organisms such as baker’s yeast. Methods for determining protein function have shifted their focus from targeting specific proteins based solely on sequence homology to analyses of the entire proteome based on protein-protein interaction (PPI networks. Since proteins interact to perform a certain function, analyzing structural properties of PPI networks may provide useful clues about the biological function of individual proteins, protein complexes they participate in, and even larger subcellular machines.Results: We design a sensitive graph theoretic method for comparing local structures of node neighborhoods that demonstrates that in PPI networks, biological function of a node and its local network structure are closely related. The method summarizes a protein’s local topology in a PPI network into the vector of graphlet degrees called the signature of the protein and computes the signature similarities between all protein pairs. We group topologically similar proteins under this measure in a PPI network and show that these protein groups belong to the same protein complexes, perform the same biological functions, are localized in the same subcellular compartments, and have the same tissue expressions. Moreover, we apply our technique on a proteome-scale network data and infer biological function of yet unclassified proteins demonstrating that our method can provide valuable guidelines for future experimental research such as disease protein prediction.Availability: Data is available upon request.

  2. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-08-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism.

  3. Kolmogorov complexity of epithelial pattern formation: the role of regulatory network configuration.

    Science.gov (United States)

    Flann, Nicholas S; Mohamadlou, Hamid; Podgorski, Gregory J

    2013-05-01

    The tissues of multicellular organisms are made of differentiated cells arranged in organized patterns. This organization emerges during development from the coupling of dynamic intra- and intercellular regulatory networks. This work applies the methods of information theory to understand how regulatory network structure both within and between cells relates to the complexity of spatial patterns that emerge as a consequence of network operation. A computational study was performed in which undifferentiated cells were arranged in a two dimensional lattice, with gene expression in each cell regulated by identical intracellular randomly generated Boolean networks. Cell-cell contact signalling between embryonic cells is modeled as coupling among intracellular networks so that gene expression in one cell can influence the expression of genes in adjacent cells. In this system, the initially identical cells differentiate and form patterns of different cell types. The complexity of network structure, temporal dynamics and spatial organization is quantified through the Kolmogorov-based measures of normalized compression distance and set complexity. Results over sets of random networks that operate in the ordered, critical and chaotic domains demonstrate that: (1) ordered and critical networks tend to create the most information-rich patterns; (2) signalling configurations in which cell-to-cell communication is non-directional mostly produce simple patterns irrespective of the internal network domain; and (3) directional signalling configurations, similar to those that function in planar cell polarity, produce the most complex patterns, but only when the intracellular networks function in non-chaotic domains.

  4. Inferring Broad Regulatory Biology from Time Course Data: Have We Reached an Upper Bound under Constraints Typical of In Vivo Studies?

    Directory of Open Access Journals (Sweden)

    Saurabh Vashishtha

    Full Text Available There is a growing appreciation for the network biology that regulates the coordinated expression of molecular and cellular markers however questions persist regarding the identifiability of these networks. Here we explore some of the issues relevant to recovering directed regulatory networks from time course data collected under experimental constraints typical of in vivo studies. NetSim simulations of sparsely connected biological networks were used to evaluate two simple feature selection techniques used in the construction of linear Ordinary Differential Equation (ODE models, namely truncation of terms versus latent vector projection. Performance was compared with ODE-based Time Series Network Identification (TSNI integral, and the information-theoretic Time-Delay ARACNE (TD-ARACNE. Projection-based techniques and TSNI integral outperformed truncation-based selection and TD-ARACNE on aggregate networks with edge densities of 10-30%, i.e. transcription factor, protein-protein cliques and immune signaling networks. All were more robust to noise than truncation-based feature selection. Performance was comparable on the in silico 10-node DREAM 3 network, a 5-node Yeast synthetic network designed for In vivo Reverse-engineering and Modeling Assessment (IRMA and a 9-node human HeLa cell cycle network of similar size and edge density. Performance was more sensitive to the number of time courses than to sample frequency and extrapolated better to larger networks by grouping experiments. In all cases performance declined rapidly in larger networks with lower edge density. Limited recovery and high false positive rates obtained overall bring into question our ability to generate informative time course data rather than the design of any particular reverse engineering algorithm.

  5. Sensor-coupled fractal gene regulatory networks for locomotion control of a modular snake robot

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Katebi, Serajeddin;

    2013-01-01

    In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity in the co......In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity...

  6. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh;

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ......Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed...

  7. Discovering networks of perturbed biological processes in hepatocyte cultures.

    Directory of Open Access Journals (Sweden)

    Christopher D Lasher

    Full Text Available The liver plays a vital role in glucose homeostasis, the synthesis of bile acids and the detoxification of foreign substances. Liver culture systems are widely used to test adverse effects of drugs and environmental toxicants. The two most prevalent liver culture systems are hepatocyte monolayers (HMs and collagen sandwiches (CS. Despite their wide use, comprehensive transcriptional programs and interaction networks in these culture systems have not been systematically investigated. We integrated an existing temporal transcriptional dataset for HM and CS cultures of rat hepatocytes with a functional interaction network of rat genes. We aimed to exploit the functional interactions to identify statistically significant linkages between perturbed biological processes. To this end, we developed a novel approach to compute Contextual Biological Process Linkage Networks (CBPLNs. CBPLNs revealed numerous meaningful connections between different biological processes and gene sets, which we were successful in interpreting within the context of liver metabolism. Multiple phenomena captured by CBPLNs at the process level such as regulation, downstream effects, and feedback loops have well described counterparts at the gene and protein level. CBPLNs reveal high-level linkages between pathways and processes, making the identification of important biological trends more tractable than through interactions between individual genes and molecules alone. Our approach may provide a new route to explore, analyze, and understand cellular responses to internal and external cues within the context of the intricate networks of molecular interactions that control cellular behavior.

  8. Biologically plausible multi-dimensional reinforcement learning in neural networks

    NARCIS (Netherlands)

    Rombouts, J.O.; Ooyen, A. van; Roelfsema, P.R.; Bohte, S.M.

    2012-01-01

    How does the brain learn to map multi-dimensional sensory inputs to multi-dimensional motor outputs when it can only observe single rewards for the coordinated outputs of the whole network of neurons that make up the brain? We introduce Multi-AGREL, a novel, biologically plausible multi-layer neural

  9. Global and local architecture of the mammalian microRNA-transcription factor regulatory network.

    Directory of Open Access Journals (Sweden)

    Reut Shalgi

    2007-07-01

    Full Text Available microRNAs (miRs are small RNAs that regulate gene expression at the posttranscriptional level. It is anticipated that, in combination with transcription factors (TFs, they span a regulatory network that controls thousands of mammalian genes. Here we set out to uncover local and global architectural features of the mammalian miR regulatory network. Using evolutionarily conserved potential binding sites of miRs in human targets, and conserved binding sites of TFs in promoters, we uncovered two regulation networks. The first depicts combinatorial interactions between pairs of miRs with many shared targets. The network reveals several levels of hierarchy, whereby a few miRs interact with many other lowly connected miR partners. We revealed hundreds of "target hubs" genes, each potentially subject to massive regulation by dozens of miRs. Interestingly, many of these target hub genes are transcription regulators and they are often related to various developmental processes. The second network consists of miR-TF pairs that coregulate large sets of common targets. We discovered that the network consists of several recurring motifs. Most notably, in a significant fraction of the miR-TF coregulators the TF appears to regulate the miR, or to be regulated by the miR, forming a diversity of feed-forward loops. Together these findings provide new insights on the architecture of the combined transcriptional-post transcriptional regulatory network.

  10. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production.

    Science.gov (United States)

    Lin, Lu; Xu, Jian

    2013-11-01

    Interest in thermophilic bacteria as live-cell catalysts in biofuel and biochemical industry has surged in recent years, due to their tolerance of high temperature and wide spectrum of carbon-sources that include cellulose. However their direct employment as microbial cellular factories in the highly demanding industrial conditions has been hindered by uncompetitive biofuel productivity, relatively low tolerance to solvent and osmic stresses, and limitation in genome engineering tools. In this work we review recent advances in dissecting and engineering the metabolic and regulatory networks of thermophilic bacteria for improving the traits of key interest in biofuel industry: cellulose degradation, pentose-hexose co-utilization, and tolerance of thermal, osmotic, and solvent stresses. Moreover, new technologies enabling more efficient genetic engineering of thermophiles were discussed, such as improved electroporation, ultrasound-mediated DNA delivery, as well as thermo-stable plasmids and functional selection systems. Expanded applications of such technological advancements in thermophilic microbes promise to substantiate a synthetic biology perspective, where functional parts, module, chassis, cells and consortia were modularly designed and rationally assembled for the many missions at industry and nature that demand the extraordinary talents of these extremophiles.

  11. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production.

    Science.gov (United States)

    Lin, Lu; Xu, Jian

    2013-11-01

    Interest in thermophilic bacteria as live-cell catalysts in biofuel and biochemical industry has surged in recent years, due to their tolerance of high temperature and wide spectrum of carbon-sources that include cellulose. However their direct employment as microbial cellular factories in the highly demanding industrial conditions has been hindered by uncompetitive biofuel productivity, relatively low tolerance to solvent and osmic stresses, and limitation in genome engineering tools. In this work we review recent advances in dissecting and engineering the metabolic and regulatory networks of thermophilic bacteria for improving the traits of key interest in biofuel industry: cellulose degradation, pentose-hexose co-utilization, and tolerance of thermal, osmotic, and solvent stresses. Moreover, new technologies enabling more efficient genetic engineering of thermophiles were discussed, such as improved electroporation, ultrasound-mediated DNA delivery, as well as thermo-stable plasmids and functional selection systems. Expanded applications of such technological advancements in thermophilic microbes promise to substantiate a synthetic biology perspective, where functional parts, module, chassis, cells and consortia were modularly designed and rationally assembled for the many missions at industry and nature that demand the extraordinary talents of these extremophiles. PMID:23510903

  12. Characterizing the interplay betwen mulitple levels of organization within bacterial sigma factor regulatory networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qiu [University of California, San Diego; Nagarajan, Harish [University of California, San Diego; Embree, Mallory [University of California, San Diego; Shieu, Wendy [University of California, San Diego; Abate, Elisa [University of California, San Diego; Juarez, Katy [Universidad Nacional Autonoma de Mexico (UNAM); Cho, Byung-Kwan [University of California, San Diego; Elkins, James G [ORNL; Nevin, Kelly P. [University of Massachusetts, Amherst; Barrett, Christian [University of California, San Diego; Lovley, Derek [University of Massachusetts, Amherst; Palsson, Bernhard O. [University of California, San Diego; Zengler, Karsten [University of California, San Diego

    2013-01-01

    Bacteria contain multiple sigma factors, each targeting diverse, but often overlapping sets of promoters, thereby forming a complex network. The layout and deployment of such a sigma factor network directly impacts global transcriptional regulation and ultimately dictates the phenotype. Here we integrate multi-omic data sets to determine the topology, the operational, and functional states of the sigma factor network in Geobacter sulfurreducens, revealing a unique network topology of interacting sigma factors. Analysis of the operational state of the sigma factor network shows a highly modular structure with sN being the major regulator of energy metabolism. Surprisingly, the functional state of the network during the two most divergent growth conditions is nearly static, with sigma factor binding profiles almost invariant to environmental stimuli. This first comprehensive elucidation of the interplay between different levels of the sigma factor network organization is fundamental to characterize transcriptional regulatory mechanisms in bacteria.

  13. Biologically Inspired Optimization of Building District Heating Networks

    Directory of Open Access Journals (Sweden)

    Leiming Shang

    2013-07-01

    Full Text Available In this paper we show that a biologically inspired model can be successfully applied to problems of building optimal district heating network. The model is based on physiological observations of the true slime mold Physarumpolycephalum, but can also be used for path-finding in the complicated networks of mazes and road maps. A strategy of optimally building heating distribution network was guided by the model and a well-tuned ant colony algorithm and genetic algorithm. The results indicate that although there are not large-scale efficiency savings to be made, the biologically inspired amoeboid movement model is capable of finding results of equal or better optimality than a comparable ant colony algorithm and genetic algorithm.

  14. Modeling Cancer Metastasis using Global, Quantitative and Integrative Network Biology

    DEFF Research Database (Denmark)

    Schoof, Erwin; Erler, Janine

    cancer networks using Network Biology. Technologies key to this, such as Mass Spectrometry (MS), Next-Generation Sequencing (NGS) and High-Content Screening (HCS) are briefly described. In Chapter II, we cover how signaling networks and mutational data can be modeled in order to gain a better...... number of biological aspects that would need to be understood to enable comprehensive treatment regimens specific to each patient (i.e. personalized medicine). However, in the approaches outlined in this thesis, we chose metastasis as a key process for interrogating the clinical potential of targeting...... can be generated using MS, and how this can be modeled using a computational framework for deciphering kinase-substrate dynamics. This framework is described in depth in Article 3, and covers the design of KinomeXplorer, which allows the prediction of kinases responsible for modulating observed...

  15. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions

    Science.gov (United States)

    Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.

    2016-09-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  16. Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network.

    Science.gov (United States)

    Hughes, Tyler B; Dang, Na Le; Miller, Grover P; Swamidass, S Joshua

    2016-08-24

    Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network-the XenoSite reactivity model-using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule-level, the

  17. Dissecting neural differentiation regulatory networks through epigenetic footprinting.

    Science.gov (United States)

    Ziller, Michael J; Edri, Reuven; Yaffe, Yakey; Donaghey, Julie; Pop, Ramona; Mallard, William; Issner, Robbyn; Gifford, Casey A; Goren, Alon; Xing, Jeffrey; Gu, Hongcang; Cacchiarelli, Davide; Tsankov, Alexander M; Epstein, Charles; Rinn, John L; Mikkelsen, Tarjei S; Kohlbacher, Oliver; Gnirke, Andreas; Bernstein, Bradley E; Elkabetz, Yechiel; Meissner, Alexander

    2015-02-19

    Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.

  18. Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyu

    2007-12-01

    Full Text Available Abstract Background In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression. Results We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure. Conclusion Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.

  19. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.

    Directory of Open Access Journals (Sweden)

    Taosheng Xu

    Full Text Available Identifying cancer subtypes is an important component of the personalised medicine framework. An increasing number of computational methods have been developed to identify cancer subtypes. However, existing methods rarely use information from gene regulatory networks to facilitate the subtype identification. It is widely accepted that gene regulatory networks play crucial roles in understanding the mechanisms of diseases. Different cancer subtypes are likely caused by different regulatory mechanisms. Therefore, there are great opportunities for developing methods that can utilise network information in identifying cancer subtypes.In this paper, we propose a method, weighted similarity network fusion (WSNF, to utilise the information in the complex miRNA-TF-mRNA regulatory network in identifying cancer subtypes. We firstly build the regulatory network where the nodes represent the features, i.e. the microRNAs (miRNAs, transcription factors (TFs and messenger RNAs (mRNAs and the edges indicate the interactions between the features. The interactions are retrieved from various interatomic databases. We then use the network information and the expression data of the miRNAs, TFs and mRNAs to calculate the weight of the features, representing the level of importance of the features. The feature weight is then integrated into a network fusion approach to cluster the samples (patients and thus to identify cancer subtypes. We applied our method to the TCGA breast invasive carcinoma (BRCA and glioblastoma multiforme (GBM datasets. The experimental results show that WSNF performs better than the other commonly used computational methods, and the information from miRNA-TF-mRNA regulatory network contributes to the performance improvement. The WSNF method successfully identified five breast cancer subtypes and three GBM subtypes which show significantly different survival patterns. We observed that the expression patterns of the features in some mi

  20. A relative variation-based method to unraveling gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Yali Wang

    Full Text Available Gene regulatory network (GRN reconstruction is essential in understanding the functioning and pathology of a biological system. Extensive models and algorithms have been developed to unravel a GRN. The DREAM project aims to clarify both advantages and disadvantages of these methods from an application viewpoint. An interesting yet surprising observation is that compared with complicated methods like those based on nonlinear differential equations, etc., methods based on a simple statistics, such as the so-called Z-score, usually perform better. A fundamental problem with the Z-score, however, is that direct and indirect regulations can not be easily distinguished. To overcome this drawback, a relative expression level variation (RELV based GRN inference algorithm is suggested in this paper, which consists of three major steps. Firstly, on the basis of wild type and single gene knockout/knockdown experimental data, the magnitude of RELV of a gene is estimated. Secondly, probability for the existence of a direct regulation from a perturbed gene to a measured gene is estimated, which is further utilized to estimate whether a gene can be regulated by other genes. Finally, the normalized RELVs are modified to make genes with an estimated zero in-degree have smaller RELVs in magnitude than the other genes, which is used afterwards in queuing possibilities of the existence of direct regulations among genes and therefore leads to an estimate on the GRN topology. This method can in principle avoid the so-called cascade errors under certain situations. Computational results with the Size 100 sub-challenges of DREAM3 and DREAM4 show that, compared with the Z-score based method, prediction performances can be substantially improved, especially the AUPR specification. Moreover, it can even outperform the best team of both DREAM3 and DREAM4. Furthermore, the high precision of the obtained most reliable predictions shows that the suggested algorithm may be

  1. Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Sarah R. [J. Craig Venter Institute; Rodemeyer, Michael [University of Virginia; Garfinkel, Michele S. [EMBO; Friedman, Robert M [J. Craig Venter Institute

    2014-05-01

    Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options Sarah R. Carter, Ph.D., J. Craig Venter Institute; Michael Rodemeyer, J.D., University of Virginia; Michele S. Garfinkel, Ph.D., EMBO; Robert M. Friedman, Ph.D., J. Craig Venter Institute In recent years, a range of genetic engineering techniques referred to as “synthetic biology” has significantly expanded the tool kit available to scientists and engineers, providing them with far greater capabilities to engineer organisms than previous techniques allowed. The field of synthetic biology includes the relatively new ability to synthesize long pieces of DNA from chemicals, as well as improved methods for genetic manipulation and design of genetic pathways to achieve more precise control of biological systems. These advances will help usher in a new generation of genetically engineered microbes, plants, and animals. The JCVI Policy Center team, along with researchers at the University of Virginia and EMBO, examined how well the current U.S. regulatory system for genetically engineered products will handle the near-term introduction of organisms engineered using synthetic biology. In particular, the focus was on those organisms intended to be used or grown directly in the environment, outside of a contained facility. The study concludes that the U.S. regulatory agencies have adequate legal authority to address most, but not all, potential environmental, health and safety concerns posed by these organisms. Such near-term products are likely to represent incremental changes rather than a marked departure from previous genetically engineered organisms. However, the study also identified two key challenges for the regulatory system, which are detailed in the report. First, USDA’s authority over genetically engineered plants depends on the use of an older engineering technique that is no longer necessary for many applications. The shift to synthetic biology and other newer genetic

  2. Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing

    OpenAIRE

    Wang, Fan; Lu, Juan; Peng, Xiaohong; Jie WANG; LIU, XIONG; Chen, Xiaomei; Jiang, Yiqi; LI, XIANGPING; Zhang, Bao

    2016-01-01

    Background MicroRNAs (miRNAs) have been shown to play a critical role in the development and progression of nasopharyngeal carcinoma (NPC). Although accumulating studies have been performed on the molecular mechanisms of NPC, the miRNA regulatory networks in cancer progression remain largely unknown. Laser capture microdissection (LCM) and deep sequencing are powerful tools that can help us to detect the integrated view of miRNA-target network. Methods Illumina Hiseq2000 deep sequencing was u...

  3. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae

    OpenAIRE

    Chennubhotla Chakra; Wu Chuang; Farkas Illés J; Bahar Ivet; Oltvai Zoltán N

    2006-01-01

    Abstract Background Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR) mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood. Results By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate l...

  4. Combinatorial Limits of Transcription Factors and Gene Regulatory Networks in Development and Evolution

    OpenAIRE

    Werner, Eric

    2015-01-01

    Gene Regulatory Networks (GRNs) consisting of combinations of transcription factors (TFs) and their cis promoters are assumed to be sufficient to direct the development of organisms. Mutations in GRNs are assumed to be the primary drivers for the evolution of multicellular life. Here it is proven that neither of these assumptions is correct. They are inconsistent with fundamental principles of combinatorics of bounded encoded networks. It is shown there are inherent complexity and control cap...

  5. When do tissues and cells become products? Regulatory oversight of emerging biological therapies.

    Science.gov (United States)

    Farrugia, Albert

    2006-01-01

    Although therapeutics derived from biological sources have been subjected to regulatory oversight for some time, the products used in transplantation procedures have historically been exempt from this oversight. These products have been viewed as being part of medical practice rather than as the result of mainstream pharmaceutical manufacture. Furthermore, their unique source makes them difficult to assess in traditional regulatory systems based on the tenets of pharmaceutical quality control. With the increasing use of transplantation therapies to both replace dysfunctional organs and to influence genetic and metabolic processes, public health concerns on these therapies have increased. In addition, it is recognized that therapeutic claims for some of these interventions need to be properly assessed. These considerations have led the established regulatory agencies of the developed world to develop new regulatory paradigms for the products of transplantation practice. While a number of concerns have driven these developments, the minimization of infectious disease risk remains the paramount driver for introducing these regulatory systems. More than the regulation of medicines and medical devices manufactured in traditional pharmaceutical modes, the regulation of cell and tissue products is intimately linked to areas of public health policy and funding. This places regulators in a challenging position as they attempt to reconcile their roles as independent assessors with the needs of the overall public health framework. This is particularly difficult when considering measures which may affect access to life saving therapies. Regulators have recognized the need to assess these therapies through systems which incorporate consideration of risk-benefit ratios and include mechanisms for transparent and accountable release of products when full compliance to traditional concepts of manufacturing practice is not possible.

  6. A modulated empirical Bayes model for identifying topological and temporal estrogen receptor α regulatory networks in breast cancer

    Directory of Open Access Journals (Sweden)

    Zhao Yuming

    2011-05-01

    Full Text Available Abstract Background Estrogens regulate diverse physiological processes in various tissues through genomic and non-genomic mechanisms that result in activation or repression of gene expression. Transcription regulation upon estrogen stimulation is a critical biological process underlying the onset and progress of the majority of breast cancer. Dynamic gene expression changes have been shown to characterize the breast cancer cell response to estrogens, the every molecular mechanism of which is still not well understood. Results We developed a modulated empirical Bayes model, and constructed a novel topological and temporal transcription factor (TF regulatory network in MCF7 breast cancer cell line upon stimulation by 17β-estradiol stimulation. In the network, significant TF genomic hubs were identified including ER-alpha and AP-1; significant non-genomic hubs include ZFP161, TFDP1, NRF1, TFAP2A, EGR1, E2F1, and PITX2. Although the early and late networks were distinct ( Conclusions We identified a number of estrogen regulated target genes and established estrogen-regulated network that distinguishes the genomic and non-genomic actions of estrogen receptor. Many gene targets of this network were not active anymore in anti-estrogen resistant cell lines, possibly because their DNA methylation and histone acetylation patterns have changed.

  7. National Nuclear Regulatory Portal (NNRP) – A Useful Regulatory Knowledge Network

    International Nuclear Information System (INIS)

    Conclusions: → The main advantage of developing and operation of NNRP is that the most relevant information in the field, obtained from various granted data sources, will be internationally accessible from one place; → NNRP can be used as a platform for more effective international cooperation between MS or for national information and cooperation activities and information exchange; → NNRP is an inclusive concept that brings together, links and complements all existing networks and initiatives

  8. Regulatory networks in pollen development under cold stress

    Directory of Open Access Journals (Sweden)

    Kamal Dev Sharma

    2016-03-01

    Full Text Available Cold stress modifies anthers’ metabolic pathways to induce pollen sterility. Cold-tolerant plants, unlike the susceptible ones, produce high proportion of viable pollen. Anthers in susceptible plants, when exposed to cold stress, increase abscisic acid (ABA metabolism and reduce ABA catabolism. Increased ABA negatively regulates expression of tapetum cell wall bound invertase and monosaccharide transport genes resulting in distorted carbohydrate pool in anther. Cold-stress also reduces endogenous levels of the bioactive gibberellins (GAs, GA4 and GA7, in susceptible anthers by repression of the GA biosynthesis genes. Here we discuss recent findings on mechanisms of cold susceptibility in anthers which determine pollen sterility. We also discuss differences in regulatory pathways between cold-stressed anthers of susceptible and tolerant plants that decide pollen sterility or viability.

  9. Human Metabolic Network: Reconstruction, Simulation, and Applications in Systems Biology

    Science.gov (United States)

    Wu, Ming; Chan, Christina

    2012-01-01

    Metabolism is crucial to cell growth and proliferation. Deficiency or alterations in metabolic functions are known to be involved in many human diseases. Therefore, understanding the human metabolic system is important for the study and treatment of complex diseases. Current reconstructions of the global human metabolic network provide a computational platform to integrate genome-scale information on metabolism. The platform enables a systematic study of the regulation and is applicable to a wide variety of cases, wherein one could rely on in silico perturbations to predict novel targets, interpret systemic effects, and identify alterations in the metabolic states to better understand the genotype-phenotype relationships. In this review, we describe the reconstruction of the human metabolic network, introduce the constraint based modeling approach to analyze metabolic networks, and discuss systems biology applications to study human physiology and pathology. We highlight the challenges and opportunities in network reconstruction and systems modeling of the human metabolic system. PMID:24957377

  10. Reverse enGENEering of Regulatory Networks from Big Data: A Roadmap for Biologists.

    Science.gov (United States)

    Dong, Xiaoxi; Yambartsev, Anatoly; Ramsey, Stephen A; Thomas, Lina D; Shulzhenko, Natalia; Morgun, Andrey

    2015-01-01

    Omics technologies enable unbiased investigation of biological systems through massively parallel sequence acquisition or molecular measurements, bringing the life sciences into the era of Big Data. A central challenge posed by such omics datasets is how to transform these data into biological knowledge, for example, how to use these data to answer questions such as: Which functional pathways are involved in cell differentiation? Which genes should we target to stop cancer? Network analysis is a powerful and general approach to solve this problem consisting of two fundamental stages, network reconstruction, and network interrogation. Here we provide an overview of network analysis including a step-by-step guide on how to perform and use this approach to investigate a biological question. In this guide, we also include the software packages that we and others employ for each of the steps of a network analysis workflow. PMID:25983554

  11. Gene regulatory networks in embryonic stem cells and brain development

    OpenAIRE

    Ghosh, Dhimankrishna; Yan, Xiaowei; Tian, Qiang

    2009-01-01

    Embryonic stem cells (ESCs) are endowed with the ability to generate multiple cell lineages and carries great therapeutic potentials in regenerative medicines. Future application of ESCs in human health and diseases will embark on the delineation of molecular mechanisms that define the biology of ESCs. Here we discuss how the finite ESC components mediate the intriguing task of brain development and exhibits biomedical potentials to cure diverse neurological disorders.

  12. M-matrix-based stability conditions for genetic regulatory networks with time-varying delays and noise perturbations.

    Science.gov (United States)

    Tian, Li-Ping; Shi, Zhong-Ke; Liu, Li-Zhi; Wu, Fang-Xiang

    2013-10-01

    Stability is essential for designing and controlling any dynamic systems. Recently, the stability of genetic regulatory networks has been widely studied by employing linear matrix inequality (LMI) approach, which results in checking the existence of feasible solutions to high-dimensional LMIs. In the previous study, the authors present several stability conditions for genetic regulatory networks with time-varying delays, based on M-matrix theory and using the non-smooth Lyapunov function, which results in determining whether a low-dimensional matrix is a non-singular M-matrix. However, the previous approach cannot be applied to analyse the stability of genetic regulatory networks with noise perturbations. Here, the authors design a smooth Lyapunov function quadratic in state variables and employ M-matrix theory to derive new stability conditions for genetic regulatory networks with time-varying delays. Theoretically, these conditions are less conservative than existing ones in some genetic regulatory networks. Then the results are extended to genetic regulatory networks with time-varying delays and noise perturbations. For genetic regulatory networks with n genes and n proteins, the derived conditions are to check if an n × n matrix is a non-singular M-matrix. To further present the new theories proposed in this study, three example regulatory networks are analysed.

  13. Building promoter aware transcriptional regulatory networks using siRNA perturbation and deepCAGE

    DEFF Research Database (Denmark)

    Vitezic, Morana; Lassmann, Timo; Forrest, Alistair R R;

    2010-01-01

    Perturbation and time-course data sets, in combination with computational approaches, can be used to infer transcriptional regulatory networks which ultimately govern the developmental pathways and responses of cells. Here, we individually knocked down the four transcription factors PU.1, IRF8, MYB...

  14. Statistical Inference and Reverse Engineering of Gene Regulatory Networks from Observational Expression Data

    OpenAIRE

    Emmert-Streib, Frank; Glazko, Galina V.; Altay, Gökmen; Matos Simoes, Ricardo de

    2012-01-01

    In this paper, we present a systematic and conceptual overview of methods for inferring gene regulatory networks from observational gene expression data. Further, we discuss two classic approaches to infer causal structures and compare them with contemporary methods by providing a conceptual categorization thereof. We complement the above by surveying global and local evaluation measures for assessing the performance of inference algorithms.

  15. Regulatory Network Construction in Arabidopsis using genome-wide gene expression QTLs

    NARCIS (Netherlands)

    Keurentjes, J.J.B.; Fu, J.J.; Terpstra, I.R.; Garcia, J.M.; van den Ackerveken, G.; Snoek, L.B.; Peeters, A.J.M.; Vreugdenhil, D.; Koornreef, M.; Jansen, R.C.

    2007-01-01

    Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci.Keurentjes JJ, Fu J, Terpstra IR, Garcia JM, van den Ackerveken G, Snoek LB, Peeters AJ, Vreugdenhil D, Koornneef M, Jansen RC. Laboratory of Genetics, Wageningen University, Arboretumlaan 4,

  16. Imposing early stability to ecological and biological networks through Evolutionary Network Control

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2015-03-01

    Full Text Available The stability analysis of the dynamical networks is a well-studied topic, both in ecology and in biology. In this work, I adopt a different perspective: instead of analysing the stability of an arbitrary ecological network, I seek here to impose such stability as soon as possible (or, contrariwise, as late as possible during network dynamics. Evolutionary Network Control (ENC is a theoretical and methodological framework aimed to the control of ecological and biological networks by coupling network dynamics and evolutionary modelling. ENC covers several topics of network control, for instance a the global control from inside and b from outside, c the local (step-by-step control, and the computation of: d control success, e feasibility, and f degree of uncertainty. In this work, I demonstrate that ENC can also be employed to impose early (but, also, late stability to arbitrary ecological and biological networks, and provide an applicative example based on the nonlinear, widely-used, Lotka-Volterra model.

  17. SEBINI-CABIN: An Analysis Pipeline for Biological Network Inference, with a Case Study in Protein-Protein Interaction Network Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Singhal, Mudita; Daly, Don S.; Domico, Kelly O.; White, Amanda M.; Auberry, Deanna L.; Auberry, Kenneth J.; Hooker, Brian S.; Hurst, G. B.; McDermott, Jason E.; McDonald, W. Hayes; Pelletier, Dale A.; Schmoyer, Denise D.; Cannon, William R.

    2007-12-01

    One of the core tasks of the emerging discipline of systems biology is the reconstruction of the various biological networks in an organism. The importance of understanding such regulatory, interaction, and signaling networks has fueled the development by bioinformatics researchers of many inference algorithms for determining their structure. The Software Environment for BIological Network Inference (SEBINI) has been created to provide an interactive environment for the deployment, testing, and improvement of algorithms used to reconstruct the structures of regulatory and interaction networks from high-throughput expression data. Networks inferred from the SEBINI software platform can be further analyzed using the Collective Analysis of Biological Interaction Networks (CABIN) tool, a software package for exploratory data analysis that allows basic integration and analysis of protein-protein interaction and gene-to-gene regulatory evidence obtained from multiple sources. Thus, the combined SEBINI–CABIN platform aids in the more accurate determination of biological networks, in less time, with less effort. In this paper, we present a case study demonstrating the use of the SEBINI and CABIN tools for protein-protein interaction network reconstruction. Incorporating the Bayesian Estimator of Protein-Protein Association Probabilities (BEPro) algorithm into the SEBINI toolkit, we have created a pipeline for structural inference and supplemental analysis of protein-protein interaction networks from sets of mass spectrometry bait-prey experiment data. To the best of our knowledge the pipeline so designed is the first to be publicly available for such use. A demonstration web site for SEBINI can be accessed from https://www.emsl.pnl.gov/NIT/NIT.html. Source code and PostgreSQL database schema are available under open source license. Contact: ronald.taylor@pnl.gov. For commercial use, some algorithms included in SEBINI require licensing from the original developers. The

  18. Network regulation and regulatory institutional reform: Revisiting the case of Australia

    International Nuclear Information System (INIS)

    It is well-understood that the success of liberalizing the electricity supply industry depends crucially on the quality and design of the regulatory and institutional framework. This paper analyses the regulatory arrangements that underpin the work of the Australian Energy Regulator (AER). These arrangements are contrasted with the regulatory structure of electricity provision in Norway. A key difference between the reform processes in the two countries relates to the lack of privatization in Norway and the co-existence of private and publicly owned generators and distributors in Australia. This comparative analysis allows us to make several recommendations to improve regulatory arrangements in Australia. These include greater independence for the AER, better coordination among regulatory institutions, greater use of benchmarking analysis, greater customer involvement, and improving market transparency and privatization of government-owned corporations. However, the success of privatization will hinge upon the effectiveness of the regulatory environment. - Highlights: • Rising electricity prices and network costs is of great concern in Australia. • Flaws in the existing regulatory environment and economic efficiency exist. • The AER should be provided with adequate resources (financial and staff experts) and discretion. • Robust benchmarking techniques should be adopted in the incentive regulation framework for cost efficiency. • Privatization of the state-owned assets also remains an option

  19. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators.

    Science.gov (United States)

    Herpin, Amaury; Schartl, Manfred

    2015-10-01

    Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves. PMID:26358957

  20. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators.

    Science.gov (United States)

    Herpin, Amaury; Schartl, Manfred

    2015-10-01

    Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves.

  1. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  2. Slow poisoning and destruction of networks: edge proximity and its implications for biological and infrastructure networks

    CERN Document Server

    Banerjee, Soumya Jyoti; Roy, Soumen

    2014-01-01

    There have been many studies on malicious targeting of network nodes using degree, betweenness etc. We propose a new network metric, edge proximity, ${\\cal P}_e$, which demonstrates the importance of specific edges in a network, hitherto not captured by existing network metrics. Effects of removing edges with high ${\\cal P}_e$ might initially seem inconspicuous but is eventually shown to be very harmful for the network. When compared to existing strategies, removal of edges by ${\\cal P}_e$, leads to remarkable increase of diameter and average path length in real and random networks till the first disconnection and beyond. ${\\cal P}_e$ can be consistently used to rupture the network into two nearly equal parts, thus presenting a very potent strategy to greatly harm a network. Targeting by ${\\cal P}_e$ causes notable efficiency loss in US and European power grid. ${\\cal P}_e$ identifies proteins with essential cellular functions in protein-protein interaction networks. It pinpoints regulatory neural connections...

  3. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data

    NARCIS (Netherlands)

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    As one of the most recent members of the omics family, large-scale quantitative metabolomics data are currently complementing our systems biology data pool and offer the chance to integrate the metabolite level into the functional analysis of cellular networks. Network-embedded thermodynamic analysi

  4. PyPanda: a Python package for gene regulatory network reconstruction

    Science.gov (United States)

    van IJzendoorn, David G.P.; Glass, Kimberly; Quackenbush, John; Kuijjer, Marieke L.

    2016-01-01

    Summary: PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regulatory network inference method that uses message-passing to integrate multiple sources of ‘omics data. PANDA was originally coded in C ++. In this application note we describe PyPanda, the Python version of PANDA. PyPanda runs considerably faster than the C ++ version and includes additional features for network analysis. Availability and implementation: The open source PyPanda Python package is freely available at http://github.com/davidvi/pypanda. Contact: mkuijjer@jimmy.harvard.edu or d.g.p.van_ijzendoorn@lumc.nl PMID:27402905

  5. Fixed Points in Discrete Models for Regulatory Genetic Networks

    Directory of Open Access Journals (Sweden)

    Orozco Edusmildo

    2007-01-01

    Full Text Available It is desirable to have efficient mathematical methods to extract information about regulatory iterations between genes from repeated measurements of gene transcript concentrations. One piece of information is of interest when the dynamics reaches a steady state. In this paper we develop tools that enable the detection of steady states that are modeled by fixed points in discrete finite dynamical systems. We discuss two algebraic models, a univariate model and a multivariate model. We show that these two models are equivalent and that one can be converted to the other by means of a discrete Fourier transform. We give a new, more general definition of a linear finite dynamical system and we give a necessary and sufficient condition for such a system to be a fixed point system, that is, all cycles are of length one. We show how this result for generalized linear systems can be used to determine when certain nonlinear systems (monomial dynamical systems over finite fields are fixed point systems. We also show how it is possible to determine in polynomial time when an ordinary linear system (defined over a finite field is a fixed point system. We conclude with a necessary condition for a univariate finite dynamical system to be a fixed point system.

  6. A synthetic biology approach to self-regulatory recombinant protein production in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Dragosits Martin

    2012-03-01

    Full Text Available Abstract Background Recombinant protein production is a process of great industrial interest, with products that range from pharmaceuticals to biofuels. Since high level production of recombinant protein imposes significant stress in the host organism, several methods have been developed over the years to optimize protein production. So far, these trial-and-error techniques have proved laborious and sensitive to process parameters, while there has been no attempt to address the problem by applying Synthetic Biology principles and methods, such as integration of standardized parts in novel synthetic circuits. Results We present a novel self-regulatory protein production system that couples the control of recombinant protein production with a stress-induced, negative feedback mechanism. The synthetic circuit allows the down-regulation of recombinant protein expression through a stress-induced promoter. We used E. coli as the host organism, since it is widely used in recombinant processes. Our results show that the introduction of the self-regulatory circuit increases the soluble/insoluble ratio of recombinant protein at the expense of total protein yield. To further elucidate the dynamics of the system, we developed a computational model that is in agreement with the observed experimental data, and provides insight on the interplay between protein solubility and yield. Conclusion Our work introduces the idea of a self-regulatory circuit for recombinant protein products, and paves the way for processes with reduced external control or monitoring needs. It demonstrates that the library of standard biological parts serves as a valuable resource for initial synthetic blocks that needs to be further refined to be successfully applied in practical problems of biotechnological significance. Finally, the development of a predictive model in conjunction with experimental validation facilitates a better understanding of the underlying dynamics and can be

  7. Deciphering ascorbic acid regulatory pathways in ripening tomato fruit using a weighted gene correlation network analysis approach.

    Science.gov (United States)

    Gao, Chao; Ju, Zheng; Li, Shan; Zuo, Jinhua; Fu, Daqi; Tian, Huiqin; Luo, Yunbo; Zhu, Benzhong

    2013-11-01

    Genotype is generally determined by the co-expression of diverse genes and multiple regulatory pathways in plants. Gene co-expression analysis combining with physiological trait data provides very important information about the gene function and regulatory mechanism. L-Ascorbic acid (AsA), which is an essential nutrient component for human health and plant metabolism, plays key roles in diverse biological processes such as cell cycle, cell expansion, stress resistance, hormone synthesis, and signaling. Here, we applied a weighted gene correlation network analysis approach based on gene expression values and AsA content data in ripening tomato (Solanum lycopersicum L.) fruit with different AsA content levels, which leads to identification of AsA relevant modules and vital genes in AsA regulatory pathways. Twenty-four modules were compartmentalized according to gene expression profiling. Among these modules, one negatively related module containing genes involved in redox processes and one positively related module enriched with genes involved in AsA biosynthetic and recycling pathways were further analyzed. The present work herein indicates that redox pathways as well as hormone-signal pathways are closely correlated with AsA accumulation in ripening tomato fruit, and allowed us to prioritize candidate genes for follow-up studies to dissect this interplay at the biochemical and molecular level.

  8. Deciphering Ascorbic Acid Regulatory Pathways in Ripening Tomato Fruit Using a Weighted Gene Correlation Network Analysis Approach

    Institute of Scientific and Technical Information of China (English)

    Chao Gao; Zheng Ju; Shan Li; Jinhua Zuo; Daqi Fu; Huiqin Tian; Yunbo Luo; Benzhong Zhu

    2013-01-01

    Genotype is generally determined by the co-expression of diverse genes and multiple regulatory pathways in plants. Gene co-expression analysis combining with physiological trait data provides very important information about the gene function and regulatory mechanism. L-Ascorbic acid (AsA), which is an essential nutrient component for human health and plant metabolism, plays key roles in diverse biological processes such as cell cycle, cell expansion, stress resistance, hormone synthesis, and signaling. Here, we applied a weighted gene correlation network analysis approach based on gene expression values and AsA content data in ripening tomato (Solanum lycopersicum L.) fruit with different AsA content levels, which leads to identification of AsA relevant modules and vital genes in AsA regulatory pathways. Twenty-four modules were compartmentalized according to gene expression profiling. Among these modules, one negatively related module containing genes involved in redox processes and one positively related module enriched with genes involved in AsA biosynthetic and recycling pathways were further analyzed. The present work herein indicates that redox pathways as well as hormone-signal pathways are closely correlated with AsA accumulation in ripening tomato fruit, and allowed us to prioritize candidate genes for follow-up studies to dissect this interplay at the biochemical and molecular level.

  9. Localizing potentially active post-transcriptional regulations in the Ewing's sarcoma gene regulatory network

    Directory of Open Access Journals (Sweden)

    Delyon Bernard

    2010-11-01

    Full Text Available Abstract Background A wide range of techniques is now available for analyzing regulatory networks. Nonetheless, most of these techniques fail to interpret large-scale transcriptional data at the post-translational level. Results We address the question of using large-scale transcriptomic observation of a system perturbation to analyze a regulatory network which contained several types of interactions - transcriptional and post-translational. Our method consisted of post-processing the outputs of an open-source tool named BioQuali - an automatic constraint-based analysis mimicking biologist's local reasoning on a large scale. The post-processing relied on differences in the behavior of the transcriptional and post-translational levels in the network. As a case study, we analyzed a network representation of the genes and proteins controlled by an oncogene in the context of Ewing's sarcoma. The analysis allowed us to pinpoint active interactions specific to this cancer. We also identified the parts of the network which were incomplete and should be submitted for further investigation. Conclusions The proposed approach is effective for the qualitative analysis of cancer networks. It allows the integrative use of experimental data of various types in order to identify the specific information that should be considered a priority in the initial - and possibly very large - experimental dataset. Iteratively, new dataset can be introduced into the analysis to improve the network representation and make it more specific.

  10. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    Science.gov (United States)

    Christensen, Claire Petra

    's own publications have contributed network inference, simulation, modeling, and analysis methods to the much larger body of work in systems biology, and indeed, in network science. The aim of this thesis is therefore twofold: to present this original work in the historical context of network science, but also to provide sufficient review and reference regarding complex systems (with an emphasis on complex networks in systems biology) and tools and techniques for their inference, simulation, analysis, and modeling, such that the reader will be comfortable in seeking out further information on the subject. The review-like Chapters 1, 2, and 4 are intended to convey the co-evolution of network science and the slow but noticeable breakdown of boundaries between disciplines in academia as research and comparison of diverse systems has brought to light the shared properties of these systems. It is the author's hope that theses chapters impart some sense of the remarkable and rapid progress in complex systems research that has led to this unprecedented academic synergy. Chapters 3 and 5 detail the author's original work in the context of complex systems research. Chapter 3 presents the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. These networks are then analyzed from a graph theoretical perspective, and their biological viability is critiqued by comparing the networks' graph theoretical properties to those of other biological systems. The results of topological perturbation analyses revealing commonalities in behavior at multiple levels of complexity are also presented, and are shown to be an invaluable means by which to ascertain the level of complexity to which the network inference process is robust to noise. Chapter 5 outlines a learning algorithm for the development of a realistic, evolving social

  11. Facile: a command-line network compiler for systems biology

    OpenAIRE

    Ollivier Julien F; Siso-Nadal Fernando; Swain Peter S

    2007-01-01

    Abstract Background A goal of systems biology is the quantitative modelling of biochemical networks. Yet for many biochemical systems, parameter values and even the existence of interactions between some chemical species are unknown. It is therefore important to be able to easily investigate the effects of adding or removing reactions and to easily perform a bifurcation analysis, which shows the qualitative dynamics of a model for a range of parameter values. Results We present Facile, a Perl...

  12. Analysis of complex networks from biology to linguistics

    CERN Document Server

    Dehmer, Matthias

    2009-01-01

    Mathematical problems such as graph theory problems are of increasing importance for the analysis of modelling data in biomedical research such as in systems biology, neuronal network modelling etc. This book follows a new approach of including graph theory from a mathematical perspective with specific applications of graph theory in biomedical and computational sciences. The book is written by renowned experts in the field and offers valuable background information for a wide audience.

  13. Expanding the Regulatory Network for Meristem Size in Plants.

    Science.gov (United States)

    Galli, Mary; Gallavotti, Andrea

    2016-06-01

    The remarkable plasticity of post-embryonic plant development is due to groups of stem-cell-containing structures called meristems. In the shoot, meristems continuously produce organs such as leaves, flowers, and stems. Nearly two decades ago the WUSCHEL/CLAVATA (WUS/CLV) negative feedback loop was established as being essential for regulating the size of shoot meristems by maintaining a delicate balance between stem cell proliferation and cell recruitment for the differentiation of lateral primordia. Recent research in various model species (Arabidopsis, tomato, maize, and rice) has led to discoveries of additional components that further refine and improve the current model of meristem regulation, adding new complexity to a vital network for plant growth and productivity. PMID:27129984

  14. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data

    Directory of Open Access Journals (Sweden)

    Gao Shouguo

    2011-08-01

    Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.

  15. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    Science.gov (United States)

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  16. Networks and their applications to biological systems: From ecological dynamics to gene regulation

    Science.gov (United States)

    Sevim, Volkan

    In this dissertation, we study three biological applications of networks. The first one is a biological coevolution model, in which a species is defined by a genome in the form of a finite bitstring and the interactions between species are given by a fixed matrix with randomly distributed elements. Here we study a version of the model, in which the matrix elements are correlated to a controllable degree by means of an averaging scheme. This method allows creation of mutants resembling their ancestors (wildtype). We compare long kinetic Monte Carlo simulations of models with uncorrelated and correlated interactions. We find that while there are quantitative differences, most qualitative features, such as 1/f behavior in power spectral densities for the diversity indices and the power-law distribution of species lifetimes, are not significantly affected by the correlations in the interaction matrix. The second application is the growth of a directed network, in which the growth is constrained by the cost of adding links to the existing nodes. This is a new preferential-attachment scheme, in which a new node attaches to an existing node i with probability pi(k i, k'i ) ∝ ( k'i /ki)gamma, where ki and k'i are the number of outgoing and incoming links at i, respectively, and gamma is a constant. First, we calculate the degree distribution for the outgoing links for a simplified form of this function, pi( ki) ∝ k-1i , both analytically and by Monte Carlo simulations. The distribution decays like kmuk/Gamma(k) for large k, where mu is a constant. We relate this mechanism to simple food-web models by implementing it in the cascade model. We also study the generalized case, pi(ki, k'i ) ∝ ( k'i /ki)gamma, by simulations. The third application is the evolution of robustness to mutations and noise in gene regulatory networks. It has been shown that robustness to mutations and noise can evolve through stabilizing selection for optimal phenotypes in model gene regulatory

  17. Importance of randomness in biological networks: A random matrix analysis

    Indian Academy of Sciences (India)

    Sarika Jalan

    2015-02-01

    Random matrix theory, initially proposed to understand the complex interactions in nuclear spectra, has demonstrated its success in diverse domains of science ranging from quantum chaos to galaxies. We demonstrate the applicability of random matrix theory for networks by providing a new dimension to complex systems research. We show that in spite of huge differences these interaction networks, representing real-world systems, posses from random matrix models, the spectral properties of the underlying matrices of these networks follow random matrix theory bringing them into the same universality class. We further demonstrate the importance of randomness in interactions for deducing crucial properties of the underlying system. This paper provides an overview of the importance of random matrix framework in complex systems research with biological systems as examples.

  18. Systems analysis of biological networks in skeletal muscle function.

    Science.gov (United States)

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  19. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies.

    Science.gov (United States)

    Indoliya, Yuvraj; Tiwari, Poonam; Chauhan, Abhisekh Singh; Goel, Ridhi; Shri, Manju; Bag, Sumit Kumar; Chakrabarty, Debasis

    2016-01-01

    Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells. PMID:26973288

  20. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies.

    Science.gov (United States)

    Indoliya, Yuvraj; Tiwari, Poonam; Chauhan, Abhisekh Singh; Goel, Ridhi; Shri, Manju; Bag, Sumit Kumar; Chakrabarty, Debasis

    2016-01-01

    Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells.

  1. Ordinance on technical requirements and conditions of use of optical distribution networks of the Croatian regulatory agency - Analysis and outlook

    OpenAIRE

    Brusić, Igor; Kittl, Jörg; Ruhle, Ernst-Olav; Žuti, Vladimir

    2011-01-01

    In September 2010 the Croatian regulatory agency (HAKOM) put in force the ordinance on technical requirements and conditions of use of optical distribution networks. With this ordinance the Croatian regulatory agency is looking over the rim by proposing a rather technical approach for the rollout of optical access networks which will have significant influence on the deployment of next generation access networks (NGAN) in Croatia. The ordinance stipulates the requirements that have to be fulf...

  2. Logical Reduction of Biological Networks to Their Most Determinative Components.

    Science.gov (United States)

    Matache, Mihaela T; Matache, Valentin

    2016-07-01

    Boolean networks have been widely used as models for gene regulatory networks, signal transduction networks, or neural networks, among many others. One of the main difficulties in analyzing the dynamics of a Boolean network and its sensitivity to perturbations or mutations is the fact that it grows exponentially with the number of nodes. Therefore, various approaches for simplifying the computations and reducing the network to a subset of relevant nodes have been proposed in the past few years. We consider a recently introduced method for reducing a Boolean network to its most determinative nodes that yield the highest information gain. The determinative power of a node is obtained by a summation of all mutual information quantities over all nodes having the chosen node as a common input, thus representing a measure of information gain obtained by the knowledge of the node under consideration. The determinative power of nodes has been considered in the literature under the assumption that the inputs are independent in which case one can use the Bahadur orthonormal basis. In this article, we relax that assumption and use a standard orthonormal basis instead. We use techniques of Hilbert space operators and harmonic analysis to generate formulas for the sensitivity to perturbations of nodes, quantified by the notions of influence, average sensitivity, and strength. Since we work on finite-dimensional spaces, our formulas and estimates can be and are formulated in plain matrix algebra terminology. We analyze the determinative power of nodes for a Boolean model of a signal transduction network of a generic fibroblast cell. We also show the similarities and differences induced by the alternative complete orthonormal basis used. Among the similarities, we mention the fact that the knowledge of the states of the most determinative nodes reduces the entropy or uncertainty of the overall network significantly. In a special case, we obtain a stronger result than in previous

  3. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae

    Directory of Open Access Journals (Sweden)

    Santillán Moisés

    2008-01-01

    Full Text Available Abstract Background The regulatory interactions between transcription factors (TF and regulated genes (RG in a species genome can be lumped together in a single directed graph. The TF's and RG's conform the nodes of this graph, while links are drawn whenever a transcription factor regulates a gene's expression. Projections onto TF nodes can be constructed by linking every two nodes regulating a common gene. Similarly, projections onto RG nodes can be made by linking every two regulated genes sharing at least one common regulator. Recent studies of the connectivity pattern in the transcription-factor regulatory network of many organisms have revealed some interesting properties. However, the differences between TF and RG nodes have not been widely explored. Results After analysing the RG and TF projections of the transcription-factor gene regulatory networks of Escherichia coli and Saccharomyces cerevisiae, we found several common characteristic as well as some noticeable differences. To better understand these differences, we compared the properties of the E. coli and S. cerevisiae RG- and TF-projected networks with those of the corresponding projections built from randomized versions of the original bipartite networks. These last results indicate that the observed differences are mostly due to the very different ratios of TF to RG counts of the E. coli and S. cerevisiae bipartite networks, rather than to their having different connectivity patterns. Conclusion Since E. coli is a prokaryotic organism while S. cerevisiae is eukaryotic, there are important differences between them concerning processing of mRNA before translation, DNA packing, amount of junk DNA, and gene regulation. From the results in this paper we conclude that the most important effect such differences have had on the development of the corresponding transcription-factor gene regulatory networks is their very different ratios of TF to RG numbers. This ratio is more than three

  4. Regulatory Roles of Metabolites in Cell Signaling Networks

    Institute of Scientific and Technical Information of China (English)

    Feng Li; Wei Xu; Shimin Zhao

    2013-01-01

    Mounting evidence suggests that cellular metabolites,in addition to being sources of fuel and macromolecular substrates,are actively involved in signaling and epigenetic regulation.Many metabolites,such as cyclic AMP,which regulates phosphorylation/dephosphorylation,have been identified to modulate DNA and histone methylation and protein stability.Metabolite-driven cellular regulation occurs through two distinct mechanisms:proteins allosterically bind or serve as substrates for protein signaling pathways,and metabolites covalently modify proteins to regulate their functions.Such novel protein metabolites include fumarate,succinyl-CoA,propionyl-CoA,butyryl-CoA and crontonyl-CoA.Other metabolites,including α-ketoglutarate,succinate and fumarate,regulate epigenetic processes and cell signaling via protein binding.Here,we summarize recent progress in metabolite-derived post-translational protein modification and metabolite-binding associated signaling regulation.Uncovering metabolites upstream of cell signaling and epigenetic networks permits the linkage of metabolic disorders and human diseases,and suggests that metabolite modulation may be a strategy for innovative therapeutics and disease prevention techniques.

  5. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  6. Bit by bit control of nonlinear ecological and biological networks using Evolutionary Network Control

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2016-06-01

    Full Text Available Evolutionary Network Control (ENC has been first introduced in 2013 to effectively subdue network-like systems. ENC opposes the idea, very common in the scientific literature, that controllability of networks should be based on the identification of the set of driver nodes that can guide the system's dynamics, in other words on the choice of a subset of nodes that should be selected to be permanently controlled. ENC has proven to be effective in the global control (i.e. the focus is on mastery of the final state of network dynamics of linear and nonlinear networks, and in the local (i.e. the focus is on the step-by-step ascendancy of network dynamics control of linear networks. In this work, ENC is applied to the local control of nonlinear networks. Using the Lotka-Volterra model as a case study, I show here that ENC is capable of locally driving nonlinear networks as well, so that also intermediate steps (not only the final state are under our strict control. ENC can be readily applied to any kind of ecological, biological, economic and network-like system.

  7. The Default Mode Network Differentiates Biological From Non-Biological Motion.

    Science.gov (United States)

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. PMID:25217472

  8. Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations

    Directory of Open Access Journals (Sweden)

    Kleessen Sabrina

    2012-03-01

    Full Text Available Abstract Background Flux balance analysis (FBA together with its extension, dynamic FBA, have proven instrumental for analyzing the robustness and dynamics of metabolic networks by employing only the stoichiometry of the included reactions coupled with adequately chosen objective function. In addition, under the assumption of minimization of metabolic adjustment, dynamic FBA has recently been employed to analyze the transition between metabolic states. Results Here, we propose a suite of novel methods for analyzing the dynamics of (internally perturbed metabolic networks and for quantifying their robustness with limited knowledge of kinetic parameters. Following the biochemically meaningful premise that metabolite concentrations exhibit smooth temporal changes, the proposed methods rely on minimizing the significant fluctuations of metabolic profiles to predict the time-resolved metabolic state, characterized by both fluxes and concentrations. By conducting a comparative analysis with a kinetic model of the Calvin-Benson cycle and a model of plant carbohydrate metabolism, we demonstrate that the principle of regulatory on/off minimization coupled with dynamic FBA can accurately predict the changes in metabolic states. Conclusions Our methods outperform the existing dynamic FBA-based modeling alternatives, and could help in revealing the mechanisms for maintaining robustness of dynamic processes in metabolic networks over time.

  9. PREFACE: Complex Networks: from Biology to Information Technology

    Science.gov (United States)

    Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.

    2008-06-01

    The field of complex networks is one of the most active areas in contemporary statistical physics. Ten years after seminal work initiated the modern study of networks, interest in the field is in fact still growing, as indicated by the ever increasing number of publications in network science. The reason for such a resounding success is most likely the simplicity and broad significance of the approach that, through graph theory, allows researchers to address a variety of different complex systems within a common framework. This special issue comprises a selection of contributions presented at the workshop 'Complex Networks: from Biology to Information Technology' held in July 2007 in Pula (Cagliari), Italy as a satellite of the general conference STATPHYS23. The contributions cover a wide range of problems that are currently among the most important questions in the area of complex networks and that are likely to stimulate future research. The issue is organised into four sections. The first two sections describe 'methods' to study the structure and the dynamics of complex networks, respectively. After this methodological part, the issue proceeds with a section on applications to biological systems. The issue closes with a section concentrating on applications to the study of social and technological networks. The first section, entitled Methods: The Structure, consists of six contributions focused on the characterisation and analysis of structural properties of complex networks: The paper Motif-based communities in complex networks by Arenas et al is a study of the occurrence of characteristic small subgraphs in complex networks. These subgraphs, known as motifs, are used to define general classes of nodes and their communities by extending the mathematical expression of the Newman-Girvan modularity. The same line of research, aimed at characterising network structure through the analysis of particular subgraphs, is explored by Bianconi and Gulbahce in Algorithm

  10. Thiosulfoxide (Sulfane Sulfur: New Chemistry and New Regulatory Roles in Biology

    Directory of Open Access Journals (Sweden)

    John I. Toohey

    2014-08-01

    Full Text Available The understanding of sulfur bonding is undergoing change. Old theories on hypervalency of sulfur and the nature of the chalcogen-chalcogen bond are now questioned. At the same time, there is a rapidly expanding literature on the effects of sulfur in regulating biological systems. The two fields are inter-related because the new understanding of the thiosulfoxide bond helps to explain the newfound roles of sulfur in biology. This review examines the nature of thiosulfoxide (sulfane, S0 sulfur, the history of its regulatory role, its generation in biological systems, and its functions in cells. The functions include synthesis of cofactors (molybdenum cofactor, iron-sulfur clusters, sulfuration of tRNA, modulation of enzyme activities, and regulating the redox environment by several mechanisms (including the enhancement of the reductive capacity of glutathione. A brief review of the analogous form of selenium suggests that the toxicity of selenium may be due to over-reduction caused by the powerful reductive activity of glutathione perselenide.

  11. Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks

    Directory of Open Access Journals (Sweden)

    Martin Florian

    2012-05-01

    Full Text Available Abstract Background High-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and effect relationships. These relationships are structured into network models that describe specific biological processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network perturbation in response to a given stimulus. Results Four complementary methods were devised to quantify treatment-induced activity changes in processes described by network models. In addition, companion statistics were developed to qualify significance and specificity of the results. This approach is called Network Perturbation Amplitude (NPA scoring because the amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE cells treated with the pro-inflammatory signaling mediator TNFα, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor R547. Each data set was scored against network models representing different aspects of inflammatory signaling and cell cycle progression, and these scores were compared with independent measures of pathway activity in NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFα-induced perturbation for each network model when compared against NF-κB nuclear localization and cell number. In addition, the degree and specificity to which CDK

  12. Regulatory requirements for ground-water monitoring networks at hazardous-waste sites

    International Nuclear Information System (INIS)

    In the absence of an explicit national legislative mandate to protect ground-water quality and because there is no coordination between federal and state agencies, those responsible for hazardous-waste management and cleanup must utilize a number of statutes and regulations as guidance for detecting, correcting, and preventing ground-water contamination. For example, the current regulatory framework provides no clean guidance for compliance. The author will present an integrated approach to protect ground-water resources through the use of various standards and classifications, based on a comprehensive regulatory and policy analysis. Information presented can be used to develop ground-water quality protection programs, assess regulatory compliance, and characterize sites for potential remediation and corrective action. Regulation-based ground-water monitoring networks can be developed to address these concerns in a technically feasible yet cost-effective manner

  13. Regulatory network of inflammation downstream of proteinase-activated receptors

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2007-03-01

    nfkbia seems to counter-balance the inflammatory response to PAR activation by limiting prolonged activation of p38 MAPK and increased cytokine production. In contrast, transcripts such as arf6 and dcnt1 that are involved in the mechanism of PAR re-sensitization would tend to perpetuate the inflammatory reaction in response to common pro-inflammatory stimuli. Conclusion The combination of cDNA array results and genomic networks reveals an overriding participation of PAR1 in bladder inflammation, provides a working model for the involvement of downstream signaling, and evokes testable hypotheses regarding the transcriptome downstream of PAR1 activation. It remains to be determined whether or not mechanisms targeting PAR1 gene silencing or PAR1 blockade will ameliorate the clinical manifestation of cystitis.

  14. A gene regulatory network for root epidermis cell differentiation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Angela Bruex

    2012-01-01

    Full Text Available The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 "core" root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.

  15. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.

  16. Regulatory inhibition of biological tissue mineralization through post-nucleation shielding

    Science.gov (United States)

    Chang, Joshua; Miura, Robert

    In vertebrates, insufficient availability of calcium and phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are present at high concentrations throughout body fluids - at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. We adapted mean-field classical nucleation theory to the case of surface-shielding in order to study the regulation of sedimentation of calcium phosphate salts in biological tissues. Mathematical Biosciences Institute, NSF DMS-1021818, National Institutes of Health, Rehab Medicine.

  17. Statistical and regulatory considerations in assessments of interchangeability of biological drug products.

    Science.gov (United States)

    Tóthfalusi, Lászlo; Endrényi, László; Chow, Shein-Chung

    2014-05-01

    When the patent of a brand-name, marketed drug expires, new, generic products are usually offered. Small-molecule generic and originator drug products are expected to be chemically identical. Their pharmaceutical similarity can be typically assessed by simple regulatory criteria such as the expectation that the 90% confidence interval for the ratio of geometric means of some pharmacokinetic parameters be between 0.80 and 1.25. When such criteria are satisfied, the drug products are generally considered to exhibit therapeutic equivalence. They are then usually interchanged freely within individual patients. Biological drugs are complex proteins, for instance, because of their large size, intricate structure, sensitivity to environmental conditions, difficult manufacturing procedures, and the possibility of immunogenicity. Generic and brand-name biologic products can be expected to show only similarity but not identity in their various features and clinical effects. Consequently, the determination of biosimilarity is also a complicated process which involves assessment of the totality of the evidence for the close similarity of the two products. Moreover, even when biosimilarity has been established, it may not be assumed that the two biosimilar products can be automatically substituted by pharmacists. This generally requires additional, careful considerations. Without declaring interchangeability, a new product could be prescribed, i.e. it is prescribable. However, two products can be automatically substituted only if they are interchangeable. Interchangeability is a statistical term and it means that products can be used in any order in the same patient without considering the treatment history. The concepts of interchangeability and prescribability have been widely discussed in the past but only in relation to small molecule generics. In this paper we apply these concepts to biosimilars and we discuss: definitions of prescribability and interchangeability and

  18. Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network.

    Science.gov (United States)

    Chua, Gordon

    2013-12-01

    Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.

  19. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks

    OpenAIRE

    Baliga Nitin S; Reiss David J; Bonneau Richard

    2006-01-01

    Abstract Background The learning of global genetic regulatory networks from expression data is a severely under-constrained problem that is aided by reducing the dimensionality of the search space by means of clustering genes into putatively co-regulated groups, as opposed to those that are simply co-expressed. Be cause genes may be co-regulated only across a subset of all observed experimental conditions, biclustering (clustering of genes and conditions) is more appropriate than standard clu...

  20. Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm

    OpenAIRE

    Tang, Y.; Wang, Z; J. Fang

    2011-01-01

    The official published version can be found at the link below. This paper presents a novel particle swarm optimization (PSO) algorithm based on Markov chains and competitive penalized method. Such an algorithm is developed to solve global optimization problems with applications in identifying unknown parameters of a class of genetic regulatory networks (GRNs). By using an evolutionary factor, a new switching PSO (SPSO) algorithm is first proposed and analyzed, where the velocity updating e...

  1. Multi-Tissue Omics Analyses Reveal Molecular Regulatory Networks for Puberty in Composite Beef Cattle

    OpenAIRE

    Angela Cánovas; Antonio Reverter; DeAtley, Kasey L.; Ashley, Ryan L; Colgrave, Michelle L.; Fortes, Marina R. S.; Alma Islas-Trejo; Sigrid Lehnert; Laercio Porto-Neto; Gonzalo Rincón; Gail A Silver; Snelling, Warren M.; Medrano, Juan F.; Thomas, Milton G.

    2014-01-01

    Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as tissues known to be relevant to growth and metabolism needed to achieve puberty (i.e., longissimus dorsi muscle, adipose, and liver)....

  2. Dissecting early regulatory relationships in the lamprey neural crest gene network.

    Science.gov (United States)

    Nikitina, Natalya; Sauka-Spengler, Tatjana; Bronner-Fraser, Marianne

    2008-12-23

    The neural crest, a multipotent embryonic cell type, originates at the border between neural and nonneural ectoderm. After neural tube closure, these cells undergo an epithelial-mesenchymal transition, migrate to precise, often distant locations, and differentiate into diverse derivatives. Analyses of expression and function of signaling and transcription factors in higher vertebrates has led to the proposal that a neural crest gene regulatory network (NC-GRN) orchestrates neural crest formation. Here, we interrogate the NC-GRN in the lamprey, taking advantage of its slow development and basal phylogenetic position to resolve early inductive events, 1 regulatory step at the time. To establish regulatory relationships at the neural plate border, we assess relative expression of 6 neural crest network genes and effects of individually perturbing each on the remaining 5. The results refine an upstream portion of the NC-GRN and reveal unexpected order and linkages therein; e.g., lamprey AP-2 appears to function early as a neural plate border rather than a neural crest specifier and in a pathway linked to MsxA but independent of ZicA. These findings provide an ancestral framework for performing comparative tests in higher vertebrates in which network linkages may be more difficult to resolve because of their rapid development. PMID:19104059

  3. Dissecting early regulatory relationships in the lamprey neural crest gene network.

    Science.gov (United States)

    Nikitina, Natalya; Sauka-Spengler, Tatjana; Bronner-Fraser, Marianne

    2008-12-23

    The neural crest, a multipotent embryonic cell type, originates at the border between neural and nonneural ectoderm. After neural tube closure, these cells undergo an epithelial-mesenchymal transition, migrate to precise, often distant locations, and differentiate into diverse derivatives. Analyses of expression and function of signaling and transcription factors in higher vertebrates has led to the proposal that a neural crest gene regulatory network (NC-GRN) orchestrates neural crest formation. Here, we interrogate the NC-GRN in the lamprey, taking advantage of its slow development and basal phylogenetic position to resolve early inductive events, 1 regulatory step at the time. To establish regulatory relationships at the neural plate border, we assess relative expression of 6 neural crest network genes and effects of individually perturbing each on the remaining 5. The results refine an upstream portion of the NC-GRN and reveal unexpected order and linkages therein; e.g., lamprey AP-2 appears to function early as a neural plate border rather than a neural crest specifier and in a pathway linked to MsxA but independent of ZicA. These findings provide an ancestral framework for performing comparative tests in higher vertebrates in which network linkages may be more difficult to resolve because of their rapid development.

  4. Regulatory and information support for evaluation of biological productivity of Ukrainian forests and climate change

    Science.gov (United States)

    Lakyda, Petro; Vasylyshyn, Roman; Lakyda, Ivan

    2013-04-01

    Stabilization and preservation of the planet's climate system today is regarded as one of the most important global political-economic, environmental and social problems of mankind. Rising concentration of carbon dioxide in the planet's atmosphere due to anthropogenic impact is the main reason leading to global climate change. Due to the above mentioned, social demands on forests are changing their biosphere role and function of natural sink of greenhouse gases becomes top priority. It is known that one of the most essential components of biological productivity of forests is their live biomass. Absorption, long-term sequestration of carbon and generation of oxygen are secured by its components. System research of its parametric structure and development of regulatory and reference information for assessment of aboveground live biomass components of trees and stands of the main forest-forming tree species in Ukraine began over twenty-five years ago at the department of forest mensuration and forest inventory of National University of Life and Environmental Sciences of Ukraine, involving staff from other research institutions. Today, regulatory and reference materials for evaluation of parametric structure of live biomass are developed for trees of the following major forest-forming tree species of Ukraine: Scots pine of natural and artificial origin, Crimean pine, Norway spruce, silver fir, pedunculate oak, European beech, hornbeam, ash, common birch, aspen and black alder (P.I. Lakyda et al., 2011). An ongoing process on development of similar regulatory and reference materials for forest stands of the abovementioned forest-forming tree species of Ukraine is secured by scientists of departments of forest management, and forest mensuration and forest inventory. The total experimental research base is 609 temporary sample plots, where 4880 model trees were processed, including 3195 model trees with estimates of live biomass components. Laboratory studies conducted

  5. Similarities Between Biological and Social Networks in Their Structural Organization

    Science.gov (United States)

    Kahng, Byungnam; Lee, Deokjae; Kim, Pureun

    A branching tree is a tree that is generated through a multiplicative branching process starting from a root. A critical branching tree is a branching tree in which the mean branching number of each node is 1, so that the number of offspring neither decays to zero nor flourishes as the branching process goes on. Moreover, a scale-free branching tree is a branching tree in which the number of offspring is heterogeneous, and its distribution follows a power law. Here we examine three structures, two from biology (a phylogenetic tree and the skeletons of a yeast protein interaction network) and one from social science (a coauthorship network), and find that all these structures are scale-free critical branching trees. This suggests that evolutionary processes in such systems take place in bursts and in a self-organized manner.

  6. Methods of information theory and algorithmic complexity for network biology.

    Science.gov (United States)

    Zenil, Hector; Kiani, Narsis A; Tegnér, Jesper

    2016-03-01

    We survey and introduce concepts and tools located at the intersection of information theory and network biology. We show that Shannon's information entropy, compressibility and algorithmic complexity quantify different local and global aspects of synthetic and biological data. We show examples such as the emergence of giant components in Erdös-Rényi random graphs, and the recovery of topological properties from numerical kinetic properties simulating gene expression data. We provide exact theoretical calculations, numerical approximations and error estimations of entropy, algorithmic probability and Kolmogorov complexity for different types of graphs, characterizing their variant and invariant properties. We introduce formal definitions of complexity for both labeled and unlabeled graphs and prove that the Kolmogorov complexity of a labeled graph is a good approximation of its unlabeled Kolmogorov complexity and thus a robust definition of graph complexity.

  7. Noise Filtering and Prediction in Biological Signaling Networks

    CERN Document Server

    Hathcock, David; Weisenberger, Casey; Ilker, Efe; Hinczewski, Michael

    2016-01-01

    Information transmission in biological signaling circuits has often been described using the metaphor of a noise filter. Cellular systems need accurate, real-time data about their environmental conditions, but the biochemical reaction networks that propagate, amplify, and process signals work with noisy representations of that data. Biology must implement strategies that not only filter the noise, but also predict the current state of the environment based on information delayed due to the finite speed of chemical signaling. The idea of a biochemical noise filter is actually more than just a metaphor: we describe recent work that has made an explicit mathematical connection between signaling fidelity in cellular circuits and the classic theories of optimal noise filtering and prediction that began with Wiener, Kolmogorov, Shannon, and Bode. This theoretical framework provides a versatile tool, allowing us to derive analytical bounds on the maximum mutual information between the environmental signal and the re...

  8. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  9. Construction and analysis of regulatory genetic networks in cervical cancer based on involved microRNAs, target genes, transcription factors and host genes.

    Science.gov (United States)

    Wang, Ning; Xu, Zhiwen; Wang, Kunhao; Zhu, Minghui; Li, Yang

    2014-04-01

    Over recent years, genes and microRNA (miRNA/miR) have been considered as key biological factors in human carcinogenesis. During cancer development, genes may act as multiple identities, including target genes of miRNA, transcription factors and host genes. The present study concentrated on the regulatory networks consisting of the biological factors involved in cervical cancer in order to investigate their features and affect on this specific pathology. Numerous raw data was collected and organized into purposeful structures, and adaptive procedures were defined for application to the prepared data. The networks were therefore built with the factors as basic components according to their interacting associations. The networks were constructed at three levels of interdependency, including a differentially-expressed network, a related network and a global network. Comparisons and analyses were made at a systematic level rather than from an isolated gene or miRNA. Critical hubs were extracted in the core networks and notable features were discussed, including self-adaption feedback regulation. The present study expounds the pathogenesis from a novel point of view and is proposed to provide inspiration for further investigation and therapy.

  10. Analysis of regulatory networks constructed based on gene coexpression in pituitary adenoma

    Indian Academy of Sciences (India)

    Jie Gong; Bo Diao; Guo Jie Yao; Ying Liu; Guo Zheng Xu

    2013-12-01

    Gene coexpression patterns can reveal gene collections with functional consistency. This study systematically constructs regulatory networks for pituitary tumours by integrating gene coexpression, transcriptional and posttranscriptional regulation. Through network analysis, we elaborate the incidence mechanism of pituitary adenoma. The Pearson’s correlation coefficient was utilized to calculate the level of gene coexpression. By comparing pituitary adenoma samples with normal samples, pituitary adenoma-specific gene coexpression patterns were identified. For pituitary adenoma-specific coexpressed genes, we integrated transcription factor (TF) and microRNA (miRNA) regulation to construct a complex regulatory network from the transcriptional and posttranscriptional perspectives. Network module analysis identified the synergistic regulation of genes by miRNAs and TFs in pituitary adenoma. We identified 142 pituitary adenoma-specific active genes, including 43 TFs and 99 target genes of TFs. Functional enrichment of these 142 genes revealed that the occurrence of pituitary adenoma induced abnormalities in intracellular metabolism and angiogenesis process. These 142 genes were also significantly enriched in adenoma pathway. Module analysis of the systematic regulatory network found that three modules contained elements that were closely related to pituitary adenoma, such as FGF2 and SP1, as well as transcription factors and miRNAs involved in the tumourigenesis. These results show that in the occurrence of pituitary adenoma, miRNA, TF and genes interact with each other. Based on gene expression, the proposed method integrates interaction information from different levels and systematically explains the occurrence of pituitary tumours. It facilitates the tracing of the origin of the disease and can provide basis for early diagnosis of complex diseases or cancer without obvious symptoms.

  11. Analysis of regulatory networks constructed based on gene coexpression in pituitary adenoma.

    Science.gov (United States)

    Gong, Jie; Diao, Bo; Yao, Guo Jie; Liu, Ying; Xu, Guo Zheng

    2013-12-01

    Gene coexpression patterns can reveal gene collections with functional consistency. This study systematically constructs regulatory networks for pituitary tumours by integrating gene coexpression, transcriptional and posttranscriptional regulation. Through network analysis, we elaborate the incidence mechanism of pituitary adenoma. The Pearson's correlation coefficient was utilized to calculate the level of gene coexpression. By comparing pituitary adenoma samples with normal samples, pituitary adenoma-specific gene coexpression patterns were identified. For pituitary adenoma-specific coexpressed genes, we integrated transcription factor (TF) and microRNA (miRNA) regulation to construct a complex regulatory network from the transcriptional and posttranscriptional perspectives. Network module analysis identified the synergistic regulation of genes by miRNAs and TFs in pituitary adenoma. We identified 142 pituitary adenoma-specific active genes, including 43 TFs and 99 target genes of TFs. Functional enrichment of these 142 genes revealed that the occurrence of pituitary adenoma induced abnormalities in intracellular metabolism and angiogenesis process. These 142 genes were also significantly enriched in adenoma pathway. Module analysis of the systematic regulatory network found that three modules contained elements that were closely related to pituitary adenoma, such as FGF2 and SP1, as well as transcription factors and miRNAs involved in the tumourigenesis. These results show that in the occurrence of pituitary adenoma, miRNA, TF and genes interact with each other. Based on gene expression, the proposed method integrates interaction information from different levels and systematically explains the occurrence of pituitary tumours. It facilitates the tracing of the origin of the disease and can provide basis for early diagnosis of complex diseases or cancer without obvious symptoms.

  12. Detecting modules in biological networks by edge weight clustering and entropy significance

    OpenAIRE

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the informa...

  13. Chapter 5: Network biology approach to complex diseases.

    Directory of Open Access Journals (Sweden)

    Dong-Yeon Cho

    Full Text Available Complex diseases are caused by a combination of genetic and environmental factors. Uncovering the molecular pathways through which genetic factors affect a phenotype is always difficult, but in the case of complex diseases this is further complicated since genetic factors in affected individuals might be different. In recent years, systems biology approaches and, more specifically, network based approaches emerged as powerful tools for studying complex diseases. These approaches are often built on the knowledge of physical or functional interactions between molecules which are usually represented as an interaction network. An interaction network not only reports the binary relationships between individual nodes but also encodes hidden higher level organization of cellular communication. Computational biologists were challenged with the task of uncovering this organization and utilizing it for the understanding of disease complexity, which prompted rich and diverse algorithmic approaches to be proposed. We start this chapter with a description of the general characteristics of complex diseases followed by a brief introduction to physical and functional networks. Next we will show how these networks are used to leverage genotype, gene expression, and other types of data to identify dysregulated pathways, infer the relationships between genotype and phenotype, and explain disease heterogeneity. We group the methods by common underlying principles and first provide a high level description of the principles followed by more specific examples. We hope that this chapter will give readers an appreciation for the wealth of algorithmic techniques that have been developed for the purpose of studying complex diseases as well as insight into their strengths and limitations.

  14. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Hüser Andrea T

    2006-02-01

    Full Text Available Abstract Background The knowledge about complete bacterial genome sequences opens the way to reconstruct the qualitative topology and global connectivity of transcriptional regulatory networks. Since iron is essential for a variety of cellular processes but also poses problems in biological systems due to its high toxicity, bacteria have evolved complex transcriptional regulatory networks to achieve an effective iron homeostasis. Here, we apply a combination of transcriptomics, bioinformatics, in vitro assays, and comparative genomics to decipher the regulatory network of the iron-dependent transcriptional regulator DtxR of Corynebacterium glutamicum. Results A deletion of the dtxR gene of C. glutamicum ATCC 13032 led to the mutant strain C. glutamicum IB2103 that was able to grow in minimal medium only under low-iron conditions. By performing genome-wide DNA microarray hybridizations, differentially expressed genes involved in iron metabolism of C. glutamicum were detected in the dtxR mutant. Bioinformatics analysis of the genome sequence identified a common 19-bp motif within the upstream region of 31 genes, whose differential expression in C. glutamicum IB2103 was verified by real-time reverse transcription PCR. Binding of a His-tagged DtxR protein to oligonucleotides containing the 19-bp motifs was demonstrated in vitro by DNA band shift assays. At least 64 genes encoding a variety of physiological functions in iron transport and utilization, in central carbohydrate metabolism and in transcriptional regulation are controlled directly by the DtxR protein. A comparison with the bioinformatically predicted networks of C. efficiens, C. diphtheriae and C. jeikeium identified evolutionary conserved elements of the DtxR network. Conclusion This work adds considerably to our currrent understanding of the transcriptional regulatory network of C. glutamicum genes that are controlled by DtxR. The DtxR protein has a major role in controlling the

  15. Genome-Wide Mapping of Collier In Vivo Binding Sites Highlights Its Hierarchical Position in Different Transcription Regulatory Networks

    Science.gov (United States)

    Dubois, Laurence; Bataillé, Laetitia; Painset, Anaïs; Le Gras, Stéphanie; Jost, Bernard; Crozatier, Michèle; Vincent, Alain

    2015-01-01

    Collier, the single Drosophila COE (Collier/EBF/Olf-1) transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col) targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya) is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles. PMID:26204530

  16. Genome-Wide Mapping of Collier In Vivo Binding Sites Highlights Its Hierarchical Position in Different Transcription Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Mathilde de Taffin

    Full Text Available Collier, the single Drosophila COE (Collier/EBF/Olf-1 transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.

  17. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Chennubhotla Chakra

    2006-10-01

    Full Text Available Abstract Background Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood. Results By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate layer of transcription factors naturally segregates into distinct subnetworks. In these topological units transcription factors are densely interlinked in a largely hierarchical manner and respond to external signals by utilizing a fraction of these subnets. Conclusion As transcriptional regulation represents the 'slow' component of overall information processing, the identified topology suggests a model in which successive waves of transcriptional regulation originating from distinct fractions of the TR network control robust integrated responses to complex stimuli.

  18. Measuring information flow in cellular networks by the systems biology method through microarray data.

    Science.gov (United States)

    Chen, Bor-Sen; Li, Cheng-Wei

    2015-01-01

    In general, it is very difficult to measure the information flow in a cellular network directly. In this study, based on an information flow model and microarray data, we measured the information flow in cellular networks indirectly by using a systems biology method. First, we used a recursive least square parameter estimation algorithm to identify the system parameters of coupling signal transduction pathways and the cellular gene regulatory network (GRN). Then, based on the identified parameters and systems theory, we estimated the signal transductivities of the coupling signal transduction pathways from the extracellular signals to each downstream protein and the information transductivities of the GRN between transcription factors in response to environmental events. According to the proposed method, the information flow, which is characterized by signal transductivity in coupling signaling pathways and information transductivity in the GRN, can be estimated by microarray temporal data or microarray sample data. It can also be estimated by other high-throughput data such as next-generation sequencing or proteomic data. Finally, the information flows of the signal transduction pathways and the GRN in leukemia cancer cells and non-leukemia normal cells were also measured to analyze the systematic dysfunction in this cancer from microarray sample data. The results show that the signal transductivities of signal transduction pathways change substantially from normal cells to leukemia cancer cells.

  19. Inferring polymorphism-induced regulatory gene networks active in human lymphocyte cell lines by weighted linear mixed model analysis of multiple RNA-Seq datasets.

    Directory of Open Access Journals (Sweden)

    Wensheng Zhang

    Full Text Available Single-nucleotide polymorphisms (SNPs contribute to the between-individual expression variation of many genes. A regulatory (trait-associated SNP is usually located near or within a (host gene, possibly influencing the gene's transcription or/and post-transcriptional modification. But its targets may also include genes that are physically farther away from it. A heuristic explanation of such multiple-target interferences is that the host gene transfers the SNP genotypic effects to the distant gene(s by a transcriptional or signaling cascade. These connections between the host genes (regulators and the distant genes (targets make the genetic analysis of gene expression traits a promising approach for identifying unknown regulatory relationships. In this study, through a mixed model analysis of multi-source digital expression profiling for 140 human lymphocyte cell lines (LCLs and the genotypes distributed by the international HapMap project, we identified 45 thousands of potential SNP-induced regulatory relationships among genes (the significance level for the underlying associations between expression traits and SNP genotypes was set at FDR < 0.01. We grouped the identified relationships into four classes (paradigms according to the two different mechanisms by which the regulatory SNPs affect their cis- and trans- regulated genes, modifying mRNA level or altering transcript splicing patterns. We further organized the relationships in each class into a set of network modules with the cis- regulated genes as hubs. We found that the target genes in a network module were often characterized by significant functional similarity, and the distributions of the target genes in three out of the four networks roughly resemble a power-law, a typical pattern of gene networks obtained from mutation experiments. By two case studies, we also demonstrated that significant biological insights can be inferred from the identified network modules.

  20. Global and robust stability analysis of genetic regulatory networks with time-varying delays and parameter uncertainties.

    Science.gov (United States)

    Fang-Xiang Wu

    2011-08-01

    The study of stability is essential for designing or controlling genetic regulatory networks. This paper addresses global and robust stability of genetic regulatory networks with time delays and parameter uncertainties. Most existing results on this issue are based on the linear matrix inequalities (LMIs) approach, which results in checking the existence of a feasible solution to high dimensional LMIs. Based on M-matrix theory, we will present several novel global stability conditions for genetic regulatory networks with time-varying and time-invariant delays. All of these stability conditions are given in terms of M-matrices, for which there are many and very easy ways to be verified. Then, we extend these results to genetic regulatory networks with time delays and parameter uncertainties. To illustrate the effectiveness of our theoretical results, several genetic regulatory networks are analyzed. Compared with existing results in the literature, we also show that our results are less conservative than existing ones with these illustrative genetic regulatory networks.

  1. Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning.

    Directory of Open Access Journals (Sweden)

    Iryna Kozmikova

    Full Text Available Formation of a dorsoventral axis is a key event in the early development of most animal embryos. It is well established that bone morphogenetic proteins (Bmps and Wnts are key mediators of dorsoventral patterning in vertebrates. In the cephalochordate amphioxus, genes encoding Bmps and transcription factors downstream of Bmp signaling such as Vent are expressed in patterns reminiscent of those of their vertebrate orthologues. However, the key question is whether the conservation of expression patterns of network constituents implies conservation of functional network interactions, and if so, how an increased functional complexity can evolve. Using heterologous systems, namely by reporter gene assays in mammalian cell lines and by transgenesis in medaka fish, we have compared the gene regulatory network implicated in dorsoventral patterning of the basal chordate amphioxus and vertebrates. We found that Bmp but not canonical Wnt signaling regulates promoters of genes encoding homeodomain proteins AmphiVent1 and AmphiVent2. Furthermore, AmphiVent1 and AmphiVent2 promoters appear to be correctly regulated in the context of a vertebrate embryo. Finally, we show that AmphiVent1 is able to directly repress promoters of AmphiGoosecoid and AmphiChordin genes. Repression of genes encoding dorsal-specific signaling molecule Chordin and transcription factor Goosecoid by Xenopus and zebrafish Vent genes represents a key regulatory interaction during vertebrate axis formation. Our data indicate high evolutionary conservation of a core Bmp-triggered gene regulatory network for dorsoventral patterning in chordates and suggest that co-option of the canonical Wnt signaling pathway for dorsoventral patterning in vertebrates represents one of the innovations through which an increased morphological complexity of vertebrate embryo is achieved.

  2. Community-Reviewed Biological Network Models for Toxicology and Drug Discovery Applications

    Science.gov (United States)

    Namasivayam, Aishwarya Alex; Morales, Alejandro Ferreiro; Lacave, Ángela María Fajardo; Tallam, Aravind; Simovic, Borislav; Alfaro, David Garrido; Bobbili, Dheeraj Reddy; Martin, Florian; Androsova, Ganna; Shvydchenko, Irina; Park, Jennifer; Calvo, Jorge Val; Hoeng, Julia; Peitsch, Manuel C.; Racero, Manuel González Vélez; Biryukov, Maria; Talikka, Marja; Pérez, Modesto Berraquero; Rohatgi, Neha; Díaz-Díaz, Noberto; Mandarapu, Rajesh; Ruiz, Rubén Amián; Davidyan, Sergey; Narayanasamy, Shaman; Boué, Stéphanie; Guryanova, Svetlana; Arbas, Susana Martínez; Menon, Swapna; Xiang, Yang

    2016-01-01

    Biological network models offer a framework for understanding disease by describing the relationships between the mechanisms involved in the regulation of biological processes. Crowdsourcing can efficiently gather feedback from a wide audience with varying expertise. In the Network Verification Challenge, scientists verified and enhanced a set of 46 biological networks relevant to lung and chronic obstructive pulmonary disease. The networks were built using Biological Expression Language and contain detailed information for each node and edge, including supporting evidence from the literature. Network scoring of public transcriptomics data inferred perturbation of a subset of mechanisms and networks that matched the measured outcomes. These results, based on a computable network approach, can be used to identify novel mechanisms activated in disease, quantitatively compare different treatments and time points, and allow for assessment of data with low signal. These networks are periodically verified by the crowd to maintain an up-to-date suite of networks for toxicology and drug discovery applications.

  3. Notes on a PDE system for biological network formation

    KAUST Repository

    Haskovec, Jan

    2016-01-22

    We present new analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transport networks. The model describes the pressure field using a Darcy’s type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. The analytical part extends the results of Haskovec et al. (2015) regarding the existence of weak and mild solutions to the whole range of meaningful relaxation exponents. Moreover, we prove finite time extinction or break-down of solutions in the spatially one-dimensional setting for certain ranges of the relaxation exponent. We also construct stationary solutions for the case of vanishing diffusion and critical value of the relaxation exponent, using a variational formulation and a penalty method. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on mixed finite elements and study the qualitative properties of network structures for various parameter values. Furthermore, we indicate numerically that some analytical results proved for the spatially one-dimensional setting are likely to be valid also in several space dimensions.

  4. A Network Biology Approach to Denitrification in Pseudomonas aeruginosa

    Science.gov (United States)

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-01-01

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2), nitric oxide (NO) and nitrous oxide (N2O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2), nitrate (NO3), and phosphate (PO4) suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide. PMID:25706405

  5. A network biology approach to denitrification in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Seda Arat

    Full Text Available Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2, nitric oxide (NO and nitrous oxide (N2O. This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2, nitrate (NO3, and phosphate (PO4 suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA. Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.

  6. Bioengineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Tabita, F. Robert [The Ohio State University

    2013-07-30

    In this study, the Principal Investigator, F.R. Tabita has teemed up with J. C. Liao from UCLA. This project's main goal is to manipulate regulatory networks in phototrophic bacteria to affect and maximize the production of large amounts of hydrogen gas under conditions where wild-type organisms are constrained by inherent regulatory mechanisms from allowing this to occur. Unrestrained production of hydrogen has been achieved and this will allow for the potential utilization of waste materials as a feed stock to support hydrogen production. By further understanding the means by which regulatory networks interact, this study will seek to maximize the ability of currently available “unrestrained” organisms to produce hydrogen. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Moreover, due to their great metabolic versatility, such organisms highly regulate these processes in the cell and since virtually all such capabilities are dispensable, excellent experimental systems to study aspects of molecular control and biochemistry/physiology are available.

  7. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Jensen Paul A

    2011-09-01

    Full Text Available Abstract Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.

  8. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Cirera Salicio, Susanna; Zhernakova, Daria V.;

    2014-01-01

    for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches...... in humans and rodents, e.g. CSF1R and MARC2. Conclusions To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory......Background Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic...

  9. CytoKavosh: a cytoscape plug-in for finding network motifs in large biological networks.

    Science.gov (United States)

    Masoudi-Nejad, Ali; Ansariola, Mitra; Kashani, Zahra Razaghi Moghadam; Salehzadeh-Yazdi, Ali; Khakabimamaghani, Sahand

    2012-01-01

    Network motifs are small connected sub-graphs that have recently gathered much attention to discover structural behaviors of large and complex networks. Finding motifs with any size is one of the most important problems in complex and large networks. It needs fast and reliable algorithms and tools for achieving this purpose. CytoKavosh is one of the best choices for finding motifs with any given size in any complex network. It relies on a fast algorithm, Kavosh, which makes it faster than other existing tools. Kavosh algorithm applies some well known algorithmic features and includes tricky aspects, which make it an efficient algorithm in this field. CytoKavosh is a Cytoscape plug-in which supports us in finding motifs of given size in a network that is formerly loaded into the Cytoscape work-space (directed or undirected). High performance of CytoKavosh is achieved by dynamically linking highly optimized functions of Kavosh's C++ to the Cytoscape Java program, which makes this plug-in suitable for analyzing large biological networks. Some significant attributes of CytoKavosh is efficiency in time usage and memory and having no limitation related to the implementation in motif size. CytoKavosh is implemented in a visual environment Cytoscape that is convenient for the users to interact and create visual options to analyze the structural behavior of a network. This plug-in can work on any given network and is very simple to use and generates graphical results of discovered motifs with any required details. There is no specific Cytoscape plug-in, specific for finding the network motifs, based on original concept. So, we have introduced for the first time, CytoKavosh as the first plug-in, and we hope that this plug-in can be improved to cover other options to make it the best motif-analyzing tool.

  10. CytoKavosh: a cytoscape plug-in for finding network motifs in large biological networks.

    Directory of Open Access Journals (Sweden)

    Ali Masoudi-Nejad

    Full Text Available Network motifs are small connected sub-graphs that have recently gathered much attention to discover structural behaviors of large and complex networks. Finding motifs with any size is one of the most important problems in complex and large networks. It needs fast and reliable algorithms and tools for achieving this purpose. CytoKavosh is one of the best choices for finding motifs with any given size in any complex network. It relies on a fast algorithm, Kavosh, which makes it faster than other existing tools. Kavosh algorithm applies some well known algorithmic features and includes tricky aspects, which make it an efficient algorithm in this field. CytoKavosh is a Cytoscape plug-in which supports us in finding motifs of given size in a network that is formerly loaded into the Cytoscape work-space (directed or undirected. High performance of CytoKavosh is achieved by dynamically linking highly optimized functions of Kavosh's C++ to the Cytoscape Java program, which makes this plug-in suitable for analyzing large biological networks. Some significant attributes of CytoKavosh is efficiency in time usage and memory and having no limitation related to the implementation in motif size. CytoKavosh is implemented in a visual environment Cytoscape that is convenient for the users to interact and create visual options to analyze the structural behavior of a network. This plug-in can work on any given network and is very simple to use and generates graphical results of discovered motifs with any required details. There is no specific Cytoscape plug-in, specific for finding the network motifs, based on original concept. So, we have introduced for the first time, CytoKavosh as the first plug-in, and we hope that this plug-in can be improved to cover other options to make it the best motif-analyzing tool.

  11. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.

    Science.gov (United States)

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-01-01

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment. PMID:22850067

  12. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.

    Science.gov (United States)

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-07-12

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment.

  13. A New Computationally Efficient Measure of Topological Redundancy of Biological and Social Networks

    CERN Document Server

    Albert, Reka; Gitter, Anthony; Gursoy, Gamze; Hegde, Rashmi; Paul, Pradyut; Sivanathan, Gowri Sangeetha; Sontag, Eduardo

    2011-01-01

    It is well-known that biological and social interaction networks have a varying degree of redundancy, though a consensus of the precise cause of this is so far lacking. In this paper, we introduce a topological redundancy measure for labeled directed networks that is formal, computationally efficient and applicable to a variety of directed networks such as cellular signaling, metabolic and social interaction networks. We demonstrate the computational efficiency of our measure by computing its value and statistical significance on a number of biological and social networks with up to several thousands of nodes and edges. Our results suggest a number of interesting observations: (1) social networks are more redundant that their biological counterparts, (2) transcriptional networks are less redundant than signaling networks, (3) the topological redundancy of the C. elegans metabolic network is largely due to its inclusion of currency metabolites, and (4) the redundancy of signaling networks is highly (negatively...

  14. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  15. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  16. An approach to evaluate the topological significance of motifs and other patterns in regulatory networks

    Directory of Open Access Journals (Sweden)

    Wingender Edgar

    2009-05-01

    that enables to evaluate the topological significance of various connected patterns in a regulatory network. Applying this method onto transcriptional networks of three largely distinct organisms we could prove that it is highly suitable to identify most important pattern instances, but that neither motifs nor any pattern in general appear to play a particularly important role per se. From the results obtained so far, we conclude that the pairwise disconnectivity index will most likely prove useful as well in identifying other (higher-order pattern instances in transcriptional and other networks.

  17. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures

    OpenAIRE

    Poole, Matthew; Kentzoglanakis, Kyriakos

    2011-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modelling the dynamical behaviour of gene regulatory systems. More specifically, ACO is used for searching the discre...

  18. Reverse Engineering Sparse Gene Regulatory Networks Using Cubature Kalman Filter and Compressed Sensing

    Directo