WorldWideScience

Sample records for biological regulatory networks

  1. Bayesian variable selection and data integration for biological regulatory networks

    OpenAIRE

    Jensen, Shane T; Chen, Guang; Stoeckert, Jr, Christian J.

    2007-01-01

    A substantial focus of research in molecular biology are gene regulatory networks: the set of transcription factors and target genes which control the involvement of different biological processes in living cells. Previous statistical approaches for identifying gene regulatory networks have used gene expression data, ChIP binding data or promoter sequence data, but each of these resources provides only partial information. We present a Bayesian hierarchical model that integrates all three dat...

  2. Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks

    Institute of Scientific and Technical Information of China (English)

    Guixia Liu; Lei Liu; Chunyu Liu; Ming Zheng; Lanying Su; Chunguang Zhou

    2011-01-01

    Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly, in this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.

  3. What does biologically meaningful mean? A perspective on gene regulatory network validation

    OpenAIRE

    Walhout, Albertha JM

    2011-01-01

    Gene regulatory networks (GRNs) are rapidly being delineated, but their quality and biological meaning are often questioned. Here, I argue that biological meaning is challenging to define and discuss reasons why GRN validation should be interpreted cautiously.

  4. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kim Man-Sun

    2012-05-01

    Full Text Available Abstract Background Network motifs provided a “conceptual tool” for understanding the functional principles of biological networks, but such motifs have primarily been used to consider static network structures. Static networks, however, cannot be used to reveal time- and region-specific traits of biological systems. To overcome this limitation, we proposed the concept of a “spatiotemporal network motif,” a spatiotemporal sequence of network motifs of sub-networks which are active only at specific time points and body parts. Results On the basis of this concept, we analyzed the developmental gene regulatory network of the Drosophila melanogaster embryo. We identified spatiotemporal network motifs and investigated their distribution pattern in time and space. As a result, we found how key developmental processes are temporally and spatially regulated by the gene network. In particular, we found that nested feedback loops appeared frequently throughout the entire developmental process. From mathematical simulations, we found that mutual inhibition in the nested feedback loops contributes to the formation of spatial expression patterns. Conclusions Taken together, the proposed concept and the simulations can be used to unravel the design principle of developmental gene regulatory networks.

  5. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. PMID:26701126

  6. A Systems’ Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression, we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts.

  7. Social insect colony as a biological regulatory system: Information flow in dominance networks

    OpenAIRE

    Nandi, Anjan K.; Sumana, Annagiri; Bhattacharya, Kunal

    2014-01-01

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the...

  8. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function

    Science.gov (United States)

    Martin, O. C.; Krzywicki, A.; Zagorski, M.

    2016-07-01

    Living cells can maintain their internal states, react to changing environments, grow, differentiate, divide, etc. All these processes are tightly controlled by what can be called a regulatory program. The logic of the underlying control can sometimes be guessed at by examining the network of influences amongst genetic components. Some associated gene regulatory networks have been studied in prokaryotes and eukaryotes, unveiling various structural features ranging from broad distributions of out-degrees to recurrent "motifs", that is small subgraphs having a specific pattern of interactions. To understand what factors may be driving such structuring, a number of groups have introduced frameworks to model the dynamics of gene regulatory networks. In that context, we review here such in silico approaches and show how selection for phenotypes, i.e., network function, can shape network structure.

  9. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    OpenAIRE

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased...

  10. A systems biology approach identifies a regulatory network in parotid acinar cell terminal differentiation.

    Directory of Open Access Journals (Sweden)

    Melissa A Metzler

    Full Text Available The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process.A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation.Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1 activates the Mist1 promoter [corrected]. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation.This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  11. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental efforts. Clearly, what counts is the resultin vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. PMID:27075000

  12. A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation

    OpenAIRE

    Hvidsten Torgeir R; Jansson Stefan; Street Nathaniel

    2011-01-01

    Abstract Background Green plant leaves have always fascinated biologists as hosts for photosynthesis and providers of basic energy to many food webs. Today, comprehensive databases of gene expression data enable us to apply increasingly more advanced computational methods for reverse-engineering the regulatory network of leaves, and to begin to understand the gene interactions underlying complex emergent properties related to stress-response and development. These new systems biology methods ...

  13. Synthetic biological networks

    International Nuclear Information System (INIS)

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  14. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    Martinetz Thomas

    2009-01-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  15. Apprehending multicellularity: regulatory networks, genomics and evolution

    OpenAIRE

    Aravind, L.; Anantharaman, Vivek; Venancio, Thiago M.

    2009-01-01

    The genomic revolution has provided the first glimpses of the architecture of regulatory networks. Combined with evolutionary information, the “network view” of life processes leads to remarkable insights into how biological systems have been shaped by various forces. This understanding is critical because biological systems, including regulatory networks, are not products of engineering but of historical contingencies. In this light, we attempt a synthetic overview of the natural history of ...

  16. Mutational Robustness of Gene Regulatory Networks

    OpenAIRE

    Dijk, van, G.; Mourik, van, J.A.; Ham, van, R.C.H.J.

    2012-01-01

    Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor – target gene interactions) but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e....

  17. Regulatory networks, genes and glycerophospholipid biosynthesis pathway in schistosomiasis: a systems biology view for pharmacological intervention.

    Science.gov (United States)

    Shinde, Sonali; Mol, Milsee; Singh, Shailza

    2014-10-25

    Understanding network topology through embracing the global dynamical regulation of genes in an active state space rather than traditional one-gene-one trait approach facilitates the rational drug development process. Schistosomiasis, a neglected tropical disease, has glycerophospholipids as abundant molecules present on its surface. Lack of effective clinical solutions to treat pathogens encourages us to carry out systems-level studies that could contribute to the development of an effective therapy. Development of a strategy for identifying drug targets by combined genome-scale metabolic network and essentiality analyses through in silico approaches provides tantalizing opportunity to investigate the role of protein/substrate metabolism. A genome-scale metabolic network model reconstruction represents choline-phosphate cytidyltransferase as the rate limiting enzyme and regulates the rate of phosphatidylcholine (PC) biosynthesis. The uptake of choline was regulated by choline concentration, promoting the regulation of phosphocholine synthesis. In Schistosoma, the change in developmental stage could result from the availability of choline, hampering its developmental cycle. There are no structural reports for this protein. In order to inhibit the activity of choline-phosphate cytidyltransferase (CCT), it was modeled by homology modeling using 1COZ as the template from Bacillus subtilis. The transition-state stabilization and catalytic residues were mapped as 'HXGH' and 'RTEGISTT' motif. CCT catalyzes the formation of CDP-choline from phosphocholine in which nucleotidyltransferase adds CTP to phosphocholine. The presence of phosphocholine permits the parasite to survive in an immunologically hostile environment. This feature endeavors development of an inhibitor specific for cytidyltransferase in Schistosoma. Flavonolignans were used to inhibit this activity in which hydnowightin showed the highest affinity as compared to miltefosine. PMID:25149020

  18. Understanding regulatory networks requires more than computing a multitude of graph statistics. Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin et al.

    Science.gov (United States)

    Tkačik, Gašper

    2016-07-01

    The article by O. Martin and colleagues provides a much needed systematic review of a body of work that relates the topological structure of genetic regulatory networks to evolutionary selection for function. This connection is very important. Using the current wealth of genomic data, statistical features of regulatory networks (e.g., degree distributions, motif composition, etc.) can be quantified rather easily; it is, however, often unclear how to interpret the results. On a graph theoretic level the statistical significance of the results can be evaluated by comparing observed graphs to "randomized" ones (bravely ignoring the issue of how precisely to randomize!) and comparing the frequency of appearance of a particular network structure relative to a randomized null expectation. While this is a convenient operational test for statistical significance, its biological meaning is questionable. In contrast, an in-silico genotype-to-phenotype model makes explicit the assumptions about the network function, and thus clearly defines the expected network structures that can be compared to the case of no selection for function and, ultimately, to data.

  19. MicroRNA-1 properties in cancer regulatory networks and tumor biology.

    Science.gov (United States)

    Weiss, Martin; Brandenburg, Lars-Ove; Burchardt, Martin; Stope, Matthias B

    2016-08-01

    Short non-coding microRNAs have been identified to orchestrate crucial mechanisms in cancer progression and treatment resistance. MicroRNAs are involved in posttranscriptional modulation of gene expression and therefore represent promising targets for anticancer therapy. As mircoRNA-1 (miR-1) exerted to be predominantly downregulated in the majority of examined tumors, miR-1 is classified to be a tumor suppressor with high potential to diminish tumor development and therapy resistance. Here we review the complex functionality of miR-1 in tumor biology. PMID:27286699

  20. Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Directory of Open Access Journals (Sweden)

    Gidrol Xavier

    2008-02-01

    Full Text Available Abstract Background Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge. Results We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC devoted to BN structure learning. Conclusion We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.

  1. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  2. Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications.

    Directory of Open Access Journals (Sweden)

    Urmi Sengupta

    Full Text Available Type 2 diabetes mellitus (T2D is a multifactorial and genetically heterogeneous disease which leads to impaired glucose homeostasis and insulin resistance. The advanced form of disease causes acute cardiovascular, renal, neurological and microvascular complications. Thus there is a constant need to discover new and efficient treatment against the disease by seeking to uncover various novel alternate signalling mechanisms that can lead to diabetes and its associated complications. The present study allows detection of molecular targets by unravelling their role in altered biological pathways during diabetes and its associated risk factors and complications. We have used an integrated functional networks concept by merging co-expression network and interaction network to detect the transcriptionally altered pathways and regulations involved in the disease. Our analysis reports four novel significant networks which could lead to the development of diabetes and other associated dysfunctions. (a The first network illustrates the up regulation of TGFBRII facilitating oxidative stress and causing the expression of early transcription genes via MAPK pathway leading to cardiovascular and kidney related complications. (b The second network demonstrates novel interactions between GAPDH and inflammatory and proliferation candidate genes i.e., SUMO4 and EGFR indicating a new link between obesity and diabetes. (c The third network portrays unique interactions PTPN1 with EGFR and CAV1 which could lead to an impaired vascular function in diabetic nephropathy condition. (d Lastly, from our fourth network we have inferred that the interaction of beta-catenin with CDH5 and TGFBR1 through Smad molecules could contribute to endothelial dysfunction. A probability of emergence of kidney complication might be suggested in T2D condition. An experimental investigation on this aspect may further provide more decisive observation in drug target identification and better

  3. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  4. Sparsity in Model Gene Regulatory Networks

    International Nuclear Information System (INIS)

    We propose a gene regulatory network model which incorporates the microscopic interactions between genes and transcription factors. In particular the gene's expression level is determined by deterministic synchronous dynamics with contribution from excitatory interactions. We study the structure of networks that have a particular '' function '' and are subject to the natural selection pressure. The question of network robustness against point mutations is addressed, and we conclude that only a small part of connections defined as '' essential '' for cell's existence is fragile. Additionally, the obtained networks are sparse with narrow in-degree and broad out-degree, properties well known from experimental study of biological regulatory networks. Furthermore, during sampling procedure we observe that significantly different genotypes can emerge under mutation-selection balance. All the preceding features hold for the model parameters which lay in the experimentally relevant range. (author)

  5. Systems Biology Approach to the Dissection of the Complexity of Regulatory Networks in the S. scrofa Cardiocirculatory System

    Directory of Open Access Journals (Sweden)

    Paolo Martini

    2013-11-01

    Full Text Available Genome-wide experiments are routinely used to increase the understanding of the biological processes involved in the development and maintenance of a variety of pathologies. Although the technical feasibility of this type of experiment has improved in recent years, data analysis remains challenging. In this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. Here, we review strategies used in the gene set approach, and using datasets for the pig cardiocirculatory system as a case study, we demonstrate how the use of a combination of these strategies can enhance the interpretation of results. Gene set analyses are able to distinguish vessels from the heart and arteries from veins in a manner that is consistent with the different cellular composition of smooth muscle cells. By integrating microRNA elements in the regulatory circuits identified, we find that vessel specificity is maintained through specific miRNAs, such as miR-133a and miR-143, which show anti-correlated expression with their mRNA targets.

  6. Measuring the evolutionary rewiring of biological networks.

    Science.gov (United States)

    Shou, Chong; Bhardwaj, Nitin; Lam, Hugo Y K; Yan, Koon-Kiu; Kim, Philip M; Snyder, Michael; Gerstein, Mark B

    2011-01-01

    We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or "rewire", at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of "commonplace" networks such as family trees, co-authorships and linux-kernel function dependencies. PMID:21253555

  7. Measuring the evolutionary rewiring of biological networks.

    Directory of Open Access Journals (Sweden)

    Chong Shou

    Full Text Available We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or "rewire", at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of "commonplace" networks such as family trees, co-authorships and linux-kernel function dependencies.

  8. Functional Aspects of Biological Networks

    Science.gov (United States)

    Sneppen, Kim

    2007-03-01

    We discuss biological networks with respect to 1) relative positioning and importance of high degree nodes, 2) function and signaling, 3) logic and dynamics of regulation. Visually the soft modularity of many real world networks can be characterized in terms of number of high and low degrees nodes positioned relative to each other in a landscape analogue with mountains (high-degree nodes) and valleys (low-degree nodes). In these terms biological networks looks like rugged landscapes with separated peaks, hub proteins, which each are roughly as essential as any of the individual proteins on the periphery of the hub. Within each sup-domain of a molecular network one can often identify dynamical feedback mechanisms that falls into combinations of positive and negative feedback circuits. We will illustrate this with examples taken from phage regulation and bacterial uptake and regulation of small molecules. In particular we find that a double negative regulation often are replaced by a single positive link in unrelated organisms with same functional requirements. Overall we argue that network topology primarily reflects functional constraints. References: S. Maslov and K. Sneppen. ``Computational architecture of the yeast regulatory network." Phys. Biol. 2:94 (2005) A. Trusina et al. ``Functional alignment of regulatory networks: A study of temerate phages". Plos Computational Biology 1:7 (2005). J.B. Axelsen et al. ``Degree Landscapes in Scale-Free Networks" physics/0512075 (2005). A. Trusina et al. ``Hierarchy and Anti-Hierarchy in Real and Scale Free networks." PRL 92:178702 (2004) S. Semsey et al. ``Genetic Regulation of Fluxes: Iron Homeostasis of Escherichia coli". (2006) q-bio.MN/0609042

  9. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  10. Extracting protein regulatory networks with graphical models.

    Science.gov (United States)

    Grzegorczyk, Marco

    2007-09-01

    During the last decade the development of high-throughput biotechnologies has resulted in the production of exponentially expanding quantities of biological data, such as genomic and proteomic expression data. One fundamental problem in systems biology is to learn the architecture of biochemical pathways and regulatory networks in an inferential way from such postgenomic data. Along with the increasing amount of available data, a lot of novel statistical methods have been developed and proposed in the literature. This article gives a non-mathematical overview of three widely used reverse engineering methods, namely relevance networks, graphical Gaussian models, and Bayesian networks, whereby the focus is on their relative merits and shortcomings. In addition the reverse engineering results of these graphical methods on cytometric protein data from the RAF-signalling network are cross-compared via AUROC scatter plots. PMID:17893851

  11. Regulatory Office for Network Industries

    International Nuclear Information System (INIS)

    The main goal of the economic regulation of network industries is to ensure a balance between the interests of consumers and investors and to encourage providing high-quality goods and services. The task of the regulatory authority is to protect the interests of consumers against monopolistic behaviour of regulated enterprises. At the same time, the regulatory office has to protect the interests of investors by giving them an opportunity to achieve an adequate return on their investments. And last, but not least, the regulatory office has to provide regulated enterprises with appropriate incentives to make them function in an efficient and effective manner and to guarantee the security of delivery of energies and related services. All this creates an efficient regulatory framework that is capable of attracting the required amount and type of investments. This also means providing third party access to the grids, the opening of energy markets, the un-bundling of accounts according to production, distribution, transmission and other activities and the establishment of a transparent and stable legislative environment for regulated companies, investors and consumers. Otherwise, in the long run consumers may suffer from a serious deterioration of service quality, although in the short run they are protected against increased prices. Under the Act No. 276/2001 Coll. on Regulation of Network Industries and on amendment of some acts the Office for Regulation of Network Industries has been commissioned to implement the main objectives of regulation of network industries. By network industries the Act No. 276/2001 Coll. on Regulation means the following areas: (a) Production, purchase, transit and distribution of electricity; (b) Production, purchase, transit and distribution of gas; (c) Production, purchase and distribution of heat; (d) Water management activities relating to the operation of the public water supply system or the public sewerage system; (e) Water management

  12. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    Directory of Open Access Journals (Sweden)

    Joana P Gonçalves

    Full Text Available Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1 apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2 ignore local patterns, abundant in most interesting cases of transcriptional activity; (3 neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4 limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots. Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in

  13. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    Science.gov (United States)

    Gonçalves, Joana P; Aires, Ricardo S; Francisco, Alexandre P; Madeira, Sara C

    2012-01-01

    Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched

  14. Design principles in biological networks

    Science.gov (United States)

    Goyal, Sidhartha

    Much of biology emerges from networks of interactions. Even in a single bacterium such as Escherichia coli, there are hundreds of coexisting gene and protein networks. Although biological networks are the outcome of evolution, various physical and biological constraints limit their functional capacity. The focus of this thesis is to understand how functional constraints such as optimal growth in mircoorganisms and information flow in signaling pathways shape the metabolic network of bacterium E. coli and the quorum sensing network of marine bacterium Vibrio harveyi, respectively. Metabolic networks convert basic elemental sources into complex building-blocks eventually leading to cell's growth. Therefore, typically, metabolic pathways are often coupled both by the use of a common substrate and by stoichiometric utilization of their products for cell growth. We showed that such a coupled network with product-feedback inhibition may exhibit limit-cycle oscillations which arise via a Hopf bifurcation. Furthermore, we analyzed several representative metabolic modules and find that, in all cases, simple product-feedback inhibition allows nearly optimal growth, in agreement with the predicted growth-rate by the flux-balance analysis (FBA). Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum sensing (QS) systems. The QS circuit of V. harveyi integrates and funnels different ecological information through a common phosphorelay cascade to a set of small regulatory RNAs (sRNAs) that enables collective behavior. We analyzed the signaling properties and information flow in the QS circuit, which provides a model for information flow in signaling networks more generally. A comparative study of post-transcriptional and conventional transcriptional regulation suggest a niche for sRNAs in allowing cells to transition quickly yet reliably between distinct states. Furthermore, we develop a new framework for analyzing signal

  15. Construction of gene regulatory networks using biclustering and bayesian networks

    OpenAIRE

    Alakwaa Fadhl M; Solouma Nahed H; Kadah Yasser M

    2011-01-01

    Abstract Background Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA mi...

  16. Networks in Cell Biology = Modelling cell biology with networks

    OpenAIRE

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, M.

    2010-01-01

    The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It ...

  17. Modeling parsimonious putative regulatory networks: complexity and heuristic approach

    OpenAIRE

    Acuña, Vicente; Aravena, Andrés; Maass, Alejandro; Siegel, Anne

    2014-01-01

    International audience A relevant problem in systems biology is the description of the regulatory interactions between genes. It is observed that pairs of genes have significant correlation through several experimental conditions. The question is to find causal relationships that can explain this experimental evidence. A putative regulatory network can be represented by an oriented weighted graph, where vertices represent genes, arcs represent predicted regulatory interactions and the arc ...

  18. Master Regulators, Regulatory Networks, and Pathways of Glioblastoma Subtypes

    OpenAIRE

    Serdar Bozdag; Aiguo Li; Mehmet Baysan; Fine, Howard A.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor. GBM samples are classified into subtypes based on their transcriptomic and epigenetic profiles. Despite numerous studies to better characterize GBM biology, a comprehensive study to identify GBM subtype- specific master regulators, gene regulatory networks, and pathways is missing. Here, we used FastMEDUSA to compute master regulators and gene regulatory networks for each GBM subtype. We also ran Gene Set Enrichment Analy...

  19. Dynamics of network motifs in genetic regulatory networks

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Liu Zeng-Rong; Zhang Jian-Bao

    2007-01-01

    Network motifs hold a very important status in genetic regulatory networks. This paper aims to analyse the dynamical property of the network motifs in genetic regulatory networks. The main result we obtained is that the dynamical property of a single motif is very simple with only an asymptotically stable equilibrium point, but the combination of several motifs can make more complicated dynamical properties emerge such as limit cycles. The above-mentioned result shows that network motif is a stable substructure in genetic regulatory networks while their combinations make the genetic regulatory network more complicated.

  20. Metabolic constraint-based refinement of transcriptional regulatory networks.

    Science.gov (United States)

    Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    There is a strong need for computational frameworks that integrate different biological processes and data-types to unravel cellular regulation. Current efforts to reconstruct transcriptional regulatory networks (TRNs) focus primarily on proximal data such as gene co-expression and transcription factor (TF) binding. While such approaches enable rapid reconstruction of TRNs, the overwhelming combinatorics of possible networks limits identification of mechanistic regulatory interactions. Utilizing growth phenotypes and systems-level constraints to inform regulatory network reconstruction is an unmet challenge. We present our approach Gene Expression and Metabolism Integrated for Network Inference (GEMINI) that links a compendium of candidate regulatory interactions with the metabolic network to predict their systems-level effect on growth phenotypes. We then compare predictions with experimental phenotype data to select phenotype-consistent regulatory interactions. GEMINI makes use of the observation that only a small fraction of regulatory network states are compatible with a viable metabolic network, and outputs a regulatory network that is simultaneously consistent with the input genome-scale metabolic network model, gene expression data, and TF knockout phenotypes. GEMINI preferentially recalls gold-standard interactions (p-value = 10(-172)), significantly better than using gene expression alone. We applied GEMINI to create an integrated metabolic-regulatory network model for Saccharomyces cerevisiae involving 25,000 regulatory interactions controlling 1597 metabolic reactions. The model quantitatively predicts TF knockout phenotypes in new conditions (p-value = 10(-14)) and revealed potential condition-specific regulatory mechanisms. Our results suggest that a metabolic constraint-based approach can be successfully used to help reconstruct TRNs from high-throughput data, and highlights the potential of using a biochemically-detailed mechanistic framework to

  1. A genomic regulatory network for development

    Science.gov (United States)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; Otim, Ochan; Brown, C. Titus; Livi, Carolina B.; Lee, Pei Yun; Revilla, Roger; Rust, Alistair G.; Pan, Zheng jun; Schilstra, Maria J.; Clarke, Peter J C.; Arnone, Maria I.; Rowen, Lee; Cameron, R. Andrew; McClay, David R.; Hood, Leroy; Bolouri, Hamid

    2002-01-01

    Development of the body plan is controlled by large networks of regulatory genes. A gene regulatory network that controls the specification of endoderm and mesoderm in the sea urchin embryo is summarized here. The network was derived from large-scale perturbation analyses, in combination with computational methodologies, genomic data, cis-regulatory analysis, and molecular embryology. The network contains over 40 genes at present, and each node can be directly verified at the DNA sequence level by cis-regulatory analysis. Its architecture reveals specific and general aspects of development, such as how given cells generate their ordained fates in the embryo and why the process moves inexorably forward in developmental time.

  2. Inference of Gene Regulatory Network Based on Local Bayesian Networks

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Chen, Luonan

    2016-01-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  3. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  4. ReNE: a cytoscape plugin for regulatory network enhancement.

    Science.gov (United States)

    Politano, Gianfranco; Benso, Alfredo; Savino, Alessandro; Di Carlo, Stefano

    2014-01-01

    One of the biggest challenges in the study of biological regulatory mechanisms is the integration, americanmodeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs) are widely investigated in current research, their usage and visualization in biological networks is very limited. Regulatory networks are commonly limited to gene entities. To integrate networks with post transcriptional regulatory data, researchers are therefore forced to manually resort to specific third party databases. In this context, we introduce ReNE, a Cytoscape 3.x plugin designed to automatically enrich a standard gene-based regulatory network with more detailed transcriptional, post transcriptional, and translational data, resulting in an enhanced network that more precisely models the actual biological regulatory mechanisms. ReNE can automatically import a network layout from the Reactome or KEGG repositories, or work with custom pathways described using a standard OWL/XML data format that the Cytoscape import procedure accepts. Moreover, ReNE allows researchers to merge multiple pathways coming from different sources. The merged network structure is normalized to guarantee a consistent and uniform description of the network nodes and edges and to enrich all integrated data with additional annotations retrieved from genome-wide databases like NCBI, thus producing a pathway fully manageable through the Cytoscape environment. The normalized network is then analyzed to include missing transcription factors, miRNAs, and proteins. The resulting enhanced network is still a fully functional Cytoscape network where each regulatory element (transcription factor, miRNA, gene, protein) and regulatory mechanism (up-regulation/down-regulation) is clearly visually identifiable, thus enabling a better visual understanding of its role and the effect in the network behavior. The enhanced network produced by Re

  5. ReNE: a cytoscape plugin for regulatory network enhancement.

    Directory of Open Access Journals (Sweden)

    Gianfranco Politano

    Full Text Available One of the biggest challenges in the study of biological regulatory mechanisms is the integration, americanmodeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs are widely investigated in current research, their usage and visualization in biological networks is very limited. Regulatory networks are commonly limited to gene entities. To integrate networks with post transcriptional regulatory data, researchers are therefore forced to manually resort to specific third party databases. In this context, we introduce ReNE, a Cytoscape 3.x plugin designed to automatically enrich a standard gene-based regulatory network with more detailed transcriptional, post transcriptional, and translational data, resulting in an enhanced network that more precisely models the actual biological regulatory mechanisms. ReNE can automatically import a network layout from the Reactome or KEGG repositories, or work with custom pathways described using a standard OWL/XML data format that the Cytoscape import procedure accepts. Moreover, ReNE allows researchers to merge multiple pathways coming from different sources. The merged network structure is normalized to guarantee a consistent and uniform description of the network nodes and edges and to enrich all integrated data with additional annotations retrieved from genome-wide databases like NCBI, thus producing a pathway fully manageable through the Cytoscape environment. The normalized network is then analyzed to include missing transcription factors, miRNAs, and proteins. The resulting enhanced network is still a fully functional Cytoscape network where each regulatory element (transcription factor, miRNA, gene, protein and regulatory mechanism (up-regulation/down-regulation is clearly visually identifiable, thus enabling a better visual understanding of its role and the effect in the network behavior. The enhanced

  6. Topology of transcriptional regulatory networks: testing and improving.

    Directory of Open Access Journals (Sweden)

    Dicle Hasdemir

    Full Text Available With the increasing amount and complexity of data generated in biological experiments it is becoming necessary to enhance the performance and applicability of existing statistical data analysis methods. This enhancement is needed for the hidden biological information to be better resolved and better interpreted. Towards that aim, systematic incorporation of prior information in biological data analysis has been a challenging problem for systems biology. Several methods have been proposed to integrate data from different levels of information most notably from metabolomics, transcriptomics and proteomics and thus enhance biological interpretation. However, in order not to be misled by the dominance of incorrect prior information in the analysis, being able to discriminate between competing prior information is required. In this study, we show that discrimination between topological information in competing transcriptional regulatory network models is possible solely based on experimental data. We use network topology dependent decomposition of synthetic gene expression data to introduce both local and global discriminating measures. The measures indicate how well the gene expression data can be explained under the constraints of the model network topology and how much each regulatory connection in the model refuses to be constrained. Application of the method to the cell cycle regulatory network of Saccharomyces cerevisiae leads to the prediction of novel regulatory interactions, improving the information content of the hypothesized network model.

  7. Towards a predictive theory for genetic regulatory networks

    Science.gov (United States)

    Tkacik, Gasper

    When cells respond to changes in the environment by regulating the expression levels of their genes, we often draw parallels between these biological processes and engineered information processing systems. One can go beyond this qualitative analogy, however, by analyzing information transmission in biochemical ``hardware'' using Shannon's information theory. Here, gene regulation is viewed as a transmission channel operating under restrictive constraints set by the resource costs and intracellular noise. We present a series of results demonstrating that a theory of information transmission in genetic regulatory circuits feasibly yields non-trivial, testable predictions. These predictions concern strategies by which individual gene regulatory elements, e.g., promoters or enhancers, read out their signals; as well as strategies by which small networks of genes, independently or in spatially coupled settings, respond to their inputs. These predictions can be quantitatively compared to the known regulatory networks and their function, and can elucidate how reproducible biological processes, such as embryonic development, can be orchestrated by networks built out of noisy components. Preliminary successes in the gap gene network of the fruit fly Drosophila indicate that a full ab initio theoretical prediction of a regulatory network is possible, a feat that has not yet been achieved for any real regulatory network. We end by describing open challenges on the path towards such a prediction.

  8. Evolutionary conservation and over-representation of functionally enriched network patterns in the yeast regulatory network

    Directory of Open Access Journals (Sweden)

    Shlomi Tomer

    2007-01-01

    Full Text Available Abstract Background Localized network patterns are assumed to represent an optimal design principle in different biological networks. A widely used method for identifying functional components in biological networks is looking for network motifs – over-represented network patterns. A number of recent studies have undermined the claim that these over-represented patterns are indicative of optimal design principles and question whether localized network patterns are indeed of functional significance. This paper examines the functional significance of regulatory network patterns via their biological annotation and evolutionary conservation. Results We enumerate all 3-node network patterns in the regulatory network of the yeast S. cerevisiae and examine the biological GO annotation and evolutionary conservation of their constituent genes. Specific 3-node patterns are found to be functionally enriched in different exogenous cellular conditions and thus may represent significant functional components. These functionally enriched patterns are composed mainly of recently evolved genes suggesting that there is no evolutionary pressure acting to preserve such functionally enriched patterns. No correlation is found between over-representation of network patterns and functional enrichment. Conclusion The findings of functional enrichment support the view that network patterns constitute an important design principle in regulatory networks. However, the wildly used method of over-representation for detecting motifs is not suitable for identifying functionally enriched patterns.

  9. Evolution, Interactions, and Biological Networks

    OpenAIRE

    Weitz, Joshua S.; Benfey, Philip N.; Wingreen, Ned S.

    2007-01-01

    Shifting the perspective of the questions we ask will ensure that network theory continues to excite the network theorists, but more importantly, that it remains vital to progress in biological research.

  10. Logical impossibilities in biological networks

    Directory of Open Access Journals (Sweden)

    Monendra Grover

    2011-10-01

    Full Text Available Biological networks are complex and involve several kinds of molecules. For proper biological function it is important for these biomolecules to act at an individual level and act at the level of interaction of these molecules. In this paper some of the logical impossibilities that may arise in the biological networks and their possible solutions are discussed. It may be important to understand these paradoxes and their possible solutions in order to develop a holistic view of biological function.

  11. Simplified models of biological networks.

    Science.gov (United States)

    Sneppen, Kim; Krishna, Sandeep; Semsey, Szabolcs

    2010-01-01

    The function of living cells is controlled by complex regulatory networks that are built of a wide diversity of interacting molecular components. The sheer size and intricacy of molecular networks of even the simplest organisms are obstacles toward understanding network functionality. This review discusses the achievements and promise of a bottom-up approach that uses well-characterized subnetworks as model systems for understanding larger networks. It highlights the interplay between the structure, logic, and function of various types of small regulatory circuits. The bottom-up approach advocates understanding regulatory networks as a collection of entangled motifs. We therefore emphasize the potential of negative and positive feedback, as well as their combinations, to generate robust homeostasis, epigenetics, and oscillations. PMID:20192769

  12. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  13. Dissecting microregulation of a master regulatory network

    Directory of Open Access Journals (Sweden)

    Kaimal Vivek

    2008-02-01

    Full Text Available Abstract Background The master regulator p53 tumor-suppressor protein through coordination of several downstream target genes and upstream transcription factors controls many pathways important for tumor suppression. While it has been reported that some of the p53's functions are microRNA-mediated, it is not known as to how many other microRNAs might contribute to the p53-mediated tumorigenesis. Results Here, we use bioinformatics-based integrative approach to identify and prioritize putative p53-regulated miRNAs, and unravel the miRNA-based microregulation of the p53 master regulatory network. Specifically, we identify putative microRNA regulators of a transcription factors that are upstream or downstream to p53 and b p53 interactants. The putative p53-miRs and their targets are prioritized using current knowledge of cancer biology and literature-reported cancer-miRNAs. Conclusion Our predicted p53-miRNA-gene networks strongly suggest that coordinated transcriptional and p53-miR mediated networks could be integral to tumorigenesis and the underlying processes and pathways.

  14. Functional alignment of regulatory networks: a study of temperate phages.

    Directory of Open Access Journals (Sweden)

    Ala Trusina

    2005-12-01

    Full Text Available The relationship between the design and functionality of molecular networks is now a key issue in biology. Comparison of regulatory networks performing similar tasks can provide insights into how network architecture is constrained by the functions it directs. Here, we discuss methods of network comparison based on network architecture and signaling logic. Introducing local and global signaling scores for the difference between two networks, we quantify similarities between evolutionarily closely and distantly related bacteriophages. Despite the large evolutionary separation between phage lambda and 186, their networks are found to be similar when difference is measured in terms of global signaling. We finally discuss how network alignment can be used to pinpoint protein similarities viewed from the network perspective.

  15. Querying Large Biological Network Datasets

    Science.gov (United States)

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  16. Linking network topology to function. Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki and M. Zagorski

    Science.gov (United States)

    di Bernardo, Diego

    2016-07-01

    The review by Martin et al. deals with a long standing problem at the interface of complex systems and molecular biology, that is the relationship between the topology of a complex network and its function. In biological terms the problem translates to relating the topology of gene regulatory networks (GRNs) to specific cellular functions. GRNs control the spatial and temporal activity of the genes encoded in the cell's genome by means of specialised proteins called Transcription Factors (TFs). A TF is able to recognise and bind specifically to a sequence (TF biding site) of variable length (order of magnitude of 10) found upstream of the sequence encoding one or more genes (at least in prokaryotes) and thus activating or repressing their transcription. TFs can thus be distinguished in activator and repressor. The picture can become more complex since some classes of TFs can form hetero-dimers consisting of a protein complex whose subunits are the individual TFs. Heterodimers can have completely different binding sites and activity compared to their individual parts. In this review the authors limit their attention to prokaryotes where the complexity of GRNs is somewhat reduced. Moreover they exploit a unique feature of living systems, i.e. evolution, to understand whether function can shape network topology. Indeed, prokaryotes such as bacteria are among the oldest living systems that have become perfectly adapted to their environment over geological scales and thus have reached an evolutionary steady-state where the fitness of the population has reached a plateau. By integrating in silico analysis and comparative evolution, the authors show that indeed function does tend to shape the structure of a GRN, however this trend is not always present and depends on the properties of the network being examined. Interestingly, the trend is more apparent for sparse networks, i.e. where the density of edges is very low. Sparsity is indeed one of the most prominent features

  17. Linking network topology to function. Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki and M. Zagorski

    Science.gov (United States)

    di Bernardo, Diego

    2016-07-01

    The review by Martin et al. deals with a long standing problem at the interface of complex systems and molecular biology, that is the relationship between the topology of a complex network and its function. In biological terms the problem translates to relating the topology of gene regulatory networks (GRNs) to specific cellular functions. GRNs control the spatial and temporal activity of the genes encoded in the cell's genome by means of specialised proteins called Transcription Factors (TFs). A TF is able to recognise and bind specifically to a sequence (TF biding site) of variable length (order of magnitude of 10) found upstream of the sequence encoding one or more genes (at least in prokaryotes) and thus activating or repressing their transcription. TFs can thus be distinguished in activator and repressor. The picture can become more complex since some classes of TFs can form hetero-dimers consisting of a protein complex whose subunits are the individual TFs. Heterodimers can have completely different binding sites and activity compared to their individual parts. In this review the authors limit their attention to prokaryotes where the complexity of GRNs is somewhat reduced. Moreover they exploit a unique feature of living systems, i.e. evolution, to understand whether function can shape network topology. Indeed, prokaryotes such as bacteria are among the oldest living systems that have become perfectly adapted to their environment over geological scales and thus have reached an evolutionary steady-state where the fitness of the population has reached a plateau. By integrating in silico analysis and comparative evolution, the authors show that indeed function does tend to shape the structure of a GRN, however this trend is not always present and depends on the properties of the network being examined. Interestingly, the trend is more apparent for sparse networks, i.e. where the density of edges is very low. Sparsity is indeed one of the most prominent features

  18. Integrating heterogeneous gene expression data for gene regulatory network modelling.

    Science.gov (United States)

    Sîrbu, Alina; Ruskin, Heather J; Crane, Martin

    2012-06-01

    Gene regulatory networks (GRNs) are complex biological systems that have a large impact on protein levels, so that discovering network interactions is a major objective of systems biology. Quantitative GRN models have been inferred, to date, from time series measurements of gene expression, but at small scale, and with limited application to real data. Time series experiments are typically short (number of time points of the order of ten), whereas regulatory networks can be very large (containing hundreds of genes). This creates an under-determination problem, which negatively influences the results of any inferential algorithm. Presented here is an integrative approach to model inference, which has not been previously discussed to the authors' knowledge. Multiple heterogeneous expression time series are used to infer the same model, and results are shown to be more robust to noise and parameter perturbation. Additionally, a wavelet analysis shows that these models display limited noise over-fitting within the individual datasets. PMID:21948152

  19. Reconstructing Causal Biological Networks through Active Learning.

    Science.gov (United States)

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  20. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  1. Evolution of evolvability in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Anton Crombach

    Full Text Available Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question. An individual-oriented evolutionary model is used to shed light on this matter. Each individual has a genome from which its gene regulatory network is derived. Mutations, such as gene duplications and deletions, alter the genome, while the resulting network determines the gene expression pattern and hence fitness. With this protocol we let a population of individuals evolve under Darwinian selection in an environment that changes through time. Our work demonstrates that long-term evolution of complex gene regulatory networks in a changing environment can lead to a striking increase in the efficiency of generating beneficial mutations. We show that the population evolves towards genotype-phenotype mappings that allow for an orchestrated network-wide change in the gene expression pattern, requiring only a few specific gene indels. The genes involved are hubs of the networks, or directly influencing the hubs. Moreover, throughout the evolutionary trajectory the networks maintain their mutational robustness. In other words, evolution in an alternating environment leads to a network that is sensitive to a small class of beneficial mutations, while the majority of mutations remain neutral: an example of evolution of evolvability.

  2. Stabilizing gene regulatory networks through feedforward loops

    Science.gov (United States)

    Kadelka, C.; Murrugarra, D.; Laubenbacher, R.

    2013-06-01

    The global dynamics of gene regulatory networks are known to show robustness to perturbations in the form of intrinsic and extrinsic noise, as well as mutations of individual genes. One molecular mechanism underlying this robustness has been identified as the action of so-called microRNAs that operate via feedforward loops. We present results of a computational study, using the modeling framework of stochastic Boolean networks, which explores the role that such network motifs play in stabilizing global dynamics. The paper introduces a new measure for the stability of stochastic networks. The results show that certain types of feedforward loops do indeed buffer the network against stochastic effects.

  3. HIDEN: Hierarchical decomposition of regulatory networks

    Directory of Open Access Journals (Sweden)

    Gülsoy Günhan

    2012-09-01

    Full Text Available Abstract Background Transcription factors regulate numerous cellular processes by controlling the rate of production of each gene. The regulatory relations are modeled using transcriptional regulatory networks. Recent studies have shown that such networks have an underlying hierarchical organization. We consider the problem of discovering the underlying hierarchy in transcriptional regulatory networks. Results We first transform this problem to a mixed integer programming problem. We then use existing tools to solve the resulting problem. For larger networks this strategy does not work due to rapid increase in running time and space usage. We use divide and conquer strategy for such networks. We use our method to analyze the transcriptional regulatory networks of E. coli, H. sapiens and S. cerevisiae. Conclusions Our experiments demonstrate that: (i Our method gives statistically better results than three existing state of the art methods; (ii Our method is robust against errors in the data and (iii Our method’s performance is not affected by the different topologies in the data.

  4. Gene Regulatory Network Reconstruction Using Conditional Mutual Information

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2008-06-01

    Full Text Available The inference of gene regulatory network from expression data is an important area of research that provides insight to the inner workings of a biological system. The relevance-network-based approaches provide a simple and easily-scalable solution to the understanding of interaction between genes. Up until now, most works based on relevance network focus on the discovery of direct regulation using correlation coefficient or mutual information. However, some of the more complicated interactions such as interactive regulation and coregulation are not easily detected. In this work, we propose a relevance network model for gene regulatory network inference which employs both mutual information and conditional mutual information to determine the interactions between genes. For this purpose, we propose a conditional mutual information estimator based on adaptive partitioning which allows us to condition on both discrete and continuous random variables. We provide experimental results that demonstrate that the proposed regulatory network inference algorithm can provide better performance when the target network contains coregulated and interactively regulated genes.

  5. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You

    2014-01-01

    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  6. A stochastic differential equation model for transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Quirk Michelle D

    2007-05-01

    Full Text Available Abstract Background This work explores the quantitative characteristics of the local transcriptional regulatory network based on the availability of time dependent gene expression data sets. The dynamics of the gene expression level are fitted via a stochastic differential equation model, yielding a set of specific regulators and their contribution. Results We show that a beta sigmoid function that keeps track of temporal parameters is a novel prototype of a regulatory function, with the effect of improving the performance of the profile prediction. The stochastic differential equation model follows well the dynamic of the gene expression levels. Conclusion When adapted to biological hypotheses and combined with a promoter analysis, the method proposed here leads to improved models of the transcriptional regulatory networks.

  7. New scaling relation for information transfer in biological networks.

    Science.gov (United States)

    Kim, Hyunju; Davies, Paul; Walker, Sara Imari

    2015-12-01

    We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781-4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös-Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883

  8. Construction of gene regulatory networks using biclustering and bayesian networks

    Directory of Open Access Journals (Sweden)

    Alakwaa Fadhl M

    2011-10-01

    Full Text Available Abstract Background Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling. Results In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method. Conclusions Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods.

  9. Inferring the conservative causal core of gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Emmert-Streib Frank

    2010-09-01

    Full Text Available Abstract Background Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically. Results In this paper, we introduce a novel gene regulatory network inference (GRNI algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently. Conclusions For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.

  10. Topological effects of data incompleteness of gene regulatory networks

    CERN Document Server

    Sanz, J; Borge-Holthoefer, J; Moreno, Y

    2012-01-01

    The topological analysis of biological networks has been a prolific topic in network science during the last decade. A persistent problem with this approach is the inherent uncertainty and noisy nature of the data. One of the cases in which this situation is more marked is that of transcriptional regulatory networks (TRNs) in bacteria. The datasets are incomplete because regulatory pathways associated to a relevant fraction of bacterial genes remain unknown. Furthermore, direction, strengths and signs of the links are sometimes unknown or simply overlooked. Finally, the experimental approaches to infer the regulations are highly heterogeneous, in a way that induces the appearance of systematic experimental-topological correlations. And yet, the quality of the available data increases constantly. In this work we capitalize on these advances to point out the influence of data (in)completeness and quality on some classical results on topological analysis of TRNs, specially regarding modularity at different level...

  11. Benchmarking regulatory network reconstruction with GRENDEL

    OpenAIRE

    Haynes, Brian C; Brent, Michael R.

    2009-01-01

    Motivation: Over the past decade, the prospect of inferring networks of gene regulation from high-throughput experimental data has received a great deal of attention. In contrast to the massive effort that has gone into automated deconvolution of biological networks, relatively little effort has been invested in benchmarking the proposed algorithms. The rate at which new network inference methods are being proposed far outpaces our ability to objectively evaluate and compare them. This is lar...

  12. Modeling Emergence in Neuroprotective Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.; Stevens, S.L.; Stenzel-Poore, Mary

    2013-01-05

    The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatory networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.

  13. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research.

    Science.gov (United States)

    Li, Junyi; Li, Yi-Xue; Li, Yuan-Yuan

    2016-01-01

    With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA) based on gene coexpression network (GCN) increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review the paradigm of differential regulatory analysis based on GCN. We also focus on the applications of differential regulatory analysis based on GCN in cancer research and point out that DRA is necessary and extraordinary to reveal underlying molecular mechanism in large-scale carcinogenesis studies. PMID:27597964

  14. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research

    Directory of Open Access Journals (Sweden)

    Junyi Li

    2016-01-01

    Full Text Available With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA based on gene coexpression network (GCN increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review the paradigm of differential regulatory analysis based on GCN. We also focus on the applications of differential regulatory analysis based on GCN in cancer research and point out that DRA is necessary and extraordinary to reveal underlying molecular mechanism in large-scale carcinogenesis studies.

  15. Inferring biological networks by sparse identification of nonlinear dynamics

    OpenAIRE

    Mangan, Niall M.; Brunton, Steven L.; Proctor, Joshua L.; Kutz, J Nathan

    2016-01-01

    Inferring the structure and dynamics of network models is critical to understanding the functionality and control of complex systems, such as metabolic and regulatory biological networks. The increasing quality and quantity of experimental data enable statistical approaches based on information theory for model selection and goodness-of-fit metrics. We propose an alternative method to infer networked nonlinear dynamical systems by using sparsity-promoting $\\ell_1$ optimization to select a sub...

  16. Modeling Regulatory Networks to Understand Plant Development: Small Is Beautiful

    Science.gov (United States)

    Middleton, Alistair M.; Farcot, Etienne; Owen, Markus R.; Vernoux, Teva

    2012-01-01

    We now have unprecedented capability to generate large data sets on the myriad genes and molecular players that regulate plant development. Networks of interactions between systems components can be derived from that data in various ways and can be used to develop mathematical models of various degrees of sophistication. Here, we discuss why, in many cases, it is productive to focus on small networks. We provide a brief and accessible introduction to relevant mathematical and computational approaches to model regulatory networks and discuss examples of small network models that have helped generate new insights into plant biology (where small is beautiful), such as in circadian rhythms, hormone signaling, and tissue patterning. We conclude by outlining some of the key technical and modeling challenges for the future. PMID:23110896

  17. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  18. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    OpenAIRE

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen met...

  19. Global analysis of photosynthesis transcriptional regulatory networks.

    OpenAIRE

    Saheed Imam; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen met...

  20. Adaptation by Plasticity of Genetic Regulatory Networks

    Science.gov (United States)

    Brenner, Naama

    2007-03-01

    Genetic regulatory networks have an essential role in adaptation and evolution of cell populations. This role is strongly related to their dynamic properties over intermediate-to-long time scales. We have used the budding yeast as a model Eukaryote to study the long-term dynamics of the genetic regulatory system and its significance in evolution. A continuous cell growth technique (chemostat) allows us to monitor these systems over long times under controlled condition, enabling a quantitative characterization of dynamics: steady states and their stability, transients and relaxation. First, we have demonstrated adaptive dynamics in the GAL system, a classic model for a Eukaryotic genetic switch, induced and repressed by different carbon sources in the environment. We found that both induction and repression are only transient responses; over several generations, the system converges to a single robust steady state, independent of external conditions. Second, we explored the functional significance of such plasticity of the genetic regulatory network in evolution. We used genetic engineering to mimic the natural process of gene recruitment, placing the gene HIS3 under the regulation of the GAL system. Such genetic rewiring events are important in the evolution of gene regulation, but little is known about the physiological processes supporting them and the dynamics of their assimilation in a cell population. We have shown that cells carrying the rewired genome adapted to a demanding change of environment and stabilized a population, maintaining the adaptive state for hundreds of generations. Using genome-wide expression arrays we showed that underlying the observed adaptation is a global transcriptional programming that allowed tuning expression of the recruited gene to demands. Our results suggest that non-specific properties reflecting the natural plasticity of the regulatory network support adaptation of cells to novel challenges and enhance their evolvability.

  1. Noise Control in Gene Regulatory Networks with Negative Feedback.

    Science.gov (United States)

    Hinczewski, Michael; Thirumalai, D

    2016-07-01

    Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise. PMID:27095600

  2. Analysis of deterministic cyclic gene regulatory network models with delays

    CERN Document Server

    Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian

    2015-01-01

    This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.

  3. RMOD: a tool for regulatory motif detection in signaling network.

    Science.gov (United States)

    Kim, Jinki; Yi, Gwan-Su

    2013-01-01

    Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod. PMID:23874612

  4. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  5. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens

    Science.gov (United States)

    Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-01-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523

  6. On the Interplay between Entropy and Robustness of Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2010-05-01

    Full Text Available The interplay between entropy and robustness of gene network is a core mechanism of systems biology. The entropy is a measure of randomness or disorder of a physical system due to random parameter fluctuation and environmental noises in gene regulatory networks. The robustness of a gene regulatory network, which can be measured as the ability to tolerate the random parameter fluctuation and to attenuate the effect of environmental noise, will be discussed from the robust H∞ stabilization and filtering perspective. In this review, we will also discuss their balancing roles in evolution and potential applications in systems and synthetic biology.

  7. Research of Gene Regulatory Network with Multi-Time Delay Based on Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    LIU Bei; MENG Fanjiang; LI Yong; LIU Liyan

    2008-01-01

    The gene regulatory network was reconstructed according to time-series microarray data getting from hybridization at different time between gene chips to analyze coordination and restriction between genes. An algorithm for controlling the gene expression regulatory network of the whole cell was designed using Bayesian network which provides an effective aided analysis for gene regulatory network.

  8. Duplication: a Mechanism Producing Disassortative Mixing Networks in Biology

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; LIU Zeng-Rong; WANG Jia-Zeng

    2007-01-01

    Assortative/disassortative mixing is an important topological property of a network. A network is called assortative mixing if the nodes in the network tend to connect to their connectivity peers, or disassortative mixing if nodes with low degrees are more likely to connect with high-degree nodes. We have known that biological networks such as protein-protein interaction networks (PPI), gene regulatory networks, and metabolic networks tend to be disassortative. On the other hand, in biological evolution, duplication and divergence are two fundamental processes. In order to make the relationship between the property of disassortative mixing and the two basic biological principles clear and to study the cause of the disassortative mixing property in biological networks, we present a random duplication model and an anti-preference duplication model. Our results show that disassortative mixing networks can be obtained by both kinds of models from uncorrelated initial networks.Moreover, with the growth of the network size, the disassortative mixing property becomes more obvious.

  9. Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling.

    Directory of Open Access Journals (Sweden)

    Masanao Sato

    Full Text Available Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2. This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i the components of the network are highly interconnected; and (ii negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a "sector

  10. Evolution of regulatory networks towards adaptability and stability in a changing environment.

    Science.gov (United States)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments. PMID:25493848

  11. Evolution of regulatory networks towards adaptability and stability in a changing environment

    Science.gov (United States)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  12. The gene regulatory network for breast cancer: Integrated regulatory landscape of cancer hallmarks

    Directory of Open Access Journals (Sweden)

    Frank eEmmert-Streib

    2014-02-01

    Full Text Available In this study, we infer the breast cancer gene regulatory network from gene expression data. This network is obtained from the application of the BC3Net inference algorithm to a large-scale gene expression data set consisting of $351$ patient samples. In order to elucidate the functional relevance of the inferred network, we are performing a Gene Ontology (GO analysis for its structural components. Our analysis reveals that most significant GO-terms we find for the breast cancer network represent functional modules of biological processes that are described by known cancer hallmarks, including translation, immune response, cell cycle, organelle fission, mitosis, cell adhesion, RNA processing, RNA splicing and response to wounding. Furthermore, by using a curated list of census cancer genes, we find an enrichment in these functional modules. Finally, we study cooperative effects of chromosomes based on information of interacting genes in the beast cancer network. We find that chromosome $21$ is most coactive with other chromosomes. To our knowledge this is the first study investigating the genome-scale breast cancer network.

  13. Comparison of Gene Regulatory Networks via Steady-State Trajectories

    Directory of Open Access Journals (Sweden)

    Seungchan Kim

    2007-05-01

    Full Text Available The modeling of genetic regulatory networks is becoming increasingly widespread in the study of biological systems. In the abstract, one would prefer quantitatively comprehensive models, such as a differential-equation model, to coarse models; however, in practice, detailed models require more accurate measurements for inference and more computational power to analyze than coarse-scale models. It is crucial to address the issue of model complexity in the framework of a basic scientific paradigm: the model should be of minimal complexity to provide the necessary predictive power. Addressing this issue requires a metric by which to compare networks. This paper proposes the use of a classical measure of difference between amplitude distributions for periodic signals to compare two networks according to the differences of their trajectories in the steady state. The metric is applicable to networks with both continuous and discrete values for both time and state, and it possesses the critical property that it allows the comparison of networks of different natures. We demonstrate application of the metric by comparing a continuous-valued reference network against simplified versions obtained via quantization.

  14. Comparison of Gene Regulatory Networks via Steady-State Trajectories

    Directory of Open Access Journals (Sweden)

    Choi Woonjung

    2007-01-01

    Full Text Available The modeling of genetic regulatory networks is becoming increasingly widespread in the study of biological systems. In the abstract, one would prefer quantitatively comprehensive models, such as a differential-equation model, to coarse models; however, in practice, detailed models require more accurate measurements for inference and more computational power to analyze than coarse-scale models. It is crucial to address the issue of model complexity in the framework of a basic scientific paradigm: the model should be of minimal complexity to provide the necessary predictive power. Addressing this issue requires a metric by which to compare networks. This paper proposes the use of a classical measure of difference between amplitude distributions for periodic signals to compare two networks according to the differences of their trajectories in the steady state. The metric is applicable to networks with both continuous and discrete values for both time and state, and it possesses the critical property that it allows the comparison of networks of different natures. We demonstrate application of the metric by comparing a continuous-valued reference network against simplified versions obtained via quantization.

  15. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  16. Comparison of evolutionary algorithms in gene regulatory network model inference

    Directory of Open Access Journals (Sweden)

    Crane Martin

    2010-01-01

    Full Text Available Abstract Background The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs. However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. Results This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. Conclusions Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  17. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  18. Complex Dynamic Behavior in Simple Gene Regulatory Networks

    Science.gov (United States)

    Santillán Zerón, Moisés

    2007-02-01

    Knowing the complete genome of a given species is just a piece of the puzzle. To fully unveil the systems behavior of an organism, an organ, or even a single cell, we need to understand the underlying gene regulatory dynamics. Given the complexity of the whole system, the ultimate goal is unattainable for the moment. But perhaps, by analyzing the most simple genetic systems, we may be able to develop the mathematical techniques and procedures required to tackle more complex genetic networks in the near future. In the present work, the techniques for developing mathematical models of simple bacterial gene networks, like the tryptophan and lactose operons are introduced. Despite all of the underlying assumptions, such models can provide valuable information regarding gene regulation dynamics. Here, we pay special attention to robustness as an emergent property. These notes are organized as follows. In the first section, the long historical relation between mathematics, physics, and biology is briefly reviewed. Recently, the multidisciplinary work in biology has received great attention in the form of systems biology. The main concepts of this novel science are discussed in the second section. A very slim introduction to the essential concepts of molecular biology is given in the third section. In the fourth section, a brief introduction to chemical kinetics is presented. Finally, in the fifth section, a mathematical model for the lactose operon is developed and analyzed..

  19. Noncommutative Biology: Sequential Regulation of Complex Networks

    Science.gov (United States)

    Letsou, William; Cai, Long

    2016-01-01

    Single-cell variability in gene expression is important for generating distinct cell types, but it is unclear how cells use the same set of regulatory molecules to specifically control similarly regulated genes. While combinatorial binding of transcription factors at promoters has been proposed as a solution for cell-type specific gene expression, we found that such models resulted in substantial information bottlenecks. We sought to understand the consequences of adopting sequential logic wherein the time-ordering of factors informs the final outcome. We showed that with noncommutative control, it is possible to independently control targets that would otherwise be activated simultaneously using combinatorial logic. Consequently, sequential logic overcomes the information bottleneck inherent in complex networks. We derived scaling laws for two noncommutative models of regulation, motivated by phosphorylation/neural networks and chromosome folding, respectively, and showed that they scale super-exponentially in the number of regulators. We also showed that specificity in control is robust to the loss of a regulator. Lastly, we connected these theoretical results to real biological networks that demonstrate specificity in the context of promiscuity. These results show that achieving a desired outcome often necessitates roundabout steps. PMID:27560383

  20. Topological origin of global attractors in gene regulatory networks

    Science.gov (United States)

    Zhang, YunJun; Ouyang, Qi; Geng, Zhi

    2015-02-01

    Fixed-point attractors with global stability manifest themselves in a number of gene regulatory networks. This property indicates the stability of regulatory networks against small state perturbations and is closely related to other complex dynamics. In this paper, we aim to reveal the core modules in regulatory networks that determine their global attractors and the relationship between these core modules and other motifs. This work has been done via three steps. Firstly, inspired by the signal transmission in the regulation process, we extract the model of chain-like network from regulation networks. We propose a module of "ideal transmission chain (ITC)", which is proved sufficient and necessary (under certain condition) to form a global fixed-point in the context of chain-like network. Secondly, by examining two well-studied regulatory networks (i.e., the cell-cycle regulatory networks of Budding yeast and Fission yeast), we identify the ideal modules in true regulation networks and demonstrate that the modules have a superior contribution to network stability (quantified by the relative size of the biggest attraction basin). Thirdly, in these two regulation networks, we find that the double negative feedback loops, which are the key motifs of forming bistability in regulation, are connected to these core modules with high network stability. These results have shed new light on the connection between the topological feature and the dynamic property of regulatory networks.

  1. Network systems biology for targeted cancer therapies

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Zhou

    2012-01-01

    The era of targeted cancer therapies has arrived.However,due to the complexity of biological systems,the current progress is far from enough.From biological network modeling to structural/dynamic network analysis,network systems biology provides unique insight into the potential mechanisms underlying the growth and progression of cancer cells.It has also introduced great changes into the research paradigm of cancer-associated drug discovery and drug resistance.

  2. Small-scale universality and large-scale diversity. Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki, and M. Zagorski

    Science.gov (United States)

    Ispolatov, Yaroslav

    2016-07-01

    Martin et al. undertook an arduous task of reviewing vast literature on evolution and functionality of directed biological networks and gene networks in particular. The literature is assessed addressing a question of whether a set of features particular for gene networks is repeatedly recreated among unrelated species driven by selection pressure or has evolved once and is being inherited. To argue for the former mechanism, Martin and colleagues explore the following examples: Scale-free out-degree distribution.

  3. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks

    DEFF Research Database (Denmark)

    Soberano de Oliveira, Ana Paula; Patil, Kiran Raosaheb; Nielsen, Jens

    2008-01-01

    use the topology of bio-molecular interaction networks in order to constrain the solution space. Such approaches systematically integrate the existing biological knowledge with the 'omics' data. Results: Here we introduce a hypothesis-driven method that integrates bio-molecular network topology with...... transcriptome data, thereby allowing the identification of key biological features (Reporter Features) around which transcriptional changes are significantly concentrated. We have combined transcriptome data with different biological networks in order to identify Reporter Gene Ontologies, Reporter Transcription...... Factors, Reporter Proteins and Reporter Complexes, and use this to decipher the logic of regulatory circuits playing a key role in yeast glucose repression and human diabetes. Conclusion: Reporter Features offer the opportunity to identify regulatory hot-spots in bio-molecular interaction networks that...

  4. Optimizing Nutrient Uptake in Biological Transport Networks

    Science.gov (United States)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  5. Biologically inspired self-organizing networks

    Institute of Scientific and Technical Information of China (English)

    Naoki WAKAMIYA; Kenji LEIBNITZ; Masayuki MURATA

    2009-01-01

    Information networks are becoming more and more complex to accommodate a continuously increasing amount of traffic and networked devices, as well as having to cope with a growing diversity of operating environments and applications. Therefore, it is foreseeable that future information networks will frequently face unexpected problems, some of which could lead to the complete collapse of a network. To tackle this problem, recent attempts have been made to design novel network architectures which achieve a high level of scalability, adaptability, and robustness by taking inspiration from self-organizing biological systems. The objective of this paper is to discuss biologically inspired networking technologies.

  6. Self-sustained oscillations of complex genomic regulatory networks

    International Nuclear Information System (INIS)

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  7. Self-sustained oscillations of complex genomic regulatory networks

    Science.gov (United States)

    Ye, Weiming; Huang, Xiaodong; Huang, Xuhui; Li, Pengfei; Xia, Qinzhi; Hu, Gang

    2010-05-01

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) [1] to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  8. One hub-one process: a tool based view on regulatory network topology

    Directory of Open Access Journals (Sweden)

    Sneppen Kim

    2008-03-01

    Full Text Available Abstract Background The relationship between the regulatory design and the functionality of molecular networks is a key issue in biology. Modules and motifs have been associated to various cellular processes, thereby providing anecdotal evidence for performance based localization on molecular networks. Results To quantify structure-function relationship we investigate similarities of proteins which are close in the regulatory network of the yeast Saccharomyces Cerevisiae. We find that the topology of the regulatory network only show weak remnants of its history of network reorganizations, but strong features of co-regulated proteins associated to similar tasks. These functional correlations decreases strongly when one consider proteins separated by more than two steps in the regulatory network. The network topology primarily reflects the processes that is orchestrated by each individual hub, whereas there is nearly no remnants of the history of protein duplications. Conclusion Our results suggests that local topological features of regulatory networks, including broad degree distributions, emerge as an implicit result of matching a number of needed processes to a finite toolbox of proteins.

  9. Reconstructing Causal Biological Networks through Active Learning

    OpenAIRE

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are ...

  10. How difficult is inference of mammalian causal gene regulatory networks?

    Directory of Open Access Journals (Sweden)

    Djordje Djordjevic

    Full Text Available Gene regulatory networks (GRNs play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect, which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference

  11. How difficult is inference of mammalian causal gene regulatory networks?

    Science.gov (United States)

    Djordjevic, Djordje; Yang, Andrian; Zadoorian, Armella; Rungrugeecharoen, Kevin; Ho, Joshua W K

    2014-01-01

    Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for

  12. On Crowd-verification of Biological Networks.

    Science.gov (United States)

    Ansari, Sam; Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Hayes, William; Hoeng, Julia; Iskandar, Anita; Kleiman, Robin; Norel, Raquel; O'Neel, Bruce; Peitsch, Manuel C; Poussin, Carine; Pratt, Dexter; Rhrissorrakrai, Kahn; Schlage, Walter K; Stolovitzky, Gustavo; Talikka, Marja

    2013-01-01

    Biological networks with a structured syntax are a powerful way of representing biological information generated from high density data; however, they can become unwieldy to manage as their size and complexity increase. This article presents a crowd-verification approach for the visualization and expansion of biological networks. Web-based graphical interfaces allow visualization of causal and correlative biological relationships represented using Biological Expression Language (BEL). Crowdsourcing principles enable participants to communally annotate these relationships based on literature evidences. Gamification principles are incorporated to further engage domain experts throughout biology to gather robust peer-reviewed information from which relationships can be identified and verified. The resulting network models will represent the current status of biological knowledge within the defined boundaries, here processes related to human lung disease. These models are amenable to computational analysis. For some period following conclusion of the challenge, the published models will remain available for continuous use and expansion by the scientific community. PMID:24151423

  13. C. elegans Metabolic Gene Regulatory Networks Govern the Cellular Economy

    Science.gov (United States)

    Watson, Emma; Walhout, Albertha J.M.

    2014-01-01

    Diet greatly impacts metabolism in health and disease. In response to the presence or absence of specific nutrients, metabolic gene regulatory networks sense the metabolic state of the cell and regulate metabolic flux accordingly, for instance by the transcriptional control of metabolic enzymes. Here we discuss recent insights regarding metazoan metabolic regulatory networks using the nematode Caenorhabditis elegans as a model, including the modular organization of metabolic gene regulatory networks, the prominent impact of diet on the transcriptome and metabolome, specialized roles of nuclear hormone receptors in responding to dietary conditions, regulation of metabolic genes and metabolic regulators by microRNAs, and feedback between metabolic genes and their regulators. PMID:24731597

  14. Harnessing diversity towards the reconstructing of large scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Takeshi Hase

    Full Text Available Elucidating gene regulatory network (GRN from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks.

  15. Inferring Drosophila gap gene regulatory network: A parameter sensitivity and perturbation analysis

    NARCIS (Netherlands)

    Y. Fomekong-Nanfack; M. Postma; J.A. Kaandorp

    2009-01-01

    Background: Inverse modelling of gene regulatory networks (GRNs) capable of simulating continuous spatio-temporal biological processes requires accurate data and a good description of the system. If quantitative relations between genes cannot be extracted from direct measurements, an efficient metho

  16. Reconstruction of large-scale gene regulatory networks using Bayesian model averaging.

    Science.gov (United States)

    Kim, Haseong; Gelenbe, Erol

    2012-09-01

    Gene regulatory networks provide the systematic view of molecular interactions in a complex living system. However, constructing large-scale gene regulatory networks is one of the most challenging problems in systems biology. Also large burst sets of biological data require a proper integration technique for reliable gene regulatory network construction. Here we present a new reverse engineering approach based on Bayesian model averaging which attempts to combine all the appropriate models describing interactions among genes. This Bayesian approach with a prior based on the Gibbs distribution provides an efficient means to integrate multiple sources of biological data. In a simulation study with maximum of 2000 genes, our method shows better sensitivity than previous elastic-net and Gaussian graphical models, with a fixed specificity of 0.99. The study also shows that the proposed method outperforms the other standard methods for a DREAM dataset generated by nonlinear stochastic models. In brain tumor data analysis, three large-scale networks consisting of 4422 genes were built using the gene expression of non-tumor, low and high grade tumor mRNA expression samples, along with DNA-protein binding affinity information. We found that genes having a large variation of degree distribution among the three tumor networks are the ones that see most involved in regulatory and developmental processes, which possibly gives a novel insight concerning conventional differentially expressed gene analysis. PMID:22987132

  17. Tracking of time-varying genomic regulatory networks with a LASSO-Kalman smoother.

    Science.gov (United States)

    Khan, Jehandad; Bouaynaya, Nidhal; Fathallah-Shaykh, Hassan M

    2014-01-01

    : It is widely accepted that cellular requirements and environmental conditions dictate the architecture of genetic regulatory networks. Nonetheless, the status quo in regulatory network modeling and analysis assumes an invariant network topology over time. In this paper, we refocus on a dynamic perspective of genetic networks, one that can uncover substantial topological changes in network structure during biological processes such as developmental growth. We propose a novel outlook on the inference of time-varying genetic networks, from a limited number of noisy observations, by formulating the network estimation as a target tracking problem. We overcome the limited number of observations (small n large p problem) by performing tracking in a compressed domain. Assuming linear dynamics, we derive the LASSO-Kalman smoother, which recursively computes the minimum mean-square sparse estimate of the network connectivity at each time point. The LASSO operator, motivated by the sparsity of the genetic regulatory networks, allows simultaneous signal recovery and compression, thereby reducing the amount of required observations. The smoothing improves the estimation by incorporating all observations. We track the time-varying networks during the life cycle of the Drosophila melanogaster. The recovered networks show that few genes are permanent, whereas most are transient, acting only during specific developmental phases of the organism. PMID:24517200

  18. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    Directory of Open Access Journals (Sweden)

    Corcos Laurent

    2008-11-01

    Full Text Available Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivotal role in dislypidemia and, ultimately, in cancer through intermediates such as mevalonate, farnesyl pyrophosphate and geranyl geranyl pyrophosphate, but no dynamic model of this pathway has been proposed until now. Results We set up a computational framework to dynamically analyze large biological networks. This framework associates a classical and computationally efficient synchronous Boolean analysis with a newly introduced method based on Markov chains, which identifies spurious cycles among the results of the synchronous simulation. Based on this method, we present here the results of the analysis of the cholesterol biosynthesis pathway and its physiological regulation by the Sterol Response Element Binding Proteins (SREBPs, as well as the modeling of the action of statins, inhibitor drugs, on this pathway. The in silico experiments show the blockade of the cholesterol endogenous synthesis by statins and its regulation by SREPBs, in full agreement with the known biochemical features of the pathway. Conclusion We believe that the method described here to identify spurious cycles opens new routes to compute large and biologically relevant models, thanks to the computational efficiency of synchronous simulation. Furthermore, to the best of our knowledge, we present here the first dynamic systems biology model of the human cholesterol pathway and several of its key regulatory control elements, hoping it would provide a good basis to perform in silico

  19. Global analysis of photosynthesis transcriptional regulatory networks.

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  20. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  1. Rigidity and flexibility of biological networks

    CERN Document Server

    Gaspar, Merse E

    2012-01-01

    The network approach became a widely used tool to understand the behaviour of complex systems in the last decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explaining allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity. Finally, we show the importance of the balance between functional flexibility and rigidity in protein-protein interaction, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts of flexibility and rigidity can be generalized to all networks.

  2. Rigidity and flexibility of biological networks.

    Science.gov (United States)

    Gáspár, Merse E; Csermely, Peter

    2012-11-01

    The network approach became a widely used tool to understand the behaviour of complex systems in the last decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explaining allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity. Finally, we show the importance of the balance between functional flexibility and rigidity in protein-protein interaction, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts of flexibility and rigidity can be generalized to all networks. PMID:23165349

  3. Banks' Regulatory Buffers, Liquidity Networks and Monetary Policy Transmission

    OpenAIRE

    Merkl, Christian; Stolz, Stéphanie

    2009-01-01

    Abstract Based on a quarterly regulatory dataset for German banks from 1999 to 2004, this paper analyzes the effects of banks? regulatory capital on the transmission of monetary policy in a system of liquidity networks. The dynamic panel regression results provide evidence in favour of the bank capital channel theory. Banks holding less regulatory capital and less interbank liquidity react more restrictively to a monetary tightening than their peers.

  4. Dynamical Analysis of Protein Regulatory Network in Budding Yeast Nucleus

    Institute of Scientific and Technical Information of China (English)

    LI Fang-Ting; JIA Xun

    2006-01-01

    @@ Recent progresses in the protein regulatory network of budding yeast Saccharomyces cerevisiae have provided a global picture of its protein network for further dynamical research. We simplify and modularize the protein regulatory networks in yeast nucleus, and study the dynamical properties of the core 37-node network by a Boolean network model, especially the evolution steps and final fixed points. Our simulation results show that the number of fixed points N(k) for a given size of the attraction basin k obeys a power-law distribution N(k)∝k-2.024. The yeast network is more similar to a scale-free network than a random network in the above dynamical properties.

  5. Biological Networks for Cancer Candidate Biomarkers Discovery

    Science.gov (United States)

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field.

  6. Biological Networks for Cancer Candidate Biomarkers Discovery.

    Science.gov (United States)

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field. PMID:27625573

  7. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Chemmangattuvalappil Nishanth

    2012-09-01

    Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

  8. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A [Sanford-Burnham Medical Research Institute; Novichkov, Pavel S [Lawrence Berkeley National Laboratory

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated in RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.

  9. A regulatory network controls nephrocan expression and midgut patterning

    OpenAIRE

    Hou, Juan; Wei, Wei; Saund, Ranajeet S.; Xiang, Ping; Cunningham, Thomas J.; Yi, Yuyin; Alder, Olivia; Lu, Daphne Y. D.; Savory, Joanne G. A.; Krentz, Nicole A. J.; Montpetit, Rachel; Cullum, Rebecca; Hofs, Nicole; Lohnes, David; Humphries, R. Keith

    2014-01-01

    Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17−/− and Raldh2−/− embryos compared with wild-type em...

  10. The impact of measurement errors in the identification of regulatory networks

    Directory of Open Access Journals (Sweden)

    Sato João R

    2009-12-01

    Full Text Available Abstract Background There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent and non-time series (independent data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models and dependent (autoregressive models data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error. The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.

  11. Discovering large network motifs from a complex biological network

    International Nuclear Information System (INIS)

    Graph structures representing relationships between entries have been studied in statistical analysis, and the results of these studies have been applied to biological networks, whose nodes and edges represent proteins and the relationships between them, respectively. Most of the studies have focused on only graph structures such as scale-free properties and cliques, but the relationships between nodes are also important features since most of the proteins perform their functions by connecting to other proteins. In order to determine such relationships, the problem of network motif discovery has been addressed; network motifs are frequently appearing graph structures in a given graph. However, the methods for network motif discovery are highly restrictive for the application to biological network because they can only be used to find small network motifs or they do not consider noise and uncertainty in observations. In this study, we introduce a new index to measure network motifs called AR index and develop a novel algorithm called ARIANA for finding large motifs even when the network has noise. Experiments using a synthetic network verify that our method can find better network motifs than an existing algorithm. By applying ARIANA to a real complex biological network, we find network motifs associated with regulations of start time of cell functions and generation of cell energies and discover that the cell cycle proteins can be categorized into two different groups.

  12. CoryneRegNet 4.0 – A reference database for corynebacterial gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Baumbach Jan

    2007-11-01

    transcriptional regulatory networks to predict putative contradictions or further gene regulatory interactions. Furthermore, it integrates protein clusters by means of heuristically solving the weighted graph cluster editing problem. In addition, it provides Web Service based access to up to date gene annotation data from GenDB. Conclusion The release 4.0 of CoryneRegNet is a comprehensive system for the integrated analysis of procaryotic gene regulatory networks. It is a versatile systems biology platform to support the efficient and large-scale analysis of transcriptional regulation of gene expression in microorganisms. It is publicly available at http://www.CoryneRegNet.DE.

  13. Identification of transcriptional regulatory networks specific to pilocytic astrocytoma

    Directory of Open Access Journals (Sweden)

    Gutmann David H

    2011-07-01

    Full Text Available Abstract Background Pilocytic Astrocytomas (PAs are common low-grade central nervous system malignancies for which few recurrent and specific genetic alterations have been identified. In an effort to better understand the molecular biology underlying the pathogenesis of these pediatric brain tumors, we performed higher-order transcriptional network analysis of a large gene expression dataset to identify gene regulatory pathways that are specific to this tumor type, relative to other, more aggressive glial or histologically distinct brain tumours. Methods RNA derived from frozen human PA tumours was subjected to microarray-based gene expression profiling, using Affymetrix U133Plus2 GeneChip microarrays. This data set was compared to similar data sets previously generated from non-malignant human brain tissue and other brain tumour types, after appropriate normalization. Results In this study, we examined gene expression in 66 PA tumors compared to 15 non-malignant cortical brain tissues, and identified 792 genes that demonstrated consistent differential expression between independent sets of PA and non-malignant specimens. From this entire 792 gene set, we used the previously described PAP tool to assemble a core transcriptional regulatory network composed of 6 transcription factor genes (TFs and 24 target genes, for a total of 55 interactions. A similar analysis of oligodendroglioma and glioblastoma multiforme (GBM gene expression data sets identified distinct, but overlapping, networks. Most importantly, comparison of each of the brain tumor type-specific networks revealed a network unique to PA that included repressed expression of ONECUT2, a gene frequently methylated in other tumor types, and 13 other uniquely predicted TF-gene interactions. Conclusions These results suggest specific transcriptional pathways that may operate to create the unique molecular phenotype of PA and thus opportunities for corresponding targeted therapeutic

  14. 4th IEA International CCS Regulatory Network Meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    On 9 and 10 May 2012, the IEA International CCS Regulatory Network (Network), launched in Paris in May 2008 to provide a neutral forum for CCS regulators, policy makers and stakeholders to share updates and views on CCS regulatory developments, held its fourth meeting at the International Energy Agency (IEA) offices in Paris, France. The aim of the meeting was to: provide an update on government efforts to develop and implement carbon capture and storage (CCS) legal and regulatory frameworks; and consider ways in which governments are dealing with some of the more difficult or complex aspects of CCS regulation. This report summarises the proceedings of the meeting.

  15. Network-Based Models in Molecular Biology

    Science.gov (United States)

    Beyer, Andreas

    Biological systems are characterized by a large number of diverse interactions. Interaction maps have been used to abstract those interactions at all biological scales ranging from food webs at the ecosystem level down to protein interaction networks at the molecular scale.

  16. Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells

    Directory of Open Access Journals (Sweden)

    Guthke Reinhard

    2010-11-01

    Full Text Available Abstract Background Reverse engineering of gene regulatory networks can be used to predict regulatory interactions of an organism faced with environmental changes, but can prove problematic, especially when focusing on complicated multi-factorial processes. Candida albicans is a major human fungal pathogen. During the infection process, this fungus is able to adapt to conditions of very low iron availability. Such adaptation is an important virulence attribute of virtually all pathogenic microbes. Understanding the regulation of iron acquisition genes will extend our knowledge of the complex regulatory changes during the infection process and might identify new potential drug targets. Thus, there is a need for efficient modelling approaches predicting key regulatory events of iron acquisition genes during the infection process. Results This study deals with the regulation of C. albicans iron uptake genes during adhesion to and invasion into human oral epithelial cells. A reverse engineering strategy is presented, which is able to infer regulatory networks on the basis of gene expression data, making use of relevant selection criteria such as sparseness and robustness. An exhaustive use of available knowledge from different data sources improved the network prediction. The predicted regulatory network proposes a number of new target genes for the transcriptional regulators Rim101, Hap3, Sef1 and Tup1. Furthermore, the molecular mode of action for Tup1 is clarified. Finally, regulatory interactions between the transcription factors themselves are proposed. This study presents a model describing how C. albicans may regulate iron acquisition during contact with and invasion of human oral epithelial cells. There is evidence that some of the proposed regulatory interactions might also occur during oral infection. Conclusions This study focuses on a typical problem in Systems Biology where an interesting biological phenomenon is studied using a small

  17. Using gene expression programming to infer gene regulatory networks from time-series data.

    Science.gov (United States)

    Zhang, Yongqing; Pu, Yifei; Zhang, Haisen; Su, Yabo; Zhang, Lifang; Zhou, Jiliu

    2013-12-01

    Gene regulatory networks inference is currently a topic under heavy research in the systems biology field. In this paper, gene regulatory networks are inferred via evolutionary model based on time-series microarray data. A non-linear differential equation model is adopted. Gene expression programming (GEP) is applied to identify the structure of the model and least mean square (LMS) is used to optimize the parameters in ordinary differential equations (ODEs). The proposed work has been first verified by synthetic data with noise-free and noisy time-series data, respectively, and then its effectiveness is confirmed by three real time-series expression datasets. Finally, a gene regulatory network was constructed with 12 Yeast genes. Experimental results demonstrate that our model can improve the prediction accuracy of microarray time-series data effectively. PMID:24140883

  18. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Joshi Anagha

    2009-05-01

    Full Text Available Abstract Background A myriad of methods to reverse-engineer transcriptional regulatory networks have been developed in recent years. Direct methods directly reconstruct a network of pairwise regulatory interactions while module-based methods predict a set of regulators for modules of coexpressed genes treated as a single unit. To date, there has been no systematic comparison of the relative strengths and weaknesses of both types of methods. Results We have compared a recently developed module-based algorithm, LeMoNe (Learning Module Networks, to a mutual information based direct algorithm, CLR (Context Likelihood of Relatedness, using benchmark expression data and databases of known transcriptional regulatory interactions for Escherichia coli and Saccharomyces cerevisiae. A global comparison using recall versus precision curves hides the topologically distinct nature of the inferred networks and is not informative about the specific subtasks for which each method is most suited. Analysis of the degree distributions and a regulator specific comparison show that CLR is 'regulator-centric', making true predictions for a higher number of regulators, while LeMoNe is 'target-centric', recovering a higher number of known targets for fewer regulators, with limited overlap in the predicted interactions between both methods. Detailed biological examples in E. coli and S. cerevisiae are used to illustrate these differences and to prove that each method is able to infer parts of the network where the other fails. Biological validation of the inferred networks cautions against over-interpreting recall and precision values computed using incomplete reference networks. Conclusion Our results indicate that module-based and direct methods retrieve largely distinct parts of the underlying transcriptional regulatory networks. The choice of algorithm should therefore be based on the particular biological problem of interest and not on global metrics which cannot be

  19. Chaotic Gene Regulatory Networks Can Be Robust Against Mutations and Noise

    Science.gov (United States)

    Sevim, Volkan; Rikvold, Per Arne

    2008-03-01

    Robustness to mutations and noise has been shown to evolve through stabilizing selection for optimal phenotypes in model gene regulatory networks. The ability to evolve robust mutants is known to depend on the network architecture. How do the state-space structures of networks with high and low robustness differ? Here we present large-scale computer simulations of a Random Threshold Network model of gene regulatory networks undergoing biological evolution. We show using damage propagation analysis and an extensive statistical analysis of state spaces of these model gene networks that the change in their dynamical properties due to stabilizing selection is very small. Therefore, conventional measures of stability do not provide much information about robustness in model gene regulatory networks. Interestingly, the networks that are most robust to both mutations and noise are highly chaotic. Chaotic networks are able to produce large attractor basins, which can be useful for maintaining a stable gene-expression pattern.[1] V. Sevim and P. A. Rikvold (2007), e-print arXiv:0708.2244.[2] V. Sevim and P. A. Rikvold (2007), e-print arXiv:0711.1522.

  20. Communication on the structure of biological networks

    Indian Academy of Sciences (India)

    Deyasi Krishanu; Upadhyay Shashankaditya; Banerjee Anirban

    2016-03-01

    Networks are widely used to represent interaction pattern among the components in complex systems. Structures of real networks from different domains may vary quite significantly. As there is an interplay between network architecture and dynamics, structure plays an important role in communication and spreading of information in a network. Here we investigate the underlying undirected topology of different biological networks which support faster spreading of information and are better in communication. We analyse the good expansion property by using the spectral gap and communicability between nodes. Different epidemic models are also used to study the transmission of information in terms of spreading of disease through individuals (nodes)in those networks. Moreover, we explore the structural conformation and properties which may be responsible for better communication. Among all biological networks studied here, the undirected structure of neuronal networks not only possesses the small-world property but the same is also expressed remarkably to a higher degree compared to any randomly generated network which possesses the same degree sequence. A relatively high percentage of nodes, in neuronal networks, form a higher core in their structure. Our study shows that the underlying undirected topology in neuronal networks, in a significant way, is qualitatively different from the same in other biologicalnetworks and that they may have evolved in such a way that they inherit a (undirected) structure which is excellent and robust in communication.

  1. Predicting biological networks from genomic data

    DEFF Research Database (Denmark)

    Harrington, Eoghan D; Jensen, Lars J; Bork, Peer

    2008-01-01

    Continuing improvements in DNA sequencing technologies are providing us with vast amounts of genomic data from an ever-widening range of organisms. The resulting challenge for bioinformatics is to interpret this deluge of data and place it back into its biological context. Biological networks...... provide a conceptual framework with which we can describe part of this context, namely the different interactions that occur between the molecular components of a cell. Here, we review the computational methods available to predict biological networks from genomic sequence data and discuss how they relate...

  2. BiologicalNetworks: visualization and analysis tool for systems biology

    OpenAIRE

    Baitaluk, Michael; Sedova, Mayya; Ray, Animesh; Gupta, Amarnath

    2006-01-01

    Systems level investigation of genomic scale information requires the development of truly integrated databases dealing with heterogeneous data, which can be queried for simple properties of genes or other database objects as well as for complex network level properties, for the analysis and modelling of complex biological processes. Towards that goal, we recently constructed PathSys, a data integration platform for systems biology, which provides dynamic integration over a diverse set of dat...

  3. Phenotype accessibility and noise in random threshold gene regulatory networks.

    Science.gov (United States)

    Pinho, Ricardo; Garcia, Victor; Feldman, Marcus W

    2014-01-01

    Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes

  4. Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks

    Science.gov (United States)

    Ben-Tabou de-Leon, Smadar

    2016-01-01

    Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change. PMID:26913048

  5. Quantifying evolvability in small biological networks

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Mugler, Andrew [COLUMBIA UNIV; Ziv, Etay [COLUMBIA UNIV; Wiggins, Chris H [COLUMBIA UNIV

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  6. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  7. Design of artificial genetic regulatory networks with multiple delayed adaptive responses

    CERN Document Server

    Kaluza, Pablo

    2016-01-01

    Genetic regulatory networks with adaptive responses are widely studied in biology. Usually, models consisting only of a few nodes have been considered. They present one input receptor for activation and one output node where the adaptive response is computed. In this work, we design genetic regulatory networks with many receptors and many output nodes able to produce delayed adaptive responses. This design is performed by using an evolutionary algorithm of mutations and selections that minimizes an error function defined by the adaptive response in signal shapes. We present several examples of network constructions with a predefined required set of adaptive delayed responses. We show that an output node can have different kinds of responses as a function of the activated receptor. Additionally, complex network structures are presented since processing nodes can be involved in several input-output pathways.

  8. Discriminative topological features reveal biological network mechanisms

    Directory of Open Access Journals (Sweden)

    Levovitz Chaya

    2004-11-01

    Full Text Available Abstract Background Recent genomic and bioinformatic advances have motivated the development of numerous network models intending to describe graphs of biological, technological, and sociological origin. In most cases the success of a model has been evaluated by how well it reproduces a few key features of the real-world data, such as degree distributions, mean geodesic lengths, and clustering coefficients. Often pairs of models can reproduce these features with indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these few target features are insufficient to distinguish which of the different models best describes real world networks of interest; moreover, it is not clear a priori that any of the presently-existing algorithms for network generation offers a predictive description of the networks inspiring them. Results We present a method to assess systematically which of a set of proposed network generation algorithms gives the most accurate description of a given biological network. To derive discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional (in principle infinite-dimensional "word space". This map defines an input space for classification schemes which allow us to state unambiguously which models are most descriptive of a given network of interest. Our training sets include networks generated from 17 models either drawn from the literature or introduced in this work. We show that different duplication-mutation schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and the C. elegans neuronal network, out of a set of network models including a linear preferential attachment model and a small-world model. Conclusions Our method is a first step towards systematizing network models and assessing their predictability, and we anticipate its usefulness for a number of communities.

  9. T Regulatory Cell Biology in Health and Disease.

    Science.gov (United States)

    Alroqi, Fayhan J; Chatila, Talal A

    2016-04-01

    Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency. PMID:26922942

  10. Attentional Networks and Biological Motion

    OpenAIRE

    Chandramouli Chandrasekaran; Lucy Turner; Heinrich H Bülthoff; Thornton, Ian M.

    2010-01-01

    Our ability to see meaningful actions when presented with pointlight traces of human movement is commonly referred to as the perception of biological motion. While traditionalexplanations have emphasized the spontaneous and automatic nature of this ability, morerecent findings suggest that attention may play a larger role than is typically assumed. Intwo studies we show that the speed and accuracy of responding to point-light stimuli is highly correlated with the ability to control selective ...

  11. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe.

    Science.gov (United States)

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  12. Genetic Regulatory Networks that count to 3

    DEFF Research Database (Denmark)

    Lehmann, Martin; Sneppen, K.

    2013-01-01

    Sensing a graded input and differentiating between its different levels is at the core of many developmental decisions. Here, we want to examine how this can be realized for a simple system. We model gene regulatory circuits that reach distinct states when setting the underlying gene copy number ...... vertebrate neural tube in a development governed by the sonic hedgehog morphogen and the more robust design of a repressilator supplemented with a weak repressilator acting in the opposite direction. © 2013 Elsevier Ltd....

  13. Mosaic gene network modelling identified new regulatory mechanisms in HCV infection.

    Science.gov (United States)

    Popik, Olga V; Petrovskiy, Evgeny D; Mishchenko, Elena L; Lavrik, Inna N; Ivanisenko, Vladimir A

    2016-06-15

    Modelling of gene networks is widely used in systems biology to study the functioning of complex biological systems. Most of the existing mathematical modelling techniques are useful for analysis of well-studied biological processes, for which information on rates of reactions is available. However, complex biological processes such as those determining the phenotypic traits of organisms or pathological disease processes, including pathogen-host interactions, involve complicated cross-talk between interacting networks. Furthermore, the intrinsic details of the interactions between these networks are often missing. In this study, we developed an approach, which we call mosaic network modelling, that allows the combination of independent mathematical models of gene regulatory networks and, thereby, description of complex biological systems. The advantage of this approach is that it allows us to generate the integrated model despite the fact that information on molecular interactions between parts of the model (so-called mosaic fragments) might be missing. To generate a mosaic mathematical model, we used control theory and mathematical models, written in the form of a system of ordinary differential equations (ODEs). In the present study, we investigated the efficiency of this method in modelling the dynamics of more than 10,000 simulated mosaic regulatory networks consisting of two pieces. Analysis revealed that this approach was highly efficient, as the mean deviation of the dynamics of mosaic network elements from the behaviour of the initial parts of the model was less than 10%. It turned out that for construction of the control functional, data on perturbation of one or two vertices of the mosaic piece are sufficient. Further, we used the developed method to construct a mosaic gene regulatory network including hepatitis C virus (HCV) as the first piece and the tumour necrosis factor (TNF)-induced apoptosis and NF-κB induction pathways as the second piece. Thus

  14. Application of Graph Coloring to Biological Networks

    CERN Document Server

    Khor, Susan

    2009-01-01

    We explore the application of graph coloring to biological networks, specifically protein-protein interaction (PPI) networks. First, we find that given similar conditions (i.e. number of nodes, number of links, degree distribution and clustering), fewer colors are needed to color disassortative (high degree nodes tend to connect to low degree nodes and vice versa) than assortative networks. Fewer colors create fewer independent sets which in turn imply higher concurrency potential for a network. Since PPI networks tend to be disassortative, we suggest that in addition to functional specificity and stability proposed previously by Maslov and Sneppen (Science 296, 2002), the disassortative nature of PPI networks may promote the ability of cells to perform multiple, crucial and functionally diverse tasks concurrently. Second, since graph coloring is closely related to the presence of cliques in a graph, the significance of node coloring information to the problem of identifying protein complexes, i.e. dense subg...

  15. Biological and Environmental Research Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, V. [Princeton Univ., NJ (United States). Earth Science Grid Federation (ESGF); Boden, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowley, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dart, Eli [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Dattoria, Vince [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Desai, Narayan [Argonne National Lab. (ANL), Argonne, IL (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Foster, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Goldstone, Robin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gregurick, Susan [U.S. Dept. of Energy, Washington, DC (United States). Biological Systems Science Division; Houghton, John [U.S. Dept. of Energy, Washington, DC (United States). Biological and Environmental Research (BER) Program; Izaurralde, Cesar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnston, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Joseph, Renu [U.S. Dept. of Energy, Washington, DC (United States). Climate and Environmental Sciences Division; Kleese-van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Monga, Inder [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Pritchard, Matt [British Atmospheric Data Centre (BADC), Oxon (United Kingdom); Rotman, Lauren [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Strand, Gary [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Stuart, Cory [Argonne National Lab. (ANL), Argonne, IL (United States); Tatusova, Tatiana [National Inst. of Health (NIH), Bethesda, MD (United States); Tierney, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Thomas, Brian [Univ. of California, Berkeley, CA (United States); Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zurawski, Jason [Internet2, Washington, DC (United States)

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  16. Statistical inference of regulatory networks for circadian regulation.

    Science.gov (United States)

    Aderhold, Andrej; Husmeier, Dirk; Grzegorczyk, Marco

    2014-06-01

    We assess the accuracy of various state-of-the-art statistics and machine learning methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Our study draws on the increasing availability of gene expression and protein concentration time series for key circadian clock components in Arabidopsis thaliana. In addition, gene expression and protein concentration time series are simulated from a recently published regulatory network of the circadian clock in A. thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to different light-dark cycles and the knock-out of various key regulatory genes. Our study provides relative network reconstruction accuracy scores for a critical comparative performance evaluation, and sheds light on a series of highly relevant questions: it quantifies the influence of systematically missing values related to unknown protein concentrations and mRNA transcription rates, it investigates the dependence of the performance on the network topology and the degree of recurrency, it provides deeper insight into when and why non-linear methods fail to outperform linear ones, it offers improved guidelines on parameter settings in different inference procedures, and it suggests new hypotheses about the structure of the central circadian gene regulatory network in A. thaliana. PMID:24864301

  17. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  18. p42.3 gene expression in gastric cancer cell and its protein regulatory network analysis

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2012-12-01

    Full Text Available Abstract Background To analyze the p42.3 gene expression in gastric cancer (GC cell, find the relationship between protein structure and function, establish the regulatory network of p42.3 protein molecule and then to obtain the optimal regulatory pathway. Methods The expression of p42.3 gene was analyzed by RT-PCR, Western Blot and other biotechnologies. The relationship between the spatial conformation of p42.3 protein molecule and its function was analyzed using bioinformatics, MATLAB and related knowledge about protein structure and function. Furthermore, based on similarity algorithm of spatial layered spherical coordinate, we compared p42.3 molecule with several similar structured proteins which are known for the function, screened the characteristic nodes related to tumorigenesis and development, and established the multi variable relational model between p42.3 protein expression, cell cycle regulation and biological characteristics in the level of molecular regulatory networks. Finally, the optimal regulatory network was found by using Bayesian network. Results (1 The expression amount of p42.3 in G1 and M phase was higher than that in S and G2 phase; (2 The space coordinate systems of different structural domains of p42.3 protein were established in Matlab7.0 software; (3 The optimal pathway of p42.3 gene in protein regulatory network in gastric cancer is Ras protein, Raf-1 protein, MEK, MAPK kinase, MAPK, tubulin, spindle protein, centromere protein and tumor. Conclusion It is of vital significance for mechanism research to find out the action pathway of p42.3 in protein regulatory network, since p42.3 protein plays an important role in the generation and development of GC.

  19. A parallel implementation of the network identification by multiple regression (NIR algorithm to reverse-engineer regulatory gene networks.

    Directory of Open Access Journals (Sweden)

    Francesco Gregoretti

    Full Text Available The reverse engineering of gene regulatory networks using gene expression profile data has become crucial to gain novel biological knowledge. Large amounts of data that need to be analyzed are currently being produced due to advances in microarray technologies. Using current reverse engineering algorithms to analyze large data sets can be very computational-intensive. These emerging computational requirements can be met using parallel computing techniques. It has been shown that the Network Identification by multiple Regression (NIR algorithm performs better than the other ready-to-use reverse engineering software. However it cannot be used with large networks with thousands of nodes--as is the case in biological networks--due to the high time and space complexity. In this work we overcome this limitation by designing and developing a parallel version of the NIR algorithm. The new implementation of the algorithm reaches a very good accuracy even for large gene networks, improving our understanding of the gene regulatory networks that is crucial for a wide range of biomedical applications.

  20. A parallel implementation of the network identification by multiple regression (NIR) algorithm to reverse-engineer regulatory gene networks.

    Science.gov (United States)

    Gregoretti, Francesco; Belcastro, Vincenzo; di Bernardo, Diego; Oliva, Gennaro

    2010-01-01

    The reverse engineering of gene regulatory networks using gene expression profile data has become crucial to gain novel biological knowledge. Large amounts of data that need to be analyzed are currently being produced due to advances in microarray technologies. Using current reverse engineering algorithms to analyze large data sets can be very computational-intensive. These emerging computational requirements can be met using parallel computing techniques. It has been shown that the Network Identification by multiple Regression (NIR) algorithm performs better than the other ready-to-use reverse engineering software. However it cannot be used with large networks with thousands of nodes--as is the case in biological networks--due to the high time and space complexity. In this work we overcome this limitation by designing and developing a parallel version of the NIR algorithm. The new implementation of the algorithm reaches a very good accuracy even for large gene networks, improving our understanding of the gene regulatory networks that is crucial for a wide range of biomedical applications. PMID:20422008

  1. Dense module enumeration in biological networks

    International Nuclear Information System (INIS)

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  2. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks

    Science.gov (United States)

    Zhu, Shijia; Wang, Yadong

    2015-12-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  3. Propagation of genetic variation in gene regulatory networks

    OpenAIRE

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W.

    2013-01-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing h...

  4. Cross-Platform Microarray Data Normalisation for Regulatory Network Inference

    OpenAIRE

    Sîrbu, Alina; Ruskin, Heather J; Crane, Martin

    2010-01-01

    Background Inferring Gene Regulatory Networks (GRNs) from time course microarray data suffers from the dimensionality problem created by the short length of available time series compared to the large number of genes in the network. To overcome this, data integration from diverse sources is mandatory. Microarray data from different sources and platforms are publicly available, but integration is not straightforward, due to platform and experimental differences. Methods We analyse here differe...

  5. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    OpenAIRE

    Corcos Laurent; Kervizic Gwenael

    2008-01-01

    Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivo...

  6. EGIA–evolutionary optimisation of gene regulatory networks, an integrative approach

    OpenAIRE

    Sirbu, Alina; Crane, Martin; Ruskin, Heather J

    2013-01-01

    Quantitative modelling of gene regulatory networks (GRNs) is still limited by data issues such as noise and the restricted length of available time series, creating an under-determination problem. However, large amounts of other types of biological data and knowledge are available, such as knockout experiments, annotations and so on, and it has been postulated that integration of these can improve model quality. However, integration has not been fully explored, to date. Here, we present...

  7. Automatic reconstruction of a bacterial regulatory network using Natural Language Processing

    OpenAIRE

    Collado-Vides Julio; Martínez-Flores Irma; Salgado Heladia; Rodríguez-Penagos Carlos

    2007-01-01

    Abstract Background Manual curation of biological databases, an expensive and labor-intensive process, is essential for high quality integrated data. In this paper we report the implementation of a state-of-the-art Natural Language Processing system that creates computer-readable networks of regulatory interactions directly from different collections of abstracts and full-text papers. Our major aim is to understand how automatic annotation using Text-Mining techniques can complement manual cu...

  8. Prior knowledge driven Granger causality analysis on gene regulatory network discovery

    OpenAIRE

    Yao, Shun; Yoo, Shinjae; Yu, Dantong

    2015-01-01

    Background Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>>T. Results In this study, we proposed a new method, viz., CGC-2SPR (CGC ...

  9. Modularity of gene-regulatory networks revealed in sea-star development

    OpenAIRE

    Degnan Bernard M; McDougall Carmel

    2011-01-01

    Abstract Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star), but in a completely different developmental context (the animal-vegetal axis). This observation has implications for h...

  10. Network biology methods integrating biological data for translational science

    OpenAIRE

    Bebek, Gurkan; Koyutürk, Mehmet; Nathan D Price; Mark R Chance

    2012-01-01

    The explosion of biomedical data, both on the genomic and proteomic side as well as clinical data, will require complex integration and analysis to provide new molecular variables to better understand the molecular basis of phenotype. Currently, much data exist in silos and is not analyzed in frameworks where all data are brought to bear in the development of biomarkers and novel functional targets. This is beginning to change. Network biology approaches, which emphasize the interactions betw...

  11. Extended evolution: A conceptual framework for integrating regulatory networks and niche construction.

    Science.gov (United States)

    Laubichler, Manfred D; Renn, Jürgen

    2015-11-01

    This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path-dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems. PMID:26097188

  12. Learning Gene Regulatory Networks Computationally from Gene Expression Data Using Weighted Consensus

    KAUST Repository

    Fujii, Chisato

    2015-04-16

    Gene regulatory networks analyze the relationships between genes allowing us to un- derstand the gene regulatory interactions in systems biology. Gene expression data from the microarray experiments is used to obtain the gene regulatory networks. How- ever, the microarray data is discrete, noisy and non-linear which makes learning the networks a challenging problem and existing gene network inference methods do not give consistent results. Current state-of-the-art study uses the average-ranking-based consensus method to combine and average the ranked predictions from individual methods. However each individual method has an equal contribution to the consen- sus prediction. We have developed a linear programming-based consensus approach which uses learned weights from linear programming among individual methods such that the methods have di↵erent weights depending on their performance. Our result reveals that assigning di↵erent weights to individual methods rather than giving them equal weights improves the performance of the consensus. The linear programming- based consensus method is evaluated and it had the best performance on in silico and Saccharomyces cerevisiae networks, and the second best on the Escherichia coli network outperformed by Inferelator Pipeline method which gives inconsistent results across a wide range of microarray data sets.

  13. Qualitative networks: a symbolic approach to analyze biological signaling networks

    Directory of Open Access Journals (Sweden)

    Henzinger Thomas A

    2007-01-01

    Full Text Available Abstract Background A central goal of Systems Biology is to model and analyze biological signaling pathways that interact with one another to form complex networks. Here we introduce Qualitative networks, an extension of Boolean networks. With this framework, we use formal verification methods to check whether a model is consistent with the laboratory experimental observations on which it is based. If the model does not conform to the data, we suggest a revised model and the new hypotheses are tested in-silico. Results We consider networks in which elements range over a small finite domain allowing more flexibility than Boolean values, and add target functions that allow to model a rich set of behaviors. We propose a symbolic algorithm for analyzing the steady state of these networks, allowing us to scale up to a system consisting of 144 elements and state spaces of approximately 1086 states. We illustrate the usefulness of this approach through a model of the interaction between the Notch and the Wnt signaling pathways in mammalian skin, and its extensive analysis. Conclusion We introduce an approach for constructing computational models of biological systems that extends the framework of Boolean networks and uses formal verification methods for the analysis of the model. This approach can scale to multicellular models of complex pathways, and is therefore a useful tool for the analysis of complex biological systems. The hypotheses formulated during in-silico testing suggest new avenues to explore experimentally. Hence, this approach has the potential to efficiently complement experimental studies in biology.

  14. Information theoretical methods to deconvolute genetic regulatory networks applied to thyroid neoplasms

    Science.gov (United States)

    Hernández-Lemus, Enrique; Velázquez-Fernández, David; Estrada-Gil, Jesús K.; Silva-Zolezzi, Irma; Herrera-Hernández, Miguel F.; Jiménez-Sánchez, Gerardo

    2009-12-01

    Most common pathologies in humans are not caused by the mutation of a single gene, rather they are complex diseases that arise due to the dynamic interaction of many genes and environmental factors. This plethora of interacting genes generates a complexity landscape that masks the real effects associated with the disease. To construct dynamic maps of gene interactions (also called genetic regulatory networks) we need to understand the interplay between thousands of genes. Several issues arise in the analysis of experimental data related to gene function: on the one hand, the nature of measurement processes generates highly noisy signals; on the other hand, there are far more variables involved (number of genes and interactions among them) than experimental samples. Another source of complexity is the highly nonlinear character of the underlying biochemical dynamics. To overcome some of these limitations, we generated an optimized method based on the implementation of a Maximum Entropy Formalism (MaxEnt) to deconvolute a genetic regulatory network based on the most probable meta-distribution of gene-gene interactions. We tested the methodology using experimental data for Papillary Thyroid Cancer (PTC) and Thyroid Goiter tissue samples. The optimal MaxEnt regulatory network was obtained from a pool of 25,593,993 different probability distributions. The group of observed interactions was validated by several (mostly in silico) means and sources. For the associated Papillary Thyroid Cancer Gene Regulatory Network (PTC-GRN) the majority of the nodes (genes) have very few links (interactions) whereas a small number of nodes are highly connected. PTC-GRN is also characterized by high clustering coefficients and network heterogeneity. These properties have been recognized as characteristic of topological robustness, and they have been largely described in relation to biological networks. A number of biological validity outcomes are discussed with regard to both the

  15. Application of graph colouring to biological networks.

    Science.gov (United States)

    Khor, S

    2010-05-01

    The author explores the application of graph colouring to biological networks, specifically protein-protein interaction (PPI) networks. First, the author finds that given similar conditions (i.e. graph size, degree distribution and clustering), fewer colours are needed to colour disassortative than assortative networks. Fewer colours create fewer independent sets which in turn imply higher concurrency potential for a network. Since PPI networks tend to be disassortative, the author suggests that in addition to functional specificity and stability proposed previously by Maslov and Sneppen (Science, 296, 2002), the disassortative nature of PPI networks may promote the ability of cells to perform multiple, crucial and functionally diverse tasks concurrently. Second, because graph colouring is closely related to the presence of cliques in a graph, the significance of node colouring information to the problem of identifying protein complexes (dense subgraphs in PPI networks), is investigated. The author finds that for PPI networks where 1-11% of nodes participate in at least one identified protein complex, such as H. sapien, DSATUR (a well-known complete graph colouring algorithm) node colouring information can improve the quality (homogeneity and separation) of initial candidate complexes. This finding may help improve existing protein complex detection methods, and/or suggest new methods. [Includes supplementary material]. PMID:20499999

  16. Development of Bioinformatic and Experimental Technologies for Identification of Prokaryotic Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Charles E; McCue, Lee Ann

    2008-07-31

    The transcription regulatory network is arguably the most important foundation of cellular function, since it exerts the most fundamental control over the abundance of virtually all of a cell’s functional macromolecules. The two major components of a prokaryotic cell’s transcription regulation network are the transcription factors (TFs) and the transcription factor binding sites (TFBS); these components are connected by the binding of TFs to their cognate TFBS under appropriate environmental conditions. Comparative genomics has proven to be a powerful bioinformatics method with which to study transcription regulation on a genome-wide level. We have further extended comparative genomics technologies that we introduced over the last several years. Specifically, we developed and applied statistical approaches to analysis of correlated sequence data (i.e., sequences from closely related species). We also combined these technologies with functional genomic, proteomic and sequence data from multiple species, and developed computational technologies that provide inferences on the regulatory network connections, identifying the cognate transcription factor for predicted regulatory sites. Arguably the most important contribution of this work emerged in the course of the project. Specifically, the development of novel procedures of estimation and prediction in discrete high-D settings has broad implications for biology, genomics and well beyond. We showed that these procedures enjoy advantages over existing technologies in the identification of TBFS. These efforts are aimed toward identifying a cell’s complete transcription regulatory network and underlying molecular mechanisms.

  17. Genetic regulatory networks that count to 3.

    Science.gov (United States)

    Lehmann, Malte; Sneppen, Kim

    2013-07-21

    Sensing a graded input and differentiating between its different levels is at the core of many developmental decisions. Here, we want to examine how this can be realized for a simple system. We model gene regulatory circuits that reach distinct states when setting the underlying gene copy number to 1, 2 and 3. This distinction can be considered as counting the copy number. We explore different circuits that allow for counting and keeping memory of the count after resetting the copy number to 1. For this purpose, we sample different architectures and parameters, only considering circuits that contain repressive links, which we model by Michaelis-Menten terms. Interestingly, we find that counting to 3 does not require a hierarchy in Hill coefficients, in contrast to counting to 2, which is known from lambda phage. Furthermore, we find two main circuit architectures: one design also found in the vertebrate neural tube in a development governed by the sonic hedgehog morphogen and the more robust design of a repressilator supplemented with a weak repressilator acting in the opposite direction. PMID:23567648

  18. Statins as Modulators of Regulatory T-Cell Biology

    Directory of Open Access Journals (Sweden)

    David A. Forero-Peña

    2013-01-01

    Full Text Available Statins are pharmacological inhibitors of the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR, an enzyme responsible for the synthesis of cholesterol. Some recent experimental studies have shown that besides their effects on the primary and secondary prevention of cardiovascular diseases, statins may also have beneficial anti-inflammatory effects through diverse mechanisms. On the other hand, the induction and activity of regulatory T cells (Treg are key processes in the prevention of pathology during chronic inflammatory and autoimmune diseases. Hence, strategies oriented towards the therapeutic expansion of Tregs are gaining special attention among biomedical researchers. The potential effects of statins on the biology of Treg are of particular importance because of their eventual application as in vivo inducers of Treg in the treatment of multiple conditions. In this paper we review the experimental evidence pointing out to a potential effect of statins on the role of regulatory T cells in different conditions and discuss its potential clinical significance.

  19. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Thomas, Edward Victor; Slepoy, Alexander; Zhang, Zhaoduo; May, Elebeoba Eni; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-12-01

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.

  20. Metanetworks of artificially evolved regulatory networks

    CERN Document Server

    Danacı, Burçin

    2014-01-01

    We study metanetworks arising in genotype and phenotype spaces, in the context of a model population of Boolean graphs evolved under selection for short dynamical attractors. We define the adjacency matrix of a graph as its genotype, which gets mutated in the course of evolution, while its phenotype is its set of dynamical attractors. Metanetworks in the genotype and phenotype spaces are formed, respectively, by genetic proximity and by phenotypic similarity, the latter weighted by the sizes of the basins of attraction of the shared attractors. We find that populations of evolved networks form giant clusters in genotype space, have Poissonian degree distributions but exhibit hierarchically organized $k$-core decompositions, while random populations of Boolean graphs are typically so far removed from each other genetically that they cannot form a metanetwork. In phenotype space, the metanetworks of evolved populations are super robust both under the elimination of weak connections and random removal of nodes. ...

  1. Gene regulatory networks elucidating huanglongbing disease mechanisms.

    Directory of Open Access Journals (Sweden)

    Federico Martinelli

    Full Text Available Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas, especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein - protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation, sucrose metabolism (upregulation, and starch biosynthesis (upregulation. In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70 was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur.

  2. Modeling gene expression regulatory networks with the sparse vector autoregressive model

    Directory of Open Access Journals (Sweden)

    Miyano Satoru

    2007-08-01

    Full Text Available Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters originating from a smaller number of microarray experiments (samples. Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is

  3. Unraveling gene regulatory networks from time-resolved gene expression data -- a measures comparison study

    Directory of Open Access Journals (Sweden)

    Koseska Aneta

    2011-07-01

    Full Text Available Abstract Background Inferring regulatory interactions between genes from transcriptomics time-resolved data, yielding reverse engineered gene regulatory networks, is of paramount importance to systems biology and bioinformatics studies. Accurate methods to address this problem can ultimately provide a deeper insight into the complexity, behavior, and functions of the underlying biological systems. However, the large number of interacting genes coupled with short and often noisy time-resolved read-outs of the system renders the reverse engineering a challenging task. Therefore, the development and assessment of methods which are computationally efficient, robust against noise, applicable to short time series data, and preferably capable of reconstructing the directionality of the regulatory interactions remains a pressing research problem with valuable applications. Results Here we perform the largest systematic analysis of a set of similarity measures and scoring schemes within the scope of the relevance network approach which are commonly used for gene regulatory network reconstruction from time series data. In addition, we define and analyze several novel measures and schemes which are particularly suitable for short transcriptomics time series. We also compare the considered 21 measures and 6 scoring schemes according to their ability to correctly reconstruct such networks from short time series data by calculating summary statistics based on the corresponding specificity and sensitivity. Our results demonstrate that rank and symbol based measures have the highest performance in inferring regulatory interactions. In addition, the proposed scoring scheme by asymmetric weighting has shown to be valuable in reducing the number of false positive interactions. On the other hand, Granger causality as well as information-theoretic measures, frequently used in inference of regulatory networks, show low performance on the short time series analyzed in

  4. A gene regulatory network armature for T-lymphocyte specification

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Elizabeth-sharon [Los Alamos National Laboratory

    2008-01-01

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.

  5. Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements

    Directory of Open Access Journals (Sweden)

    Sara J.C. Gosline

    2016-01-01

    Full Text Available MicroRNAs (miRNAs regulate diverse biological processes by repressing mRNAs, but their modest effects on direct targets, together with their participation in larger regulatory networks, make it challenging to delineate miRNA-mediated effects. Here, we describe an approach to characterizing miRNA-regulatory networks by systematically profiling transcriptional, post-transcriptional and epigenetic activity in a pair of isogenic murine fibroblast cell lines with and without Dicer expression. By RNA sequencing (RNA-seq and CLIP (crosslinking followed by immunoprecipitation sequencing (CLIP-seq, we found that most of the changes induced by global miRNA loss occur at the level of transcription. We then introduced a network modeling approach that integrated these data with epigenetic data to identify specific miRNA-regulated transcription factors that explain the impact of miRNA perturbation on gene expression. In total, we demonstrate that combining multiple genome-wide datasets spanning diverse regulatory modes enables accurate delineation of the downstream miRNA-regulated transcriptional network and establishes a model for studying similar networks in other systems.

  6. Biological impacts and context of network theory

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-05

    Many complex systems can be represented and analyzed as networks, and examples that have benefited from this approach span the natural sciences. For instance, we now know that systems as disparate as the World-Wide Web, the Internet, scientific collaborations, food webs, protein interactions and metabolism all have common features in their organization, the most salient of which are their scale-free connectivity distributions and their small-world behavior. The recent availability of large scale datasets that span the proteome or metabolome of an organism have made it possible to elucidate some of the organizational principles and rules that govern their function, robustness and evolution. We expect that combining the currently separate layers of information from gene regulatory-, signal transduction-, protein interaction- and metabolic networks will dramatically enhance our understanding of cellular function and dynamics.

  7. Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions.

    Science.gov (United States)

    Werhli, Adriano V; Husmeier, Dirk

    2008-06-01

    There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al. where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. We have derived and tested a Markov chain Monte Carlo (MCMC) scheme for sampling networks and hyperparameters simultaneously from the posterior distribution, thereby automatically learning how to trade off information from the prior knowledge and the data. We have extended this approach to a Bayesian coupling scheme for learning gene regulatory networks from a combination of related data sets, which were obtained under different experimental conditions and are therefore potentially associated with different active subpathways. The proposed coupling scheme is a compromise between (1) learning networks from the different subsets separately, whereby no information between the different experiments is shared; and (2) learning networks from a monolithic fusion of the individual data sets, which does not provide any mechanism for uncovering differences between the network structures associated with the different experimental conditions. We have assessed the viability of all proposed methods on data related to the Raf signaling pathway, generated both synthetically and in cytometry experiments. PMID:18574862

  8. Gene regulatory network reconstruction using Bayesian networks, the Dantzig Selector, the Lasso and their meta-analysis.

    Directory of Open Access Journals (Sweden)

    Matthieu Vignes

    Full Text Available Modern technologies and especially next generation sequencing facilities are giving a cheaper access to genotype and genomic data measured on the same sample at once. This creates an ideal situation for multifactorial experiments designed to infer gene regulatory networks. The fifth "Dialogue for Reverse Engineering Assessments and Methods" (DREAM5 challenges are aimed at assessing methods and associated algorithms devoted to the inference of biological networks. Challenge 3 on "Systems Genetics" proposed to infer causal gene regulatory networks from different genetical genomics data sets. We investigated a wide panel of methods ranging from Bayesian networks to penalised linear regressions to analyse such data, and proposed a simple yet very powerful meta-analysis, which combines these inference methods. We present results of the Challenge as well as more in-depth analysis of predicted networks in terms of structure and reliability. The developed meta-analysis was ranked first among the 16 teams participating in Challenge 3A. It paves the way for future extensions of our inference method and more accurate gene network estimates in the context of genetical genomics.

  9. Novel topological descriptors for analyzing biological networks

    Directory of Open Access Journals (Sweden)

    Varmuza Kurt K

    2010-06-01

    Full Text Available Abstract Background Topological descriptors, other graph measures, and in a broader sense, graph-theoretical methods, have been proven as powerful tools to perform biological network analysis. However, the majority of the developed descriptors and graph-theoretical methods does not have the ability to take vertex- and edge-labels into account, e.g., atom- and bond-types when considering molecular graphs. Indeed, this feature is important to characterize biological networks more meaningfully instead of only considering pure topological information. Results In this paper, we put the emphasis on analyzing a special type of biological networks, namely bio-chemical structures. First, we derive entropic measures to calculate the information content of vertex- and edge-labeled graphs and investigate some useful properties thereof. Second, we apply the mentioned measures combined with other well-known descriptors to supervised machine learning methods for predicting Ames mutagenicity. Moreover, we investigate the influence of our topological descriptors - measures for only unlabeled vs. measures for labeled graphs - on the prediction performance of the underlying graph classification problem. Conclusions Our study demonstrates that the application of entropic measures to molecules representing graphs is useful to characterize such structures meaningfully. For instance, we have found that if one extends the measures for determining the structural information content of unlabeled graphs to labeled graphs, the uniqueness of the resulting indices is higher. Because measures to structurally characterize labeled graphs are clearly underrepresented so far, the further development of such methods might be valuable and fruitful for solving problems within biological network analysis.

  10. DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data

    Directory of Open Access Journals (Sweden)

    Schulz Marcel H

    2012-08-01

    Full Text Available Abstract Background Modeling dynamic regulatory networks is a major challenge since much of the protein-DNA interaction data available is static. The Dynamic Regulatory Events Miner (DREM uses a Hidden Markov Model-based approach to integrate this static interaction data with time series gene expression leading to models that can determine when transcription factors (TFs activate genes and what genes they regulate. DREM has been used successfully in diverse areas of biological research. However, several issues were not addressed by the original version. Results DREM 2.0 is a comprehensive software for reconstructing dynamic regulatory networks that supports interactive graphical or batch mode. With version 2.0 a set of new features that are unique in comparison with other softwares are introduced. First, we provide static interaction data for additional species. Second, DREM 2.0 now accepts continuous binding values and we added a new method to utilize TF expression levels when searching for dynamic models. Third, we added support for discriminative motif discovery, which is particularly powerful for species with limited experimental interaction data. Finally, we improved the visualization to support the new features. Combined, these changes improve the ability of DREM 2.0 to accurately recover dynamic regulatory networks and make it much easier to use it for analyzing such networks in several species with varying degrees of interaction information. Conclusions DREM 2.0 provides a unique framework for constructing and visualizing dynamic regulatory networks. DREM 2.0 can be downloaded from: http://www.sb.cs.cmu.edu/drem.

  11. Changing the p53 master regulatory network: ELEMENTary, my dear Mr Watson.

    Science.gov (United States)

    Menendez, D; Inga, A; Jordan, J J; Resnick, M A

    2007-04-01

    The p53 master regulatory network provides for the stress-responsive direct control of a vast number of genes in humans that can be grouped into several biological categories including cell-cycle control, apoptosis and DNA repair. Similar to other sequence-specific master regulators, there is a matrix of key components, which provide for variation within the p53 master regulatory network that include p53 itself, target response element sequences (REs) that provide for p53 regulation of target genes, chromatin, accessory proteins and transcription machinery. Changes in any of these can impact the expression of individual genes, groups of genes and the eventual biological responses. The many REs represent the core of the master regulatory network. Since defects or altered expression of p53 are associated with over 50% of all cancers and greater than 90% of p53 mutations are in the sequence-specific DNA-binding domain, it is important to understand the relationship between wild-type or mutant p53 proteins and the target response elements. In the words of the legendary detective Sherlock Holmes, it is 'Elementary, my dear Mr. Watson'. PMID:17401428

  12. Dynamic Regulatory Network Reconstruction for Alzheimer’s Disease Based on Matrix Decomposition Techniques

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia and leads to irreversible neurodegenerative damage of the brain. Finding the dynamic responses of genes, signaling proteins, transcription factor (TF activities, and regulatory networks of the progressively deteriorative progress of AD would represent a significant advance in discovering the pathogenesis of AD. However, the high throughput technologies of measuring TF activities are not yet available on a genome-wide scale. In this study, based on DNA microarray gene expression data and a priori information of TFs, network component analysis (NCA algorithm is applied to determining the TF activities and regulatory influences on TGs of incipient, moderate, and severe AD. Based on that, the dynamical gene regulatory networks of the deteriorative courses of AD were reconstructed. To select significant genes which are differentially expressed in different courses of AD, independent component analysis (ICA, which is better than the traditional clustering methods and can successfully group one gene in different meaningful biological processes, was used. The molecular biological analysis showed that the changes of TF activities and interactions of signaling proteins in mitosis, cell cycle, immune response, and inflammation play an important role in the deterioration of AD.

  13. An Improved Method for Completely Uncertain Biological Network Alignment

    OpenAIRE

    2015-01-01

    With the continuous development of biological experiment technology, more and more data related to uncertain biological networks needs to be analyzed. However, most of current alignment methods are designed for the deterministic biological network. Only a few can solve the probabilistic network alignment problem. However, these approaches only use the part of probabilistic data in the original networks allowing only one of the two networks to be probabilistic. To overcome the weakness of curr...

  14. Insights into the organization of biochemical regulatory networks using graph theory analyses.

    Science.gov (United States)

    Ma'ayan, Avi

    2009-02-27

    Graph theory has been a valuable mathematical modeling tool to gain insights into the topological organization of biochemical networks. There are two types of insights that may be obtained by graph theory analyses. The first provides an overview of the global organization of biochemical networks; the second uses prior knowledge to place results from multivariate experiments, such as microarray data sets, in the context of known pathways and networks to infer regulation. Using graph analyses, biochemical networks are found to be scale-free and small-world, indicating that these networks contain hubs, which are proteins that interact with many other molecules. These hubs may interact with many different types of proteins at the same time and location or at different times and locations, resulting in diverse biological responses. Groups of components in networks are organized in recurring patterns termed network motifs such as feedback and feed-forward loops. Graph analysis revealed that negative feedback loops are less common and are present mostly in proximity to the membrane, whereas positive feedback loops are highly nested in an architecture that promotes dynamical stability. Cell signaling networks have multiple pathways from some input receptors and few from others. Such topology is reminiscent of a classification system. Signaling networks display a bow-tie structure indicative of funneling information from extracellular signals and then dispatching information from a few specific central intracellular signaling nexuses. These insights show that graph theory is a valuable tool for gaining an understanding of global regulatory features of biochemical networks. PMID:18940806

  15. Network Biology (http://www.iaees.org/publications/journals/nb/online-version.asp

    Directory of Open Access Journals (Sweden)

    networkbiology@iaees.org

    Full Text Available Network Biology ISSN 2220-8879 URL: http://www.iaees.org/publications/journals/nb/online-version.asp RSS: http://www.iaees.org/publications/journals/nb/rss.xml E-mail: networkbiology@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope NETWORK BIOLOGY (ISSN 2220-8879; CODEN NBEICS is an open access, peer-reviewed international journal that considers scientific articles in all different areas of network biology. It is the transactions of the International Society of Network Biology. It dedicates to the latest advances in network biology. The goal of this journal is to keep a record of the state-of-the-art research and promote the research work in these fast moving areas. The topics to be covered by Network Biology include, but are not limited to: •Theories, algorithms and programs of network analysis •Innovations and applications of biological networks •Ecological networks, food webs and natural equilibrium •Co-evolution, co-extinction, biodiversity conservation •Metabolic networks, protein-protein interaction networks, biochemical reaction networks, gene networks, transcriptional regulatory networks, cell cycle networks, phylogenetic networks, network motifs •Physiological networksNetwork regulation of metabolic processes, human diseases and ecological systems •Social networks, epidemiological networks •System complexity, self-organized systems, emergence of biological systems, agent-based modeling, individual-based modeling, neural network modeling, and other network-based modeling, etc. We are also interested in short communications that clearly address a specific issue or completely present a new ecological network, food web, or metabolic or gene network, etc. Authors can submit their works to the email box of this journal, networkbiology@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal

  16. Stochastic stability of Markovian switching genetic regulatory networks

    International Nuclear Information System (INIS)

    In this Letter, taking into account the structure variations at discrete time instances during the process of gene regulation, a hybrid genetic regulatory networks model based on Markov chain is proposed. Its robust stochastic stability in the case of uncertain switching probabilities and intrinsic noises is then addressed from the stochastic system point of view. It is shown that the sufficient condition for the robust stochastic stability of the genetic networks can be formulated as feasibility of a linear matrix inequality, which can be easily facilitated by Matlab LMI toolbox. Finally, a numerical example with simulations is presented to illustrate the effectiveness of the developed results.

  17. Grouped graphical Granger modeling for gene expression regulatory networks discovery

    OpenAIRE

    Lozano, Aurélie C.; Abe, Naoki; Yan LIU; Rosset, Saharon

    2009-01-01

    We consider the problem of discovering gene regulatory networks from time-series microarray data. Recently, graphical Granger modeling has gained considerable attention as a promising direction for addressing this problem. These methods apply graphical modeling methods on time-series data and invoke the notion of ‘Granger causality’ to make assertions on causality through inference on time-lagged effects. Existing algorithms, however, have neglected an important aspect of the problem—the grou...

  18. Multicolor labeling in developmental gene regulatory network analysis.

    Science.gov (United States)

    Sethi, Aditya J; Angerer, Robert C; Angerer, Lynne M

    2014-01-01

    The sea urchin embryo is an important model system for developmental gene regulatory network (GRN) analysis. This chapter describes the use of multicolor fluorescent in situ hybridization (FISH) as well as a combination of FISH and immunohistochemistry in sea urchin embryonic GRN studies. The methods presented here can be applied to a variety of experimental settings where accurate spatial resolution of multiple gene products is required for constructing a developmental GRN. PMID:24567220

  19. On the basic computational structure of gene regulatory networks

    OpenAIRE

    Rodriguez-Caso, Carlos; Corominas-Murtra, Bernat; Solé, Ricard V.

    2009-01-01

    Gene regulatory networks constitute the first layer of the cellular computation for cell adaptation and surveillance. In these webs, a set of causal relations is built up from thousands of interactions between transcription factors and their target genes. The large size of these webs and their entangled nature make difficult to achieve a global view of their internal organisation. Here, this problem has been addressed through a comparative study for {\\em Escherichia coli}, {\\em Bacillus subti...

  20. Finite-Time Stability Analysis of Switched Genetic Regulatory Networks

    OpenAIRE

    Lizi Yin

    2014-01-01

    This paper investigates the finite-time stability problem of switching genetic regulatory networks (GRNs) with interval time-varying delays and unbounded continuous distributed delays. Based on the piecewise Lyapunov-Krasovskii functional and the average dwell time method, some new finite-time stability criteria are obtained in the form of linear matrix inequalities (LMIs), which are easy to be confirmed by the Matlab toolbox. The finite-time stability is taken into account in switching genet...

  1. Comparing artificial and biological dynamical neural networks

    Science.gov (United States)

    McAulay, Alastair D.

    2006-05-01

    Modern computers can be made more friendly and otherwise improved by making them behave more like humans. Perhaps we can learn how to do this from biology in which human brains evolved over a long period of time. Therefore, we first explain a commonly used biological neural network (BNN) model, the Wilson-Cowan neural oscillator, that has cross-coupled excitatory (positive) and inhibitory (negative) neurons. The two types of neurons are used for frequency modulation communication between neurons which provides immunity to electromagnetic interference. We then evolve, for the first time, an artificial neural network (ANN) to perform the same task. Two dynamical feed-forward artificial neural networks use cross-coupling feedback (like that in a flip-flop) to form an ANN nonlinear dynamic neural oscillator with the same equations as the Wilson-Cowan neural oscillator. Finally we show, through simulation, that the equations perform the basic neural threshold function, switching between stable zero output and a stable oscillation, that is a stable limit cycle. Optical implementation with an injected laser diode and future research are discussed.

  2. LmSmdB: an integrated database for metabolic and gene regulatory network in Leishmania major and Schistosoma mansoni

    OpenAIRE

    Priyanka Patel; Vineetha Mandlik; Shailza Singh

    2015-01-01

    A database that integrates all the information required for biological processing is essential to be stored in one platform. We have attempted to create one such integrated database that can be a one stop shop for the essential features required to fetch valuable result. LmSmdB (L. major and S. mansoni database) is an integrated database that accounts for the biological networks and regulatory pathways computationally determined by integrating the knowledge of the genome sequences of the ment...

  3. Characterization of WRKY co-regulatory networks in rice and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kikuchi Shoshi

    2009-09-01

    Full Text Available Abstract Background The WRKY transcription factor gene family has a very ancient origin and has undergone extensive duplications in the plant kingdom. Several studies have pointed out their involvement in a range of biological processes, revealing that a large number of WRKY genes are transcriptionally regulated under conditions of biotic and/or abiotic stress. To investigate the existence of WRKY co-regulatory networks in plants, a whole gene family WRKYs expression study was carried out in rice (Oryza sativa. This analysis was extended to Arabidopsis thaliana taking advantage of an extensive repository of gene expression data. Results The presented results suggested that 24 members of the rice WRKY gene family (22% of the total were differentially-regulated in response to at least one of the stress conditions tested. We defined the existence of nine OsWRKY gene clusters comprising both phylogenetically related and unrelated genes that were significantly co-expressed, suggesting that specific sets of WRKY genes might act in co-regulatory networks. This hypothesis was tested by Pearson Correlation Coefficient analysis of the Arabidopsis WRKY gene family in a large set of Affymetrix microarray experiments. AtWRKYs were found to belong to two main co-regulatory networks (COR-A, COR-B and two smaller ones (COR-C and COR-D, all including genes belonging to distinct phylogenetic groups. The COR-A network contained several AtWRKY genes known to be involved mostly in response to pathogens, whose physical and/or genetic interaction was experimentally proven. We also showed that specific co-regulatory networks were conserved between the two model species by identifying Arabidopsis orthologs of the co-expressed OsWRKY genes. Conclusion In this work we identified sets of co-expressed WRKY genes in both rice and Arabidopsis that are functionally likely to cooperate in the same signal transduction pathways. We propose that, making use of data from co-regulatory

  4. A novel model-free approach for reconstruction of time-delayed gene regulatory networks

    Institute of Scientific and Technical Information of China (English)

    JIANG; Wei; LI; Xia; GUO; Zheng; LI; Chuanxing; WANG; Lihong

    2006-01-01

    Reconstruction of genetic networks is one of the key scientific challenges in functional genomics. This paper describes a novel approach for addressing the regulatory dependencies between genes whose activities can be delayed by multiple units of time. The aim of the proposed approach termed TdGRN (time-delayed gene regulatory networking) is to reversely engineer the dynamic mechanisms of gene regulations, which is realized by identifying the time-delayed gene regulations through supervised decision-tree analysis of the newly designed time-delayed gene expression matrix, derived from the original time-series microarray data. A permutation technique is used to determine the statistical classification threshold of a tree, from which a gene regulatory rule(s) is extracted. The proposed TdGRN is a model-free approach that attempts to learn the underlying regulatory rules without relying on any model assumptions. Compared with model-based approaches, it has several significant advantages: it requires neither any arbitrary threshold for discretization of gene transcriptional values nor the definition of the number of regulators (k). We have applied this novel method to the publicly available data for budding yeast cell cycling. The numerical results demonstrate that most of the identified time-delayed gene regulations have current biological knowledge supports.

  5. Multitask learning of signaling and regulatory networks with application to studying human response to flu.

    Directory of Open Access Journals (Sweden)

    Siddhartha Jain

    2014-12-01

    Full Text Available Reconstructing regulatory and signaling response networks is one of the major goals of systems biology. While several successful methods have been suggested for this task, some integrating large and diverse datasets, these methods have so far been applied to reconstruct a single response network at a time, even when studying and modeling related conditions. To improve network reconstruction we developed MT-SDREM, a multi-task learning method which jointly models networks for several related conditions. In MT-SDREM, parameters are jointly constrained across the networks while still allowing for condition-specific pathways and regulation. We formulate the multi-task learning problem and discuss methods for optimizing the joint target function. We applied MT-SDREM to reconstruct dynamic human response networks for three flu strains: H1N1, H5N1 and H3N2. Our multi-task learning method was able to identify known and novel factors and genes, improving upon prior methods that model each condition independently. The MT-SDREM networks were also better at identifying proteins whose removal affects viral load indicating that joint learning can still lead to accurate, condition-specific, networks. Supporting website with MT-SDREM implementation: http://sb.cs.cmu.edu/mtsdrem.

  6. Multitask Learning of Signaling and Regulatory Networks with Application to Studying Human Response to Flu

    Science.gov (United States)

    Jain, Siddhartha; Gitter, Anthony; Bar-Joseph, Ziv

    2014-01-01

    Reconstructing regulatory and signaling response networks is one of the major goals of systems biology. While several successful methods have been suggested for this task, some integrating large and diverse datasets, these methods have so far been applied to reconstruct a single response network at a time, even when studying and modeling related conditions. To improve network reconstruction we developed MT-SDREM, a multi-task learning method which jointly models networks for several related conditions. In MT-SDREM, parameters are jointly constrained across the networks while still allowing for condition-specific pathways and regulation. We formulate the multi-task learning problem and discuss methods for optimizing the joint target function. We applied MT-SDREM to reconstruct dynamic human response networks for three flu strains: H1N1, H5N1 and H3N2. Our multi-task learning method was able to identify known and novel factors and genes, improving upon prior methods that model each condition independently. The MT-SDREM networks were also better at identifying proteins whose removal affects viral load indicating that joint learning can still lead to accurate, condition-specific, networks. Supporting website with MT-SDREM implementation: http://sb.cs.cmu.edu/mtsdrem PMID:25522349

  7. Statistical identification of gene association by CID in application of constructing ER regulatory network

    Directory of Open Access Journals (Sweden)

    Lien Huang-Chun

    2009-03-01

    Full Text Available Abstract Background A variety of high-throughput techniques are now available for constructing comprehensive gene regulatory networks in systems biology. In this study, we report a new statistical approach for facilitating in silico inference of regulatory network structure. The new measure of association, coefficient of intrinsic dependence (CID, is model-free and can be applied to both continuous and categorical distributions. When given two variables X and Y, CID answers whether Y is dependent on X by examining the conditional distribution of Y given X. In this paper, we apply CID to analyze the regulatory relationships between transcription factors (TFs (X and their downstream genes (Y based on clinical data. More specifically, we use estrogen receptor α (ERα as the variable X, and the analyses are based on 48 clinical breast cancer gene expression arrays (48A. Results The analytical utility of CID was evaluated in comparison with four commonly used statistical methods, Galton-Pearson's correlation coefficient (GPCC, Student's t-test (STT, coefficient of determination (CoD, and mutual information (MI. When being compared to GPCC, CoD, and MI, CID reveals its preferential ability to discover the regulatory association where distribution of the mRNA expression levels on X and Y does not fit linear models. On the other hand, when CID is used to measure the association of a continuous variable (Y against a discrete variable (X, it shows similar performance as compared to STT, and appears to outperform CoD and MI. In addition, this study established a two-layer transcriptional regulatory network to exemplify the usage of CID, in combination with GPCC, in deciphering gene networks based on gene expression profiles from patient arrays. Conclusion CID is shown to provide useful information for identifying associations between genes and transcription factors of interest in patient arrays. When coupled with the relationships detected by GPCC, the

  8. Data-driven integration of genome-scale regulatory and metabolic network

    Energy Technology Data Exchange (ETDEWEB)

    Imam, S; Schauble, S; Brooks, AN; Baliga, NS; Price, ND

    2015-05-05

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  9. Data-driven integration of genome-scale regulatory and metabolic network models

    Directory of Open Access Journals (Sweden)

    Saheed eImam

    2015-05-01

    Full Text Available Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription and signaling have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert – a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  10. Regulatory Compliance in Multi-Tier Supplier Networks

    Science.gov (United States)

    Goossen, Emray R.; Buster, Duke A.

    2014-01-01

    Over the years, avionics systems have increased in complexity to the point where 1st tier suppliers to an aircraft OEM find it financially beneficial to outsource designs of subsystems to 2nd tier and at times to 3rd tier suppliers. Combined with challenging schedule and budgetary pressures, the environment in which safety-critical systems are being developed introduces new hurdles for regulatory agencies and industry. This new environment of both complex systems and tiered development has raised concerns in the ability of the designers to ensure safety considerations are fully addressed throughout the tier levels. This has also raised questions about the sufficiency of current regulatory guidance to ensure: proper flow down of safety awareness, avionics application understanding at the lower tiers, OEM and 1st tier oversight practices, and capabilities of lower tier suppliers. Therefore, NASA established a research project to address Regulatory Compliance in a Multi-tier Supplier Network. This research was divided into three major study efforts: 1. Describe Modern Multi-tier Avionics Development 2. Identify Current Issues in Achieving Safety and Regulatory Compliance 3. Short-term/Long-term Recommendations Toward Higher Assurance Confidence This report presents our findings of the risks, weaknesses, and our recommendations. It also includes a collection of industry-identified risks, an assessment of guideline weaknesses related to multi-tier development of complex avionics systems, and a postulation of potential modifications to guidelines to close the identified risks and weaknesses.

  11. Polynomial-Time Algorithm for Controllability Test of a Class of Boolean Biological Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2010-01-01

    Full Text Available In recent years, Boolean-network-model-based approaches to dynamical analysis of complex biological networks such as gene regulatory networks have been extensively studied. One of the fundamental problems in control theory of such networks is the problem of determining whether a given substance quantity can be arbitrarily controlled by operating the other substance quantities, which we call the controllability problem. This paper proposes a polynomial-time algorithm for solving this problem. Although the algorithm is based on a sufficient condition for controllability, it is easily computable for a wider class of large-scale biological networks compared with the existing approaches. A key to this success in our approach is to give up computing Boolean operations in a rigorous way and to exploit an adjacency matrix of a directed graph induced by a Boolean network. By applying the proposed approach to a neurotransmitter signaling pathway, it is shown that it is effective.

  12. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology

    OpenAIRE

    Grzegorczyk, M.; Husmeier, D.

    2012-01-01

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint pr...

  13. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation

    Science.gov (United States)

    Goode, Debbie K.; Obier, Nadine; Vijayabaskar, M.S.; Lie-A-Ling, Michael; Lilly, Andrew J.; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A.; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R.; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-01-01

    Summary Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  14. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation.

    Science.gov (United States)

    Goode, Debbie K; Obier, Nadine; Vijayabaskar, M S; Lie-A-Ling, Michael; Lilly, Andrew J; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-03-01

    Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  15. Inferring the role of transcription factors in regulatory networks

    Directory of Open Access Journals (Sweden)

    Le Borgne Michel

    2008-05-01

    Full Text Available Abstract Background Expression profiles obtained from multiple perturbation experiments are increasingly used to reconstruct transcriptional regulatory networks, from well studied, simple organisms up to higher eukaryotes. Admittedly, a key ingredient in developing a reconstruction method is its ability to integrate heterogeneous sources of information, as well as to comply with practical observability issues: measurements can be scarce or noisy. In this work, we show how to combine a network of genetic regulations with a set of expression profiles, in order to infer the functional effect of the regulations, as inducer or repressor. Our approach is based on a consistency rule between a network and the signs of variation given by expression arrays. Results We evaluate our approach in several settings of increasing complexity. First, we generate artificial expression data on a transcriptional network of E. coli extracted from the literature (1529 nodes and 3802 edges, and we estimate that 30% of the regulations can be annotated with about 30 profiles. We additionally prove that at most 40.8% of the network can be inferred using our approach. Second, we use this network in order to validate the predictions obtained with a compendium of real expression profiles. We describe a filtering algorithm that generates particularly reliable predictions. Finally, we apply our inference approach to S. cerevisiae transcriptional network (2419 nodes and 4344 interactions, by combining ChIP-chip data and 15 expression profiles. We are able to detect and isolate inconsistencies between the expression profiles and a significant portion of the model (15% of all the interactions. In addition, we report predictions for 14.5% of all interactions. Conclusion Our approach does not require accurate expression levels nor times series. Nevertheless, we show on both data, real and artificial, that a relatively small number of perturbation experiments are enough to determine

  16. Computational methods to dissect cis-regulatory transcriptional networks

    Indian Academy of Sciences (India)

    Vibha Rani

    2007-12-01

    The formation of diverse cell types from an invariant set of genes is governed by biochemical and molecular processes that regulate gene activity. A complete understanding of the regulatory mechanisms of gene expression is the major function of genomics. Computational genomics is a rapidly emerging area for deciphering the regulation of metazoan genes as well as interpreting the results of high-throughput screening. The integration of computer science with biology has expedited molecular modelling and processing of large-scale data inputs such as microarrays, analysis of genomes, transcriptomes and proteomes. Many bioinformaticians have developed various algorithms for predicting transcriptional regulatory mechanisms from the sequence, gene expression and interaction data. This review contains compiled information of various computational methods adopted to dissect gene expression pathways.

  17. Using GeneReg to construct time delay gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Qian Ziliang

    2010-05-01

    Full Text Available Abstract Background Understanding gene expression and regulation is essential for understanding biological mechanisms. Because gene expression profiling has been widely used in basic biological research, especially in transcription regulation studies, we have developed GeneReg, an easy-to-use R package, to construct gene regulatory networks from time course gene expression profiling data; More importantly, this package can provide information about time delays between expression change in a regulator and that of its target genes. Findings The R package GeneReg is based on time delay linear regression, which can generate a model of the expression levels of regulators at a given time point against the expression levels of their target genes at a later time point. There are two parameters in the model, time delay and regulation coefficient. Time delay is the time lag during which expression change of the regulator is transmitted to change in target gene expression. Regulation coefficient expresses the regulation effect: a positive regulation coefficient indicates activation and negative indicates repression. GeneReg was implemented on a real Saccharomyces cerevisiae cell cycle dataset; more than thirty percent of the modeled regulations, based entirely on gene expression files, were found to be consistent with previous discoveries from known databases. Conclusions GeneReg is an easy-to-use, simple, fast R package for gene regulatory network construction from short time course gene expression data. It may be applied to study time-related biological processes such as cell cycle, cell differentiation, or causal inference.

  18. Modularity of gene-regulatory networks revealed in sea-star development

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2011-01-01

    Full Text Available Abstract Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star, but in a completely different developmental context (the animal-vegetal axis. This observation has implications for hypotheses on the type of development present in the deuterostome common ancestor. See research article: http://www.biomedcentral.com/1741-7007/8/143/abstract

  19. Inferring regulatory networks from experimental morphological phenotypes: a computational method reverse-engineers planarian regeneration.

    Directory of Open Access Journals (Sweden)

    Daniel Lobo

    2015-06-01

    Full Text Available Transformative applications in biomedicine require the discovery of complex regulatory networks that explain the development and regeneration of anatomical structures, and reveal what external signals will trigger desired changes of large-scale pattern. Despite recent advances in bioinformatics, extracting mechanistic pathway models from experimental morphological data is a key open challenge that has resisted automation. The fundamental difficulty of manually predicting emergent behavior of even simple networks has limited the models invented by human scientists to pathway diagrams that show necessary subunit interactions but do not reveal the dynamics that are sufficient for complex, self-regulating pattern to emerge. To finally bridge the gap between high-resolution genetic data and the ability to understand and control patterning, it is critical to develop computational tools to efficiently extract regulatory pathways from the resultant experimental shape phenotypes. For example, planarian regeneration has been studied for over a century, but despite increasing insight into the pathways that control its stem cells, no constructive, mechanistic model has yet been found by human scientists that explains more than one or two key features of its remarkable ability to regenerate its correct anatomical pattern after drastic perturbations. We present a method to infer the molecular products, topology, and spatial and temporal non-linear dynamics of regulatory networks recapitulating in silico the rich dataset of morphological phenotypes resulting from genetic, surgical, and pharmacological experiments. We demonstrated our approach by inferring complete regulatory networks explaining the outcomes of the main functional regeneration experiments in the planarian literature; By analyzing all the datasets together, our system inferred the first systems-biology comprehensive dynamical model explaining patterning in planarian regeneration. This method

  20. Inferring regulatory networks from experimental morphological phenotypes: a computational method reverse-engineers planarian regeneration.

    Science.gov (United States)

    Lobo, Daniel; Levin, Michael

    2015-06-01

    Transformative applications in biomedicine require the discovery of complex regulatory networks that explain the development and regeneration of anatomical structures, and reveal what external signals will trigger desired changes of large-scale pattern. Despite recent advances in bioinformatics, extracting mechanistic pathway models from experimental morphological data is a key open challenge that has resisted automation. The fundamental difficulty of manually predicting emergent behavior of even simple networks has limited the models invented by human scientists to pathway diagrams that show necessary subunit interactions but do not reveal the dynamics that are sufficient for complex, self-regulating pattern to emerge. To finally bridge the gap between high-resolution genetic data and the ability to understand and control patterning, it is critical to develop computational tools to efficiently extract regulatory pathways from the resultant experimental shape phenotypes. For example, planarian regeneration has been studied for over a century, but despite increasing insight into the pathways that control its stem cells, no constructive, mechanistic model has yet been found by human scientists that explains more than one or two key features of its remarkable ability to regenerate its correct anatomical pattern after drastic perturbations. We present a method to infer the molecular products, topology, and spatial and temporal non-linear dynamics of regulatory networks recapitulating in silico the rich dataset of morphological phenotypes resulting from genetic, surgical, and pharmacological experiments. We demonstrated our approach by inferring complete regulatory networks explaining the outcomes of the main functional regeneration experiments in the planarian literature; By analyzing all the datasets together, our system inferred the first systems-biology comprehensive dynamical model explaining patterning in planarian regeneration. This method provides an automated

  1. Control of metastatic progression by microRNA regulatory networks.

    Science.gov (United States)

    Pencheva, Nora; Tavazoie, Sohail F

    2013-06-01

    Aberrant microRNA (miRNA) expression is a defining feature of human malignancy. Specific miRNAs have been identified as promoters or suppressors of metastatic progression. miRNAs control metastasis through divergent or convergent regulation of metastatic gene pathways. Some miRNA regulatory networks govern cell-autonomous cancer phenotypes, whereas others modulate the cell-extrinsic composition of the metastatic microenvironment. The use of small RNAs as probes into the molecular and cellular underpinnings of metastasis holds promise for the identification of candidate genes for potential therapeutic intervention. PMID:23728460

  2. Adaptive Immune Evolutionary Algorithms Based on Immune Network Regulatory Mechanism

    Institute of Scientific and Technical Information of China (English)

    HE Hong; QIAN Feng

    2007-01-01

    Based on immune network regulatory mechanism, a new adaptive immune evolutionary algorithm (AIEA) is proposed to improve the performance of genetic algorithms (GA) in this paper. AIEA adopts novel selection operation according to the stimulation level of each antibody. A memory base for good antibodies is devised simultaneously to raise the convergent rapidity of the algorithm and adaptive adjusting strategy of antibody population is used for preventing the loss of the population adversity. The experiments show AIFA has better convergence performance than standard genetic algorithm and is capable of maintaining the adversity of the population and solving function optimization problems in an efficient and reliable way.

  3. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures. PMID:21576756

  4. Cross-platform microarray data normalisation for regulatory network inference.

    Directory of Open Access Journals (Sweden)

    Alina Sîrbu

    Full Text Available BACKGROUND: Inferring Gene Regulatory Networks (GRNs from time course microarray data suffers from the dimensionality problem created by the short length of available time series compared to the large number of genes in the network. To overcome this, data integration from diverse sources is mandatory. Microarray data from different sources and platforms are publicly available, but integration is not straightforward, due to platform and experimental differences. METHODS: We analyse here different normalisation approaches for microarray data integration, in the context of reverse engineering of GRN quantitative models. We introduce two preprocessing approaches based on existing normalisation techniques and provide a comprehensive comparison of normalised datasets. CONCLUSIONS: Results identify a method based on a combination of Loess normalisation and iterative K-means as best for time series normalisation for this problem.

  5. A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks

    Directory of Open Access Journals (Sweden)

    Page Michel

    2009-12-01

    Full Text Available Abstract Background The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces. Formal verification based on temporal logic and model checking provides promising methods to automate and scale the analysis of the models. However, a framework that tightly integrates modeling and simulation tools with model checkers is currently missing, on both the conceptual and the implementational level. Results We have developed a generic and modular web service, based on a service-oriented architecture, for integrating the modeling and formal verification of genetic regulatory networks. The architecture has been implemented in the context of the qualitative modeling and simulation tool GNA and the model checkers NUSMV and CADP. GNA has been extended with a verification module for the specification and checking of biological properties. The verification module also allows the display and visual inspection of the verification results. Conclusions The practical use of the proposed web service is illustrated by means of a scenario involving the analysis of a qualitative model of the carbon starvation response in E. coli. The service-oriented architecture allows modelers to define the model and proceed with the specification and formal verification of the biological properties by means of a unified graphical user interface. This guarantees a transparent access to formal verification technology for modelers of genetic regulatory networks.

  6. Design of artificial genetic regulatory networks with multiple delayed adaptive responses*

    Science.gov (United States)

    Kaluza, Pablo; Inoue, Masayo

    2016-06-01

    Genetic regulatory networks with adaptive responses are widely studied in biology. Usually, models consisting only of a few nodes have been considered. They present one input receptor for activation and one output node where the adaptive response is computed. In this work, we design genetic regulatory networks with many receptors and many output nodes able to produce delayed adaptive responses. This design is performed by using an evolutionary algorithm of mutations and selections that minimizes an error function defined by the adaptive response in signal shapes. We present several examples of network constructions with a predefined required set of adaptive delayed responses. We show that an output node can have different kinds of responses as a function of the activated receptor. Additionally, complex network structures are presented since processing nodes can be involved in several input-output pathways. Supplementary material in the form of one nets file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-70172-9

  7. Molecular Regulatory Network of Flowering by Photoperiod and Temperature in Rice

    Institute of Scientific and Technical Information of China (English)

    SONG Yuan-li; LUAN Wei-jiang

    2012-01-01

    Plants have an ability to flower under optimal seasonal conditions to ensure reproductive success.Photoperiod and temperature are two important season-dependent factors of plant flowering.The floral transition of plants depends on accurate measurement of changes in photoperiod and temperature.Recent advances in molecular biology and genetics on Arabidopsis and rice reveals that the regulation of plant flowering by photoperiod and temperature are involved in a complicated gene network with different regulatory pathways,and new evidence and understanding were provided in the regulation of rice flowering.Here,we summarize and analyze different flowering regulatory pathways in detail in rice based on previous studies and our results,including short-day promotion,long-day suppression,long-day induction of flowering,night break,different light-quality and temperature regulation pathways.

  8. Epidermal differentiation gene regulatory networks controlled by MAF and MAFB.

    Science.gov (United States)

    Labott, Andrew T; Lopez-Pajares, Vanessa

    2016-06-01

    Numerous regulatory factors in epidermal differentiation and their role in regulating different cell states have been identified in recent years. However, the genetic interactions between these regulators over the dynamic course of differentiation have not been studied. In this Extra-View article, we review recent work by Lopez-Pajares et al. that explores a new regulatory network in epidermal differentiation. They analyze the changing transcriptome throughout epidermal regeneration to identify 3 separate gene sets enriched in the progenitor, early and late differentiation states. Using expression module mapping, MAF along with MAFB, are identified as transcription factors essential for epidermal differentiation. Through double knock-down of MAF:MAFB using siRNA and CRISPR/Cas9-mediated knockout, epidermal differentiation was shown to be impaired both in-vitro and in-vivo, confirming MAF:MAFB's role to activate genes that drive differentiation. Lopez-Pajares and collaborators integrated 42 published regulator gene sets and the MAF:MAFB gene set into the dynamic differentiation gene expression landscape and found that lncRNAs TINCR and ANCR act as upstream regulators of MAF:MAFB. Furthermore, ChIP-seq analysis of MAF:MAFB identified key transcription factor genes linked to epidermal differentiation as downstream effectors. Combined, these findings illustrate a dynamically regulated network with MAF:MAFB as a crucial link for progenitor gene repression and differentiation gene activation. PMID:27097296

  9. Effective identification of conserved pathways in biological networks using hidden Markov models.

    Directory of Open Access Journals (Sweden)

    Xiaoning Qian

    Full Text Available BACKGROUND: The advent of various high-throughput experimental techniques for measuring molecular interactions has enabled the systematic study of biological interactions on a global scale. Since biological processes are carried out by elaborate collaborations of numerous molecules that give rise to a complex network of molecular interactions, comparative analysis of these biological networks can bring important insights into the functional organization and regulatory mechanisms of biological systems. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we present an effective framework for identifying common interaction patterns in the biological networks of different organisms based on hidden Markov models (HMMs. Given two or more networks, our method efficiently finds the top matching paths in the respective networks, where the matching paths may contain a flexible number of consecutive insertions and deletions. CONCLUSIONS/SIGNIFICANCE: Based on several protein-protein interaction (PPI networks obtained from the Database of Interacting Proteins (DIP and other public databases, we demonstrate that our method is able to detect biologically significant pathways that are conserved across different organisms. Our algorithm has a polynomial complexity that grows linearly with the size of the aligned paths. This enables the search for very long paths with more than 10 nodes within a few minutes on a desktop computer. The software program that implements this algorithm is available upon request from the authors.

  10. Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    2013-02-01

    Full Text Available The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I observational gene expression data: normal environmental condition, (II interventional gene expression data: growth in rich media, (III interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.

  11. Virtual private networks application in Nuclear Regulatory Authority of Argentina

    International Nuclear Information System (INIS)

    As the result of the existence of several regional delegations all over the country, a requirement was made to conform a secure data interchange structure. This would make possible the interconnection of these facilities and their communication with the Autoridad Regulatoria Nuclear (ARN) headquarters. The records these parts exchange are often of classified nature, including sensitive data by the local safeguards inspectors. On the other hand, the establishment of this network should simplify the access of authorized nuclear and radioactive materials users to the ARN databases, from remote sites and with significant trust levels. These requirements called for a network that should be not only private but also secure, providing data centralization and integrity assurance with a strict user control. The first proposal was to implement a point to point link between the installations. This proposal was deemed as economically not viable, and it had the disadvantage of not being easily reconfigurable. The availability of new technologies, and the accomplishment of the Action Sheet 11 under an agreement between Argentine Nuclear Regulatory Authority and the United States Department of Energy (DOE), opened a new path towards the resolution of this problem. By application of updated tunneling security protocols it was possible to project a manageable and secure network through the use of Virtual Private Networking (VPN) hardware. A first trial installation of this technology was implemented between ARN headquarters at Buenos Aires and the Southern Region Office at Bariloche, Argentina. This private net is at the moment under test, and it is planned to expand to more sites in this country, reaching for example to nuclear power plants. The Bariloche installation had some interesting peculiarities. The solutions proposed to them revealed to be very useful during the development of the network expansion plans, as they showed how to adapt the VPN technical requisites to the

  12. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviours

    Directory of Open Access Journals (Sweden)

    Daria eMolodtsova

    2014-12-01

    Full Text Available It is increasingly apparent that genes and networks that influence complex behaviour are evolutionary conserved, which is paradoxical considering that behaviour is labile over evolutionary timescales. How does adaptive change in behaviour arise if behaviour is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behaviour, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behaviour of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

  13. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis

    Science.gov (United States)

    Harel, Itamar; Maezawa, Yoshiro; Avraham, Roi; Rinon, Ariel; Ma, Hsiao-Yen; Cross, Joe W.; Leviatan, Noam; Hegesh, Julius; Roy, Achira; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Carvajal, Jaime; Tole, Shubha; Kioussi, Chrissa; Quaggin, Susan; Tzahor, Eldad

    2012-01-01

    The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects. PMID:23112163

  14. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum.

    Science.gov (United States)

    Guo, Li; Zhao, Guoyi; Xu, Jin-Rong; Kistler, H Corby; Gao, Lixin; Ma, Li-Jun

    2016-07-01

    Head blight caused by Fusarium graminearum threatens world-wide wheat production, resulting in both yield loss and mycotoxin contamination. We reconstructed the global F. graminearum gene regulatory network (GRN) from a large collection of transcriptomic data using Bayesian network inference, a machine-learning algorithm. This GRN reveals connectivity between key regulators and their target genes. Focusing on key regulators, this network contains eight distinct but interwoven modules. Enriched for unique functions, such as cell cycle, DNA replication, transcription, translation and stress responses, each module exhibits distinct expression profiles. Evolutionarily, the F. graminearum genome can be divided into core regions shared with closely related species and variable regions harboring genes that are unique to F. graminearum and perform species-specific functions. Interestingly, the inferred top regulators regulate genes that are significantly enriched from the same genomic regions (P control strategies involving the targeting of master regulators in pathogens. The program can be used to construct GRNs of other plant pathogens. PMID:26990214

  15. A new method for discovering disease-specific MiRNA-target regulatory networks.

    Directory of Open Access Journals (Sweden)

    Miriam Baglioni

    Full Text Available Genes and their expression regulation are among the key factors in the comprehension of the genesis and development of complex diseases. In this context, microRNAs (miRNAs are post-transcriptional regulators that play an important role in gene expression since they are frequently deregulated in pathologies like cardiovascular disease and cancer. In vitro validation of miRNA--targets regulation is often too expensive and time consuming to be carried out for every possible alternative. As a result, a tool able to provide some criteria to prioritize trials is becoming a pressing need. Moreover, before planning in vitro experiments, the scientist needs to evaluate the miRNA-target genes interaction network. In this paper we describe the miRable method whose purpose is to identify new potentially relevant genes and their interaction networks associate to a specific pathology. To achieve this goal miRable follows a system biology approach integrating together general-purpose medical knowledge (literature, Protein-Protein Interaction networks, prediction tools and pathology specific data (gene expression data. A case study on Prostate Cancer has shown that miRable is able to: 1 find new potential miRNA-targets pairs, 2 highlight novel genes potentially involved in a disease but never or little studied before, 3 reconstruct all possible regulatory subnetworks starting from the literature to expand the knowledge on the regulation of miRNA regulatory mechanisms.

  16. Data-based Reconstruction of Gene Regulatory Networks of Fungal Pathogens

    Science.gov (United States)

    Guthke, Reinhard; Gerber, Silvia; Conrad, Theresia; Vlaic, Sebastian; Durmuş, Saliha; Çakır, Tunahan; Sevilgen, F. E.; Shelest, Ekaterina; Linde, Jörg

    2016-01-01

    In the emerging field of systems biology of fungal infection, one of the central roles belongs to the modeling of gene regulatory networks (GRNs). Utilizing omics-data, GRNs can be predicted by mathematical modeling. Here, we review current advances of data-based reconstruction of both small-scale and large-scale GRNs for human pathogenic fungi. The advantage of large-scale genome-wide modeling is the possibility to predict central (hub) genes and thereby indicate potential biomarkers and drug targets. In contrast, small-scale GRN models provide hypotheses on the mode of gene regulatory interactions, which have to be validated experimentally. Due to the lack of sufficient quantity and quality of both experimental data and prior knowledge about regulator–target gene relations, the genome-wide modeling still remains problematic for fungal pathogens. While a first genome-wide GRN model has already been published for Candida albicans, the feasibility of such modeling for Aspergillus fumigatus is evaluated in the present article. Based on this evaluation, opinions are drawn on future directions of GRN modeling of fungal pathogens. The crucial point of genome-wide GRN modeling is the experimental evidence, both used for inferring the networks (omics ‘first-hand’ data as well as literature data used as prior knowledge) and for validation and evaluation of the inferred network models. PMID:27148247

  17. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    Science.gov (United States)

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed. PMID:26691180

  18. Biology Question Generation from a Semantic Network

    Science.gov (United States)

    Zhang, Lishan

    Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions. To boost students' learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student's current competence so that a suitable question could be selected based on the student's previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group. To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators. A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from

  19. Analyzing large biological datasets with association networks

    Energy Technology Data Exchange (ETDEWEB)

    Karpinets, Tatiana V [ORNL; Park, Byung H [ORNL; Uberbacher, Edward C [ORNL

    2012-01-01

    Due to advances in high throughput biotechnologies biological information is being collected in databases at an amazing rate, requiring novel computational approaches for timely processing of the collected data into new knowledge. In this study we address this problem by developing a new approach for discovering modular structure, relationships and regularities in complex data. These goals are achieved by converting records of biological annotations of an object, like organism, gene, chemical, sequence, into networks (Anets) and rules (Arules) of the associated annotations. Anets are based on similarity of annotation profiles of objects and can be further analyzed and visualized providing a compact birds-eye view of most significant relationships in the collected data and a way of their clustering and classification. Arules are generated by Apriori considering each record of annotations as a transaction and augmenting each annotation item by its type. Arules provide a way to validate relationships discovered by Anets producing comprehensive statistics on frequently associated annotations and specific confident relationships among them. A combination of Anets and Arules represents condensed information on associations among the collected data, helping to discover new knowledge and generate hypothesis. As an example we have applied the approach to analyze bacterial metadata from the Genomes OnLine Database. The analysis allowed us to produce a map of sequenced bacterial and archaeal organisms based on their genomic, metabolic and physiological characteristics with three major clusters of metadata representing bacterial pathogens, environmental isolates, and plant symbionts. A signature profile of clustered annotations of environmental bacteria if compared with pathogens linked the aerobic respiration, the high GC content and the large genome size to diversity of metabolic activities and physiological features of the organisms.

  20. LmSmdB: an integrated database for metabolic and gene regulatory network in Leishmania major and Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Priyanka Patel

    2016-03-01

    Full Text Available A database that integrates all the information required for biological processing is essential to be stored in one platform. We have attempted to create one such integrated database that can be a one stop shop for the essential features required to fetch valuable result. LmSmdB (L. major and S. mansoni database is an integrated database that accounts for the biological networks and regulatory pathways computationally determined by integrating the knowledge of the genome sequences of the mentioned organisms. It is the first database of its kind that has together with the network designing showed the simulation pattern of the product. This database intends to create a comprehensive canopy for the regulation of lipid metabolism reaction in the parasite by integrating the transcription factors, regulatory genes and the protein products controlled by the transcription factors and hence operating the metabolism at genetic level.

  1. Eric Davidson: Steps to a gene regulatory network for development.

    Science.gov (United States)

    Rothenberg, Ellen V

    2016-04-15

    Eric Harris Davidson was a unique and creative intellectual force who grappled with the diversity of developmental processes used by animal embryos and wrestled them into an intelligible set of principles, then spent his life translating these process elements into molecularly definable terms through the architecture of gene regulatory networks. He took speculative risks in his theoretical writing but ran a highly organized, rigorous experimental program that yielded an unprecedentedly full characterization of a developing organism. His writings created logical order and a framework for mechanism from the complex phenomena at the heart of advanced multicellular organism development. This is a reminiscence of intellectual currents in his work as observed by the author through the last 30-35 years of Davidson's life. PMID:26825392

  2. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Directory of Open Access Journals (Sweden)

    Qi Yuan(Alan

    2010-01-01

    Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.

  3. Stability analysis of delayed genetic regulatory networks with stochastic disturbances

    International Nuclear Information System (INIS)

    This Letter considers the problem of stability analysis of a class of delayed genetic regulatory networks with stochastic disturbances. The delays are assumed to be time-varying and bounded. By utilizing Ito's differential formula and Lyapunov-Krasovskii functionals, delay-range-dependent and rate-dependent (rate-independent) stability criteria are proposed in terms of linear matrices inequalities. An important feature of the proposed results is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another important feature is that the obtained stability conditions are less conservative than certain existing ones in the literature due to introducing some appropriate free-weighting matrices. A simulation example is employed to illustrate the applicability and effectiveness of the proposed methods.

  4. BioNSi: A Discrete Biological Network Simulator Tool.

    Science.gov (United States)

    Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny

    2016-08-01

    Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found. PMID:27354160

  5. Power Laws, Scale-Free Networks and Genome Biology

    CERN Document Server

    Koonin, Eugene V; Karev, Georgy P

    2006-01-01

    Power Laws, Scale-free Networks and Genome Biology deals with crucial aspects of the theoretical foundations of systems biology, namely power law distributions and scale-free networks which have emerged as the hallmarks of biological organization in the post-genomic era. The chapters in the book not only describe the interesting mathematical properties of biological networks but moves beyond phenomenology, toward models of evolution capable of explaining the emergence of these features. The collection of chapters, contributed by both physicists and biologists, strives to address the problems in this field in a rigorous but not excessively mathematical manner and to represent different viewpoints, which is crucial in this emerging discipline. Each chapter includes, in addition to technical descriptions of properties of biological networks and evolutionary models, a more general and accessible introduction to the respective problems. Most chapters emphasize the potential of theoretical systems biology for disco...

  6. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  7. Antagonistic Coevolution Drives Whack-a-Mole Sensitivity in Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Jeewoen Shin

    2015-10-01

    Full Text Available Robustness, defined as tolerance to perturbations such as mutations and environmental fluctuations, is pervasive in biological systems. However, robustness often coexists with its counterpart, evolvability--the ability of perturbations to generate new phenotypes. Previous models of gene regulatory network evolution have shown that robustness evolves under stabilizing selection, but it is unclear how robustness and evolvability will emerge in common coevolutionary scenarios. We consider a two-species model of coevolution involving one host and one parasite population. By using two interacting species, key model parameters that determine the fitness landscapes become emergent properties of the model, avoiding the need to impose these parameters externally. In our study, parasites are modeled on species such as cuckoos where mimicry of the host phenotype confers high fitness to the parasite but lower fitness to the host. Here, frequent phenotype changes are favored as each population continually adapts to the other population. Sensitivity evolves at the network level such that point mutations can induce large phenotype changes. Crucially, the sensitive points of the network are broadly distributed throughout the network and continually relocate. Each time sensitive points in the network are mutated, new ones appear to take their place. We have therefore named this phenomenon "whack-a-mole" sensitivity, after a popular fun park game. We predict that this type of sensitivity will evolve under conditions of strong directional selection, an observation that helps interpret existing experimental evidence, for example, during the emergence of bacterial antibiotic resistance.

  8. Regulatory Networks and Complex Interactions between the Insulin and Angiotensin II Signalling Systems: Models and Implications for Hypertension and Diabetes

    OpenAIRE

    Çizmeci, Deniz; Arkun, Yaman

    2013-01-01

    Regulatory Networks and Complex Interactions between the Insulin and Angiotensin II Signalling Systems: Models and Implications for Hypertension and Diabetes Deniz Cizmeci, Yaman Arkun* Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey Abstract The cross-talk between insulin and angiotensin II signalling pathways plays a significant role in the co-occurrence of diabetes and hypertension. We developed a mathematical model of the system of ...

  9. Discovery of microRNA regulatory networks by integrating multidimensional high-throughput data.

    Science.gov (United States)

    Yang, Jian-Hua; Qu, Liang-Hu

    2013-01-01

    MicroRNAs (miRNAs) are endogenous non-coding RNAs (ncRNAs) of approximately 22 nt that regulate the expression of a large fraction of genes by targeting messenger RNAs (mRNAs). However, determining the biologically significant targets of miRNAs is an ongoing challenge. In this chapter, we describe how to identify miRNA-target interactions and miRNA regulatory networks from high-throughput deep sequencing, CLIP-Seq (HITS-CLIP, PAR-CLIP) and degradome sequencing data using starBase platforms. In starBase, several web-based and stand-alone computational tools were developed to discover Argonaute (Ago) binding and cleavage sites, miRNA-target interactions, perform enrichment analysis of miRNA target genes in Gene Ontology (GO) categories and biological pathways, and identify combinatorial effects between Ago and other RNA-binding proteins (RBPs). Investigating target pathways of miRNAs in human CLIP-Seq data, we found that many cancer-associated miRNAs modulate cancer pathways. Performing an enrichment analysis of genes targeted by highly expressed miRNAs in the mouse brain showed that many miRNAs are involved in cancer-associated MAPK signaling and glioma pathways, as well as neuron-associated neurotrophin signaling and axon guidance pathways. Moreover, thousands of combinatorial binding sites between Ago and RBPs were identified from CLIP-Seq data suggesting RBPs and miRNAs coordinately regulate mRNA transcripts. As a means of comprehensively integrating CLIP-Seq and Degradome-Seq data, the starBase platform is expected to identify clinically relevant miRNA-target regulatory relationships, and reveal multi-dimensional post-transcriptional regulatory networks involving miRNAs and RBPs. starBase is available at http://starbase.sysu.edu.cn/ . PMID:23377977

  10. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks

    Directory of Open Access Journals (Sweden)

    Baliga Nitin S

    2006-06-01

    Full Text Available Abstract Background The learning of global genetic regulatory networks from expression data is a severely under-constrained problem that is aided by reducing the dimensionality of the search space by means of clustering genes into putatively co-regulated groups, as opposed to those that are simply co-expressed. Be cause genes may be co-regulated only across a subset of all observed experimental conditions, biclustering (clustering of genes and conditions is more appropriate than standard clustering. Co-regulated genes are also often functionally (physically, spatially, genetically, and/or evolutionarily associated, and such a priori known or pre-computed associations can provide support for appropriately grouping genes. One important association is the presence of one or more common cis-regulatory motifs. In organisms where these motifs are not known, their de novo detection, integrated into the clustering algorithm, can help to guide the process towards more biologically parsimonious solutions. Results We have developed an algorithm, cMonkey, that detects putative co-regulated gene groupings by integrating the biclustering of gene expression data and various functional associations with the de novo detection of sequence motifs. Conclusion We have applied this procedure to the archaeon Halobacterium NRC-1, as part of our efforts to decipher its regulatory network. In addition, we used cMonkey on public data for three organisms in the other two domains of life: Helicobacter pylori, Saccharomyces cerevisiae, and Escherichia coli. The biclusters detected by cMonkey both recapitulated known biology and enabled novel predictions (some for Halobacterium were subsequently confirmed in the laboratory. For example, it identified the bacteriorhodopsin regulon, assigned additional genes to this regulon with apparently unrelated function, and detected its known promoter motif. We have performed a thorough comparison of cMonkey results against other

  11. Multi-level dynamic modeling in biological systems : application of hybrid Petri nets to network simulation

    OpenAIRE

    Costa, Rafael S.; Machado, C. D.; Neves, Ana Rute; Vinga, Susana

    2012-01-01

    The recent progress in the high-throughput experimental technologies allows the reconstruction of many biological networks and to evaluate changes in proteins, genes and metabolites levels in different conditions. On the other hand, computational models, when complemented with regulatory information, can be used to predict the phenotype of an organism under different genetic and environmental conditions. These computational methods can be used for example to identify molecular targets capable...

  12. Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network

    Directory of Open Access Journals (Sweden)

    Eugenio eAzpeitia

    2013-04-01

    Full Text Available AbstractOver the last few decades, the Arabidopsis thaliana root stem cell niche has become a model system for the study of plant development and the stem cell niche. Currently, many of the molecular mechanisms involved in root stem cell niche maintenance and development have been described. A few years ago, we published a gene regulatory network model integrating this information. This model suggested that there were missing components or interactions. Upon updating the model, the observed stable gene configurations of the root stem cell niche could not be recovered, indicating that there are additional missing components or interactions in the model. In fact, due to the lack of experimental data, gene regulatory networks inferred from published data are usually incomplete. However, predicting the location and nature of the missing data is a not trivial task. Here, we propose a set of procedures for detecting and predicting missing interactions in Boolean networks. We used these procedures to predict putative missing interactions in the A. thaliana root stem cell niche network model. Using our approach, we identified three necessary interactions to recover the reported gene activation configurations that have been experimentally uncovered for the different cell types within the root stem cell niche: 1 a regulation of PHABULOSA to restrict its expression domain to the vascular cells, 2 a self-regulation of WOX5, possibly by an indirect mechanism through the auxin signalling pathway and 3 a positive regulation of JACKDAW by MAGPIE. The procedures proposed here greatly reduce the number of possible Boolean functions that are biologically meaningful and experimentally testable and that do not contradict previous data. We believe that these procedures can be used on any Boolean network. However, because the procedures were designed for the specific case of the root stem cell niche, formal demonstrations of the procedures should be shown in future

  13. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Alina Sîrbu

    2015-05-01

    Full Text Available Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions. Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  14. Comparison of two different stochastic models for extracting protein regulatory pathways using Bayesian networks.

    Science.gov (United States)

    Grzegorczyk, Marco

    2008-01-01

    Toxicoproteomics integrates traditional toxicology and systems biology and seeks to infer the architecture of biochemical pathways in biological systems that are affected by and respond to chemical and environmental exposures. Different reverse engineering methods for extracting biochemical regulatory networks from data have been proposed and it is important to understand their relative strengths and weaknesses. To shed some light onto this problem, Werhli et al. (2006) cross-compared three widely used methodologies, relevance networks, graphical Gaussian models, and Bayesian networks (BN), on real cytometric and synthetic expression data. This study continues with the evaluation and compares the learning performances of two different stochastic models (BGe and BDe) for BN. Cytometric protein expression data from the RAF-signaling pathway were used for the cross-method comparison. Understanding this pathway is an important task, as it is known that RAF is a critical signaling protein whose deregulation leads to carcinogenesis. When the more flexible BDe model is employed, a data discretization, which usually incurs an inevitable information loss, is needed. However, the results of the study reveal that the BDe model is preferable to the BGe model when a sufficiently large number of observations from the pathway are available. PMID:18569581

  15. Detection of the dominant direction of information flow and feedback links in densely interconnected regulatory networks

    Directory of Open Access Journals (Sweden)

    Ispolatov Iaroslav

    2008-10-01

    Full Text Available Abstract Background Finding the dominant direction of flow of information in densely interconnected regulatory or signaling networks is required in many applications in computational biology and neuroscience. This is achieved by first identifying and removing links which close up feedback loops in the original network and hierarchically arranging nodes in the remaining network. In mathematical language this corresponds to a problem of making a graph acyclic by removing as few links as possible and thus altering the original graph in the least possible way. The exact solution of this problem requires enumeration of all cycles and combinations of removed links, which, as an NP-hard problem, is computationally prohibitive even for modest-size networks. Results We introduce and compare two approximate numerical algorithms for solving this problem: the probabilistic one based on a simulated annealing of the hierarchical layout of the network which minimizes the number of "backward" links going from lower to higher hierarchical levels, and the deterministic, "greedy" algorithm that sequentially cuts the links that participate in the largest number of feedback cycles. We find that the annealing algorithm outperforms the deterministic one in terms of speed, memory requirement, and the actual number of removed links. To further improve a visual perception of the layout produced by the annealing algorithm, we perform an additional minimization of the length of hierarchical links while keeping the number of anti-hierarchical links at their minimum. The annealing algorithm is then tested on several examples of regulatory and signaling networks/pathways operating in human cells. Conclusion The proposed annealing algorithm is powerful enough to performs often optimal layouts of protein networks in whole organisms, consisting of around ~104 nodes and ~105 links, while the applicability of the greedy algorithm is limited to individual pathways with ~100

  16. Integrative Analysis of Transcriptional Regulatory Network and Copy Number Variation in Intrahepatic Cholangiocarcinoma

    Science.gov (United States)

    Li, Ling; Lian, Baofeng; Li, Chao; Li, Wei; Li, Jing; Zhang, Yuannv; He, Xianghuo; Li, Yixue; Xie, Lu

    2014-01-01

    Background Transcriptional regulatory network (TRN) is used to study conditional regulatory relationships between transcriptional factors and genes. However few studies have tried to integrate genomic variation information such as copy number variation (CNV) with TRN to find causal disturbances in a network. Intrahepatic cholangiocarcinoma (ICC) is the second most common hepatic carcinoma with high malignancy and poor prognosis. Research about ICC is relatively limited comparing to hepatocellular carcinoma, and there are no approved gene therapeutic targets yet. Method We first constructed TRN of ICC (ICC-TRN) using forward-and-reverse combined engineering method, and then integrated copy number variation information with ICC-TRN to select CNV-related modules and constructed CNV-ICC-TRN. We also integrated CNV-ICC-TRN with KEGG signaling pathways to investigate how CNV genes disturb signaling pathways. At last, unsupervised clustering method was applied to classify samples into distinct classes. Result We obtained CNV-ICC-TRN containing 33 modules which were enriched in ICC-related signaling pathways. Integrated analysis of the regulatory network and signaling pathways illustrated that CNV might interrupt signaling through locating on either genomic sites of nodes or regulators of nodes in a signaling pathway. In the end, expression profiles of nodes in CNV-ICC-TRN were used to cluster the ICC patients into two robust groups with distinct biological function features. Conclusion Our work represents a primary effort to construct TRN in ICC, also a primary effort to try to identify key transcriptional modules based on their involvement of genetic variations shown by gene copy number variations (CNV). This kind of approach may bring the traditional studies of TRN based only on expression data one step further to genetic disturbance. Such kind of approach can easily be extended to other disease samples with appropriate data. PMID:24897108

  17. A joint model of regulatory and metabolic networks

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2006-07-01

    Full Text Available Abstract Background Gene regulation and metabolic reactions are two primary activities of life. Although many works have been dedicated to study each system, the coupling between them is less well understood. To bridge this gap, we propose a joint model of gene regulation and metabolic reactions. Results We integrate regulatory and metabolic networks by adding links specifying the feedback control from the substrates of metabolic reactions to enzyme gene expressions. We adopt two alternative approaches to build those links: inferring the links between metabolites and transcription factors to fit the data or explicitly encoding the general hypotheses of feedback control as links between metabolites and enzyme expressions. A perturbation data is explained by paths in the joint network if the predicted response along the paths is consistent with the observed response. The consistency requirement for explaining the perturbation data imposes constraints on the attributes in the network such as the functions of links and the activities of paths. We build a probabilistic graphical model over the attributes to specify these constraints, and apply an inference algorithm to identify the attribute values which optimally explain the data. The inferred models allow us to 1 identify the feedback links between metabolites and regulators and their functions, 2 identify the active paths responsible for relaying perturbation effects, 3 computationally test the general hypotheses pertaining to the feedback control of enzyme expressions, 4 evaluate the advantage of an integrated model over separate systems. Conclusion The modeling results provide insight about the mechanisms of the coupling between the two systems and possible "design rules" pertaining to enzyme gene regulation. The model can be used to investigate the less well-probed systems and generate consistent hypotheses and predictions for further validation.

  18. An estimation method for inference of gene regulatory net-work using Bayesian network with uniting of partial problems

    Directory of Open Access Journals (Sweden)

    Watanabe Yukito

    2012-01-01

    Full Text Available Abstract Background Bayesian networks (BNs have been widely used to estimate gene regulatory networks. Many BN methods have been developed to estimate networks from microarray data. However, two serious problems reduce the effectiveness of current BN methods. The first problem is that BN-based methods require huge computational time to estimate large-scale networks. The second is that the estimated network cannot have cyclic structures, even if the actual network has such structures. Results In this paper, we present a novel BN-based deterministic method with reduced computational time that allows cyclic structures. Our approach generates all the combinational triplets of genes, estimates networks of the triplets by BN, and unites the networks into a single network containing all genes. This method decreases the search space of predicting gene regulatory networks without degrading the solution accuracy compared with the greedy hill climbing (GHC method. The order of computational time is the cube of number of genes. In addition, the network estimated by our method can include cyclic structures. Conclusions We verified the effectiveness of the proposed method for all known gene regulatory networks and their expression profiles. The results demonstrate that this approach can predict regulatory networks with reduced computational time without degrading the solution accuracy compared with the GHC method.

  19. A unified biological modeling and simulation system for analyzing biological reaction networks

    Science.gov (United States)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2013-12-01

    In order to understand the biological response in a cell, a researcher has to create a biological network and design an experiment to prove it. Although biological knowledge has been accumulated, we still don't have enough biological models to explain complex biological phenomena. If a new biological network is to be created, integrated modeling software supporting various biological models is required. In this research, we design and implement a unified biological modeling and simulation system, called ezBioNet, for analyzing biological reaction networks. ezBioNet designs kinetic and Boolean network models and simulates the biological networks using a server-side simulation system with Object Oriented Parallel Accelerator Library framework. The main advantage of ezBioNet is that a user can create a biological network by using unified modeling canvas of kinetic and Boolean models and perform massive simulations, including Ordinary Differential Equation analyses, sensitivity analyses, parameter estimates and Boolean network analysis. ezBioNet integrates useful biological databases, including the BioModels database, by connecting European Bioinformatics Institute servers through Web services Application Programming Interfaces. In addition, we employ Eclipse Rich Client Platform, which is a powerful modularity framework to allow various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool and a simulation system for understanding the control mechanism by monitoring the change of each component in a biological network. The simulation result can be managed and visualized on ezBioNet, which is available free of charge at http://ezbionet.sourceforge.net or http://ezbionet.cbnu.ac.kr.

  20. Statistical properties and robustness of biological controller-target networks.

    Directory of Open Access Journals (Sweden)

    Jacob D Feala

    Full Text Available Cells are regulated by networks of controllers having many targets, and targets affected by many controllers, in a "many-to-many" control structure. Here we study several of these bipartite (two-layer networks. We analyze both naturally occurring biological networks (composed of transcription factors controlling genes, microRNAs controlling mRNA transcripts, and protein kinases controlling protein substrates and a drug-target network composed of kinase inhibitors and of their kinase targets. Certain statistical properties of these biological bipartite structures seem universal across systems and species, suggesting the existence of common control strategies in biology. The number of controllers is ∼8% of targets and the density of links is 2.5%±1.2%. Links per node are predominantly exponentially distributed. We explain the conservation of the mean number of incoming links per target using a mathematical model of control networks, which also indicates that the "many-to-many" structure of biological control has properties of efficient robustness. The drug-target network has many statistical properties similar to the biological networks and we show that drug-target networks with biomimetic features can be obtained. These findings suggest a completely new approach to pharmacological control of biological systems. Molecular tools, such as kinase inhibitors, are now available to test if therapeutic combinations may benefit from being designed with biomimetic properties, such as "many-to-many" targeting, very wide coverage of the target set, and redundancy of incoming links per target.

  1. Organization principles of biological networks: An explorative study.

    Science.gov (United States)

    Kohestani, Havva; Giuliani, Alessandro

    2016-03-01

    The definition of general topological principles allowing for graph characterization is an important pre-requisite for investigating structure-function relationships in biological networks. Here we approached the problem by means of an explorative, data-driven strategy, building upon a size-balanced data set made of around 200 distinct biological networks from seven functional classes and simulated networks coming from three mathematical graph models. A clear link between topological structure and biological function did emerge in terms of class membership prediction (average 67% of correct predictions, p<0.0001) with a varying degree of 'peculiarity' across classes going from a very low (25%) recognition efficiency for neural and brain networks to the extremely high (80%) peculiarity of amino acid-amino acid interaction (AAI) networks. We recognized four main dimensions (principal components) as main organization principles of biological networks. These components allowed for an efficient description of network architectures and for the identification of 'not-physiological' (in this case cancer metabolic networks acting as test set) wiring patterns. We highlighted as well the need of developing new theoretical generative models for biological networks overcoming the limitations of present mathematical graph idealizations. PMID:26845173

  2. The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions

    Science.gov (United States)

    Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng

    2016-05-01

    The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met5]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met5]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.

  3. Core level regulatory network of osteoblast as molecular mechanism for osteoporosis and treatment

    Science.gov (United States)

    Zhu, Xiaomei; Li, Jun; Liang, Yuhong; Liu, Tao; Zhu, Yanxia; Zhang, Bingbing; Tan, Shuang; Guo, Huajie; Guan, Shuguang; Ao, Ping; Zhou, Guangqian

    2016-01-01

    To develop and evaluate the long-term prophylactic treatment for chronic diseases such as osteoporosis requires a clear view of mechanism at the molecular and systems level. While molecular signaling pathway studies for osteoporosis are extensive, a unifying mechanism is missing. In this work, we provide experimental and systems-biology evidences that a tightly connected top-level regulatory network may exist, which governs the normal and osteoporotic phenotypes of osteoblast. Specifically, we constructed a hub-like interaction network from well-documented cross-talks among estrogens, glucocorticoids, retinoic acids, peroxisome proliferator-activated receptor, vitamin D receptor and calcium-signaling pathways. The network was verified with transmission electron microscopy and gene expression profiling for bone tissues of ovariectomized (OVX) rats before and after strontium gluconate (GluSr) treatment. Based on both the network structure and the experimental data, the dynamical modeling predicts calcium and glucocorticoids signaling pathways as targets for GluSr treatment. Modeling results further reveal that in the context of missing estrogen signaling, the GluSr treated state may be an outcome that is closest to the healthy state. PMID:26783964

  4. Do scale-free regulatory networks allow more expression than random ones?

    Science.gov (United States)

    Fortuna, Miguel A; Melián, Carlos J

    2007-07-21

    In this paper, we compile the network of software packages with regulatory interactions (dependences and conflicts) from Debian GNU/Linux operating system and use it as an analogy for a gene regulatory network. Using a trace-back algorithm we assemble networks from the pool of packages with both scale-free (real data) and exponential (null model) topologies. We record the maximum number of packages that can be functionally installed in the system (i.e., the active network size). We show that scale-free regulatory networks allow a larger active network size than random ones. This result might have implications for the number of expressed genes at steady state. Small genomes with scale-free regulatory topologies could allow much more expression than large genomes with exponential topologies. This may have implications for the dynamics, robustness and evolution of genomes. PMID:17452043

  5. Do scale-free regulatory networks allow more expression than random ones?

    OpenAIRE

    Fortuna, Miguel A.; Melián, Carlos J.

    2007-01-01

    In this paper, we compile the network of software packages with regulatory interactions (dependences and conflicts) from Debian GNU/Linux operating system and use it as an analogy for a gene regulatory network. Using a trace-back algorithm we assemble networks from the pool of packages with both scale-free (real data) and exponential (null model) topologies. We record the maximum number of packages that can be functionally installed in the system (i.e., the active ...

  6. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening

    Science.gov (United States)

    Arhondakis, Stilianos; Bita, Craita E.; Perrakis, Andreas; Manioudaki, Maria E.; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  7. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening.

    Science.gov (United States)

    Arhondakis, Stilianos; Bita, Craita E; Perrakis, Andreas; Manioudaki, Maria E; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening. PMID:27625653

  8. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    Directory of Open Access Journals (Sweden)

    Yeh Cheng-Yu

    2009-12-01

    . Conclusions We provide a computational framework to reconstruct the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment.

  9. Modeling information flow in biological networks

    International Nuclear Information System (INIS)

    Large-scale molecular interaction networks are being increasingly used to provide a system level view of cellular processes. Modeling communications between nodes in such huge networks as information flows is useful for dissecting dynamical dependences between individual network components. In the information flow model, individual nodes are assumed to communicate with each other by propagating the signals through intermediate nodes in the network. In this paper, we first provide an overview of the state of the art of research in the network analysis based on information flow models. In the second part, we describe our computational method underlying our recent work on discovering dysregulated pathways in glioma. Motivated by applications to inferring information flow from genotype to phenotype in a very large human interaction network, we generalized previous approaches to compute information flows for a large number of instances and also provided a formal proof for the method

  10. Transcriptional Regulatory Network for the Development of Innate Lymphoid Cells

    Directory of Open Access Journals (Sweden)

    Chao Zhong

    2015-01-01

    Full Text Available Recent studies on innate lymphoid cells (ILCs have expanded our knowledge about the innate arm of the immune system. Helper-like ILCs share both the “innate” feature of conventional natural killer (cNK cells and the “helper” feature of CD4+ T helper (Th cells. With this combination, helper-like ILCs are capable of initiating early immune responses similar to cNK cells, but via secretion of a set of effector cytokines similar to those produced by Th cells. Although many studies have revealed the functional similarity between helper-like ILCs and Th cells, some aspects of ILCs including the development of this lineage remain elusive. It is intriguing that the majority of transcription factors involved in multiple stages of T cell development, differentiation, and function also play critical roles during ILC development. Regulators such as Id2, GATA-3, Nfil3, TOX, and TCF-1 are expressed and function at various stages of ILC development. In this review, we will summarize the expression and functions of these transcription factors shared by ILCs and Th cells. We will also propose a complex transcriptional regulatory network for the lineage commitment of ILCs.

  11. Evolution of biological interaction networks: from models to real data

    OpenAIRE

    Sun, Mark GF; Kim, Philip M.

    2011-01-01

    We are beginning to uncover common mechanisms leading to the evolution of biological networks. The driving force behind these advances is the increasing availability of comparative data in several species.

  12. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo

    Science.gov (United States)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; Otim, Ochan; Brown, C. Titus; Livi, Carolina B.; Lee, Pei Yun; Revilla, Roger; Schilstra, Maria J.; Clarke, Peter J C.; Rust, Alistair G.; Pan, Zhengjun; Arnone, Maria I.; Rowen, Lee; Cameron, R. Andrew; McClay, David R.; Hood, Leroy; Bolouri, Hamid

    2002-01-01

    We present the current form of a provisional DNA sequence-based regulatory gene network that explains in outline how endomesodermal specification in the sea urchin embryo is controlled. The model of the network is in a continuous process of revision and growth as new genes are added and new experimental results become available; see http://www.its.caltech.edu/mirsky/endomeso.htm (End-mes Gene Network Update) for the latest version. The network contains over 40 genes at present, many newly uncovered in the course of this work, and most encoding DNA-binding transcriptional regulatory factors. The architecture of the network was approached initially by construction of a logic model that integrated the extensive experimental evidence now available on endomesoderm specification. The internal linkages between genes in the network have been determined functionally, by measurement of the effects of regulatory perturbations on the expression of all relevant genes in the network. Five kinds of perturbation have been applied: (1) use of morpholino antisense oligonucleotides targeted to many of the key regulatory genes in the network; (2) transformation of other regulatory factors into dominant repressors by construction of Engrailed repressor domain fusions; (3) ectopic expression of given regulatory factors, from genetic expression constructs and from injected mRNAs; (4) blockade of the beta-catenin/Tcf pathway by introduction of mRNA encoding the intracellular domain of cadherin; and (5) blockade of the Notch signaling pathway by introduction of mRNA encoding the extracellular domain of the Notch receptor. The network model predicts the cis-regulatory inputs that link each gene into the network. Therefore, its architecture is testable by cis-regulatory analysis. Strongylocentrotus purpuratus and Lytechinus variegatus genomic BAC recombinants that include a large number of the genes in the network have been sequenced and annotated. Tests of the cis-regulatory predictions of

  13. The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production.

    Science.gov (United States)

    Brinkrolf, Karina; Schröder, Jasmin; Pühler, Alfred; Tauch, Andreas

    2010-09-01

    Corynebacterium glutamicum is one of the best studied organisms of the high G+C branch of Gram-positive bacteria and an emerging model system for the suborder Corynebacterineae. To gain insights into the regulatory gene composition and architecture of the transcriptional regulatory network of C. glutamicum, components of the transcriptional regulatory repertoire were intensively studied by many scientific groups in recent years. In this mini-review, we summarize the present knowledge about the deduced transcriptional regulatory repertoire of C. glutamicum and the current status of transcriptional regulatory network reconstruction with regard to the genome-wide detection of transcriptional regulations, coregulatory interactions and hierarchical cross-regulations. Moreover, we provide an overview of those regulators and their transcriptional regulations controlling genes involved in the conversion of the carbon sources glucose, fructose and sucrose into the industrially relevant products l-lysine and l-glutamate. This data will contribute to our understanding of l-lysine and l-glutamate production by C. glutamicum from the perspective of systems biology and may provide the basis for computational modeling of the respective biotechnologically important metabolic pathways. PMID:19963020

  14. Summarizing cellular responses as biological process networks

    OpenAIRE

    Lasher, Christopher D; Rajagopalan, Padmavathy; Murali, T.M.

    2013-01-01

    Abstract Background Microarray experiments can simultaneously identify thousands of genes that show significant perturbation in expression between two experimental conditions. Response networks, computed through the integration of gene interaction networks with expression perturbation data, may themselves contain tens of thousands of interactions. Gene set enrichment has become standard for summarizing the results of these analyses in te...

  15. ezBioNet: A modeling and simulation system for analyzing biological reaction networks

    Science.gov (United States)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2012-10-01

    To achieve robustness against living environments, a living organism is composed of complicated regulatory mechanisms ranging from gene regulations to signal transduction. If such life phenomena are to be understand, an integrated analysis tool that should have modeling and simulation functions for biological reactions, as well as new experimental methods for measuring biological phenomena, is fundamentally required. We have designed and implemented modeling and simulation software (ezBioNet) for analyzing biological reaction networks. The software can simultaneously perform an integrated modeling of various responses occurring in cells, ranging from gene expressions to signaling processes. To support massive analysis of biological networks, we have constructed a server-side simulation system (VCellSim) that can perform ordinary differential equations (ODE) analysis, sensitivity analysis, and parameter estimates. ezBioNet integrates the BioModel database by connecting the european bioinformatics institute (EBI) servers through Web services APIs and supports the handling of systems biology markup language (SBML) files. In addition, we employed eclipse RCP (rich client platform) which is a powerful modularity framework allowing various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool, as well as a simulation system, to understand the control mechanism by monitoring the change of each component in a biological network. A researcher may perform the kinetic modeling and execute the simulation. The simulation result can be managed and visualized on ezBioNet, which is freely available at http://ezbionet.cbnu.ac.kr.

  16. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    Directory of Open Access Journals (Sweden)

    Guo Zheng

    2006-01-01

    Full Text Available Abstract Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network to address the underlying regulations of genes that can span any unit(s of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex

  17. Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast.

    Directory of Open Access Journals (Sweden)

    Chun Ye

    2009-03-01

    Full Text Available Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active transcription factors. We devise a method that extends Network Component Analysis (NCA to determine how genetic variations in the form of single nucleotide polymorphisms (SNPs perturb these two properties. Applying our method to a segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms discussed in this work is available as a MATLAB package upon request.

  18. Epigenetics and Why Biological Networks are More Controllable than Expected

    Science.gov (United States)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  19. Systematic Functional Annotation and Visualization of Biological Networks.

    Science.gov (United States)

    Baryshnikova, Anastasia

    2016-06-22

    Large-scale biological networks represent relationships between genes, but our understanding of how networks are functionally organized is limited. Here, I describe spatial analysis of functional enrichment (SAFE), a systematic method for annotating biological networks and examining their functional organization. SAFE visualizes the network in 2D space and measures the continuous distribution of functional enrichment across local neighborhoods, producing a list of the associated functions and a map of their relative positioning. I applied SAFE to annotate the Saccharomyces cerevisiae genetic interaction similarity network and protein-protein interaction network with gene ontology terms. SAFE annotations of the genetic network matched manually derived annotations, while taking less than 1% of the time, and proved robust to noise and sensitive to biological signal. Integration of genetic interaction and chemical genomics data using SAFE revealed a link between vesicle-mediate transport and resistance to the anti-cancer drug bortezomib. These results demonstrate the utility of SAFE for examining biological networks and understanding their functional organization. PMID:27237738

  20. Signaling and Gene Regulatory Networks Governing Definitive Endoderm Derivation From Pluripotent Stem Cells.

    Science.gov (United States)

    Mohammadnia, Abdulshakour; Yaqubi, Moein; Pourasgari, Farzaneh; Neely, Eric; Fallahi, Hossein; Massumi, Mohammad

    2016-09-01

    The generation of definitive endoderm (DE) from pluripotent stem cells (PSCs) is a fundamental stage in the formation of highly organized visceral organs, such as the liver and pancreas. Currently, there is a need for a comprehensive study that illustrates the involvement of different signaling pathways and their interactions in the derivation of DE cells from PSCs. This study aimed to identify signaling pathways that have the greatest influence on DE formation using analyses of transcriptional profiles, protein-protein interactions, protein-DNA interactions, and protein localization data. Using this approach, signaling networks involved in DE formation were constructed using systems biology and data mining tools, and the validity of the predicted networks was confirmed experimentally by measuring the mRNA levels of hub genes in several PSCs-derived DE cell lines. Based on our analyses, seven signaling pathways, including the BMP, ERK1-ERK2, FGF, TGF-beta, MAPK, Wnt, and PIP signaling pathways and their interactions, were found to play a role in the derivation of DE cells from PSCs. Lastly, the core gene regulatory network governing this differentiation process was constructed. The results of this study could improve our understanding surrounding the efficient generation of DE cells for the regeneration of visceral organs. J. Cell. Physiol. 231: 1994-2006, 2016. © 2016 Wiley Periodicals, Inc. PMID:26755186

  1. Biologically Inspired Optimization of Building District Heating Networks

    OpenAIRE

    Leiming Shang; Xiaomin Zhao

    2013-01-01

    In this paper we show that a biologically inspired model can be successfully applied to problems of building optimal district heating network. The model is based on physiological observations of the true slime mold Physarumpolycephalum, but can also be used for path-finding in the complicated networks of mazes and road maps. A strategy of optimally building heating distribution network was guided by the model and a well-tuned ant colony algorithm and genetic algorithm. The results indicate th...

  2. Reduction of dynamical biochemical reactions networks in computational biology

    OpenAIRE

    Radulescu, O.; Gorban, A.N.; Zinovyev, A.; Noel, V.

    2012-01-01

    Biochemical networks are used in computational biology, to model mechanistic details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multiscaleness, an important property of these networks, can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to...

  3. Systems Biology of Metabolic Networks: Uncovering Regulatory and stoichiometric Principles

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb

    2007-01-01

    I forbindelse med industriel udnyttelse af mikroorganismer til produktion af kemikalier er der stor interesse for at analysere funktionen af metabolske netværk, herunder specielt opnå indsigt i hvordan aktiviteten af forskellige grene i sådanne netværk er reguleret. Idet metabolismen spiller en c...

  4. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference

  5. The effect of network biology on drug toxicology

    DEFF Research Database (Denmark)

    Gautier, Laurent; Taboureau, Olivier; Audouze, Karine Marie Laure

    2013-01-01

    biology has the opportunity to contribute to a better understanding of a drug's safety profile. The authors believe that considering a drug action and protein's function in a global physiological environment may benefit our understanding of the impact some chemicals have on human health and toxicity. The...... network biology. The authors specifically assess this approach across different biological scales when it is applied to toxicity. Expert opinion: There has been much progress made with the amount of data that is generated by various omics technologies. With this large amount of useful data, network...

  6. Maria Goeppert-Mayer Award Talk: Probing the structure and dynamics of biological networks

    Science.gov (United States)

    Albert, Reka

    2011-03-01

    The relationship between the structure and dynamics of networks is one of the central topics in network science. In the context of biological regulatory networks at the molecular to cellular level, the dynamics in question is often thought of as information propagation through the network. Quantitative dynamic models help to achieve an understanding of this process, but are difficult to construct and validate because of the scarcity of known mechanistic details and kinetic parameters. Structural and qualitative analysis is emerging as a feasible and useful alternative for interpreting biological signal transduction, and at the same time probing the structure-function relation of these networks. This analysis, however, necessitates the extension of current graph theoretical frameworks to incorporate features such as the positive or negative nature of interactions and synergistic behaviors among multiple components. This talk will present a method for structural analysis in an augmented graph framework that can probe the dynamics of information transfer. The first step is to expand the network to a richer representation that incorporates negative and synergistic regulation by the addition of pseudo-nodes and new edges. Our method simulates both knockout and constitutive activation of components as node disruptions, and takes into account the possible cascading effects of a node's disruption. We introduce the concept of elementary signaling mode (ESM), as the minimal set of nodes that can perform signal transduction independently. As a first application of this method we ranked the importance of signaling components by the effects of their perturbation on the ESMs of the network. Validation on various regulatory networks shows that this method can effectively uncover the essentiality of components mediating a signal transduction process and agrees with dynamic simulation results and experimental observations. Future applications include determining the ESMs that (do

  7. Avoiding spurious feedback loops in the reconstruction of gene regulatory networks with dynamic bayesian networks

    OpenAIRE

    Grzegorczyk, M.; Husmeier, D.

    2009-01-01

    Feedback loops and recurrent structures are essential to the regulation and stable control of complex biological systems. The application of dynamic as opposed to static Bayesian networks is promising in that, in principle, these feedback loops can be learned. However, we show that the widely applied BGe score is susceptible to learning spurious feedback loops, which are a consequence of non-linear regulation and autocorrelation in the data. We propose a non-linear generalisation of the BGe m...

  8. CytoGEDEVO - Global alignment of biological networks with Cytoscape

    DEFF Research Database (Denmark)

    Malek, Maximilian; Ibragimov, Rashid; Albrecht, Mario;

    2016-01-01

    MOTIVATION: In the systems biology era, high-throughput omics technologies have enabled the unraveling of the interplay of some biological entities on a large scale (e.g. genes, proteins, metabolites or RNAs). Huge biological networks have emerged, where nodes correspond to these entities and edges...... between them model their relations. Protein-protein-interaction (PPI) networks, for instance, show the physical interactions of proteins in an organism. The comparison of such networks promises additional insights into protein and cell function as well as knowledge-transfer across species. Several...... computational approaches have been developed previously to solve the network alignment problem, but only a few concentrate on the usability of the implemented tools for the evaluation of protein-protein interactions by the end-users (biologists and medical researchers). RESULTS: We have created CytoGEDEVO, a...

  9. Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfural tolerance for ethanologenic yeast

    Science.gov (United States)

    Composed of linear difference equations, a discrete dynamic system model was designed to reconstruct transcriptional regulations in gene regulatory networks in response to 5-hydroxymethylfurfural, a bioethanol conversion inhibitor for ethanologenic yeast Saccharomyces cerevisiae. The modeling aims ...

  10. RNA SURVEILLANCE– AN EMERGING ROLE FOR RNA REGULATORY NETWORKS IN AGING

    OpenAIRE

    Montano, Monty; Long, Kimberly

    2010-01-01

    In this review, we describe recent advances in the field of RNA regulatory biology and relate these advances to aging science. We introduce a new term, RNA surveillance, an RNA regulatory process that is conserved in metazoans, and describe how RNA surveillance represents molecular cross-talk between two emerging RNA regulatory systems – RNA interference and RNA editing. We discuss how RNA surveillance mechanisms influence mRNA and microRNA expression and activity during lifespan. Additionall...

  11. An improved Escherichia coli strain to host gene regulatory networks involving both the AraC and LacI inducible transcription factors

    OpenAIRE

    Kogenaru, Manjunatha; Tans, Sander J

    2014-01-01

    Many of the gene regulatory networks used within the field of synthetic biology have extensively employed the AraC and LacI inducible transcription factors. However, there is no Escherichia coli strain that provides a proper background to use both transcription factors simultaneously. We have engineered an improved E. coli strain by knocking out the endogenous lacI from a strain optimal for AraC containing networks, and thoroughly characterized the strain both at molecular and functional leve...

  12. Networks in biological systems: An investigation of the Gene Ontology as an evolving network

    International Nuclear Information System (INIS)

    Many biological systems can be described as networks where different elements interact, in order to perform biological processes. We introduce a network associated with the Gene Ontology. Specifically, we construct a correlation-based network where the vertices are the terms of the Gene Ontology and the link between each two terms is weighted on the basis of the number of genes that they have in common. We analyze a filtered network obtained from the correlation-based network and we characterize its evolution over different releases of the Gene Ontology.

  13. Regional and International Networking to Support the Energy Regulatory Commission of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Lavansiri, Direk; Bull, Trevor

    2010-09-15

    The Energy Regulatory Commission of Thailand is a new regulatory agency. The structure of the energy sector; the tradition of administration; and, the lack of access to experienced personnel in Thailand all pose particular challenges. The Commission is meeting these challenges through regional and international networking to assist in developing policies and procedures that allow it to meet international benchmarks.

  14. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem;

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response...

  15. International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes

    DEFF Research Database (Denmark)

    Bal-Price, Anna; Crofton, Kevin M.; Leist, Marcel;

    2015-01-01

    of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand. Alignment of academically and industrially driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISTNET) in DNT testing...

  16. Assessment of regression methods for inference of regulatory networks involved in circadian regulation

    OpenAIRE

    Aderhold, A.; Husmeier, D.; Smith, V A; Millar, A. J.; Grzegorczyk, M.

    2013-01-01

    We assess the accuracy of three established regression methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Data are simulated from a recently published regulatory network of the circadian clock in Arabidopsis thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to dif...

  17. Recruitment and Remodeling of an ancient gene regulatory network during land plant evolution

    OpenAIRE

    Pires, Nuno D.; Yi, Keke; Breuninger, Holger; Catarino, Bruno; Menand, Benoît; Dolan, Liam

    2013-01-01

    The evolution of multicellular organisms was made possible by the evolution of underlying gene regulatory networks. In animals, the core of gene regulatory networks consists of kernels, stable subnetworks of transcription factors that are highly conserved in distantly related species. However, in plants it is not clear when and how kernels evolved. We show here that RSL (ROOT HAIR DEFECTIVE SIX-LIKE) transcription factors form an ancient land plant kernel controlling caulonema differentiation...

  18. Bio-inspired Reverse Engineering of Regulatory Networks : A Revised Approach

    OpenAIRE

    Leon Pozo, Pedro

    2011-01-01

    This work appears to complement an existingproject, ”Bio-inpired reverse engineering of regula-tory networks”[STH09], proposes a new algorithminspired in the artificial development technique per-forming reverse engineering over regulatory networks.The present project studies that article addressingpossible weaknesses and scalability issues. Neverthe-less, during the investigation some updates have beenperformed over the algorithm, improving the previ-ous results in some scenarios. M...

  19. Potential for regulatory genetic networks of gene expression near a stable point

    OpenAIRE

    Huang, Ming-Chang; Huang, Yu-tin; Wu, Jinn-Wen; Chung, Tien-Shen

    2007-01-01

    A description for regulatory genetic network based on generalized potential energy is constructed. The potential energy is derived from the steady state solution of linearized Fokker-Plank equation, and the result is shown to be equivalent to the system of coupled oscillators. The correspondence between the quantities from the mechanical picture and the steady-state fluctuations is established. Explicit calculation is given for auto-regulatory networks in which, the force constant associated ...

  20. What Transcription Factors Can't Do: On the Combinatorial Limits of Gene Regulatory Networks

    OpenAIRE

    Werner, Eric

    2013-01-01

    A proof is presented that gene regulatory networks (GRNs) based solely on transcription factors cannot control the development of complex multicellular life. GRNs alone cannot explain the evolution of multicellular life in the Cambrian Explosion. Networks are based on addressing systems which are used to construct network links. The more complex the network the greater the number of links and the larger the required address space. It has been assumed that combinations of transcription factors...

  1. Gene regulatory networks in lactation: identification of global principles using bioinformatics

    Directory of Open Access Journals (Sweden)

    Pollard Katherine S

    2007-11-01

    Full Text Available Abstract Background The molecular events underlying mammary development during pregnancy, lactation, and involution are incompletely understood. Results Mammary gland microarray data, cellular localization data, protein-protein interactions, and literature-mined genes were integrated and analyzed using statistics, principal component analysis, gene ontology analysis, pathway analysis, and network analysis to identify global biological principles that govern molecular events during pregnancy, lactation, and involution. Conclusion Several key principles were derived: (1 nearly a third of the transcriptome fluctuates to build, run, and disassemble the lactation apparatus; (2 genes encoding the secretory machinery are transcribed prior to lactation; (3 the diversity of the endogenous portion of the milk proteome is derived from fewer than 100 transcripts; (4 while some genes are differentially transcribed near the onset of lactation, the lactation switch is primarily post-transcriptionally mediated; (5 the secretion of materials during lactation occurs not by up-regulation of novel genomic functions, but by widespread transcriptional suppression of functions such as protein degradation and cell-environment communication; (6 the involution switch is primarily transcriptionally mediated; and (7 during early involution, the transcriptional state is partially reverted to the pre-lactation state. A new hypothesis for secretory diminution is suggested – milk production gradually declines because the secretory machinery is not transcriptionally replenished. A comprehensive network of protein interactions during lactation is assembled and new regulatory gene targets are identified. Less than one fifth of the transcriptionally regulated nodes in this lactation network have been previously explored in the context of lactation. Implications for future research in mammary and cancer biology are discussed.

  2. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    lattice at zero temperature and then we apply this formalism to the K-SAT problem defined in Chapter 1. The phase transition which physicists study often corresponds to a change in the computational complexity of the corresponding computer science problem. Chapter 3 presents phase transitions which are specific to the problems discussed in Chapter 1 and also known results for the K-SAT problem. We discuss the replica method and experimental evidences of replica symmetry breaking. The physics approach to hard problems is based on replica methods which are difficult to understand. In Chapter 4 we develop novel methods for studying hard problems using methods similar to the message passing techniques that were discussed in Chapter 2. Although we concentrated on the symmetric case, cavity methods show promise for generalizing our methods to the un-symmetric case. As has been highlighted by John Hopfield, several key features of biological systems are not shared by physical systems. Although living entities follow the laws of physics and chemistry, the fact that organisms adapt and reproduce introduces an essential ingredient that is missing in the physical sciences. In order to extract information from networks many algorithm have been developed. In Chapter 5 we apply polynomial algorithms like minimum spanning tree in order to study and construct gene regulatory networks from experimental data. As future work we propose the use of algorithms like min-cut/max-flow and Dijkstra for understanding key properties of these networks.

  3. Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes

    Directory of Open Access Journals (Sweden)

    Kaznessis Yiannis N

    2007-01-01

    Full Text Available Abstract Background Tightly regulated gene networks, precisely controlling the expression of protein molecules, have received considerable interest by the biomedical community due to their promising applications. Among the most well studied inducible transcription systems are the tetracycline regulatory expression systems based on the tetracycline resistance operon of Escherichia coli, Tet-Off (tTA and Tet-On (rtTA. Despite their initial success and improved designs, limitations still persist, such as low inducer sensitivity. Instead of looking at these networks statically, and simply changing or mutating the promoter and operator regions with trial and error, a systematic investigation of the dynamic behavior of the network can result in rational design of regulatory gene expression systems. Sophisticated algorithms can accurately capture the dynamical behavior of gene networks. With computer aided design, we aim to improve the synthesis of regulatory networks and propose new designs that enable tighter control of expression. Results In this paper we engineer novel networks by recombining existing genes or part of genes. We synthesize four novel regulatory networks based on the Tet-Off and Tet-On systems. We model all the known individual biomolecular interactions involved in transcription, translation, regulation and induction. With multiple time-scale stochastic-discrete and stochastic-continuous models we accurately capture the transient and steady state dynamics of these networks. Important biomolecular interactions are identified and the strength of the interactions engineered to satisfy design criteria. A set of clear design rules is developed and appropriate mutants of regulatory proteins and operator sites are proposed. Conclusion The complexity of biomolecular interactions is accurately captured through computer simulations. Computer simulations allow us to look into the molecular level, portray the dynamic behavior of gene regulatory

  4. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    Directory of Open Access Journals (Sweden)

    Liangdong Hu

    Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  5. Using biological networks to improve our understanding of infectious diseases

    Directory of Open Access Journals (Sweden)

    Nicola J. Mulder

    2014-08-01

    Full Text Available Infectious diseases are the leading cause of death, particularly in developing countries. Although many drugs are available for treating the most common infectious diseases, in many cases the mechanism of action of these drugs or even their targets in the pathogen remain unknown. In addition, the key factors or processes in pathogens that facilitate infection and disease progression are often not well understood. Since proteins do not work in isolation, understanding biological systems requires a better understanding of the interconnectivity between proteins in different pathways and processes, which includes both physical and other functional interactions. Such biological networks can be generated within organisms or between organisms sharing a common environment using experimental data and computational predictions. Though different data sources provide different levels of accuracy, confidence in interactions can be measured using interaction scores. Connections between interacting proteins in biological networks can be represented as graphs and edges, and thus studied using existing algorithms and tools from graph theory. There are many different applications of biological networks, and here we discuss three such applications, specifically applied to the infectious disease tuberculosis, with its causative agent Mycobacterium tuberculosis and host, Homo sapiens. The applications include the use of the networks for function prediction, comparison of networks for evolutionary studies, and the generation and use of host–pathogen interaction networks.

  6. [Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis].

    Science.gov (United States)

    Lu, Zhenghui; Zhou, Yuling; Zhang, Xiaozhou; Zhang, Guimin

    2015-11-01

    Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed. PMID:26939438

  7. Relevance of Dynamic Clustering to Biological Networks

    CERN Document Server

    Kaneko, K

    1993-01-01

    Abstract Network of nonlinear dynamical elements often show clustering of synchronization by chaotic instability. Relevance of the clustering to ecological, immune, neural, and cellular networks is discussed, with the emphasis of partially ordered states with chaotic itinerancy. First, clustering with bit structures in a hypercubic lattice is studied. Spontaneous formation and destruction of relevant bits are found, which give self-organizing, and chaotic genetic algorithms. When spontaneous changes of effective couplings are introduced, chaotic itinerancy of clusterings is widely seen through a feedback mechanism, which supports dynamic stability allowing for complexity and diversity, known as homeochaos. Second, synaptic dynamics of couplings is studied in relation with neural dynamics. The clustering structure is formed with a balance between external inputs and internal dynamics. Last, an extension allowing for the growth of the number of elements is given, in connection with cell differentiation. Effecti...

  8. A comparative analysis on computational methods for fitting an ERGM to biological network data

    Directory of Open Access Journals (Sweden)

    Sudipta Saha

    2015-03-01

    Full Text Available Exponential random graph models (ERGM based on graph theory are useful in studying global biological network structure using its local properties. However, computational methods for fitting such models are sensitive to the type, structure and the number of the local features of a network under study. In this paper, we compared computational methods for fitting an ERGM with local features of different types and structures. Two commonly used methods, such as the Markov Chain Monte Carlo Maximum Likelihood Estimation and the Maximum Pseudo Likelihood Estimation are considered for estimating the coefficients of network attributes. We compared the estimates of observed network to our random simulated network using both methods under ERGM. The motivation was to ascertain the extent to which an observed network would deviate from a randomly simulated network if the physical numbers of attributes were approximately same. Cut-off points of some common attributes of interest for different order of nodes were determined through simulations. We implemented our method to a known regulatory network database of Escherichia coli (E. coli.

  9. Course 10: Three Lectures on Biological Networks

    Science.gov (United States)

    Magnasco, M. O.

    1 Enzymatic networks. Proofreading knots: How DNA topoisomerases disentangle DNA 1.1 Length scales and energy scales 1.2 DNA topology 1.3 Topoisomerases 1.4 Knots and supercoils 1.5 Topological equilibrium 1.6 Can topoisomerases recognize topology? 1.7 Proposal: Kinetic proofreading 1.8 How to do it twice 1.9 The care and proofreading of knots 1.10 Suppression of supercoils 1.11 Problems and outlook 1.12 Disquisition 2 Gene expression networks. Methods for analysis of DNA chip experiments 2.1 The regulation of gene expression 2.2 Gene expression arrays 2.3 Analysis of array data 2.4 Some simplifying assumptions 2.5 Probeset analysis 2.6 Discussion 3 Neural and gene expression networks: Song-induced gene expression in the canary brain 3.1 The study of songbirds 3.2 Canary song 3.3 ZENK 3.4 The blush 3.5 Histological analysis 3.6 Natural vs. artificial 3.7 The Blush II: gAP 3.8 Meditation

  10. Regulatory MicroRNA Networks: Complex Patterns of Target Pathways for Disease-related and Housekeeping MicroRNAs

    Directory of Open Access Journals (Sweden)

    Sachli Zafari

    2015-06-01

    Full Text Available Blood-based microRNA (miRNA signatures as biomarkers have been reported for various pathologies, including cancer, neurological disorders, cardiovascular diseases, and also infections. The regulatory mechanism behind respective miRNA patterns is only partially understood. Moreover, “preserved” miRNAs, i.e., miRNAs that are not dysregulated in any disease, and their biological impact have been explored to a very limited extent. We set out to systematically determine their role in regulatory networks by defining groups of highly-dysregulated miRNAs that contribute to a disease signature as opposed to preserved housekeeping miRNAs. We further determined preferential targets and pathways of both dysregulated and preserved miRNAs by computing multi-layer networks, which were compared between housekeeping and dysregulated miRNAs. Of 848 miRNAs examined across 1049 blood samples, 8 potential housekeepers showed very limited expression variations, while 20 miRNAs showed highly-dysregulated expression throughout the investigated blood samples. Our approach provides important insights into miRNAs and their role in regulatory networks. The methodology can be applied to systematically investigate the differences in target genes and pathways of arbitrary miRNA sets.

  11. Non-Hermitian localization in biological networks

    Science.gov (United States)

    Amir, Ariel; Hatano, Naomichi; Nelson, David R.

    2016-04-01

    We explore the spectra and localization properties of the N -site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N , the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90∘ rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.

  12. Using biological networks to integrate, visualize and analyze genomics data.

    Science.gov (United States)

    Charitou, Theodosia; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Network biology is a rapidly developing area of biomedical research and reflects the current view that complex phenotypes, such as disease susceptibility, are not the result of single gene mutations that act in isolation but are rather due to the perturbation of a gene's network context. Understanding the topology of these molecular interaction networks and identifying the molecules that play central roles in their structure and regulation is a key to understanding complex systems. The falling cost of next-generation sequencing is now enabling researchers to routinely catalogue the molecular components of these networks at a genome-wide scale and over a large number of different conditions. In this review, we describe how to use publicly available bioinformatics tools to integrate genome-wide 'omics' data into a network of experimentally-supported molecular interactions. In addition, we describe how to visualize and analyze these networks to identify topological features of likely functional relevance, including network hubs, bottlenecks and modules. We show that network biology provides a powerful conceptual approach to integrate and find patterns in genome-wide genomic data but we also discuss the limitations and caveats of these methods, of which researchers adopting these methods must remain aware. PMID:27036106

  13. An open system network for the biological sciences.

    OpenAIRE

    Springer, G K; Loch, J. L.; Patrick, T. B.

    1991-01-01

    A description of an open system, distributed computing environment for the Biological Sciences is presented. This system utilizes a transparent interface in a computer network using NCS to implement an application system for molecular biologists to perform various processing activities from their local workstation. This system accepts requests for the services of a remote database server, located across the network, to perform all of the database searches needed to support the activities of t...

  14. Network and Database Security: Regulatory Compliance, Network, and Database Security - A Unified Process and Goal

    Directory of Open Access Journals (Sweden)

    Errol A. Blake

    2007-12-01

    Full Text Available Database security has evolved; data security professionals have developed numerous techniques and approaches to assure data confidentiality, integrity, and availability. This paper will show that the Traditional Database Security, which has focused primarily on creating user accounts and managing user privileges to database objects are not enough to protect data confidentiality, integrity, and availability. This paper is a compilation of different journals, articles and classroom discussions will focus on unifying the process of securing data or information whether it is in use, in storage or being transmitted. Promoting a change in Database Curriculum Development trends may also play a role in helping secure databases. This paper will take the approach that if one make a conscientious effort to unifying the Database Security process, which includes Database Management System (DBMS selection process, following regulatory compliances, analyzing and learning from the mistakes of others, Implementing Networking Security Technologies, and Securing the Database, may prevent database breach.

  15. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery.

    Directory of Open Access Journals (Sweden)

    Sapna Kumari

    Full Text Available BACKGROUND: Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. METHODS AND RESULTS: In this study, we compared eight gene association methods - Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson - and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. CONCLUSIONS: We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction.

  16. A Newtonian framework for community detection in undirected biological networks.

    Science.gov (United States)

    Narayanan, Tejaswini; Subramaniam, Shankar

    2014-02-01

    Community detection is a key problem of interest in network analysis, with applications in a variety of domains such as biological networks, social network modeling, and communication pattern analysis. In this paper, we present a novel framework for community detection that is motivated by a physical system analogy. We model a network as a system of point masses, and drive the process of community detection, by leveraging the Newtonian interactions between the point masses. Our framework is designed to be generic and extensible relative to the model parameters that are most suited for the problem domain. We illustrate the applicability of our approach by applying the Newtonian Community Detection algorithm on protein-protein interaction networks of E. coli , C. elegans, and S. cerevisiae. We obtain results that are comparable in quality to those obtained from the Newman-Girvan algorithm, a widely employed divisive algorithm for community detection. We also present a detailed analysis of the structural properties of the communities produced by our proposed algorithm, together with a biological interpretation using E. coli protein network as a case study. A functional enrichment heat map is constructed with the Gene Ontology functional mapping, in addition to a pathway analysis for each community. The analysis illustrates that the proposed algorithm elicits communities that are not only meaningful from a topological standpoint, but also possess biological relevance. We believe that our algorithm has the potential to serve as a key computational tool for driving therapeutic applications involving targeted drug development for personalized care delivery. PMID:24681920

  17. Anticipated Ethics and Regulatory Challenges in PCORnet: The National Patient-Centered Clinical Research Network.

    Science.gov (United States)

    Ali, Joseph; Califf, Robert; Sugarman, Jeremy

    2016-01-01

    PCORnet, the National Patient-Centered Clinical Research Network, seeks to establish a robust national health data network for patient-centered comparative effectiveness research. This article reports the results of a PCORnet survey designed to identify the ethics and regulatory challenges anticipated in network implementation. A 12-item online survey was developed by leadership of the PCORnet Ethics and Regulatory Task Force; responses were collected from the 29 PCORnet networks. The most pressing ethics issues identified related to informed consent, patient engagement, privacy and confidentiality, and data sharing. High priority regulatory issues included IRB coordination, privacy and confidentiality, informed consent, and data sharing. Over 150 IRBs and five different approaches to managing multisite IRB review were identified within PCORnet. Further empirical and scholarly work, as well as practical and policy guidance, is essential if important initiatives that rely on comparative effectiveness research are to move forward. PMID:26192996

  18. Comparative study of discretization methods of microarray data for inferring transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Ji Wei

    2010-10-01

    Full Text Available Abstract Background Microarray data discretization is a basic preprocess for many algorithms of gene regulatory network inference. Some common discretization methods in informatics are used to discretize microarray data. Selection of the discretization method is often arbitrary and no systematic comparison of different discretization has been conducted, in the context of gene regulatory network inference from time series gene expression data. Results In this study, we propose a new discretization method "bikmeans", and compare its performance with four other widely-used discretization methods using different datasets, modeling algorithms and number of intervals. Sensitivities, specificities and total accuracies were calculated and statistical analysis was carried out. Bikmeans method always gave high total accuracies. Conclusions Our results indicate that proper discretization methods can consistently improve gene regulatory network inference independent of network modeling algorithms and datasets. Our new method, bikmeans, resulted in significant better total accuracies than other methods.

  19. Clinical and regulatory perspectives on biosimilar therapies and intended copies of biologics in rheumatology.

    Science.gov (United States)

    Mysler, Eduardo; Pineda, Carlos; Horiuchi, Takahiko; Singh, Ena; Mahgoub, Ehab; Coindreau, Javier; Jacobs, Ira

    2016-05-01

    Biologics are vital to the management of patients with rheumatic and musculoskeletal diseases such as rheumatoid arthritis and other inflammatory and autoimmune conditions. Nevertheless, access to these highly effective treatments remains an unmet medical need for many people around the world. As patents expire for existing licensed biologic (originator) products, biosimilar products can be approved by regulatory authorities and enter clinical use. Biosimilars are highly similar copies of originator biologics approved through defined and stringent regulatory processes after having undergone rigorous analytical, non-clinical, and clinical evaluations. The introduction of high-quality, safe, and effective biosimilars has the potential to expand access to these important medicines. Biosimilars are proven to be similar to the originator biologic in terms of safety and efficacy and to have no clinically meaningful differences. In contrast, "intended copies" are copies of originator biologics that have not undergone rigorous comparative evaluations according to the World Health Organization recommendations, but are being commercialized in some countries. There is a lack of information about the efficacy and safety of intended copies compared with the originator. Furthermore, they may have clinically significant differences in formulation, dosages, efficacy, or safety. In this review, we explore the differences between biosimilars and intended copies and describe key concepts related to biosimilars. Familiarity with these topics may facilitate decision making about the appropriate use of biosimilars for patients with rheumatic and musculoskeletal diseases. PMID:26920148

  20. Novel amphiphilic networks for biological use

    Czech Academy of Sciences Publication Activity Database

    Toman, Luděk; Janata, Miroslav; Spěváček, Jiří; Sikora, Antonín; Pleštil, Josef; Michálek, Jiří; Dvořánková, B.; Vlček, Petr; Látalová, Petra; Masař, Bohumil

    Prague: Czech Society for New Materials and Technologies, 2005. Poster Session II. [European Congress on Advanced Materials and Processes. 5.9.2005-8.9.2005, Prague] R&D Projects: GA ČR GA203/04/1050 Keywords : polyisobutylene * poly(2-hydroxyethyl methacrylate) * amphiphilic networks Subject RIV: CD - Macromolecular Chemistry http://webdb.dgm.de/dgm_lit/prg/FMPro?-db=w%5fprogram&- format =prog%5fpaper%5fresults.htm&-lay=standard&TB=%3d%3d688&tgb%5fsymposium%5fund%5fnr=B14%20Engineering%20and%20Design%20of%20Biomedical%20Materials&-max=20&-skip=20&-token.0=688&-token.1=B14%20Engineering%20and%20Design%20of%20Biomedical%20Materials&-find=

  1. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Xiangyun Xiao

    Full Text Available The reconstruction of gene regulatory networks (GRNs from high-throughput experimental data has been considered one of the most important issues in systems biology research. With the development of high-throughput technology and the complexity of biological problems, we need to reconstruct GRNs that contain thousands of genes. However, when many existing algorithms are used to handle these large-scale problems, they will encounter two important issues: low accuracy and high computational cost. To overcome these difficulties, the main goal of this study is to design an effective parallel algorithm to infer large-scale GRNs based on high-performance parallel computing environments. In this study, we proposed a novel asynchronous parallel framework to improve the accuracy and lower the time complexity of large-scale GRN inference by combining splitting technology and ordinary differential equation (ODE-based optimization. The presented algorithm uses the sparsity and modularity of GRNs to split whole large-scale GRNs into many small-scale modular subnetworks. Through the ODE-based optimization of all subnetworks in parallel and their asynchronous communications, we can easily obtain the parameters of the whole network. To test the performance of the proposed approach, we used well-known benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge (DREAM, experimentally determined GRN of Escherichia coli and one published dataset that contains more than 10 thousand genes to compare the proposed approach with several popular algorithms on the same high-performance computing environments in terms of both accuracy and time complexity. The numerical results demonstrate that our parallel algorithm exhibits obvious superiority in inferring large-scale GRNs.

  2. From biological and social network metaphors to coupled bio-social wireless networks.

    Science.gov (United States)

    Barrett, Christopher L; Channakeshava, Karthik; Eubank, Stephen; Anil Kumar, V S; Marathe, Madhav V

    2011-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  3. Towards the understanding of network information processing in biology

    Science.gov (United States)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  4. Uncovering Biological Network Function via Graphlet Degree Signatures

    Directory of Open Access Journals (Sweden)

    Nataša Pržulj

    2008-01-01

    Full Text Available Motivation: Proteins are essential macromolecules of life and thus understanding their function is of great importance. The number of functionally unclassified proteins is large even for simple and well studied organisms such as baker’s yeast. Methods for determining protein function have shifted their focus from targeting specific proteins based solely on sequence homology to analyses of the entire proteome based on protein-protein interaction (PPI networks. Since proteins interact to perform a certain function, analyzing structural properties of PPI networks may provide useful clues about the biological function of individual proteins, protein complexes they participate in, and even larger subcellular machines.Results: We design a sensitive graph theoretic method for comparing local structures of node neighborhoods that demonstrates that in PPI networks, biological function of a node and its local network structure are closely related. The method summarizes a protein’s local topology in a PPI network into the vector of graphlet degrees called the signature of the protein and computes the signature similarities between all protein pairs. We group topologically similar proteins under this measure in a PPI network and show that these protein groups belong to the same protein complexes, perform the same biological functions, are localized in the same subcellular compartments, and have the same tissue expressions. Moreover, we apply our technique on a proteome-scale network data and infer biological function of yet unclassified proteins demonstrating that our method can provide valuable guidelines for future experimental research such as disease protein prediction.Availability: Data is available upon request.

  5. Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease.

    Science.gov (United States)

    Yang, Hyun-Jin; Ratnapriya, Rinki; Cogliati, Tiziana; Kim, Jung-Woong; Swaroop, Anand

    2015-05-01

    Genomics and genetics have invaded all aspects of biology and medicine, opening uncharted territory for scientific exploration. The definition of "gene" itself has become ambiguous, and the central dogma is continuously being revised and expanded. Computational biology and computational medicine are no longer intellectual domains of the chosen few. Next generation sequencing (NGS) technology, together with novel methods of pattern recognition and network analyses, has revolutionized the way we think about fundamental biological mechanisms and cellular pathways. In this review, we discuss NGS-based genome-wide approaches that can provide deeper insights into retinal development, aging and disease pathogenesis. We first focus on gene regulatory networks (GRNs) that govern the differentiation of retinal photoreceptors and modulate adaptive response during aging. Then, we discuss NGS technology in the context of retinal disease and develop a vision for therapies based on network biology. We should emphasize that basic strategies for network construction and analyses can be transported to any tissue or cell type. We believe that specific and uniform guidelines are required for generation of genome, transcriptome and epigenome data to facilitate comparative analysis and integration of multi-dimensional data sets, and for constructing networks underlying complex biological processes. As cellular homeostasis and organismal survival are dependent on gene-gene and gene-environment interactions, we believe that network-based biology will provide the foundation for deciphering disease mechanisms and discovering novel drug targets for retinal neurodegenerative diseases. PMID:25668385

  6. Biologically plausible multi-dimensional reinforcement learning in neural networks

    NARCIS (Netherlands)

    Rombouts, J.O.; Ooyen, A. van; Roelfsema, P.R.; Bohte, S.M.

    2012-01-01

    How does the brain learn to map multi-dimensional sensory inputs to multi-dimensional motor outputs when it can only observe single rewards for the coordinated outputs of the whole network of neurons that make up the brain? We introduce Multi-AGREL, a novel, biologically plausible multi-layer neural

  7. Discovering Networks of Perturbed Biological Processes in Hepatocyte Cultures

    Science.gov (United States)

    Lasher, Christopher D.; Rajagopalan, Padmavathy; Murali, T. M.

    2011-01-01

    The liver plays a vital role in glucose homeostasis, the synthesis of bile acids and the detoxification of foreign substances. Liver culture systems are widely used to test adverse effects of drugs and environmental toxicants. The two most prevalent liver culture systems are hepatocyte monolayers (HMs) and collagen sandwiches (CS). Despite their wide use, comprehensive transcriptional programs and interaction networks in these culture systems have not been systematically investigated. We integrated an existing temporal transcriptional dataset for HM and CS cultures of rat hepatocytes with a functional interaction network of rat genes. We aimed to exploit the functional interactions to identify statistically significant linkages between perturbed biological processes. To this end, we developed a novel approach to compute Contextual Biological Process Linkage Networks (CBPLNs). CBPLNs revealed numerous meaningful connections between different biological processes and gene sets, which we were successful in interpreting within the context of liver metabolism. Multiple phenomena captured by CBPLNs at the process level such as regulation, downstream effects, and feedback loops have well described counterparts at the gene and protein level. CBPLNs reveal high-level linkages between pathways and processes, making the identification of important biological trends more tractable than through interactions between individual genes and molecules alone. Our approach may provide a new route to explore, analyze, and understand cellular responses to internal and external cues within the context of the intricate networks of molecular interactions that control cellular behavior. PMID:21245926

  8. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach...

  9. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach...

  10. Biologically Inspired Optimization of Building District Heating Networks

    Directory of Open Access Journals (Sweden)

    Leiming Shang

    2013-07-01

    Full Text Available In this paper we show that a biologically inspired model can be successfully applied to problems of building optimal district heating network. The model is based on physiological observations of the true slime mold Physarumpolycephalum, but can also be used for path-finding in the complicated networks of mazes and road maps. A strategy of optimally building heating distribution network was guided by the model and a well-tuned ant colony algorithm and genetic algorithm. The results indicate that although there are not large-scale efficiency savings to be made, the biologically inspired amoeboid movement model is capable of finding results of equal or better optimality than a comparable ant colony algorithm and genetic algorithm.

  11. Uncovering Gene Regulatory Networks from Time-Series Microarray Data with Variational Bayesian Structural Expectation Maximization

    Directory of Open Access Journals (Sweden)

    Huang Yufei

    2007-01-01

    Full Text Available We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP of network topology. In particular, we propose a variational Bayesian structural expectation maximization algorithm that can learn the posterior distribution of the network model parameters and topology jointly. We also show how the obtained APPs of the network topology can be used in a Bayesian data integration strategy to integrate two different microarray data sets. The proposed VBSEM algorithm has been tested on yeast cell cycle data sets. To evaluate the confidence of the inferred networks, we apply a moving block bootstrap method. The inferred network is validated by comparing it to the KEGG pathway map.

  12. Uncovering Gene Regulatory Networks from Time-Series Microarray Data with Variational Bayesian Structural Expectation Maximization

    Directory of Open Access Journals (Sweden)

    Isabel Tienda Luna

    2007-06-01

    Full Text Available We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP of network topology. In particular, we propose a variational Bayesian structural expectation maximization algorithm that can learn the posterior distribution of the network model parameters and topology jointly. We also show how the obtained APPs of the network topology can be used in a Bayesian data integration strategy to integrate two different microarray data sets. The proposed VBSEM algorithm has been tested on yeast cell cycle data sets. To evaluate the confidence of the inferred networks, we apply a moving block bootstrap method. The inferred network is validated by comparing it to the KEGG pathway map.

  13. Inference of nonlinear gene regulatory networks through optimized ensemble of support vector regression and dynamic Bayesian networks.

    Science.gov (United States)

    Akutekwe, Arinze; Seker, Huseyin

    2015-08-01

    Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in systems biology. Most methods for modeling and inferring the dynamics of GRNs, such as those based on state space models, vector autoregressive models and G1DBN algorithm, assume linear dependencies among genes. However, this strong assumption does not make for true representation of time-course relationships across the genes, which are inherently nonlinear. Nonlinear modeling methods such as the S-systems and causal structure identification (CSI) have been proposed, but are known to be statistically inefficient and analytically intractable in high dimensions. To overcome these limitations, we propose an optimized ensemble approach based on support vector regression (SVR) and dynamic Bayesian networks (DBNs). The method called SVR-DBN, uses nonlinear kernels of the SVR to infer the temporal relationships among genes within the DBN framework. The two-stage ensemble is further improved by SVR parameter optimization using Particle Swarm Optimization. Results on eight insilico-generated datasets, and two real world datasets of Drosophila Melanogaster and Escherichia Coli, show that our method outperformed the G1DBN algorithm by a total average accuracy of 12%. We further applied our method to model the time-course relationships of ovarian carcinoma. From our results, four hub genes were discovered. Stratified analysis further showed that the expression levels Prostrate differentiation factor and BTG family member 2 genes, were significantly increased by the cisplatin and oxaliplatin platinum drugs; while expression levels of Polo-like kinase and Cyclin B1 genes, were both decreased by the platinum drugs. These hub genes might be potential biomarkers for ovarian carcinoma. PMID:26738192

  14. Early history of regulatory requirements for poultry biologics in the United States.

    Science.gov (United States)

    Espeseth, David A; Lasher, Hiram

    2010-12-01

    Congress passed the Virus-Serum-Toxin Act in 1913, giving the U.S. Department of Agriculture (USDA) authority to prevent the importation or interstate shipment of worthless, contaminated, dangerous, or harmful veterinary biological products. The passage of this act marked the beginning of regulatory requirements for veterinary biological products in the United States. In 1913, only a few biologics establishments produced products for the poultry industry. The first license issued by the USDA for a poultry product was in 1918 to the University of California, Berkeley, for fowlpox vaccine. The list of biological products for poultry grew slowly in the 1920s. However, this began to change with the licensing of laryngotracheitis vaccine in 1933; pigeonpox vaccine in 1939; several Newcastle disease vaccines (inactivated in 1946, Roakin strain in 1948, B1 strain in 1950, and La Sota strain in 1952); and the first bronchitis vaccine in 1953. With the development of these and other new products, the biologics industry began to move its emphasis on hog cholera serum and virus to one based on the production of numerous new vaccines and bacterial products. The USDA's approach to the regulation of biologics in the early 1950s was still geared to the production of hog cholera products; however, as a result of the intervention of a group of dedicated poultry scientists, who were concerned about the poor performance of Newcastle disease vaccines, this soon changed. This presentation describes the initiation and development of modern standards for poultry biologics that occurred as a result of this intervention. The development and improvement of standards and regulatory requirements to address mycoplasma, leukosis, and other extraneous virus contaminations in chicken embryo origin products are reviewed. The licensing of products to meet new and emerging disease problems in the poultry industry and the close interaction among research scientists, poultry industry, biologics

  15. A comprehensive gene regulatory network for the diauxic shift in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geistlinger, Ludwig; Csaba, Gergely; Dirmeier, Simon; Küffner, Robert; Zimmer, Ralf

    2013-10-01

    Existing machine-readable resources for large-scale gene regulatory networks usually do not provide context information characterizing the activating conditions for a regulation and how targeted genes are affected. Although this information is essentially required for data interpretation, available networks are often restricted to not condition-dependent, non-quantitative, plain binary interactions as derived from high-throughput screens. In this article, we present a comprehensive Petri net based regulatory network that controls the diauxic shift in Saccharomyces cerevisiae. For 100 specific enzymatic genes, we collected regulations from public databases as well as identified and manually curated >400 relevant scientific articles. The resulting network consists of >300 multi-input regulatory interactions providing (i) activating conditions for the regulators; (ii) semi-quantitative effects on their targets; and (iii) classification of the experimental evidence. The diauxic shift network compiles widespread distributed regulatory information and is available in an easy-to-use machine-readable form. Additionally, we developed a browsable system organizing the network into pathway maps, which allows to inspect and trace the evidence for each annotated regulation in the model. PMID:23873954

  16. Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network.

    Science.gov (United States)

    Hughes, Tyler B; Dang, Na Le; Miller, Grover P; Swamidass, S Joshua

    2016-08-24

    Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network-the XenoSite reactivity model-using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule-level, the

  17. Meta-analysis on gene regulatory networks discovered by pairwise Granger causality

    OpenAIRE

    Tam, GHF; Hung, YS; Chang, C.

    2013-01-01

    Identifying regulatory genes partaking in disease development is important to medical advances. Since gene expression data of multiple experiments exist, combining results from multiple gene regulatory network discoveries offers higher sensitivity and specificity. However, data for multiple experiments on the same problem may not possess the same set of genes, and hence many existing combining methods are not applicable. In this paper, we approach this problem using a number of meta-analysis ...

  18. Bio-inspired reverse engineering of regulatory networks: a revised approach

    OpenAIRE

    León Pozo, Pedro

    2011-01-01

    This work appears to complement an existing project, ”Bio-inpired reverse engineering of regulatory networks”, proposes a new algorithm inspired in the artificial development technique performing reverse engineering over regulatory networks. The present project studies that article addressing possible weaknesses and scalability issues. Nevertheless, during the investigation some updates have been performed over the algorithm, improving the previous results in some scenarios. Mo...

  19. Inferring Broad Regulatory Biology from Time Course Data: Have We Reached an Upper Bound under Constraints Typical of In Vivo Studies?

    Directory of Open Access Journals (Sweden)

    Saurabh Vashishtha

    Full Text Available There is a growing appreciation for the network biology that regulates the coordinated expression of molecular and cellular markers however questions persist regarding the identifiability of these networks. Here we explore some of the issues relevant to recovering directed regulatory networks from time course data collected under experimental constraints typical of in vivo studies. NetSim simulations of sparsely connected biological networks were used to evaluate two simple feature selection techniques used in the construction of linear Ordinary Differential Equation (ODE models, namely truncation of terms versus latent vector projection. Performance was compared with ODE-based Time Series Network Identification (TSNI integral, and the information-theoretic Time-Delay ARACNE (TD-ARACNE. Projection-based techniques and TSNI integral outperformed truncation-based selection and TD-ARACNE on aggregate networks with edge densities of 10-30%, i.e. transcription factor, protein-protein cliques and immune signaling networks. All were more robust to noise than truncation-based feature selection. Performance was comparable on the in silico 10-node DREAM 3 network, a 5-node Yeast synthetic network designed for In vivo Reverse-engineering and Modeling Assessment (IRMA and a 9-node human HeLa cell cycle network of similar size and edge density. Performance was more sensitive to the number of time courses than to sample frequency and extrapolated better to larger networks by grouping experiments. In all cases performance declined rapidly in larger networks with lower edge density. Limited recovery and high false positive rates obtained overall bring into question our ability to generate informative time course data rather than the design of any particular reverse engineering algorithm.

  20. The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks

    Directory of Open Access Journals (Sweden)

    Wingender Edgar

    2008-05-01

    Full Text Available Abstract Background Currently, there is a gap between purely theoretical studies of the topology of large bioregulatory networks and the practical traditions and interests of experimentalists. While the theoretical approaches emphasize the global characterization of regulatory systems, the practical approaches focus on the role of distinct molecules and genes in regulation. To bridge the gap between these opposite approaches, one needs to combine 'general' with 'particular' properties and translate abstract topological features of large systems into testable functional characteristics of individual components. Here, we propose a new topological parameter – the pairwise disconnectivity index of a network's element – that is capable of such bridging. Results The pairwise disconnectivity index quantifies how crucial an individual element is for sustaining the communication ability between connected pairs of vertices in a network that is displayed as a directed graph. Such an element might be a vertex (i.e., molecules, genes, an edge (i.e., reactions, interactions, as well as a group of vertices and/or edges. The index can be viewed as a measure of topological redundancy of regulatory paths which connect different parts of a given network and as a measure of sensitivity (robustness of this network to the presence (absence of each individual element. Accordingly, we introduce the notion of a path-degree of a vertex in terms of its corresponding incoming, outgoing and mediated paths, respectively. The pairwise disconnectivity index has been applied to the analysis of several regulatory networks from various organisms. The importance of an individual vertex or edge for the coherence of the network is determined by the particular position of the given element in the whole network. Conclusion Our approach enables to evaluate the effect of removing each element (i.e., vertex, edge, or their combinations from a network. The greatest potential value of

  1. Parallel mutual information estimation for inferring gene regulatory networks on GPUs

    Directory of Open Access Journals (Sweden)

    Liu Weiguo

    2011-06-01

    Full Text Available Abstract Background Mutual information is a measure of similarity between two variables. It has been widely used in various application domains including computational biology, machine learning, statistics, image processing, and financial computing. Previously used simple histogram based mutual information estimators lack the precision in quality compared to kernel based methods. The recently introduced B-spline function based mutual information estimation method is competitive to the kernel based methods in terms of quality but at a lower computational complexity. Results We present a new approach to accelerate the B-spline function based mutual information estimation algorithm with commodity graphics hardware. To derive an efficient mapping onto this type of architecture, we have used the Compute Unified Device Architecture (CUDA programming model to design and implement a new parallel algorithm. Our implementation, called CUDA-MI, can achieve speedups of up to 82 using double precision on a single GPU compared to a multi-threaded implementation on a quad-core CPU for large microarray datasets. We have used the results obtained by CUDA-MI to infer gene regulatory networks (GRNs from microarray data. The comparisons to existing methods including ARACNE and TINGe show that CUDA-MI produces GRNs of higher quality in less time. Conclusions CUDA-MI is publicly available open-source software, written in CUDA and C++ programming languages. It obtains significant speedup over sequential multi-threaded implementation by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.

  2. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production.

    Science.gov (United States)

    Lin, Lu; Xu, Jian

    2013-11-01

    Interest in thermophilic bacteria as live-cell catalysts in biofuel and biochemical industry has surged in recent years, due to their tolerance of high temperature and wide spectrum of carbon-sources that include cellulose. However their direct employment as microbial cellular factories in the highly demanding industrial conditions has been hindered by uncompetitive biofuel productivity, relatively low tolerance to solvent and osmic stresses, and limitation in genome engineering tools. In this work we review recent advances in dissecting and engineering the metabolic and regulatory networks of thermophilic bacteria for improving the traits of key interest in biofuel industry: cellulose degradation, pentose-hexose co-utilization, and tolerance of thermal, osmotic, and solvent stresses. Moreover, new technologies enabling more efficient genetic engineering of thermophiles were discussed, such as improved electroporation, ultrasound-mediated DNA delivery, as well as thermo-stable plasmids and functional selection systems. Expanded applications of such technological advancements in thermophilic microbes promise to substantiate a synthetic biology perspective, where functional parts, module, chassis, cells and consortia were modularly designed and rationally assembled for the many missions at industry and nature that demand the extraordinary talents of these extremophiles. PMID:23510903

  3. Imposing early stability to ecological and biological networks through Evolutionary Network Control

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2015-03-01

    Full Text Available The stability analysis of the dynamical networks is a well-studied topic, both in ecology and in biology. In this work, I adopt a different perspective: instead of analysing the stability of an arbitrary ecological network, I seek here to impose such stability as soon as possible (or, contrariwise, as late as possible during network dynamics. Evolutionary Network Control (ENC is a theoretical and methodological framework aimed to the control of ecological and biological networks by coupling network dynamics and evolutionary modelling. ENC covers several topics of network control, for instance a the global control from inside and b from outside, c the local (step-by-step control, and the computation of: d control success, e feasibility, and f degree of uncertainty. In this work, I demonstrate that ENC can also be employed to impose early (but, also, late stability to arbitrary ecological and biological networks, and provide an applicative example based on the nonlinear, widely-used, Lotka-Volterra model.

  4. Global and local architecture of the mammalian microRNA-transcription factor regulatory network.

    Directory of Open Access Journals (Sweden)

    Reut Shalgi

    2007-07-01

    Full Text Available microRNAs (miRs are small RNAs that regulate gene expression at the posttranscriptional level. It is anticipated that, in combination with transcription factors (TFs, they span a regulatory network that controls thousands of mammalian genes. Here we set out to uncover local and global architectural features of the mammalian miR regulatory network. Using evolutionarily conserved potential binding sites of miRs in human targets, and conserved binding sites of TFs in promoters, we uncovered two regulation networks. The first depicts combinatorial interactions between pairs of miRs with many shared targets. The network reveals several levels of hierarchy, whereby a few miRs interact with many other lowly connected miR partners. We revealed hundreds of "target hubs" genes, each potentially subject to massive regulation by dozens of miRs. Interestingly, many of these target hub genes are transcription regulators and they are often related to various developmental processes. The second network consists of miR-TF pairs that coregulate large sets of common targets. We discovered that the network consists of several recurring motifs. Most notably, in a significant fraction of the miR-TF coregulators the TF appears to regulate the miR, or to be regulated by the miR, forming a diversity of feed-forward loops. Together these findings provide new insights on the architecture of the combined transcriptional-post transcriptional regulatory network.

  5. Characterizing the interplay betwen mulitple levels of organization within bacterial sigma factor regulatory networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qiu [University of California, San Diego; Nagarajan, Harish [University of California, San Diego; Embree, Mallory [University of California, San Diego; Shieu, Wendy [University of California, San Diego; Abate, Elisa [University of California, San Diego; Juarez, Katy [Universidad Nacional Autonoma de Mexico (UNAM); Cho, Byung-Kwan [University of California, San Diego; Elkins, James G [ORNL; Nevin, Kelly P. [University of Massachusetts, Amherst; Barrett, Christian [University of California, San Diego; Lovley, Derek [University of Massachusetts, Amherst; Palsson, Bernhard O. [University of California, San Diego; Zengler, Karsten [University of California, San Diego

    2013-01-01

    Bacteria contain multiple sigma factors, each targeting diverse, but often overlapping sets of promoters, thereby forming a complex network. The layout and deployment of such a sigma factor network directly impacts global transcriptional regulation and ultimately dictates the phenotype. Here we integrate multi-omic data sets to determine the topology, the operational, and functional states of the sigma factor network in Geobacter sulfurreducens, revealing a unique network topology of interacting sigma factors. Analysis of the operational state of the sigma factor network shows a highly modular structure with sN being the major regulator of energy metabolism. Surprisingly, the functional state of the network during the two most divergent growth conditions is nearly static, with sigma factor binding profiles almost invariant to environmental stimuli. This first comprehensive elucidation of the interplay between different levels of the sigma factor network organization is fundamental to characterize transcriptional regulatory mechanisms in bacteria.

  6. The impact of network biology in pharmacology and toxicology

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Taboureau, Olivier

    2012-01-01

    With the need to investigate alternative approaches and emerging technologies in order to increase drug efficacy and reduce adverse drug effects, network biology offers a novel way of approaching drug discovery by considering the effect of a molecule and protein's function in a global physiological...... environment. By studying drug action across multiple scales of complexity, from molecular to cellular and tissue level, network-based computational methods have the potential to improve our understanding of the impact of chemicals in human health. In this review we present the available large-scale databases...

  7. Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Sarah R. [J. Craig Venter Institute; Rodemeyer, Michael [University of Virginia; Garfinkel, Michele S. [EMBO; Friedman, Robert M [J. Craig Venter Institute

    2014-05-01

    Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options Sarah R. Carter, Ph.D., J. Craig Venter Institute; Michael Rodemeyer, J.D., University of Virginia; Michele S. Garfinkel, Ph.D., EMBO; Robert M. Friedman, Ph.D., J. Craig Venter Institute In recent years, a range of genetic engineering techniques referred to as “synthetic biology” has significantly expanded the tool kit available to scientists and engineers, providing them with far greater capabilities to engineer organisms than previous techniques allowed. The field of synthetic biology includes the relatively new ability to synthesize long pieces of DNA from chemicals, as well as improved methods for genetic manipulation and design of genetic pathways to achieve more precise control of biological systems. These advances will help usher in a new generation of genetically engineered microbes, plants, and animals. The JCVI Policy Center team, along with researchers at the University of Virginia and EMBO, examined how well the current U.S. regulatory system for genetically engineered products will handle the near-term introduction of organisms engineered using synthetic biology. In particular, the focus was on those organisms intended to be used or grown directly in the environment, outside of a contained facility. The study concludes that the U.S. regulatory agencies have adequate legal authority to address most, but not all, potential environmental, health and safety concerns posed by these organisms. Such near-term products are likely to represent incremental changes rather than a marked departure from previous genetically engineered organisms. However, the study also identified two key challenges for the regulatory system, which are detailed in the report. First, USDA’s authority over genetically engineered plants depends on the use of an older engineering technique that is no longer necessary for many applications. The shift to synthetic biology and other newer genetic

  8. Slow poisoning and destruction of networks: edge proximity and its implications for biological and infrastructure networks

    CERN Document Server

    Banerjee, Soumya Jyoti; Roy, Soumen

    2014-01-01

    There have been many studies on malicious targeting of network nodes using degree, betweenness etc. We propose a new network metric, edge proximity, ${\\cal P}_e$, which demonstrates the importance of specific edges in a network, hitherto not captured by existing network metrics. Effects of removing edges with high ${\\cal P}_e$ might initially seem inconspicuous but is eventually shown to be very harmful for the network. When compared to existing strategies, removal of edges by ${\\cal P}_e$, leads to remarkable increase of diameter and average path length in real and random networks till the first disconnection and beyond. ${\\cal P}_e$ can be consistently used to rupture the network into two nearly equal parts, thus presenting a very potent strategy to greatly harm a network. Targeting by ${\\cal P}_e$ causes notable efficiency loss in US and European power grid. ${\\cal P}_e$ identifies proteins with essential cellular functions in protein-protein interaction networks. It pinpoints regulatory neural connections...

  9. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.

    Directory of Open Access Journals (Sweden)

    Taosheng Xu

    Full Text Available Identifying cancer subtypes is an important component of the personalised medicine framework. An increasing number of computational methods have been developed to identify cancer subtypes. However, existing methods rarely use information from gene regulatory networks to facilitate the subtype identification. It is widely accepted that gene regulatory networks play crucial roles in understanding the mechanisms of diseases. Different cancer subtypes are likely caused by different regulatory mechanisms. Therefore, there are great opportunities for developing methods that can utilise network information in identifying cancer subtypes.In this paper, we propose a method, weighted similarity network fusion (WSNF, to utilise the information in the complex miRNA-TF-mRNA regulatory network in identifying cancer subtypes. We firstly build the regulatory network where the nodes represent the features, i.e. the microRNAs (miRNAs, transcription factors (TFs and messenger RNAs (mRNAs and the edges indicate the interactions between the features. The interactions are retrieved from various interatomic databases. We then use the network information and the expression data of the miRNAs, TFs and mRNAs to calculate the weight of the features, representing the level of importance of the features. The feature weight is then integrated into a network fusion approach to cluster the samples (patients and thus to identify cancer subtypes. We applied our method to the TCGA breast invasive carcinoma (BRCA and glioblastoma multiforme (GBM datasets. The experimental results show that WSNF performs better than the other commonly used computational methods, and the information from miRNA-TF-mRNA regulatory network contributes to the performance improvement. The WSNF method successfully identified five breast cancer subtypes and three GBM subtypes which show significantly different survival patterns. We observed that the expression patterns of the features in some mi

  10. Modeling Cancer Metastasis using Global, Quantitative and Integrative Network Biology

    DEFF Research Database (Denmark)

    Schoof, Erwin; Erler, Janine

    understanding of molecular processes which are fundamental to tumorigenesis. In Article 1, we propose a novel framework for how cancer mutations can be studied by taking into account their effect at the protein network level. In Article 2, we demonstrate how global, quantitative data on phosphorylation dynamics...... can be generated using MS, and how this can be modeled using a computational framework for deciphering kinase-substrate dynamics. This framework is described in depth in Article 3, and covers the design of KinomeXplorer, which allows the prediction of kinases responsible for modulating observed...... phosphorylation dynamics in a given biological sample. In Chapter III, we move into Integrative Network Biology, where, by combining two fundamental technologies (MS & NGS), we can obtain more in-depth insights into the links between cellular phenotype and genotype. Article 4 describes the proof...

  11. Clinical and regulatory protocols for the management of impaired vision in the public health care network

    Directory of Open Access Journals (Sweden)

    Jayter Silva Paula

    2011-06-01

    Full Text Available PURPOSE: To describe the procedures used in developing Clinical and Regulatory Protocols for primary care teams to use in the management of the most common scenarios of impaired vision in Southern Brazil. METHODS: A retrospective review of 1.333 referral forms from all primary care practitioners was performed in Ribeirão Preto city, during a 30-day period. The major ophthalmic diagnostic categories were evaluated from those referrals forms. The Clinical and Regulatory Protocols development process was held afterwards and involved scientific cooperation between a university and the health care system, in the form of workshops attended by primary care practitioners and regulatory system team members composed of health care administrators, ophthalmologists, and professors of ophthalmology and social medicine. RESULTS: The management of impaired vision was chosen as the theme, since it accounted for 43.6% of the ophthalmology-related referrals from primary care providers of Ribeirão Preto. The Clinical and Regulatory Protocols developed involve distinctive diagnostic and therapeutic interventions that can be performed at the primary care level and in different health care settings. The most relevant clinical and regulatory interventions were expressed as algorithms in order to facilitate the use of the Clinical and Regulatory Protocols by health care practitioners. CONCLUSIONS: These Clinical and Regulatory Protocols could represent a useful tool for health systems with universal access, as well as for health care networks based on primary care and for regulatory system teams. Implementation of these Clinical and Regulatory Protocols can minimize the disparity between the needs of patients with impaired vision and the treatment modalities offered, resulting in a more cooperative health care network.

  12. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae

    OpenAIRE

    Chennubhotla Chakra; Wu Chuang; Farkas Illés J; Bahar Ivet; Oltvai Zoltán N

    2006-01-01

    Abstract Background Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR) mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood. Results By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate l...

  13. A comprehensive gene regulatory network for the diauxic shift in Saccharomyces cerevisiae

    OpenAIRE

    Geistlinger, Ludwig; Csaba, Gergely; Dirmeier, Simon; Küffner, Robert; Zimmer, Ralf

    2013-01-01

    Existing machine-readable resources for large-scale gene regulatory networks usually do not provide context information characterizing the activating conditions for a regulation and how targeted genes are affected. Although this information is essentially required for data interpretation, available networks are often restricted to not condition-dependent, non-quantitative, plain binary interactions as derived from high-throughput screens. In this article, we present a comprehensive Petri net ...

  14. Combinatorial Limits of Transcription Factors and Gene Regulatory Networks in Development and Evolution

    OpenAIRE

    Werner, Eric

    2015-01-01

    Gene Regulatory Networks (GRNs) consisting of combinations of transcription factors (TFs) and their cis promoters are assumed to be sufficient to direct the development of organisms. Mutations in GRNs are assumed to be the primary drivers for the evolution of multicellular life. Here it is proven that neither of these assumptions is correct. They are inconsistent with fundamental principles of combinatorics of bounded encoded networks. It is shown there are inherent complexity and control cap...

  15. Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing

    OpenAIRE

    Wang, Fan; Lu, Juan; Peng, Xiaohong; Jie WANG; LIU, XIONG; Chen, Xiaomei; Jiang, Yiqi; LI, XIANGPING; Zhang, Bao

    2016-01-01

    Background MicroRNAs (miRNAs) have been shown to play a critical role in the development and progression of nasopharyngeal carcinoma (NPC). Although accumulating studies have been performed on the molecular mechanisms of NPC, the miRNA regulatory networks in cancer progression remain largely unknown. Laser capture microdissection (LCM) and deep sequencing are powerful tools that can help us to detect the integrated view of miRNA-target network. Methods Illumina Hiseq2000 deep sequencing was u...

  16. Analysis of complex networks from biology to linguistics

    CERN Document Server

    Dehmer, Matthias

    2009-01-01

    Mathematical problems such as graph theory problems are of increasing importance for the analysis of modelling data in biomedical research such as in systems biology, neuronal network modelling etc. This book follows a new approach of including graph theory from a mathematical perspective with specific applications of graph theory in biomedical and computational sciences. The book is written by renowned experts in the field and offers valuable background information for a wide audience.

  17. Facile: a command-line network compiler for systems biology

    OpenAIRE

    Ollivier Julien F; Siso-Nadal Fernando; Swain Peter S

    2007-01-01

    Abstract Background A goal of systems biology is the quantitative modelling of biochemical networks. Yet for many biochemical systems, parameter values and even the existence of interactions between some chemical species are unknown. It is therefore important to be able to easily investigate the effects of adding or removing reactions and to easily perform a bifurcation analysis, which shows the qualitative dynamics of a model for a range of parameter values. Results We present Facile, a Perl...

  18. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities

    Science.gov (United States)

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D.; Correia, Cristina; Li, Hu

    2016-01-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the ‘information flow’ within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein–protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes—network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  19. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    Science.gov (United States)

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  20. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    Science.gov (United States)

    Christensen, Claire Petra

    's own publications have contributed network inference, simulation, modeling, and analysis methods to the much larger body of work in systems biology, and indeed, in network science. The aim of this thesis is therefore twofold: to present this original work in the historical context of network science, but also to provide sufficient review and reference regarding complex systems (with an emphasis on complex networks in systems biology) and tools and techniques for their inference, simulation, analysis, and modeling, such that the reader will be comfortable in seeking out further information on the subject. The review-like Chapters 1, 2, and 4 are intended to convey the co-evolution of network science and the slow but noticeable breakdown of boundaries between disciplines in academia as research and comparison of diverse systems has brought to light the shared properties of these systems. It is the author's hope that theses chapters impart some sense of the remarkable and rapid progress in complex systems research that has led to this unprecedented academic synergy. Chapters 3 and 5 detail the author's original work in the context of complex systems research. Chapter 3 presents the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. These networks are then analyzed from a graph theoretical perspective, and their biological viability is critiqued by comparing the networks' graph theoretical properties to those of other biological systems. The results of topological perturbation analyses revealing commonalities in behavior at multiple levels of complexity are also presented, and are shown to be an invaluable means by which to ascertain the level of complexity to which the network inference process is robust to noise. Chapter 5 outlines a learning algorithm for the development of a realistic, evolving social

  1. National Nuclear Regulatory Portal (NNRP) – A Useful Regulatory Knowledge Network

    International Nuclear Information System (INIS)

    Conclusions: → The main advantage of developing and operation of NNRP is that the most relevant information in the field, obtained from various granted data sources, will be internationally accessible from one place; → NNRP can be used as a platform for more effective international cooperation between MS or for national information and cooperation activities and information exchange; → NNRP is an inclusive concept that brings together, links and complements all existing networks and initiatives

  2. Comparison of evolutionary algorithms in gene regulatory network model inference

    OpenAIRE

    Crane Martin; Ruskin Heather J; Sîrbu Alina

    2010-01-01

    Abstract Background The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed...

  3. Gene regulatory networks in embryonic stem cells and brain development

    OpenAIRE

    Ghosh, Dhimankrishna; Yan, Xiaowei; Tian, Qiang

    2009-01-01

    Embryonic stem cells (ESCs) are endowed with the ability to generate multiple cell lineages and carries great therapeutic potentials in regenerative medicines. Future application of ESCs in human health and diseases will embark on the delineation of molecular mechanisms that define the biology of ESCs. Here we discuss how the finite ESC components mediate the intriguing task of brain development and exhibits biomedical potentials to cure diverse neurological disorders.

  4. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data

    Directory of Open Access Journals (Sweden)

    Gao Shouguo

    2011-08-01

    Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.

  5. Importance of randomness in biological networks: A random matrix analysis

    Indian Academy of Sciences (India)

    Sarika Jalan

    2015-02-01

    Random matrix theory, initially proposed to understand the complex interactions in nuclear spectra, has demonstrated its success in diverse domains of science ranging from quantum chaos to galaxies. We demonstrate the applicability of random matrix theory for networks by providing a new dimension to complex systems research. We show that in spite of huge differences these interaction networks, representing real-world systems, posses from random matrix models, the spectral properties of the underlying matrices of these networks follow random matrix theory bringing them into the same universality class. We further demonstrate the importance of randomness in interactions for deducing crucial properties of the underlying system. This paper provides an overview of the importance of random matrix framework in complex systems research with biological systems as examples.

  6. Systems analysis of biological networks in skeletal muscle function.

    Science.gov (United States)

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  7. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh;

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the...

  8. Sensor-coupled fractal gene regulatory networks for locomotion control of a modular snake robot

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Katebi, Serajeddin;

    2013-01-01

    In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity in the...

  9. Building promoter aware transcriptional regulatory networks using siRNA perturbation and deepCAGE

    DEFF Research Database (Denmark)

    Vitezic, Morana; Lassmann, Timo; Forrest, Alistair R R;

    2010-01-01

    Perturbation and time-course data sets, in combination with computational approaches, can be used to infer transcriptional regulatory networks which ultimately govern the developmental pathways and responses of cells. Here, we individually knocked down the four transcription factors PU.1, IRF8, MYB...

  10. Statistical Inference and Reverse Engineering of Gene Regulatory Networks from Observational Expression Data

    OpenAIRE

    Emmert-Streib, Frank; Glazko, Galina V.; Altay, Gökmen; Matos Simoes, Ricardo de

    2012-01-01

    In this paper, we present a systematic and conceptual overview of methods for inferring gene regulatory networks from observational gene expression data. Further, we discuss two classic approaches to infer causal structures and compare them with contemporary methods by providing a conceptual categorization thereof. We complement the above by surveying global and local evaluation measures for assessing the performance of inference algorithms.

  11. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators.

    Science.gov (United States)

    Herpin, Amaury; Schartl, Manfred

    2015-10-01

    Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves. PMID:26358957

  12. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  13. Logical Reduction of Biological Networks to Their Most Determinative Components.

    Science.gov (United States)

    Matache, Mihaela T; Matache, Valentin

    2016-07-01

    Boolean networks have been widely used as models for gene regulatory networks, signal transduction networks, or neural networks, among many others. One of the main difficulties in analyzing the dynamics of a Boolean network and its sensitivity to perturbations or mutations is the fact that it grows exponentially with the number of nodes. Therefore, various approaches for simplifying the computations and reducing the network to a subset of relevant nodes have been proposed in the past few years. We consider a recently introduced method for reducing a Boolean network to its most determinative nodes that yield the highest information gain. The determinative power of a node is obtained by a summation of all mutual information quantities over all nodes having the chosen node as a common input, thus representing a measure of information gain obtained by the knowledge of the node under consideration. The determinative power of nodes has been considered in the literature under the assumption that the inputs are independent in which case one can use the Bahadur orthonormal basis. In this article, we relax that assumption and use a standard orthonormal basis instead. We use techniques of Hilbert space operators and harmonic analysis to generate formulas for the sensitivity to perturbations of nodes, quantified by the notions of influence, average sensitivity, and strength. Since we work on finite-dimensional spaces, our formulas and estimates can be and are formulated in plain matrix algebra terminology. We analyze the determinative power of nodes for a Boolean model of a signal transduction network of a generic fibroblast cell. We also show the similarities and differences induced by the alternative complete orthonormal basis used. Among the similarities, we mention the fact that the knowledge of the states of the most determinative nodes reduces the entropy or uncertainty of the overall network significantly. In a special case, we obtain a stronger result than in previous

  14. Network regulation and regulatory institutional reform: Revisiting the case of Australia

    International Nuclear Information System (INIS)

    It is well-understood that the success of liberalizing the electricity supply industry depends crucially on the quality and design of the regulatory and institutional framework. This paper analyses the regulatory arrangements that underpin the work of the Australian Energy Regulator (AER). These arrangements are contrasted with the regulatory structure of electricity provision in Norway. A key difference between the reform processes in the two countries relates to the lack of privatization in Norway and the co-existence of private and publicly owned generators and distributors in Australia. This comparative analysis allows us to make several recommendations to improve regulatory arrangements in Australia. These include greater independence for the AER, better coordination among regulatory institutions, greater use of benchmarking analysis, greater customer involvement, and improving market transparency and privatization of government-owned corporations. However, the success of privatization will hinge upon the effectiveness of the regulatory environment. - Highlights: • Rising electricity prices and network costs is of great concern in Australia. • Flaws in the existing regulatory environment and economic efficiency exist. • The AER should be provided with adequate resources (financial and staff experts) and discretion. • Robust benchmarking techniques should be adopted in the incentive regulation framework for cost efficiency. • Privatization of the state-owned assets also remains an option

  15. Bit by bit control of nonlinear ecological and biological networks using Evolutionary Network Control

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2016-06-01

    Full Text Available Evolutionary Network Control (ENC has been first introduced in 2013 to effectively subdue network-like systems. ENC opposes the idea, very common in the scientific literature, that controllability of networks should be based on the identification of the set of driver nodes that can guide the system's dynamics, in other words on the choice of a subset of nodes that should be selected to be permanently controlled. ENC has proven to be effective in the global control (i.e. the focus is on mastery of the final state of network dynamics of linear and nonlinear networks, and in the local (i.e. the focus is on the step-by-step ascendancy of network dynamics control of linear networks. In this work, ENC is applied to the local control of nonlinear networks. Using the Lotka-Volterra model as a case study, I show here that ENC is capable of locally driving nonlinear networks as well, so that also intermediate steps (not only the final state are under our strict control. ENC can be readily applied to any kind of ecological, biological, economic and network-like system.

  16. Fixed Points in Discrete Models for Regulatory Genetic Networks

    Directory of Open Access Journals (Sweden)

    Orozco Edusmildo

    2007-01-01

    Full Text Available It is desirable to have efficient mathematical methods to extract information about regulatory iterations between genes from repeated measurements of gene transcript concentrations. One piece of information is of interest when the dynamics reaches a steady state. In this paper we develop tools that enable the detection of steady states that are modeled by fixed points in discrete finite dynamical systems. We discuss two algebraic models, a univariate model and a multivariate model. We show that these two models are equivalent and that one can be converted to the other by means of a discrete Fourier transform. We give a new, more general definition of a linear finite dynamical system and we give a necessary and sufficient condition for such a system to be a fixed point system, that is, all cycles are of length one. We show how this result for generalized linear systems can be used to determine when certain nonlinear systems (monomial dynamical systems over finite fields are fixed point systems. We also show how it is possible to determine in polynomial time when an ordinary linear system (defined over a finite field is a fixed point system. We conclude with a necessary condition for a univariate finite dynamical system to be a fixed point system.

  17. Dissecting the fission yeast regulatory network reveals phase-specific control elements of its cell cycle

    Directory of Open Access Journals (Sweden)

    Liu Liwen

    2009-09-01

    Full Text Available Abstract Background Fission yeast Schizosaccharomyces pombe and budding yeast Saccharomyces cerevisiae are among the original model organisms in the study of the cell-division cycle. Unlike budding yeast, no large-scale regulatory network has been constructed for fission yeast. It has only been partially characterized. As a result, important regulatory cascades in budding yeast have no known or complete counterpart in fission yeast. Results By integrating genome-wide data from multiple time course cell cycle microarray experiments we reconstructed a gene regulatory network. Based on the network, we discovered in addition to previously known regulatory hubs in M phase, a new putative regulatory hub in the form of the HMG box transcription factor SPBC19G7.04. Further, we inferred periodic activities of several less known transcription factors over the course of the cell cycle, identified over 500 putative regulatory targets and detected many new phase-specific and conserved cis-regulatory motifs. In particular, we show that SPBC19G7.04 has highly significant periodic activity that peaks in early M phase, which is coordinated with the late G2 activity of the forkhead transcription factor fkh2. Finally, using an enhanced Bayesian algorithm to co-cluster the expression data, we obtained 31 clusters of co-regulated genes 1 which constitute regulatory modules from different phases of the cell cycle, 2 whose phase order is coherent across the 10 time course experiments, and 3 which lead to identification of phase-specific control elements at both the transcriptional and post-transcriptional levels in S. pombe. In particular, the ribosome biogenesis clusters expressed in G2 phase reveal new, highly conserved RNA motifs. Conclusion Using a systems-level analysis of the phase-specific nature of the S. pombe cell cycle gene regulation, we have provided new testable evidence for post-transcriptional regulation in the G2 phase of the fission yeast cell cycle

  18. PREFACE: Complex Networks: from Biology to Information Technology

    Science.gov (United States)

    Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.

    2008-06-01

    The field of complex networks is one of the most active areas in contemporary statistical physics. Ten years after seminal work initiated the modern study of networks, interest in the field is in fact still growing, as indicated by the ever increasing number of publications in network science. The reason for such a resounding success is most likely the simplicity and broad significance of the approach that, through graph theory, allows researchers to address a variety of different complex systems within a common framework. This special issue comprises a selection of contributions presented at the workshop 'Complex Networks: from Biology to Information Technology' held in July 2007 in Pula (Cagliari), Italy as a satellite of the general conference STATPHYS23. The contributions cover a wide range of problems that are currently among the most important questions in the area of complex networks and that are likely to stimulate future research. The issue is organised into four sections. The first two sections describe 'methods' to study the structure and the dynamics of complex networks, respectively. After this methodological part, the issue proceeds with a section on applications to biological systems. The issue closes with a section concentrating on applications to the study of social and technological networks. The first section, entitled Methods: The Structure, consists of six contributions focused on the characterisation and analysis of structural properties of complex networks: The paper Motif-based communities in complex networks by Arenas et al is a study of the occurrence of characteristic small subgraphs in complex networks. These subgraphs, known as motifs, are used to define general classes of nodes and their communities by extending the mathematical expression of the Newman-Girvan modularity. The same line of research, aimed at characterising network structure through the analysis of particular subgraphs, is explored by Bianconi and Gulbahce in Algorithm

  19. Genome-wide analyses for dissecting gene regulatory networks in the shoot apical meristem.

    Science.gov (United States)

    Bustamante, Mariana; Matus, José Tomás; Riechmann, José Luis

    2016-04-01

    Shoot apical meristem activity is controlled by complex regulatory networks in which components such as transcription factors, miRNAs, small peptides, hormones, enzymes and epigenetic marks all participate. Many key genes that determine the inherent characteristics of the shoot apical meristem have been identified through genetic approaches. Recent advances in genome-wide studies generating extensive transcriptomic and DNA-binding datasets have increased our understanding of the interactions within the regulatory networks that control the activity of the meristem, identifying new regulators and uncovering connections between previously unlinked network components. In this review, we focus on recent studies that illustrate the contribution of whole genome analyses to understand meristem function. PMID:26956505

  20. Deciphering Ascorbic Acid Regulatory Pathways in Ripening Tomato Fruit Using a Weighted Gene Correlation Network Analysis Approach

    Institute of Scientific and Technical Information of China (English)

    Chao Gao; Zheng Ju; Shan Li; Jinhua Zuo; Daqi Fu; Huiqin Tian; Yunbo Luo; Benzhong Zhu

    2013-01-01

    Genotype is generally determined by the co-expression of diverse genes and multiple regulatory pathways in plants. Gene co-expression analysis combining with physiological trait data provides very important information about the gene function and regulatory mechanism. L-Ascorbic acid (AsA), which is an essential nutrient component for human health and plant metabolism, plays key roles in diverse biological processes such as cell cycle, cell expansion, stress resistance, hormone synthesis, and signaling. Here, we applied a weighted gene correlation network analysis approach based on gene expression values and AsA content data in ripening tomato (Solanum lycopersicum L.) fruit with different AsA content levels, which leads to identification of AsA relevant modules and vital genes in AsA regulatory pathways. Twenty-four modules were compartmentalized according to gene expression profiling. Among these modules, one negatively related module containing genes involved in redox processes and one positively related module enriched with genes involved in AsA biosynthetic and recycling pathways were further analyzed. The present work herein indicates that redox pathways as well as hormone-signal pathways are closely correlated with AsA accumulation in ripening tomato fruit, and allowed us to prioritize candidate genes for follow-up studies to dissect this interplay at the biochemical and molecular level.

  1. Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks

    Directory of Open Access Journals (Sweden)

    Martin Florian

    2012-05-01

    Full Text Available Abstract Background High-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and effect relationships. These relationships are structured into network models that describe specific biological processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network perturbation in response to a given stimulus. Results Four complementary methods were devised to quantify treatment-induced activity changes in processes described by network models. In addition, companion statistics were developed to qualify significance and specificity of the results. This approach is called Network Perturbation Amplitude (NPA scoring because the amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE cells treated with the pro-inflammatory signaling mediator TNFα, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor R547. Each data set was scored against network models representing different aspects of inflammatory signaling and cell cycle progression, and these scores were compared with independent measures of pathway activity in NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFα-induced perturbation for each network model when compared against NF-κB nuclear localization and cell number. In addition, the degree and specificity to which CDK

  2. Expanding the Regulatory Network for Meristem Size in Plants.

    Science.gov (United States)

    Galli, Mary; Gallavotti, Andrea

    2016-06-01

    The remarkable plasticity of post-embryonic plant development is due to groups of stem-cell-containing structures called meristems. In the shoot, meristems continuously produce organs such as leaves, flowers, and stems. Nearly two decades ago the WUSCHEL/CLAVATA (WUS/CLV) negative feedback loop was established as being essential for regulating the size of shoot meristems by maintaining a delicate balance between stem cell proliferation and cell recruitment for the differentiation of lateral primordia. Recent research in various model species (Arabidopsis, tomato, maize, and rice) has led to discoveries of additional components that further refine and improve the current model of meristem regulation, adding new complexity to a vital network for plant growth and productivity. PMID:27129984

  3. Rhodobase, a meta-analytical tool for reconstructing gene regulatory networks in a model photosynthetic bacterium.

    Science.gov (United States)

    Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark

    2011-02-01

    We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. PMID:21070832

  4. The Transcriptional and Gene Regulatory Network of Lactococcus lactis MG1363 during Growth in Milk

    DEFF Research Database (Denmark)

    de Jong, Anne; Hansen, Morten Ejby; Kuipers, Oscar P.;

    2013-01-01

    milk. All available novel and literature-derived data were integrated into network reconstruction building blocks, which were used to reconstruct and visualize the L. lactis gene regulatory network. This network enables easy mining in the chrono-transcriptomics data. A freely available website at http...... analysis of gene expression over time showed that L. lactis adapted quickly to the environmental changes. Using upstream sequences of genes with correlated gene expression profiles, we uncovered a substantial number of putative DNA binding motifs that may be relevant for L. lactis fermentative growth in......://milkts.molgenrug.nl gives full access to all transcriptome data, to the reconstructed network and to the individual network building blocks....

  5. Ordinance on technical requirements and conditions of use of optical distribution networks of the Croatian regulatory agency - Analysis and outlook

    OpenAIRE

    Brusić, Igor; Kittl, Jörg; Ruhle, Ernst-Olav; Žuti, Vladimir

    2011-01-01

    In September 2010 the Croatian regulatory agency (HAKOM) put in force the ordinance on technical requirements and conditions of use of optical distribution networks. With this ordinance the Croatian regulatory agency is looking over the rim by proposing a rather technical approach for the rollout of optical access networks which will have significant influence on the deployment of next generation access networks (NGAN) in Croatia. The ordinance stipulates the requirements that have to be fulf...

  6. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies.

    Science.gov (United States)

    Indoliya, Yuvraj; Tiwari, Poonam; Chauhan, Abhisekh Singh; Goel, Ridhi; Shri, Manju; Bag, Sumit Kumar; Chakrabarty, Debasis

    2016-01-01

    Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells. PMID:26973288

  7. Regulatory Roles of Metabolites in Cell Signaling Networks

    Institute of Scientific and Technical Information of China (English)

    Feng Li; Wei Xu; Shimin Zhao

    2013-01-01

    Mounting evidence suggests that cellular metabolites,in addition to being sources of fuel and macromolecular substrates,are actively involved in signaling and epigenetic regulation.Many metabolites,such as cyclic AMP,which regulates phosphorylation/dephosphorylation,have been identified to modulate DNA and histone methylation and protein stability.Metabolite-driven cellular regulation occurs through two distinct mechanisms:proteins allosterically bind or serve as substrates for protein signaling pathways,and metabolites covalently modify proteins to regulate their functions.Such novel protein metabolites include fumarate,succinyl-CoA,propionyl-CoA,butyryl-CoA and crontonyl-CoA.Other metabolites,including α-ketoglutarate,succinate and fumarate,regulate epigenetic processes and cell signaling via protein binding.Here,we summarize recent progress in metabolite-derived post-translational protein modification and metabolite-binding associated signaling regulation.Uncovering metabolites upstream of cell signaling and epigenetic networks permits the linkage of metabolic disorders and human diseases,and suggests that metabolite modulation may be a strategy for innovative therapeutics and disease prevention techniques.

  8. Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations

    Directory of Open Access Journals (Sweden)

    Kleessen Sabrina

    2012-03-01

    Full Text Available Abstract Background Flux balance analysis (FBA together with its extension, dynamic FBA, have proven instrumental for analyzing the robustness and dynamics of metabolic networks by employing only the stoichiometry of the included reactions coupled with adequately chosen objective function. In addition, under the assumption of minimization of metabolic adjustment, dynamic FBA has recently been employed to analyze the transition between metabolic states. Results Here, we propose a suite of novel methods for analyzing the dynamics of (internally perturbed metabolic networks and for quantifying their robustness with limited knowledge of kinetic parameters. Following the biochemically meaningful premise that metabolite concentrations exhibit smooth temporal changes, the proposed methods rely on minimizing the significant fluctuations of metabolic profiles to predict the time-resolved metabolic state, characterized by both fluxes and concentrations. By conducting a comparative analysis with a kinetic model of the Calvin-Benson cycle and a model of plant carbohydrate metabolism, we demonstrate that the principle of regulatory on/off minimization coupled with dynamic FBA can accurately predict the changes in metabolic states. Conclusions Our methods outperform the existing dynamic FBA-based modeling alternatives, and could help in revealing the mechanisms for maintaining robustness of dynamic processes in metabolic networks over time.

  9. Design, Mathematical Modelling, Construction and Testing of Synthetic Gene Network Oscillators to Establish Roseobacter Clade Bacteria and the Protozoan Trypanosoma brucei as Synthetic Biology Chassis.

    OpenAIRE

    Borg, Y.

    2015-01-01

    The aim of this project is to establish Roseobacter marine bacteria and Trypanosoma brucei (T. brucei) protozoa as synthetic biology chassis. This work addresses the gap within synthetic biology resulting from the limited choice of host cells available for use in practice. This was done by developing synthetic bacterial and trypanosomal genetic regulatory networks (GRNs) which function as an oscillator as well as by developing the necessary protocols and set-ups to allow for the analysis of G...

  10. Thiosulfoxide (Sulfane Sulfur: New Chemistry and New Regulatory Roles in Biology

    Directory of Open Access Journals (Sweden)

    John I. Toohey

    2014-08-01

    Full Text Available The understanding of sulfur bonding is undergoing change. Old theories on hypervalency of sulfur and the nature of the chalcogen-chalcogen bond are now questioned. At the same time, there is a rapidly expanding literature on the effects of sulfur in regulating biological systems. The two fields are inter-related because the new understanding of the thiosulfoxide bond helps to explain the newfound roles of sulfur in biology. This review examines the nature of thiosulfoxide (sulfane, S0 sulfur, the history of its regulatory role, its generation in biological systems, and its functions in cells. The functions include synthesis of cofactors (molybdenum cofactor, iron-sulfur clusters, sulfuration of tRNA, modulation of enzyme activities, and regulating the redox environment by several mechanisms (including the enhancement of the reductive capacity of glutathione. A brief review of the analogous form of selenium suggests that the toxicity of selenium may be due to over-reduction caused by the powerful reductive activity of glutathione perselenide.

  11. Unique expression, processing regulation, and regulatory network of peach (Prunus persica miRNAs

    Directory of Open Access Journals (Sweden)

    Zhu Hong

    2012-08-01

    Full Text Available Abstract Background MicroRNAs (miRNAs have recently emerged as important gene regulators in plants. MiRNAs and their targets have been extensively studied in Arabidopsis and rice. However, relatively little is known about the characterization of miRNAs and their target genes in peach (Prunus persica, which is a complex crop with unique developmental programs. Results We performed small RNA deep sequencing and identified 47 peach-specific and 47 known miRNAs or families with distinct expression patterns. Together, the identified miRNAs targeted 80 genes, many of which have not been reported previously. Like the model plant systems, peach has two of the three conserved trans-acting siRNA biogenesis pathways with similar mechanistic features and target specificity. Unique to peach, three of the miRNAs collectively target 49 MYBs, 19 of which are known to regulate phenylpropanoid metabolism, a key pathway associated with stone hardening and fruit color development, highlighting a critical role of miRNAs in the regulation of peach fruit development and ripening. We also found that the majority of the miRNAs were differentially regulated in different tissues, in part due to differential processing of miRNA precursors. Up to 16% of the peach-specific miRNAs were differentially processed from their precursors in a tissue specific fashion, which has been rarely observed in plant cells. The miRNA precursor processing activity appeared not to be coupled with its transcriptional activity but rather acted independently in peach. Conclusions Collectively, the data characterizes the unique expression pattern and processing regulation of peach miRNAs and demonstrates the presence of a complex, multi-level miRNA regulatory network capable of targeting a wide variety of biological functions, including phenylpropanoid pathways which play a multifaceted spatial-temporal role in peach fruit development.

  12. Classification of Approaches and Challenges of Frequent Subgraphs Mining in Biological Networks

    OpenAIRE

    Keyvanpour, Mohammadreza; Azizani, Fereshteh

    2012-01-01

    Understanding the structure and dynamics of biological networks is one of the important challenges in system biology. In addition, increasing amount of experimental data in biological networks necessitate the use of efficient methods to analyze these huge amounts of data. Such methods require to recognize common patterns to analyze data. As biological networks can be modeled by graphs, the problem of common patterns recognition is equivalent with frequent sub graph mining in a set of graphs. ...

  13. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  14. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.

  15. Regulatory inhibition of biological tissue mineralization through post-nucleation shielding

    Science.gov (United States)

    Chang, Joshua; Miura, Robert

    In vertebrates, insufficient availability of calcium and phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are present at high concentrations throughout body fluids - at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. We adapted mean-field classical nucleation theory to the case of surface-shielding in order to study the regulation of sedimentation of calcium phosphate salts in biological tissues. Mathematical Biosciences Institute, NSF DMS-1021818, National Institutes of Health, Rehab Medicine.

  16. Statistical and regulatory considerations in assessments of interchangeability of biological drug products.

    Science.gov (United States)

    Tóthfalusi, Lászlo; Endrényi, László; Chow, Shein-Chung

    2014-05-01

    When the patent of a brand-name, marketed drug expires, new, generic products are usually offered. Small-molecule generic and originator drug products are expected to be chemically identical. Their pharmaceutical similarity can be typically assessed by simple regulatory criteria such as the expectation that the 90% confidence interval for the ratio of geometric means of some pharmacokinetic parameters be between 0.80 and 1.25. When such criteria are satisfied, the drug products are generally considered to exhibit therapeutic equivalence. They are then usually interchanged freely within individual patients. Biological drugs are complex proteins, for instance, because of their large size, intricate structure, sensitivity to environmental conditions, difficult manufacturing procedures, and the possibility of immunogenicity. Generic and brand-name biologic products can be expected to show only similarity but not identity in their various features and clinical effects. Consequently, the determination of biosimilarity is also a complicated process which involves assessment of the totality of the evidence for the close similarity of the two products. Moreover, even when biosimilarity has been established, it may not be assumed that the two biosimilar products can be automatically substituted by pharmacists. This generally requires additional, careful considerations. Without declaring interchangeability, a new product could be prescribed, i.e. it is prescribable. However, two products can be automatically substituted only if they are interchangeable. Interchangeability is a statistical term and it means that products can be used in any order in the same patient without considering the treatment history. The concepts of interchangeability and prescribability have been widely discussed in the past but only in relation to small molecule generics. In this paper we apply these concepts to biosimilars and we discuss: definitions of prescribability and interchangeability and

  17. Regulatory requirements for ground-water monitoring networks at hazardous-waste sites

    International Nuclear Information System (INIS)

    In the absence of an explicit national legislative mandate to protect ground-water quality and because there is no coordination between federal and state agencies, those responsible for hazardous-waste management and cleanup must utilize a number of statutes and regulations as guidance for detecting, correcting, and preventing ground-water contamination. For example, the current regulatory framework provides no clean guidance for compliance. The author will present an integrated approach to protect ground-water resources through the use of various standards and classifications, based on a comprehensive regulatory and policy analysis. Information presented can be used to develop ground-water quality protection programs, assess regulatory compliance, and characterize sites for potential remediation and corrective action. Regulation-based ground-water monitoring networks can be developed to address these concerns in a technically feasible yet cost-effective manner

  18. Regulatory network of inflammation downstream of proteinase-activated receptors

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2007-03-01

    nfkbia seems to counter-balance the inflammatory response to PAR activation by limiting prolonged activation of p38 MAPK and increased cytokine production. In contrast, transcripts such as arf6 and dcnt1 that are involved in the mechanism of PAR re-sensitization would tend to perpetuate the inflammatory reaction in response to common pro-inflammatory stimuli. Conclusion The combination of cDNA array results and genomic networks reveals an overriding participation of PAR1 in bladder inflammation, provides a working model for the involvement of downstream signaling, and evokes testable hypotheses regarding the transcriptome downstream of PAR1 activation. It remains to be determined whether or not mechanisms targeting PAR1 gene silencing or PAR1 blockade will ameliorate the clinical manifestation of cystitis.

  19. Making the right connections: biological networks in the light of evolution

    OpenAIRE

    Knight, Christopher G.; Pinney, John W

    2009-01-01

    Our understanding of how evolution acts on biological networks remains patchy, as is our knowledge of how that action is best identified, modelled and understood. Starting with network structure and the evolution of protein–protein interaction networks, we briefly survey the ways in which network evolution is being addressed in the fields of systems biology, development and ecology. The approaches highlighted demonstrate a movement away from a focus on network topology towards a more integrat...

  20. Detecting modules in biological networks by edge weight clustering and entropy significance

    OpenAIRE

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the informa...

  1. A gene regulatory network for root epidermis cell differentiation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Angela Bruex

    2012-01-01

    Full Text Available The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 "core" root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.

  2. Potential for regulatory genetic networks of gene expression near a stable point

    CERN Document Server

    Huang, Ming-Chang; Wu, Jinn-Wen; Chung, Tien-Shen

    2007-01-01

    A description for regulatory genetic network based on generalized potential energy is constructed. The potential energy is derived from the steady state solution of linearized Fokker-Plank equation, and the result is shown to be equivalent to the system of coupled oscillators. The correspondence between the quantities from the mechanical picture and the steady-state fluctuations is established. Explicit calculation is given for auto-regulatory networks in which, the force constant associated with the degree of protein is very weak. Negative feedback not only suppresses the fluctuations but also increases the steepness of the potential. The results for the fluctuations agree completely with those obtained from linear noise Fokker-Planck equation.

  3. Using giant scarlet runner bean embryos to uncover regulatory networks controlling suspensor gene activity

    OpenAIRE

    Henry, Kelli F.; Goldberg, Robert B.

    2015-01-01

    One of the major unsolved issues in plant development is understanding the regulatory networks that control the differential gene activity that is required for the specification and development of the two major embryonic regions, the embryo proper and suspensor. Historically, the giant embryo of scarlet runner bean (SRB), Phaseolus coccineus, has been used as a model system to investigate the physiological events that occur early in embryogenesis—focusing on the question of what role the susp...

  4. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks

    OpenAIRE

    Baliga Nitin S; Reiss David J; Bonneau Richard

    2006-01-01

    Abstract Background The learning of global genetic regulatory networks from expression data is a severely under-constrained problem that is aided by reducing the dimensionality of the search space by means of clustering genes into putatively co-regulated groups, as opposed to those that are simply co-expressed. Be cause genes may be co-regulated only across a subset of all observed experimental conditions, biclustering (clustering of genes and conditions) is more appropriate than standard clu...

  5. Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm

    OpenAIRE

    Tang, Y.; Wang, Z; J. Fang

    2011-01-01

    The official published version can be found at the link below. This paper presents a novel particle swarm optimization (PSO) algorithm based on Markov chains and competitive penalized method. Such an algorithm is developed to solve global optimization problems with applications in identifying unknown parameters of a class of genetic regulatory networks (GRNs). By using an evolutionary factor, a new switching PSO (SPSO) algorithm is first proposed and analyzed, where the velocity updating e...

  6. Reliable transfer of transcriptional gene regulatory networks between taxonomically related organisms

    Directory of Open Access Journals (Sweden)

    Tauch Andreas

    2009-01-01

    Full Text Available Abstract Background Transcriptional regulation of gene activity is essential for any living organism. Transcription factors therefore recognize specific binding sites within the DNA to regulate the expression of particular target genes. The genome-scale reconstruction of the emerging regulatory networks is important for biotechnology and human medicine but cost-intensive, time-consuming, and impossible to perform for any species separately. By using bioinformatics methods one can partially transfer networks from well-studied model organisms to closely related species. However, the prediction quality is limited by the low level of evolutionary conservation of the transcription factor binding sites, even within organisms of the same genus. Results Here we present an integrated bioinformatics workflow that assures the reliability of transferred gene regulatory networks. Our approach combines three methods that can be applied on a large-scale: re-assessment of annotated binding sites, subsequent binding site prediction, and homology detection. A gene regulatory interaction is considered to be conserved if (1 the transcription factor, (2 the adjusted binding site, and (3 the target gene are conserved. The power of the approach is demonstrated by transferring gene regulations from the model organism Corynebacterium glutamicum to the human pathogens C. diphtheriae, C. jeikeium, and the biotechnologically relevant C. efficiens. For these three organisms we identified reliable transcriptional regulations for ~40% of the common transcription factors, compared to ~5% for which knowledge was available before. Conclusion Our results suggest that trustworthy genome-scale transfer of gene regulatory networks between organisms is feasible in general but still limited by the level of evolutionary conservation.

  7. Regulatory Networks that Direct the Development of Specialized Cell Types in the Drosophila Heart

    OpenAIRE

    Lovato, TyAnna L.; Cripps, Richard M.

    2016-01-01

    The Drosophila cardiac tube was once thought to be a simple linear structure, however research over the past 15 years has revealed significant cellular and molecular complexity to this organ. Prior reviews have focused upon the gene regulatory networks responsible for the specification of the cardiac field and the activation of cardiac muscle structural genes. Here we focus upon highlighting the existence, function, and development of unique cell types within the dorsal vessel, and discuss th...

  8. Multi-Tissue Omics Analyses Reveal Molecular Regulatory Networks for Puberty in Composite Beef Cattle

    OpenAIRE

    Angela Cánovas; Antonio Reverter; DeAtley, Kasey L.; Ashley, Ryan L; Colgrave, Michelle L.; Fortes, Marina R. S.; Alma Islas-Trejo; Sigrid Lehnert; Laercio Porto-Neto; Gonzalo Rincón; Gail A Silver; Snelling, Warren M.; Medrano, Juan F.; Thomas, Milton G.

    2014-01-01

    Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as tissues known to be relevant to growth and metabolism needed to achieve puberty (i.e., longissimus dorsi muscle, adipose, and liver)....

  9. Dissecting early regulatory relationships in the lamprey neural crest gene network.

    Science.gov (United States)

    Nikitina, Natalya; Sauka-Spengler, Tatjana; Bronner-Fraser, Marianne

    2008-12-23

    The neural crest, a multipotent embryonic cell type, originates at the border between neural and nonneural ectoderm. After neural tube closure, these cells undergo an epithelial-mesenchymal transition, migrate to precise, often distant locations, and differentiate into diverse derivatives. Analyses of expression and function of signaling and transcription factors in higher vertebrates has led to the proposal that a neural crest gene regulatory network (NC-GRN) orchestrates neural crest formation. Here, we interrogate the NC-GRN in the lamprey, taking advantage of its slow development and basal phylogenetic position to resolve early inductive events, 1 regulatory step at the time. To establish regulatory relationships at the neural plate border, we assess relative expression of 6 neural crest network genes and effects of individually perturbing each on the remaining 5. The results refine an upstream portion of the NC-GRN and reveal unexpected order and linkages therein; e.g., lamprey AP-2 appears to function early as a neural plate border rather than a neural crest specifier and in a pathway linked to MsxA but independent of ZicA. These findings provide an ancestral framework for performing comparative tests in higher vertebrates in which network linkages may be more difficult to resolve because of their rapid development. PMID:19104059

  10. Community-Reviewed Biological Network Models for Toxicology and Drug Discovery Applications

    Science.gov (United States)

    Namasivayam, Aishwarya Alex; Morales, Alejandro Ferreiro; Lacave, Ángela María Fajardo; Tallam, Aravind; Simovic, Borislav; Alfaro, David Garrido; Bobbili, Dheeraj Reddy; Martin, Florian; Androsova, Ganna; Shvydchenko, Irina; Park, Jennifer; Calvo, Jorge Val; Hoeng, Julia; Peitsch, Manuel C.; Racero, Manuel González Vélez; Biryukov, Maria; Talikka, Marja; Pérez, Modesto Berraquero; Rohatgi, Neha; Díaz-Díaz, Noberto; Mandarapu, Rajesh; Ruiz, Rubén Amián; Davidyan, Sergey; Narayanasamy, Shaman; Boué, Stéphanie; Guryanova, Svetlana; Arbas, Susana Martínez; Menon, Swapna; Xiang, Yang

    2016-01-01

    Biological network models offer a framework for understanding disease by describing the relationships between the mechanisms involved in the regulation of biological processes. Crowdsourcing can efficiently gather feedback from a wide audience with varying expertise. In the Network Verification Challenge, scientists verified and enhanced a set of 46 biological networks relevant to lung and chronic obstructive pulmonary disease. The networks were built using Biological Expression Language and contain detailed information for each node and edge, including supporting evidence from the literature. Network scoring of public transcriptomics data inferred perturbation of a subset of mechanisms and networks that matched the measured outcomes. These results, based on a computable network approach, can be used to identify novel mechanisms activated in disease, quantitatively compare different treatments and time points, and allow for assessment of data with low signal. These networks are periodically verified by the crowd to maintain an up-to-date suite of networks for toxicology and drug discovery applications.

  11. Notes on a PDE system for biological network formation

    KAUST Repository

    Haskovec, Jan

    2016-01-22

    We present new analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transport networks. The model describes the pressure field using a Darcy’s type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. The analytical part extends the results of Haskovec et al. (2015) regarding the existence of weak and mild solutions to the whole range of meaningful relaxation exponents. Moreover, we prove finite time extinction or break-down of solutions in the spatially one-dimensional setting for certain ranges of the relaxation exponent. We also construct stationary solutions for the case of vanishing diffusion and critical value of the relaxation exponent, using a variational formulation and a penalty method. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on mixed finite elements and study the qualitative properties of network structures for various parameter values. Furthermore, we indicate numerically that some analytical results proved for the spatially one-dimensional setting are likely to be valid also in several space dimensions.

  12. Analysis of regulatory networks constructed based on gene coexpression in pituitary adenoma

    Indian Academy of Sciences (India)

    Jie Gong; Bo Diao; Guo Jie Yao; Ying Liu; Guo Zheng Xu

    2013-12-01

    Gene coexpression patterns can reveal gene collections with functional consistency. This study systematically constructs regulatory networks for pituitary tumours by integrating gene coexpression, transcriptional and posttranscriptional regulation. Through network analysis, we elaborate the incidence mechanism of pituitary adenoma. The Pearson’s correlation coefficient was utilized to calculate the level of gene coexpression. By comparing pituitary adenoma samples with normal samples, pituitary adenoma-specific gene coexpression patterns were identified. For pituitary adenoma-specific coexpressed genes, we integrated transcription factor (TF) and microRNA (miRNA) regulation to construct a complex regulatory network from the transcriptional and posttranscriptional perspectives. Network module analysis identified the synergistic regulation of genes by miRNAs and TFs in pituitary adenoma. We identified 142 pituitary adenoma-specific active genes, including 43 TFs and 99 target genes of TFs. Functional enrichment of these 142 genes revealed that the occurrence of pituitary adenoma induced abnormalities in intracellular metabolism and angiogenesis process. These 142 genes were also significantly enriched in adenoma pathway. Module analysis of the systematic regulatory network found that three modules contained elements that were closely related to pituitary adenoma, such as FGF2 and SP1, as well as transcription factors and miRNAs involved in the tumourigenesis. These results show that in the occurrence of pituitary adenoma, miRNA, TF and genes interact with each other. Based on gene expression, the proposed method integrates interaction information from different levels and systematically explains the occurrence of pituitary tumours. It facilitates the tracing of the origin of the disease and can provide basis for early diagnosis of complex diseases or cancer without obvious symptoms.

  13. A New Computationally Efficient Measure of Topological Redundancy of Biological and Social Networks

    CERN Document Server

    Albert, Reka; Gitter, Anthony; Gursoy, Gamze; Hegde, Rashmi; Paul, Pradyut; Sivanathan, Gowri Sangeetha; Sontag, Eduardo

    2011-01-01

    It is well-known that biological and social interaction networks have a varying degree of redundancy, though a consensus of the precise cause of this is so far lacking. In this paper, we introduce a topological redundancy measure for labeled directed networks that is formal, computationally efficient and applicable to a variety of directed networks such as cellular signaling, metabolic and social interaction networks. We demonstrate the computational efficiency of our measure by computing its value and statistical significance on a number of biological and social networks with up to several thousands of nodes and edges. Our results suggest a number of interesting observations: (1) social networks are more redundant that their biological counterparts, (2) transcriptional networks are less redundant than signaling networks, (3) the topological redundancy of the C. elegans metabolic network is largely due to its inclusion of currency metabolites, and (4) the redundancy of signaling networks is highly (negatively...

  14. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  15. Transcriptional regulatory network discovery via multiple method integration: application to e. coli K12

    Directory of Open Access Journals (Sweden)

    Trelinski Michael

    2007-03-01

    Full Text Available Abstract Transcriptional regulatory network (TRN discovery from one method (e.g. microarray analysis, gene ontology, phylogenic similarity does not seem feasible due to lack of sufficient information, resulting in the construction of spurious or incomplete TRNs. We develop a methodology, TRND, that integrates a preliminary TRN, microarray data, gene ontology and phylogenic similarity to accurately discover TRNs and apply the method to E. coli K12. The approach can easily be extended to include other methodologies. Although gene ontology and phylogenic similarity have been used in the context of gene-gene networks, we show that more information can be extracted when gene-gene scores are transformed to gene-transcription factor (TF scores using a preliminary TRN. This seems to be preferable over the construction of gene-gene interaction networks in light of the observed fact that gene expression and activity of a TF made of a component encoded by that gene is often out of phase. TRND multi-method integration is found to be facilitated by the use of a Bayesian framework for each method derived from its individual scoring measure and a training set of gene/TF regulatory interactions. The TRNs we construct are in better agreement with microarray data. The number of gene/TF interactions we discover is actually double that of existing networks.

  16. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Hüser Andrea T

    2006-02-01

    Full Text Available Abstract Background The knowledge about complete bacterial genome sequences opens the way to reconstruct the qualitative topology and global connectivity of transcriptional regulatory networks. Since iron is essential for a variety of cellular processes but also poses problems in biological systems due to its high toxicity, bacteria have evolved complex transcriptional regulatory networks to achieve an effective iron homeostasis. Here, we apply a combination of transcriptomics, bioinformatics, in vitro assays, and comparative genomics to decipher the regulatory network of the iron-dependent transcriptional regulator DtxR of Corynebacterium glutamicum. Results A deletion of the dtxR gene of C. glutamicum ATCC 13032 led to the mutant strain C. glutamicum IB2103 that was able to grow in minimal medium only under low-iron conditions. By performing genome-wide DNA microarray hybridizations, differentially expressed genes involved in iron metabolism of C. glutamicum were detected in the dtxR mutant. Bioinformatics analysis of the genome sequence identified a common 19-bp motif within the upstream region of 31 genes, whose differential expression in C. glutamicum IB2103 was verified by real-time reverse transcription PCR. Binding of a His-tagged DtxR protein to oligonucleotides containing the 19-bp motifs was demonstrated in vitro by DNA band shift assays. At least 64 genes encoding a variety of physiological functions in iron transport and utilization, in central carbohydrate metabolism and in transcriptional regulation are controlled directly by the DtxR protein. A comparison with the bioinformatically predicted networks of C. efficiens, C. diphtheriae and C. jeikeium identified evolutionary conserved elements of the DtxR network. Conclusion This work adds considerably to our currrent understanding of the transcriptional regulatory network of C. glutamicum genes that are controlled by DtxR. The DtxR protein has a major role in controlling the

  17. Genome-Wide Mapping of Collier In Vivo Binding Sites Highlights Its Hierarchical Position in Different Transcription Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Mathilde de Taffin

    Full Text Available Collier, the single Drosophila COE (Collier/EBF/Olf-1 transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.

  18. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.

    Science.gov (United States)

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-01-01

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment. PMID:22850067

  19. Inferring polymorphism-induced regulatory gene networks active in human lymphocyte cell lines by weighted linear mixed model analysis of multiple RNA-Seq datasets.

    Directory of Open Access Journals (Sweden)

    Wensheng Zhang

    Full Text Available Single-nucleotide polymorphisms (SNPs contribute to the between-individual expression variation of many genes. A regulatory (trait-associated SNP is usually located near or within a (host gene, possibly influencing the gene's transcription or/and post-transcriptional modification. But its targets may also include genes that are physically farther away from it. A heuristic explanation of such multiple-target interferences is that the host gene transfers the SNP genotypic effects to the distant gene(s by a transcriptional or signaling cascade. These connections between the host genes (regulators and the distant genes (targets make the genetic analysis of gene expression traits a promising approach for identifying unknown regulatory relationships. In this study, through a mixed model analysis of multi-source digital expression profiling for 140 human lymphocyte cell lines (LCLs and the genotypes distributed by the international HapMap project, we identified 45 thousands of potential SNP-induced regulatory relationships among genes (the significance level for the underlying associations between expression traits and SNP genotypes was set at FDR < 0.01. We grouped the identified relationships into four classes (paradigms according to the two different mechanisms by which the regulatory SNPs affect their cis- and trans- regulated genes, modifying mRNA level or altering transcript splicing patterns. We further organized the relationships in each class into a set of network modules with the cis- regulated genes as hubs. We found that the target genes in a network module were often characterized by significant functional similarity, and the distributions of the target genes in three out of the four networks roughly resemble a power-law, a typical pattern of gene networks obtained from mutation experiments. By two case studies, we also demonstrated that significant biological insights can be inferred from the identified network modules.

  20. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures

    OpenAIRE

    Poole, Matthew; Kentzoglanakis, Kyriakos

    2011-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modelling the dynamical behaviour of gene regulatory systems. More specifically, ACO is used for searching the discre...

  1. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Chennubhotla Chakra

    2006-10-01

    Full Text Available Abstract Background Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood. Results By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate layer of transcription factors naturally segregates into distinct subnetworks. In these topological units transcription factors are densely interlinked in a largely hierarchical manner and respond to external signals by utilizing a fraction of these subnets. Conclusion As transcriptional regulation represents the 'slow' component of overall information processing, the identified topology suggests a model in which successive waves of transcriptional regulation originating from distinct fractions of the TR network control robust integrated responses to complex stimuli.

  2. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Cirera Salicio, Susanna; Zhernakova, Daria V.;

    2014-01-01

    interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model...... for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches...... associated with obesity in humans and rodents, e.g. CSF1R and MARC2. Conclusions To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways...

  3. Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning.

    Directory of Open Access Journals (Sweden)

    Iryna Kozmikova

    Full Text Available Formation of a dorsoventral axis is a key event in the early development of most animal embryos. It is well established that bone morphogenetic proteins (Bmps and Wnts are key mediators of dorsoventral patterning in vertebrates. In the cephalochordate amphioxus, genes encoding Bmps and transcription factors downstream of Bmp signaling such as Vent are expressed in patterns reminiscent of those of their vertebrate orthologues. However, the key question is whether the conservation of expression patterns of network constituents implies conservation of functional network interactions, and if so, how an increased functional complexity can evolve. Using heterologous systems, namely by reporter gene assays in mammalian cell lines and by transgenesis in medaka fish, we have compared the gene regulatory network implicated in dorsoventral patterning of the basal chordate amphioxus and vertebrates. We found that Bmp but not canonical Wnt signaling regulates promoters of genes encoding homeodomain proteins AmphiVent1 and AmphiVent2. Furthermore, AmphiVent1 and AmphiVent2 promoters appear to be correctly regulated in the context of a vertebrate embryo. Finally, we show that AmphiVent1 is able to directly repress promoters of AmphiGoosecoid and AmphiChordin genes. Repression of genes encoding dorsal-specific signaling molecule Chordin and transcription factor Goosecoid by Xenopus and zebrafish Vent genes represents a key regulatory interaction during vertebrate axis formation. Our data indicate high evolutionary conservation of a core Bmp-triggered gene regulatory network for dorsoventral patterning in chordates and suggest that co-option of the canonical Wnt signaling pathway for dorsoventral patterning in vertebrates represents one of the innovations through which an increased morphological complexity of vertebrate embryo is achieved.

  4. Bioengineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Tabita, F. Robert [The Ohio State University

    2013-07-30

    In this study, the Principal Investigator, F.R. Tabita has teemed up with J. C. Liao from UCLA. This project's main goal is to manipulate regulatory networks in phototrophic bacteria to affect and maximize the production of large amounts of hydrogen gas under conditions where wild-type organisms are constrained by inherent regulatory mechanisms from allowing this to occur. Unrestrained production of hydrogen has been achieved and this will allow for the potential utilization of waste materials as a feed stock to support hydrogen production. By further understanding the means by which regulatory networks interact, this study will seek to maximize the ability of currently available “unrestrained” organisms to produce hydrogen. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Moreover, due to their great metabolic versatility, such organisms highly regulate these processes in the cell and since virtually all such capabilities are dispensable, excellent experimental systems to study aspects of molecular control and biochemistry/physiology are available.

  5. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Jensen Paul A

    2011-09-01

    Full Text Available Abstract Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.

  6. Alzheimer disease: modeling an Aβ-centered biological network.

    Science.gov (United States)

    Campion, D; Pottier, C; Nicolas, G; Le Guennec, K; Rovelet-Lecrux, A

    2016-07-01

    In genetically complex diseases, the search for missing heritability is focusing on rare variants with large effect. Thanks to next generation sequencing technologies, genome-wide characterization of these variants is now feasible in every individual. However, a lesson from current studies is that collapsing rare variants at the gene level is often insufficient to obtain a statistically significant signal in case-control studies, and that network-based analyses are an attractive complement to classical approaches. In Alzheimer disease (AD), according to the prevalent amyloid cascade hypothesis, the pathology is driven by the amyloid beta (Aβ) peptide. In past years, based on experimental studies, several hundreds of proteins have been shown to interfere with Aβ production, clearance, aggregation or toxicity. Thanks to a manual curation of the literature, we identified 335 genes/proteins involved in this biological network and classified them according to their cellular function. The complete list of genes, or its subcomponents, will be of interest in ongoing AD genetic studies. PMID:27021818

  7. Regulatory T Cells in Colorectal Cancer: From Biology to Prognostic Relevance

    International Nuclear Information System (INIS)

    Regulatory T cells (Tregs) were initially described as “suppressive” lymphocytes in the 1980s. However, it took almost 20 years until the concept of Treg-mediated immune control in its present form was finally established. Tregs are obligatory for self-tolerance and defects within their population lead to severe autoimmune disorders. On the other hand Tregs may promote tolerance for tumor antigens and even hamper efforts to overcome it. Intratumoral and systemic accumulation of Tregs has been observed in various types of cancer and is often linked to worse disease course and outcome. Increase of circulating Tregs, as well as their presence in mesenteric lymph nodes and tumor tissue of patients with colorectal cancer de facto suggests a strong involvement of Tregs in the antitumor control. This review will focus on the Treg biology in view of colorectal cancer, means of Treg accumulation and the controversies regarding their prognostic significance. In addition, a concise overview will be given on how Tregs and their function can be targeted in cancer patients in order to bolster an inherent immune response and/or increase the efficacy of immunotherapeutic approaches

  8. Regulatory T Cells in Colorectal Cancer: From Biology to Prognostic Relevance

    Energy Technology Data Exchange (ETDEWEB)

    Mougiakakos, Dimitrios [Department of Oncology and Pathology, Immune and Gene Therapy Unit, Cancer Centre Karolinska, CCK R8:01, 17176 Stockholm (Sweden)

    2011-03-29

    Regulatory T cells (Tregs) were initially described as “suppressive” lymphocytes in the 1980s. However, it took almost 20 years until the concept of Treg-mediated immune control in its present form was finally established. Tregs are obligatory for self-tolerance and defects within their population lead to severe autoimmune disorders. On the other hand Tregs may promote tolerance for tumor antigens and even hamper efforts to overcome it. Intratumoral and systemic accumulation of Tregs has been observed in various types of cancer and is often linked to worse disease course and outcome. Increase of circulating Tregs, as well as their presence in mesenteric lymph nodes and tumor tissue of patients with colorectal cancer de facto suggests a strong involvement of Tregs in the antitumor control. This review will focus on the Treg biology in view of colorectal cancer, means of Treg accumulation and the controversies regarding their prognostic significance. In addition, a concise overview will be given on how Tregs and their function can be targeted in cancer patients in order to bolster an inherent immune response and/or increase the efficacy of immunotherapeutic approaches.

  9. Summary of the first meeting of ASEAN Network of Regulatory Bodies on Atomic Energy (ASEANTOM)

    International Nuclear Information System (INIS)

    The 1st Meeting of ASEAN Network of Regulatory Bodies on Atomic Energy (ASEANTOM) was organized in Phuket, Thailand on 3 - 4 September, 2013. The meeting was held on annually basis following the Meeting to Finalize the Term of Reference (TOR) in Bangkok, Thailand on 29 August, 2012. The objective of the meeting is to review and finalize TOR, and to set up the action plan of ASEANTOM. The action plan is an expected outcome of the meeting. The Meeting consisted of 41 participants from IAEA and ASEAN Member States (AMS), namely, Cambodia, Laos, Singapore, Indonesia, Malaysia, Myanmar, Philippines, Vietnam and Thailand. Only Brunei Darussalam could not attend the Meeting. Participant's organizations were regulatory body or relevant authorities, and Ministry of Foreign Affairs.

  10. Case studies of community college non-science majors: Effects of self-regulatory interventions on biology self-efficacy and biological literacy

    Science.gov (United States)

    Maurer, Matthew J.

    Science literacy has been at the heart of current reform efforts in science education. The focus on developing essential skills needed for individual ability to be literate in science has been at the forefront of most K--12 science curricula. Reform efforts have begun to stretch into the postsecondary arena as well, with an ever increasing dialogue regarding the need for attention to science literacy by college students, especially non-science majors. This study set out to investigate how the use of self-regulatory interventions (specifically, goal setting, concept mapping, and reflective writing) affected student biology self-efficacy and biological literacy. This study employed a qualitative research design, analyzing three case studies. Participants in the study received ten self-regulatory interventions as a set of portfolio assignments. Portfolio work was qualitatively analyzed and coded for self-efficacy, as well as evidence of biological literacy. A biology self-efficacy survey was administered pre- and post- to provide a means of self-efficacy data triangulation. Literacy data was supported via a biological literacy rubric, constructed specifically for this study. Results indicated that mastery experiences were the source of biology self-efficacy. Self-efficacy for specific tasks increased over time, and changes in self-efficacy were corroborated by the self-efficacy survey. Students were found to express biological literacy at nominal, functional, or conceptual levels depending on the specific task. This was supported by data from the biological literacy rubric scores. Final conclusions and implications for the study indicated the need for further research with more samples of students in similar and different contexts. Given the fact that the literature in this area is sparse, the results obtained here have only begun to delve into this area of research. Generalization to other biology courses or contexts outside of the one presented in this study was

  11. Neural model of gene regulatory network: a survey on supportive meta-heuristics.

    Science.gov (United States)

    Biswas, Surama; Acharyya, Sriyankar

    2016-06-01

    Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here. PMID:27048512

  12. Reverse Engineering Sparse Gene Regulatory Networks Using Cubature Kalman Filter and Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Amina Noor

    2013-01-01

    Full Text Available This paper proposes a novel algorithm for inferring gene regulatory networks which makes use of cubature Kalman filter (CKF and Kalman filter (KF techniques in conjunction with compressed sensing methods. The gene network is described using a state-space model. A nonlinear model for the evolution of gene expression is considered, while the gene expression data is assumed to follow a linear Gaussian model. The hidden states are estimated using CKF. The system parameters are modeled as a Gauss-Markov process and are estimated using compressed sensing-based KF. These parameters provide insight into the regulatory relations among the genes. The Cramér-Rao lower bound of the parameter estimates is calculated for the system model and used as a benchmark to assess the estimation accuracy. The proposed algorithm is evaluated rigorously using synthetic data in different scenarios which include different number of genes and varying number of sample points. In addition, the algorithm is tested on the DREAM4 in silico data sets as well as the in vivo data sets from IRMA network. The proposed algorithm shows superior performance in terms of accuracy, robustness, and scalability.

  13. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    González-Morales, Sandra Isabel; Chávez-Montes, Ricardo A; Hayano-Kanashiro, Corina; Alejo-Jacuinde, Gerardo; Rico-Cambron, Thelma Y; de Folter, Stefan; Herrera-Estrella, Luis

    2016-08-30

    Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues. PMID:27551092

  14. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  15. Managing biological networks by using text mining and computer-aided curation

    Science.gov (United States)

    Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo

    2015-11-01

    In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.

  16. Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data.

    Directory of Open Access Journals (Sweden)

    Chao Cheng

    2011-11-01

    Full Text Available We present a network framework for analyzing multi-level regulation in higher eukaryotes based on systematic integration of various high-throughput datasets. The network, namely the integrated regulatory network, consists of three major types of regulation: TF→gene, TF→miRNA and miRNA→gene. We identified the target genes and target miRNAs for a set of TFs based on the ChIP-Seq binding profiles, the predicted targets of miRNAs using annotated 3'UTR sequences and conservation information. Making use of the system-wide RNA-Seq profiles, we classified transcription factors into positive and negative regulators and assigned a sign for each regulatory interaction. Other types of edges such as protein-protein interactions and potential intra-regulations between miRNAs based on the embedding of miRNAs in their host genes were further incorporated. We examined the topological structures of the network, including its hierarchical organization and motif enrichment. We found that transcription factors downstream of the hierarchy distinguish themselves by expressing more uniformly at various tissues, have more interacting partners, and are more likely to be essential. We found an over-representation of notable network motifs, including a FFL in which a miRNA cost-effectively shuts down a transcription factor and its target. We used data of C. elegans from the modENCODE project as a primary model to illustrate our framework, but further verified the results using other two data sets. As more and more genome-wide ChIP-Seq and RNA-Seq data becomes available in the near future, our methods of data integration have various potential applications.

  17. Detection and reconstruction of error control codes for engineered and biological regulatory systems.

    Energy Technology Data Exchange (ETDEWEB)

    May, Elebeoba Eni; Rintoul, Mark Daniel; Johnston, Anna Marie; Pryor, Richard J.; Hart, William Eugene; Watson, Jean-Paul

    2003-10-01

    A fundamental challenge for all communication systems, engineered or living, is the problem of achieving efficient, secure, and error-free communication over noisy channels. Information theoretic principals have been used to develop effective coding theory algorithms to successfully transmit information in engineering systems. Living systems also successfully transmit biological information through genetic processes such as replication, transcription, and translation, where the genome of an organism is the contents of the transmission. Decoding of received bit streams is fairly straightforward when the channel encoding algorithms are efficient and known. If the encoding scheme is unknown or part of the data is missing or intercepted, how would one design a viable decoder for the received transmission? For such systems blind reconstruction of the encoding/decoding system would be a vital step in recovering the original message. Communication engineers may not frequently encounter this situation, but for computational biologists and biotechnologist this is an immediate challenge. The goal of this work is to develop methods for detecting and reconstructing the encoder/decoder system for engineered and biological data. Building on Sandia's strengths in discrete mathematics, algorithms, and communication theory, we use linear programming and will use evolutionary computing techniques to construct efficient algorithms for modeling the coding system for minimally errored engineered data stream and genomic regulatory DNA and RNA sequences. The objective for the initial phase of this project is to construct solid parallels between biological literature and fundamental elements of communication theory. In this light, the milestones for FY2003 were focused on defining genetic channel characteristics and providing an initial approximation for key parameters, including coding rate, memory length, and minimum distance values. A secondary objective addressed the question of

  18. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    Science.gov (United States)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  19. Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts

    DEFF Research Database (Denmark)

    Pedersen, Søren Damkiær; Yang, Lei; Molin, Søren; Jelsbak, Lars

    2013-01-01

    The genetic basis of bacterial adaptation to a natural environment has been investigated in a highly successful Pseudomonas aeruginosa lineage (DK2) that evolved within the airways of patients with cystic fibrosis (CF) for more than 35 y. During evolution in the CF airways, the DK2 lineage underw...... unexpected phenotypes. Our results suggest that adaptation to a highly selective environment, such as the CF airways, is a highly dynamic and complex process, which involves continuous optimization of existing regulatory networks to match the fluctuations in the environment....

  20. Modular Semantic Tagging of Medline Abstracts and its Use in Inferring Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Verhagen, Marc; Pustejovsky, James; Taylor, Ronald C.; Sanfilippo, Antonio P.

    2011-09-19

    We describe MedstractPlus, a resource for mining relations from the Medline bibliographic database that is currently under construction. It was built on the remains of Medstract, a previously created resource that included a biorelation server and an acronym database. MedstractPlus uses simple and scalable natural language processing modules to structure text, is designed with reusability and extendibility in mind, and adheres to the philosophy of the Linguistic Annotation Framework. We show how MedstractPlus has been used to provide seeds for a novel approach to inferring transcriptional regulatory networks from gene expression data.

  1. Stochastic stability of switched genetic regulatory networks with time-varying delays.

    Science.gov (United States)

    Zhang, Wenbing; Tang, Yang; Wu, Xiaotai; Fang, Jian-An

    2014-09-01

    This paper investigates the exponential stability problem of switched stochastic genetic regulatory networks (GRNs) with time-varying delays. Two types of switched systems are studied respectively: one is the stochastic switched delayed GRNs with only stable subsystems and the other is the stochastic switched delayed GRNs with both stable and unstable subsystems. By using switching analysis techniques and the modified Halanay differential inequality, new criteria are developed for the exponential stability of switched stochastic GRNs with time-varying delays. Finally, an example is given to illustrate the main results. PMID:25265564

  2. CoryneRegNet: An ontology-based data warehouse of corynebacterial transcription factors and regulatory networks

    Directory of Open Access Journals (Sweden)

    Czaja Lisa F

    2006-02-01

    Full Text Available Abstract Background The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. Description CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. Conclusion CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation.

  3. The redox biology network in cancer pathophysiology and therapeutics

    Directory of Open Access Journals (Sweden)

    Gina Manda

    2015-08-01

    Full Text Available The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1 and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic, greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular

  4. Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej; Pers, Tune Hannes; Pinho Soares, Simao Pedro;

    2010-01-01

    Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a variety of tissues. Identification of the molecular...... mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets...... with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment...

  5. Receptors rather than signals change in expression in four physiological regulatory networks during evolutionary divergence in threespine stickleback.

    Science.gov (United States)

    Di Poi, Carole; Bélanger, Dominic; Amyot, Marc; Rogers, Sean; Aubin-Horth, Nadia

    2016-07-01

    The molecular mechanisms underlying behavioural evolution following colonization of novel environments are largely unknown. Molecules that interact to control equilibrium within an organism form physiological regulatory networks. It is essential to determine whether particular components of physiological regulatory networks evolve or if the network as a whole is affected in populations diverging in behavioural responses, as this may affect the nature, amplitude and number of impacted traits. We studied the regulation of four physiological regulatory networks in freshwater and marine populations of threespine stickleback raised in a common environment, which were previously characterized as showing evolutionary divergence in behaviour and stress reactivity. We measured nineteen components of these networks (ligands and receptors) using mRNA and monoamine levels in the brain, pituitary and interrenal gland, as well as hormone levels. Freshwater fish showed higher expression in the brain of adrenergic (adrb2a), serotonergic (htr2a) and dopaminergic (DRD2) receptors, but lower expression of the htr2b receptor. Freshwater fish also showed higher expression of the mc2r receptor of the glucocorticoid axis in the interrenals. Collectively, our results suggest that the inheritance of the regulation of these networks may be implicated in the evolution of behaviour and stress reactivity in association with population divergence. Our results also suggest that evolutionary change in freshwater threespine stickleback may be more associated with the expression of specific receptors rather than with global changes of all the measured constituents of the physiological regulatory networks. PMID:27146328

  6. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    Directory of Open Access Journals (Sweden)

    Dunia Pino Del Carpio

    Full Text Available Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs and transcript QTLs (eQTLs. Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  7. TranscriptomeBrowser 3.0: introducing a new compendium of molecular interactions and a new visualization tool for the study of gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Lepoivre Cyrille

    2012-01-01

    Full Text Available Abstract Background Deciphering gene regulatory networks by in silico approaches is a crucial step in the study of the molecular perturbations that occur in diseases. The development of regulatory maps is a tedious process requiring the comprehensive integration of various evidences scattered over biological databases. Thus, the research community would greatly benefit from having a unified database storing known and predicted molecular interactions. Furthermore, given the intrinsic complexity of the data, the development of new tools offering integrated and meaningful visualizations of molecular interactions is necessary to help users drawing new hypotheses without being overwhelmed by the density of the subsequent graph. Results We extend the previously developed TranscriptomeBrowser database with a set of tables containing 1,594,978 human and mouse molecular interactions. The database includes: (i predicted regulatory interactions (computed by scanning vertebrate alignments with a set of 1,213 position weight matrices, (ii potential regulatory interactions inferred from systematic analysis of ChIP-seq experiments, (iii regulatory interactions curated from the literature, (iv predicted post-transcriptional regulation by micro-RNA, (v protein kinase-substrate interactions and (vi physical protein-protein interactions. In order to easily retrieve and efficiently analyze these interactions, we developed In-teractomeBrowser, a graph-based knowledge browser that comes as a plug-in for Transcriptome-Browser. The first objective of InteractomeBrowser is to provide a user-friendly tool to get new insight into any gene list by providing a context-specific display of putative regulatory and physical interactions. To achieve this, InteractomeBrowser relies on a "cell compartments-based layout" that makes use of a subset of the Gene Ontology to map gene products onto relevant cell compartments. This layout is particularly powerful for visual integration

  8. Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster

    Science.gov (United States)

    Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.

    2015-03-01

    During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.

  9. Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models

    Directory of Open Access Journals (Sweden)

    Tsuda Koji

    2007-11-01

    Full Text Available Abstract Background Identifying large gene regulatory networks is an important task, while the acquisition of data through perturbation experiments (e.g., gene switches, RNAi, heterozygotes is expensive. It is thus desirable to use an identification method that effectively incorporates available prior knowledge – such as sparse connectivity – and that allows to design experiments such that maximal information is gained from each one. Results Our main contributions are twofold: a method for consistent inference of network structure is provided, incorporating prior knowledge about sparse connectivity. The algorithm is time efficient and robust to violations of model assumptions. Moreover, we show how to use it for optimal experimental design, reducing the number of required experiments substantially. We employ sparse linear models, and show how to perform full Bayesian inference for these. We not only estimate a single maximum likelihood network, but compute a posterior distribution over networks, using a novel variant of the expectation propagation method. The representation of uncertainty enables us to do effective experimental design in a standard statistical setting: experiments are selected such that the experiments are maximally informative. Conclusion Few methods have addressed the design issue so far. Compared to the most well-known one, our method is more transparent, and is shown to perform qualitatively superior. In the former, hard and unrealistic constraints have to be placed on the network structure for mere computational tractability, while such are not required in our method. We demonstrate reconstruction and optimal experimental design capabilities on tasks generated from realistic non-linear network simulators. The methods described in the paper are available as a Matlab package at http://www.kyb.tuebingen.mpg.de/sparselinearmodel.

  10. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Victor Trevino

    2016-04-01

    Full Text Available The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell

  11. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Science.gov (United States)

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  12. An integrated gene regulatory network controls stem cell proliferation in teeth.

    Directory of Open Access Journals (Sweden)

    Xiu-Ping Wang

    2007-06-01

    Full Text Available Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP, fibroblast growth factor (FGF, and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell

  13. Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network

    OpenAIRE

    Nam, Jongmin; Su, Yi-Hsien; Lee, Pei Yun; Robertson, Anthony J; Coffman, James A.; Davidson, Eric H.

    2007-01-01

    Expression of the nodal gene initiates the gene regulatory network which establishes the transcriptional specification of the oral ectoderm in the sea urchin embryo. This gene encodes a TGFβ ligand, and in Strongylocentrotus purpuratus its transcription is activated in the presumptive oral ectoderm at about the 30-cell stage. Thereafter Nodal signaling occurs among all cells of the oral ectoderm territory, and nodal expression is required for expression of oral ectoderm regulatory genes. The ...

  14. Exploratory Analysis of Biological Networks through Visualization, Clustering, and Functional Annotation in Cytoscape.

    Science.gov (United States)

    Baryshnikova, Anastasia

    2016-01-01

    Biological networks define how genes, proteins, and other cellular components interact with one another to carry out specific functions, providing a scaffold for understanding cellular organization. Although in-depth network analysis requires advanced mathematical and computational knowledge, a preliminary visual exploration of biological networks is accessible to anyone with basic computer skills. Visualization of biological networks is used primarily to examine network topology, identify functional modules, and predict gene functions based on gene connectivity within the network. Networks are excellent at providing a bird's-eye view of data sets and have the power of illustrating complex ideas in simple and intuitive terms. In addition, they enable exploratory analysis and generation of new hypotheses, which can then be tested using rigorous statistical and experimental tools. This protocol describes a simple procedure for visualizing a biological network using the genetic interaction similarity network for Saccharomyces cerevisiae as an example. The visualization procedure described here relies on the open-source network visualization software Cytoscape and includes detailed instructions on formatting and loading the data, clustering networks, and overlaying functional annotations. PMID:26988373

  15. Integration of biological networks and gene expression data using Cytoscape

    DEFF Research Database (Denmark)

    Cline, M.S.; Smoot, M.; Cerami, E.;

    2007-01-01

    interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules...

  16. Biological Sequence Mining Using Plausible Neural Network and its Application to Exon/intron Boundaries Prediction

    OpenAIRE

    Li, Kuochen; Chang, Dar-jen; Rouchka, Eric; Chen, Yuan Yan

    2007-01-01

    Biological sequence usually contains yet to find knowledge, and mining biological sequences usually involves a huge dataset and long computation time. Common tasks for biological sequence mining are pattern discovery, classification and clustering. The newly developed model, Plausible Neural Network (PNN), provides an intuitive and unified architecture for such a large dataset analysis. This paper introduces the basic concepts of the PNN, and explains how it is applied to biological sequence ...

  17. Structure and function of gene regulatory networks associated with worker sterility in honeybees.

    Science.gov (United States)

    Sobotka, Julia A; Daley, Mark; Chandrasekaran, Sriram; Rubin, Benjamin D; Thompson, Graham J

    2016-03-01

    A characteristic of eusocial bees is a reproductive division of labor in which one or a few queens monopolize reproduction, while her worker daughters take on reproductively altruistic roles within the colony. The evolution of worker reproductive altruism involves indirect selection for the coordinated expression of genes that regulate personal reproduction, but evidence for this type of selection remains elusive. In this study, we tested whether genes coexpressed under queen-induced worker sterility show evidence of adaptive organization within a model brain transcriptional regulatory network (TRN). If so, this structured pattern would imply that indirect selection on nonreproductive workers has influenced the functional organization of genes within the network, specifically to regulate the expression of sterility. We found that literature-curated sets of candidate genes for sterility, ranging in size from 18 to 267, show strong evidence of clustering within the three-dimensional space of the TRN. This finding suggests that our candidate sets of genes for sterility form functional modules within the living bee brain's TRN. Moreover, these same gene sets colocate to a single, albeit large, region of the TRN's topology. This spatially organized and convergent pattern contrasts with a null expectation for functionally unrelated genes to be haphazardly distributed throughout the network. Our meta-genomic analysis therefore provides first evidence for a truly "social transcriptome" that may regulate the conditional expression of honeybee worker sterility. PMID:26925214

  18. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data

    Directory of Open Access Journals (Sweden)

    de los Reyes Benildo G

    2008-04-01

    Full Text Available Abstract Background Integrating data from multiple global assays and curated databases is essential to understand the spatio-temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while databases contain biological information based on established facts or published data. Integrating these complementary datasets helps infer a mutually consistent transcriptional regulatory network (TRN with strong similarity to the structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory patterns, called network motifs (NM, facilitates the inference. Identifying NMs defined by specific transcription factors (TF establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding sequence data, and gene ontology (GO information. Results The proposed computational framework was tested using gene expression data associated with cell cycle progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The identified relationships between TFs and gene clusters were evaluated using the following biological validation and statistical analyses: (1 Gene set enrichment

  19. The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates.

    Science.gov (United States)

    Parker, Hugo J; Bronner, Marianne E; Krumlauf, Robb

    2016-06-01

    Hindbrain development is orchestrated by a vertebrate gene regulatory network that generates segmental patterning along the anterior-posterior axis via Hox genes. Here, we review analyses of vertebrate and invertebrate chordate models that inform upon the evolutionary origin and diversification of this network. Evidence from the sea lamprey reveals that the hindbrain regulatory network generates rhombomeric compartments with segmental Hox expression and an underlying Hox code. We infer that this basal feature was present in ancestral vertebrates and, as an evolutionarily constrained developmental state, is fundamentally important for patterning of the vertebrate hindbrain across diverse lineages. Despite the common ground plan, vertebrates exhibit neuroanatomical diversity in lineage-specific patterns, with different vertebrates revealing variations of Hox expression in the hindbrain that could underlie this diversification. Invertebrate chordates lack hindbrain segmentation but exhibit some conserved aspects of this network, with retinoic acid signaling playing a role in establishing nested domains of Hox expression. PMID:27027928

  20. Comparing the biological coherence of network clusters identified by different detection algorithms

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Protein-protein interaction networks serve to carry out basic molecular activity in the cell. Detecting the modular structures from the protein-protein interaction network is important for understanding the organization, function and dynamics of a biological system. In order to identify functional neighborhoods based on network topology, many network cluster identification algorithms have been developed. However, each algorithm might dissect a network from a different aspect and may provide different insight on the network partition. In order to objectively evaluate the performance of four commonly used cluster detection algorithms: molecular complex detection (MCODE), NetworkBlast, shortest-distance clustering (SDC) and Girvan-Newman (G-N) algorithm, we compared the biological coherence of the network clusters found by these algorithms through a uniform evaluation framework. Each algorithm was utilized to find network clusters in two different protein-protein interaction networks with various parameters. Comparison of the resulting network clusters indicates that clusters found by MCODE and SDC are of higher biological coherence than those by NetworkBlast and G-N algorithm.

  1. Gene Regulatory Network Analysis Reveals Differences in Site-specific Cell Fate Determination in Mammalian Brain

    Directory of Open Access Journals (Sweden)

    Gokhan eErtaylan

    2014-12-01

    Full Text Available Neurogenesis - the generation of new neurons - is an ongoing process that persists in the adult mammalian brain of several species, including humans. In this work we analyze two discrete brain regions: the subventricular zone (SVZ lining the walls of the lateral ventricles; and the subgranular zone (SGZ of the dentate gyrus of the hippocampus in mice and shed light on the SVZ and SGZ specific neurogenesis. We propose a computational model that relies on the construction and analysis of region specific gene regulatory networks from the publicly available data on these two regions. Using this model a number of putative factors involved in neuronal stem cell (NSC identity and maintenance were identified. We also demonstrate potential gender and niche-derived differences based on cell surface and nuclear receptors via Ar, Hif1a and Nr3c1.We have also conducted cell fate determinant analysis for SVZ NSC populations to Olfactory Bulb interneurons and SGZ NSC populations to the granule cells of the Granular Cell Layer. We report thirty-one candidate cell fate determinant gene pairs, ready to be validated. We focus on Ar - Pax6 in SVZ and Sox2 - Ncor1 in SGZ. Both pairs are expressed and localized in the suggested anatomical structures as shown by in situ hybridization and found to physically interact.Finally, we conclude that there are fundamental differences between SGZ and SVZ neurogenesis. We argue that these regulatory mechanisms are linked to the observed differential neurogenic potential of these regions. The presence of nuclear and cell surface receptors in the region specific regulatory circuits indicate the significance of niche derived extracellular factors, hormones and region specific factors such as the oxygen sensitivity, dictating SGZ and SVZ specific neurogenesis.

  2. Regulatory Network of Transcription Factors in Response to Drought in Arabidopsis and Crops

    Institute of Scientific and Technical Information of China (English)

    Chen Li-miao; Li Wen-bin; Zhou Xin-an

    2012-01-01

    Drought is one of the most important environmental constraints limiting plant growth, development and crop yield. Many drought-inducible genes have been identified by molecular and genomic analyses in Arabidopsis, rice and other crops. To better understand reaction mechanism of plant to drought tolerance, we mainly focused on introducing the research of transcription factors (TFs) in signal transduction and regulatory network of gene expression conferring drought. A TF could bind multiple target genes to increase one or more kinds of stress tolerance. Sometimes, several TFs might act together with a target gene. So drought-tolerance genes or TFs might respond to high-salinity, cold or other stresses. The crosstalk of multiple stresses signal pathways is a crucial aspect of understanding stress signaling.

  3. Revisiting the variation of clustering coefficient of biological networks suggests new modular structure

    Directory of Open Access Journals (Sweden)

    Hao Dapeng

    2012-05-01

    Full Text Available Abstract Background A central idea in biology is the hierarchical organization of cellular processes. A commonly used method to identify the hierarchical modular organization of network relies on detecting a global signature known as variation of clustering coefficient (so-called modularity scaling. Although several studies have suggested other possible origins of this signature, it is still widely used nowadays to identify hierarchical modularity, especially in the analysis of biological networks. Therefore, a further and systematical investigation of this signature for different types of biological networks is necessary. Results We analyzed a variety of biological networks and found that the commonly used signature of hierarchical modularity is actually the reflection of spoke-like topology, suggesting a different view of network architecture. We proved that the existence of super-hubs is the origin that the clustering coefficient of a node follows a particular scaling law with degree k in metabolic networks. To study the modularity of biological networks, we systematically investigated the relationship between repulsion of hubs and variation of clustering coefficient. We provided direct evidences for repulsion between hubs being the underlying origin of the variation of clustering coefficient, and found that for biological networks having no anti-correlation between hubs, such as gene co-expression network, the clustering coefficient doesn’t show dependence of degree. Conclusions Here we have shown that the variation of clustering coefficient is neither sufficient nor exclusive for a network to be hierarchical. Our results suggest the existence of spoke-like modules as opposed to “deterministic model” of hierarchical modularity, and suggest the need to reconsider the organizational principle of biological hierarchy.

  4. Using giant scarlet runner bean embryos to uncover regulatory networks controlling suspensor gene activity

    Directory of Open Access Journals (Sweden)

    Kelli F. Henry

    2015-02-01

    Full Text Available One of the major unsolved issues in plant development is understanding the regulatory networks that control the differential gene activity that is required for the specification and development of the two major embryonic regions, the embryo proper and suspensor. Historically, the giant embryo of scarlet runner bean (SRB, Phaseolus coccineus, has been used as a model system to investigate the physiological events that occur early in embryogenesis – focusing on the question of what role the suspensor region plays. A major feature distinguishing SRB embryos from those of other plants is a highly enlarged suspensor containing at least 200 cells that synthesize growth regulators required for subsequent embryonic development. Recent studies have exploited the giant size of the SRB embryo to micro-dissect the embryo proper and suspensor regions in order to use genomics-based approaches to identify regulatory genes that may be involved in controlling suspensor and embryo proper differentiation, as well as the cellular processes that may be unique to each embryonic region. Here we review the current genomics resources that make SRB embryos a compelling model system for studying the early events required to program embryo development.

  5. Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights.

    Science.gov (United States)

    Acquaah-Mensah, George K; Taylor, Ronald C

    2016-07-15

    Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen Brain Atlas mouse ISH data in the hippocampal fields were extracted, focusing on 508 genes relevant to neurodegeneration. Transcriptional regulatory networks were learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations in mouse whole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, and Syn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD. PMID:27050105

  6. Rewiring drug-activated p53-regulatory network from suppressing to promoting tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Wei Song; Jiguang Wang; Ying Yang; Naihe Jing; Xiangsun Zhang; Luonan Chen; Jiarui Wu

    2012-01-01

    Many of oncogenes and tumor suppressor genes have been found to exert variable and even opposing roles in different kinds of tumors or at different stages of cancer development.Here we showed that tumorigenic potential of mouse embryonic carcinoma P19 cells cultured in adherent plates (attached-P19-cells) was suppressed by a chemotherapeutic agent,5-aza-2'-deoxycytidine (ZdCyd),whereas the higher pro-tumorigenicity of P19 cells growing in suspension (detached-P19-cells) was generated by the ZdCyd treatment.Surprisingly,p53 activity was highly up-regulated by ZdCyd in both growing conditions.By our developed computational approaches,we revealed that there was a significant enrichment of apoptotic pathways in the ZdCyd-induced p53-dominant gene-regulatory network in attached P19 cells,whereas the pro-survival genes were significantly enriched in the ZdCyd-induced p53 network in detached P19 cells.The protein-protein interaction network of the ZdCyd-treated detached P19 cells was significantly different from that of ZdCyd-treated attached P19 cells.On the other hand,inhibition of pS3 expression by siRNA suppressed the ZdCyd-induced tumorigenesis of detached P19 cells,suggesting that the ZdCyd-activated p53 plays oncogenic function in detached P19 cells.Taken together,these results indicate a context-dependent role for the ZdCyd-activated p53-dominant network in tumorigenesis.

  7. On the Calculation of System Entropy in Nonlinear Stochastic Biological Networks

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2015-10-01

    Full Text Available Biological networks are open systems that can utilize nutrients and energy from their environment for use in their metabolic processes, and produce metabolic products. System entropy is defined as the difference between input and output signal entropy, i.e., the net signal entropy of the biological system. System entropy is an important indicator for living or non-living biological systems, as biological systems can maintain or decrease their system entropy. In this study, system entropy is determined for the first time for stochastic biological networks, and a computation method is proposed to measure the system entropy of nonlinear stochastic biological networks that are subject to intrinsic random fluctuations and environmental disturbances. We find that intrinsic random fluctuations could increase the system entropy, and that the system entropy is inversely proportional to the robustness and stability of the biological networks. It is also determined that adding feedback loops to shift all eigenvalues to the farther left-hand plane of the complex s-domain could decrease the system entropy of a biological network.

  8. Predicting metabolic pathways from metabolic networks with limited biological knowledge

    OpenAIRE

    Leung, HCM; Yiu, SM; Chin, FYL; Leung, SY; Xiang, CL

    2010-01-01

    Understanding the metabolism of new species (e.g. endophytic fungi that produce fuel) have tremendous impact on human lives. Based on predicted proteins and existing reaction databases, one can construct the metabolic network for the species. Next is to identify critical metabolic pathways from the network. Existing computational techniques identify conserved pathways based on multiple networks of related species, but have the following drawbacks. Some do not rely on additional information, s...

  9. Systems Biology in the Context of Big Data and Networks

    OpenAIRE

    Md. Altaf-Ul-Amin; Farit Mochamad Afendi; Samuel Kuria Kiboi; Shigehiko Kanaya

    2014-01-01

    Science is going through two rapidly changing phenomena: one is the increasing capabilities of the computers and software tools from terabytes to petabytes and beyond, and the other is the advancement in high-throughput molecular biology producing piles of data related to genomes, transcriptomes, proteomes, metabolomes, interactomes, and so on. Biology has become a data intensive science and as a consequence biology and computer science have become complementary to each other bridged by other...

  10. Low doses of ionizing radiation: Biological effects and regulatory control. Invited papers and discussions. Proceedings of an international conference

    International Nuclear Information System (INIS)

    The levels and biological effects resulting from exposure to ionizing radiation are continuously reviewed by the United Nations Committee on the Effects of Atomic Radiation (UNSCEAR). Since its creation in 1928, the International Commission on Radiological Protection (ICRP) has issued recommendations on protection against ionizing radiation. The UNSCEAR estimates and the ICRP recommendations have served as the basis for national and international safety standards on radiation safety, including those developed by the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO). Concerning health effects of low doses of ionizing radiation, the international standards are based on the plausible assumption that, above the unavoidable background radiation dose, the probability of effects increases linearly with dose, i.e. on a 'linear, no threshold' (LNT) assumption. However, in recent years the biological estimates of health effects of low doses of ionizing radiation and the regulatory approach to the control of low level radiation exposure have been much debated. To foster information exchange on the relevant issues, an International Conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, jointly sponsored by the IAEA and WHO in co-operation with UNSCEAR, was held from 17-21 November 1997 at Seville, Spain. These Proceedings contain the invited special reports, keynote papers, summaries of discussions, session summaries and addresses presented at the opening and closing of the Conference

  11. Underlying Principles of Natural Selection in Network Evolution: Systems Biology Approach

    OpenAIRE

    Bor-Sen Chen; Wei-Sheng Wu

    2007-01-01

    Systems biology is a rapidly expanding field that integrates diverse areas of science such as physics, engineering, computer science, mathematics, and biology toward the goal of elucidating the underlying principles of hierarchical metabolic and regulatory systems in the cell, and ultimately leading to predictive understanding of cellular response to perturbations. Because post-genomics research is taking place throughout the tree of life, comparative approaches offer a way for combining data...

  12. Gene Network Biological Validity Based on Gene-Gene Interaction Relevance

    OpenAIRE

    Francisco Gómez-Vela; Norberto Díaz-Díaz

    2014-01-01

    In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in...

  13. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    Science.gov (United States)

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  14. A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development.

    Science.gov (United States)

    Tang, Walfred W C; Dietmann, Sabine; Irie, Naoko; Leitch, Harry G; Floros, Vasileios I; Bradshaw, Charles R; Hackett, Jamie A; Chinnery, Patrick F; Surani, M Azim

    2015-06-01

    Resetting of the epigenome in human primordial germ cells (hPGCs) is critical for development. We show that the transcriptional program of hPGCs is distinct from that in mice, with co-expression of somatic specifiers and naive pluripotency genes TFCP2L1 and KLF4. This unique gene regulatory network, established by SOX17 and BLIMP1, drives comprehensive germline DNA demethylation by repressing DNA methylation pathways and activating TET-mediated hydroxymethylation. Base-resolution methylome analysis reveals progressive DNA demethylation to basal levels in week 5-7 in vivo hPGCs. Concurrently, hPGCs undergo chromatin reorganization, X reactivation, and imprint erasure. Despite global hypomethylation, evolutionarily young and potentially hazardous retroelements, like SVA, remain methylated. Remarkably, some loci associated with metabolic and neurological disorders are also resistant to DNA demethylation, revealing potential for transgenerational epigenetic inheritance that may have phenotypic consequences. We provide comprehensive insight on early human germline transcriptional network and epigenetic reprogramming that subsequently impacts human development and disease. PMID:26046444

  15. Inferring regulatory element landscapes and transcription factor networks from cancer methylomes.

    Science.gov (United States)

    Yao, Lijing; Shen, Hui; Laird, Peter W; Farnham, Peggy J; Berman, Benjamin P

    2015-01-01

    Recent studies indicate that DNA methylation can be used to identify transcriptional enhancers, but no systematic approach has been developed for genome-wide identification and analysis of enhancers based on DNA methylation. We describe ELMER (Enhancer Linking by Methylation/Expression Relationships), an R-based tool that uses DNA methylation to identify enhancers and correlates enhancer state with expression of nearby genes to identify transcriptional targets. Transcription factor motif analysis of enhancers is coupled with expression analysis of transcription factors to infer upstream regulators. Using ELMER, we investigated more than 2,000 tumor samples from The Cancer Genome Atlas. We identified networks regulated by known cancer drivers such as GATA3 and FOXA1 (breast cancer), SOX17 and FOXA2 (endometrial cancer), and NFE2L2, SOX2, and TP63 (squamous cell lung cancer). We also identified novel networks with prognostic associations, including RUNX1 in kidney cancer. We propose ELMER as a powerful new paradigm for understanding the cis-regulatory interface between cancer-associated transcription factors and their functional target genes. PMID:25994056

  16. Statistical completion of a partially identified graph with applications for the estimation of gene regulatory networks.

    Science.gov (United States)

    Yu, Donghyeon; Son, Won; Lim, Johan; Xiao, Guanghua

    2015-10-01

    We study the estimation of a Gaussian graphical model whose dependent structures are partially identified. In a Gaussian graphical model, an off-diagonal zero entry in the concentration matrix (the inverse covariance matrix) implies the conditional independence of two corresponding variables, given all other variables. A number of methods have been proposed to estimate a sparse large-scale Gaussian graphical model or, equivalently, a sparse large-scale concentration matrix. In practice, the graph structure to be estimated is often partially identified by other sources or a pre-screening. In this paper, we propose a simple modification of existing methods to take into account this information in the estimation. We show that the partially identified dependent structure reduces the error in estimating the dependent structure. We apply the proposed method to estimating the gene regulatory network from lung cancer data, where protein-protein interactions are partially identified from the human protein reference database. The application shows that proposed method identified many important cancer genes as hub genes in the constructed lung cancer network. In addition, we validated the prognostic importance of a newly identified cancer gene, PTPN13, in four independent lung cancer datasets. The results indicate that the proposed method could facilitate studying underlying lung cancer mechanisms and identifying reliable biomarkers for lung cancer prognosis. PMID:25837438

  17. Robust control of uncertain nonlinear switched genetic regulatory networks with time delays: A redesign approach.

    Science.gov (United States)

    Moradi, Hojjatullah; Majd, Vahid Johari

    2016-05-01

    In this paper, the problem of robust stability of nonlinear genetic regulatory networks (GRNs) is investigated. The developed method is an integral sliding mode control based redesign for a class of perturbed dissipative switched GRNs with time delays. The control law is redesigned by modifying the dissipativity-based control law that was designed for the unperturbed GRNs with time delays. The switched GRNs are switched from one mode to another based on time, state, etc. Although, the active subsystem is known in any instance, but the switching law and the transition probabilities are not known. The model for each mode is considered affine with matched and unmatched perturbations. The redesigned control law forces the GRN to always remain on the sliding surface and the dissipativity is maintained from the initial time in the presence of the norm-bounded perturbations. The global stability of the perturbed GRNs is maintained if the unperturbed model is globally dissipative. The designed control law for the perturbed GRNs guarantees robust exponential or asymptotic stability of the closed-loop network depending on the type of stability of the unperturbed model. The results are applied to a nonlinear switched GRN, and its convergence to the origin is verified by simulation. PMID:26924600

  18. Control of Stochastic Master Equation Models of Genetic Regulatory Networks by Approximating Their Average Behavior

    Science.gov (United States)

    Umut Caglar, Mehmet; Pal, Ranadip

    2010-10-01

    The central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid.'' However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of data in the cellular level and probabilistic nature of interactions. Probabilistic models like Stochastic Master Equation (SME) or deterministic models like differential equations (DE) can be used to analyze these types of interactions. SME models based on chemical master equation (CME) can provide detailed representation of genetic regulatory system, but their use is restricted by the large data requirements and computational costs of calculations. The differential equations models on the other hand, have low calculation costs and much more adequate to generate control procedures on the system; but they are not adequate to investigate the probabilistic nature of interactions. In this work the success of the mapping between SME and DE is analyzed, and the success of a control policy generated by DE model with respect to SME model is examined. Index Terms--- Stochastic Master Equation models, Differential Equation Models, Control Policy Design, Systems biology

  19. Applying Intelligent Computing Techniques to Modeling Biological Networks from Expression Data

    Institute of Scientific and Technical Information of China (English)

    Wei-Po Lee; Kung-Cheng Yang

    2008-01-01

    Constructing biological networks is one of the most important issues in system sbiology. However, constructing a network from data manually takes a considerable large amount of time, therefore an automated procedure is advocated. To automate the procedure of network construction, in this work we use two intelligent computing techniques, genetic programming and neural computation, to infer two kinds of network models that use continuous variables. To verify the presented approaches, experiments have been conducted and the preliminary results show that both approaches can be used to infer networks successfully.

  20. Engineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    James C. Liao

    2012-05-22

    This project is a collaboration with F. R. Tabita of Ohio State. Our major goal is to understand the factors and regulatory mechanisms that influence hydrogen production. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Our part of the project was to develop a modeling technique to investigate the metabolic network in connection to hydrogen production and regulation. Organisms must balance the pathways that generate and consume reducing power in order to maintain redox homeostasis to achieve growth. Maintaining this homeostasis in the nonsulfur purple photosynthetic bacteria is a complex feat with many avenues that can lead to balance, as these organisms possess versatile metabolic capabilities including anoxygenic photosynthesis, aerobic or anaerobic respiration, and fermentation. Growth is achieved by using H{sub 2} as an electron donor and CO{sub 2} as a carbon source during photoautotrophic and chemoautotrophic growth, where CO{sub 2} is fixed via the Calvin-Benson-Bassham (CBB) cycle. Photoheterotrophic growth can also occur when alternative organic carbon compounds are utilized as both the carbon source and electron donor. Regardless of the growth mode, excess reducing equivalents generated as a result of oxidative processes, must be transferred to terminal electron acceptors, thus insuring that redox homeostasis is maintained in the cell. Possible terminal acceptors include O{sub 2}, CO{sub 2}, organic carbon, or various oxyanions. Cells possess regulatory mechanisms to balance the activity of the pathways which supply energy, such as photosynthesis, and those that consume energy, such as CO{sub 2} assimilation or N{sub 2} fixation. The major route for CO{sub 2} assimilation is the CBB

  1. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    Directory of Open Access Journals (Sweden)

    Flavia Vischi Winck

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1 gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF and transcription regulator (TR genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1 and Lcr2 (Low-CO2 response regulator 2, may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome

  2. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle.

    Directory of Open Access Journals (Sweden)

    Angela Cánovas

    Full Text Available Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium as well as tissues known to be relevant to growth and metabolism needed to achieve puberty (i.e., longissimus dorsi muscle, adipose, and liver. These tissues were collected from pre- and post-pubertal Brangus heifers (3/8 Brahman; Bos indicus x 5/8 Angus; Bos taurus derived from a population of cattle used to identify quantitative trait loci associated with fertility traits (i.e., age of first observed corpus luteum (ACL, first service conception (FSC, and heifer pregnancy (HPG. In order to exploit the power of complementary omics analyses, pre- and post-puberty co-expression gene networks were constructed by combining the results from genome-wide association studies (GWAS, RNA-Seq, and bovine transcription factors. Eight tissues among pre-pubertal and post-pubertal Brangus heifers revealed 1,515 differentially expressed and 943 tissue-specific genes within the 17,832 genes confirmed by RNA-Seq analysis. The hypothalamus experienced the most notable up-regulation of genes via puberty (i.e., 204 out of 275 genes. Combining the results of GWAS and RNA-Seq, we identified 25 loci containing a single nucleotide polymorphism (SNP associated with ACL, FSC, and (or HPG. Seventeen of these SNP were within a gene and 13 of the genes were expressed in uterus or endometrium. Multi-tissue omics analyses revealed 2,450 co-expressed genes relative to puberty. The pre-pubertal network had 372,861 connections whereas the post-pubertal network had 328,357 connections. A sub-network from this process revealed key transcriptional regulators (i.e., PITX2, FOXA1, DACH2, PROP1, SIX6, etc.. Results from these multi

  3. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle.

    Science.gov (United States)

    Cánovas, Angela; Reverter, Antonio; DeAtley, Kasey L; Ashley, Ryan L; Colgrave, Michelle L; Fortes, Marina R S; Islas-Trejo, Alma; Lehnert, Sigrid; Porto-Neto, Laercio; Rincón, Gonzalo; Silver, Gail A; Snelling, Warren M; Medrano, Juan F; Thomas, Milton G

    2014-01-01

    Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as tissues known to be relevant to growth and metabolism needed to achieve puberty (i.e., longissimus dorsi muscle, adipose, and liver). These tissues were collected from pre- and post-pubertal Brangus heifers (3/8 Brahman; Bos indicus x 5/8 Angus; Bos taurus) derived from a population of cattle used to identify quantitative trait loci associated with fertility traits (i.e., age of first observed corpus luteum (ACL), first service conception (FSC), and heifer pregnancy (HPG)). In order to exploit the power of complementary omics analyses, pre- and post-puberty co-expression gene networks were constructed by combining the results from genome-wide association studies (GWAS), RNA-Seq, and bovine transcription factors. Eight tissues among pre-pubertal and post-pubertal Brangus heifers revealed 1,515 differentially expressed and 943 tissue-specific genes within the 17,832 genes confirmed by RNA-Seq analysis. The hypothalamus experienced the most notable up-regulation of genes via puberty (i.e., 204 out of 275 genes). Combining the results of GWAS and RNA-Seq, we identified 25 loci containing a single nucleotide polymorphism (SNP) associated with ACL, FSC, and (or) HPG. Seventeen of these SNP were within a gene and 13 of the genes were expressed in uterus or endometrium. Multi-tissue omics analyses revealed 2,450 co-expressed genes relative to puberty. The pre-pubertal network had 372,861 connections whereas the post-pubertal network had 328,357 connections. A sub-network from this process revealed key transcriptional regulators (i.e., PITX2, FOXA1, DACH2, PROP1, SIX6, etc.). Results from these multi-tissue omics

  4. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules.

    Directory of Open Access Journals (Sweden)

    Todd P Michael

    2008-02-01

    Full Text Available Correct daily phasing of transcription confers an adaptive advantage to almost all organisms, including higher plants. In this study, we describe a hypothesis-driven network discovery pipeline that identifies biologically relevant patterns in genome-scale data. To demonstrate its utility, we analyzed a comprehensive matrix of time courses interrogating the nuclear transcriptome of Arabidopsis thaliana plants grown under different thermocycles, photocycles, and circadian conditions. We show that 89% of Arabidopsis transcripts cycle in at least one condition and that most genes have peak expression at a particular time of day, which shifts depending on the environment. Thermocycles alone can drive at least half of all transcripts critical for synchronizing internal processes such as cell cycle and protein synthesis. We identified at least three distinct transcription modules controlling phase-specific expression, including a new midnight specific module, PBX/TBX/SBX. We validated the network discovery pipeline, as well as the midnight specific module, by demonstrating that the PBX element was sufficient to drive diurnal and circadian condition-dependent expression. Moreover, we show that the three transcription modules are conserved across Arabidopsis, poplar, and rice. These results confirm the complex interplay between thermocycles, photocycles, and the circadian clock on the daily transcription program, and provide a comprehensive view of the conserved genomic targets for a transcriptional network key to successful adaptation.

  5. Uncovering disease mechanisms through network biology in the era of next generation sequencing.

    OpenAIRE

    Janet Piñero; Ariel Berenstein; Abel Gonzalez-Perez; Ariel Chernomoretz; Furlong, Laura I.

    2016-01-01

    Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants ...

  6. Neural network models: from biology to many - body phenomenology

    International Nuclear Information System (INIS)

    The current surge of research on practical side of neural networks and their utility in memory storage/recall, pattern recognition and classification is given in this article. The initial attraction of neural networks as dynamical and statistical system has been investigated. From the view of many-body theorist, the neurons may be thought of as particles, and the weighted connection between the units, as the interaction between these particles. Finally, the author has seen the impressive capabilities of artificial neural networks in pattern recognition and classification may be exploited to solve data management problems in experimental physics and the discovery of radically new theoretically description of physical problems and neural networks can be used in physics. (A.B.)

  7. Mathematical Analysis of a PDE System for Biological Network Formation

    KAUST Repository

    Haskovec, Jan

    2015-02-04

    Motivated by recent physics papers describing rules for natural network formation, we study an elliptic-parabolic system of partial differential equations proposed by Hu and Cai [13, 15]. The model describes the pressure field thanks to Darcy\\'s type equation and the dynamics of the conductance network under pressure force effects with a diffusion rate D >= 0 representing randomness in the material structure. We prove the existence of global weak solutions and of local mild solutions and study their long term behavior. It turns out that, by energy dissipation, steady states play a central role to understand the network formation capacity of the system. We show that for a large diffusion coefficient D, the zero steady state is stable, while network formation occurs for small values of D due to the instability of the zero steady state, and the borderline case D = 0 exhibits a large class of dynamically stable (in the linearized sense) steady states.

  8. A load driver device for engineering modularity in biological networks

    OpenAIRE

    Mishra, Deepak; Rivera-Ortiz, Phillip M.; Lin, Allen; Vecchio, Domitilla Del; Weiss, Ron

    2014-01-01

    The behavior of gene modules in complex synthetic circuits is often unpredictable 1–4 . Upon joining modules to create a circuit, downstream elements (such as binding sites for a regulatory protein) apply a load to upstream modules that can negatively affect circuit function 1,5 . Here we devise a genetic device named a load driver that mitigates the impact of load on circuit function, and we demonstrate its behavior in Saccharomyces cerevisiae. The load driver implements the design principle...

  9. Yeast systems biology to unravel the network of life

    DEFF Research Database (Denmark)

    Mustacchi, Roberta; Hohmann, S; Nielsen, Jens

    2006-01-01

    Systems biology focuses on obtaining a quantitative description of complete biological systems, even complete cellular function. In this way, it will be possible to perform computer-guided design of novel drugs, advanced therapies for treatment of complex diseases, and to perform in silico design...... of advanced cell factories for production of fuels, chemicals, food ingredients and pharmaceuticals. The yeast Saccharomyces cerevisiae represents an excellent model system; the density of biological information available on this organism allows it to serve as a eukaryotic model for studying human...... diseases. Furthermore, it serves as an industrial workhorse for production of a wide range of chemicals and pharmaceuticals. Systems biology involves the combination of novel experimental techniques from different disciplines as well as functional genomics, bioinformatics and mathematical modelling, and...

  10. GraphAlignment: Bayesian pairwise alignment of biological networks

    Directory of Open Access Journals (Sweden)

    Kolář Michal

    2012-11-01

    Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.

  11. Modeling Small Oscillating Biological Networks in Analog VLSI

    OpenAIRE

    Ryckebusch, Sylvie; Bower, James M.; Mead, Carver

    1989-01-01

    We have used analog VLSI technology to model a class of small oscillating biological neural circuits known as central pattern generators (CPG). These circuits generate rhythmic patterns of activity which drive locomotor behaviour in the animal. We have designed, fabricated, and tested a model neuron circuit which relies on many of the same mechanisms as a biological central pattern generator neuron, such as delays and internal feedback. We show that this neuron can be use...

  12. Pattern Learning, Damage and Repair within Biological Neural Networks

    Science.gov (United States)

    Siu, Theodore; Fitzgerald O'Neill, Kate; Shinbrot, Troy

    2015-03-01

    Traumatic brain injury (TBI) causes damage to neural networks, potentially leading to disability or even death. Nearly one in ten of these patients die, and most of the remainder suffer from symptoms ranging from headaches and nausea to convulsions and paralysis. In vitro studies to develop treatments for TBI have limited in vivo applicability, and in vitro therapies have even proven to worsen the outcome of TBI patients. We propose that this disconnect between in vitro and in vivo outcomes may be associated with the fact that in vitro tests assess indirect measures of neuronal health, but do not investigate the actual function of neuronal networks. Therefore in this talk, we examine both in vitro and in silico neuronal networks that actually perform a function: pattern identification. We allow the networks to execute genetic, Hebbian, learning, and additionally, we examine the effects of damage and subsequent repair within our networks. We show that the length of repaired connections affects the overall pattern learning performance of the network and we propose therapies that may improve function following TBI in clinical settings.

  13. Developmental gene regulatory networks in sea urchins and what we can learn from them [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Megan L. Martik

    2016-02-01

    Full Text Available Sea urchin embryos begin zygotic transcription shortly after the egg is fertilized.  Throughout the cleavage stages a series of transcription factors are activated and, along with signaling through a number of pathways, at least 15 different cell types are specified by the beginning of gastrulation.  Experimentally, perturbation of contributing transcription factors, signals and receptors and their molecular consequences enabled the assembly of an extensive gene regulatory network model.  That effort, pioneered and led by Eric Davidson and his laboratory, with many additional insights provided by other laboratories, provided the sea urchin community with a valuable resource.  Here we describe the approaches used to enable the assembly of an advanced gene regulatory network model describing molecular diversification during early development.  We then provide examples to show how a relatively advanced authenticated network can be used as a tool for discovery of how diverse developmental mechanisms are controlled and work.

  14. Characterization of Adaptation by Morphology in a Planar Biological Network of Plasmodial Slime Mold

    Science.gov (United States)

    Ito, Masateru; Okamoto, Riki; Takamatsu, Atsuko

    2011-07-01

    Growth processes of a planar biological network of plasmodium of a true slime mold, Physarum polycephalum, were analyzed quantitatively. The plasmodium forms a transportation network through which protoplasm conveys nutrients, oxygen, and cellular organelles similarly to blood in a mammalian vascular network. To analyze the network structure, vertices were defined at tube bifurcation points. Then edges were defined for the tubes connecting both end vertices. Morphological analysis was attempted along with conventional topological analysis, revealing that the growth process of the plasmodial network structure depends on environmental conditions. In an attractive condition, the network is a polygonal lattice with more than six edges per vertex at the early stage and the hexagonal lattice at a later stage. Through all growing stages, the tube structure was not highly developed but an unstructured protoplasmic thin sheet was dominantly formed. The network size is small. In contrast, in the repulsive condition, the network is a mixture of polygonal lattice and tree-graph. More specifically, the polygonal lattice has more than six edges per vertex in the early stage, then a tree-graph structure is added to the lattice network at a later stage. The thick tube structure was highly developed. The network size, in the meaning of Euclidean distance but not topological one, grows considerably. Finally, the biological meaning of the environment-dependent network structure in the plasmodium is discussed.

  15. System Review about Function Role of ESCC Driver Gene KDM6A by Network Biology Approach.

    Science.gov (United States)

    Ran, Jihua; Li, Hui; Li, Huiwu

    2016-01-01

    Background. KDM6A (Lysine (K)-Specific Demethylase 6A) is the driver gene related to esophageal squamous cell carcinoma (ESCC). In order to provide more biological insights into KDM6A, in this paper, we treat PPI (protein-protein interaction) network derived from KDM6A as a conceptual framework and follow it to review its biological function. Method. We constructed a PPI network with Cytoscape software and performed clustering of network with Clust&See. Then, we evaluate the pathways, which are statistically involved in the network derived from KDM6A. Lastly, gene ontology analysis of clusters of genes in the network was conducted. Result. The network includes three clusters that consist of 74 nodes connected via 453 edges. Fifty-five pathways are statistically involved in the network and most of them are functionally related to the processes of cell cycle, gene expression, and carcinogenesis. The biology themes of clusters 1, 2, and 3 are chromatin modification, regulation of gene expression by transcription factor complex, and control of cell cycle, respectively. Conclusion. The PPI network presents a panoramic view which can facilitate for us to understand the function role of KDM6A. It is a helpful way by network approach to perform system review on a certain gene. PMID:27294188

  16. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A.

    Science.gov (United States)

    Chang, Joshua C; Miura, Robert M

    2016-04-21

    In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are usually present at high concentrations throughout bodily fluids-at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this manuscript, we extend mean-field continuum classical nucleationtheory of the growth of clusters to encompass surface shielding. We use this formulation to study the regulation of sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear shielding of nascent mineral particles by binding proteins. We develop a mathematical description of this phenomenon using a countable system of hyperbolic partial differential equations. A critical concentration of regulatory protein is identified a