WorldWideScience

Sample records for biological reductive dechlorination

  1. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  2. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Scheutz, Charlotte

    2013-01-01

    Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biologi...

  3. Reductive dechlorination of chlorinated solvents in landfills

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wu, C.

    2002-01-01

    The use of landfills as an in situ biological treatment system represents an alternative for source area remediation with a significant cost saving. The specific objective of this research is to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples excavated from a landfill were tested in laboratory bioreactors designed and operated to facilitate refuse decomposition under landfilling conditions. Each bioreactor was operated with leachate recirculation and gas collection. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at 20 μM each in leachate to simulate the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. At two different stages of refuse decomposition, active refuse decomposition representing young landfills and maturation phase representing aged landfills, anaerobic microbial cultures were derived from selected bioreactors and tested in serum bottles for their abilities to biodegrade target CAHs. Results of this study suggest that landfills have an intrinsic reductive dechlorination capacity for PCE and TCE. The decomposition of refuse, a source of complex organics, enhances reductive dechlorination by the refuse cultures tested in this study. In addition, the test results suggest that it may be possible to develop engineering strategies to promote both CAHs degradation and refuse decomposition in landfills. (author)

  4. Reductive Dechlorination of Polychlorinated Biphenyls in Marine Sediments

    National Research Council Canada - National Science Library

    Sowers, Kevin

    1999-01-01

    ... Community by Comparative Sequence Analysis of Genes Coding for 16S rRNA, Microbial Reductive Dechlorination of Aroclor 1260 in Anaerobic Slurries of Estuarine Sediments, Differential RFLP patterns of PCR...

  5. Performance of full scale enhanced reductive dechlorination in clay till

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Jacobsen, Carsten S.

    2013-01-01

    At a low permeability clay till site contaminated with chlorinated ethenes (Gl. Kongevej, Denmark), enhanced reductive dechlorination (ERD) was applied by direct push injection of molasses and dechlorinating bacteria. The performance was investigated by long-term groundwater monitoring, and after 4...... years of remediation, the development of degradation in the clay till matrix was investigated by high-resolution subsampling of intact cores. The formation of degradation products, the presence of specific degraders Dehalococcoides spp. with the vinyl chloride (VC) reductase gene vcrA, and the isotope...... fractionation of trichloroethene, cis-dichloroethene (cis-DCE), and VC showed that degradation of chlorinated ethenes occurred in the clay till matrix as well as in sand lenses, sand stringers, and fractures. Bioactive sections of up to 1.8 m had developed in the clay till matrix, but sections, where...

  6. Pentachlorophenol reductive dechlorination in an interceptor trench: Temperature effects

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.D.; Woods, S.L. [Oregon State Univ., Corvallis, OR (United States). Dept. of Civil Engineering; Bricker, T.R. [Richard Catlin and Associates, Inc., Stone Mountain, GA (United States)

    1996-09-01

    This paper describes the development of a third remediation strategy, an interceptor trench, and laboratory studies evaluating its application to a pentachlorophenol-contaminated ground water. The interceptor trench is a sophisticated inground chemical and biological reactor equipped with chemical sensors and nutrient or chemical delivery systems. Pentachlorophenol-acclimated methanogenic consortia were incubated at temperatures of 5, 10, 21, and 31 C in physical models of an interceptor trench. Four identical 5.4 cm diameter brass columns packed with a uniform pea gravel were operated with a 2 day hydraulic retention time in a continuous upflow mode. The columns were fed 25 or 50 mg of acetate per liter, 0.32 or 4.0 {micro}M pentachlorophenol, and a dilute vitamin and nutrient mixture. In the columns operated at 31 and 21 C, pentachlorophenol was reductively dechlorinated at the ortho positions to form 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. 3,4,5-trichlorophenol was the sole degradation product observed in the effluent. The lag period prior to pentachlorophenol biotransformation increased with decreasing temperature. At 31 C, a lag of 72 hours was observed; at 21 C the lag was 120 hours; and at 10 C the lag was 744 hours. No biodegradation of pentachlorophenol was observed at 5 C within an 888 hour period. Conversion of pentachlorophenol to 3,4,5-trichlorophenol was complete within the first 7.6 cm of the column at 31 and 21 C. Loss of 90% of the pentachlorophenol was observed over the 30 cm column at 10 C. An interceptor trench inoculated with a temperature- and pentachlorophenol-acclimated methanogenic consortia has the potential to anaerobically biotransform pentachlorophenol at temperatures as low as 10 C.

  7. Combination of aquifer thermal energy storage and enhanced bioremediation: resilience of reductive dechlorination to redox changes.

    Science.gov (United States)

    Ni, Zhuobiao; van Gaans, Pauline; Smit, Martijn; Rijnaarts, Huub; Grotenhuis, Tim

    2016-04-01

    To meet the demand for sustainable energy, aquifer thermal energy storage (ATES) is widely used in the subsurface in urban areas. However, contamination of groundwater, especially with chlorinated volatile organic compounds (CVOCs), is often being encountered. This is commonly seen as an impediment to ATES implementation, although more recently, combining ATES and enhanced bioremediation of CVOCs has been proposed. Issues to be addressed are the high water flow velocities and potential periodic redox fluctuation that accompany ATES. A column study was performed, at a high water flow velocity of 2 m/h, simulating possible changes in subsurface redox conditions due to ATES operation by serial additions of lactate and nitrate. The impacts of redox changes on reductive dechlorination as well as the microbial response of Dehalococcoides (DHC) were evaluated. The results showed that, upon lactate addition, reductive dechlorination proceeded well and complete dechlorination from cis-DCE to ethene was achieved. Upon subsequent nitrate addition, reductive dechlorination immediately ceased. Disruption of microorganisms' retention was also immediate and possibly detached DHC which preferred attaching to the soil matrix under biostimulation conditions. Initially, recovery of dechlorination was possible but required bioaugmentation and nutrient amendment in addition to lactate dosing. Repeated interruption of dechlorination and DHC activity by nitrate dosing appeared to be less easily reversible requiring more efforts for regenerating dechlorination. Overall, our results indicate that the microbial resilience of DHC in biosimulated ATES conditions is sensitive to redox fluctuations. Hence, combining ATES with bioremediation requires dedicated operation and monitoring on the aquifer geochemical conditions.

  8. Reductive dechlorination of trichloroethene DNAPL source zones: source zone architecture versus electron donor availability

    Science.gov (United States)

    Krol, M.; Kokkinaki, A.; Sleep, B.

    2014-12-01

    The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.

  9. Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin (III) by nano-mackinawite

    Energy Technology Data Exchange (ETDEWEB)

    Amir, Amnorzahira [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of); Lee, Woojin, E-mail: woojin_lee@kaist.ac.kr [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Adsorption and reduction of Co(III) occurred on nFeS surface. Black-Right-Pointing-Pointer Co(III) was reduced to Co(II) by {identical_to}Fe{sup 2+}. Black-Right-Pointing-Pointer Co(II) formed complexation with {identical_to}S{sup 2-} and {identical_to}S{sub n}{sup 2-}. Black-Right-Pointing-Pointer {identical_to}S{sup 2-}-Co(II) and {identical_to}S{sub n}{sup 2-}-Co(II) enhanced reductive dechlorination of PCE. Black-Right-Pointing-Pointer PCE was transformed to acetylene and 1,3-butadine. - Abstract: We demonstrated adsorption and reduction of cobalamin(III) (Co(III)) on nano-mackinawite (nFeS) surface and their impact on reductive dechlorination of tetrachloroethene (PCE). The adsorption of Co(III) on the nFeS surface followed Langmuir isotherm and the reduction of Co(III) provided different reactive surface chemical species on nFeS surface. Content of Fe{sup 2+}-S on nFeS surface decreased (45.9-14.5%) as Fe{sup 2+}-S was oxidized to Fe{sup 3+}-S and Fe{sup 3+}-O coupled with the surface reduction of Co(III) to cobalamin(II) (Co(II)). S{sup 2-} and S{sub n}{sup 2-} contents on the nFeS surface also decreased by 48.5% and 82.3%, respectively during the formation of sulfidecobalamin(II) ({identical_to}S{sup 2-}-Co(II)) by the reactive surface sulfur. PCE was fully degraded in nFeS-Co(III) suspension at pH 8.3 in 120 h. The dechlorination kinetic rate constant of PCE in the nFeS-Co(III) suspension (k{sub FeS-Co(III)} = 0.188 {+-} 0.003 h{sup -1}) was 145 times greater than that in nFeS suspension, showing a potential role of {identical_to}S{sup 2-}-Co(II) as an electron transfer mediator to shuttle electrons for the enhanced reductive dechlorination. PCE was transformed to acetylene and 1,3-butadiene as major products via reductive {beta}-elimination and isomerization reactions, respectively. The experimental findings can provide basic knowledge to identify a reaction mechanism for the enhanced reductive dechlorination of

  10. Green remediation: enhanced reductive dechlorination using recycled rinse water as bioremediation substrate

    International Nuclear Information System (INIS)

    Dawson, Gaynor; McKeon, Tom

    2007-01-01

    Enhanced reductive dechlorination (ERD) has rapidly become a remedy of choice for use on chlorinated solvent contamination when site conditions allow. With this approach, solutions of an organic substrate are injected into the affected aquifer to stimulate biological growth and the resultant production of reducing conditions in the target zone. Under the reducing conditions, hydrogen is produced and ultimately replaces chlorine atoms on the contaminant molecule causing sequential dechlorination. Under suitable conditions the process continues until the parent hydrocarbon precursor is produced, such as the complete dechlorination of trichloroethylene (TCE) to ethene. The process is optimized by use of a substrate that maximizes hydrogen production per unit cost. When natural biota are not present to promote the desired degradation, inoculates can be added with the substrate. The in-situ method both reduces cost and accelerates cleanup. Successful applications have been extended from the most common chlorinated compounds perchloroethylene (PCE) and TCE and related products of degradation, to perchlorate, and even explosives such as RDX and trinitrotoluene on which nitrates are attacked in lieu of chloride. In recent work, the process has been further improved through use of beverage industry wastewaters that are available at little or no cost. With material cost removed from the equation, applications can maximize the substrate loading without significantly increasing total cost. The extra substrate loading both accelerates reaction rates and extends the period of time over which reducing conditions are maintained. In some cases, the presence of other organic matter in addition to simple sugars provides for longer performance times of individual injections, thereby working in a fashion similar to emulsified vegetable oil. The paper discusses results of applications at three different sites contaminated with chlorinated ethylenes. The applications have included

  11. Rules of thumb for assessing reductive dechlorination pathways of PCDDs in specific systems

    International Nuclear Information System (INIS)

    Lu Guining; Dang Zhi; Fennell, Donna E.; Huang Weilin; Li Zhong; Liu Congqiang

    2010-01-01

    This paper reports a theoretical validation and proposition of the reductive dechlorination pathways for polychlorinated dibenzo-p-dioxin (PCDD) congeners. Density functional theory (DFT) calculations were carried out at the B3LYP/6-31G(d) level for all PCDDs and Mulliken atomic charges on chlorine atoms were adopted as the probe of the dechlorination reaction activity. The experimentally substantiated dechlorination pathways of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) and its daughter products in the presence of zero-valent zinc were validated and the complete pathway of dechlorination of octachlorodibenzo-p-dioxin (OCDD) was proposed. The proposed pathways were found to be consistent with anaerobic biotransformation of several PCDD congeners. Four rules of thumb arrived from this study include (1) the chlorine atoms in the longitudinal (1,4,6,9) positions are removed in preference to the chlorine atoms on lateral (2,3,7,8) positions; (2) the chlorine atom that has more neighboring chlorine atoms at ortho-, meta- and para-positions is to be eliminated; (3) reductive dechlorination prefers to take place on the benzene ring having more chlorine substitutions; and (4) a chlorine atom on the side of the longitudinal symmetry axis containing more chlorine atoms is preferentially eliminated. These rules of thumb can be conveniently used for rapidly predicting the major dechlorination pathway for a given PCDD in specific systems.

  12. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater - a comparison of three sites

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Durant, Neal D.; Broholm, Mette Martina

    2014-01-01

    Microcosm studies investigated the effects of bioaugmentation with a mixed Dehalococcoides (Dhc)/Dehalobacter (Dhb) culture on biological enhanced reductive dechlorination for treatment of 1,1,1-trichloroethane (TCA) and chloroethenes in groundwater at three Danish sites. Microcosms were amended...... with lactate as electron donor and monitored over 600 days. Experimental variables included bioaugmentation, TCA concentration, and presence/absence of chloroethenes. Bioaugmented microcosms received a mixture of the Dhc culture KB-1 and Dhb culture ACT-3. To investigate effects of substrate concentration......, microcosms were amended with various concentrations of chloroethanes (TCA or monochloroethane [CA]) and/or chloroethenes (tetrachloroethene [PCE], trichloroethene [TCE], or 1,1-dichloroethene [1,1-DCE]). Results showed that combined electron donor addition and bioaugmentation stimulated dechlorination of TCA...

  13. Reductive dechlorination of PCBs using photocatalyzed UV light

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Jyoti P.; Achari, Gopal [Department of Civil Engineering, University of Calgary, Calgary, Alberta (Canada); Langford, Cooper H. [Department of Chemistry, University of Calgary, Calgary, Alberta (Canada)

    2012-05-15

    Feasibility of photocatalytic dechlorination of PCB-138 and Aroclor-1254 using platinum loaded TiO{sub 2} (P25) in an alkaline 2-propanol medium has been investigated. Experiments were conducted in batch mode using a Rayonet photo-reactor under aerated and deaerated conditions with black lamps emitting around 350 nm as light source. Two forms of platinum deposition were investigated: Photochemically loaded P25 as well as addition of potassium hexachloroplatinate into the reaction medium. Partial dechlorination of PCBs was observed after 7 h of irradiation with pure TiO{sub 2} as catalyst when the reaction vessel was kept open to air. Complete dechlorination was observed after 5 h of irradiation in a deaerated environment. Enhanced photocatalytic efficiency was observed when platinum deposited P25 was used as catalyst, with the best result being obtained when aqueous potassium hexachloroplatinate was added into the reaction medium. Lower potassium hexachloroplatinate concentration (0.1 mM) yielded better performance. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till

    DEFF Research Database (Denmark)

    Manoli, Gabriele; Chambon, Julie C.; Bjerg, Poul L.

    2012-01-01

    A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation...

  15. Comparison of Bimetallic and Trimetallic Catalyst in Reductive Dechlorination; Influence of Copper Addition

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Kaštánek, Petr; Maléterová, Ywetta; Kallistová, A.; Šolcová, Olga

    2015-01-01

    Roč. 2, č. 7 (2015), s. 1954-1958 E-ISSN 3159-0040 R&D Projects: GA TA ČR TA04020700 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : PCB * reductive dechlorination * bimetallic and trimetallic catalysts Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.jmest.org/wp-content/uploads/JMESTN42350950.pdf

  16. A conceptual model linking functional gene expression and reductive dechlorination rates of chlorinated ethenes in clay rich groundwater sediment

    DEFF Research Database (Denmark)

    Bælum, Jacob; Chambon, Julie Claire Claudia; Scheutz, Charlotte

    2013-01-01

    We used current knowledge of cellular processes involved in reductive dechlorination to develop a conceptual model to describe the regulatory system of dechlorination at the cell level; the model links bacterial growth and substrate consumption to the abundance of messenger RNA of functional gene...

  17. Study on the Effect of Electrochemical Dechlorination Reduction of Hexachlorobenzene Using Different Cathodes

    Directory of Open Access Journals (Sweden)

    Yingru Wang

    2014-01-01

    Full Text Available Hexachlorobenzene (HCB is a persistent organic pollutant and poses great threat on ecosystem and human health. In order to investigate the degradation law of HCB, a RuO2/Ti material was used as the anode, meanwhile, zinc, stainless steel, graphite, and RuO2/Ti were used as the cathode, respectively. The gas chromatography (GC was used to analyze the electrochemical products of HCB on different cathodes. The results showed that the cathode materials significantly affected the dechlorination efficiency of HCB, and the degradation of HCB was reductive dechlorination which occurred only on the cathode. During the reductive process, chlorine atoms were replaced one by one on various intermediates such as pentachlorobenzene, tetrachlorobenzene, and trichlorobenzene occurred; the trichlorobenzene was obtained when zinc was used as cathode. The rapid dechlorination of HCB suggested that the electrochemical method using zinc or stainless steel as cathode could be used for remediation of polychlorinated aromatic compounds in the environment. The dechlorination approach of HCB by stainless steel cathode could be proposed.

  18. Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization.

    Science.gov (United States)

    Zhang, Dongdong; Zhang, Chunfang; Li, Zhiling; Suzuki, Daisuke; Komatsu, Daisuke D; Tsunogai, Urumu; Katayama, Arata

    2014-07-01

    Immobilized solid-phase humin on a graphite electrode set at -500 mV (vs. standard hydrogen electrode) significantly enhanced the microbial reductive dechlorination of pentachlorophenol as a stable solid-phase redox mediator in bioelectrochemical systems (BESs). Compared with the suspended system, the immobilized system dechlorinated PCP at a much higher efficiency, achieving 116 μmol Cl(-)g(-1) humin d(-1). Fluorescence microscopy showed a conspicuous growth of bacteria on the negatively poised immobilized humin. Electron balance analyses suggested that the electrons required for microbial dechlorination were supplied primarily from the humin-immobilized electrode. Microbial community analyses based on 16S rRNA genes showed that Dehalobacter and Desulfovibrio grew on the immobilized humin as potential dechlorinators. These findings extend the potential of BESs using immobilized solid-phase humin as the redox mediator for in situ bioremediation, given the wide distribution of humin and its efficiency and stability as a mediator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. PCB dechlorination hotspots and reductive dehalogenase genes in sediments from a contaminated wastewater lagoon.

    Science.gov (United States)

    Mattes, Timothy E; Ewald, Jessica M; Liang, Yi; Martinez, Andres; Awad, Andrew; Richards, Patrick; Hornbuckle, Keri C; Schnoor, Jerald L

    2017-08-12

    Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that are distributed worldwide. Although industrial PCB production has stopped, legacy contamination can be traced to several different commercial mixtures (e.g., Aroclors in the USA). Despite their persistence, PCBs are subject to naturally occurring biodegradation processes, although the microbes and enzymes involved are poorly understood. The biodegradation potential of PCB-contaminated sediments in a wastewater lagoon located in Virginia (USA) was studied. Total PCB concentrations in sediments ranged from 6.34 to 12,700 mg/kg. PCB congener profiles in sediment sample were similar to Aroclor 1248; however, PCB congener profiles at several locations showed evidence of dechlorination. The sediment microbial community structure varied among samples but was dominated by Proteobacteria and Firmicutes. The relative abundance of putative dechlorinating Chloroflexi (including Dehalococcoides sp.) was 0.01-0.19% among the sediment samples, with Dehalococcoides sp. representing 0.6-14.8% of this group. Other possible PCB dechlorinators present included the Clostridia and the Geobacteraceae. A PCR survey for potential PCB reductive dehalogenase genes (RDases) yielded 11 sequences related to RDase genes in PCB-respiring Dehalococcoides mccartyi strain CG5 and PCB-dechlorinating D. mccartyi strain CBDB1. This is the first study to retrieve potential PCB RDase genes from unenriched PCB-contaminated sediments.

  20. Kinetics of 2-chlorobiphenyl Reductive Dechlorination by Pd-fe0 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Junrong

    2016-01-01

    Full Text Available Kinetics of 2-chlorobiphenyl (2-Cl BP catalytic reductive dechlorination by Pd-Fe0 nanoparticles were investigated. Experimental results showed that ultrafine bimetallic Pd-Fe0e nanoparticles were synthesized in the presence of 40 kHz ultrasound in order to enhance disparity and avoid agglomeration. The application of ultrasonic irradiation during the synthesis of Pd-Fe0 nanoparticles further accelerated the dechlorinated removal ratio of 2-Cl BP. Up to 95.0% of 2-Cl BP was removed after 300 min reaction with the following experimental conditions: initial 2-Cl BP concentration 10 mg L-1, Pd content 0.8 wt. %, bimetallic Pd-Fe0 nanoparticles prepared in the presence of ultrasound available dosage 7g L-1, initial pH value in aqueous solution 3.0, and reaction temperature 25°C. The catalytic reductive dechlorination of 2-Cl BP followed pseudo-first-order kinetics and the apparent pseudo-first-order kinetics constant was 0.0143 min-1.

  1. Characterization of humins from different natural sources and the effect on microbial reductive dechlorination of pentachlorophenol.

    Science.gov (United States)

    Zhang, Chunfang; Zhang, Dongdong; Xiao, Zhixing; Li, Zhiling; Suzuki, Daisuke; Katayama, Arata

    2015-07-01

    Humins have been reported to function as an electron mediator for microbial reducing reactions. However, the physicochemical properties and the functional moieties of humins from different natural sources have been poorly characterized. In this study, humins extracted from seven types of soil and from a river sediment were examined on the effect on microbial reductive dechlorination of pentachlorophenol (PCP) and characterized polyphasically. All humins facilitated microbial reductive dechlorination of PCP as electron mediators using formate as carbon source, with different dechlorination rates ranging from 0.99 to 7.63 (μmol Cl-) L(-1) d(-1). The highest rates were observed in humins with high carbon contents, extracted from Andisols containing allophone as major clay. Yields of the humins and the elemental compositions varied among sources. Fourier transform infrared analysis showed that all the humins exhibited similar spectra with different absorbance intensity; these data are indicative of their similar structures and identical classes of functional groups. The electron spin resonance spectra of humins prepared at different pH showed typical changes for the semiquinone-type radicals, suggestive of quinone moieties for the redox activity of the humins. Cyclic voltammetry analysis confirmed the presence of redox-active moieties in all the humins, with the estimated redox potentials in the range of -0.30 to -0.13 V (versus a standard hydrogen electrode), falling into the range of standard redox potential between the oxidation of formate as electron donor and the initial dechlorination of PCP as electron acceptor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron.

    Science.gov (United States)

    Cong, Xin; Xue, Nandong; Wang, Shijie; Li, Keji; Li, Fasheng

    2010-07-15

    Several experiments and a model were constructed using conventional granular zero-valent iron (ZVI) particles as the reducing agent to study the reductive dechlorination characteristics of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in soils from a former pesticide-manufacturing site. The results showed that ZVI had good ability for the reductive dechlorination for both HCHs and DDTs. The reductive dechlorination of HCHs and DDTs proceeded at different rates. The pseudo first-order constants of HCHs were greater than those of DDTs. The reductive dechlorination rates in a descending order were gamma-HCH>delta-HCH>beta-HCH>alpha-HCH>o,p'-DDT>p,p'-DDT>p,p'-DDE. To discuss the major influential factors over the reductive dechlorination rates of HCHs and DDTs by ZVI, 22 quantum chemical descriptors were computed with the density functional theory at B3LYP/6-31G() level, which characterizes different molecular structures and physicochemical properties of HCHs and DDTs. A polyparameter linear free energy relationship (LFER) model was established, which correlates the reductive dechlorination properties of pollutants with their structural descriptors. Using the partial least squares (PLS) analysis, an optimal two-parameter LFER model was established. q(+) and q(Cl)(-) were more important factors in determining the dechlorination rate of OCPs in the chemical reductive reaction. This optimal model was stable and had good predictability. The model study also showed that the coefficient value of q(+) was 0.511, which positively correlated with the reductive dechlorination rate constant, whereas q(Cl)(-) was negatively correlated with it. The reductive dechlorination rate of pollutants appears to be limited mainly by the rate of dissolution in the aqueous phase. This model can be used to explain the degradation potential of organochlorine pesticides (OCPs) and the trend of residues changing during the soil remediation. Therefore, the study is of

  3. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron

    International Nuclear Information System (INIS)

    Cong, Xin; Xue, Nandong; Wang, Shijie; Li, Keji; Li, Fasheng

    2010-01-01

    Several experiments and a model were constructed using conventional granular zero-valent iron (ZVI) particles as the reducing agent to study the reductive dechlorination characteristics of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in soils from a former pesticide-manufacturing site. The results showed that ZVI had good ability for the reductive dechlorination for both HCHs and DDTs. The reductive dechlorination of HCHs and DDTs proceeded at different rates. The pseudo first-order constants of HCHs were greater than those of DDTs. The reductive dechlorination rates in a descending order were γ-HCH > δ-HCH > β-HCH > α-HCH > o,p'-DDT > p,p'-DDT > p,p'-DDE. To discuss the major influential factors over the reductive dechlorination rates of HCHs and DDTs by ZVI, 22 quantum chemical descriptors were computed with the density functional theory at B3LYP/6-31G * level, which characterizes different molecular structures and physicochemical properties of HCHs and DDTs. A polyparameter linear free energy relationship (LFER) model was established, which correlates the reductive dechlorination properties of pollutants with their structural descriptors. Using the partial least squares (PLS) analysis, an optimal two-parameter LFER model was established. q + and q Cl - were more important factors in determining the dechlorination rate of OCPs in the chemical reductive reaction. This optimal model was stable and had good predictability. The model study also showed that the coefficient value of q + was 0.511, which positively correlated with the reductive dechlorination rate constant, whereas q Cl - was negatively correlated with it. The reductive dechlorination rate of pollutants appears to be limited mainly by the rate of dissolution in the aqueous phase. This model can be used to explain the degradation potential of organochlorine pesticides (OCPs) and the trend of residues changing during the soil remediation. Therefore, the study is of

  4. Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene.

    Science.gov (United States)

    Paul, Laiby; Smolders, Erik

    2014-09-01

    Reductive dechlorination of chlorinated ethenes is inhibited by acidification and by the presence of Fe (III) as a competitive electron acceptor. Synergism between both factors on dechlorination is predicted as reductive dissolution of Fe (III) minerals is facilitated by acidification. This study was set-up to assess this synergism for two common aquifer Fe (III) minerals, goethite and ferrihydrite. Anaerobic microbial dechlorination of trichloroethylene (TCE) by KB-1 culture and formate as electron donor was investigated in anaerobic batch containers at different solution pH values (6.2-7.2) in sand coated with these Fe minerals and a sand only as control. In the absence of Fe, lowering substrate pH from 7.2 to 6.2 increased the time for 90% TCE degradation from 14±1d to 42±4d. At pH 7.2, goethite did not affect TCE degradation time while ferrihydrite increased the degradation time to 19±1d compared to the no Fe control. At pH 6.2, 90% degradation was at 78±1 (ferrihydrite) or 131±1d (goethite). Ferrous iron production in ferrihydrite treatment increased between pH 7.2 and 6.5 but decreased by further lowering pH to 6.2, likely due to reduced microbial activity. This study confirms that TCE is increasingly inhibited by the combined effect of acidification and bioavailable Fe (III), however no evidence was found for synergistic inhibition since Fe reduction did not increase as pH decreases. To the best of our knowledge, this is the first study where effect of pH and Fe (III) reduction on TCE was simultaneously tested. Acid Fe-rich aquifers need sufficient buffering and alkalinity to ensure swift degradation of chlorinated ethenes. Copyright © 2014. Published by Elsevier Ltd.

  5. DETECTING AND QUANTIFYING REDUCTIVE DECHLORINATION DURING MONITORED NATURAL ATTENUATION AT THE SAVANNAH RIVER CBRP SITE

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; JACK D. ISTOK, J; JENNIFER A. FIELD, J; ERIC RAES, E; Margaret Millings, M; AARON D. PEACOCK, A; Brian02 Looney, B

    2007-01-02

    Various attenuation mechanisms control the destruction, stabilization, and/or removal of contaminants from contaminated subsurface systems. Measuring the rates of the controlling attenuation mechanisms is a key to employing mass balance as a means to evaluate and monitor the expansion, stability and subsequent shrinkage of a contaminant plume. A team of researchers investigated the use of push-pull tests for measuring reductive dechlorination rates in situ at sites with low chlorinated solvent concentrations (<1 ppm). The field research also examined the synergistic use of a suite of geochemical and microbial assays. Previous push-pull tests applied to environmental remediation objectives focused on general hydrological characterization or on designing bioremediation systems by examining the response of the subsurface to stimulation. In this research, the push-pull technique was tested to determine its ''low-range'' sensitivity and uncertainty. Can these tests quantify relatively low attenuation rates representative of natural attenuation? The results of this research indicate that push-pull testing will be useful for measurement of in situ reductive dechlorination rates for chlorinated solvents at ''Monitored Natural Attenuation'' (MNA) sites. Further, using principal component analysis and other techniques, the research confirmed the usefulness of multiple lines of evidence in site characterization and in upscaling measurements made in individual wells--especially for sites where there is a geochemical gradient or varying geochemical regimes within the contaminant plume.

  6. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron

    International Nuclear Information System (INIS)

    Liu, C.-C.; Tseng, D.-H.; Wang, C.-Y.

    2006-01-01

    The surface characteristics of zero-valent iron (ZVI) and the efficiency of reductive dechlorination of trichloroethylene (TCE) in the presence of ferrous ions were studied. The experimental results indicated that the acid-washing of a metallic iron sample enhanced the efficiency of TCE degradation by ZVI. This occurred because acid-washing changed the conformation of oxides on the surface of iron from maghemite (γ-Fe 2 O 3 ) to the more hydrated goethite (α-FeOOH), as was confirmed by XPS analysis. However, when ferrous ions were simultaneous with TCE in water, the TCE degradation rate decreased as the concentration of ferrous ion increased. This was due to the formation of passive precipitates of ferrous hydroxide, including maghemite and magnetite (Fe 3 O 4 ), that coated on the surface of acid-washed ZVI, which as a result inhibited the electron transfer and catalytic hydrogenation mechanisms. On the other hand, in an Fe 0 -TCE system without the acid-washing pretreatment of ZVI, ferrous ions were adsorbed into the maghemite lattice which was then converted to semiconductive magnetite. Thus, the electrons were transferred from the iron surface and passed through the precipitates, allowing for the reductive dechlorination of TCE

  7. Reductive dechlorination of B-hexachlorocyclohexane (B-HCH) by a Dehalobacter species in coculture with a Sedimentibacter species

    NARCIS (Netherlands)

    Doesburg, van W.C.J.; Eekert, van M.H.A.; Middeldorp, P.J.M.; Balk, M.; Schraa, G.; Stams, A.J.M.

    2005-01-01

    An anaerobic coculture was enriched from a hexachlorocyclohexane (HCH) polluted soil. The coculture reductively dechlorinates the ß-HCH isomer to benzene and chlorobenzene in a ratio of 0.5¿2 depending on the amount of ß-HCH degraded. The culture grows with H2 as electron donor and ß-HCH as electron

  8. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  9. Evaluation of biodegradable plastics as solid hydrogen donors for the reductive dechlorination of fthalide by Dehalobacter species.

    Science.gov (United States)

    Yoshida, Naoko; Ye, Lizhen; Liu, Fengmao; Li, Zhiling; Katayama, Arata

    2013-02-01

    Biodegradable plastics (BPs) were evaluated for their applicability as sustainable and solid H(2) donors for microbial reductive dechlorination of 4,5,6,7-tetrachlorophthalide (fthalide). After a screening test of several BPs, the starch-based plastic (SP) that produced the highest levels of H(2) was selected for its use as the sole H(2) donor in this reaction. Fthalide dechlorination was successfully accomplished by combining an H(2)-producing SP culture and a KFL culture containing Dehalobacter species, supplemented with 0.13% and 0.5% SP, respectively. The efficiency of H(2) use in dechlorination was evaluated in a combined culture containing the KFL culture and strain Clostridium sp. Ma13, a new isolate that produces H(2) from SP. Results obtained with this culture indicated increased H(2)-fraction for fthalide dechlorination much more in this culture than in compared with a KFL culture supplemented with 20mM lactate, which are 0.75 H(2)·glucose(-1) and 0.015 H(2)·lactate(-1) in mol ratio, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Diverse Reductive Dehalogenases Are Associated with Clostridiales-Enriched Microcosms Dechlorinating 1,2-Dichloroethane

    KAUST Repository

    Merlino, Giuseppe

    2015-03-06

    The achievement of successful biostimulation of active microbiomes for the cleanup of a polluted site is strictly dependent on the knowledge of the key microorganisms equipped with the relevant catabolic genes responsible for the degradation process. In this work, we present the characterization of the bacterial community developed in anaerobic microcosms after biostimulation with the electron donor lactate of groundwater polluted with 1,2-dichloroethane (1,2-DCA). Through a multilevel analysis, we have assessed (i) the structural analysis of the bacterial community; (ii) the identification of putative dehalorespiring bacteria; (iii) the characterization of functional genes encoding for putative 1,2-DCA reductive dehalogenases (RDs). Following the biostimulation treatment, the structure of the bacterial community underwent a notable change of the main phylotypes, with the enrichment of representatives of the order Clostridiales . Through PCR targeting conserved regions within known RD genes, four novel variants of RDs previously associated with the reductive dechlorination of 1,2-DCA were identified in the metagenome of the Clostridiales-dominated bacterial community.

  11. Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?

    Science.gov (United States)

    Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

    2014-05-01

    Chlorinated ethenes (CEs) such as tetrachloroethene (PCE) are common persistent groundwater contaminants. Among clean-up strategies applied to sites affected by such pollution, bioremediation has been considered with a growing interest as it represents a cost-effective, environmental friendly approach. This technique however sometimes leads to an incomplete and slow biodegradation of CEs resulting in an accumulation of toxic metabolites. Understanding the reaction mechanisms underlying anaerobic reductive dechlorination would thus help assessing PCE biodegradation in polluted sites. Stable isotope analysis can provide insight into reaction mechanisms. For chlorinated hydrocarbons, carbon (C) and chlorine (Cl) isotope data (δ13C and δ37Cl) tend to show a linear correlation with a slope (m ≡ ɛC/ɛCl) characteristic of the reaction mechanism [1]. This study hence aims at exploring the potential of a dual C-Cl isotope approach in the determination of the reaction mechanisms involved in PCE reductive dechlorination. C and Cl isotope fractionation were investigated during anaerobic PCE dechlorination by two bacterial consortia containing members of the Sulfurospirillum genus. The specificity in these consortia resides in the fact that they each conduct PCE reductive dechlorination catalysed by one different reductive dehalogenase, i.e. PceADCE which yields trichloroethene (TCE) and cis-dichloroethene (cDCE), and PceATCE which yields TCE only. The bulk C isotope enrichment factors were -3.6±0.3 o for PceATCE and -0.7±0.1o for PceADCE. The bulk Cl isotope enrichment factors were -1.3±0.2 o for PceATCE and -0.9±0.1 o for PceADCE. When applying the dual isotope approach, two m values of 2.7±0.1 and 0.7±0.2 were obtained for the reductive dehalogenases PceATCE and PceADCE, respectively. These results suggest that PCE can be degraded according to two different mechanisms. Furthermore, despite their highly similar protein sequences, each reductive dehalogenase seems

  12. A novel reductive photo-dechlorination (RPD) technology for remediation of chlorocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lavid, M.; Gulati, S.K. [M.L. Energia, Inc., Princeton, NJ (United States)

    1993-12-31

    The Reductive Photo-Dechlorination (RPD) technology uses ultraviolet light in a reducing atmosphere to remove chlorine atoms from organo-chlorine waste streams at low to moderate temperatures. Because chlorinated organics are destroyed in a reducing environment, process products include hydrocarbons and hydrogen chloride. The RPD process is designed specifically to treat volatile chlorinated wastes in the gaseous or liquid phase. Field applications include treatment of organic wastes produced from soil venting operations and those adsorbed on activated carbon. The process can also be used for off-gas treatment and to pretreat gas streams entering catalytic oxidation systems, reducing chlorine content and hereby protecting the catalyst against poisoning. The RPD process was developed under the EPA/Small Business Innovation Research (SBIR) program. A Phase II R&D contract is completed. During last year, the RPD technology was accepted into EPA-SITE Emerging Technology Program, and it has been profiled in VISITT (Vendor Information System for Innovative Treatment Technologies) June 1992.

  13. The impact of bioaugmentation on dechlorination kinetics and on microbial dechlorinating communities in subsurface clay till

    DEFF Research Database (Denmark)

    Bælum, Jacob; Scheutz, Charlotte; Chambon, Julie Claire Claudia

    2014-01-01

    A molecular study on how the abundance of the dechlorinating culture KB-1 affects dechlorination rates in clay till is presented. DNA extracts showed changes in abundance of specific dechlorinators as well as their functional genes. Independently of the KB-1 added, the microbial dechlorinator......, highlights the ecological behavior of KB-1 in clay till, and reinforces the importance of using multiple functional genes as biomarkers for reductive dechlorination. © 2013 Elsevier Ltd. All rights reserved....

  14. An interesting biochar effect that suppressed dechlorination of pentachlorophenol while promoted iron/sulfate reduction and methanogenesis in flooded soil

    Science.gov (United States)

    He, Yan; Zhu, Min

    2017-04-01

    Biochar has received increasing attention for its many environmental impacts in recent years, but there is still a lack of comprehensive understanding of its effects on the fate of reducible organic pollutants and soil biogeochemical processes under anaerobic environments. In this study, anaerobic batch experiments were conducted to explore the effect of biochar on reductive transformation of PCP and other soil redox processes in anaerobic incubation environment. Results showed that biochar had little impact on the system Eh and pH, both of which decreased gradually to a stable value during the incubation. Dissimilatory iron reduction and sulfate reduction were significantly enhanced following biochar addition, with the promoting effect more prominent in the treatment with 1% (w/w) than that with 5% biochar added. In addition, biochar accelerated the formation of carbon dioxide and methane, but there was no difference in the final content of these two greenhouse gases at the end of incubation between biochar amended and control treatments. Unexpectedly, compared to biochar-free controls, the reductively dechlorinated degradation of PCP was inhibited following biochar addition, with the inhibition extent increased with the increase of biochar amount. These revealed an interesting biochar effect that suppressed the dechlorination of PCP, but promoted the iron/sulfate reduction and accelerated the methanogenesis. It might be simultaneously mediated by the functional microbial groups that responded sensitively to the addition of biochar and/or PCP, including the potential dechlorinators, the potential iron/sulfate reducers, and the typical methanogenic archaea. Specific function of biochar as electron shuttle was also likely involved in underpinning this interesting effect, since biochar would be capable of splitting the limited electrons from the inferior electron acceptors (in our case, the PCP) to the dominant more competitive ones (in our case, Fe(III) and SO42

  15. Exploring the Genome and Proteome of Desulfitobacterium hafniense DCB2 for its Protein Complexes Involved in Metal Reduction and Dechlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sang-Hoon, Kim; Hardzman, Christina; Davis, John k.; Hutcheson, Rachel; Broderick, Joan B.; Marsh, Terence L.; Tiedje, James M.

    2012-09-27

    Desulfitobacteria are of interest to DOE mission because of their ability to reduce many electron acceptors including Fe(III), U(VI), Cr(VI), As(V), Mn(IV), Se(VI), NO3- and well as CO2, sulfite, fumarate and humates, their ability to colonize more stressful environments because they form spores, fix nitrogen and they have the more protective Gram positive cell walls. Furthermore at least some of them reductively dechlorinate aromatic and aliphatic pollutants. Importantly, most of the metals and the organochlorine reductions are coupled to ATP production and support growth providing for the organism's natural selection at DOE's contaminant sites. This work was undertaken to gain insight into the genetic and metabolic pathways involved in dissimilatory metal reduction and reductive dechlorination, (ii) to discern the commonalities among these electron-accepting processes, (iii) to identify multi-protein complexes catalyzing these functions and (iv) to elucidate the coordination in expression of these pathways and processes.

  16. Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds.

    Science.gov (United States)

    Utkin, I; Woese, C; Wiegel, J

    1994-10-01

    An organism that is able to reductively ortho-dechlorinate 2,4-dichlorophenol and 3-chloro-4-hydroxyphenylacetate (3-Cl-4-OHPA) was isolated from a methanogenic lake sediment. This organism, an anaerobic, motile, Gram-type-positive, rod-shaped bacterium, grew in the presence of 0.1% yeast extract when pyruvate, lactate, formate, or hydrogen was used as the electron donor for reductive dehalogenation of 3-Cl-4-OHPA. Sulfite, thiosulfate, and sulfur were reduced to sulfide, nitrate was reduced to nitrite, and fumarate was reduced to succinate. Dissimilatory reduction of sulfate could not be demonstrated, and no adenylylsulfate reductase was detected with an immunoassay. The organism fermented two pyruvate molecules to one lactate molecule, one acetate molecule, and one carbon dioxide molecule. The pH and temperature optima for both growth and dechlorination of 3-Cl-4-OHPA were 7.5 and 38 degrees C, respectively. The doubling time under these conditions was approximately 3.5 h. On the basis of the results of a 16S rRNA analysis and the inability of the organism to use sulfate as an electron acceptor, strain JW/IU-DC1 is described as the type strain of the new taxon Desulfitobacterium dehalogenans gen. nov., sp. nov.

  17. Combining Chemical Oxidation and Enhanced Reductive Dechlorination for DNAPL Source Area Treatment at a Danish Megasite

    DEFF Research Database (Denmark)

    Christophersen, Mette; Christensen, Jørgen F; Durant, Neal D

    remediation technologies may be required to achieve cleanup goals. Activities. Bench tests with soil and groundwater from the site were performed to evaluate the feasibility of treating residual chlorinated solvent dense nonaqueous phase liquid (DNAPL) and other contaminants present in the saturated zone......) consists of a closed-loop groundwater recirculation cell (25 m long) in which electron donor (lactate and ethanol) is delivered to the treatment zone via forced gradient flow field. Performance is monitored in a series of wells located between the injection and extraction wells. Results. Despite very high...... months of operation. However, the rate of dechlorination was slower than expected based on bench test results, and pH appeared to decrease due to HCl generation. pH buffering with NaHCO3 and bioaugmentation with KB-1 were implemented to accelerate dechlorination, but results are not yet available. All...

  18. Reductive dechlorination of trichloroethylene (TCE) in competition with Fe and Mn oxides – observed dynamics in H2-dependent terminal electron accepting processes

    DEFF Research Database (Denmark)

    Paul, Laiby; Jakobsen, Rasmus; Smolders, Erik

    2016-01-01

    Fe minerals or environmental samples were used as the substrata. Iron(III) and Mn(IV) reduction limited microbial dechlorination by the mixed anaerobic culture by decreasing the level of H2 in the system. The H2 measurements indicated that the H2 concentration at which different TEAPs occur can......The determination of hydrogen (H2) concentration together with the products of microbial reduction reactions in a trichloroethylene dechlorinating system is conducted to delineate the ongoing predominant terminal electron accepting processes (TEAP). Formate was used as electron donor and synthetic...

  19. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane.

    Science.gov (United States)

    Yan, J; Rash, B A; Rainey, F A; Moe, W M

    2009-04-01

    Two strictly anaerobic bacterial strains were isolated from contaminated groundwater at a Superfund site located near Baton Rouge, LA, USA. These strains represent the first isolates reported to reductively dehalogenate 1,2,3-trichloropropane. Allyl chloride (3-chloro-1-propene), which is chemically unstable, was produced from 1,2,3-trichloropropane, and it was hydrolysed abiotically to allyl alcohol and also reacted with the sulfide- and cysteine-reducing agents in the medium to form various allyl sulfides. Both isolates also dehalogenated a variety of other vicinally chlorinated alkanes (1,2-dichloropropane, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,2,2- tetrachloroethane) via dichloroelimination reactions. A quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes indicated that both strains couple reductive dechlorination to cell growth. Growth was not observed in the absence of hydrogen (H2) as an electron donor and a polychlorinated alkane as an electron acceptor. Alkanes containing only a single chlorine substituent (1-chloropropane, 2-chloropropane), chlorinated alkenes (tetrachlorothene, trichlorothene, cisdichloroethene, trans-dichloroethene, vinyl chloride) and chlorinated benzenes (1-chlorobenzene and 1,2- dichlorobenzene) were not dechlorinated. Phylogenetic analysis based on 16S rRNA gene sequence data showed these isolates to represent a new lineage within the Chloroflexi. Their closest previously cultured relatives are 'Dehalococcoides' strains, with 16S rRNA gene sequence similarities of only 90%.

  20. Synergistic effect of nano-sized mackinawite with cyano-cobalamin in cement slurries for reductive dechlorination of tetrachloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Kyung, Daeseung [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Sihn, Youngho [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kim, Sangwoo [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Bae, Sungjun [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029 (Korea, Republic of); Amin, Muhammad Tahir; Alazba, Abdulrahman Ali [Alamoudi Water Chair, King Saud University, Riyadh 11451 (Saudi Arabia); Lee, Woojin, E-mail: woojin_lee@kaist.ac.kr [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-07-05

    Highlights: • Complete degradation of PCE was observed in nFeS-Cbl(III)-cement at pH 12. • PCE was completely degraded to non-chlorinated organic compounds by this system. • Co redox couple and Ca species in cement played a pivotal role for PCE reduction. • Increases in Cbl(III) concentration, cement ratio, and pH enhanced PCE degradation. • Efficiency of the system for PCE reduction was good even at high concentration of PCE. - Abstract: Experiments were conducted to investigate the reductive dechlorination of tetrachloroethylene (PCE) by nano-Mackinawite (nFeS) with cyano-cobalamin (Cbl(III)) in cement slurries. Almost complete degradation of PCE by nFeS-Cbl(III) was observed in cement slurries in 5 h and its degradation kinetics (k{sub obs-PCE} = 0.57 h{sup −1}) was 6-times faster than that of nFeS-Cbl(III) without the cement slurries. PCE was finally transformed to non-chlorinated organic compounds such as ethylene, acetylene, and C3-C4 hydrocarbons by nFeS-Cbl(III) in cement slurries. X-ray photoelectron spectroscopy and PCE degradation by cement components (SiO{sub 2}, Al{sub 2}O{sub 3}, and CaO) revealed that both the reduced Co species in Cbl(III) and the presence of Ca in cement played an important role for the enhanced reductive dechlorination of PCE. The increase in the concentration of Cbl(III) (0.005–0.1 mM), cement ratio (0.05–0.2), and suspension pH (11.5–13.5) accelerated the PCE degradation kinetics by providing more favorable environments for the production of reactive Ca species and reduction of Co species. We also observed that the degradation efficiency of PCE by nFeS-Cbl(III)-cement lasted even at high concentration of PCE. The experimental results obtained from this study could provide fundamental knowledge of redox interactions among nFeS, Cbl(III), and cement, which could significantly enhance reductive dechlorination of chlorinated organics in contaminated natural and engineered environments.

  1. The impact of bioaugmentation on dechlorination kinetics and on microbial dechlorinating communities in subsurface clay till

    International Nuclear Information System (INIS)

    Bælum, Jacob; Scheutz, Charlotte; Chambon, Julie C.; Jensen, Christine Mosegaard; Brochmann, Rikke P.; Dennis, Philip; Laier, Troels; Broholm, Mette M.; Bjerg, Poul L.; Binning, Philip J.; Jacobsen, Carsten S.

    2014-01-01

    A molecular study on how the abundance of the dechlorinating culture KB-1 affects dechlorination rates in clay till is presented. DNA extracts showed changes in abundance of specific dechlorinators as well as their functional genes. Independently of the KB-1 added, the microbial dechlorinator abundance increased to the same level in all treatments. In the non-bioaugmented microcosms the reductive dehalogenase gene bvcA increased in abundance, but when KB-1 was added the related vcrA gene increased while bvcA genes did not increase. Modeling showed higher vinyl-chloride dechlorination rates and shorter time for complete dechlorination to ethene with higher initial concentration of KB-1 culture, while cis-dichloroethene dechlorination rates were not affected by KB-1 concentrations. This study provides high resolution abundance profiles of Dehalococcoides spp. (DHC) and functional genes, highlights the ecological behavior of KB-1 in clay till, and reinforces the importance of using multiple functional genes as biomarkers for reductive dechlorination. -- Highlights: • vcrA gene is not always linked to reductive dechlorination potential. • High concentrations of KB-1 stimulate vinyl-chloride degradation. • Vinyl-chloride degradation in non-bioaugmented aquifer is linked to bvcA gene. -- vcrA gene biomarker for reductive dechlorination must be supplemented by bvcA and KB-1 had a positive effect on vinyl-chloride dechlorination compared to dichloroethene dechlorination

  2. Characterization of natural anaerobic dechlorination of TCE and 1,1,1-TCA in clay till including isotope fractionation and molecular biological tools

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bælum, J.; Hunkeler, D.

    2010-01-01

    One of the major challenges when using enhanced reductive dechlorination (ERD) as a remediation technology at clay till sites is to obtain good contact between added agents such as donor, bacteria and the contamination. It is unclear whether degradation only takes place in fractures and/or sand l...

  3. Simulation Of Enhanced Reductive Dechlorination For Remediation Of Tce In A Fractured Clay System: A New Model Approach And Application To Field Site

    DEFF Research Database (Denmark)

    Manoli, Gabriele; Chambon, Julie Claire Claudia; Christiansen, Camilla Maymann

    2010-01-01

    An innovative model is developed for Enhanced Reductive Dechlorination (ERD) of chlorinated solvents in a fractured glacial till. The model consists of three components: hydraulics, transport and degradation. The hydraulic component calculates the flow of water through a fractured clay till...... with interspersed sand lenses and stringers. The transport model couples diffusion dominated transport in the clay matrix, with advective‐dispersive transport in the fractures and higher permeability sand lenses. The reactive model calculates sequential reductive dechlorination of TCE (trichloroethylene) to its...... a contamination of trichloroethylene located in a fractured clay till. The site is simulated using the model developed. Fracture geometry, site parameters and degradation rates are based on observations from the site and lab studies. The risk for drinking water is assessed and cleanup times are simulated using...

  4. Modeling 3D-CSIA data: Carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene.

    Science.gov (United States)

    Van Breukelen, Boris M; Thouement, Héloïse A A; Stack, Philip E; Vanderford, Mindy; Philp, Paul; Kuder, Tomasz

    2017-09-01

    Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ 37 Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ 2 H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Reductive dechlorination of DNAPL mixtures with Fe(II/III)-L and Fe(II)-C: Evaluation using a kinetic model for the competitions.

    Science.gov (United States)

    Do, Si-Hyun; Jo, Se-Hee; Roh, Ji Soo; Im, Hye Jin; Park, Ho Bum; Batchelor, Bill

    2018-05-15

    A kinetic model for the competitions was applied to understand the reductive dechlorination of tertiary DNAPL mixtures containing PCE, TCE, and 1,1,1-TCA. The model assumed that the mass transfer rates were sufficiently rapid that the target compounds in the solution and the DNAPL mixture were in phase equilibrium. Dechlorination was achieved using either a mixture of Fe(II), Fe(III), and Ca(OH) 2 (Fe(II/III)-L) or a mixture of Fe(II) and Portland cement (Fe(II)-C). PCE in the DNAPL mixtures was gradually reduced and it was reduced more rapidly using Fe(II)-C than Fe(II/III)-L. A constant total TCE concentration in the DNAPL mixtures was observed, which implied that the rate of loss of TCE by dechlorination and possibly other processes was equal to the rate of production of TCE by PCE dechlorination. On the other hand, 1,1,1-TCA in the DNAPL mixtures was removed rapidly and its degradation rate by Fe(II/III)-L was faster than by Fe(II)-C. The coefficients in the kinetic model (k i , K i ) were observed to decrease in the order 1,1,1-TCA>PCE>TCE, for both Fe(II/III)-L and Fe(II)-C. The concentrations of target compounds in solution were the effective solubilities, because of the assumption of phase equilibrium and were calculated with Rault's Law. The concentration changes observed were an increase and then a decrease for PCE, a sharp and then gradual increase for TCE, and a dramatic decrease for 1,1,1-TCA. The fraction of initial and theoretical reductive capacity revealed that Fe(II)-C had ability to degrade target compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Validation of an Integrative Methodology to Assess and Monitor Reductive Dechlorination of Chlorinated Ethenes in Contaminated Aquifers

    Czech Academy of Sciences Publication Activity Database

    Tarnawski, S.E.; Rossi, P.; Brennerová, Mária; Stavělová, M.; Holliger, Ch.

    2016-01-01

    Roč. 4, February (2016), s. 7 E-ISSN 2296-665X R&D Projects: GA TA ČR TA02020534 Institutional support: RVO:61388971 Keywords : dechlorination * integrative methodology * chlorinated ethenes Subject RIV: EE - Microbiology, Virology

  7. Copper-mediated reductive dechlorination by green rust intercalated with dodecanoate

    DEFF Research Database (Denmark)

    Huang, Li-Zhi; Yin, Zhou; Cooper, Nicola G A

    2018-01-01

    A layered FeII-FeIII hydroxide (green rust, GR) was intercalated with dodecanoate (known as GRC12) and then amended with CuII (GRC12(Cu)) before reaction with chloroform (CF), carbon tetrachloride (CT), trichloroethylene (TCE) or tetrachloroethylene (PCE). Reduction of CT by GRC12(Cu) was 37 times...... faster than with GRC12 alone before the active Cu species was consumed. The Cu mediated reaction followed the dichloroelimination pathway as observed for GRC12 alone, with carbon monoxide (82.5%) and formate (26.6%) as main degradation products. Also, CF was reduced by GRC12(Cu), which is not seen...

  8. Enhanced reductive de-chlorination of a solvent contaminated aquifer through addition and apparent fermentation of cyclodextrin

    Science.gov (United States)

    Blanford, William James; Pecoraro, Michael Philip; Heinrichs, Rebecca; Boving, Thomas Bernhard

    2018-01-01

    In a field study, aqueous cyclodextrin (CD) was investigated for its ability to extract chlorinated volatile organic compounds (cVOC), such as trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), and dichloroethene (DCE) through in-situ flushing of a sandy aquifer. After cessation of aquifer flushing, a plume of CD was left. Changes in CD, cVOC, and inorganic terminal electron acceptors (TEAs) (DO, nitrate, sulfate, iron) were monitored in four rounds of wellwater sampling (20, 210, 342, and 425 days after cessation of active pumping). Post-CD flushing VOC levels rebounded (850% for TCE, 190% for TCA, and 53% for DCE) between the first two sampling rounds, apparently due to rate-limited desorption from aquifer media and dissolution from remaining NAPL. However, substantial reduction in the mass of TCE (6.3 to 0.11 mol: 98%) and TCA (2.8 to 0.73 mol: 74%) in groundwater was observed between 210 and 425 days. DCE should primarily be produced from the degradation of TCE and is expected to subsequently degrade to chloroethene. Since DCE levels decreased only slightly (0.23 to 0.17 mol: 26%), its degradation rate should be similar to that produced from the decaying TCE. Cyclodextrin was monitored starting from day 210. The mass of residual CD (as measured by Total Organic Carbon) decreased from 150 mol (day 210) to 66 (day 425) (56% decrease). The naturally anaerobic zone within the aquifer where residual CD mass decreased coincided with a loss of other major potential TEAs: nitrate (97% loss), sulfate (31%) and iron (31%). In other studies, TCE and 1,1,1-TCA have been found to be more energetically favorable TEAs than sulfate and iron and their degradation via reductive dechlorination has been found to be enhanced by the fermentation of carbohydrates. Such processes can explain these observations, but more investigation is needed to evaluate whether residual levels of CD can facilitate the anaerobic degradation of chlorinated VOCs.

  9. Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate.

    Science.gov (United States)

    Sanford, R A; Cole, J R; Löffler, F E; Tiedje, J M

    1996-10-01

    Strain Co23, an anaerobic spore-forming microorganism, was enriched and isolated from a compost soil on the basis of its ability to grow with 2,3-dichlorophenol (DCP) as its electron acceptor, ortho chlorines were removed from polysubstituted phenols but not from monohalophenols. Growth by chlororespiration was indicated by a growth yield of 3.24 g of cells per mol of reducing equivalents (as 2[H]) from lactate oxidation to acetate in the presence of 3-chloro-4-hydroxybenzoate but no growth in the absence of the halogenated electron acceptor. Other indicators of chlororespiration were the fraction of electrons from the electron donor used for dechlorination (0.67) and the H2 threshold concentration of < 1.0 ppm. Additional electron donors utilized for reductive dehalogenation were pyruvate, formate, butyrate, crotonate, and H2. Pyruvate supported homoacetogenic growth in the absence of an electron acceptor. Strain Co23 also used sulfite, thiosulfate, and sulfur as electron acceptors for growth, but it did not use sulfate, nitrate or fumarate. The temperature optimum for growth was 37 degrees C; however, the rates of dechlorination were optimum at 45 degrees C and activity persisted to temperatures as high as 55 degrees C. The 16S rRNA sequence was determined, and strain Co23 was found to be related to Desulfitobacterium dehalogenans JW/IU DC1 and Desulfitobacterium strain PCE1, with sequence similarities of 97.2 and 96.8%, respectively. The phylogenetic and physiological properties exhibited by strain Co23 place it into a new species designated Desulfitobacterium chlororespirans.

  10. Improved dechlorinating performance of upflow anaerobic sludge blanket reactors by incorporation of Dehalospirillum multivorans into granular sludge

    DEFF Research Database (Denmark)

    Hörber, Christine; Christiansen, Nina; Arvin, Erik

    1998-01-01

    Dechlorination of tetrachloroethene, also known as perchloroethylene (PCE), was investigated in an upflow anaerobic sludge blanket (UASB) reactor after incorporation of the strictly anaerobic, reductively dechlorinating bacterium Dehalospirillum multivorans into granular sludge. This reactor...

  11. Reductive Dechlorination of 1,2,4-Trichlorobenzene and Its Metabolites at a Contaminated Site in Nanjing, China: Concordance between Field and Microcosm Data

    Science.gov (United States)

    Qiao, W.; Lomheim, L.; Luo, F.; Ye, S.; Wu, J.; Edwards, E.

    2016-12-01

    Chlorinated benzenes (CBs) are widespread contaminants at many industrial sites, posing a threat to human health and the environment. Bioremediation has the advantage of using natural biological processes to possibly completely destroy target pollutants. A three-year site investigation was conducted from 2012 to 2014 at a former chemical plant in Nanjing, China, which was contaminated by chlorobenzenes (CBs) and benzene. The aquifer was located within a silty clay and clayey silt with extremely low permeability. Soil and groundwater sample analyses revealed that the main contaminants were 1,2,4-tichlorobenzene (TCB) with highest concentration of 7300ug/L, dichlorobenzene (DCB) isomers, monochlorobenzene (MCB) and benzene. The contaminants were mainly located in the vicinity of a former wastewater basin and production facilities of chemical products. TCB was used as a solvent and leaked during the plant manufacturing processes. It is assumed that DCB isomers, MCB and benzene were derived from the anaerobic subsequent dehalogenation of 1,2,4-TCB. A corresponding lab microcosm study was conducted to prove the assumption of indigenous CBs biodegradation. The contaminated soil and groundwater from the site were used to conduct the lab microcosms study to keep the lab experimental conditions the same as the site and to be comparable with the site investigation results. The lab microcosms study results demonstrated that 1,4-DCB, 1,2-DCB and 1,3-DCB were the anaerobic dechlorination product of 1,2,4-TCB, and 1,2-DCB, 1,3-DCB can be transformed to MCB, and benzene can be degraded to CO2 under sulfate reducing condition. The lab microcosms study results were consistent with the site investigation results, which will provide a theoretical proposition on site remediation strategy making. This research method of combing the site investigation with the lab study can be applied and transferable to any other contaminated sites of concern. The site investigation and lab study can

  12. Introduction of a De Novo Bioremediation Ability, Aryl Reductive Dechlorination, into Anaerobic Granular Sludge by Inoculation of Sludge with Desulfomonile tiedjei

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Christiansen, Nina; Mathrani, Indra Madan

    1992-01-01

    Methanogenic upflow anaerobic granular-sludge blanket (UASB) reactors treat wastewaters at a high rate while simultaneously producing a useful product, methane; however, recalcitrant environmental pollutants may not be degraded. To impart 3-chlorobenzoate (3-CB)-dechlorinating ability to UASB...... reactors, we inoculated granular sludge in UASB reactors with either a pure culture of Desulfomonile tiedjei (a 3-CB-dechlorinating anaerobe) or a three-member consortium consisting of D. tiedjei, a benzoate degrader, and an H-2-utilizing methanogen. No degradation occurred in an uninoculated control...... reactor which was started with the same granular sludge, but inoculated reactors and granules from the inoculated UASB systems rapidly transformed 3-CB (54 mu-mol/day/g of granule biomass). After several months at a hydraulic retention time of 0.5 day, much shorter than the generation time of D. tiedjei...

  13. Effects of biochar on dechlorination of hexachlorobenzene and the bacterial community in paddy soil.

    Science.gov (United States)

    Song, Yang; Bian, Yongrong; Wang, Fang; Herzberger, Anna; Yang, Xinglun; Gu, Chenggang; Jiang, Xin

    2017-11-01

    Anaerobic reductive dechlorination is an important degradation pathway for chlorinated organic contaminants in paddy soil. This study investigated the effects of amending paddy soil with wheat straw biochar on both the dechlorination of hexachlorobenzene (HCB), a typical highly chlorinated contaminant, and on the structure of soil bacteria communities. Soil amendment of 0.1% biochar did not significantly affect the dechlorination of HCB in the soil. However, biochar amendment at higher application levels (5%) stimulated the dechlorination of HCB in the first month of anaerobic incubation and inhibited the dechlorination of HCB after that period. The stimulation effect may be ascribed to the graphite carbon and carbon-centered persistent radicals, which are redox active, in biochar. The inhibiting effect could be partly ascribed to the reduced bioavailability of HCB in biochar-amended soils. High-throughput sequencing revealed that the amendment of biochar changed the soil bacterial community structure but not the bacterial abundances and diversities. The relative abundance of Dehalococcoidaceae in the tested soils showed a significant relationship with the dechlorination percentages of HCB, indicating that Dehalococcoidaceae may be the main HCB-dechlorinating bacteria in the studied paddy soil. The results indicated that low application levels of biochar did not affect the dechlorination of HCB in the paddy soil, while high application levels of biochar mainly inhibited the dechlorination of HCB due to the reduced bioavailability of HCB and the reduced abundances of certain dechlorinating bacteria in the biochar-amended paddy soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    De, Supriyo; Perkins, Michael; Dutta, Sisir K.

    2006-01-01

    Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity

  15. Visualizing dimensionality reduction of systems biology data

    OpenAIRE

    Lehrmann, Andreas; Huber, Michael; Polatkan, Aydin C.; Pritzkau, Albert; Nieselt, Kay

    2012-01-01

    One of the challenges in analyzing high-dimensional expression data is the detection of important biological signals. A common approach is to apply a dimension reduction method, such as principal component analysis. Typically, after application of such a method the data is projected and visualized in the new coordinate system, using scatter plots or profile plots. These methods provide good results if the data have certain properties which become visible in the new coordinate system and which...

  16. Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes

    Directory of Open Access Journals (Sweden)

    Delgado Anca G

    2012-09-01

    Full Text Available Abstract Background Buffering to achieve pH control is crucial for successful trichloroethene (TCE anaerobic bioremediation. Bicarbonate (HCO3− is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2. We studied the effect of HCO3− as a buffering agent and the effect of HCO3−-consuming reactions in a range of concentrations (2.5-30 mM with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens. Results Rate differences in TCE dechlorination were observed as a result of added varying HCO3− concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7 from biological HCO3− consumption. Significantly faster dechlorination rates were noted at all HCO3− concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid (HEPES as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3− concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3− were provided initially. Conclusions Our study reveals that HCO3− is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3− and the changes in pH exerted by

  17. Molecular Biomarker-Based Biokinetic Modeling of a PCE-Dechlorinating and Methanogenic Mixed Culture

    Energy Technology Data Exchange (ETDEWEB)

    Heavner, Gretchen L. W.; Rowe, Annette R.; Mansfeldt, Cresten B.; Pan, Ju Khuan; Gossett, James M.; Richardson, Ruth E.

    2013-04-16

    Bioremediation of chlorinated ethenes via anaerobic reductive dechlorination relies upon the activity of specific microbial population-most notably Dehalococcoides (DHC) strains. In the lab and field Dehalococcoides grow most robustly in mixed communities which usually contain both fermenters and methanogens. Recently, researchers have been developing quantitative molecular biomarkers to aid in field site diagnostics and it is hoped that these biomarkers could aid in the modeling of anaerobic reductive dechlorination. A comprehensive biokinetic model of a community containing Dehalococcoides mccartyi (formerly D. ethenogenes) was updated to describe continuously fed reactors with specific biomass levels based on quantitative PCR (qPCR)-based population data (DNA and RNA). The model was calibrated and validated with subsets of chemical and molecular biological data from various continuous feed experiments (n = 24) with different loading rates of the electron acceptor (1.5 to 482 μeeq/L-h), types of electron acceptor (PCE, TCE, cis-DCE) and electron donor to electron acceptor ratios. The resulting model predicted the sum of dechlorination products vinyl chloride (VC) and ethene (ETH) well. However, VC alone was under-predicted and ETH was over predicted. Consequently, competitive inhibition among chlorinated ethenes was examined and then added to the model. Additionally, as 16S rRNA gene copy numbers did not provide accurate model fits in all cases, we examined whether an improved fit could be obtained if mRNA levels for key functional enzymes could be used to infer respiration rates. The resulting empirically derived mRNA “adjustment factors” were added to the model for both DHC and the main methanogen in the culture (a Methanosaeta species) to provide a more nuanced prediction of activity. Results of this study suggest that at higher feeding rates competitive inhibition is important and mRNA provides a more accurate indicator of a population’s instantaneous

  18. Biosupported Bimetallic Pd Au Nanocatalysts for Dechlorination of Environmental Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    De Corte, S.; Fitts, J.; Hennebel, T.; Sabbe, T.; Bliznuk, V.; Verschuere, S.; van der Lelie, D.; Verstraete, W.; Boon, N.

    2011-08-30

    Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichloroethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L{sup -1} and reduced simultaneously by Shewanella oneidensis in the presence of H{sub 2}, the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenac after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.

  19. Dimensionality reduction of bistable biological systems.

    Science.gov (United States)

    Zakharova, A; Nikoloski, Z; Koseska, A

    2013-03-01

    Time hierarchies, arising as a result of interactions between system's components, represent a ubiquitous property of dynamical biological systems. In addition, biological systems have been attributed switch-like properties modulating the response to various stimuli across different organisms and environmental conditions. Therefore, establishing the interplay between these features of system dynamics renders itself a challenging question of practical interest in biology. Existing methods are suitable for systems with one stable steady state employed as a well-defined reference. In such systems, the characterization of the time hierarchies has already been used for determining the components that contribute to the dynamics of biological systems. However, the application of these methods to bistable nonlinear systems is impeded due to their inherent dependence on the reference state, which in this case is no longer unique. Here, we extend the applicability of the reference-state analysis by proposing, analyzing, and applying a novel method, which allows investigation of the time hierarchies in systems exhibiting bistability. The proposed method is in turn used in identifying the components, other than reactions, which determine the systemic dynamical properties. We demonstrate that in biological systems of varying levels of complexity and spanning different biological levels, the method can be effectively employed for model simplification while ensuring preservation of qualitative dynamical properties (i.e., bistability). Finally, by establishing a connection between techniques from nonlinear dynamics and multivariate statistics, the proposed approach provides the basis for extending reference-based analysis to bistable systems.

  20. Dechlorination pathways of diverse chlorinated aromatic pollutants conducted by Dehalococcoides sp. strain CBDB1

    International Nuclear Information System (INIS)

    Lu, Gui-Ning; Tao, Xue-Qin; Huang, Weilin; Dang, Zhi; Li, Zhong; Liu, Cong-Qiang

    2010-01-01

    Dechlorination of chlorinated aromatic pollutants (CAPs) has become a major issue in recent decades. This paper reported a theoretical indicator for predicting the reductive dechlorination pathways of polychlorinated dibenzo-p-dioxins (PCDDs), chlorobenzenes and chlorophenols transformed by Dehalococcoides sp. strain CBDB1. Density functional theory (DFT) calculations were carried out at the B3LYP/6-31G(d) level for all related CAPs and Mulliken atomic charges on chlorine atoms (Q Cl(n) ) were adopted as the probe of the dechlorination reaction activity. Q Cl(n) can consistently indicate the main dechlorination daughter products of PCDDs, chlorobenzenes and chlorophenols conducted by strain CBDB1. The dechlorination reaction favors elimination of the chlorine atoms having greater Q Cl(n) values. The chlorine atom with the greatest Q Cl(n) value tends preferentially to be eliminated, whereas the chlorine atom with the smallest Q Cl(n) value tends unlikely to be eliminated or does not react at all. For a series of compounds having similar structure, the maximal Q Cl(n) of each molecular can be used to predict the possibility of its daughter product(s). In addition, the difference (ΔQ Cl(n) ) between the maximal Q Cl(n) and the next maximal Q Cl(n) of the same molecule can be used to assess the possibility of formation of multiple dechlorination products.

  1. Loop-Mediated Isothermal Amplification (LAMP) for Rapid Detection and Quantification of Dehalococcoides Biomarker Genes in Commercial Reductive Dechlorinating Cultures KB-1 and SDC-9.

    Science.gov (United States)

    Kanitkar, Yogendra H; Stedtfeld, Robert D; Steffan, Robert J; Hashsham, Syed A; Cupples, Alison M

    2016-01-08

    Real-time quantitative PCR (qPCR) protocols specific to the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA are commonly used to quantify Dehalococcoides spp. in groundwater from chlorinated solvent-contaminated sites. In this study, loop-mediated isothermal amplification (LAMP) was developed as an alternative approach for the quantification of these genes. LAMP does not require a real-time thermal cycler (i.e., amplification is isothermal), allowing the method to be performed using less-expensive and potentially field-deployable detection devices. Six LAMP primers were designed for each of three RDase genes (vcrA, bvcA, and tceA) using Primer Explorer V4. The LAMP assays were compared to conventional qPCR approaches using plasmid standards, two commercially available bioaugmentation cultures, KB-1 and SDC-9 (both contain Dehalococcoides species). DNA was extracted over a growth cycle from KB-1 and SDC-9 cultures amended with trichloroethene and vinyl chloride, respectively. All three genes were quantified for KB-1, whereas only vcrA was quantified for SDC-9. A comparison of LAMP and qPCR using standard plasmids indicated that quantification results were similar over a large range of gene concentrations. In addition, the quantitative increase in gene concentrations over one growth cycle of KB-1 and SDC-9 using LAMP was comparable to that of qPCR. The developed LAMP assays for vcrA and tceA genes were validated by comparing quantification on the Gene-Z handheld platform and a real-time thermal cycler using DNA isolated from eight groundwater samples obtained from an SDC-9-bioaugmented site (Tulsa, OK). These assays will be particularly useful at sites subject to bioaugmentation with these two commonly used Dehalococcoides species-containing cultures. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Development of a kinetic model for biological sulphate reduction ...

    African Journals Online (AJOL)

    The Rhodes BioSUREÆÊ Process is a low-cost active treatment system for acid mine drainage (AMD) waters. Central to this process is biological sulphate reduction (BSR) using primary sewage sludge (PSS) as the electron donor and organic carbon source, with the concomitant reduction of sulphate to sulphide and ...

  3. Dechlorinating performance of Dehalococcoides spp. mixed culture enhanced by tourmaline.

    Science.gov (United States)

    Wang, Wei; Liu, Xingyu; Li, Kerui; Li, Tielong

    2018-03-01

    Dehalococcoides spp. were extensively studied and applied to in-situ trichloroethylene (TCE) remediation since it is the only genus that can reduce TCE to harmless ethene completely. However, this technology was hindered because of the requirement of electron donor (i.e. hydrogen or fermentable organic substrate). Considering the spontaneous electric field and in-situ hydrogen production capacity of tourmaline, this mineral was used as an environmental-friendly bio-promoter for dechlorinating mixed culture containing Dehalococcoides spp. in this work. Research results showed that biodegradation of TCE and the intermediates were both significantly improved by tourmaline. The first-order TCE degradation rate coefficient increased from 0.0125 h -1 for the tourmaline-free system to 0.0306 h -1 for the system combined with 5 g L -1 tourmaline, and ethene production increased by 36%. The outstanding TCE-degrading ability in the tourmaline-bacteria system without the addition of fermentative electron donor (i.e. methanol) indicated that tourmaline could also produce electron donor to support dechlorinating bacteria. Tourmaline could have direct electric biostimulatory effect and indirect enhanced effect associated with water-derived H 2 production in the electric field of tourmaline. Meanwhile, PCR-DGGE analysis exhibited that tourmaline could accelerate the succession of a bacterial, dechlorinating community. The distinctive effects of tourmaline on bacteria were related to its stable electric properties. Therefore, tourmaline could be continuously used in the bioremediation. The present study provided a safe, convenient and persistent alternative to the commonly used enhancement approaches for anaerobic reductive dechlorination process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dechlorination of Hexachloroethane in Water Using Iron Shavings and Amended Iron Shavings: Kinetics and Pathways

    Directory of Open Access Journals (Sweden)

    D. L. Wu

    2014-01-01

    Full Text Available In contrast to previous studies which employed zero-valent iron powder, this paper investigated reductive dechlorination of hexachloroethane (HCA using iron shavings and bimetallic iron shavings modified with Cu, Ag, or Pd. Results clearly show that iron shavings offer superior reductive dechlorination of HCA. In addition, surface-normalized pseudo first-order dechlorination rates of 0.0073 L·m−2·h−1, 0.0136 L·m−2·h−1, 0.0189 L·m−2·h−1, and 0.0084 L·m−2·h−1 were observed in the presence of iron shavings (Fe0 and the bimetallic iron shavings Cu/Fe, Ag/Fe, and Pd/Fe, respectively. Bimetallic iron shavings consisting of Cu/Fe and Ag/Fe could greatly enhance the reductive reaction rate; Pd/Fe was used to achieve complete dechlorination of HCA within 5 hours. The additives of Ag and Pd shifted product distributions, and the reductive dechlorination of HCA occurred via β reductive elimination and sequential hydrogenolysis in the presence of all iron shavings. This study consequently designed a reaction pathway diagram which reflected the reaction pathway and most prevalent dechlorination products. Iron shavings are a common byproduct of mechanical processing plants. While the purity of such Fe metals may be low, these shavings are readily available at low costs and could potentially be used in engineering applications such as contamination control technologies.

  5. Rapid dechlorination of chlorophenols in aqueous solution by [Ni|Cu] microcell

    International Nuclear Information System (INIS)

    Yin, Lifeng; Dai, Yunrong; Niu, Junfeng; Bao, Yueping; Shen, Zhenyao

    2012-01-01

    Highlights: ► Rapid dechlorination of chlorophenols in aqueous solution can be achieved by [Ni|Cu] mixture. ► The decomposition rates of chlorophenols by [Ni|Cu] were decuple of that by [Fe|Ni], [Fe|Cu], [Zn|Cu], or [Sn|Cu]. ► Ni 0 acts as an indirect reductant and catalyst in dechlorination reaction. ► The H* corridor mechanism from Ni to Cu is proposed based on hydrogen spillover. - Abstract: The [Ni|Cu] microcell was prepared by mixing the Ni 0 and Cu 0 particles. The composition and crystal form were characterized by X-ray diffraction (XRD) and scanning electron microscope. The results evidenced the zero-valence metals Ni and Cu were exposed on the surface of particles mixture. The [Ni|Cu] microcell was employed to decompose chlorophenols in aqueous solution by reductive dechlorination. The dechlorination rates of chlorophenols by [Ni|Cu] were >10 times faster than those by [Fe|Cu], [Zn|Cu], [Sn|Cu], and [Fe|Ni] mixtures under the same conditions. [Ni|Cu] is different from other zero valent metals (ZVMs) in that it performed the best at neutral pH. The main products of chlorophenol dechlorination were cyclohexanol and cyclohexanone. The reduction kinetics was between pseudo zero-order and first-order, depending on the pH, concentration, and temperature. These results, combined with electrochemical analysis, suggested that Ni 0 acted as a reductant and catalyst in dechlorination reaction. The H* corridor mechanism from Ni 0 to Cu 0 was also proposed based on hydrogen spillover. The inhibition on the release of Ni 2+ by adding natural organic matters and adjusting pH was investigated.

  6. Rapid dechlorination of chlorophenols in aqueous solution by [Ni|Cu] microcell

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lifeng, E-mail: yinlifeng@gmail.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Dai, Yunrong, E-mail: daiyunrong@mail.bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Niu, Junfeng, E-mail: junfengn@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Bao, Yueping, E-mail: baoyueping@mail.bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Shen, Zhenyao, E-mail: zyshen@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Rapid dechlorination of chlorophenols in aqueous solution can be achieved by [Ni|Cu] mixture. Black-Right-Pointing-Pointer The decomposition rates of chlorophenols by [Ni|Cu] were decuple of that by [Fe|Ni], [Fe|Cu], [Zn|Cu], or [Sn|Cu]. Black-Right-Pointing-Pointer Ni{sup 0} acts as an indirect reductant and catalyst in dechlorination reaction. Black-Right-Pointing-Pointer The H* corridor mechanism from Ni to Cu is proposed based on hydrogen spillover. - Abstract: The [Ni|Cu] microcell was prepared by mixing the Ni{sup 0} and Cu{sup 0} particles. The composition and crystal form were characterized by X-ray diffraction (XRD) and scanning electron microscope. The results evidenced the zero-valence metals Ni and Cu were exposed on the surface of particles mixture. The [Ni|Cu] microcell was employed to decompose chlorophenols in aqueous solution by reductive dechlorination. The dechlorination rates of chlorophenols by [Ni|Cu] were >10 times faster than those by [Fe|Cu], [Zn|Cu], [Sn|Cu], and [Fe|Ni] mixtures under the same conditions. [Ni|Cu] is different from other zero valent metals (ZVMs) in that it performed the best at neutral pH. The main products of chlorophenol dechlorination were cyclohexanol and cyclohexanone. The reduction kinetics was between pseudo zero-order and first-order, depending on the pH, concentration, and temperature. These results, combined with electrochemical analysis, suggested that Ni{sup 0} acted as a reductant and catalyst in dechlorination reaction. The H* corridor mechanism from Ni{sup 0} to Cu{sup 0} was also proposed based on hydrogen spillover. The inhibition on the release of Ni{sup 2+} by adding natural organic matters and adjusting pH was investigated.

  7. Nonlinear dimensionality reduction methods for synthetic biology biobricks' visualization.

    Science.gov (United States)

    Yang, Jiaoyun; Wang, Haipeng; Ding, Huitong; An, Ning; Alterovitz, Gil

    2017-01-19

    Visualizing data by dimensionality reduction is an important strategy in Bioinformatics, which could help to discover hidden data properties and detect data quality issues, e.g. data noise, inappropriately labeled data, etc. As crowdsourcing-based synthetic biology databases face similar data quality issues, we propose to visualize biobricks to tackle them. However, existing dimensionality reduction methods could not be directly applied on biobricks datasets. Hereby, we use normalized edit distance to enhance dimensionality reduction methods, including Isomap and Laplacian Eigenmaps. By extracting biobricks from synthetic biology database Registry of Standard Biological Parts, six combinations of various types of biobricks are tested. The visualization graphs illustrate discriminated biobricks and inappropriately labeled biobricks. Clustering algorithm K-means is adopted to quantify the reduction results. The average clustering accuracy for Isomap and Laplacian Eigenmaps are 0.857 and 0.844, respectively. Besides, Laplacian Eigenmaps is 5 times faster than Isomap, and its visualization graph is more concentrated to discriminate biobricks. By combining normalized edit distance with Isomap and Laplacian Eigenmaps, synthetic biology biobircks are successfully visualized in two dimensional space. Various types of biobricks could be discriminated and inappropriately labeled biobricks could be determined, which could help to assess crowdsourcing-based synthetic biology databases' quality, and make biobricks selection.

  8. Efficacy of zero-valent copper (Cu(0)) nanoparticles and reducing agents for dechlorination of mono chloroaromatics.

    Science.gov (United States)

    Raut, Sandesh S; Kamble, Sanjay P; Kulkarni, Prashant S

    2016-09-01

    The zero-valent copper (Cu(0)) nanoparticles were prepared by chemical reduction method. The morphology of nanoparticles was investigated by using X ray diffraction, scanning electron microscopy-energy dispersive X ray, UV-visible spectrophotometer and Brunauer-Emmett-Teller surface area analyser. The Cu(0) nanoparticles along with reducing agents, NaBH4/5% acidified alcohol were used for the dechlorination of chloroaromatics at room temperature. Chlorobenzene (Cl-B), chlorotoluene (Cl-T), chloropyridine (Cl-Py) and chlorobiphenyl (Cl-BPh) were selected as the contaminants. The effect of various operating parameters such as pH, concentration of the catalyst and reducing agent (NaBH4), and recycling of the catalyst on dechlorination were studied. Nearly complete dechlorination of all the chloroaromatics were achieved in the presence of Cu(0) nanoparticles (2.5 g L(-1)) and NaBH4 (1.0 g L(-1)) within 12 h. On the contrary, approximately 70% of dechlorination was observed in the presence of 5% acidified alcohol at similar experimental conditions. The dechlorination mechanism highlighted the importance of Cu(0) nanoparticles as a surface mediator. The kinetics of the dechlorination of chloroaromatics was investigated and compared with chloroaliphatics. The dechlorination rate differed from 0.23 h(-1) (Cl-B) to 0.15 h(-1) (Cl-BPh) in the presence of Cu(0) nanoparticles and NaBH4. The effectiveness of Cu(0) nanoparticles with NaBH4 (1 g L(-1)) and 5% acidified alcohol as electron donors were studied by oxidation-reduction potential and observed to be -1016 mV and -670 mV, respectively. Final products of the dechlorination were benzene, toluene, pyridine and biphenyl, as identified by gas chromatograph mass spectrometer and nuclear magnetic resonance spectroscopy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Comment on 'evaluation of dechlorination mechanisms during anaerobic fermentation of blached kraft mill effluent by W.J. Parker, E.R. Hall and G.J. Farquhar'

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    the electrode potential of the reaction medium. The sulfide concentration was not measured but tried to evaluate the mechanisms of dechlorination of the organochlorine compounds on the basis of stoichiometric reduction of the initial concentration of sulfate...

  10. Possible domestication of uranium oxides using biological assistance reduction

    Directory of Open Access Journals (Sweden)

    Slah Hidouri

    2017-01-01

    Full Text Available Uranium has been defined in material research engineering field as one of the most energetic radioactive elements in the entire Mendeleev periodic table. The manipulation of uranium needs higher theories and sophisticated apparatus even in nuclear energy extraction or in many other chemical applications. Above the nuclear exploitation level, the chemical conventional approaches used, require a higher temperature and pressure to control the destination of ionic form. However, it has been discovered later that at biological scale, the manipulation of this actinide is possible under friendly conditions. The review summarizes the relevant properties of uranium element and a brief characterization of nanoparticles, based on some structural techniques. These techniques reveal the common link between chemical approaches and biological assistance in nanoparticles. Also, those biological entities have been able to get it after reduction. Uranium is known for its ability to destroy ductile materials. So, if biological cell can really reduce uranium, then how does it work?

  11. PCB dechlorination in anaerobic soil slurry reactors

    International Nuclear Information System (INIS)

    Klasson, K.T.; Evans, B.S.

    1993-01-01

    Many industrial locations, including the US Department of Energy's, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges, including mixed wastes; however, a practical remediation technology has not yet been demonstrated. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River have been used to obtain anaerobic dechlorination of PCBS. The onset of dechlorination activity can be accelerated by addition of nutritional amendments and inducers. After 15 weeks of incubation with PCB-contaminated soil and nutrient solution, dechlorination has been observed under several working conditions. The best results show that the average chlorine content steadily dropped from 4.3 to 3.5 chlorines per biphenyl over a 15-week period

  12. Identification of Multiple Dehalogenase Genes Involved in Tetrachloroethene-to-Ethene Dechlorination in a Dehalococcoides-Dominated Enrichment Culture

    Directory of Open Access Journals (Sweden)

    Mohamed Ismaeil

    2017-01-01

    Full Text Available Chloroethenes (CEs are widespread groundwater toxicants that are reductively dechlorinated to nontoxic ethene (ETH by members of Dehalococcoides. This study established a Dehalococcoides-dominated enrichment culture (designated “YN3” that dechlorinates tetrachloroethene (PCE to ETH with high dechlorination activity, that is, complete dechlorination of 800 μM PCE to ETH within 14 days in the presence of Dehalococcoides species at 5.7±1.9×107 copies of 16S rRNA gene/mL. The metagenome of YN3 harbored 18 rdhA genes (designated YN3rdhA1–18 encoding the catalytic subunit of reductive dehalogenase (RdhA, four of which were suggested to be involved in PCE-to-ETH dechlorination based on significant increases in their transcription in response to CE addition. The predicted proteins for two of these four genes, YN3RdhA8 and YN3RdhA16, showed 94% and 97% of amino acid similarity with PceA and VcrA, which are well known to dechlorinate PCE to trichloroethene (TCE and TCE to ETH, respectively. The other two rdhAs, YN3rdhA6 and YN3rdhA12, which were never proved as rdhA for CEs, showed particularly high transcription upon addition of vinyl chloride (VC, with 75±38 and 16±8.6 mRNA copies per gene, respectively, suggesting their possible functions as novel VC-reductive dehalogenases. Moreover, metagenome data indicated the presence of three coexisting bacterial species, including novel species of the genus Bacteroides, which might promote CE dechlorination by Dehalococcoides.

  13. Biological reduction of uranium in groundwater and subsurface soil

    International Nuclear Information System (INIS)

    Abdelouas, A.; Gong, W.; Lutze, W.; Nuttall, E.H.; Strietelmeier, B.A.; Travis, B.J.

    2000-01-01

    Biological reduction of uranium is one of the techniques currently studied for in situ remediation of groundwater and subsurface soil. We investigated U(VI) reduction in groundwaters and soils of different origin to verify the presence of bacteria capable of U(VI) reduction. The groundwaters originated from mill tailings sites with U concentrations as high as 50 mg/l, and from other sites where uranium is not a contaminant, but was added in the laboratory to reach concentrations up to 11 mg/l. All waters contained nitrate and sulfate. After oxygen and nitrate reduction, U(VI) was reduced by sulfate-reducing bacteria, whose growth was stimulated by ethanol and trimetaphosphate. Uranium precipitated as hydrated uraninite (UO 2 ·xH 2 O). In the course of reduction of U(VI), Mn(IV) and Fe(III) from the soil were reduced as well. During uraninite precipitation a comparatively large mass of iron sulfides formed and served as a redox buffer. If the excess of iron sulfide is large enough, uraninite will not be oxidized by oxygenated groundwater. We show that bacteria capable of reducing U(VI) to U(IV) are ubiquitous in nature. The uranium reducers are primarily sulfate reducers and are stimulated by adding nutrients to the groundwater

  14. Accelerated anaerobic dechlorination of DDT in slurry with Hydragric Acrisols using citric acid and anthraquinone-2,6-disulfonate (AQDS).

    Science.gov (United States)

    Liu, Cuiying; Xu, Xianghua; Fan, Jianling

    2015-12-01

    The application of electron donor and electron shuttle substances has a vital influence on electron transfer, thus may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane (DDT) in anaerobic reaction systems. To evaluate the roles of citric acid and anthraquinone-2,6-disulfonate (AQDS) in accelerating the reductive dechlorination of DDT in Hydragric Acrisols that contain abundant iron oxide, a batch anaerobic incubation experiment was conducted in a slurry system with four treatments of (1) control, (2) citric acid, (3) AQDS, and (4) citric acid+AQDS. Results showed that DDT residues decreased by 78.93%-92.11% of the initial quantities after 20days of incubation, and 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane (DDD) was the dominant metabolite. The application of citric acid accelerated DDT dechlorination slightly in the first 8days, while the methanogenesis rate increased quickly, and then the acceleration effect improved after the 8th day while the methanogenesis rate decreased. The amendment by AQDS decreased the Eh value of the reaction system and accelerated microbial reduction of Fe(III) oxides to generate Fe(II), which was an efficient electron donor, thus enhancing the reductive dechlorination rate of DDT. The addition of citric acid+AQDS was most efficient in stimulating DDT dechlorination, but no significant interaction between citric acid and AQDS on DDT dechlorination was observed. The results will be of great significance for developing an efficient in situ remediation strategy for DDT-contaminated sites. Copyright © 2015. Published by Elsevier B.V.

  15. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    DEFF Research Database (Denmark)

    Badin, Alice; Broholm, Mette Martina; Jacobsen, Carsten S.

    2016-01-01

    was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C...

  16. Graphene oxide-mediated rapid dechlorination of carbon tetrachloride by green rust

    DEFF Research Database (Denmark)

    Huang, Lizhi; Hansen, Hans Chr. Bruun; Daasbjerg, Kim

    2017-01-01

    Graphene-based nanomaterials can mediate environmentally relevant abiotic redox reactions of chlorinated aliphatic hydrocarbons. In this study as low amounts as ∼0.007 % of graphene oxide (GO) was found to catalyze the reduction of carbon tetrachloride by layered Fe(II)-Fe(III) hydroxide (Green...... Rust, GR) in aqueous solutions with chloroform being the reduction product. On the basis of sorption studies of carbon tetrachloride onto the GO surface it is suggested that it is the amphiphilicity of GO, which initiates the reaction by providing a suitable reaction platform for the reagents....... This study indicates that traces of graphene oxide can affect reaction pathways as well as kinetics for dechlorination processes in anoxic sediments by facilitating a partial dechlorination....

  17. Model reduction in mathematical pharmacology : Integration, reduction and linking of PBPK and systems biology models.

    Science.gov (United States)

    Snowden, Thomas J; van der Graaf, Piet H; Tindall, Marcus J

    2018-03-26

    In this paper we present a framework for the reduction and linking of physiologically based pharmacokinetic (PBPK) models with models of systems biology to describe the effects of drug administration across multiple scales. To address the issue of model complexity, we propose the reduction of each type of model separately prior to being linked. We highlight the use of balanced truncation in reducing the linear components of PBPK models, whilst proper lumping is shown to be efficient in reducing typically nonlinear systems biology type models. The overall methodology is demonstrated via two example systems; a model of bacterial chemotactic signalling in Escherichia coli and a model of extracellular regulatory kinase activation mediated via the extracellular growth factor and nerve growth factor receptor pathways. Each system is tested under the simulated administration of three hypothetical compounds; a strong base, a weak base, and an acid, mirroring the parameterisation of pindolol, midazolam, and thiopental, respectively. Our method can produce up to an 80% decrease in simulation time, allowing substantial speed-up for computationally intensive applications including parameter fitting or agent based modelling. The approach provides a straightforward means to construct simplified Quantitative Systems Pharmacology models that still provide significant insight into the mechanisms of drug action. Such a framework can potentially bridge pre-clinical and clinical modelling - providing an intermediate level of model granularity between classical, empirical approaches and mechanistic systems describing the molecular scale.

  18. Studies on biological reduction of chromate by Streptomyces griseus

    Energy Technology Data Exchange (ETDEWEB)

    Poopal, Ashwini C. [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India); Laxman, R. Seeta, E-mail: rseetalaxman@yahoo.co.in [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India)

    2009-09-30

    Chromium is a toxic heavy metal used in various industries and leads to environmental pollution due to improper handling. The most toxic form of chromium Cr(VI) can be converted to less toxic Cr(III) by reduction. Among the actinomycetes tested for chromate reduction, thirteen strains reduced Cr(VI) to Cr(III), of which one strain of Streptomyces griseus (NCIM 2020) was most efficient showing complete reduction within 24 h. The organism was able to use a number of carbon sources as electron donors. Sulphate, nitrate, chloride and carbonate had no effect on chromate reduction during growth while cations such as Cd, Ni, Co and Cu were inhibitory to varying degrees. Chromate reduction was associated with the bacterial cells and sonication was the best method of cell breakage to release the enzyme. The enzyme was constitutive and did not require presence of chromate during growth for expression of activity. Chromate reduction with cell free extract (CFE) was observed without added NADH. However, addition of NAD(P)H resulted in 2-3-fold increase in activity. Chromate reductase showed optimum activity at 28 deg. C and pH 7.

  19. Development of a kinetic model for biological sulphate reduction ...

    African Journals Online (AJOL)

    Further, in the BSR model the end-product sulphide has a gaseous equilibrium not in the UCTADM1 model, and hence the physical gas exchange for sulphide is included. The BSR biological, chemical and physical processes are integrated with those of the UCTADM1 model, to give a complete kinetic model for competitive ...

  20. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    The experimental results indicate that high treatment efficiency was achieved at more than 90% sulphate reduction at a liquid hydraulic retention time (HRT) of 13.5 h. In this ... From these results, it can be concluded that the UASB configuration using PSS as energy source would be a viable method for the BSR of AMD.

  1. Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems.

    Science.gov (United States)

    Girotti, Albert W; Korytowski, Witold

    2017-12-01

    Cholesterol is like other unsaturated lipids in being susceptible to peroxidative degradation upon exposure to strong oxidants like hydroxyl radical or peroxynitrite generated under conditions of oxidative stress. In the eukaryotic cell plasma membrane, where most of the cellular cholesterol resides, peroxidation leads to membrane structural and functional damage from which pathological states may arise. In low density lipoprotein, cholesterol and phospholipid peroxidation have long been associated with atherogenesis. Among the many intermediates/products of cholesterol oxidation, hydroperoxide species (ChOOHs) have a number of different fates and deserve special attention. These fates include (a) damage-enhancement via iron-catalyzed one-electron reduction, (b) damage containment via two-electron reduction, and (c) inter-membrane, inter-lipoprotein, and membrane-lipoprotein translocation, which allows dissemination of one-electron damage or off-site suppression thereof depending on antioxidant location and capacity. In addition, ChOOHs can serve as reliable and conveniently detected mechanistic reporters of free radical-mediated reactions vs. non-radical (e.g., singlet oxygen)-mediated reactions. Iron-stimulated peroxidation of cholesterol and other lipids underlies a newly discovered form of regulated cell death called ferroptosis. These and other deleterious consequences of radical-mediated lipid peroxidation will be discussed in this review.

  2. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    NARCIS (Netherlands)

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this

  3. Biological perchlorate reduction in packed bed reactors using elemental sulfur.

    Science.gov (United States)

    Sahu, Ashish K; Conneely, Teresa; Nüsslein, Klaus R; Ergas, Sarina J

    2009-06-15

    Sulfur-utilizing perchlorate (ClO4-)-reducing bacteria were enriched from a denitrifying wastewater seed with elemental sulfur (S0) as an electron donor. The enrichment was composed of a diverse microbial community, with the majority identified as members of the phylum Proteobacteria. Cultures were inoculated into bench-scale packed bed reactors (PBR) with S0 and crushed oyster shell packing media. High ClO4-concentrations (5-8 mg/L) were reduced to PBR performance decreased when effluent recirculation was applied or when smaller S0 particle sizes were used, indicating that mass transfer of ClO4- to the attached biofilm was not the limiting mechanism in this process, and that biofilm acclimation and growth were key factors in overall reactor performance. The presence of nitrate (6.5 mg N/L) inhibited ClO4- reduction. The microbial community composition was found to change with ClO4- availability from a majority of Beta-Proteobacteria near the influent end of the reactor to primarily sulfur-oxidizing bacteria near the effluent end of the reactor.

  4. Biological waste by-production costs in forest management and possibilities for their reduction

    Directory of Open Access Journals (Sweden)

    Jiří Kadlec

    2004-01-01

    Full Text Available Biological wastes in forestry were observed from view of their by-production in silvicultural and logging operations. There were identified points where biological waste was produced in this paper, waste costs ratio for silvicultural and logging operations and were made suggestions for reduction of these costs. Biological waste costs give 34.4% of total costs of silvicultural operations and 30% of total costs of logging operations. Natural regeneration and minor forest produce operations are opportunities for reduction of these costs.

  5. Biological reduction of nitrate wastewater using fluidized-bed bioreactors

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Hancher, C.W.; Patton, B.D.; Kowalchuk, M.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt % NO 3 - and as large as 2000 m 3 /d, in the nuclear fuel cycle as well as in many commercial processes such as fertilizer production, paper manufacturing, and metal finishing. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The major strain of denitrification bacteria is Pseudomonas which was derived from garden soil. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25 to 0.50-mm-diam coal particles, which are fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . A description is given of the results of two biodenitrification R and D pilot plant programs based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 gN(NO 3 - )/d per liter of empty bioreactor volume. The first of these pilot plant programs consisted of two 0.2-m-diam bioreactors, each with a height of 6.3 m and a volume of 208 liters, operating in series. The second pilot plant was used to determine the diameter dependence of the reactors by using a 0.5-m-diam reactor with a height of 6.3 m and a volume of 1200 liters. These pilot plants operated for a period of six months and two months respectively, while using both a synthetic waste and the actual waste from a gaseous diffusion plant operated by Goodyear Atomic Corporation

  6. Brushing Your Spacecrafts Teeth: A Review of Biological Reduction Processes for Planetary Protection Missions

    Science.gov (United States)

    Pugel, D.E. (Betsy); Rummel, J. D.; Conley, C. A.

    2017-01-01

    Much like keeping your teeth clean, where you brush away biofilms that your dentist calls plaque, there are various methods to clean spaceflight hardware of biological contamination, known as biological reduction processes. Different approaches clean your hardwares teeth in different ways and with different levels of effectiveness. We know that brushing at home with a simple toothbrush is convenient and has a different level of impact vs. getting your teeth cleaned at the dentist. In the same way, there are some approaches to biological reduction that may require simple tools or more complex implementation approaches (think about sonicating or just soaking your dentures, vs. brushing them). There are also some that are more effective for different degrees of cleanliness and still some that have materials compatibility concerns. In this article, we review known and NASA-certified approaches for biological reduction, pointing out materials compatibility concerns and areas where additional research is needed.

  7. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoko [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan)]. E-mail: ysd75@esi.nagoya-u.ac.jp; Yoshida, Yukina [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Handa, Yuko [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kim, Hyo-Keun [Korea Ginseng and Tobacco Research Institute, Taejon 305-345 (Korea, Republic of); Ichihara, Shigeyuki [Faculty of Agriculture, Meijo University, Nagoya 468-8502 (Japan); Katayama, Arata [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2007-08-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP {sup {yields}} 2,3,4,5-tetrachlorophenol {sup {yields}} 3,4,5-trichlorophenol {sup {yields}} 3,5-dichlorophenol {sup {yields}} 3-chlorophenol {sup {yields}} phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore

  8. Abiotic Reductive Dechlorination of Tetrachloroethylene and Trichloroethylene in Anaerobic Environments

    Science.gov (United States)

    2009-01-15

    Quantification of Reactants and Products For PCE and TCE analysis in abiotic experiments, a 250 µL aliquot of the supernatant was added to 750 µL isooctane in...reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product , process, or service by...Objective 3 Background 4 Materials and Methods 7 Quantification of Reactants and Products 8 Isotope Measurements

  9. Use of Vegetable Oil in Reductive Dechlorination of Tetrachloroethene

    Science.gov (United States)

    2001-08-01

    have melting points higher than 70oF (21oC). In the experimental setup of this experiment, vegoil exists as a liquid and hence behaves like a LNAPL...under orbital agitation. Constituent Quantity (mg/L) d-biotin folic acid pyridoxine hydrochloride thiamin hydrochloride riboflavin nicotinic acid DL...obtained from the time-course profiles were used to answer the principal points of investigation in the following manner summarized by Tables 1.1 and

  10. Enhanced reductive dechlorination in clay till contaminated with chlorinated solvents

    DEFF Research Database (Denmark)

    Damgaard, Ida

    in high permeability aquifers and has also been applied at a number of low permeability clay till sites. This thesis presents the results of an investigation of chlorinated ethenes (and ethanes) degradation in clay till with the objective of obtaining knowledge of degradation processes in clay till...... and to evaluate ERD as remediation technology. The development of degradation in clay till was investigated at two sites: one where natural attenuation processes (transport, sorption, diffusion and degradation) had been on-going for four decades (Vadsbyvej) and another which had been undergoing ERD for four years...... (direct push delivery, Gl. Kongevej). Degradation of chlorinated ethenes (and ethanes) in the clay till matrix and in embedded high permeability features was investigated by high resolution sampling of intact cores combined with groundwater sampling. An integrated approach using chemical analysis...

  11. Catalytic dechlorination of diclofenac by biogenic palladium in a microbial electrolysis cell

    Science.gov (United States)

    Gusseme, Bart De; Soetaert, Maarten; Hennebel, Tom; Vanhaecke, Lynn; Boon, Nico; Verstraete, Willy

    2012-01-01

    Summary Diclofenac is one of the most commonly detected pharmaceuticals in wastewater treatment plant (WWTP) effluents and the receiving water bodies. In this study, biogenic Pd nanoparticles (‘bio‐Pd’) were successfully applied in a microbial electrolysis cell (MEC) for the catalytic reduction of diclofenac. Hydrogen gas was produced in the cathodic compartment, and consumed as a hydrogen donor by the bio‐Pd on the graphite electrodes. In this way, complete dechlorination of 1 mg diclofenac l−1 was achieved during batch recirculation experiments, whereas no significant removal was observed in the absence of the biocatalyst. The complete dechlorination of diclofenac was demonstrated by the concomitant production of 2‐anilinophenylacetate (APA). Through the addition of −0.8 V to the circuit, continuous and complete removal of diclofenac was achieved in synthetic medium at a minimal HRT of 2 h. Continuous treatment of hospital WWTP effluent containing 1.28 µg diclofenac l−1 resulted in a lower removal efficiency of 57%, which can probably be attributed to the affinity of other environmental constituents for the bio‐Pd catalyst. Nevertheless, reductive catalysis coupled to sustainable hydrogen production in a MEC offers potential to lower the release of micropollutants from point‐sources such as hospital WWTPs. PMID:22221490

  12. Major cost savings associated with biologic dose reduction in patients with inflammatory arthritis.

    LENUS (Irish Health Repository)

    Murphy, C L

    2015-01-01

    The purpose of this study was to explore whether patients with Inflammatory Arthritis (IA) (Rheumatoid Arthritis (RA), Psoriatic Arthritis (PsA) or Ankylosing Spondylitis (AS)) would remain in remission following a reduction in biologic dosing frequency and to calculate the cost savings associated with dose reduction. This prospective non-blinded non-randomised study commenced in 2010. Patients with Inflammatory Arthritis being treated with a biologic agent were screened for disease activity. A cohort of those in remission according to standardized disease activity indices (DAS28 < 2.6, BASDAI < 4) was offered a reduction in dosing frequency of two commonly used biologic therapies (etanercept 50 mg once per fortnight instead of weekly, adalimumab 40 mg once per month instead of fortnightly). Patients were assessed for disease activity at 3, 6, 12, 18 and 24 months following reduction in dosing frequency. Cost saving was calculated. 79 patients with inflammatory arthritis in remission were recruited. 57% had rheumatoid arthritis (n = 45), 13% psoriatic arthritis (n = 10) and 30% ankylosing spondylitis (n = 24). 57% (n = 45) were taking etanercept and 43% (n = 34) adalimumab. The percentage of patients in remission at 24 months was 56% (n = 44). This resulted in an actual saving to the state of approximately 600,000 euro over two years. This study demonstrates the reduction in biologic dosing frequency is feasible in Inflammatory Arthritis. There was a considerable cost saving at two years. The potential for major cost savings in biologic usage should be pursued further.

  13. Dechlorination of 1,2– dichloroethane by Pseudomonas aeruginosa ...

    African Journals Online (AJOL)

    As part of our attempt at isolating and stocking some indigenous microbial species, we isolated a bacterium from a waste dumpsite with appreciable dechlorination activity. 16S rDNA profiling revealed the isolate to be a strain of Pseudomonas aeruginosa and the sequence has been deposited in the NCBI nucleotide ...

  14. Dechlorination of 1,2– dichloroethane by Pseudomonas aeruginosa ...

    African Journals Online (AJOL)

    Administrator

    3Molecular microbial ecology lab, German Research Center for Biotechnology, Braunschweig, Germany. Accepted 9 September 2004 ... Key words: Dechlorination, 16S rDNA, bioremediation, Pseudomonas aeruginosa OK1. INTRODUCTION ... are common contaminants of soil and ground waters owing to improper ...

  15. 76 FR 59705 - Guidance for Industry on User Fee Waivers, Reductions, and Refunds for Drug and Biological...

    Science.gov (United States)

    2011-09-27

    ... Refunds for Drug and Biological Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION... industry entitled ``User Fee Waivers, Reductions, and Refunds for Drug and Biological Products.'' This... a guidance for industry entitled ``User Fee Waivers, Reductions, and Refunds for Drug and Biological...

  16. Organometallic copper I, II or III species in an intramolecular dechlorination reaction

    KAUST Repository

    Poater, Albert

    2013-03-15

    The present paper gives insight into an intramolecular dechlorination reaction involving Copper (I) and an ArCH2Cl moiety. The discussion of the presence of a CuIII organometallic intermediate becomes a challenge, and because of the lack of clear experimental detection of this proposed intermediate, and due to the computational evidence that it is less stable than other isomeric species, it can be ruled out for the complex studied here. Our calculations are completely consistent with the key hypothesis of Karlin et al. that TMPA-CuI is the substrate of intramolecular dechlorination reactions as well as the source to generate organometallic species. However the organometallic character of some intermediates has been refused because computationally these species are less stable than other isomers. Thus this study constitutes an additional piece towards the full understanding of a class of reaction of biological relevance. Further, the lack of high energy barriers and deep energy wells along the reaction pathway explains the experimental difficulties to trap other intermediates. © Springer-Verlag Berlin Heidelberg 2013.

  17. Improved Dechlorinating Performance of Upflow Anaerobic Sludge Blanket Reactors by Incorporation of Dehalospirillum multivorans into Granular Sludge

    Science.gov (United States)

    Hörber, Christine; Christiansen, Nina; Arvin, Erik; Ahring, Birgitte K.

    1998-01-01

    Dechlorination of tetrachloroethene, also known as perchloroethylene (PCE), was investigated in an upflow anaerobic sludge blanket (UASB) reactor after incorporation of the strictly anaerobic, reductively dechlorinating bacterium Dehalospirillum multivorans into granular sludge. This reactor was compared to the reference 1 (R1) reactor, where the granules were autoclaved to remove all dechlorinating abilities before inoculation, and to the reference 2 (R2) reactor, containing only living granular sludge. All three reactors were fed mineral medium containing 3 to 57 μM PCE, 2 mM formate, and 0.5 mM acetate and were operated under sterile conditions. In the test reactor, an average of 93% (mole/mole) of the effluent chloroethenes was dichloroethene (DCE), compared to 99% (mole/mole) in the R1 reactor. The R2 reactor, with no inoculation, produced only trichloroethene (TCE), averaging 43% (mole/mole) of the effluent chloroethenes. No dechlorination of PCE was observed in an abiotic control consisting of sterile granules without inoculum. During continuous operation with stepwise-reduced hydraulic retention times (HRTs), both the test reactor and the R1 reactor showed conversion of PCE to DCE, even at HRTs much lower than the reciprocal maximum specific growth rate of D. multivorans, indicating that this bacterium was immobilized in the living and autoclaved granular sludge. In contrast, the R2 reactor, with no inoculation of D. multivorans, only converted PCE to TCE under the same conditions. Immobilization could be confirmed by using fluorescein-labeled antibody probes raised against D. multivorans. In granules obtained from the R1 reactor, D. multivorans grew mainly in microcolonies located in the centers of the granules, while in the test reactor, the bacterium mainly covered the surfaces of granules. PMID:9572963

  18. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  19. Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater.

    Science.gov (United States)

    Yuan, Qing-Bin; Guo, Mei-Ting; Wei, Wu-Ji; Yang, Jian

    2016-10-01

    Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions.

  20. Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases

    Science.gov (United States)

    Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.

    2010-12-01

    Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement

  1. Spatial Distribution of PCB Dechlorinating Bacteria and Activities in Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Birthe V. Kjellerup

    2012-01-01

    Full Text Available Soil samples contaminated with Aroclor 1260 were analyzed for microbial PCB dechlorination potential, which is the rate-limiting step for complete PCB degradation. The average chlorines per biphenyl varied throughout the site suggesting that different rates of in situ dechlorination had occurred over time. Analysis of PCB transforming (aerobic and anaerobic microbial communities and dechlorinating potential revealed spatial heterogeneity of both putative PCB transforming phylotypes and dechlorination activity. Some soil samples inhibited PCB dechlorination in active sediment from Baltimore Harbor indicating that metal or organic cocontaminants might cause the observed heterogeneity of in situ dechlorination. Bioaugmentation of soil samples contaminated with PCBs ranging from 4.6 to 265 ppm with a pure culture of the PCB dechlorinating bacterium Dehalobium chlorocoercia DF-1 also yielded heterologous results with significant dechlorination of weathered PCBs observed in one location. The detection of indigenous PCB dehalorespiring activity combined with the detection of putative dechlorinating bacteria and biphenyl dioxygenase genes in the soil aggregates suggests that the potential exists for complete mineralization of PCBs in soils. However, in contrast to sediments, the heterologous distribution of microorganisms, PCBs, and inhibitory cocontaminants is a significant challenge for the development of in situ microbial treatment of PCB impacted soils.

  2. A stepwise dechlorination/cross-coupling strategy to diversify the vancomycin 'in-chloride'.

    Science.gov (United States)

    Wadzinski, Tyler J; Gea, Katherine D; Miller, Scott J

    2016-02-01

    In an effort to rapidly access vancomycin analogues bearing diverse functionality at the 6c-Cl (the 'in-chloride') position, a two-step dechlorination/cross-coupling protocol was developed. Conditions for efficient cross-coupling of the relatively unreactive 6c-Cl group were found that ensure high conversion with minimal product decomposition. A set of 2c-dechloro-6c-functionalized vancomycin derivatives was prepared, and antibiotic activities of the compounds were evaluated against a panel of vancomycin-resistant and vancomycin-susceptible strains. Results from biological testing further underscore the steric sensitivity of vancomycin's binding pocket. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Enhanced CAH dechlorination in a low permeability, variably-saturated medium

    Science.gov (United States)

    Martin, J.P.; Sorenson, K.S.; Peterson, L.N.; Brennan, R.A.; Werth, C.J.; Sanford, R.A.; Bures, G.H.; Taylor, C.J.; ,

    2002-01-01

    An innovative pilot-scale field test was performed to enhance the anaerobic reductive dechlorination (ARD) of chlorinated aliphatic hydrocarbons (CAHs) in a low permeability, variably-saturated formation. The selected technology combines the use of a hydraulic fracturing (fracking) technique with enhanced bioremediation through the creation of highly-permeable sand- and electron donor-filled fractures in the low permeability matrix. Chitin was selected as the electron donor because of its unique properties as a polymeric organic material and based on the results of lab studies that indicated its ability to support ARD. The distribution and impact of chitin- and sand-filled fractures to the system was evaluated using hydrologic, geophysical, and geochemical parameters. The results indicate that, where distributed, chitin favorably impacted redox conditions and supported enhanced ARD of CAHs. These results indicate that this technology may be a viable and cost-effective approach for remediation of low-permeability, variably saturated systems.

  4. Shape component analysis: structure-preserving dimension reduction on biological shape spaces.

    Science.gov (United States)

    Lee, Hao-Chih; Liao, Tao; Zhang, Yongjie Jessica; Yang, Ge

    2016-03-01

    Quantitative shape analysis is required by a wide range of biological studies across diverse scales, ranging from molecules to cells and organisms. In particular, high-throughput and systems-level studies of biological structures and functions have started to produce large volumes of complex high-dimensional shape data. Analysis and understanding of high-dimensional biological shape data require dimension-reduction techniques. We have developed a technique for non-linear dimension reduction of 2D and 3D biological shape representations on their Riemannian spaces. A key feature of this technique is that it preserves distances between different shapes in an embedded low-dimensional shape space. We demonstrate an application of this technique by combining it with non-linear mean-shift clustering on the Riemannian spaces for unsupervised clustering of shapes of cellular organelles and proteins. Source code and data for reproducing results of this article are freely available at https://github.com/ccdlcmu/shape_component_analysis_Matlab The implementation was made in MATLAB and supported on MS Windows, Linux and Mac OS. geyang@andrew.cmu.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Dechlorination of PCBs in Aqueous Extracts from Soils Contaminated by PCBs by Application of Zero-valent Nano-iron in Statu Nascendi. Influence of Microwaves on the Rate of Reaction

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Maléterová, Ywetta; Šolcová, Olga; Kaštánek, P.

    2010-01-01

    Roč. 1, č. 1 (2010), s. 50-56 R&D Projects: GA AV ČR KAN400720701; GA ČR GA104/09/0694 Keywords : nano-Fe * PCB * reductive dechlorination Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  6. Metabolic networks of Sodalis glossinidius: a systems biology approach to reductive evolution.

    Science.gov (United States)

    Belda, Eugeni; Silva, Francisco J; Peretó, Juli; Moya, Andrés

    2012-01-01

    Genome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of this process. In the present study, genome reduction is studied from a systems biology perspective through the reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius. The functional profile of ancestral and extant metabolic networks sheds light on the evolutionary events underlying transition to a host-dependent lifestyle. Meanwhile, reductive evolution simulations on the extant metabolic network can predict possible future evolution of S. glossinidius in the context of genome reduction. Finally, knockout simulations in different metabolic systems reveal a gradual decrease in network robustness to different mutational events for bacterial endosymbionts at different stages of the symbiotic association. Stoichiometric analysis reveals few gene inactivation events whose effects on the functionality of S. glossinidius metabolic systems are drastic enough to account for the ecological transition from a free-living to host-dependent lifestyle. The decrease in network robustness across different metabolic systems may be associated with the progressive integration in the more stable environment provided by the insect host. Finally, reductive evolution simulations reveal the strong influence that external conditions exert on the evolvability of metabolic systems.

  7. An Experimental and Theoretical Approach to Visualize Dechlorinating Bacteria in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    McNab, Walt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, Eddie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jackson, Paul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Detwiler, Russ [Univ. of California, Irvine, CA (United States)

    2010-03-25

    The goal of this study is to understand how anaerobic dechlorinating bacteria are distributed in porous media following injection, in the context of the issues listed above. To address this goal, a series of experiments were conducted involving KB-1, a commercial microbial consortium containing Dehalococcoides bacteria, the only genus of organisms known to completely dechlorinate TCE into the benign end product ethene.

  8. Understanding Hydrothermal Dechlorination of PVC by Focusing on the Operating Conditions and Hydrochar Characteristics

    Directory of Open Access Journals (Sweden)

    Tian Li

    2017-03-01

    Full Text Available To remove chlorine from chlorinated wastes efficiently, the hydrothermal treatment (HT of PVC was investigated with a lower alkaline dosage in this work. Some typical operating conditions were investigated to find out the most important factor affecting the dechlorination efficiency (DE. The FTIR technique was employed to detect the functional groups in PVC and hydrochars generated to reveal the possible pathways for chlorine removal. The results show that the HT temperature was a key parameter to control the dechlorination reaction rate. At a HT temperature of 240 °C, about 94.3% of chlorine could be removed from the PVC with 1% NaOH. The usage of NaOH was helpful for chlorine removal, while a higher dosage might also hinder this process because of the surface poisoning and coverage of free sites. To some extent, the DE was increased with the residence time. At a residence time of 30 min, the DE reached a maximum of 76.74%. A longer residence time could promote the generation of pores in hydrochar which is responsible for the reduction in DE because of the re-absorption of water-soluble chlorine. According to the FTIR results, the peak intensities of both C=CH and C=C stretching vibrations in hydrochar were increased, while the peak at around 3300 cm−1 representing the –OH group was not obvious, indicating that the dehydrochlorination (elimination reaction was a main route for chlorine removal under these conditions studied in this work.

  9. The important role of polyvinylpyrrolidone and Cu on enhancing dechlorination of 2,4-dichlorophenol by Cu/Fe nanoparticles: Performance and mechanism study

    Science.gov (United States)

    Fang, Liping; Xu, Cuihong; Zhang, Wenbin; Huang, Li-Zhi

    2018-03-01

    The important role of polyvinylpyrrolidone (PVP) and Cu on the reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) by Cu/Fe bimetal nanoparticles has been investigated. The synthesized PVP coated Cu/Fe bimetal nanoparticles with different Cu/Fe ratios were systematically characterized by FTIR, XRD, TEM and magnetic hysteresis loops. The Cu/Fe ratio and the PVP loading were optimized for dechlorination performance, and the optimum ratio of PVP to Cu/Fe was found to be 0.35 and the content of Cu in Cu/Fe nanoparticles was 41%. The presence of PVP as a dispersant/stabilizer results in a highly-dispersed Cu/Fe NPs and increase the reactivity of Cu/Fe NPs for 2,4-DCP removal. The dechlorination rate was enhanced at lower pH and higher temperature conditions. The presence of humic acid, PO43-, NO3-, SO42- leads to a slightly decreased removal efficiency of 2,4-DCP. The magnetic property of PVP-Cu/Fe nanoparticles allows rapid magnetic separation of the catalysts after reaction. A galvanic corrosion model was proposed where iron corrodes and transfers electrons to Cu-rich catalytic regions of the nanoparticles, and finally accelerating the reduction efficiency of 2,4-DCP.

  10. Dechlorination of PVC wastes by hydrothermal treatment using alkaline additives.

    Science.gov (United States)

    Zhao, Peitao; Li, Tian; Yan, Weijie; Yuan, Longji

    2018-04-01

    Some chemicals were usually utilized in the hydrothermal dechlorination (HTD) of chlorine-containing wastes without revealing their roles. This work intends to investigate the role of chemical additives in the HTD of PVC (polyvinyl chloride). Several chemicals, including Na 2 CO 3 , KOH, NaOH, NH 3 ·H 2 O, CaO and NaHCO 3 , were added into the PVC HTD process, which was conducted in subcritical Ni 2+ -containing water at 220°C for 30 min. The results show the alkalinity of additives had notable effects on the dechlorination efficiency (DE) of PVC due to the neutralization between HCl and additives. The most effective additive is Na 2 CO 3 , with the maximum DE of 65.12% at a Na 2 CO 3 concentration of 0.025 M in this study. According to SEM, the hydrochar obtained from the HTD with Na 2 CO 3 become more porous and looser than the others did, which contributed to the acceleration of PVC dechlorination. The DE vibration with the concentration of additives was different. For Na 2 CO 3 , it was firstly increased and then decreased with Na 2 CO 3 concentration increasing from 0.01 to 0.04 M. For KOH and NaOH, it kept reducing with the concentration increasing from 0.02 to 0.08 M. The drop in DE was ascribed to surface poisoning and a loss in the supported active phase resulting from the formation of metal chloride species. FTIR analysis shows that the elimination of hydrogen chloride was the main route for HTD of PVC. All the results provide some fundamental data to find some cheap but efficient chemicals with aim to recycle the chlorinated organic wastes effectively.

  11. The effect of co-substrate activation on indigenous and bioaugmented PCB dechlorinating bacterial communities in sediment microcosms.

    Science.gov (United States)

    Park, Joong-Wook; Krumins, Valdis; Kjellerup, Birthe V; Fennell, Donna E; Rodenburg, Lisa A; Sowers, Kevin R; Kerkhof, Lee J; Häggblom, Max M

    2011-03-01

    Microbial reductive dechlorination by members of the phylum Chloroflexi, including the genus Dehalococcoides, may play an important role in natural detoxification of highly chlorinated environmental pollutants, such as polychlorinated biphenyls (PCBs). Previously, we showed the increase of an indigenous bacterial population belonging to the Pinellas subgroup of Dehalococcoides spp. in Anacostia River sediment (Washington DC, USA) microcosms treated with halogenated co-substrates ("haloprimers"), tetrachlorobenzene (TeCB), or pentachloronitrobenzene (PCNB). The PCNB-amended microcosms exhibited enhanced dechlorination of weathered PCBs, while TeCB-amended microcosms did not. We therefore developed and used different phylogenetic approaches to discriminate the effect of the two different haloprimers. We also developed complementary approaches to monitor the effects of haloprimer treatments on 12 putative reductive dehalogenase (rdh) genes common to Dehalococcoides ethenogenes strain 195 and Dehalococcoides sp. strain CBDB1. Our results indicate that 16S rRNA gene-based phylogenetic analyses have a limit in their ability to distinguish the effects of two haloprimer treatments and that two of rdh genes were present in high abundance when microcosms were amended with PCNB, but not TeCB. rdh gene-based phylogenetic analysis supports that these two rdh genes originated from the Pinellas subgroup of Dehalococcoides spp., which corresponds to the 16S rRNA gene-based phylogenetic analysis.

  12. Enhancement of Degradation and Dechlorination of Trichloroethylene via Supporting Palladium/Iron Bimetallic Nanoparticles onto Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Jianjun Wei

    2016-07-01

    Full Text Available This study is aimed to prevent the agglomeration of Pd/Fe bimetallic nanoparticles and thus improve the efficiency toward degradation and dechlorination of chlorinated organic contaminants. A mesoporous silica with a primary pore diameter of 8.3 nm and a specific surface area of 688 m2/g was prepared and used as the host of Pd/Fe nanoparticles. The Pd/Fe nanoparticles were deposited onto or into the mesoporous silica by reduction of ferrous ion and hexachloropalladate ion in aqueous phase. Batch degradation and dechlorination reactions of trichloroethylene were conducted with initial trichloroethylene concentration of 23.7 mg/L, iron loading of 203 or 1.91 × 103 mg/L and silica loading of 8.10 g/L at 25 °C. Concentration of trichloroethylene occurs on the supported Pd/Fe nanoparticles, with trichloroethylene degrading to 56% and 59% in 30 min on the supported Pd/Fe nanoparticles with weight percentage of palladium to iron at 0.075% and 0.10% respectively. The supported Pd/Fe nanoparticles exhibit better dechlorination activity. When the supported Pd/Fe nanoparticles with a weight percentage of palladium to iron of 0.10% were loaded much less than the bare counterpart, the yield of ethylene plus ethane in 10 h on them was comparable, i.e., 19% vs. 21%. This study offers a future approach to efficiently combine the reactivity of supported Pd/Fe nanoparticles and the adsorption ability of mesoporous silica.

  13. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices

    Directory of Open Access Journals (Sweden)

    Kee Hun Do

    2015-10-01

    Full Text Available Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. Moreover, the health benefits of spices have been extensively recognized in recent studies. However, inevitable contaminants, including mycotoxins, in medicinal herbs and spices can cause serious problems for humans in spite of their health benefits. Along with the different nation-based occurrences of mycotoxins, the ultimate exposure and toxicities can be diversely influenced by the endogenous food components in different commodities of the medicinal herbs and spices. The phytochemicals in these food stuffs can influence mold growth, mycotoxin production and biological action of the mycotoxins in exposed crops, as well as in animal and human bodies. The present review focuses on the occurrence of mycotoxins in medicinal herbs and spices and the biological interaction between mold, mycotoxin and herbal components. These networks will provide insights into the methods of mycotoxin reduction and toxicological risk assessment of mycotoxin-contaminated medicinal food components in the environment and biological organisms.

  14. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices.

    Science.gov (United States)

    Do, Kee Hun; An, Tae Jin; Oh, Sang-Keun; Moon, Yuseok

    2015-10-14

    Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. Moreover, the health benefits of spices have been extensively recognized in recent studies. However, inevitable contaminants, including mycotoxins, in medicinal herbs and spices can cause serious problems for humans in spite of their health benefits. Along with the different nation-based occurrences of mycotoxins, the ultimate exposure and toxicities can be diversely influenced by the endogenous food components in different commodities of the medicinal herbs and spices. The phytochemicals in these food stuffs can influence mold growth, mycotoxin production and biological action of the mycotoxins in exposed crops, as well as in animal and human bodies. The present review focuses on the occurrence of mycotoxins in medicinal herbs and spices and the biological interaction between mold, mycotoxin and herbal components. These networks will provide insights into the methods of mycotoxin reduction and toxicological risk assessment of mycotoxin-contaminated medicinal food components in the environment and biological organisms.

  15. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    Directory of Open Access Journals (Sweden)

    Liu Chunbao

    2016-01-01

    Full Text Available Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  16. Efficient reconstruction of biological networks via transitive reduction on general purpose graphics processors.

    Science.gov (United States)

    Bošnački, Dragan; Odenbrett, Maximilian R; Wijs, Anton; Ligtenberg, Willem; Hilbers, Peter

    2012-10-30

    Techniques for reconstruction of biological networks which are based on perturbation experiments often predict direct interactions between nodes that do not exist. Transitive reduction removes such relations if they can be explained by an indirect path of influences. The existing algorithms for transitive reduction are sequential and might suffer from too long run times for large networks. They also exhibit the anomaly that some existing direct interactions are also removed. We develop efficient scalable parallel algorithms for transitive reduction on general purpose graphics processing units for both standard (unweighted) and weighted graphs. Edge weights are regarded as uncertainties of interactions. A direct interaction is removed only if there exists an indirect interaction path between the same nodes which is strictly more certain than the direct one. This is a refinement of the removal condition for the unweighted graphs and avoids to a great extent the erroneous elimination of direct edges. Parallel implementations of these algorithms can achieve speed-ups of two orders of magnitude compared to their sequential counterparts. Our experiments show that: i) taking into account the edge weights improves the reconstruction quality compared to the unweighted case; ii) it is advantageous not to distinguish between positive and negative interactions since this lowers the complexity of the algorithms from NP-complete to polynomial without loss of quality.

  17. [Perchlorate removal from underground water by anaerobic biological reduction with bark].

    Science.gov (United States)

    Wang, Rui; Liu, Fei; Chen, Nan; Chen, Hong-Han

    2013-07-01

    Batch experiments were conducted to check the feasibility of perchlorate removal from underground water with bark as a carbon source and reaction media, the effect of bark dosage, temperature and initial perchlorate concentrations on perchlorate reduction were also investigated. The results indicated that compared to corn cob, sweet potato and potato, bark in combination with perchlorate reducing microorganisms (PRMs) can efficiently achieve perchlorate removal from underground water, the concentrations of dissolved organic carbon (DOC) which was available to PRMs was the limiting factor that affected the perchlorate removal efficiency. Degradation of 10 mg perchlorate needed to consume 35-40 mg DOC when using bark as the solid carbon source. The removal rate of perchlorate was increased by about 3 fold when the bark dosage was increased from 1:500 to 3:500; however, further increase of solid-liquid ratio (over 5:500) provided no further benefit to the perchlorate reduction rate. The rate constant reached 1.365 mg x (L x d)(-1) at (38 +/- 1) degrees C which was the highest in the batch experiments. The activation energy was 31.08 kJ x mol(-1). Anaerobic biological reduction supported by bark had a good impact on the water quality; the high perchlorate concentration did not cause substrate inhibition.

  18. Chlorination and dechlorination rates in a forest soil — A combined modelling and experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Montelius, Malin, E-mail: malin.montelius@liu.se [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden); Svensson, Teresia [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden); Lourino-Cabana, Beatriz [EDF, Laboratoire National d' Hydraulique et Environnement, 78401 Chatou (France); Thiry, Yves [Andra, Research and Development Division, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Bastviken, David [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden)

    2016-06-01

    Much of the total pool of chlorine (Cl) in soil consists of naturally produced organic chlorine (Cl{sub org}). The chlorination of bulk organic matter at substantial rates has been experimentally confirmed in various soil types. The subsequent fates of Cl{sub org} are important for ecosystem Cl cycling and residence times. As most previous research into dechlorination in soils has examined either single substances or specific groups of compounds, we lack information about overall bulk dechlorination rates. Here we assessed bulk organic matter chlorination and dechlorination rates in coniferous forest soil based on a radiotracer experiment conducted under various environmental conditions (additional water, labile organic matter, and ammonium nitrate). Experiment results were used to develop a model to estimate specific chlorination (i.e., fraction of Cl{sup −} transformed to Cl{sub org} per time unit) and specific dechlorination (i.e., fraction of Cl{sub org} transformed to Cl{sup −} per time unit) rates. The results indicate that chlorination and dechlorination occurred simultaneously under all tested environmental conditions. Specific chlorination rates ranged from 0.0005 to 0.01 d{sup −1} and were hampered by nitrogen fertilization but were otherwise similar among the treatments. Specific dechlorination rates were 0.01–0.03 d{sup −1} and were similar among all treatments. This study finds that soil Cl{sub org} levels result from a dynamic equilibrium between the chlorination and rapid dechlorination of some Cl{sub org} compounds, while another Cl{sub org} pool is dechlorinated more slowly. Altogether, this study demonstrates a highly active Cl cycling in soils. - Highlights: • Chlorination and dechlorination rates in soil were revealed by a radiotracer method. • Chlorination was hampered by nitrogen addition. • Both Cl{sup −} and many Cl{sub org} compounds are highly reactive in soils. • Some formed Cl{sub org} seem to be refractory.

  19. Influence of Bicarbonate, Sulfate, and Electron Donors on Biological reduction of Uranium and Microbial Community Composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wensui [ORNL; Zhou, Jizhong [ORNL; Wu, Weimin [ORNL; Yan, Tingfen [ORNL; Criddle, Craig [ORNL; Jardine, Philip M [ORNL; Gu, Baohua [ORNL

    2007-01-01

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.

  20. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo Wensui [Oak Ridge Inst. for Science and Education, TN (United States); Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Wu Wei-Min; Criddle, C.S. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; Yan Tingfen [Oak Ridge Inst. for Science and Education, TN (United States); Jardine, P.M.; Gu Baohua [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Zhou Jizhong [Oklahoma Univ., Norman, OK (United States). Dept. of Botany and Microbiology

    2007-12-15

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low-bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high-bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and groundwater geochemistry alter microbial communities responsible for U(VI) reduction. (orig.)

  1. Human urinary biomarkers of dioxin exposure: analysis by metabolomics and biologically driven data dimensionality reduction.

    Science.gov (United States)

    Jeanneret, Fabienne; Boccard, Julien; Badoud, Flavia; Sorg, Olivier; Tonoli, David; Pelclova, Daniela; Vlckova, Stepanka; Rutledge, Douglas N; Samer, Caroline F; Hochstrasser, Denis; Saurat, Jean-Hilaire; Rudaz, Serge

    2014-10-15

    Untargeted metabolomic approaches offer new opportunities for a deeper understanding of the molecular events related to toxic exposure. This study proposes a metabolomic investigation of biochemical alterations occurring in urine as a result of dioxin toxicity. Urine samples were collected from Czech chemical workers submitted to severe dioxin occupational exposure in a herbicide production plant in the late 1960s. Experiments were carried out with ultra-high pressure liquid chromatography (UHPLC) coupled to high-resolution quadrupole time-of-flight (QTOF) mass spectrometry. A chemistry-driven feature selection was applied to focus on steroid-related metabolites. Supervised multivariate data analysis allowed biomarkers, mainly related to bile acids, to be highlighted. These results supported the hypothesis of liver damage and oxidative stress for long-term dioxin toxicity. As a second step of data analysis, the information gained from the urine analysis of Victor Yushchenko after his poisoning was examined. A subset of relevant urinary markers of acute dioxin toxicity from this extreme phenotype, including glucuro- and sulfo-conjugated endogenous steroid metabolites and bile acids, was assessed for its ability to detect long-term effects of exposure. The metabolomic strategy presented in this work allowed the determination of metabolic patterns related to dioxin effects in human and the discovery of highly predictive subsets of biologically meaningful and clinically relevant compounds. These results are expected to provide valuable information for a deeper understanding of the molecular events related to dioxin toxicity. Furthermore, it presents an original methodology of data dimensionality reduction by using extreme phenotype as a guide to select relevant features prior to data modeling (biologically driven data reduction). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Biological sludge reduction during abattoir wastewater treatment process using a sequencing batch aerobic system.

    Science.gov (United States)

    Keskes, Sajiâa; Bouallagui, Hassib; Godon, Jean Jacques; Abid, Sami; Hamdi, Moktar

    2013-01-01

    Excess sludge disposal during biological treatment of wastewater is subject to numerous constraints, including social, health and regulatory factors. To reduce the amount of excess sludge, coupled processes involving different biological technologies are currently under taken. This work presents a laboratory scale sequencing batch aerobic system included an anaerobic zone for biomass synchronization (SBAAS: sequencing batch aerobic anaerobic system). This system was adopted to reduce sludge production during abattoir wastewater (AW) treatment. The average chemical oxygen demand (COD) removal efficiency of 89% was obtained at a hydraulic retention time (HRT) and a sludge retention time (SRT) of 2 days and 15-20 days, respectively. The comparison of SBAAS performances with a conventional sequencing batch activated sludge system (SBASS) found that the observed biomass production yield (Y(obs)) were in the ranges of 0.26 and 0.7 g suspended solids g(-1) COD removed, respectively. A significant reduction in the excess biomass production of 63% was observed by using the SBAAS. In fact, in the anaerobic zone microorganisms consume the intracellular stocks of energy by endogenous metabolism, which limits biosynthesis and accelerates sludge decay. The single strand conformation polymorphism (SSCP) method was used to study the dynamic and the diversity of bacterial communities. Results showed a significant change in the population structure by including the anaerobic stage in the process, and revealed clearly that the sludge production yield can be correlated with the bacterial communities present in the system.

  3. Biological reduction of nitrates in wastewaters from nuclear processing using a fluidized-bed bioreactor

    International Nuclear Information System (INIS)

    Pitt, W.W.; Hancher, C.W.; Patton, B.D.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt.% NO 3 - and as large as 2000 m 3 /day, in the nuclear fuel cycle. The biological reduction of nitrate in wastewater to gaseous nitrogen, accompanied by the oxidation of a nutrient carbon source to gaseous carbon dioxide, is an ecologically sound and cost-effective method of treating wastewaters containing nitrates. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The denitrification bacteria are a mixed culture derived from garden soil; the major strain is Pseudomonas. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25- to 0.50-mm-diam coal fluidization particles, which are then fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . This paper describes the results of a biodenitrification R and D program based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 g N(NO 3 - ) per day per liter of empty bioreactor volume. 4 figures, 7 tables

  4. Fat, oil and grease reduction in commercial kitchen ductwork: A novel biological approach.

    Science.gov (United States)

    Mudie, S; Vahdati, M

    2017-03-01

    Recent research has characterised emissions upon cooking a variety of foods in a commercial catering environment in terms of volume, particle size and composition. However, there has been limited focus on the deposition of solid grease in commercial kitchen ductwork, the sustainability of these systems and their implications on the heat recovery potential of kitchen ventilation extract air. This paper reviews the literature concerning grease, commonly referred to as Fat, Oils and Grease (FOG) abatement strategies and finds that many of these systems fall short of claimed performances. Furthermore these technologies often add to the energy cost of the operation and reduce the potential application of heat recovery in the ventilation ductwork. The aim of this study was to develop and evaluate a novel FOG removal system, with a focus on low environmental impact. The novel FOG removal system, utilises the biological activity of Bacillus subtilis and associated enzymes. The biological reagent is delivered via a misting system. The temperature, relative humidity and FOG deposit thickness were measured in the ductwork throughout a 3month trial period. FOG deposit thickness was reduced by 47% within 7weeks. The system was found to be effective at reducing the FOG deposit thickness with minimal energy cost and impact upon the kitchen and external environment. Internal ductwork operating temperature was measured with respect to future heat recovery potential and a reduction of 7°C was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biological reduction of aflatoxin B1 in wheat flour using yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mahsa Azimi

    2015-09-01

    Full Text Available Background: The safest way to reduce mycotoxins in contaminated foods with it it is using certain strains of various microbes. Aim of this study is biological reduction of aflatoxin B1 by the yeast Saccharomyces cerevisiae (S. cerevisiae in wheat flour samples that were collected in Chaloos city (Mazandaran province, North Iran. Material and Methods: Aflatoxin B1 contamination was measured by ELISA method in 22 samples of wheat flour. Then S. cerevisiae was added to primary wheat flour. After 48 h aflatoxin B1 contamination in samples were measured by ELISA, again. For statistical analysis, the statistical software SPSS18 and t-test was used. Results: all 22 samples of wheat flour were contaminated with aflatoxin B1. The minimum and maximum levels of aflatoxin B1 in primary wheat flour were 1.1 and 10.6 ppb, respectively. S. cerevisiae reduced the amount of aflatoxin B1 in wheat flour samples. Minimum and maximum amount of aflatoxin contamination after adding S. cerevisiae was 0.5 and 9.1 ppb, respectively. Conclusion: Inhibitory effect of S. cerevisiae and aflatoxin B1 reduction in wheat flour was proved in this study. Therefore we can be hoped that yeast S. cerevisiae as neutralizing agents can be used in flour for this toxin. Consumption of products that contaminated with aflatoxin B1 endangers consumers' health, thus reducing of this toxin in the food should be considered.

  6. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  7. Enhanced anaerobic dechlorination of polychlorinated biphenyl in sediments by bioanode stimulation

    International Nuclear Information System (INIS)

    Yu, Hui; Feng, Chunhua; Liu, Xiaoping; Yi, Xiaoyun; Ren, Yuan; Wei, Chaohai

    2016-01-01

    The application of a low-voltage electric field as an electron donor or acceptor to promote the bioremediation of chlorinated organic compounds represents a promising technology meeting the demand of developing an efficient and cost-effective strategy for in situ treatment of PCB-contaminated sediments. Here, we reported that bioanode stimulation with an anodic potential markedly enhanced dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) contained in the sediment at an electronic waste recycling site of Qingyuan, Guangdong, China. The 110-day incubation of the bioanode with a potential poised at 0.2 V relative to saturated calomel electrode enabled 58% transformation of the total PCB 61 at the initial concentration of 100 μmol kg −1 , while only 23% was reduced in the open-circuit reference experiment. The introduction of acetate to the bioelectrochemical reactor (BER) further improved PCB 61 transformation to 82%. Analysis of the bacterial composition showed significant community shifts in response to variations in treatment. At phylum level, the bioanode stimulation resulted in substantially increased abundance of Actinobacteria, Bacteroidetes, and Chloroflexi either capable of PCB dechlorination, or detected in the PCB-contaminated environment. At genus level, the BER contained two types of microorganisms: electrochemically active bacteria (EAB) represented by Geobacter, Ignavibacterium, and Dysgonomonas, and dechlorinating bacteria including Hydrogenophaga, Alcanivorax, Sedimentibacter, Dehalogenimonas, Comamonas and Vibrio. These results suggest that the presence of EAB can promote the population of dechlorinating bacteria which are responsible for PCB 61 transformation. - Highlights: • A bioelectrochemical reactor (BER) was constructed for anaerobic PCB dechlorination. • Bioanode stimulation substantially enhanced dechlorination of PCB 61. • Electrochemically active bacteria and dechlorinating bacteria coexisted in the BER. - Bioanode

  8. On the implementation of the Biological Threat Reduction Program in the Republic of Uzbekistan

    Science.gov (United States)

    Tuychiev, Laziz; Madaminov, Marifjon

    2013-01-01

    Objective To review the implementation of the Biological Threat Reduction Program (BTRP) of the U.S. Defense Threat Reduction Agency in the Republic of Uzbekistan since 2004. Introduction The Biological Threat Reduction Program (BTRP) has been being implemented in the Republic of Uzbekistan since 2004 within the framework of the Agreement between the Government of the Republic of Uzbekistan and the Government of the United States of America Concerning Cooperation in the Area of the Promotion of Defense Relations and the Prevention of Proliferation of Weapons of Mass Destruction of 06.05.2001. Threat agent detection and response activities that target a list of especially dangerous pathogens are being carried out under the BTRP within the health care system of Uzbekistan. This presentation reviews some of the achievements of the program to date. Results BTRP, in partnership with the Government of Uzbekistan, has funded the establishment of five Regional Diagnostic Laboratories (RDL) and ten Epidemiological Support Units (ESU), operated by the Ministry of Health of Uzbekistan, which are intended to improve the diagnosis of quarantine and especially dangerous infections, and to ensure timely preventive and anti-epidemic measures. RDLs provide a high level of biosafety and biosecurity to conduct rapid laboratory diagnostics (PCR, ELISA) of especially dangerous infections. RDLs are equipped with up-to-date diagnostic laboratory equipment that conforms to internationals standards, as well as with all necessary consumables. Personnel of RDLs have been appropriately trained in epidemiology, clinical and diagnostic techniques for especially dangerous infections, including such state-of-the-art techniques as rapid PCR and ELISA diagnostics, as well as in work and equipment operation safety regulations. Epidemiological Support Units (ESU) have been established on the basis of the Especially Dangerous Infections Divisions of Oblast, city and Rayon Centers for State Sanitary

  9. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon.

    Science.gov (United States)

    Choi, Hyeok; Lawal, Wasiu; Al-Abed, Souhail R

    2015-04-28

    Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Combined Pre-Precipitation, Biological Sludge Hydrolysis and Nitrogen Reduction - A Pilot Demonstration of Integrated Nutrient Removal

    DEFF Research Database (Denmark)

    Kristensen, G. H.; Jørgensen, P. E.; Strube, R.

    1992-01-01

    A pilot study was performed to investigate advanced wastewater treatment by pre-precipitation in combination with biological nitrogen removal supported by biological sludge hydrolysis. The influent wastewater was pretreated by addition of a pre-polymerized aluminum salt, followed by flocculation...... and sedimentation. Chemical pretreatment resulted in 60% COD-reduction and 75% phosphorus reduction. The chemically precipitated primary sludge was exposed to anaerobic sludge hydrolysis at retention times of 1 and 2 days at temperatures in the range of 15-30°C. At a retention time of two days at 20°C, resulting...

  11. Reduction in toxicity of coking wastewater to aquatic organisms by vertical tubular biological reactor.

    Science.gov (United States)

    Zhou, Siyun; Watanabe, Haruna; Wei, Chang; Wang, Dongzhou; Zhou, Jiti; Tatarazako, Norihisa; Masunaga, Shigeki; Zhang, Ying

    2015-05-01

    We conducted a battery of toxicity tests using photo bacterium, algae, crustacean and fish to evaluate acute toxicity profile of coking wastewater, and to evaluate the performance of a novel wastewater treatment process, vertical tubular biological reactor (VTBR), in the removal of toxicity and certain chemical pollutants. A laboratory scale VTBR system was set up to treat industrial coking wastewater, and investigated both chemicals removal efficiency and acute bio-toxicity to aquatic organisms. The results showed that chemical oxygen demand (COD) and phenol reductions by VTBR were approximately 93% and 100%, respectively. VTBR also reduced the acute toxicity of coking wastewater significantly: Toxicity Unit (TU) decreased from 21.2 to 0.4 for Photobacterium phosphoreum, from 9.5 to 0.6 for Isochrysis galbana, from 31.9 to 1.3 for Daphnia magna, and from 30.0 to nearly 0 for Danio rerio. VTBR is an efficient treatment method for the removal of chemical pollutants and acute bio-toxicity from coking wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Kelp, cobbles, and currents: Biologic reduction of coarse grain entrainment stress

    Science.gov (United States)

    Masteller, Claire C; Finnegan, Noah J; Warrick, Jonathan; Miller, Ian M.

    2015-01-01

    Models quantifying the onset of sediment motion do not typically account for the effect of biotic processes because they are difficult to isolate and quantify in relation to physical processes. Here we investigate an example of the interaction of kelp (Order Laminariales) and coarse sediment transport in the coastal zone, where it is possible to directly quantify and test its effect. Kelp is ubiquitous along rocky coastlines and the impact on ecosystems has been well studied. We develop a physical model to explore the reduction in critical shear stress of large cobbles colonized by Nereocystis luetkeana, or bull kelp. Observations of coarse sediment motion at a site in the Strait of Juan de Fuca (northwest United States–Canada boundary channel) confirm the model prediction and show that kelp reduces the critical stress required for transport of a given grain size by as much as 92%, enabling annual coarse sediment transport rates comparable to those of fluvial systems. We demonstrate that biology is fundamental to the physical processes that shape the coastal zone in this setting.

  13. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); CQM - Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal (Portugal)

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  14. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-01-01

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  15. Distribution of chloride ion in MSWI bottom ash and de-chlorination performance.

    Science.gov (United States)

    Chen, Ching-Ho; Chiou, Ing-Jia

    2007-09-05

    When recycling bottom ash from municipal solid waste incinerators (MSWIs), salts and heavy metals contents must be considered; in particular, chloride ions must be addressed because they cause serious corrosion in metals. Therefore, only limited amounts of bottom ash can be utilized as a substitution for material or the bottom ash must be treated at high temperatures prior to use. These factors markedly decrease the applications of bottom ash. In addition to the distribution characteristics of chloride ions, this study also investigates the characteristics change before and after de-chlorination using a counter-flow pipe column and three different flow fluxes for different refuse incinerators as the experiment variables. Thus, this study attempts to determine the appropriate conditions for de-chlorination and an appropriate policy for use of bottom ash as concrete aggregate. The experimental results show that a negative correlation exists between the natural logarithm of the chloride ion concentration and particle size in bottom ash. Characteristics of de-chlorinated bottom ash, such as pH value, mud content, loss on ignition, chloride ion concentration, turbidity, and species intensity, all decrease, meaning that de-chlorination decreased chloride ion content and generates a cleaning effect. The per-unit-time efficiency of de-chlorination is highest in the high flux flow. When flow flux is 80 mL/min, the de-chlorination efficiency is >0.3%/h. However, the shortest time required for bottom ash de-chlorination does not reduce in proportion to the legally prescribed concentration of chloride ion.

  16. Observation of Concerted and Stepwise Multiple Dechlorination Reactions of Perchlorethylene in Electron Ionization Mass Spectrometry According to Measured Chlorine Isotope Effects

    OpenAIRE

    Tang, Caiming; Tan, Jianhua

    2017-01-01

    Dechlorinated fragmental ions of organochlorines can be commonly found on electron ionization-mass spectrometry (EI-MS). Yet it is still unclear whether multiple dechlorination reactions taking place in EI-MS are concerted or stepwise. This study investigated the concertedness of the multiple dechlorination reactions of perchlorethylene (PCE) in EI-MS in light of the observed chlorine isotope effects during different dechlorination reactions along with the detected MS signal intensities. The ...

  17. Chain dechlorination of organic chlorinated compounds in alcohol solutions by 60Co gamma-rays, (1)

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Shimokawa, Toshinari; Sawai, Teruko; Hosoda, Ieji; Kondo, Masaharu.

    1975-01-01

    A study was made on radiolytic dechlorination of pentachlorobenzene in alkaline alcohol solutions. The dechlorination yield (G(Cl - )) was found to depend on the alcohols used as solvent and the concentrations of the chlorinated benzene and hydroxide ion. The high yields obtained in alkaline 2-propanol, sec-butanol and ethanol indicate a chain process in the dechlorination reaction. The value of G(Cl - ) was highest in 2-propanol, and the principal products generated were potassium chloride, acetone and the lower chlorinated benzenes, while a decrease was seen in the hydroxide ion concentration. The concentrations produced of potassium chloride and acetone, as well as the decrease in hydroxide ion concentration, are all roughly equal at all doses. With increasing irradiation dose, pentachlorobenzene was dechlorinated to tetra, tri, di and monochlorobenzene. 1,2,4,5-tetrachlorobenzene, 1,2,4-trichlorobenzene and 1,4-dichlorobenzene were main products. A discussion is given of the detailed mechanism of the dechlorination in alkaline alcohols and the effect of alcohols on G(Cl - ). (auth.)

  18. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Broholm, Mette Martina; Binning, Philip John

    2010-01-01

    Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. A numerical model is developed for assessing leaching processes and for simulating the remediation via enhanced anaerobic dechlorination. The model simulates the transport...... of a contaminant in a single fracture-clay matrix system coupled with a reactive model for anaerobic dechlorination. The model takes into account microbially driven anaerobic dechlorination, where sequential Monod kinetics with competitive inhibition is used to model the reaction rates, and degradation...... to the physical processes, mainly diffusion in the matrix, than to the biogeochemical processes, when dechlorination is assumed to take place in a limited reaction zone only. The inclusion of sequential dechlorination in clay fracture transport models is crucial, as the contaminant flux to the aquifer...

  19. Methods of Model Reduction for Large-Scale Biological Systems: A Survey of Current Methods and Trends.

    Science.gov (United States)

    Snowden, Thomas J; van der Graaf, Piet H; Tindall, Marcus J

    2017-07-01

    Complex models of biochemical reaction systems have become increasingly common in the systems biology literature. The complexity of such models can present a number of obstacles for their practical use, often making problems difficult to intuit or computationally intractable. Methods of model reduction can be employed to alleviate the issue of complexity by seeking to eliminate those portions of a reaction network that have little or no effect upon the outcomes of interest, hence yielding simplified systems that retain an accurate predictive capacity. This review paper seeks to provide a brief overview of a range of such methods and their application in the context of biochemical reaction network models. To achieve this, we provide a brief mathematical account of the main methods including timescale exploitation approaches, reduction via sensitivity analysis, optimisation methods, lumping, and singular value decomposition-based approaches. Methods are reviewed in the context of large-scale systems biology type models, and future areas of research are briefly discussed.

  20. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    International Nuclear Information System (INIS)

    Choi, Hyeok; Lawal, Wasiu; Al-Abed, Souhail R.

    2015-01-01

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls

  1. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok, E-mail: hchoi@uta.edu [Department of Civil Engineering, The University of Texas at Arlington, 416 Yates Street, Arlington, TX 76019-0308 (United States); Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Lawal, Wasiu [Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268 (United States)

    2015-04-28

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls.

  2. Smoking reduction fails to improve clinical and biological markers of cardiac disease: a randomized controlled trial.

    Science.gov (United States)

    Joseph, Anne M; Hecht, Stephen S; Murphy, Sharon E; Lando, Harry; Carmella, Steven G; Gross, Myron; Bliss, Robin; Le, Chap T; Hatsukami, Dorothy K

    2008-03-01

    Cigarette reduction has been proposed as a treatment goal for smokers who are not interested in stopping completely. This randomized controlled trial was designed to determine the effect of a smoking reduction intervention on smoking behavior, symptoms of heart disease, and biomarkers of tobacco exposure. It included 152 patients with heart disease who did not intend to stop smoking in the next 30 days. Participants were randomly assigned to smoking reduction (SR) or usual care (UC). SR subjects received counseling and nicotine replacement therapy to encourage > or =50% reduction in cigarettes per day (CPD). They were followed at 1, 3, 6, 12 and 18 months to assess smoking, heart disease symptoms, quality of life and nicotine, cotinine, carbon monoxide (CO), white blood cell (WBC) count, fibrinogen, hs-C-reactive protein (hs-CRP), F2-isoprostane, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronides (total NNAL), and 1-hydroxypyrene (1-HOP). At 6 months SR participants reduced by 10.9 CPD, compared with 7.4 CPD in UC (difference NS). At 18 months, 9/78 SR vs. 9/74 UC participants quit smoking. There were no significant differences between treatment groups in angina, quality of life or adverse events, nicotine, cotinine, CO, WBC count, fibrinogen, hs-CRP, F2-isoprostane, total NNAL or 1-HOP levels at any time point. To determine if smoking reduction, regardless of treatment condition, was associated with improved outcomes, we compared all subjects at 6 months to baseline (mean reduction in CPD from 27.4 to 18.1, p or =50%, or those who had no history of reduction prior to enrollment in the study. The SR intervention did not significantly reduce CPD or toxin exposure, or improve smoking cessation or clinical outcomes compared to UC. These results emphasize the importance of abstinence for smokers with heart disease to minimize health risks from tobacco.

  3. Radiation induced dechlorination of some chlorinated hydrocarbons in aqueous suspensions of various solid particles

    Czech Academy of Sciences Publication Activity Database

    Múčka, V.; Buňata, M.; Čuba, V.; Silber, R.; Juha, Libor

    2015-01-01

    Roč. 112, Jul (2015), s. 108-116 ISSN 0969-806X R&D Projects: GA ČR GA13-28721S Institutional support: RVO:68378271 Keywords : chlorinated hydrocarbons * TCE * PCE * PCBs * dechlorination * gamma irradiation * modifiers * cell membrane permeability Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.207, year: 2015

  4. Dechlorination Kinetics Of Monochlorobiphenyls By Fe/Pd: Effects Of Solvent, Temperature, And PCB Concentration

    Science.gov (United States)

    Well-known, yet undefined, changes in the conditions and activity of palladized zerovalent iron (Fe/Pd) over an extended period of time hindered a careful study of dechlorination kinetics in long-term experiments. A short-term experimental method was, therefore, developed to stud...

  5. Effect of a base-catalyzed dechlorination process on the genotoxicity of PCB-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    DeMarini, D.M.; Houk, V.S.; Kornel, A.; Rogers, C.J.

    1992-01-01

    We evaluated the genotoxicity of dichloromethane (DCM) extracts of PCB-contaminated soil before and after the soil had been treated by a base-catalyzed dechlorination process, which involved heating a mixture of the soil, polyethylene glycol, and sodium hydroxide to 250-350 C. This dechlorination process reduced by over 99% the PCB concentration in the soil, which was initially 2,200 ppm. The DCM extracts of both control and treated soils were not mutagenic in strain TA100 of Salmonella, but they were mutagenic in strain TA98. The base-catalyzed dechlorination process reduced the mutagenic potency of the soil by approximately one-half. The DCM extracts of the soils before and after treatment were equally genotoxic in a prophage-induction assay in E. coli, which detects some chlorinated organic carcinogens that were not detected by the Salmonella mutagenicity assay. These results show that treatment of PCB-contaminated soil by this base-catalyzed dechlorination process did not increase the genotoxicity of the soil.

  6. Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercalated with dodecanoate anions

    DEFF Research Database (Denmark)

    Ayala Luis, Karina Barbara; Ginette Anneliese Cooper, Nicola; Bender Koch, Christian

    2012-01-01

    similar to those found in heavily contaminated groundwater close to polluted industrial sites (14 988 mu M) was reduced mainly to the fully dechlorinated products carbon monoxide (CO, yields >54 and formic acid (HCOOH, yields >6. Minor formation of chloroform (CF), the only chlorinated degradation product...

  7. The potential for reductive dehalogenation of chlorinated phenol in a ...

    African Journals Online (AJOL)

    2005-04-14

    Apr 14, 2005 ... The transformation of chlorinated aromatic compounds is thermodynamically favourable with sulphate as terminal elec- tron acceptor (Colberg, 1990). This coupled with studies which support the assumption that reductive dechlorinating bacte- ria and SRB often share biotopes that are contaminated with.

  8. The kinetics of the radiation-induced chain dechlorination of hexachloroethane in alcohols

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Ohara, Naoki; Shimokawa, Toshinari

    1978-01-01

    The kinetics of the radiation-induced dechlorination of hexachloroethane was investigated in deoxygenated alcohol solutions. The major products were hydrogen chloride, pentachloroethane, 1,1,2,2-tetrachloroethane, tetrachloroethylene, and aldehydes or acetone. No 1,1,1,2-tetrachloroethane was observed. The radiation-chemical yields of these products and the disappearance of hexachloroethane were quite high; these facts indicate that a chain reaction is involved in these processes. After the hexachloroethane had effectively dechlorinated down to tetrachloro compounds, there were no marked changes in the lower chlorinated compound upon continuous irradiation. Tetrachloroethane was formed via pentachloroethane, but tetrachloroethylene was produced by means of C 2 Cl 5 →C 2 Cl 4 + cl reaction and the yield was particularly high in methanol compared with the other alcohols. The chain length of the dechlorination from hexachloroethane to pentachloroethane and from pentachloroethane to tetrachloroethane increased in the order of 2-propanol>ethanol>methanol. The G(-C 2 Cl 6 ) and G(products) were proportional to (dose rate)sup(-1/2), and the ratio of G(C 2 HCl 5 ) to G(C 2 Cl 4 ) was a constant in each alcohol solution, regardless of the dose rate. The α-hydroxy alkyl radical is the chain carrier for the dechlorination reaction of hexachloroethane in alcohol solutions. The relative rates of the dechlorination were found to be 1, 3, and 14 for C*H 2 OH (*: radical), CH 3 C*HOH (*: radical), and (CH 3 ) 2 C*OH (*: radical), respectively. The order in the rate is in agreement with that of the redox potential of these radicals. The effect of the irradiation temperature on the products yields was also examined. (auth.)

  9. Biologically Based Methods for Control of Fumonisin-Producing Fusarium Species and Reduction of the Fumonisins

    Science.gov (United States)

    Alberts, Johanna F.; van Zyl, Willem H.; Gelderblom, Wentzel C. A.

    2016-01-01

    Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof, or clay minerals pre- and post-harvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Post-harvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although, the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, post-harvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP) production, and storage management, together with

  10. Biologically Based Methods for Control of Fumonisin-producing Fusarium species and Reduction of the Fumonisins

    Directory of Open Access Journals (Sweden)

    Johanna Francina Alberts

    2016-04-01

    Full Text Available Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof or clay minerals pre- and postharvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Postharvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, postharvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP production and storage management

  11. Biologically Based Methods for Control of Fumonisin-Producing Fusarium Species and Reduction of the Fumonisins.

    Science.gov (United States)

    Alberts, Johanna F; van Zyl, Willem H; Gelderblom, Wentzel C A

    2016-01-01

    Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof, or clay minerals pre- and post-harvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Post-harvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although, the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, post-harvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP) production, and storage management, together with

  12. Ambient nitrogen reduction cycle using a hybrid inorganic–biological system

    Science.gov (United States)

    Liu, Chong; Sakimoto, Kelsey K.; Colón, Brendan C.; Silver, Pamela A.

    2017-01-01

    We demonstrate the synthesis of NH3 from N2 and H2O at ambient conditions in a single reactor by coupling hydrogen generation from catalytic water splitting to a H2-oxidizing bacterium Xanthobacter autotrophicus, which performs N2 and CO2 reduction to solid biomass. Living cells of X. autotrophicus may be directly applied as a biofertilizer to improve growth of radishes, a model crop plant, by up to ∼1,440% in terms of storage root mass. The NH3 generated from nitrogenase (N2ase) in X. autotrophicus can be diverted from biomass formation to an extracellular ammonia production with the addition of a glutamate synthetase inhibitor. The N2 reduction reaction proceeds at a low driving force with a turnover number of 9 × 109 cell–1 and turnover frequency of 1.9 × 104 s–1⋅cell–1 without the use of sacrificial chemical reagents or carbon feedstocks other than CO2. This approach can be powered by renewable electricity, enabling the sustainable and selective production of ammonia and biofertilizers in a distributed manner. PMID:28588143

  13. DECHLORINATION OF ZINC OXIDE DUST DERIVED FROM ZINC LEACHING RESIDUE BY MICROWAVE ROASTING IN A ROTARY KILN

    Directory of Open Access Journals (Sweden)

    Ma Ai-yuan

    Full Text Available Abstract The dechlorination efficiency of zinc oxide dust using microwave roasting was investigated capitalizing on the different microwave absorbing capacities of the compounds such as chlorine, lead, and zinc oxide. The associated dechlorination reactions were discussed in detail and the effect of all the influencing parameters such as the air flow rate, steam flow rate, the roasting temperature, roasting duration, and the mixing rate were assessed to identify the optimal conditions. The results indicated that a near 93% dechlorination of zinc oxide dust could be achieved, which would satisfy the requirements of the wet smelting electrolysis process. The optimal process parameters were identified to be an air flow of 300 L/h, a steam flow of 8 mL/min, a stirring speed of 60 rpm, a roasting temperature of 650 ºC, and a roasting duration of 60 min. Water vapor has an enhanced effect on dechlorination by microwave roasting.

  14. Volume and activity reduction by biological treatment and ultrafiltration of laundry effluent waste

    International Nuclear Information System (INIS)

    Stefan Rosenberger; Bernhard Christ

    2006-01-01

    An innovative patented treatment process (BIBRA) combining biological treatment and a separator centrifuge was developed in the Gundremmingen NPP starting in 1995. To date this process has been successfully implemented in the German NPP of Gundremmingen, Kahl, Brunsbuettel, Stade, Isar 1 and Neckarwestheim. This new process has not only significantly reduced the TOC content in the effluent and waste volumes (6,600 m 3 result in only 160 kg final waste) of BWR and PWR but at the same time has increased the decontamination factor to 20 and more. The cost savings experienced within the plant are more than 125000 euros/a. These savings do not account the additional substantial savings on handling, disposal containers, transportation, interim storage and final disposal. In order to advance the biological treatment of radioactive wastes it is therefore required to find an alternative separation mechanism without loosing the advantages of discharging the inactive salts. An engineering review of possible separation processes that could help to remove these residual activity was conducted. It determined that crossflow filtration and in particular micro-filtration or ultrafiltration were the most promising technologies to further improve the separation efficiency. Ultrafiltration is able to remove bacteria, proteins and similar while allowing dissolved materials such ad salts to pass. Drawback for crossflow filtration systems is that they can experience significant problems with fouling (blocking) of the membranes from suspended solids (TSS) which typically requires the introduction of aggressive chemicals and that all these systems generate an effluent concentrate of typically 2% to 10 % of their throughput. In case of e.g. 6600 m 3 /a waste generation a volume between 120 and 600 m 3 /a concentrate would require additional treatment and conditioning. Almost at the same time as the biological treatment process was developed in Germany, RWE NUKEM matured crossflow filtration

  15. Efficacy of Behavioral Interventions on Biological Outcomes for Cardiovascular Disease Risk Reduction among Latinos: a Review of the Literature.

    Science.gov (United States)

    Viramontes, Omar; Swendeman, Dallas; Moreno, Gerardo

    2017-06-01

    Cardiovascular disease (CVD) is the leading cause of death among Latinos. Designing and delivering culturally appropriate interventions are critical for modifying behavioral and nutritional behavior among Latinos and preventing CVD. This literature review provides information on evidence-based behavioral intervention strategies developed for and tested with at-risk Latinos, which reported impacts on biological outcomes. A literature search was performed in PubMed that identified 110 randomized controlled trials of behavioral interventions for CVD risk reduction with at-risk Latinos (≥1 CVD risk factor, samples >30 % Latino), four of which met the inclusion criteria of reporting biological outcomes (BP, cholesterol, low density lipoprotein (LDL), high density lipoprotein (HDL), and body mass index (BMI)). All the studies used promotoras (Hispanic/Latino community member with training that provides basic health education in the community without being a professional healthcare worker) to deliver culturally appropriate interventions that combined nutritional and physical activity classes, walking routes, and/or support groups. One study reported statistically significant reductions in systolic blood pressure and an increase in physical activity. One study reported reductions in cholesterol levels compared to the control group. Two studies did not have significant intervention effects. Most studies demonstrated no significant changes in LDL, HDL, or BMI. Methodological limitations include issues related to sample sizes, study durations, and analytic methods. Few studies met the inclusion criteria, but this review provides some evidence that culturally appropriate interventions such as using promotoras, bilingual materials/classes, and appropriate cultural diet and exercise modifications provide potentially efficacious strategies for cardiovascular risk improvement among Latinos.

  16. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction.

    Science.gov (United States)

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin

    2016-06-01

    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p  0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.

  17. Critical controllability analysis of directed biological networks using efficient graph reduction.

    Science.gov (United States)

    Ishitsuka, Masayuki; Akutsu, Tatsuya; Nacher, Jose C

    2017-10-30

    Network science has recently integrated key concepts from control theory and has applied them to the analysis of the controllability of complex networks. One of the proposed frameworks uses the Minimum Dominating Set (MDS) approach, which has been successfully applied to the identification of cancer-related proteins and in analyses of large-scale undirected networks, such as proteome-wide protein interaction networks. However, many real systems are better represented by directed networks. Therefore, fast algorithms are required for the application of MDS to directed networks. Here, we propose an algorithm that utilises efficient graph reduction to identify critical control nodes in large-scale directed complex networks. The algorithm is 176-fold faster than existing methods and increases the computable network size to 65,000 nodes. We then applied the developed algorithm to metabolic pathways consisting of 70 plant species encompassing major plant lineages ranging from algae to angiosperms and to signalling pathways from C. elegans, D. melanogaster and H. sapiens. The analysis not only identified functional pathways enriched with critical control molecules but also showed that most control categories are largely conserved across evolutionary time, from green algae and early basal plants to modern angiosperm plant lineages.

  18. Bioelectrocatalytic dechlorination of trichloroacetic acid at gel-immobilized hemoglobin on multiwalled carbon nanotubes modified graphite electrode: Kinetic modeling and reaction pathways

    International Nuclear Information System (INIS)

    Liu, Qi; Yu, Jianming; Xu, Yinghua; Wang, Jiade; Ying, Le; Song, Xinxin; Zhou, Gendi; Chen, Jianmeng

    2013-01-01

    Highlights: ► The electrons transfer from enzyme in the electrode to COCs was the key step. ► The average current efficiency was influenced by pH and temperature of the systems. ► The most favourable degradation conditions for TCA were found to be pH 3 and 310 K. ► The activation energy of 26.2 kJ mol −1 was also calculated by the Arrhenius equation. ► Bioelectrocatalytic mechanism of TCA was verified by kinetic expressions. -- Abstract: In bioelectrochemically reductive dechlorination of chlorinated organic compounds (COCs), the electrons transfer from enzyme in the electrode to COCs was the key step, which determined the average current efficiency (CE) and was influenced by the pH and temperature of the systems. In this work, the effect of temperature (288–318 K) and pH (2–11) of the electrolyte on decholrination of trichloroacetic acid (TCA) was investigated in the sodium alginate/hemoglobin-multiwalled carbon nanotubes-graphite composite electrode (Hb/SA–MWCNT–GE). The results showed that the most favourable degradation conditions for TCA by Hb/SA–MWCNT–GE were found to be pH 3 and 310 K. By varying the pH of the systems, it was found that a proton accompanied with an electron transfer between the electrode and heme Fe(III)/Fe(II) of Hb during the reaction. Additionally, the activation energy of 26.2 kJ mol −1 was also calculated by the Arrhenius equation for the reaction. The total mass balance of the reactant and the products was in the range of 97–105% during the bioelectrochemically reductive reaction. The CE only decreased from 87% to 83% when the Hb/SA–MWCNT–GE was used 5 times. Based on the intermediates detected, a pathway was proposed for TCA degradation in which it underwent dechlorination process. The main degradation mechanism described by a parallel reaction rather than by a sequential reaction for dechlorination of TCA in Hb/SA–MWCNT–GE system was proposed. These data provided relevant information about the

  19. Dechlorination of organochloride waste mixture by microwave irradiation before forming solid recovered fuel.

    Science.gov (United States)

    Liu, Zhen; Wang, Han-Qing; Zhang, Xiao-Dong; Liu, Jian-Wen; Zhou, Yue-Yun

    2017-04-01

    In order to form a modified solid recovered fuel (SRF) with low chlorine content, high calorific value and well combustion performance, low temperature microwave irradiation was applied to remove the chlorine of the organochloride waste mixture before they were mixed to form SRF. The optimizing conditions of final temperature, microwave absorbents and heating rate were also detected to obtain high dechlorination ratio and high ratio of hydrogen chloride (HCl) to volatiles. In the temperature range of 220-300°C, 280°C would be chose as the optimal low microwave modified temperature concerning at which the dechlorination ratio was high and ratio of HCl to volatiles was relatively high as well; The use of microwave absorbents of graphite and silicon carbide (SiC) had a pronounced effect on the dechlorination of organochloride waste mixture, and the dechlorination ratio was increased significantly which could be reached to 87%, almost 20% higher than absorbent absent sample; The heating rate should set be not too fast nor too slow, and there was no big difference between the heating rate of 13°C/min and 15°C/min; The content of Cl of modified SRF is dramatically decreased and reaches to a low level 0.328%. Hence, the modified SRF can be ascended from the third class to the second class according to the Finland chlorine Classes I-III. Moreover, the combustibility of modified SRF was substantial improved compared to the traditional SRF. The low heating value was almost 20.56MJ/kg which is close to the LHV of lignite coal and bituminous coal in China, and it increased by 60% over that of traditional SRF. Removing chlorine of organochloride waste mixture before they are mixed with other kinds of combustible waste to form a modified SRF which is expected to be an alternative fuel for combustion in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach

    Science.gov (United States)

    Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk

    2018-02-01

    An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.

  1. Microbial community analysis of switchgrass planted and unplanted soil microcosms displaying PCB dechlorination.

    Science.gov (United States)

    Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L; Mattes, Timothy E

    2015-08-01

    Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent, and bioaccumulative. In this study, we investigated bacterial communities in soil microcosms spiked with PCB 52, 77, and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal, and redox cycling (i.e., sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting, and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after 2 weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests that they play a role in PCB dechlorination therein.

  2. Solidification of metal chloride waste from pyrochemical process via dechlorination-chlorination reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Cho, I.H.; Lee, K.R.; Choi, J.H.; Eun, H.C.; Kim, I.T.; Park, G.I. [Korea Atomic Energy Research Inst., Deajeon (Korea, Republic of)

    2014-07-01

    The metal chloride wastes generated from the pyro-chemical process to recover uranium and TRUs has been considered as a problematic waste due to the high volatility and low compatibility with conventional silicate glass. Our research group has suggested the dechlorination approach for the solidification of this kind of waste by using a synthetic composite, SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}). During the dechlorination, metal elements are chemically interacted with the inorganic composite, SAP, while chlorine is vaporized as gaseous chlorine. Metal elements in the salt were immobilized into phosphate and silicate glass which are uniformly distributed in tens of nm scale. During the dechlorination, gaseous chlorine is captured by Li{sub 2}O-Li{sub 2}O{sub 2} composite that can be converted into metal chloride (LiCl). About 98wt% of oxide composite was converted into LiCl that can be used as an electrolyte in the electrochemical process. The method suggested in this study can provide a chance to minimize the waste volume for the final disposal of salt wastes from a pyro-chemical process. (author)

  3. Alternative substrates of bacterial sulphate reduction suitable for the biological-chemical treatment of acid mine drainage

    Directory of Open Access Journals (Sweden)

    Alena Luptakova

    2012-12-01

    Full Text Available The impacts of AMD pollution on biological systems are mostly severe and the problem may persist from many decadesto thousands of years. Consequently AMD prior to being released into the environment must be treated to meet government standardsfor the amount of metal and non-metal ions contained in the water. One of the best available technologies for the removal of metals fromAMD is precipitation as metal sulphides. SRB applications for AMD treatment involve a few principal stages. The first stageis the cultivation of SRB i.e. the bacterial sulphate reduction. At the laboratory conditions the sodium lactate is the energetic substratefor the growth of bacteria. Its price is not economic for the application in the practice and is needed investigate the alternativesubstitutes. The aim of this work was the cultivation of SRB using the selected energetic substrates such as: calcium lactate, ethanol,saccharose, glucose and whey. Experimental studies confirm that in the regard to the amount of reduced sulphates the calcium lactateand ethanol are the best alternative substrates for the bacterial sulphate-reduction.

  4. BioReD: Biomarkers and Tools for Reductive Dechlorination Site Assessment, Monitoring and Management

    Science.gov (United States)

    2013-11-01

    Department of Energy’s Joint Genome Institute (DOE-JGI) in Walnut Creek, CA, with additional sequencing performed at The Atlantic Genome Center (TAGC... Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl. Environ. Microbiol. 70:6347-6351. ER-1586...dehalogenation of 1,2-dichloroethane. Appl. Environ. Microbiol. 73:2990-2999. 101. Massart, S., D. De Clercq, M. Salmon , C. Dickburt, and M. H. Jijakli

  5. Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes.

    Science.gov (United States)

    Morrill, Penny L; Lacrampe-Couloume, Georges; Slater, Gregory F; Sleep, Brent E; Edwards, Elizabeth A; McMaster, Michaye L; Major, David W; Sherwood Lollar, Barbara

    2005-02-01

    Stable isotope analysis of chlorinated ethene contaminants was carried out during a bioaugmentation pilot test at Kelly Air Force Base (AFB) in San Antonio Texas. In this pilot test, cis-1,2-dichloroethene (cDCE) was the primary volatile organic compound. A mixed microbial enrichment culture, KB-1, shown in laboratory experiments to reduce chlorinated ethenes to non-toxic ethene, was added to the pilot test area. Following bioaugmentation with KB-1, perchloroethene (PCE), trichloroethene (TCE) and cDCE concentrations declined, while vinyl chloride (VC) concentrations increased and subsequently decreased as ethene became the dominant transformation product. Shifts in carbon isotopic values up to 2.7 per thousand, 6.4 per thousand, 10.9 per thousand and 10.6 per thousand were observed for PCE, TCE, cDCE and VC, respectively, after bioaugmentation, consistent with the effects of biodegradation. While a rising trend of VC concentrations and the first appearance of ethene were indicative of biodegradation by 72 days post-bioaugmentation, the most compelling evidence of biodegradation was the substantial carbon isotope enrichment (2.0 per thousand to 5.0 per thousand) in ä13C(cDCE). Fractionation factors obtained in previous laboratory studies were used with isotope field measurements to estimate first-order cDCE degradation rate constants of 0.12 h(-1) and 0.17 h(-1) at 115 days post-bioaugmentation. These isotope-derived rate constants were clearly lower than, but within a factor of 2-4 of the previously published rate constant calculated in a parallel study at Kelly AFB using chlorinated ethene concentrations. Stable carbon isotopes can provide not only a sensitive means for early identification of the effects of biodegradation, but an additional means to quantify the rates of biodegradation in the field.

  6. Development and Sensitivity Analysis of a Fully Kinetic Model of Sequential Reductive Dechlorination in Groundwater

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup

    2011-01-01

    been modeled using modified Michaelis–Menten kinetics and has been implemented in the geochemical code PHREEQC. The model have been calibrated using a Shuffled Complex Evolution Metropolis algorithm to observations of chlorinated solvents, organic acids, and H2 concentrations in laboratory batch...

  7. Comparison of Alternative Hydrogen Donors for Anaerobic Reductive Dechlorination of Tetrachlorothene

    National Research Council Canada - National Science Library

    Fennell, Donna

    1998-01-01

    .... H2 was delivered using donors lactate, ethanol (EtOH), butyrate, or propionate SUBSTRATES WHOSE FERMENTATION TO H2 is exergonic under H2 partial pressures (ceilings) of less than 1, 0.1, l0 (exp -3.5), and 10 (exp -4.4) atm, respectively...

  8. Development and sensitivity analysis of a fullykinetic model of sequential reductive dechlorination in subsurface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Chambon, Julie Claire Claudia; Albrechtsen, Hans-Jørgen

    2010-01-01

    Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and often represent a serious threat to groundwater-based drinking water resources. Natural attenuation of contaminant plumes can play a major role in contaminated site management a...... and global sensitivity analysis is performed....

  9. Comparison of Alternative Hydrogen Donors for Anaerobic Reductive Dechlorination of Tetrachloroethene

    Science.gov (United States)

    1998-01-01

    banter. I would also like to thank Monroe Weber-Shirk, Neil Rotach, Sissy Fenner, Barb Bailey, Maureen v Letteer, Patty Apgar, Shirley Pless, Mark...PCE, neat electron donor (if any), FYE, and vitamin solution. During long-term operation, bottles were incubated in a 350C walk -in chamber, in a slanted

  10. POLYCHLORINATED BIPHENYL REDUCTIVE DECHLORINATION BY VITAMIN B12S: THERMODYNAMICS AND REGIOSPECIFICITY. (R825689C017)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  12. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.

    Science.gov (United States)

    Langley, S; Igric, P; Takahashi, Y; Sakai, Y; Fortin, D; Hannington, M D; Schwarz-Schampera, U

    2009-01-01

    use of common synthetic iron minerals to model their reduction may lead to a significant underestimation of their biological reactivity.

  13. Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane.

    Science.gov (United States)

    Mulat, Daniel Girma; Mosbæk, Freya; Ward, Alastair James; Polag, Daniela; Greule, Markus; Keppler, Frank; Nielsen, Jeppe Lund; Feilberg, Anders

    2017-10-01

    Biological reduction of CO 2 into CH 4 by exogenous addition of H 2 is a promising technology for upgrading biogas into higher CH 4 content. The aim of this work was to study the feasibility of exogenous H 2 addition for an in situ biogas upgrading through biological conversion of the biogas CO 2 into CH 4. Moreover, this study employed systematic study with isotope analysis for providing comprehensive evidence on the underlying pathways of CH 4 production and upstream processes. Batch reactors were inoculated with digestate originating from a full-scale biogas plant and fed once with maize leaf substrate. Periodic addition of H 2 into the headspace resulted in a completely consumption of CO 2 and a concomitant increase in CH 4 content up to 89%. The microbial community and isotope analysis shows an enrichment of hydrogenotrophic Methanobacterium and the key role of hydrogenotrophic methanogenesis for biogas upgrading to higher CH 4 content. Excess H 2 was also supplied to evaluate its effect on overall process performance. The results show that excess H 2 addition resulted in accumulation of H 2 , depletion of CO 2 and inhibition of the degradation of acetate and other volatile fatty acids (VFA). A systematic isotope analysis revealed that excess H 2 supply led to an increase in dissolved H 2 to the level that thermodynamically inhibit the degradation of VFA and stimulate homo-acetogens for production of acetate from CO 2 and H 2 . The inhibition was a temporary effect and acetate degradation resumed when the excess H 2 was removed as well as in the presence of stoichiometric amount of H 2 and CO 2 . This inhibition mechanism underlines the importance of carefully regulating the H 2 addition rate and gas retention time to the CO 2 production rate, H 2 -uptake rate and growth of hydrogenotrophic methanogens in order to achieve higher CH 4 content without the accumulation of acetate and other VFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination.

    Science.gov (United States)

    Liu, Yueqiang; Lowry, Gregory V

    2006-10-01

    Subsurface injection of nanoscale zerovalent iron (NZVI) has been used for the in situ remediation of chlorinated solvent plumes and DNAPL source zones. Due to the cost of materials and placement,the efficacy of this approach depends on the NZVI reactivity and longevity, selectivity for the target contaminant relative to nonspecific corrosion to yield H2, and access to the Fe0 in the particles. Both the reaction pH and the age of the particles (i.e., Fe0 content) could affect NZVI reactivity and longevity. Here, the rates of H2 evolution and trichloroethene (TCE) reduction are measured over the lifetime of the particles and at solution pH ranging from 6.5 to 8.9. Crystalline reactive nanoscale iron particles (RNIP) with different initial Fe0 weight percent (48%, 36%, 34%, 27%, and 9.6%) but similar specific surface area were studied. At the equilibrium pH for a Fe(OH)2/H2O system (pH = 8.9), RNIP exhibited first-order decay for Fe0 corrosion (H2 evolution) with respect to Fe0 content with a Fe0 half-life time of 90-180 days. A stable surface area-normalized TCE reduction rate constant 1.0 x 10(-3)L x hr(-1) x m(-2) was observed after 20 days and remained constant for 160 days, while the Fe0 content of the particles decreased by half, suggesting that TCE reduction is zero-order with respect to the Fe0 content of the particle. Solution pH affected H2 evolution and TCE reduction to a different extent. Decreasing pH from 8.9 to 6.5 increased the H2 evolution rate constant 27 fold from 0.008 to 0.22 day(-1), but the TCE dechlorination rate constant only doubled. The dissimilarities between the reaction orders of H2 evolution and TCE dechlorination with respect to both Fe0 content and H+ concentration suggest that different rate controlling steps are involved for the reduction reactions.

  15. Chemical dechlorination of pesticides at a superfund site in Region II

    International Nuclear Information System (INIS)

    Pendergrass, S.; Prince, J.

    1991-01-01

    Selecting technologies for cleaning up hazardous waste sites is a complex task, due in part to the rapidly changing nature of the state-of-the-art in technology. There is strong support for use of innovative technologies as specified in Section 121(b) of CERCLA. However, use of an innovative technology requires overcoming a variety of challenges. These challenges include: Screening potentially appropriate technologies, including innovative technologies, and selecting one or more potential innovative technologies for which preliminary results are promising; however, site-specific data are needed prior to technology evaluation. Evaluating the effectiveness of the proposed technology for the site through the use of treatability studies. Gaining acceptance for the innovative technology, which may employ new or unfamiliar concepts. Determining optimal design and operating parameters for full-scale remediation. This paper discusses the technology evaluation process and how that process supported the selection of an innovative technology for the Myers Property site, a Superfund site in Region II. A case study is presented showing how technology screening and laboratory treatability studies were used to evaluate an innovative technology (chemical dechlorination), which was selected as the technology for remediation of soils and sediments contaminated with pesticides at this environmentally sensitive site in New Jersey. The remedy selected by the U.S. EPA for this site designates chemical dechlorination as the selected technology, but does not specify any particular vendor or process. Rather, the remedy sets forth technology performance standards and recommends certain design tasks which may be used to select a particular chemical process. This paper discusses he of these design tasks as they might apply to innovative technologies, using chemical dechlorination as a model

  16. Thermal dechlorination of PCB-209 over Ca species-doped Fe₂O₃.

    Science.gov (United States)

    Su, Guijin; Huang, Linyan; Shi, Ruifang; Liu, Yexuan; Lu, Huijie; Zhao, Yuyang; Yang, Fan; Gao, Lirong; Zheng, Minghui

    2016-02-01

    Degradation reaction of decachlorobiphenyl (PCB-209) was investigated over the synthesized Ca species-doped Fe2O3 at 300 °C. The 1%Ca-Fe2O3 exhibited the highest activity among the four catalysts prepared with the pseudo-first order reaction at k(obs) = 0.103 min(-1). PCB-207, PCB-197, PCB-176, PCB-184, PCB-150, PCB-136, PCB-148, PCB-104, PCB-96, PCB-54, PCB-19, PCB-4 and PCB-1 were identified as the dominant isomers in their respective nonachlorobiphenyl (NonaCB) to monochlorobiphenyl (MonoCB) homologue groups. Analysis of the hydrodechlorination products indicated that dechlorination was much more favored on meta- and para-than on ortho-positions. The formation of significantly predominant NonaCB and octachlorobiphenyl (OctaCB) isomers was attributed to lower energy principles and to the 90° dihedral angles of two aromatic rings which prevented the hydrodechlorination at ortho-positions. When the number of chlorine atoms is not more than 7, the steric effect supports the formation of predominant PCB isomers having chlorines at four ortho-positions. During the dechlorination of tetrachlorobiphenyl (TetraCB) formed to generate monochlorobiphenyl (MonoCB) isomers, the chlorine atoms fully substituted at the ortho-positions have to be successively removed, with the first two dechlorinations preferentially occurring at the two different benzene rings. This is dissimilar to that of octachloronaphthalene (PCN-75) in which the hydrodechlorination reaction happened preferentially at ortho-position due to the existence of steric effects. The opposite roles of the steric effect in ortho-position between PCB-209 and PCN-75 might be due to the difference of the π-conjugated plane caused by the dihedral angle of 90° and 0° of the two aromatic rings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: Influence of PVC content and heating rate.

    Science.gov (United States)

    Cao, Qiongmin; Yuan, Guoan; Yin, Lijie; Chen, Dezhen; He, Pinjing; Wang, Hai

    2016-12-01

    In this research morphological techniques were used to characterize dechlorination process of PVC when it is in the mixed waste plastics and the two important factors influencing this process, namely, the proportion of PVC in the mixed plastics and heating rate adopted in the pyrolysis process were investigated. During the pyrolysis process for the mixed plastics containing PVC, the morphologic characteristics describing PVC dechlorination behaviors were obtained with help of a high-speed infrared camera and image processing tools. At the same time emission of hydrogen chloride (HCl) was detected to find out the start and termination of HCl release. The PVC contents in the mixed plastics varied from 0% to 12% in mass and the heating rate for PVC was changed from 10 to 60°C/min. The morphologic parameters including "bubble ratio" (BR) and "pixel area" (PA) were found to have obvious features matching with PVC dechlorination process therefore can be used to characterize dechlorination of PVC alone and in the mixed plastics. It has been also found that shape of HCl emission curve is independent of PVC proportions in the mixed plastics, but shifts to right side with elevated heating rate; and all of which can be quantitatively reflected in morphologic parameters vs. temperature curves. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Electrospun and functionalized PVDF/PAN nanocatalyst-loaded composite for dechlorination and photodegradation of pesticides in contaminated water.

    Science.gov (United States)

    Nthumbi, Richard M; Ngila, Jane C

    2016-10-01

    A novel approach for the electrospinning and functionalization of nanocatalyst-loaded polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) composite grafted with acrylic acid (AA; which form polyacrylic acid (PAA) brush) and decorated with silver (Ag/PAN/PVDF-g-PAA-TiO 2 /Fe-Pd) designed for the dechlorination and photodegradation of pesticides was carried out. PAN was used both as a nitrogen dopant as well as a co-polymer. Smooth nanofibers were obtained by electrospinning a solution of 12:2 wt.% PVDF/PAN blend using dimethylformamide (DMF) as solvent. The nanofibers were grafted with AA by free-radical polymerization using 2,2'azobis(2-methylpropionitrile) (AIBN) as initiator. Both bimetallic iron-palladium (Fe-Pd) and titania (TiO 2 ) nanoparticles (NP) were anchored on the grafted nanofibers via the carboxylate groups by in situ and ex situ synthesis. The Fe-Pd and nitrogen-doped TiO 2 nanoparticles were subsequently used for dechlorination and oxidation of target pollutants (dieldrin, chlorpyrifos, diuron, and fipronil) to benign products. Structural and chemical characterizations of the composites were done using various techniques. These include surface area and porosity analyzer (ASAP) using the technique by Brunner Emmett Teller (BET), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM) analyses were done. After dechlorination, the transformation products (TPs) for dieldrin, chlorpyrifos, diuron, and fipronil were obtained and identified using two-dimensional gas chromatography (time-of-flight) with a mass spectrometer detector (GCxGC-TOFMS). Analysis of total organic carbon (TOC) was carried out and used to extrapolate percentage mineralization. Experimental results showed that dechlorination efficiencies of 96, 93, 96, and 90 % for 1, 2, 2, and 3 h treatment period were respectively achieved for 5 ppm solutions of dieldrin, chlorpyrifos, diuron, and fipronil. The

  19. Coupling the dechlorination of aqueous 4-CP with the mechanochemical destruction of solid PCNB using Fe–Ni–SiO2

    International Nuclear Information System (INIS)

    Zhang, Teng; Huang, Jun; Zhang, Wang; Yu, Yunfei; Deng, Shubo; Wang, Bin; Yu, Gang

    2013-01-01

    Highlights: ► Toxic PCNB was completely destroyed by ball milling using Fe–Ni–SiO 2 . ► Nonhazardous destruction residue can effectively dechlorinate the 4-CP in water. ► Dechlorination mechanism involving reactions on 3 interfaces (Fe–Ni, Fe–C and Fe–C–Ni) was proposed. -- Abstract: A novel combined process was developed for mechanochemical destruction of pentachloronitrobenzene (PCNB) in solid waste, coupled with the dechlorination of aqueous 4-chlorophenol (4-CP) using the nonhazardous residue from the solid-phase destruction step. Using the mixture of iron powder, nickel powder and quartz sand as the additives in a planetary ball mill under the room temperature, the mechanochemical reaction was induced and a complete destruction of PCNB was realized. The resulting solid residue was characterized by various measures including X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS), which suggested that main components were carbon, chloride besides excess additives. Such nonhazardous residue was then used to effectively dechlorinate aqueous 4-CP. The residue achieving over 93% dechlorination rate was selected as the optimized content. With a series of verification experiments, a possible dechlorination mechanism was proposed, involving the reactions occurred on three interfaces (i.e. Fe/Ni, Fe/C and Fe/C/Ni)

  20. [Reductive degradation of chlorophenols in aqueous solution by gamma irradiation].

    Science.gov (United States)

    Peng, Yun-Xia; He, Shi-Jun; Gong, Wen-Qi; Wang, Jian-Long

    2013-04-01

    Because chlorine is an electron withdrawing group, the highly chlorinated phenols may react quickly with hydrated electrons rather than with hydroxyl radicals. The process of reactions of four chlorophenols (4-CP, 2-CP, 2,4-DCP, 2,4,6-TCP) with e(aq)(-) was investigated in aqueous solutions by detecting the concentration of CPs, Cl- and intermediates. In the e(aq)(-) reductive system, the experimental results showed that the order of four kinds of chlorophenol degradation and dechlorination was 2,4,6-TCP > 2,4-DCP > 2-CP > 4-CP. The greater the chlorine content was the higher reactivity of hydrated electrons towards chlorophenols was. Furthermore, hydrated electrons may preferentially attack the ortho-position of chlorine atom rather than the para-position of chlorine atom. Phenol and Cl- were detected as the final product of the reductive reaction. Additionally, processes of degradation and dechlorination of CPs were observed as the pseudo-first-order kinetics. The reaction constant of degradation of 4-CP, 2-CP, 2,4-DCP and 2,4,6-TCP were 0.154, 0.253, 0.750 and 1.188 kGy(-1), respectively. Meanwhile, the dechlorination of 4-CP, 2-CP, 2,4-DCP and 2,4,6-TCP were 0.137, 0.219, 0.251 and 0.306 kGy(-1), respectively.

  1. Chemically enhanced biological NOx removal from flue gases : nitric oxide and ferric EDTA reduction in BioDeNox reactors

    NARCIS (Netherlands)

    Maas, van der P.M.F.

    2005-01-01

    The emission of nitrogen oxides (NOx) to the atmosphere is a major environmental problem. To abate NOx emissions from industrial flue gases, to date, mainly chemical processes like selective catalytic reduction (SCR) are applied. All these processes require high temperatures (>300 °C) and

  2. Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme

    International Nuclear Information System (INIS)

    Moiseenko, Vitali; Battista, Jerry; Van Dyk, Jake

    2000-01-01

    Purpose: To evaluate the impact of dose-volume histogram (DVH) reduction schemes and models of normal tissue complication probability (NTCP) on ranking of radiation treatment plans. Methods and Materials: Data for liver complications in humans and for spinal cord in rats were used to derive input parameters of four different NTCP models. DVH reduction was performed using two schemes: 'effective volume' and 'preferred Lyman'. DVHs for competing treatment plans were derived from a sample DVH by varying dose uniformity in a high dose region so that the obtained cumulative DVHs intersected. Treatment plans were ranked according to the calculated NTCP values. Results: Whenever the preferred Lyman scheme was used to reduce the DVH, competing plans were indistinguishable as long as the mean dose was constant. The effective volume DVH reduction scheme did allow us to distinguish between these competing treatment plans. However, plan ranking depended on the radiobiological model used and its input parameters. Conclusions: Dose escalation will be a significant part of radiation treatment planning using new technologies, such as 3-D conformal radiotherapy and tomotherapy. Such dose escalation will depend on how the dose distributions in organs at risk are interpreted in terms of expected complication probabilities. The present study indicates considerable variability in predicted NTCP values because of the methods used for DVH reduction and radiobiological models and their input parameters. Animal studies and collection of standardized clinical data are needed to ascertain the effects of non-uniform dose distributions and to test the validity of the models currently in use

  3. In-situ metal precipitation in a zinc-aerobic, sandy aquifer by means of biological sulfate reduction

    NARCIS (Netherlands)

    Janssen, G.M.C.M.; Temminghoff, E.J.M.

    2004-01-01

    The applicability of in situ metal precipitation (ISMP) based on bacterial sulfate reduction (BSR) with molasses as carbon source was tested for the immobilization of a zinc plume in an aquifer with highly unsuitable initial conditions (high Eh, low pH, low organic matter content, and low sulfate

  4. Electrocatalytic Reduction-oxidation of Chlorinated Phenols using a Nanostructured Pd-Fe Modified Graphene Catalyst

    International Nuclear Information System (INIS)

    Shi, Qin; Wang, Hui; Liu, Shaolei; Pang, Lei; Bian, Zhaoyong

    2015-01-01

    A Pd-Fe modified graphene (Pd-Fe/G) catalyst was prepared by the Hummers oxidation method and bimetallic co-deposition method. The catalyst was then characterized by various characterization techniques and its electrochemical property toward the electrocatalytic reduction-oxidation of chlorinated phenols was investigated by using cyclic voltammetry and differential pulse voltammetry. The results of the characterization show that the Pd-Fe/G catalyst in which the weight proportion of Pd and Fe is 1:1 has an optimal surface performance. The diameter of the Pd-Fe particles is approximately 5.2 ± 0.3 nm, with a uniform distribution on the supporting graphene. This is smaller than the Pd particles of a Pd-modified graphene (Pd/G) catalyst. The Pd-Fe/G catalyst shows a higher electrocatalytic activity than the Pd/G catalyst for reductive dechlorination when feeding with hydrogen gas. The reductive peak potentials of −0.188 V, −0.836 V and −0.956 V in the DPV curves are attributed to the dechlorination of ortho-Cl, meta-Cl, and para-Cl in 2-chlorophenol, 3-chlorophenol and 4-chlorophenol, respectively. In accordance with an analysis of the frontier orbital theory, the order of ease of dechlorination with Pd-Fe/G catalyst is 2-chlorophenol > 3-chlorophenol > 4-chlorophenol. The Pd-Fe/G catalyst has a greater activity than the Pd/G catalyst in accelerating the two-electron reduction of O 2 to H 2 O 2 , which is attributed to the higher current of the reduction peak at approximately −0.40 V when feeding with oxygen gas. Therefore, the Pd-Fe/G catalyst exhibits a higher electrocatalytic activity than the Pd/G catalyst for the reductive dechlorination and acceleration of the two-electron reduction of O 2 to H 2 O 2 .

  5. Sociological and Biological Insights on How to Prevent the Reduction in Cognitive Activity that Stems from Robots Assuming Workloads in Human–Robot Cooperation

    Directory of Open Access Journals (Sweden)

    Diego Compagna

    2016-09-01

    Full Text Available The reduction of cognitive tasks brought about by new developments in service-robots’ collaboration with humans in working environments has given rise to new challenges as to how to address safety issues. This paper presents insights from biology, cognitive/neural sciences and sociology that can conquer these new challenges. The main focus lies in sociological variables that ensure safe human–robot interaction in working environments rather than addressing biological ones (avoiding bodily harm or purely cognitive ones (avoiding any signals that are outside the human’s sensory comfort zones. We will present an approach on how to integrate behavioral patterns into the robotic system in order to prevent the problem of reduced cognition in relation to essential features, which are necessary for carrying out this pattern in the context of a human–robot interaction with non-humanoid robots (which is the most typical design of robots used in work environments.

  6. In Situ Enhancement of Anaerobic Microbial Dechlorination of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Marine and Estuarine Sediments

    Science.gov (United States)

    2006-12-18

    syringe. Butyric acid (440 :M) and pre- fermented yeast extract (4 :L of a 50 g/L solution) were added as electron donor and nutrient source...and pre- 18 fermented yeast extract were added at time zero and on day 8, 26, 120 and 178. Mixed cultures were agitated inverted at 200 rpm at 34 °C...In Situ Enhancement of Anaerobic Microbial Dechlorination of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Marine and Estuarine

  7. Biological reduction of iron to the elemental state from ochre deposits of Skelton Beck in Northeast England

    Directory of Open Access Journals (Sweden)

    Pattanathu K S M Rahman

    2014-06-01

    Full Text Available Ochre, consequence of acid mine drainage, is iron oxides-rich soil pigments that can be found in the water drainage from historic base metal and coal mines. The anaerobic strains of Geobacter sulfurreducens and Shewanella denitrificans were used for the microbial reduction of iron from samples of ochre collected from Skelton Beck (Saltburn Orange River, NZ 66738 21588 in Northeast England. The aim of the research was to determine the ability of the two anaerobic bacteria to reduce the iron present in ochre and to determine the rate of the reduction process. The physico-chemical changes in the ochre sample after the microbial reduction process were observed by the production of zero-valent iron which was later confirmed by the detection of elemental Fe in XRD spectrum. The XRF results revealed that 69.16% and 84.82% of iron oxide can be reduced using G. sulfurreducens and S. denitrificans respectively after 8 days of incubation. These results could provide the basis for the development of a biohydrometallurgical process for the production of elemental iron from ochre sediments.

  8. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    Speece, R.E.

    1990-01-01

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH 4 and CO 2 . Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  9. Photocatalytic dechlorination of PCB 138 using leuco-methylene blue and visible light; reaction conditions and mechanisms

    International Nuclear Information System (INIS)

    Izadifard, Maryam; Langford, Cooper H.; Achari, Gopal

    2010-01-01

    A study of dechlorination of PCB 138, under visible light employing methylene blue (MB) and triethylamine (TEA) in acetonitrile/water has been conducted to investigate the details of the mechanism of dechlorination and to determine the efficiency of the process for this representative congener. Two other amines, N-methyldiethanolamine (MEDA) and (triethanolamine) TEOA also replaced TEA and two other solvents, methanol and ethanol replacing acetonitrile were examined for effects on reaction rates. The results show that PCB 138 can be dechlorinated efficiently in this photocatalytic reaction. Clarifying ambiguities in several previous reports, the reduced form of MB, leuco-methylene blue (LMB) was identified as responsible for the photoreaction with its excited state transferring an electron to PCBs; oxidized LMB (i.e. MB) is reduced back to LMB by the excess amine present. The reaction depends on a cycle driven by the amine as a sacrificial electron donor. MEDA proved to be the most efficient electron donor; apparently in consequence of the most favourable steady state concentration of LMB. Methanol and ethanol may be used to replace acetonitrile with little change in the efficiency of the reaction.

  10. Studies on Dechlorination of DDT with Alkaline 2-propanol and Iron-Nickel (Fe-Ni) Catalyst.

    Science.gov (United States)

    Shareef, A.; Zaman, S. U.

    2009-05-01

    The Persistent Organic Pollutants (POPs) pesticides were previously extensively used in the cotton production and other agricultural activities in Pakistan and at least three thousand metric tons of obsolete pesticides have been stored under extreme hazardous conditions in more than thousand sites. Locally banned or severely restricted pesticides are easily available and DDT is continuously illegally imported and use in our country. Elimination of organochlorine pesticides (OCPs) waste has received considerable attention over the past two decades. Existing catalytic hydrodechlorinated techniques for disposing of OCPs are very costly due to the use of noble metals as catalysts. The aim of our study is to develop the cost effective and efficient method for the safe disposal of OCPs. This study is in continuation work on dechlorination of organochlorine pesticides with Fe-Ni catalyst in alkaline 2-propanol media. We turned our attention to the development of DDT disposal method for the third world countries. Herein, we report our first finding that in alkaline 2-propanol with Fe-Ni catalyst is an effective method for dechlorination of DDT. Catalytic dechlorination of DDT was carried out in an alkaline solution of NaOH and 2-propanol in the presence of catalyst at the temperature below 82 oC and end products were analyzed by using Gas Chromatography (GC-ECD) and Ion Chromatography (IC) techniques. Results obtained with initial concentration of DDT ranging between 10-100 μg/ml showed conversion of DDT to chlorine free product within 4 hrs.

  11. Humin as an electron donor for enhancement of multiple microbial reduction reactions with different redox potentials in a consortium.

    Science.gov (United States)

    Zhang, Dongdong; Zhang, Chunfang; Xiao, Zhixing; Suzuki, Daisuke; Katayama, Arata

    2015-02-01

    A solid-phase humin, acting as an electron donor, was able to enhance multiple reductive biotransformations, including dechlorination of pentachlorophenol (PCP), dissimilatory reduction of amorphous Fe (III) oxide (FeOOH), and reduction of nitrate, in a consortium. Humin that was chemically reduced by NaBH4 served as an electron donor for these microbial reducing reactions, with electron donating capacities of 0.013 mmol e(-)/g for PCP dechlorination, 0.15 mmol e(-)/g for iron reduction, and 0.30 mmol e(-)/g for nitrate reduction. Two pairs of oxidation and reduction peaks within the humin were detected by cyclic voltammetry analysis. 16S rRNA gene sequencing-based microbial community analysis of the consortium incubated with different terminal electron acceptors, suggested that Dehalobacter sp., Bacteroides sp., and Sulfurospirillum sp. were involved in the PCP dechlorination, dissimilatory iron reduction, and nitrate reduction, respectively. These findings suggested that humin functioned as a versatile redox mediator, donating electrons for multiple respiration reactions with different redox potentials. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Extended anaerobic conditions in the biological wastewater treatment: Higher reduction of toxicity compared to target organic micropollutants.

    Science.gov (United States)

    Völker, Johannes; Vogt, Tobias; Castronovo, Sandro; Wick, Arne; Ternes, Thomas A; Joss, Adriano; Oehlmann, Jörg; Wagner, Martin

    2017-06-01

    Extended anaerobic conditions during biological wastewater treatment may enhance the biodegradation of micropollutants. To explore this, we combined iron-reducing or substrate-limited anaerobic conditions and aerobic pilot-scale reactors directly at a wastewater treatment plant. To investigate the detoxification by these processes, we applied two in vitro bioassays for baseline toxicity (Microtox) and reactive toxicity (AREc32) as well as in vivo bioassays with aquatic model species in two laboratory experiments (Desmodesmus subspicatus, Daphnia magna) and two on-site, flow-through experiments (Potamopyrgus antipodarum, Lumbriculus variegatus). Moreover, we analyzed 31 commonly occurring micropollutants and 10 metabolites. The baseline toxicity of raw wastewater was effectively removed in full-scale and reactor scale activated sludge treatment (>85%), while the oxidative stress response was only partially removed (>61%). A combination of an anaerobic pre-treatment under iron reducing conditions and an aerobic nitrification significantly further reduced the residual in vitro toxicities by 46-60% and outperformed the second combination consisting of an aerobic pre-treatment and an anaerobic post-treatment under substrate-limiting conditions (27-43%). Exposure to effluents of the activated sludge treatment did not induce adverse in vivo effects in aquatic invertebrates. Accordingly, no further improvement in water quality could be observed. Compared to that, the removal of persistent micropollutants was increased. However, this observation was restricted to a limited number of compounds and the removal of the sum concentration of all target micropollutants was relative low (14-17%). In conclusion, combinations of strictly anaerobic and aerobic processes significantly enhanced the removal of specific and non-specific in vitro toxicities. Thus, an optimization of biological wastewater treatment can lead to a substantially improved detoxification. These otherwise

  13. Biological reduction of hexavalent chromium and mechanism analysis of detoxification by enterobacter sp. HT1 isolated from tannery effluents, Mongolia

    Directory of Open Access Journals (Sweden)

    N Marjangul

    2014-12-01

    Full Text Available Enterobacter sp. HT1, Cr (VI resistant bacterial strain was isolated from the wastewater sample of the tannery in Mongolia. Batch experiments on hexavalent chromium removal was carried out at 10, 20, and 30 mg/L of Cr (VI added as potassium dichromate (K2Cr2O7, at pH 7 and temperature of 30 °C using pure culture of Enterobacter sp. HT1 as inoculum.  The isolated HT1 is capable of reduction nearly 100% of Cr (VI resulting in the decrease of Cr (VI from 10 to 0.2 mg/L within 20 hours. When the concentration of Cr (VI increased to 20 and 30mg/L, almost complete reduction of Cr (VI could achieve after 72 and 96 hours, respectively.DOI: http://doi.dx.org/10.5564/mjc.v15i0.322 Mongolian Journal of Chemistry 15 (41, 2014, p47-52

  14. Influence of Biological Agents Effects on Reduction of Ammonia Concentration in Stables of Intensive Farm Animals Breeding

    Directory of Open Access Journals (Sweden)

    Bohuslav Čermák

    2011-05-01

    Full Text Available The living environment distress is connected currently not only with industrial production but also agriculture is biggest producer of toxic gas – ammonia (NH3 .Emissions of that gas originate mainly in the farm animals breeding and generate within storage and handling with farmyard manure, slurry, poultry excrements and litter. Agriculture influences considerably landscape. has impact on basic effect on soil, water and air. In assessing experiment the preparation Biopolym FZT rumen metabolism and N-balance was found positive effects in terms of increased ammonia nitrogen, the number of ciliates and the reduction of N-compounds in feces. Confirmed the impact on the ammonia content in well-ventilated dairy stable. The economic evaluation depends on the exercise price of milk. In the experiments continued.

  15. Studies on dechlorination of DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) using magnesium/palladium bimetallic system

    International Nuclear Information System (INIS)

    Gautam, Sumit Kumar; Suresh, Sumathi

    2007-01-01

    The aim of our investigation was to compare the rates of dechlorination of DDT using Mg 0 /Pd 4+ system in two different reaction phases, namely, water-acetone and 0.05% biosurfactant in water. Since palladium is expensive and its toxicity effects are not well known we also examined the reuse efficiency of Pd 0 immobilized on alumina for dechlorinating DDT. Studies on the dechlorination of DDT in water-acetone (1:1, v/v) and 0.05% biosurfactant phases revealed that the reaction followed second order kinetics and rate of reaction is dependent upon both initial concentrations of the target compound and Mg 0 /Pd 4+ . The presence of acid enhanced the rate of reaction by providing protons and preventing passivation of metal that occurs due to deposition of magnesium hydroxide. GC-MS analyses revealed the formation of completely dechlorinated hydrocarbon skeleton of DDT namely, diphenylethane (DPE), as the end product in both reaction phases (water-acetone and 0.05% biosurfactant in water) thereby implying the removal of all five chlorine atoms (three alkyl and two aryl) of DDT. The optimum ratio of water and acetone to facilitate successful dechlorination reaction was found to be 9:1. Results suggested that salt form (K 2 PdCl 6 ) of palladium had higher potential to dechlorinate DDT as compared to pellet (Pd 0 -alumina) form (efficiencies of 95 and 36%, respectively, for 100 ppm initial concentration of DDT). We noted that Pd 0 -alumina pellets could be reused at least four times for successful dechlorination of DDT provided Mg 0 granules are present in sufficient quantity. Technical grade DDT (50 ppm) containing significant amounts of DDD was dechlorinated almost completely by the Mg 0 /Pd 4+ (10 mg/0.2 mg/ml) within 1 h in water-biosurfactant phase. Our studies reveal that Mg/Pd system is a promising option due to its high reactivity and its ability to achieve complete dechlorination of DDT. This bimetallic system may be useful for designing indigenous permeable

  16. Melatonin: a possible link between the presence of artificial light at night and reductions in biological fitness

    Science.gov (United States)

    Jones, Therésa M.; Durrant, Joanna; Michaelides, Ellie B.; Green, Mark P.

    2015-01-01

    The mechanisms underpinning the ecological impacts of the presence of artificial night lighting remain elusive. One suspected underlying cause is that the presence of light at night (LAN) supresses nocturnal production of melatonin, a key driver of biological rhythm and a potent antioxidant with a proposed role in immune function. Here, we briefly review the evidence for melatonin as the link between LAN and changes in behaviour and physiology. We then present preliminary data supporting the potential for melatonin to act as a recovery agent mitigating the negative effects of LAN in an invertebrate. Adult crickets (Teleogryllus commodus), exposed to constant illumination, were provided with dietary melatonin (concentrations: 0, 10 or 100 µg ml−1) in their drinking water. We then compared survival, lifetime fecundity and, over a 4-week period, immune function (haemocyte concentration, lysozyme-like and phenoloxidase (PO) activity). Melatonin supplementation was able only partially to mitigate the detrimental effects of LAN: it did not improve survival or fecundity or PO activity, but it had a largely dose-dependent positive effect on haemocyte concentration and lysozyme-like activity. We discuss the implications of these relationships, as well as the usefulness of invertebrates as model species for future studies that explore the effects of LAN. PMID:25780235

  17. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Kashif; Mahmoud, Khaled A. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO BOX 5825, Doha (Qatar); Lee, Dae Sung, E-mail: daesung@knu.ac.kr [Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2015-12-15

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  18. Identity and Substrate Specificity of Reductive Dehalogenases Expressed in Dehalococcoides-Containing Enrichment Cultures Maintained on Different Chlorinated Ethenes.

    Science.gov (United States)

    Liang, Xiaoming; Molenda, Olivia; Tang, Shuiquan; Edwards, Elizabeth A

    2015-07-01

    Many reductive dehalogenases (RDases) have been identified in organohalide-respiring microorganisms, and yet their substrates, specific activities, and conditions for expression are not well understood. We tested whether RDase expression varied depending on the substrate-exposure history of reductive dechlorinating communities. For this purpose, we used the enrichment culture KB-1 maintained on trichloroethene (TCE), as well as subcultures maintained on the intermediates cis-dichloroethene (cDCE) and vinyl chloride (VC). KB-1 contains a TCE-to-cDCE dechlorinating Geobacter and several Dehalococcoides strains that together harbor many of the known chloroethene reductases. Expressed RDases were identified using blue native polyacrylamide gel electrophoresis, enzyme assays in gel slices, and peptide sequencing. As anticipated but never previously quantified, the RDase from Geobacter was only detected transiently at the beginning of TCE dechlorination. The Dehalococcoides RDase VcrA and smaller amounts of TceA were expressed in the parent KB-1 culture during complete dechlorination of TCE to ethene regardless of time point or amended substrate. The Dehalococcoides RDase BvcA was only detected in enrichments maintained on cDCE as growth substrates, in roughly equal abundance to VcrA. Only VcrA was detected in subcultures enriched on VC. Enzyme assays revealed that 1,1-DCE, a substrate not used for culture enrichment, afforded the highest specific activity. trans-DCE was substantially dechlorinated only by extracts from cDCE enrichments expressing BvcA. RDase gene distribution indicated enrichment of different strains of Dehalococcoides as a function of electron acceptor TCE, cDCE, or VC. Each chloroethene reductase has distinct substrate preferences leading to strain selection in mixed communities. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Walnut consumption in a weight reduction intervention: effects on body weight, biological measures, blood pressure and satiety.

    Science.gov (United States)

    Rock, Cheryl L; Flatt, Shirley W; Barkai, Hava-Shoshana; Pakiz, Bilge; Heath, Dennis D

    2017-12-04

    Dietary strategies that help patients adhere to a weight reduction diet may increase the likelihood of weight loss maintenance and improved long-term health outcomes. Regular nut consumption has been associated with better weight management and less adiposity. The objective of this study was to compare the effects of a walnut-enriched reduced-energy diet to a standard reduced-energy-density diet on weight, cardiovascular disease risk factors, and satiety. Overweight and obese men and women (n = 100) were randomly assigned to a standard reduced-energy-density diet or a walnut-enriched (15% of energy) reduced-energy diet in the context of a behavioral weight loss intervention. Measurements were obtained at baseline and 3- and 6-month clinic visits. Participants rated hunger, fullness and anticipated prospective consumption at 3 time points during the intervention. Body measurements, blood pressure, physical activity, lipids, tocopherols and fatty acids were analyzed using repeated measures mixed models. Both study groups reduced body weight, body mass index and waist circumference (time effect p weight was -9.4 (0.9)% vs. -8.9 (0.7)% (mean [SE]), for the standard vs. walnut-enriched diet groups, respectively. Systolic blood pressure decreased in both groups at 3 months, but only the walnut-enriched diet group maintained a lower systolic blood pressure at 6 months. The walnut-enriched diet group, but not the standard reduced-energy-density diet group, reduced total cholesterol and low-density lipoprotein cholesterol (LDL-C) at 6 months, from 203 to 194 mg/dL and 121 to 112 mg/dL, respectively (p weight loss that is comparable to a standard reduced-energy-density diet in the context of a behavioral weight loss intervention. Although weight loss in response to both dietary strategies was associated with improvements in cardiovascular disease risk factors, the walnut-enriched diet promoted more favorable effects on LDL-C and systolic blood pressure. The trial

  20. Halomonas desiderata as a bacterial model to predict the possible biological nitrate reduction in concrete cells of nuclear waste disposals.

    Science.gov (United States)

    Alquier, Marjorie; Kassim, Caroline; Bertron, Alexandra; Sablayrolles, Caroline; Rafrafi, Yan; Albrecht, Achim; Erable, Benjamin

    2014-01-01

    After closure of a waste disposal cell in a repository for radioactive waste, resaturation is likely to cause the release of soluble species contained in cement and bituminous matrices, such as ionic species (nitrates, sulfates, calcium and alkaline ions, etc.), organic matter (mainly organic acids), or gases (from steel containers and reinforced concrete structures as well as from radiolysis within the waste packages). However, in the presence of nitrates in the near-field of waste, the waste cell can initiate oxidative conditions leading to enhanced mobility of redox-sensitive radionuclides (RN). In biotic conditions and in the presence of organic matter and/or hydrogen as electron donors, nitrates may be microbiologically reduced, allowing a return to reducing conditions that promote the safety of storage. Our work aims to analyze the possible microbial reactivity of nitrates at the bitumen - concrete interface in conditions as close as possible to radioactive waste storage conditions in order (i) to evaluate the nitrate reaction kinetics; (ii) to identify the by-products (NO2(-), NH4(+), N2, N2O, etc.); and (iii) to discriminate between the roles of planktonic bacteria and those adhering as a biofilm structure in the denitrifying activity. Leaching experiments on solid matrices (bitumen and cement pastes) were first implemented to define the physicochemical conditions that microorganisms are likely to meet at the bitumen-concrete interface, e.g. highly alkaline pH conditions (10 < pH < 11) imposed by the cement matrix. The screening of a range of anaerobic denitrifying bacterial strains led us to select Halomonas desiderata as a model bacterium capable of catalyzing the reaction of nitrate reduction in these particular conditions of pH. The denitrifying activity of H. desiderata was quantified in a batch bioreactor in the presence of solid matrices and/or leachate from bitumen and cement matrices. Denitrification was relatively fast in the presence of cement

  1. The demonstration of a novel sulfur cycle-based wastewater treatment process: sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI®) biological nitrogen removal process.

    Science.gov (United States)

    Lu, Hui; Wu, Di; Jiang, Feng; Ekama, George A; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2012-11-01

    Saline water supply has been successfully practiced for toilet flushing in Hong Kong since 1950s, which saves 22% of freshwater in Hong Kong. In order to extend the benefits of saline water supply into saline sewage management, we have recently developed a novel biological organics and nitrogen removal process: the Sulfate reduction, Autotrophic denitrification, and Nitrification Integrated (SANI®) process. The key features of this novel process include elimination of oxygen demand in organic matter removal and production of minimal sludge. Following the success of a 500-day lab-scale trial, this study reports a pilot scale evaluation of this novel process treating 10 m(3) /day of 6-mm screened saline sewage in Hong Kong. The SANI® pilot plant consisted of a sulfate reduction up-flow sludge bed (SRUSB) reactor, an anoxic bioreactor for autotrophic denitrification and an aerobic bioreactor for nitrification. The plant was operated at a steady state for 225 days, during which the average removal efficiencies of both chemical oxygen demand (COD) and total suspended solids (TSS) at 87% and no excess sludge was purposefully withdrawn. Furthermore, a tracer test revealed 5% short circuit flow and a 34.6% dead zone in the SRUSB, indicating a good possibility to further optimize the treatment capacity of the process for full-scale application. Compared with conventional biological nitrogen removal processes, the SANI® process reduces 90% of waste sludge, which saves 35% of the energy and reduces 36% of fossil CO(2) emission. The SANI® process not only eliminates the major odor sources originating from primary treatment and subsequent sludge treatment and disposal during secondary saline sewage treatment, but also promotes saline water supply as an economic and sustainable solution for water scarcity and sewage treatment in water-scarce coastal areas. Copyright © 2012 Wiley Periodicals, Inc.

  2. Brief Report: A Preference for Biological Motion Predicts a Reduction in Symptom Severity One Year Later in Preschoolers with an Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Martina Franchini

    2016-08-01

    Full Text Available Recent research has consistently demonstrated reduced orienting to social stimuli in samples of young children with Autism Spectrum Disorders (ASD. However, social orienting greatly varies between individual children on the spectrum. Better understanding this heterogeneity in social orienting may contribute to our comprehension of the mechanisms underlying autistic symptoms thereby improving our ability to intervene. Indeed, children on the autism spectrum who show higher levels of interest in social stimuli demonstrate reduced clinical symptoms and increased adaptive functioning. However, longitudinal studies examining the influence of social orienting on subsequent outcome are critically lacking. Here, we aim to explore the relationship between social interest at the age of 3 and changes in severity of autistic symptoms over the subsequent year, in 20 children with ASD and 20 age-matched typically developing (TD children. A visual preference for social stmuli was measured using an eye-tracking task at baseline, consisting of a previously studied visual preference paradigm presenting biological and geometric motion side-by-side. The task was altered for the current study by alternating presentation side for each type of stimuli to keep visual perseveration from influencing participants’ first fixation location. Clinical data were collected both at baseline and one year later at follow-up. As a group, we observed reduced interest for biological motion in children with ASD compared to TD children, corroborating previous findings. We also confirmed that a preference for biological motion is associated with better adaptive functioning in preschoolers with ASD. Most importantly, our longitudinal results showed that a preference for biological motion strongly predicted decreased severity of diagnostic symptoms. Participants who preferred social stimuli at the age of 3 showed drastic reductions in their severity level of autistic symptoms one year

  3. Dechlorination/Solidification of LiCl waste by using a synthetic inorganic composite with different compositions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Na Young; Cho, In Hak; Park, Hwan Seo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Waste salt generated from a pyro-processing for the recovery of uranium and transuranic elements has high volatility at vitrification temperature and low compatibility in conventional waste glasses. For this reason, KAERI (Korea Atomic Energy Research Institute) suggested a new method to de-chlorinate waste salt by using an inorganic composite named SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}). In this study, the de-chlorination behavior of waste salt and the microstructure of consolidated form were examined by adding B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} to the original SAP composition. De-chlorination behavior of metal chloride waste was slightly changed with given compositions, compared with that of original SAP. In the consolidated forms, the phase separation between Si-rich phase and P-rich phase decreases with the amount of Al{sub 2}O{sub 3} or B{sub 2}O{sub 3} as a connecting agent between Si and P-rich phase. The results of PCT (Product Consistency Test) indicated that the leach-resistance of consolidated forms out of reference composition was lowered, even though the leach-resistance was higher than that of EA (Environmental Assessment) glass. From these results, it could be inferred that the change in the content of Al or B in U-SAP affected the microstructure and leach-resistance of consolidated form. Further studies related with correlation between composition and characteristics of wasteform are required for a better understanding.

  4. Trapping of a Cross-link Formed by a Major Purine Adduct of a Metabolite of the Carcinogen N-Nitrosomorpholine by Inorganic and Biological Reductants

    Science.gov (United States)

    Koissi, Niangoran; Fishbein, James C.

    2013-01-01

    3-Hydroperoxy-N-nitrosomorpholine in buffered aqueous media in the presence of calf thymus DNA was treated with a phosphine reductant to generate the transient α-hydroxynitrosamine and subsequent diazonium ion that alkylated the DNA, as previously reported. Subsequent addition of hydride donors, for 30 min, followed by acid hydrolysis of the mixture allowed detection and quantification of 6-(2-(2-((9H-purin-6-yl)amino)ethoxy)ethoxy)-9H-purin-2-amine, the reduced cross-link formed from deposition, via the diazonium ion, of a 3-oxa-pentanal fragment on O6-Gua, and condensation with N6-Ade, presumably in the vicinity. Decreasing temperature of the reactions and decreasing pH modestly increased the yields of trapped crosslink. Among three borohydride reductants, NaNCBH3 is superior, being ∼4 times more effective on a molar basis, as opposed to a hydride equivalent basis, than NaBH4 or Na(AcO)3BH. For trapping with NaNCBH3, it is deduced that the reaction likely occurs with the iminium ion that is in protonic equilibrium with its conjugate base imine. In an experiment in which the hydroperoxide was decomposed and NaNCBH3 was introduced after various times, the amount of cross-link was observed to increase, nearly linearly, by about four-fold over one week. These data indicate that there are a minimum of 2 populations of cross-links, one that forms rapidly, in minutes, and another that grows in with time, over days. Reduced nicotinamide co-factors and ascorbate are observed to effect reduction (over 3 days) of the cross-links confirming the possibility that otherwise reversible cross-links might be immortalized under biological conditions. PMID:23587048

  5. Reductive dechlorination rate data for 4,4'-DDE in sediments of the Palos Verdes Shelf, CA (1981-2010)

    Data.gov (United States)

    Department of the Interior — Wastes from the world’s largest manufacturer of DDT were released into the Los Angeles County municipal sewer system from 1947 to 1971. Following primary treatment,...

  6. Stimulation of reductive dechlorination of tetrachloroethane in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols

    International Nuclear Information System (INIS)

    Gibson, S.A.; Sewell, G.W.

    1992-01-01

    Although the ecological and public health risk associated with tetrachloroethene (PCE) contamination may be the most severe when spills affect groundwater, little is known about the environmental conditions necessary to initiate and sustain dehalogenation activity in contaminated aquifers. This study was done with core material collected from a site impacted by both aviation gasoline and chloroethenes at a Coast Guard Air Station at Traverse City, Michigan. The effect of the addition of common fermentation products on the dehalogenation of tetrachloroethene was studied in methanogenic slurries made with aquifer solids. Lactate, propionate, crotonate, butyrate, and ethanol stimulated dehalogenation activity, while acetate, methanol, and isopropanol did not

  7. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kim, Eun Su; Park, Jung Hyun; Kim, Jin-Hoi

    2015-01-01

    Objective Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells. Methods The successful reduction of graphene oxide (GO) to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO). Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells. Results The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3. Conclusion Our data demonstrate a single, simple green approach for the synthesis of highly water-dispersible functionalized graphene nanosheets, suggesting a possibility of replacing toxic hydrazine by a natural and safe phenolic

  8. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2015-04-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Eun Su Kim, Jung Hyun Park, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea Objective: Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells.Methods: The successful reduction of graphene oxide (GO to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO. Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells.Results: The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3.Conclusion: Our data demonstrate a single, simple green

  9. Calibration of Biokinetic and Biological Parameters for a Groundwater Bioremediation Model using Heuristics and Function Approximation Optimization

    Science.gov (United States)

    Mugunthan, P.; Shoemaker, C. A.; Regis, R. G.

    2003-12-01

    Heuristics and function approximation optimization methods were applied in calibrating biological and biokinetic parameters for a computationally expensive groundwater bioremediation model for engineered reductive dechlorination of chlorinated ethenes. Multi-species groundwater bioremediation models that use monod type kinetics are often not amenable to traditional derivative based optimization due to stiff biokinetic equations. The performance of three heuristic methods, Stochastic Greedy Search (GS), Real Genetic Algorithm (RGA), Derandomized Evolution Strategy (DES), and, Function Approximation Optimization based on Radial Basis Function (FA-RBF) were compared on three-dimensional hypothetical and field problems. GS was implemented so as to perform a more global search. Optimization results on hypothetical problem indicated that FA-RBF performed statistically significantly better than heuristic based evolutionary algorithms at a 10% significance level. Further, this particular implementation of GS performed well and proved superior to RGA. These heuristic methods and FA-RBF, with the exception of RGA, were applied to calibrate biological and biokinetic parameters using treatability test data for enhanced bioremediation at a Naval Air Station in Alameda Point, CA. All three methods performed well and identified similar solutions. The approximate simulation times for the hypothetical and real problems were 7 min and 2.5 hours respectively. Calibration of such computationally expensive models by heuristic and function approximation methods appears promising.

  10. INFLUENCE OF HYDRAULIC RETENTION TIME ON EXTENT OF PCE DECHLORINATION AND PRELIMINARY CHARACTERIZATION OF THE ENRICHMENT CULTURE. (R826694C703)

    Science.gov (United States)

    The extent of tetrachloroethene (PCE) dechlorination in two chemostats was evaluated as a function of hydraulic retention time (HRT). The inoculum of these chemostats was from an upflow anaerobic sludge blanket (UASB) reactor that rapidly converts PCE to vinyl chloride (VC) an...

  11. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongyi, E-mail: zhouhy@zjut.edu.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Han, Jian [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Baig, Shams Ali; Xu, Xinhua [Department of Environmental Engineering, Zhejiang University, Hangzhou 310027 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer CMC-stabilized Pd/Fe nanoparticles were synthesized and used for 2,4-D removal. Black-Right-Pointing-Pointer Particle stability, {zeta}-potential and IEP of non- and stabilized Pd/Fe were compared. Black-Right-Pointing-Pointer Dechlorination of 2,4-D by different Pd/Fe systems was investigated. Black-Right-Pointing-Pointer The reaction mechanism has been discussed and presented in the article. Black-Right-Pointing-Pointer Effects of CMC/Fe mass ratio and pH were also investigated. - Abstract: This paper describes the synthesis of sodium carboxymethyl cellulose (CMC)-stabilized Pd/Fe nanoparticles and their applications to the dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) under controlled laboratorial conditions. For this purpose batch mode experiments were conducted to understand the effects of CMC on the surface characteristics of Pd/Fe nanoparticles, optimum removal of 2,4-D and other surface interactions mechanism. Our experimental results demonstrated considerable enhancements in particle stability and chemical reactivity with the addition of CMC to Pd/Fe nanoparticles. Transmission electron microscopy (TEM) analysis indicated that CMC-stabilized Pd/Fe nanoparticles were well dispersed, and nanoparticles remained in suspension for days compared to non-stabilized Pd/Fe nanoparticles precipitated within minutes. The isoelectric point (IEP) of the nanoparticles shifted from pH 6.5 to 2.5, suggesting that CMC-stabilized Pd/Fe nanoparticles were negatively charged over a wider pH range. Our batch experiments demonstrated that CMC-stabilized Pd/Fe nanoparticles (0.6 g Fe L{sup -1}) were able to remove much higher levels of 2,4-D with only one intermediate 2-chlorophenoxyacetic acid (2-CPA) and the final organic product phenoxyacetic acid (PA), than non-stabilized Pd/Fe nanoparticles or microsized Pd/Fe particles. The removal percentage of 2,4-D increased from 10% to nearly 100% as the reaction pH decreased from 11

  12. Fabrication and evaluation of Au-Pd core-shell nanocomposites for dechlorination of diclofenac in water.

    Science.gov (United States)

    Wang, Xu; Li, Jian-Rong; Fu, Ming-Lai; Yuan, Baoling; Cui, Hao-Jie; Wang, Ya-Fen

    2015-01-01

    Nanocomposites with core-shell structure usually exhibit excellent catalytic properties due to unique interfaces and synergistic effect among composites. In this study, Au-Pd bimetallic nanoparticles (NPs) with core-shell structure (Au-Pd cs) by using Au NPs as core and Pd as shell were successfully fabricated and, for the first time, were used to investigate the dechlorination of diclofenac (DCF) at H2 atmosphere in water at room temperature. The degradation products were studied as well by using HPLC/Q-ToF MS/MS. The operational factors such as pH and composition of the Au-Pd cs were also studied. The results showed that nearly 100% of DCF (30 mg L(-1), 50 mL, pH=7) was dechlorinated in 4.5 h by 10 mL of 56 mg L(-1) of Au-Pd cs. Ninety per cent of DCF was degraded in 6.5 h by the mixture of Au and Pd NPs. However, the individual Au NPs had no obvious effect in degrading DCF and the monometallic Pd NPs with comparable concentration only degraded less than 20% of DCF. Furthermore, the reaction mechanism of this catalytic process was studied in detail. It was found that the degradation was a second-order exponential reaction. The two main degradation products were obtained by cleaving the carbon-halogen bond of DCF and this made the degradation products more environmentally friendly.

  13. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles.

    Science.gov (United States)

    Zhou, Hongyi; Han, Jian; Baig, Shams Ali; Xu, Xinhua

    2011-12-30

    This paper describes the synthesis of sodium carboxymethyl cellulose (CMC)-stabilized Pd/Fe nanoparticles and their applications to the dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) under controlled laboratorial conditions. For this purpose batch mode experiments were conducted to understand the effects of CMC on the surface characteristics of Pd/Fe nanoparticles, optimum removal of 2,4-D and other surface interactions mechanism. Our experimental results demonstrated considerable enhancements in particle stability and chemical reactivity with the addition of CMC to Pd/Fe nanoparticles. Transmission electron microscopy (TEM) analysis indicated that CMC-stabilized Pd/Fe nanoparticles were well dispersed, and nanoparticles remained in suspension for days compared to non-stabilized Pd/Fe nanoparticles precipitated within minutes. The isoelectric point (IEP) of the nanoparticles shifted from pH 6.5 to 2.5, suggesting that CMC-stabilized Pd/Fe nanoparticles were negatively charged over a wider pH range. Our batch experiments demonstrated that CMC-stabilized Pd/Fe nanoparticles (0.6 g Fe L(-1)) were able to remove much higher levels of 2,4-D with only one intermediate 2-chlorophenoxyacetic acid (2-CPA) and the final organic product phenoxyacetic acid (PA), than non-stabilized Pd/Fe nanoparticles or microsized Pd/Fe particles. The removal percentage of 2,4-D increased from 10% to nearly 100% as the reaction pH decreased from 11.5 to 2.5. The optimal CMC/Fe mass ratio for the dechlorination of 2,4-D was determined to be 5/1, and the removal of 2,4-D was evidently hindered by an overdose of CMC. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Purification and characterization of the 3-chloro-4-hydroxy-phenylacetate reductive dehalogenase of Desulfitobacterium hafniense

    DEFF Research Database (Denmark)

    Christensen, Nina; Ahring, Birgitte Kiær; Wohlfarth, Gert

    1998-01-01

    The membrane-bound 3-chloro-4-hydroxyphenylacetate (Cl-OHPA) reductive dehalogenase from the chlorophenol- educing anaerobe Desulfitobacterium hafniense was purified 11.3-fold to apparent homogeneity in the presence of the detergent CHAPS. The purified dehalogenase catalyzed the reductive...... dechlorination of Cl-OHPA to 4-hydroxyphenylacetate with reduced methyl viologen as the electron donor at a specific activity of 103.2 nkat/mg protein. SDS-PAGErevealed a single protein band with an apparent molecular mass of 46.5 kDa. The enzyme contained 0.68±0.2 mol corrinoid, 12.0±0.7 mol iron, and 13...

  15. Catalogue of methods of calculation, interpolation, smoothing, and reduction for the physical, chemical, and biological parameters of deep hydrology (CATMETH) (NODC Accession 7700442)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The document presents the methods, formulas and citations used by the BNDO to process physical, chemical, and biological data for deep hydrology including...

  16. Metagenomic and Metatranscriptomic Analyses Reveal the Structure and Dynamics of a Dechlorinating Community Containing Dehalococcoides mccartyi and Corrinoid-Providing Microorganisms under Cobalamin-Limited Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Men, Yujie; Yu, Ke; Bælum, Jacob; Gao, Ying; Tremblay, Julien; Prestat, Emmanuel; Stenuit, Ben; Tringe, Susannah G.; Jansson, Janet; Zhang, Tong; Alvarez-Cohen, Lisa; Liu, Shuang-Jiang

    2017-02-10

    ABSTRACT

    The aim of this study is to obtain a systems-level understanding of the interactions betweenDehalococcoidesand corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in theVeillonellaceaebin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoidde novobiosynthesis pathway was also assigned to theVeillonellaceaebin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway ofDehalococcoideswas upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions.

    IMPORTANCEThe key

  17. Dechlorination and chlorine rearrangement of 1,2,5,5,6,9,10-heptachlorodecane mediated by the whole pumpkin seedlings.

    Science.gov (United States)

    Li, Yanlin; Hou, Xingwang; Yu, Miao; Zhou, Qunfang; Liu, Jiyan; Schnoor, Jerald L; Jiang, Guibin

    2017-05-01

    Short chain chlorinated paraffins (SCCPs) are ubiquitously present as persistent organic pollutants in the environment. However, little information on the interaction of SCCPs with plants is currently available. In this work, young pumpkin plants (Cucurbita maxima × C. Moschata) were hydroponically exposed to the congener of chlorinated decane, 1,2,5,5,6,9,10-heptachlorodecane (1,2,5,5,6,9,10-HepCD), to investigate the uptake, translocation and transformation of chlorinated decanes in the intact plants. It was found that parent HepCD was taken up by the pumpkin roots, translocated from root to shoots, and phytovolatilized from pumpkin plants to air via the plant transpiration flux. Our data suggested that dechlorination of 1,2,5,5,6,9,10-HepCD to lower chlorinated decanes and rearrangement of chlorine atoms in the molecule were all mediated by the whole pumpkin seedlings. Chlorinated decanes were found in the shoots and roots of blank controls, indicating that chlorinated decanes in the air could be absorbed by leaves and translocated from shoots to roots. Lower chlorinated congeners (C 10 H 17 Cl 5 ) tended to detain in air compared to higher chlorinated congeners (C 10 H 16 Cl 6 and other C 10 H 15 Cl 7 ). Potential transformation pathway and behavior of 1,2,5,5,6,9,10-HepCD in pumpkin were proposed based on these experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Desulfitobacterium strain isolated from human feces that does not dechlorinate chloroethenes or chlorophenols

    NARCIS (Netherlands)

    van de Pas, BA; Harmsen, HJM; Raangs, GC; de Vos, WM; Schraa, G; Stams, AJM

    An anaerobic bacterium, strain DP7, was isolated from human feces in mineral medium with formate and 0.02% yeast extract as energy and carbon source. This rod-shaped motile bacterium used pyruvate, lactate, formate, hydrogen, butyrate, and ethanol as electron donor for sulfite reduction. Other

  19. Effect of the addition of zero valent iron (Fe0) on the batch biological sulphate reduction using grass cellulose as carbon source

    CSIR Research Space (South Africa)

    Mulopo, J

    2013-09-01

    Full Text Available , a scarce commodity. The aim of the study presented here was to investigate the effect of zero valent iron (Fe0) on the biological removal of sulphate from AMD in batch reactors. The performance of the reactors was assessed by means of sulphate...

  20. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kang; Zhang, Fu-Shen, E-mail: fszhang@rcees.ac.cn

    2016-10-05

    Highlights: • A co-treatment process for recovery of Co and Li and simultaneous detoxification of PVC in subcritical water was proposed. • PVC was used as a hydrochloric acid source. • More than 95% Co and nearly 98% Li were leached under the optimum conditions. • Neither corrosive acid nor reducing agent was used. • The co-treatment process has technical, economic and environmental benefits over the traditional recovery processes. - Abstract: In this work, an effective and environmentally friendly process for the recovery of cobalt (Co) and lithium (Li) from spent lithium-ion batteries (LIBs) and simultaneously detoxification of polyvinyl chloride (PVC) in subcritical water was developed. Lithium cobalt oxide (LiCoO{sub 2}) power from spent LIBs and PVC were co-treated by subcritical water oxidation, in which PVC served as a hydrochloric acid source to promote metal leaching. The dechlorination of PVC and metal leaching was achieved simultaneously under subcritical water oxidation. More than 95% Co and nearly 98% Li were recovered under the optimum conditions: temperature 350 °C, PVC/LiCoO{sub 2} ratio 3:1, time 30 min, and a solid/liquid ratio 16:1 (g/L), respectively. Moreover, PVC was completely dechlorinated at temperatures above 350 °C without any release of toxic chlorinated organic compounds. Assessment on economical and environmental impacts revealed that the PVC and LiCoO{sub 2} subcritical co-treatment process had significant technical, economic and environmental benefits over the traditional hydrometallurgy and pyrometallurgy processes. This innovative co-treatment process is efficient, environmentally friendly and adequate for Co and Li recovery from spent LIBs and simultaneous dechlorination of PVC in subcritical water.

  1. Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture.

    Science.gov (United States)

    Macbeth, Tamzen W; Cummings, David E; Spring, Stefan; Petzke, Lynn M; Sorenson, Kent S

    2004-12-01

    Sodium lactate additions to a trichloroethene (TCE) residual source area in deep, fractured basalt at a U.S. Department of Energy site have resulted in the enrichment of the indigenous microbial community, the complete dechlorination of nearly all aqueous-phase TCE to ethene, and the continued depletion of the residual source since 1999. The bacterial and archaeal consortia in groundwater obtained from the residual source were assessed by using PCR-amplified 16S rRNA genes. A clone library of bacterial amplicons was predominated by those from members of the class Clostridia (57 of 93 clones), of which a phylotype most similar to that of the homoacetogen Acetobacterium sp. strain HAAP-1 was most abundant (32 of 93 clones). The remaining Bacteria consisted of phylotypes affiliated with Sphingobacteria, Bacteroides, Spirochaetes, Mollicutes, and Proteobacteria and candidate divisions OP11 and OP3. The two proteobacterial phylotypes were most similar to those of the known dechlorinators Trichlorobacter thiogenes and Sulfurospirillum multivorans. Although not represented by the bacterial clones generated with broad-specificity bacterial primers, a Dehalococcoides-like phylotype was identified with genus-specific primers. Only four distinct phylotypes were detected in the groundwater archaeal library, including predominantly a clone affiliated with the strictly acetoclastic methanogen Methanosaeta concilii (24 of 43 clones). A mixed culture that completely dechlorinates TCE to ethene was enriched from this groundwater, and both communities were characterized by terminal restriction fragment length polymorphism (T-RFLP). According to T-RFLP, the laboratory enrichment community was less diverse overall than the groundwater community, with 22 unique phylotypes as opposed to 43 and a higher percentage of Clostridia, including the Acetobacterium population. Bioreactor archaeal structure was very similar to that of the groundwater community, suggesting that methane is

  2. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand

    International Nuclear Information System (INIS)

    Kim, Hye-Jin; Leitch, Megan; Naknakorn, Bhanuphong; Tilton, Robert D.; Lowry, Gregory V.

    2017-01-01

    Highlights: • Reactivity of nZVI increased linearly with nZVI concentration above 10 g/L, but was non-linear below 10 g/L. • nZVI reactivity with PCE is more sensitive to solution redox potential than solution pH. • Mass transfer limits the reactivity of emplaced nZVI under typical groundwater flow velocity. • Lowering pH increases H 2 evolution from nZVI more than reactivity with PCE. • Design of nZVI remediation strategies should consider mass loading and flow velocity on performance and lifetime. - Abstract: The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW = 12 K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7 × 10 −4 L hr −1 m −2 ) and hydrogen evolution rate constant (1.4 nanomol L hr −1 m −2 ) were independent of nZVI concentration above 10 g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10 g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H 2 evolution was explained by differences in pH and E h at each nZVI mass loading; PCE reactivity increased when solution E h decreased, and the H 2 evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5 g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime.

  3. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Jin [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Chemical Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708 (Korea, Republic of); Leitch, Megan [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Naknakorn, Bhanuphong [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Tilton, Robert D. [Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Lowry, Gregory V., E-mail: glowry@cmu.edu [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States)

    2017-01-15

    Highlights: • Reactivity of nZVI increased linearly with nZVI concentration above 10 g/L, but was non-linear below 10 g/L. • nZVI reactivity with PCE is more sensitive to solution redox potential than solution pH. • Mass transfer limits the reactivity of emplaced nZVI under typical groundwater flow velocity. • Lowering pH increases H{sub 2} evolution from nZVI more than reactivity with PCE. • Design of nZVI remediation strategies should consider mass loading and flow velocity on performance and lifetime. - Abstract: The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW = 12 K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7 × 10{sup −4} L hr{sup −1} m{sup −2}) and hydrogen evolution rate constant (1.4 nanomol L hr{sup −1} m{sup −2}) were independent of nZVI concentration above 10 g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10 g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H{sub 2} evolution was explained by differences in pH and E{sub h} at each nZVI mass loading; PCE reactivity increased when solution E{sub h} decreased, and the H{sub 2} evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5 g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime.

  4. Treatment of radioactive waste salt by using synthetic silica-based phosphate composite for de-chlorination and solidification

    Science.gov (United States)

    Cho, In-Hak; Park, Hwan-Seo; Lee, Ki-Rak; Choi, Jung-Hun; Kim, In-Tae; Hur, Jin Mok; Lee, Young-Seak

    2017-09-01

    In the radioactive waste management, waste salts as metal chloride generated from a pyrochemical process to recover uranium and transuranic elements are one of problematic wastes due to their intrinsic properties such as high volatility and low compatibility with conventional glasses. This study reports a method to stabilize and solidify LiCl waste via de-chlorination using a synthetic composite, U-SAP (SiO2-Al2O3-B2O3-Fe2O3-P2O5) prepared by a sol-gel process. The composite was reacted with alkali metal elements to produce some metal aluminosilicates, aluminophosphates or orthophosphate as a crystalline or amorphous compound. Different from the original SAP (SiO2-Al2O3-P2O5), the reaction product of U-SAP could be successfully fabricated as a monolithic wasteform without a glassy binder at a proper reaction/consolidation condition. From the results of the FE-SEM, FT-IR and MAS-NMR analysis, it could be inferred that the Si-rich phase and P-rich phase as a glassy grains would be distributed in tens of nm scale, where alkali metal elements would be chemically interacted with Si-rich or P-rich region in the virgin U-SAP composite and its products was vitrified into a silicate or phosphate glass after a heat-treatment at 1150 °C. The PCT-A (Product Consistency Test, ASTM-1208) revealed that the mass loss of Cs and Sr in the U-SAP wasteform had a range of 10-3∼10-1 g/m2 and the leach-resistance of the U-SAP wasteform was comparable to other conventional wasteforms. From the U-SAP method, LiCl waste salt was effectively stabilized and solidified with high waste loading and good leach-resistance.

  5. The Uptake and Fate of Vanadyl Ion in Ascidian Blood Cells and A Detailed Hypothesis for the Mechanism and Location of Biological Vanadium Reduction: A Visible and X-Ray Absorption Spectroscopic Study

    Science.gov (United States)

    Frank, Patrick; Carlson, Elaine J.; Carlson, Robert M. K.; Hedman, Britt; Hodgson, Keith O.

    2010-01-01

    Vanadium K-edge x-ray absorption spectroscopy (XAS) has been used to track the uptake and fate of VO2+ ion in blood cells from Ascidia ceratodes, following exposure to dithiothreitol (DTT) or to DTT plus VO2+. The full range of endogenous vanadium was queried by fitting the XAS of blood cells with the XAS spectra of model vanadium complexes. In cells exposed only to DTT, ~0.4% of a new V(III) species was found in a site similar to Na[V(edta)(H2O)]. With exposure to DTT and VO2+, average intracellular [VO(aq)]2+ increased from 3% to 5%, and 6% of a new complexed form of vanadyl ion appeared evidencing a ligand array similar to [VO(edta)]2−. At the same time, the relative ratio of blood cell [V(H2O)6]3+ increased at the expense of [V(H2O)5(SO4)]+ in a manner consistent with a significant increase in endogenous acidity. In new UV/visible experiments, VO2+ could be reduced to 7-coordinate [V(nta)(H2O)3] or [V(nta)(ida)]2−with cysteine methyl ester in pH 6.5 solution. Ascorbate reduced [VO(edta)]2− to 7-coordinate [V(edta)(H2O)]−, while [VO(trdta)]2− was unreactive. These results corroborate the finding that the reductive EMF of VO2+ is increased by the availability of a 7-coordinate V(III) product. Finally a new and complete hypothesis is proposed for an ascidian vanadate reductase. The structure of the enzyme active site, the vanadate-vanadyl-vanadic reduction mechanism, the cellular locale, and elements of the regulatory machinery governing the biological reduction of vanadate and vanadyl ion by ascidians are all predicted. Together these constitute the new field of vanadium redox enzymology. PMID:18234345

  6. Poverty Reduction

    OpenAIRE

    Ortiz, Isabel

    2007-01-01

    The paper reviews poverty trends and measurements, poverty reduction in historical perspective, the poverty-inequality-growth debate, national poverty reduction strategies, criticisms of the agenda and the need for redistribution, international policies for poverty reduction, and ultimately understanding poverty at a global scale. It belongs to a series of backgrounders developed at Joseph Stiglitz's Initiative for Policy Dialogue.

  7. Investigation of mechanisms of dechlorination of archaeological ferrous objects corroded in marine environment. Case of processing in aerated and deaerated alkaline solutions

    International Nuclear Information System (INIS)

    Kergourlay, Florian

    2012-01-01

    After a bibliographic study on the present knowledge on dechlorination mechanisms within corrosion layers of archaeological objects of submarine origin, this research thesis presents an analytical methodology which comprises characterization experimental techniques (from optical microscopy to Raman spectroscopy) and in situ investigation of the evolution of the corrosion layer during a processing under synchrotron radiation. The obtained results are then presented and discussed: morphological, elemental and structural characteristics. The author also compares the corrosion system between an object recently taken out of water and an object which has been air dried. He also comments and discusses the in situ observation by X ray diffraction under micro-beam of the evolution of the corrosion system during the processing. The ex situ characterization of corrosion systems after the rinsing and drying steps (after processing) is reported. Results are discussed in terms of thermodynamics. A kinetic approach is proposed

  8. Reductive biological treatment of textile effluents

    OpenAIRE

    Ramalho, Patrícia A.; Ramalho, Maria Teresa; Cardoso, M. Helena; Paulo, Artur Cavaco

    2004-01-01

    3rd International Conference on Textile Biotechnology, Graz, Áustria, 13-16 Junho 2004. Azo dyes are synthetic organic colorants which are extensively used in textile, food and cosmetic industries. A large fraction of these dyes is released into the environment even after conventional wastewater treatments. This is a worldwide problem and particularly a problem in regions where textile industries release large quantities of coloured wastewater to water courses. In an attempt to develop...

  9. A retention-time-shift-tolerant background subtraction and noise reduction algorithm (BgS-NoRA) for extraction of drug metabolites in liquid chromatography/mass spectrometry data from biological matrices.

    Science.gov (United States)

    Zhu, Peijuan; Ding, Wei; Tong, Wei; Ghosal, Anima; Alton, Kevin; Chowdhury, Swapan

    2009-06-01

    A retention-time-shift-tolerant background subtraction and noise reduction algorithm (BgS-NoRA) is implemented using the statistical programming language R to remove non-drug-related ion signals from accurate mass liquid chromatography/mass spectrometry (LC/MS) data. The background-subtraction part of the algorithm is similar to a previously published procedure (Zhang H and Yang Y. J. Mass Spectrom. 2008, 43: 1181-1190). The noise reduction algorithm (NoRA) is an add-on feature to help further clean up the residual matrix ion noises after background subtraction. It functions by removing ion signals that are not consistent across many adjacent scans. The effectiveness of BgS-NoRA was examined in biological matrices by spiking blank plasma extract, bile and urine with diclofenac and ibuprofen that have been pre-metabolized by microsomal incubation. Efficient removal of background ions permitted the detection of drug-related ions in in vivo samples (plasma, bile, urine and feces) obtained from rats orally dosed with (14)C-loratadine with minimal interference. Results from these experiments demonstrate that BgS-NoRA is more effective in removing analyte-unrelated ions than background subtraction alone. NoRA is shown to be particularly effective in the early retention region for urine samples and middle retention region for bile samples, where the matrix ion signals still dominate the total ion chromatograms (TICs) after background subtraction. In most cases, the TICs after BgS-NoRA are in excellent qualitative correlation to the radiochromatograms. BgS-NoRA will be a very useful tool in metabolite detection and identification work, especially in first-in-human (FIH) studies and multiple dose toxicology studies where non-radio-labeled drugs are administered. Data from these types of studies are critical to meet the latest FDA guidance on Metabolite in Safety Testing (MIST). Copyright (c) 2009 John Wiley & Sons, Ltd.

  10. The effect of ammonium chloride and urea application on soil bacterial communities closely related to the reductive transformation of pentachlorophenol.

    Science.gov (United States)

    Yu, Huan-Yun; Wang, Yong-kui; Chen, Peng-cheng; Li, Fang-bai; Chen, Man-jia; Hu, Min

    2014-05-15

    Pentachlorophenol (PCP) is widely distributed in the soil, and nitrogen fertilizer is extensively used in agricultural production. However, studies on the fate of organic contaminants as affected by nitrogen fertilizer application have been rare and superficial. The present study aimed to examine the effect of ammonium chloride (NH4Cl) and urea (CO(NH2)2) application on the reductive transformation of PCP in a paddy soil. The study showed that the addition of low concentrations of NH4Cl/CO(NH2)2 enhanced the transformation of PCP, while the addition of high concentrations of NH4Cl/CO(NH2)2 had the opposite effect. The variations in the abundance of soil microbes in response to NH4Cl/CO(NH2)2 addition showed that both NH4Cl and CO(NH2)2 had inhibitory effects on the growth of dissimilatory iron-reducing bacteria (DIRB) of the genus Comamonas. In contrast, for the genus Shewanella, low concentrations of NH4Cl inhibited growth, and high concentrations of NH4Cl enhanced growth, whereas all concentrations of CO(NH2)2 showed enhancement effects. In addition, consistent patterns of variation were found between the abundances of dechlorinating bacteria in the genus Dehalobacter and PCP transformation rates under NH4Cl/CO(NH2)2 addition. In conclusion, nitrogen application produced variations in the structure of the soil microbial community, especially in the abundance of dissimilatory iron-reducing bacteria and dechlorinating bacteria, which, in turn, affected PCP dechlorination. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Breast reduction

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007405.htm Breast reduction To use the sharing features on this page, please enable ... discharge Images Mammoplasty References Fisher J, Higdon KK. Reduction mammaplasty. In: Neligan PC, ed. Plastic Surgery . 3rd ed. Philadelphia, PA: Elsevier Saunders; 2013: ...

  12. Rich Reduction

    DEFF Research Database (Denmark)

    Niebuhr, Oliver

    2016-01-01

    evidence on articulatory prosodies and the involvement of reduction in conveying communication functions both suggest the next steps along the line of argument opened up by Lindblom. Specifically, we need to supplement Lindblom's explanatory framework and revise the speaker-listener conflict that lies...... corresponding to the time domain of the reduction variation....

  13. Harm reduction

    OpenAIRE

    Normand, Jacques; Li, Jih-Heng; Thomson, Nicholas; Jarlais, Don Des

    2013-01-01

    The “Harm Reduction” session was chaired by Dr. Jacques Normand, Director of the AIDS Research Program of the U.S. National Institute on Drug Abuse. The three presenters (and their presentation topics) were: Dr. Don Des Jarlais (High Coverage Needle/Syringe Programs for People Who Inject Drugs in Low and Middle Income Countries: A Systematic Review), Dr. Nicholas Thomson (Harm Reduction History, Response, and Current Trends in Asia), and Dr. Jih-Heng Li (Harm Reduction Strategies in Taiwan).

  14. Magnetite nanoparticles enhance the performance of a combined bioelectrode-UASB reactor for reductive transformation of 2,4-dichloronitrobenzene.

    Science.gov (United States)

    Wang, Caiqin; Ye, Lu; Jin, Jie; Chen, Hui; Xu, Xiangyang; Zhu, Liang

    2017-09-04

    Direct interspecies electron transfer (DIET) among the cometabolism microbes plays a key role in the anaerobic degradation of persistent organic pollutants and stability of anaerobic bioreactor. In this study, the COD removal efficiency increased to 99.0% during the start-up stage in the combined bioelectrode-UASB system (R1) with magnetite nanoparticles addition, which was higher than those in the coupled bioelectrode-UASB (R2; 83.2%) and regular UASB (R3; 71.0%). During the stable stage, the increase of 2,4-dichloronitrobenzene (2,4-DClNB) concentration from 25 mg L -1 to 200 mg L -1 did not affect the COD removal efficiencies in R1 and R2, whereas the performance of R3 was deteriorated obviously. Further intermediates analysis indicated that magnetite nanoparticles enhanced the reductive dechlorination of 2,4-DClNB. High-throughput sequencing results showed that the functional microbes like Syntrophobacter and Syntrophomonas which have been reported to favor the DIET, were predominant on the cathode surface of R1 reactor. It is speculated that the addition of magnetite nanoparticles favors the cooperative metabolism of dechlorinating microbes and electricigens during 2,4-DClNB degradation process in the combined bioelectrode-UASB reactor. This study may provide a new strategy to improve the performance of microbial electrolysis cells and enhance the pollutant removal efficiency.

  15. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    Systems biology seeks to study biological systems as a whole, contrary to the reductionist approach that has dominated biology. Such a view of biological systems emanating from strong foundations of molecular level understanding of the individual components in terms of their form, function and interactions is promising to ...

  16. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  17. Models of pesticides inside cavities of molecular dimensions. A role of the guest inclusion in the dechlorination process

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Pospíšil, Lubomír; Fanelli, N.; Giannarelli, S.

    2005-01-01

    Roč. 21, č. 5 (2005), s. 1923-1930 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GP203/02/P082; GA ČR(CZ) GA203/03/0821 Grant - others:GA MŠk(CZ) 1P04OCD31.001 Institutional research plan: CEZ:AV0Z40400503 Keywords : beta-cyclodextrin * electrochemical reduction * gamma-cyclodextrin * alpha-cyclodextrin Subject RIV: CG - Electrochemistry Impact factor: 3.705, year: 2005

  18. Biotransformation of a highly chlorinated PCB mixture in an activated sludge collected from a Membrane Biological Reactor (MBR) subjected to anaerobic digestion

    International Nuclear Information System (INIS)

    Bertin, Lorenzo; Capodicasa, Serena; Fedi, Stefano; Zannoni, Davide; Marchetti, Leonardo; Fava, Fabio

    2011-01-01

    The role of anaerobic digestion (AD) on the decontamination and biomethanization of a PCB-spiked sludge obtained from a Membrane Biological Reactor (MBR) pilot plant was investigated throughout a 10-month batch experiment. The study was carried out under mesophilic (35 deg. C) and thermophilic (55 deg. C) conditions and was monitored by means of an integrated chemical, microbiological and molecular biology strategy. Remarkable PCB depletions (higher than 50% of the overall spiked PCBs) and dechlorinations were achieved under methanogenic conditions. The process was not affected by yeast extract addition. Both acetoclastic and hydrogenotrophic methanogens, together with some fermentative eubacteria, were found to persist in all PCB biodegrading microcosms. This finding, together with those obtained from parallel microcosms where specific populations were selectively inhibited, suggested that native methanogens played a key role in the biodegradation and dechlorination of the spiked PCBs. Taken together, the results of this study indicate that AD is a feasible option for the decontamination and the efficient disposal (with the production of a CH 4 -rich biogas) of contaminated MBR sludge, which can be then employed as a fertilizer for agricultural purposes.

  19. Radon reduction

    International Nuclear Information System (INIS)

    Hamilton, M.A.

    1990-01-01

    During a radon gas screening program, elevated levels of radon gas were detected in homes on Mackinac Island, Mich. Six homes on foundations with crawl spaces were selected for a research project aimed at reducing radon gas concentrations, which ranged from 12.9 to 82.3 pCi/l. Using isolation and ventilation techniques, and variations thereof, radon concentrations were reduced to less than 1 pCi/l. This paper reports that these reductions were achieved using 3.5 mil cross laminated or 10 mil high density polyethylene plastic as a barrier without sealing to the foundation or support piers, solid and/or perforated plastic pipe and mechanical fans. Wind turbines were found to be ineffective at reducing concentrations to acceptable levels. Homeowners themselves installed all materials

  20. Biological treatment processes for PCB contaminated soil at a site in Newfoundland

    International Nuclear Information System (INIS)

    Punt, M.; Cooper, D.; Velicogna, D.; Mohn, W.; Reimer, K.; Parsons, D.; Patel, T.; Daugulis, A.

    2002-01-01

    SAIC Canada is conducting a study under the direction of a joint research and development contract between Public Works and Government Services Canada and Environment Canada to examine the biological options for treating PCB contaminated soil found at a containment cell at a former U.S. Military Base near Stephenville, Newfoundland. In particular, the study examines the feasibility of using indigenous microbes for the degradation of PCBs. The first phase of the study involved the testing of the microbes in a bioreactor. The second phase, currently underway, involves a complete evaluation of possible microbes for PCB degradation. It also involves further study into the biological process options for the site. Suitable indigenous and non-indigenous microbes for PCB dechlorination and biphenyl degradation are being identified and evaluated. In addition, the effectiveness and economics of microbial treatment in a conventional bioreactor is being evaluated. The conventional bioreactor used in this study is the two-phase partitioning bioreactor (TPPB) using a biopile process. Results thus far will be used to help Public Works and Government Services Canada to choose the most appropriate remedial technology. Preliminary results suggest that the use of soil classification could reduce the volume of soil requiring treatment. The soil in the containment cell contains microorganisms that could grow in isolation on biphenyl, naphthalene and potentially Aroclor 1254. Isolated native microbes were inoculated in the TPPB for growth. The TPPB was also run successfully under anaerobic conditions. Future work will involve lab-scale evaluation of microbes for PCB dechlorination and biphenyl degradation using both indigenous and non-indigenous microbes. The next phase of study may also involve field-scale demonstration of treatment methods. 2 refs., 3 tabs., 5 figs

  1. Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H S.

    2006-06-01

    The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?

  2. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A

    2011-01-01

    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  3. Sequential reductive and oxidative conditions used to biodegradation of organochlorine pesticides by native bacteria.

    Science.gov (United States)

    Kopytko, M.; Correa-Torres, S. N.; Plata, A.

    2016-07-01

    Despite restrictions and bans on the use of many organochlorine pesticides in the 1970s and 1980s, they continue to persist in the environment today. This is the case of Agustin Codazzi, Cesar where the organochlorine pesticides were buried without control in the soil in 1999, after being banned their use. Nowadays is necessary to find the best method, which allows remediation of this soils. Reductive dechlorination is the first and limiting step in the metabolism of many organochlorine pesticides by anaerobic bacteria. In this study the reductive conditions were enhanced by addition of biogas as an auxiliary electron donors.The soil sample was taken from the zone at Agustin Codazzi, Cesar, and their characteristics correspond to a loam soil with low nutrient and slight compaction. The experimental tests were performed by varying the exposure time of a reducer to oxidative environment. Reductive conditions were enhanced by methane from biogas and oxidative environment was generated by air blown to stimulate a metabolic process of the soil native bacteria. Removals between 70 and 78.9% of compounds such as 4,4'-DDT, 4, 4'-DDD, 4,4'-DDE, Endrin and Trans- Chlordane, detected by gas chromatography analysis, were achieved under reductive/oxidative conditions during 120 days. Furthermore, bacterial strains capable of degrading organochlorine pesticides were selected from the native bacteria, and identified by the purified and identified based on its morphological characteristics and 16S rDNA sequencing.

  4. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  5. Mesoscopic biology

    Indian Academy of Sciences (India)

    Abstract. In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. ... National Center for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore 560 065, India ...

  6. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  7. Mesoscopic biology

    Indian Academy of Sciences (India)

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological ...

  8. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2014. Scientific Opinion on the evaluation of the safety and efficacy of peroxyacetic acid solutions for reduction of pathogens on poultry carcasses and meat

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    with regard to residues of peroxyacids, to HEDP and to possible reaction products of hydrogen peroxide and peroxyacids with lipids and proteins of the poultry carcasses. A relevant reduction of PAA treatment on E. coli and coliforms was demonstrated by dipping warm carcasses, but few data were available...... application, there was a relevant impact on E. coli, but less effect on coliforms, and little data was available on reduction of pathogens. The emergence of acquired reduced susceptibility to biocides and/or resistance to therapeutic antimicrobials following the use of PAA was considered unlikely. There were...... include monitoring of the concentration of HEDP and of the decontaminating substance in the working solution and post-marketing surveillance for resistance in both pathogenic and commensal bacteria....

  9. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  10. Biological Oceanography

    Science.gov (United States)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  11. Biological Pathways

    Science.gov (United States)

    Skip to main content Biological Pathways Fact Sheet Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features ...

  12. DECHLORINATION OF 2,4,6-TRICHLOROPHENOL BY FREE AND IMMOBILIZED LACCASE FROM TRAMETES VERSICOLOR IN A LAB SCALE BIOREACTOR Arzu ÜNAL, Ahmet ÇABUK, Nazif KOLONKAYA

    Directory of Open Access Journals (Sweden)

    Nazif KOLANKAYA

    2011-08-01

    Full Text Available Detoxification of a chlorinated phenolic compound, 2,4,6- trichlorophenol through treatment with laccase enzyme produced by a white rot fungus, Trametes versicolor was investigated. Enzymaticdechlorination experiments by using free and immobilized laccase have been performed in a lab scale bioreactor. Chlorine ion and dissolved oxygen electrodes mounted to the bioreactor were used continuouslyto detect the profiles of chlorine ions and oxygen consumption, respectively, in reaction medium. The maximum dechlorination activity of laccase for free and immobilized form was determined as 160 μM of substrate concentration at pH 5.0, 25 °C, and 30 min of incubation time. Also, GC/MS analyses of enzymatic degradation products indicated that chlorine removal was a result of degradation of 2,4,6- trichlorophenol by the laccase under the determined optimum conditions.

  13. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  14. Biological rhythms

    Science.gov (United States)

    Halberg, F.

    1975-01-01

    An overview is given of basic features of biological rhythms. The classification of periodic behavior of physical and psychological characteristics as circadian, circannual, diurnal, and ultradian is discussed, and the notion of relativistic time as it applies in biology is examined. Special attention is given to circadian rhythms which are dependent on the adrenocortical cycle. The need for adequate understanding of circadian variations in the basic physiological indicators of an individual (heart rate, body temperature, systolic and diastolic blood pressure, etc.) to ensure the effectiveness of prophylactic and therapeutic measures is stressed.

  15. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  16. Mesoscopic biology

    Indian Academy of Sciences (India)

    Abstract. In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in ...

  17. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  18. Biological digestion

    International Nuclear Information System (INIS)

    Rosevear, A.

    1988-01-01

    This paper discusses the biological degradation of non-radioactive organic material occurring in radioactive wastes. The biochemical steps are often performed using microbes or isolated enzymes in combination with chemical steps and the aim is to oxidise the carbon, hydrogen, nitrogen and sulphur to their respective oxides. (U.K.)

  19. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  20. Biologic Scaffolds.

    Science.gov (United States)

    Costa, Alessandra; Naranjo, Juan Diego; Londono, Ricardo; Badylak, Stephen F

    2017-09-01

    Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix are commonly used for the repair and functional reconstruction of injured and missing tissues. These naturally occurring bioscaffolds are manufactured by the removal of the cellular content from source tissues while preserving the structural and functional molecular units of the remaining extracellular matrix (ECM). The mechanisms by which these bioscaffolds facilitate constructive remodeling and favorable clinical outcomes include release or creation of effector molecules that recruit endogenous stem/progenitor cells to the site of scaffold placement and modulation of the innate immune response, specifically the activation of an anti-inflammatory macrophage phenotype. The methods by which ECM biologic scaffolds are prepared, the current understanding of in vivo scaffold remodeling, and the associated clinical outcomes are discussed in this article. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Biological radioprotector

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  2. Crusts: biological

    Science.gov (United States)

    Belnap, Jayne; Elias, Scott A.

    2013-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  3. Understanding Biological Regulation Through Synthetic Biology.

    Science.gov (United States)

    Bashor, Caleb J; Collins, James J

    2018-03-16

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  4. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  5. Learning in robotic manipulation: The role of dimensionality reduction in policy search methods. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Science.gov (United States)

    Ficuciello, Fanny; Siciliano, Bruno

    2016-07-01

    A question that often arises, among researchers working on artificial hands and robotic manipulation, concerns the real meaning of synergies. Namely, are they a realistic representation of the central nervous system control of manipulation activities at different levels and of the sensory-motor manipulation apparatus of the human being, or do they constitute just a theoretical framework exploiting analytical methods to simplify the representation of grasping and manipulation activities? Apparently, this is not a simple question to answer and, in this regard, many minds from the field of neuroscience and robotics are addressing the issue [1]. The interest of robotics is definitely oriented towards the adoption of synergies to tackle the control problem of devices with high number of degrees of freedom (DoFs) which are required to achieve motor and learning skills comparable to those of humans. The synergy concept is useful for innovative underactuated design of anthropomorphic hands [2], while the resulting dimensionality reduction simplifies the control of biomedical devices such as myoelectric hand prostheses [3]. Synergies might also be useful in conjunction with the learning process [4]. This aspect is less explored since few works on synergy-based learning have been realized in robotics. In learning new tasks through trial-and-error, physical interaction is important. On the other hand, advanced mechanical designs such as tendon-driven actuation, underactuated compliant mechanisms and hyper-redundant/continuum robots might exhibit enhanced capabilities of adapting to changing environments and learning from exploration. In particular, high DoFs and compliance increase the complexity of modelling and control of these devices. An analytical approach to manipulation planning requires a precise model of the object, an accurate description of the task, and an evaluation of the object affordance, which all make the process rather time consuming. The integration of

  6. New and effective multi-element alpha-hematite systems for reduction of trichloroethylene.

    Science.gov (United States)

    Ghorpade, Praveen A; Kim, Jung-Hwan; Choi, Won-Ho; Park, Joo-Yang

    2014-01-01

    The reactivity of different alpha-hematite (alpha-Fe203) systems for dechlorination of trichloroethylene (TCE) in the presence of Fe(II) and CaO was investigated. Initially different experiments were conducted to investigate the reactivity of pure and doped alpha-Fe203. It was found that the presence of elements such as Si, Cu, and Mn in alpha-Fe203 had a significant effect on TCE reduction potential of alpha-Fe203; however, the reduction potential was less than that of alpha-Fe203 (Bayferrox- 110 M, used in a previous study). Further studies were carried out and alpha-Fe203 was synthesized in a manner similar to that of Bayferrox-110 M. This synthetic alpha-Fe203 showed improved reactivity and was found to follow pseudo-first-order kinetics when used in TCE reduction experiments. The preliminary end products analysis showed that TCE degradation was probably via beta-elimination pathway. Detailed investigations ofa-Fe203 systems were carried out using X-ray diffraction, X-ray fluorescence, and scanning electron microscopy with energy-dispersive spectrometry. The results demonstrated that the TCE reduction capacity of alpha-Fe203 was strongly dependent on the other elements present in iron powder used to synthesize alpha-Fe203. It was suspected that these multi-elements in alpha-Fe203 helped to improve its conduction property. Current findings suggest that alpha-Fe203 not in the pure but combined with other elements could be thought as a potential system for TCE reduction.

  7. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    Nanotechnology is emerging as one of the most important and revolutionizing area in research field. Nanoparticles are produced by various methods like physical, chemical, mechanical and biological. Biological methods of reduction of metal ions using plants or microorganisms are often preferred because they are clean, ...

  8. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    Abstract. Nanotechnology is emerging as one of the most important and revolutionizing area in research field. Nanoparticles are produced by various methods like physical, chemical, mechanical and biological. Biological me- thods of reduction of metal ions using plants or microorganisms are often preferred because they ...

  9. De-chlorination and solidification of radioactive LiCl waste salt by using SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5} (SAP) inorganic composite including B{sub 2}O{sub 3} component

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Rak; Park, Hwan-Seo; Cho, In-Hak; Choi, Jung-Hoon; Eun, Hee-Chul; Lee, Tae-Kyo; Han, Seung Youb; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-09-15

    SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}) composite has been recently studied in KAERI to deal with the immobilization of radioactive salt waste, one of the most problematic wastes in the pyro-chemical process. Highly unstable salt waste was successfully converted into stable compounds by the dechlorination process with SAPs, and then a durable waste form with a high waste loading was produced when adding glassy materials to dechlorination product. In the present study, U-SAP composite which is SAP bearing glassy component (Boron) was synthesized to remove the adding and mixing steps of glassy materials for a monolithic wasteform. With U-SAPs prepared by a sol-gel process, a series of wasteforms were fabricated to identify a proper reaction condition. Physical and chemical properties of dechlorination products and U-SAP wasteforms were characterized by XRD, DSC, SEM, TGA and PCT-A. A U-SAP wasteform showed suitable properties as a radioactive wasteform such as dense surface morphology, high waste loading, and high durability at the optimized U-SAP/salt ratio 2.

  10. Model Reduction in Biomechanics

    Science.gov (United States)

    Feng, Yan

    mechanical parameters from experimental results. However, in real biological world, these homogeneous and isotropic assumptions are usually invalidate. Thus, instead of using hypothesized model, a specific continuum model at mesoscopic scale can be introduced based upon data reduction of the results from molecular simulations at atomistic level. Once a continuum model is established, it can provide details on the distribution of stresses and strains induced within the biomolecular system which is useful in determining the distribution and transmission of these forces to the cytoskeletal and sub-cellular components, and help us gain a better understanding in cell mechanics. A data-driven model reduction approach to the problem of microtubule mechanics as an application is present, a beam element is constructed for microtubules based upon data reduction of the results from molecular simulation of the carbon backbone chain of alphabeta-tubulin dimers. The data base of mechanical responses to various types of loads from molecular simulation is reduced to dominant modes. The dominant modes are subsequently used to construct the stiffness matrix of a beam element that captures the anisotropic behavior and deformation mode coupling that arises from a microtubule's spiral structure. In contrast to standard Euler-Bernoulli or Timoshenko beam elements, the link between forces and node displacements results not from hypothesized deformation behavior, but directly from the data obtained by molecular scale simulation. Differences between the resulting microtubule data-driven beam model (MTDDBM) and standard beam elements are presented, with a focus on coupling of bending, stretch, shear deformations. The MTDDBM is just as economical to use as a standard beam element, and allows accurate reconstruction of the mechanical behavior of structures within a cell as exemplified in a simple model of a component element of the mitotic spindle.

  11. Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies

    NARCIS (Netherlands)

    Ketema, J.; Simonsen, Jakob Grue

    2010-01-01

    We study normalising reduction strategies for infinitary Combinatory Reduction Systems (iCRSs). We prove that all fair, outermost-fair, and needed-fair strategies are normalising for orthogonal, fully-extended iCRSs. These facts properly generalise a number of results on normalising strategies in

  12. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  13. Degradation of chlorinated paraben by integrated irradiation and biological treatment process.

    Science.gov (United States)

    Wang, Shizong; Wang, Jianlong; Sun, Yuliang

    2017-03-15

    Chlorinated paraben, namely, methyl 3, 5-dichloro-4-hydroxybenzoate (MDHB) is the by-product of chlorination disinfection of paraben and frequently detected in the aquatic environments, which exhibited higher persistence and toxicity than paraben itself. In this paper, the combined irradiation and biological treatment process was employed to investigate the removal of MDHB from aqueous solution. The results showed that the removal efficiency of MDHB and total organic carbon (TOC) by irradiation process increased with radiation dose no matter what the initial concentration of MDHB was. The maximum removal efficiency of MDHB was 100%, 91.1%, 93%, respectively, for the initial concentration of MDHB of 1 mg/L, 5 mg/L and 10 mg/L with the radiation dose of 800 Gy. However, the maximum removal efficiency of TOC among all the experimental groups was only 15.3% obtained with the initial concentration of 1 mg/L at dose of 800 Gy. The subsequent biological treatment enhanced the mineralization of MDHB. The suitable radiation dose for the subsequent biological treatment was determined to be 600 Gy. In this case the removal efficiency of TOC increased to about 70%. Compared to the single biological treatment, the integrated irradiation and biological treatment significantly increase the degradation and mineralization of MDHB. Moreover, the dechlorination efficiency reached 77.4% during the integrated irradiation and biological treatment process. In addition, eight intermediates were identified during the combined process and the possible degradation pathway was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biological effects

    International Nuclear Information System (INIS)

    Trott, K.R.

    1973-01-01

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH) [de

  15. Biological darkening of ice: measurements and models

    Science.gov (United States)

    Cook, J.; Tedstone, A.; Hodson, A. J.; Williamson, C.; McCutcheon, J.; Tranter, M.

    2017-12-01

    Biological growth occurs in the ablation zones of glaciers and ice sheets, resulting in a reduction of the ice albedo. Given the critical role of albedo in determining the surface energy balance - and therefore melt rate - of a mass of ice, understanding and quantifying biological albedo reduction is fundamental to predicting future ice dynamics. This may be particularly important on ablating ice on the western Greenland Ice Sheet, where a `dark ice zone' of varying spatial extent may be partly or mostly explained by biological growth. However, our ability to quantify and predict the contribution of biological impurities to the overall energy balance of glacial systems is currently limited by a lack of understanding of the mechanisms of biological darkening, difficulties in determining the spatial extent of biological impurities and uncertainty in isolating biological from non-biological albedo reduction. Here, new spectral measurements are presented for ice containing varying amounts of biological impurities which were obtained on the ground using a field spectrometer and from the air using a purpose built UAV on the Greenland Ice Sheet in summer 2016 and 2017. Distinctive spectral signatures are identified and used to map the spatial extent of algal blooms on the ice surface. A new radiative transfer scheme (BioSNICAR) for predicting the albedo of snow or ice discolored by microbial life is also described, offering insight into the mechanisms of biological darkening. Together, these demonstrate the critical role played by pigmented algae in darkening ice surfaces and provide a framework for predicting biological albedo reduction in future climate scenarios.

  16. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  17. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  18. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  19. Drag Reduction Technologies

    National Research Council Canada - National Science Library

    Truong, V

    2001-01-01

    ...% drag reduction with only a few parts per million of polymer. Ionic and non-ionic surfactants can also offer similar drag reduction as polymer solutions but at a high concentration of few percent...

  20. Finite difference simulation of biological chromium (VI) reduction in ...

    African Journals Online (AJOL)

    2013-05-08

    May 8, 2013 ... wood preservation/processing, and alloy preparation have led ... al., 2009). The improper disposal of Cr(VI)-containing waste from these industries and its subsequent mobility in ground- water aquifers is a subject of paramount ...... TURICK CE, GRAVES C and APEL WA (1998) Bioremediation poten-.

  1. Reductions in DNAPL Longevity through Biological Flux Enhancement

    Science.gov (United States)

    2009-01-01

    sampled for CAHs. The data collected during this sampling dictated whether disposal in a sanitary landfill, a hazardous waste landfill, or...too large to clean up with paper towels . These spill pillows contain an absorbent which makes them effective on spills of acids (excluding HF

  2. Volume reduction of solid waste by biological conversion of cellulosics

    International Nuclear Information System (INIS)

    Strandberg, G.W.

    1981-06-01

    It has been demonstrated that the types of cellulosic wastes generated at ORNL can be effectively degraded in an anaerboic bioreactor. The rate and extent of anaerobic microbial digestion of blotter paper, cloth, sanitary napkins, and pine sawdust in various types and sizes of bench-scale anaerobic bioreactors are described. Preliminary tests indicate that the resulting digests are amenable to incorporation into hydrofracture grouts

  3. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    settleability and expanded less compared to R2 (20oC) sludge for the same applied upflow velocity. Because in operating R1 and R2, the bed volume was kept constant, the mass of sludge removed from the system correspondingly increased as upflow increased and the bed expanded, causing a reduced sludge age and ...

  4. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    2009-07-31

    Jul 31, 2009 ... The success of the UASB reactor depends largely on the settling properties and stability of the sludge bed which comprises the anaerobic active biomass. The solid-liquid separation behaviour of the sludge bed in 2 UASB reactors (R1 at 35oC and. R2 at 20oC) fed with primary sewage sludge and sulphate ...

  5. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    Therefore, Method 2 was the best simple wet chemistry analytical procedure to accurately measure St (= H2S + HS-) and achieve close to 100% COD and S mass balances. The effects of St loss were also investigated on the total and subsystem alkalinities as determined with the 5-pH point titration method. By testing ...

  6. Finite difference simulation of biological chromium (VI) reduction in ...

    African Journals Online (AJOL)

    For the first time, the performance of a simulated barrier was evaluated internally in porous media using a finite difference approach. Parameters in the model were optimised at transient-state and under near steady-state conditions with respect to biomass and effluent Cr(VI) concentration respectively. The best fitting model ...

  7. Biological reduction of dust nuisance on power station waste dumps

    Energy Technology Data Exchange (ETDEWEB)

    Kozel, J.

    1978-01-01

    The results of pot trials and succeeding field trials carried out in 1966-72 to find out the best method of reclamationand stabilishing the fly ash and cinder waste dump at the Melnik power station are summarised. The material consists mainly of fine particles with a size range of less than 1 micron to 0.16 mm in diam., and creates a source of blown dust in dry weather. Treatment of the waste material before sowing grass and legume species, the species tested, sowing rates, applied fertilizers, irrigation and treatment of the resulting swards are discussed. The most suitable species were Festuca rubra, F. ovina, perennial ryegrass and Italian ryegrass; the cost of stabilising the dump was lowest with Italian ryegrass. (In English)

  8. Dimensionality reduction methods:

    OpenAIRE

    Amenta, Pietro; D'Ambra, Luigi; Gallo, Michele

    2005-01-01

    In case one or more sets of variables are available, the use of dimensional reduction methods could be necessary. In this contest, after a review on the link between the Shrinkage Regression Methods and Dimensional Reduction Methods, authors provide a different multivariate extension of the Garthwaite's PLS approach (1994) where a simple linear regression coefficients framework could be given for several dimensional reduction methods.

  9. Modern Reduction Methods

    CERN Document Server

    Andersson, Pher G

    2008-01-01

    With its comprehensive overview of modern reduction methods, this book features high quality contributions allowing readers to find reliable solutions quickly and easily. The monograph treats the reduction of carbonyles, alkenes, imines and alkynes, as well as reductive aminations and cross and heck couplings, before finishing off with sections on kinetic resolutions and hydrogenolysis. An indispensable lab companion for every chemist.

  10. MCNP variance reduction overview

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Booth, T.E.

    1985-01-01

    The MCNP code is rich in variance reduction features. Standard variance reduction methods found in most Monte Carlo codes are available as well as a number of methods unique to MCNP. We discuss the variance reduction features presently in MCNP as well as new ones under study for possible inclusion in future versions of the code

  11. Dechlorination of the dietary nona-chlorinated toxaphene congeners 62 and 50 into the octa-chlorinated toxaphene congeners 44 and 40 in zebrafish (Danio rerio) and Atlantic salmon (Salmo salar)

    Energy Technology Data Exchange (ETDEWEB)

    Berntssen, M.H.G., E-mail: marc.berntssen@nifes.no [National Institute of Nutrition and Seafood Research (NIFES), Postbox 2029 Nordnes, 5817 Bergen (Norway); Lundebye, A.-K.; Hop-Johannessen, L.; Lock, E.-J. [National Institute of Nutrition and Seafood Research (NIFES), Postbox 2029 Nordnes, 5817 Bergen (Norway)

    2012-05-15

    Graphical abstract: - Abstract: The relative feed-to-fish accumulation and possible biotransformation of the nona-chlorinated toxaphene congeners currently included in EU-legislation (CHB-50 and -62) and the octa-chlorinated congeners recommended by the European Food Safety Authority to be included in future surveillance of fish samples (CHB-40, 41, and 44) were investigated in the present study. Model fish Danio rerio were fed either (a) diets spiked with a combination as well as the pure individual toxaphene congeners CHB-50 or 62 or (b) diets spiked with the combination of CHB N-Ary-Summation 50 + 62 and/or CHB N-Ary-Summation 40 + 41 + 44. In addition, seawater adapted Atlantic salmon smolts were fed technical toxaphene enriched feeds for 62 days. Zebrafish fed a diet containing CHB-50 and CHB-62 accumulated newly formed CHB-40 and 41 and CHB-44, respectively. The biomagnifications factors (BMF) of the toxaphene congeners in Atlantic salmon muscle from the feeds spiked with technical toxaphene were significantly correlated with their relative lipophilicity (expressed as log K{sub ow}). An exception was CHB-44 which had a higher BMF than could be expected from its specific log K{sub ow}, reflecting that CHB-44 is a metabolite formed under dietary exposure to CHB-62. This paper reports the in vivo dechlorination of nona-chlorinated toxaphene congeners into octa-chlorinated congeners in feeding trials with a model fish (zebrafish) and an oily food fish (Atlantic salmon).

  12. Reducing Future International Chemical and Biological Dangers.

    Energy Technology Data Exchange (ETDEWEB)

    Haddal, Chad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez, Patricia Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foley, John T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The International Biological and Chemical Threat Reduction Program at Sandia National Laboratories is developing a 15 - year technology road map in support the United States Government efforts to reduce international chemical and biological dangers . In 2017, the program leadership chartered an analysis team to explore dangers in the future international chemical and biological landscape through engagements with national security experts within and beyond Sandia to gain a multidisciplinary perspective on the future . This report offers a hi gh level landscape of future chemical and biological dangers based upon analysis of those engagements and provides support for further technology road map development.

  13. 77 FR 27208 - Renewal of Threat Reduction Advisory Committee

    Science.gov (United States)

    2012-05-09

    ... Threat Reduction Agency mission- related matters. The Committee shall be composed of not more than 30... security affairs, weapons of mass destruction, nuclear physics, chemistry, and biology. The Committee...

  14. Inorganic nitrogen and nitrate reduction in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Qasim, S.Z.

    the secondary nitrite maximum seem to be associated with Persian Gulf water. It is suggested that these originate as a result of biological reduction of nitrate (denitrification) due to the prevailing reducing conditions associated with a pronounced depletion...

  15. Analog VLSI system for active drag reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, B.; Goodman, R.; Jiang, F.; Tai, Y.C. [California Inst. of Technology, Pasadena, CA (United States); Tung, S.; Ho, C.M. [Univ. of California, Los Angeles, CA (United States)

    1996-10-01

    In today`s cost-conscious air transportation industry, fuel costs are a substantial economic concern. Drag reduction is an important way to reduce costs. Even a 5% reduction in drag translates into estimated savings of millions of dollars in fuel costs. Drawing inspiration from the structure of shark skin, the authors are building a system to reduce drag along a surface. Our analog VLSI system interfaces with microfabricated, constant-temperature shear stress sensors. It detects regions of high shear stress and outputs a control signal to activate a microactuator. We are in the process of verifying the actual drag reduction by controlling microactuators in wind tunnel experiments. We are encouraged that an approach similar to one that biology employs provides a very useful contribution to the problem of drag reduction. 9 refs., 21 figs.

  16. Bioelectrochemical Ethanol Production through Mediated Acetate Reduction by Mixed Cultures

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Schaap, J.D.; Kampman, C.; Buisman, C.J.N.

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate

  17. 75 FR 2853 - False Killer Whale Take Reduction Team Meeting

    Science.gov (United States)

    2010-01-19

    ... members of TRTs have expertise regarding the conservation or biology of the marine mammal species that the... Mammal Commission; Paul Nachtigall, Hawaii Institute of Marine Biology; David Nichols, State of Hawaii... Whale Take Reduction Team Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and...

  18. Reductive Decouloristation of Dyes by Thermophilic Anaerobic Granular Sludge

    NARCIS (Netherlands)

    Bezerra Dos Santos, A.

    2005-01-01

    The colour removal achieved under anaerobic conditions is also called reductive decolourisation, which is composed of a biological part, i.e. the reducing equivalents are biologically generated, and a chemical part, i.e. the formed electrons reduce chemically the dyes. The overall objective of this

  19. Dimensionality Reduction Ensembles

    OpenAIRE

    Farrelly, Colleen M.

    2017-01-01

    Ensemble learning has had many successes in supervised learning, but it has been rare in unsupervised learning and dimensionality reduction. This study explores dimensionality reduction ensembles, using principal component analysis and manifold learning techniques to capture linear, nonlinear, local, and global features in the original dataset. Dimensionality reduction ensembles are tested first on simulation data and then on two real medical datasets using random forest classifiers; results ...

  20. Reduction - competitive tomorrow

    International Nuclear Information System (INIS)

    Worley, L.; Bargerstock, S.

    1995-01-01

    Inventory reduction is one of the few initiatives that represent significant cost-reduction potential that does not result in personnel reduction. Centerior Energy's Perry nuclear power plant has embarked on an aggressive program to reduce inventory while maintaining plant material availability. Material availability to the plant was above 98%, but at an unacceptable 1994 inventory book value of $47 million with inventory carrying costs calculated at 30% annually

  1. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a collection of decision tables from UCIML Repository. For many of the experimented tables, the simplification steps solved the problem.

  2. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

    Science.gov (United States)

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-01-01

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria. PMID:26555802

  3. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  4. Development of biological treatment of high concentration sodium nitrate waste liquid

    International Nuclear Information System (INIS)

    Ogawa, Naoki; Kuroda, Kazuhiko; Shibata, Katsushi; Kawato, Yoshimi; Meguro, Yoshihiro; Takahashi, Kuniaki

    2009-01-01

    An electrolytic reduction, chemical reduction, and biological reduction have been picked up as a method of nitrate liquid waste treatment system exhausted from the reprocessing process. As a result of comparing them, it was shown that the biological treatment was the most excellent method in safety and the economy. (author)

  5. Reduction in language testing

    DEFF Research Database (Denmark)

    Dimova, Slobodanka; Jensen, Christian

    2013-01-01

    This study represents an initial exploration of raters' comments and actual realisations of form reductions in L2 test speech performances. Performances of three L2 speakers were selected as case studies and illustrations of how reductions are evaluated by the raters. The analysis is based on aud...

  6. A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2, CH4, CO and N2.

    Science.gov (United States)

    Sawant, Sandesh Y; Somani, Rajesh S; Bajaj, Hari C; Sharma, Sangita S

    2012-08-15

    Using metallic copper as reductant and tetrachloroethylene as carbon precursor, a simple, low temperature solvothermal method for the synthesis of horn shaped carbon nanotubes is reported. The detail study of reaction parameters such as temperature, time, carbon precursor amount, type and catalyst proportion has been carried out to optimize the conditions wherein that the copper metal (10 g) mediated reduction of tetrachloroethylene (25 mL) at 200°C for 5h resulted in the horn shaped carbon nanotubes with high yield and structural selectivity. The adsorption properties of horn shaped carbon nanotubes were investigated for carbon dioxide, methane, carbon monoxide and nitrogen as adsorbate by volumetric measurements up to 850 mm Hg. The prepared horn shaped carbon nanotubes showed good adsorption capacity for CO(2) (45 cm(3)/g) and CO (17 cm(3)/g), at 303 K and 850 mm Hg pressure, with high equilibrium selectivity (73.3 for CO(2) and 110.7 for CO at 318 K) and capacity selectivity (9.1 for CO(2) and 3.1 for CO at 850 mm Hg and 318 K) over nitrogen which provides the tool for the separation of CO(2) from its mixture with nitrogen observed in flue gas of thermal power plants and boilers, as well as with CO such as syngas. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Active3 noise reduction

    International Nuclear Information System (INIS)

    Holzfuss, J.

    1996-01-01

    Noise reduction is a problem being encountered in a variety of applications, such as environmental noise cancellation, signal recovery and separation. Passive noise reduction is done with the help of absorbers. Active noise reduction includes the transmission of phase inverted signals for the cancellation. This paper is about a threefold active approach to noise reduction. It includes the separation of a combined source, which consists of both a noise and a signal part. With the help of interaction with the source by scanning it and recording its response, modeling as a nonlinear dynamical system is achieved. The analysis includes phase space analysis and global radial basis functions as tools for the prediction used in a subsequent cancellation procedure. Examples are given which include noise reduction of speech. copyright 1996 American Institute of Physics

  8. Bayesian supervised dimensionality reduction.

    Science.gov (United States)

    Gönen, Mehmet

    2013-12-01

    Dimensionality reduction is commonly used as a preprocessing step before training a supervised learner. However, coupled training of dimensionality reduction and supervised learning steps may improve the prediction performance. In this paper, we introduce a simple and novel Bayesian supervised dimensionality reduction method that combines linear dimensionality reduction and linear supervised learning in a principled way. We present both Gibbs sampling and variational approximation approaches to learn the proposed probabilistic model for multiclass classification. We also extend our formulation toward model selection using automatic relevance determination in order to find the intrinsic dimensionality. Classification experiments on three benchmark data sets show that the new model significantly outperforms seven baseline linear dimensionality reduction algorithms on very low dimensions in terms of generalization performance on test data. The proposed model also obtains the best results on an image recognition task in terms of classification and retrieval performances.

  9. Incomplete Pivoted QR-based Dimensionality Reduction

    OpenAIRE

    Bermanis, Amit; Rotbart, Aviv; Salhov, Moshe; Averbuch, Amir

    2016-01-01

    High-dimensional big data appears in many research fields such as image recognition, biology and collaborative filtering. Often, the exploration of such data by classic algorithms is encountered with difficulties due to `curse of dimensionality' phenomenon. Therefore, dimensionality reduction methods are applied to the data prior to its analysis. Many of these methods are based on principal components analysis, which is statistically driven, namely they map the data into a low-dimension subsp...

  10. Medical Errors Reduction Initiative

    National Research Council Canada - National Science Library

    Mutter, Michael L

    2005-01-01

    The Valley Hospital of Ridgewood, New Jersey, is proposing to extend a limited but highly successful specimen management and medication administration medical errors reduction initiative on a hospital-wide basis...

  11. Breast reduction (mammoplasty) - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100189.htm Breast reduction (mammoplasty) - series—Indications To use the sharing features ... Lickstein, MD, FACS, specializing in cosmetic and reconstructive plastic surgery, Palm Beach Gardens, FL. Review provided by ...

  12. Breast Reduction Surgery

    Science.gov (United States)

    ... Breast reduction surgery might also help improve your self-image and your ability to participate in physical activities. ... under the breasts Nerve pain Restricted activity Poor self-image related to large breasts Difficulty fitting into bras ...

  13. Work Truck Idling Reduction

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-03-01

    Hybrid utility trucks, with auxiliary power sources for on-board equipment, significantly reduce unnecessary idling resulting in fuel costs savings, less engine wear, and reduction in noise and emissions.

  14. Classification Constrained Dimensionality Reduction

    OpenAIRE

    Raich, Raviv; Costa, Jose A.; Damelin, Steven B.; Hero III, Alfred O.

    2008-01-01

    Dimensionality reduction is a topic of recent interest. In this paper, we present the classification constrained dimensionality reduction (CCDR) algorithm to account for label information. The algorithm can account for multiple classes as well as the semi-supervised setting. We present an out-of-sample expressions for both labeled and unlabeled data. For unlabeled data, we introduce a method of embedding a new point as preprocessing to a classifier. For labeled data, we introduce a method tha...

  15. Dyneins: structure, biology and disease

    National Research Council Canada - National Science Library

    King, Stephen M

    2012-01-01

    .... From bench to bedside, Dynein: Structure, Biology and Disease offers research on fundamental cellular processes to researchers and clinicians across developmental biology, cell biology, molecular biology, biophysics, biomedicine...

  16. Learning Biology by Designing

    Science.gov (United States)

    Janssen, Fred; Waarlo, Arend Jan

    2010-01-01

    According to a century-old tradition in biological thinking, organisms can be considered as being optimally designed. In modern biology this idea still has great heuristic value. In evolutionary biology a so-called design heuristic has been formulated which provides guidance to researchers in the generation of knowledge about biological systems.…

  17. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  18. [Biogeography: geography or biology?].

    Science.gov (United States)

    Kafanov, A I

    2009-01-01

    General biogeography is an interdisciplinary science, which combines geographic and biological aspects constituting two distinct research fields: biological geography and geographic biology. These fields differ in the nature of their objects of study, employ different methods and represent Earth sciences and biological sciences, respectively. It is suggested therefore that the classification codes for research fields and the state professional education standard should be revised.

  19. Biotransformation of algal waste by biological fermentation ...

    African Journals Online (AJOL)

    To treat this garbage of algae, we employed a biological fermentation process using lactic acid bacteria (BL11) and yeast (THE 16). These were isolated and selected for their acidifying and fermentation qualities, respectively. The fermentation resulted in a decrease of pH from 7.4 to 3.75 and a reduction of the different ...

  20. Biological mine water treatment operating a one stage reactor system

    CSIR Research Space (South Africa)

    Baloyi, MJ

    2006-05-01

    Full Text Available Mine drainage arises from oxidation of pyrites, due to exposure to air and water. Acid mine drainage normally contains high concentrations of sulphate, metals and acidity. These pollutants can be reduced by applying the biological sulphate reduction...

  1. Does biological relatedness affect child survival?

    Directory of Open Access Journals (Sweden)

    2003-05-01

    Full Text Available Objective: We studied child survival in Rakai, Uganda where many children are fostered out or orphaned. Methods: Biological relatedness is measured as the average of the Wright's coefficients between each household member and the child. Instrumental variables for fostering include proportion of adult males in household, age and gender of household head. Control variables include SES, religion, polygyny, household size, child age, child birth size, and child HIV status. Results: Presence of both parents in the household increased the odds of survival by 28%. After controlling for the endogeneity of child placement decisions in a multivariate model we found that lower biological relatedness of a child was associated with statistically significant reductions in child survival. The effects of biological relatedness on child survival tend to be stronger for both HIV- and HIV+ children of HIV+ mothers. Conclusions: Reductions in the numbers of close relatives caring for children of HIV+ mothers reduce child survival.

  2. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    This thesis investigates the electro reduction of oxygen on platinum nanoparticles, which serve as catalyst in low temperature fuel cells. Kinetic studies on model catalysts as well as commercially used systems are presented in order to investigate the particle size effect, the particle proximity...... effect and anion adsorption on the performance of Pt based electrocatalysts. The anion adsorption is additionally studied by in situ electrochemical infrared spectroscopy during the oxygen reduction reaction (ORR). For this purpose an in situ FTIR setup in attenuated total refection (ATR) configuration....... The influence of the ion adsorption strength, which is observed in the “particle size studies” on the oxygen reduction rate on Pt/C catalysts, is further investigated under similar reaction conditions by infrared spectroscopy. The designed in situ electrochemical ATR-FTIR setup features a high level...

  3. Measuring mandibular ridge reduction

    International Nuclear Information System (INIS)

    Steen, W.H.A.

    1984-01-01

    This thesis investigates the mandibular reduction in height of complete denture wearers and overdenture wearers. To follow this reduction in the anterior region as well as in the lateral sections of the mandible, an accurate and reproducible measuring method is a prerequisite. A radiologic technique offers the best chance. A survey is given of the literature concerning the resorption process after the extraction of teeth. An oblique cephalometric radiographic technique is introduced as a promising method to measure mandibular ridge reduction. The reproducibility and the accuracy of the technique are determined. The reproducibility in the positioning of the mandible is improved by the introduction of a mandibular support which permits a precise repositioning of the edentulous jaw, even after long periods of investigation. (Auth.)

  4. Time, Chance, and Reduction

    Science.gov (United States)

    Ernst, Gerhard; Hüttemann, Andreas

    2010-01-01

    List of contributors; 1. Introduction Gerhard Ernst and Andreas Hütteman; Part I. The Arrows of Time: 2. Does a low-entropy constraint prevent us from influencing the past? Mathias Frisch; 3. The part hypothesis meets gravity Craig Callender; 4. Quantum gravity and the arrow of time Claus Kiefer; Part II. Probability and Chance: 5. The natural-range conception of probability Jacob Rosenthal; 6. Probability in Boltzmannian statistical mechanics Roman Frigg; 7. Humean mechanics versus a metaphysics of powers Michael Esfeld; Part III. Reduction: 8. The crystallisation of Clausius's phenomenological thermodynamics C. Ulises Moulines; 9. Reduction and renormalization Robert W. Batterman; 10. Irreversibility in stochastic dynamics Jos Uffink; Index.

  5. REDUCTIONS WITHOUT REGRET: SUMMARY

    Energy Technology Data Exchange (ETDEWEB)

    Swegle, J.; Tincher, D.

    2013-09-16

    This paper briefly summarizes the series in which we consider the possibilities for losing, or compromising, key capabilities of the U.S. nuclear force in the face of modernization and reductions. The first of the three papers takes an historical perspective, considering capabilities that were eliminated in past force reductions. The second paper is our attempt to define the needed capabilities looking forward in the context of the current framework for force modernization and the current picture of the evolving challenges of deterrence and assurance. The third paper then provides an example for each of our undesirable outcomes: the creation of roach motels, box canyons, and wrong turns.

  6. (MTT) dye reduction assay.

    African Journals Online (AJOL)

    D.K.B. RUNYORO', A. KAMUHABWA*', O.D. NGASSAPA' AND P. de WITTE'. ' ~ e ~ a r t m e n t of Pharmacognosy, School of Pharmacy, Muhimbili University College of Health Sciences,. P. 0 Box 6501 3, Dar Es Salaam, Tanzania. Laboratory of Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmacy, ...

  7. (MTT) dye reduction assay.

    African Journals Online (AJOL)

    P. 0 Box 6501 3, Dar Es Salaam, Tanzania. Laboratory of Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmacy, Catholic. University of Leuven, Belgium. Thirty-three aqueous methanolic extracts obtained from thirty plant species, belonging to seventeen families were screened for cytotoxic activity against ...

  8. Galactorrhea after reduction mammaplasty

    NARCIS (Netherlands)

    Schuurman, A. H.; Assies, J.; van der Horst, C. M.; Bos, K. E.

    1993-01-01

    A case of extremely painful swelling of the breasts following a reduction mammaplasty is presented. There were no signs of an abscess or hematoma. A milky white fluid due to galactorrhea was evacuated at operation, and further galactorrhea was inhibited by medication. The pathogenesis of

  9. Dimensionality Reduction Mappings

    NARCIS (Netherlands)

    Bunte, Kerstin; Biehl, Michael; Hammer, Barbara

    2011-01-01

    A wealth of powerful dimensionality reduction methods has been established which can be used for data visualization and preprocessing. These are accompanied by formal evaluation schemes, which allow a quantitative evaluation along general principles and which even lead to further visualization

  10. Nonlinear dimensionality reduction

    CERN Document Server

    Lee, John A

    2007-01-01

    Methods of dimensionality reduction provide a way to understand and visualize the structure of complex data sets. This book describes the methods to reduce the dimensionality of numerical databases. For each method, the description starts from intuitive ideas, develops the mathematical details, and ends by outlining the algorithmic implementation.

  11. Spontaneous dimensional reduction?

    Science.gov (United States)

    Carlip, Steven

    2012-10-01

    Over the past few years, evidence has begun to accumulate suggesting that spacetime may undergo a "spontaneous dimensional reduction" to two dimensions near the Planck scale. I review some of this evidence, and discuss the (still very speculative) proposal that the underlying mechanism may be related to short-distance focusing of light rays by quantum fluctuations.

  12. Prejudice Reduction: What Works?

    Science.gov (United States)

    Mabbutt, Richard

    Social Science Research of the past several decades provides valuable insight into the processes of prejudice acquisition and reduction. This paper lists and briefly describes the following 15 findings based on this research and their implications regarding prejudice and what works to reduce it: (1) attitudes about interpersonal differences begin…

  13. Streaming Reduction Circuit

    NARCIS (Netherlands)

    Gerards, Marco Egbertus Theodorus; Kuper, Jan; Kokkeler, Andre B.J.; Molenkamp, Egbert

    2009-01-01

    Reduction circuits are used to reduce rows of floating point values to single values. Binary floating point operators often have deep pipelines, which may cause hazards when many consecutive rows have to be reduced. We present an algorithm by which any number of consecutive rows of arbitrary lengths

  14. Infinitary Combinatory Reduction Systems

    NARCIS (Netherlands)

    Ketema, J.; Simonsen, Jakob Grue

    We define infinitary Combinatory Reduction Systems (iCRSs), thus providing the first notion of infinitary higher-order rewriting. The systems defined are sufficiently general that ordinary infinitary term rewriting and infinitary $\\lambda$-calculus are special cases. Furthermore, we generalise a

  15. Advances in Biological Science.

    Science.gov (United States)

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  16. Biological basis of detoxication

    National Research Council Canada - National Science Library

    Caldwell, John; Jakoby, William B

    1983-01-01

    This volume considers that premise that most of the major patterns of biological conversion of foreign compounds are known and may have predictive value in assessing the biological course for novel compounds...

  17. Biology of Blood

    Science.gov (United States)

    ... switch to the Professional version Home Blood Disorders Biology of Blood Overview of Blood Resources In This ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  18. Biological Races in Humans

    OpenAIRE

    Templeton, Alan R.

    2013-01-01

    Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two m...

  19. Biological Age Predictors

    OpenAIRE

    Jylh?v?, Juulia; Pedersen, Nancy L.; H?gg, Sara

    2017-01-01

    The search for reliable indicators of biological age, rather than chronological age, has been ongoing for over three decades, and until recently, largely without success. Advances in the fields of molecular biology have increased the variety of potential candidate biomarkers that may be considered as biological age predictors. In this review, we summarize current state-of-the-art findings considering six potential types of biological age predictors: epigenetic clocks, telomere length, transcr...

  20. Biological Water or Rather Water in Biology?

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel

    2015-01-01

    Roč. 6, č. 13 (2015), s. 2449-2451 ISSN 1948-7185 Institutional support: RVO:61388963 Keywords : biological water * protein * interface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.539, year: 2015

  1. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Evolutionary Biology Today - The Domain of Evolutionary Biology ... Keywords. Evolution; natural selection; biodiversity; fitness; adaptation. Author Affiliations. Amitabh Joshi1. Evolutionary and Organismal Biology Unit Jawaharlal Nehru Centre for Advanced Scientific Research P.Box 6436, Jakkur Bangalore 560 065, India.

  2. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  3. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  4. Biological Therapies for Cancer

    Science.gov (United States)

    ... Page What is biological therapy? What is the immune system and what role does it have in biological therapy for cancer? ... trials (research studies involving people). What is the immune system and what role does it have in biological therapy for cancer? ...

  5. Spontaneous wave packet reduction

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1994-06-01

    There are taken into account the main conceptual difficulties met by standard quantum mechanics in dealing with physical processes involving macroscopic system. It is stressed how J.A.Wheeler's remarks and lucid analysis have been relevant to pinpoint and to bring to its extreme consequences the puzzling aspects of quantum phenomena. It is shown how the recently proposed models of spontaneous dynamical reduction represent a consistent way to overcome the conceptual difficulties of the standard theory. Obviously, many nontrivial problems remain open, the first and more relevant one being that of generalizing the model theories considered to the relativistic case. This is the challenge of the dynamical reduction program. 43 refs, 2 figs

  6. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  7. Biological Control in Agroecosystems

    Science.gov (United States)

    Batra, Suzanne W. T.

    1982-01-01

    Living organisms are used as biological pest control agents in (i) classical biological control, primarily for permanent control of introduced perennial weed pests or introduced pests of perennial crops; (ii) augmentative biological control, for temporary control of native or introduced pests of annual crops grown in monoculture; and (iii) conservative or natural control, in which the agroecosystem is managed to maximize the effect of native or introduced biological control agents. The effectiveness of biological control can be improved if it is based on adequate ecological information and theory, and if it is integrated with other pest management practices.

  8. Adaptive Metric Dimensionality Reduction

    OpenAIRE

    Gottlieb, Lee-Ad; Kontorovich, Aryeh; Krauthgamer, Robert

    2013-01-01

    We study adaptive data-dependent dimensionality reduction in the context of supervised learning in general metric spaces. Our main statistical contribution is a generalization bound for Lipschitz functions in metric spaces that are doubling, or nearly doubling. On the algorithmic front, we describe an analogue of PCA for metric spaces: namely an efficient procedure that approximates the data's intrinsic dimension, which is often much lower than the ambient dimension. Our approach thus leverag...

  9. Dimensionality Reduction Mappings

    OpenAIRE

    Bunte, Kerstin; Biehl, Michael; Hammer, Barbara

    2011-01-01

    A wealth of powerful dimensionality reduction methods has been established which can be used for data visualization and preprocessing. These are accompanied by formal evaluation schemes, which allow a quantitative evaluation along general principles and which even lead to further visualization schemes based on these objectives. Most methods, however, provide a mapping of a priorly given finite set of points only, requiring additional steps for out-of-sample extensions. We propose a general vi...

  10. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  11. Biological elimination phosphorus; Eliminacion biologia de fosforo

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, J.; Vicent, T.; Lafuente, J. [Universitat Autonoma de Barcelona (Spain)

    2000-07-01

    Phosphorus is the main limiting nutrient in the eutrophication process, and therefore its removal from the aquatic medium is indispensable. Biological Phosphorous Removal is a more efficient and convenient process compared with the classical chemical precipitation, due to a reduction of chemical reagents and sludge production. Moreover, it represents energy save since the sludge produced can be reused for agriculture purposes. In this paper bibliographic hypothesis about the metabolic pathways of the phosphorous accumulating organisms are widely and accurate reviewed and the above mentioned environmental benefits of the Biological Phosphorous Removal are reported. (Author) 22 refs.

  12. Standard biological parts knowledgebase.

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  13. Biologic fatigue in psoriasis.

    Science.gov (United States)

    Levin, Ethan C; Gupta, Rishu; Brown, Gabrielle; Malakouti, Mona; Koo, John

    2014-02-01

    Over the past 15 years, biologic medications have greatly advanced psoriasis therapy. However, these medications may lose their efficacy after long-term use, a concept known as biologic fatigue. We sought to review the available data on biologic fatigue in psoriasis and identify strategies to help clinicians optimally manage patients on biologic medications in order to minimize biologic fatigue. We reviewed phase III clinical trials for the biologic medications used to treat psoriasis and performed a PubMed search for the literature that assessed the loss of response to biologic therapy. In phase III clinical trials of biologic therapies for the treatment of psoriasis, 20-32% of patients lost their PASI-75 response during 0.8-3.9 years of follow-up. A study using infliximab reported the highest percentage of patients who lost their response (32%) over the shortest time-period (0.8 years). Although not consistently reported across all studies, the presence of antidrug antibodies was associated with the loss of response to treatment with infliximab and adalimumab. Biologic fatigue may be most frequent in those patients using infliximab. Further studies are needed to identify risk factors associated with biologic fatigue and to develop meaningful antidrug antibody assays.

  14. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki

    2011-02-01

    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org. The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org. SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  15. Epistasis, complexity, and multifactor dimensionality reduction.

    Science.gov (United States)

    Pan, Qinxin; Hu, Ting; Moore, Jason H

    2013-01-01

    Genome-wide association studies (GWASs) and other high-throughput initiatives have led to an information explosion in human genetics and genetic epidemiology. Conversion of this wealth of new information about genomic variation to knowledge about public health and human biology will depend critically on the complexity of the genotype to phenotype mapping relationship. We review here computational approaches to genetic analysis that embrace, rather than ignore, the complexity of human health. We focus on multifactor dimensionality reduction (MDR) as an approach for modeling one of these complexities: epistasis or gene-gene interaction.

  16. Global biological diversity, forests and ecosystem approach

    Directory of Open Access Journals (Sweden)

    Corona P

    2010-07-01

    Full Text Available Recent international reports and a paper published on Science stresses the lack of evidence about the reduction in the rate of biodiversity decline as expected as a consequence of political agreements on global environment. This decline is of particular concern not only with respect to the intrinsic value of the nature as such but also because it involves the reduction or loss of ecosystem services. This issue is distinctively relevant for forest ecosystems. The Ecosystem Approach proposed by the United Nations Convention on Biological Diversity might be a strategy to reverse the negative trend, promoting a fair conservation and sustainable use of natural resources on an operational level.

  17. Discrete Routh reduction

    International Nuclear Information System (INIS)

    Jalnapurkar, Sameer M; Leok, Melvin; Marsden, Jerrold E; West, Matthew

    2006-01-01

    This paper develops the theory of Abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with Abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J 2 correction, as well as the double spherical pendulum. The J 2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a non-trivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the non-canonical nature of the symplectic structure

  18. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    . The influence of the ion adsorption strength, which is observed in the “particle size studies” on the oxygen reduction rate on Pt/C catalysts, is further investigated under similar reaction conditions by infrared spectroscopy. The designed in situ electrochemical ATR-FTIR setup features a high level...... bands are observed on the Pt/C layer: bands arising from the functional groups of the carbon support, bands related to water and hydronium, and bands related to the sulfur anion interaction with the catalyst. The correlation of the anion absorption to the ORR current leads to the proposition that anion...

  19. Infinitary Combinatory Reduction Systems

    DEFF Research Database (Denmark)

    Ketema, Jeroen; Simonsen, Jakob Grue

    2011-01-01

    of knownresults fromfirst-order infinitary rewriting and infinitary ¿-calculus to iCRSs. In particular, for fully-extended, left-linear iCRSs we prove the well-known compression property, and for orthogonal iCRSs we prove that (1) if a set of redexes U has a complete development, then all complete developments......We define infinitary Combinatory Reduction Systems (iCRSs), thus providing the first notion of infinitary higher-order rewriting. The systems defined are sufficiently general that ordinary infinitary term rewriting and infinitary ¿-calculus are special cases. Furthermore,we generalise a number...

  20. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  1. Biological tracer method

    Science.gov (United States)

    Strong-Gunderson, Janet M.; Palumbo, Anthony V.

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  2. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  4. UCAC3: ASTROMETRIC REDUCTIONS

    International Nuclear Information System (INIS)

    Finch, Charlie T.; Zacharias, Norbert; Wycoff, Gary L.

    2010-01-01

    Presented here are the details of the astrometric reductions from the x, y data to mean right ascension (R.A.), declination (decl.) coordinates of the third U.S. Naval Observatory CCD Astrograph Catalog (UCAC3). For these new reductions we used over 216,000 CCD exposures. The Two-Micron All-Sky Survey (2MASS) data are used extensively to probe for coordinate and coma-like systematic errors in UCAC data mainly caused by the poor charge transfer efficiency of the 4K CCD. Errors up to about 200 mas have been corrected using complex look-up tables handling multiple dependences derived from the residuals. Similarly, field distortions and sub-pixel phase errors have also been evaluated using the residuals with respect to 2MASS. The overall magnitude equation is derived from UCAC calibration field observations alone, independent of external catalogs. Systematic errors of positions at the UCAC observing epoch as presented in UCAC3 are better corrected than in the previous catalogs for most stars. The Tycho-2 catalog is used to obtain final positions on the International Celestial Reference Frame. Residuals of the Tycho-2 reference stars show a small magnitude equation (depending on declination zone) that might be inherent in the Tycho-2 catalog.

  5. LOFT data reduction

    International Nuclear Information System (INIS)

    Norman, N.L.

    1975-08-01

    The Loss-of-Fluid Test (LOFT) Facility is an experimental facility built around a ''scaled'' version of a large pressurized water reactor (LPWR). LOFT will be used to run loss-of-coolant experiments (LOCEs) and to acquire the necessary data required ''to evaluate the adequacy and improve the analytical methods currently used to predict the loss-of-coolant accident (LOCA) response of LPWRs'' and ''to identify and investigate any unexpected event(s) or threshold(s) in the response of either the plant or the engineered safety features and develop analytical techniques that adequately describe and account for the unexpected behavior(s)''. During the LOCE this required data will be acquired and recorded in both analog and digital modes. Subsequent to the test the analog data will also be converted to the raw digital mode. This raw digital data will be converted to the desired engineering units using the LOFT Data Reduction System. This system is implemented on the IBM 360/75 and is a part of a commercially available data processing program called MAC/RAN III. The theory of reducing LOFT data to engineering units and the application of the MAC/ RAN III system to accomplish this reduction is given. (auth)

  6. Islam and harm reduction.

    Science.gov (United States)

    Kamarulzaman, A; Saifuddeen, S M

    2010-03-01

    Although drugs are haram and therefore prohibited in Islam, illicit drug use is widespread in many Islamic countries throughout the world. In the last several years increased prevalence of this problem has been observed in many of these countries which has in turn led to increasing injecting drug use driven HIV/AIDS epidemic across the Islamic world. Whilst some countries have recently responded to the threat through the implementation of harm reduction programmes, many others have been slow to respond. In Islam, The Quran and the Prophetic traditions or the Sunnah are the central sources of references for the laws and principles that guide the Muslims' way of life and by which policies and guidelines for responses including that of contemporary social and health problems can be derived. The preservation and protection of the dignity of man, and steering mankind away from harm and destruction are central to the teachings of Islam. When viewed through the Islamic principles of the preservation and protection of the faith, life, intellect, progeny and wealth, harm reduction programmes are permissible and in fact provide a practical solution to a problem that could result in far greater damage to the society at large if left unaddressed. Copyright (c) 2009. Published by Elsevier B.V.

  7. Biological Water Quality Criteria

    Science.gov (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  8. Space Synthetic Biology (SSB)

    Data.gov (United States)

    National Aeronautics and Space Administration — This project focused on employing advanced biological engineering and bioelectrochemical reactor systems to increase life support loop closure and in situ resource...

  9. Systems Biology of Metabolism.

    Science.gov (United States)

    Nielsen, Jens

    2017-06-20

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.

  10. A functional overview of conservation biological control

    DEFF Research Database (Denmark)

    Begg, Graham S; Cook, Samantha M; Dye, Richard

    2017-01-01

    Conservation biological control (CBC) is a sustainable approach to pest management that can contribute to a reduction in pesticide use as part of an Integrated Pest Management (IPM) strategy. CBC is based on the premise that countering habitat loss and environmental disturbance associated...... limitation to the development of effective CBC is due to a failure to adequately direct biological control services to achieve suppression of the target pests. By considering the performance of these and other components of CBC within the context of an integrated system, we believe that the limiting factors...... with intensive crop production will conserve natural enemies, thus contributing to pest suppression. The abundance and diversity of natural enemies increases in response to a variety of conservation measures, including plant and habitat diversification, a reduction in cropping intensity, and increased landscape...

  11. Design parameters for sludge reduction in an aquatic worm reactor

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Temmink, B.G.; Elissen, H.J.H.; Buisman, C.J.N.

    2010-01-01

    Reduction and compaction of biological waste sludge from waste water treatment plants (WWTPs) can be achieved with the aquatic worm Lumbriculus variegatus. In our reactor concept for a worm reactor, the worms are immobilised in a carrier material. The size of a worm reactor will therefore mainly be

  12. Biotechnological aspects of sulfate reduction with methane as electron donor

    NARCIS (Netherlands)

    Meulepas, R.J.W.; Stams, A.J.M.; Lens, P.N.L.

    2010-01-01

    Biological sulfate reduction can be used for the removal and recovery of oxidized sulfur compounds and metals from waste streams. However, the costs of conventional electron donors, like hydrogen and ethanol, limit the application possibilities. Methane from natural gas or biogas would be a more

  13. Consumer's Guide to Radon Reduction

    Science.gov (United States)

    ... Protection Agency Search Search Radon Contact Us Share Consumer's Guide to Radon Reduction: How to Fix Your ... See EPA’s About PDF page to learn more. Consumer's Guide to Radon Reduction: How to Fix Your ...

  14. Mindfulness-Based Stress Reduction

    Science.gov (United States)

    ... R S T U V W X Y Z Mindfulness-Based Stress Reduction (MBSR) Information 6 Things You ... Disease and Dementia (12/20/13) Research Spotlights Mindfulness-Based Stress Reduction, Cognitive-Behavioral Therapy Shown To ...

  15. Volume reduction by oxidation

    International Nuclear Information System (INIS)

    Kuribayashi, H.; Hasegawa, A.; Koshiba, Y.; Yamanaka, A.

    1984-01-01

    JGC Corporation has been actively investigating the treatment of various combustible and organic wastes generated at nuclear power stations and reprocessing plants. In particular, JGC has analyzed three new technologies which produce dramatic volume reductions and complete conversion of wastes into inorganic substances for durable storage and disposal. Those technologies are; Incineration, Wet oxidation and Photooxidation. Incineration is an excellent volume reducer for combustible wastes, and wet oxidation, using hydrogen peroxide, is also a good way for reducing spent ion-exchange resins without any off-gas problems. Photooxidation is a new technology to purify polluted water for recycled use in the stations without th release of contaminated water to the environment. Polluted water may include NH4+, detergents, chelating agents and other organic decontamination agents. These VR technologies are all based on ''Oxidation'' from which the title of this paper comes

  16. Dimensional-reduction anomaly

    Science.gov (United States)

    Frolov, V.; Sutton, P.; Zelnikov, A.

    2000-01-01

    In a wide class of D-dimensional spacetimes which are direct or semi-direct sums of a (D-n)-dimensional space and an n-dimensional homogeneous ``internal'' space, a field can be decomposed into modes. As a result of this mode decomposition, the main objects which characterize the free quantum field, such as Green functions and heat kernels, can effectively be reduced to objects in a (D-n)-dimensional spacetime with an external dilaton field. We study the problem of the dimensional reduction of the effective action for such spacetimes. While before renormalization the original D-dimensional effective action can be presented as a ``sum over modes'' of (D-n)-dimensional effective actions, this property is violated after renormalization. We calculate the corresponding anomalous terms explicitly, illustrating the effect with some simple examples.

  17. Minimal Reducts with Grasp

    Directory of Open Access Journals (Sweden)

    Iris Iddaly Mendez Gurrola

    2011-03-01

    Full Text Available The proper detection of patient level of dementia is important to offer the suitable treatment. The diagnosis is based on certain criteria, reflected in the clinical examinations. From these examinations emerge the limitations and the degree in which each patient is in. In order to reduce the total of limitations to be evaluated, we used the rough set theory, this theory has been applied in areas of the artificial intelligence such as decision analysis, expert systems, knowledge discovery, classification with multiple attributes. In our case this theory is applied to find the minimal limitations set or reduct that generate the same classification that considering all the limitations, to fulfill this purpose we development an algorithm GRASP (Greedy Randomized Adaptive Search Procedure.

  18. Aircraft engine pollution reduction.

    Science.gov (United States)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  19. Dose Reduction Techniques

    International Nuclear Information System (INIS)

    WAGGONER, L.O.

    2000-01-01

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program

  20. Dose Reduction Techniques

    Energy Technology Data Exchange (ETDEWEB)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  1. Hazardous material reduction initiative

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1995-02-01

    The Hazardous Material Reduction Initiative (HMRI) explores using the review of purchase requisitions to reduce both the use of hazardous materials and the generation of regulated and nonregulated wastes. Based on an 11-month program implemented at the Hanford Site, hazardous material use and waste generation was effectively reduced by using a centralized procurement control program known as HMRI. As expected, several changes to the original proposal were needed during the development/testing phase of the program to accommodate changing and actual conditions found at the Hanford Site. The current method requires a central receiving point within the Procurement Organization to review all purchase requisitions for potentially Occupational Safety and Health Administration (OSHA) hazardous products. Those requisitions (approximately 4% to 6% of the total) are then forwarded to Pollution Prevention personnel for evaluation under HMRI. The first step is to determine if the requested item can be filled by existing or surplus material. The requisitions that cannot filled by existing or surplus material are then sorted into two groups based on applicability to the HMRI project. For example, laboratory requests for analytical reagents or standards are excluded and the purchase requisitions are returned to Procurement for normal processing because, although regulated, there is little opportunity for source reduction due to the strict protocols followed. Each item is then checked to determine if it is regulated or not. Regulated items are prioritized based on hazardous contents, quantity requested, and end use. Copies of these requisitions are made and the originals are returned to Procurement within 1-hr. Since changes to the requisition can be made at later stages during procurement, the HMRI fulfills one of its original premises in that it does not slow the procurement process

  2. Dimension Reduction Techniques in Morhpometrics

    OpenAIRE

    Kratochvíl, Jakub

    2011-01-01

    This thesis centers around dimensionality reduction and its usage on landmark-type data which are often used in anthropology and morphometrics. In particular we focus on non-linear dimensionality reduction methods - locally linear embedding and multidimensional scaling. We introduce a new approach to dimensionality reduction called multipass dimensionality reduction and show that improves the quality of classification as well as requiring less dimensions for successful classification than the...

  3. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  4. Biologic Patterns of Disability.

    Science.gov (United States)

    Granger, Carl V.; Linn, Richard T.

    2000-01-01

    Describes the use of Rasch analysis to elucidate biological patterns of disability present in the functional ability of persons undergoing medical rehabilitation. Uses two measures, one for inpatients and one for outpatients, to illustrate the approach and provides examples of some biological patterns of disability associated with specific types…

  5. Archives: Tropical Freshwater Biology

    African Journals Online (AJOL)

    Items 1 - 23 of 23 ... Archives: Tropical Freshwater Biology. Journal Home > Archives: Tropical Freshwater Biology. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 23 of 23 Items ...

  6. Advances in radiation biology

    International Nuclear Information System (INIS)

    Lett, J.T.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    The classical period of radiation biology is coming to a close. Such change always occurs at a time when the ideas and concepts that promoted the burgeoning of an infant science are no longer adequate. This volume covers a number of areas in which new ideas and research are playing a vital role, including cellular radiation sensitivity, radioactive waste disposal, and space radiation biology

  7. Psoriasis : implications of biologics

    NARCIS (Netherlands)

    Lecluse, L.L.A.

    2010-01-01

    Since the end of 2004 several specific immunomodulating therapies: ‘biologic response modifiers’ or ‘biologics’ have been registered for moderate to severe psoriasis in Europe. This thesis is considering the implications of the introduction of the biologics for psoriasis patients, focusing on safety

  8. Tropical Freshwater Biology

    African Journals Online (AJOL)

    Tropical Freshwater Biology promotes the publication of scientific contributions in the field of freshwater biology in the tropical and subtropical regions of the world. One issue is published annually but this number may be increased. Original research papers and short communications on any aspect of tropical freshwater ...

  9. Experimenting with Mathematical Biology

    Science.gov (United States)

    Sanft, Rebecca; Walter, Anne

    2016-01-01

    St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…

  10. Physics and biology

    International Nuclear Information System (INIS)

    Frauenfelder, H.

    1988-01-01

    The author points out that the coupling between physics and biology is becoming closer as time goes on. He tries to show that physical studies on biological systems not only yield insight into biology but also provide results of interest to physics. Biological systems are extremly complex system. Ideally one would like to understand the behavior of such systems in terms of the behavior of its constituent atoms. Since in small organisms this may be 10 20 atoms, it is clear these are not simple many-body systems. He reviews the basic elements of cells and then considers the broader questions of structure, complexity, and function, which must be looked at on levels from the cell to the organism. Despite the vast amount of observational material already in existence, biophysics and biological physics are only at a beginning. We can expect that physics will continue to interact strongly with biology. Actually, the connection also includes chemistry and mathematics. New tools that become available in physics will continue to be applied to biological problems. We can expect that the flow of information will not be one way; biological systems will provide new information on many old and new parts of physics, from reaction theory and transport phenomena to complexity, cooperativity, and nonlinear processes

  11. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  12. Bio THELYS: A new sludge reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Chauzy, Julien; Cretenot, Didier; Patria, Lucie; Fernandes, Paulo; Sauvegrain, Patrick; Levasseur, Jean-Pierre

    2003-07-01

    New technologies for reducing the sludge production of municipal or industrial WWTP have been appeared during the last few years. One of these innovative processes, Bio THELYS, consists in enhancing the biodegradability of sludge by a stage of thermal hydrolysis. The hydrolysed sludge could then be sent upstream to a biological step either aerobic or anaerobic. The objective is to increase the global mineralisation of the pollution entering the WWTP in order to decrease the waste leaving it, i.e. mainly the sludge. A 2500 population equivalent prototype was installed on a WWTP, in Champagne - France. Thermal hydrolysis is carried out under a temperature of 150-185{sup o}C, a pressure of 10-15 bar with an hydraulic retention time of 30-60 minutes. Thermal hydrolysis is implemented on a secondary recycling loop on the biological basin. Trials started in 1999 and are still on operation. A close monitoring of the WWTP was set up focusing especially on sludge characteristics, treated water quality, yield of sludge production reduction and plant operation. Bio THELYS could achieve a reduction in sludge production up to 70% on the plant. (author)

  13. Alcohol harm reduction in Europe

    DEFF Research Database (Denmark)

    Herring, Rachel; Betsy, Thom; Beccaria, Franca

    2010-01-01

    The EMCDDA’s 10th scientific monograph, entitled Harm reduction: evidence, impacts and challenges provides a comprehensive overview of the harm reduction field. Part I of the monograph looks back at the emergence of harm reduction approaches and their diffusion, and explores the concept from diff...

  14. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A [French Camp, CA

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  15. Frontiers in mathematical biology

    CERN Document Server

    1994-01-01

    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  16. Biological Age Predictors

    Directory of Open Access Journals (Sweden)

    Juulia Jylhävä

    2017-07-01

    Full Text Available The search for reliable indicators of biological age, rather than chronological age, has been ongoing for over three decades, and until recently, largely without success. Advances in the fields of molecular biology have increased the variety of potential candidate biomarkers that may be considered as biological age predictors. In this review, we summarize current state-of-the-art findings considering six potential types of biological age predictors: epigenetic clocks, telomere length, transcriptomic predictors, proteomic predictors, metabolomics-based predictors, and composite biomarker predictors. Promising developments consider multiple combinations of these various types of predictors, which may shed light on the aging process and provide further understanding of what contributes to healthy aging. Thus far, the most promising, new biological age predictor is the epigenetic clock; however its true value as a biomarker of aging requires longitudinal confirmation.

  17. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  18. Managing biological diversity

    Science.gov (United States)

    Samson, Fred B.; Knopf, Fritz L.

    1993-01-01

    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by

  19. A timeless biology.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F; Chafin, Clifford; De Falco, Domenico; Torday, John S

    2018-05-01

    Contrary to claims that physics is timeless while biology is time-dependent, we take the opposite standpoint: physical systems' dynamics are constrained by the arrow of time, while living assemblies are time-independent. Indeed, the concepts of "constraints" and "displacements" shed new light on the role of continuous time flow in life evolution, allowing us to sketch a physical gauge theory for biological systems in long timescales. In the very short timescales of biological systems' individual lives, time looks like "frozen" and "fixed", so that the second law of thermodynamics is momentarily wrecked. The global symmetries (standing for biological constrained trajectories, i.e. the energetic gradient flows dictated by the second law of thermodynamics in long timescales) are broken by local "displacements" where time is held constant, i.e., modifications occurring in living systems. Such displacements stand for brief local forces, able to temporarily "break" the cosmic increase in entropy. The force able to restore the symmetries (called "gauge field") stands for the very long timescales of biological evolution. Therefore, at the very low speeds of life evolution, time is no longer one of the four phase space coordinates of a spacetime Universe: it becomes just a gauge field superimposed to three-dimensional biological systems. We discuss the implications in biology: when assessing living beings, the underrated role of isolated "spatial" modifications needs to be emphasized, living apart the evolutionary role of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Noise in biological circuits.

    Science.gov (United States)

    Simpson, Michael L; Cox, Chris D; Allen, Michael S; McCollum, James M; Dar, Roy D; Karig, David K; Cooke, John F

    2009-01-01

    Noise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations. Here we review the fundamentals of the computational, analytical, and experimental approaches to noise biology. We review results that show that the competition between the benefits of low noise and those of low population has resulted in the evolution of genetic system architectures that produce an uneven distribution of stochasticity across the molecular components of cells and, in some cases, use noise to drive biological function. We review the exact and approximate approaches to gene circuit noise analysis and simulation, and review many of the key experimental results obtained using flow cytometry and time-lapse fluorescent microscopy. In addition, we consider the probative value of noise with a discussion of using measured noise properties to elucidate the structure and function of the underlying gene circuit. We conclude with a discussion of the frontiers of and significant future challenges for noise biology. (c) 2009 John Wiley & Sons, Inc.

  1. Size reduction machine

    International Nuclear Information System (INIS)

    Fricke, V.

    1999-01-01

    The Size Reduction Machine (SRM) is a mobile platform capable of shearing various shapes and types of metal components at a variety of elevations. This shearing activity can be performed without direct physical movement and placement of the shear head by the operator. The base unit is manually moved and roughly aligned to each cut location. The base contains the electronics: hydraulic pumps, servos, and actuators needed to move the shear-positioning arm. The movable arm allows the shear head to have six axes of movement and to cut to within 4 inches of a wall surface. The unit has a slick electrostatic capture coating to assist in external decontamination. Internal contamination of the unit is controlled by a high-efficiency particulate air (HEPA) filter on the cooling inlet fan. The unit is compact enough to access areas through a 36-inch standard door opening. This paper is an Innovative Technology Summary Report designed to provide potential users with the information they need to quickly determine if a technology would apply to a particular environmental management problem. They also are designed for readers who may recommend that a technology be considered by prospective users

  2. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1997-01-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  3. Principal Components as a Data Reduction and Noise Reduction Technique

    Science.gov (United States)

    Imhoff, M. L.; Campbell, W. J.

    1982-01-01

    The potential of principal components as a pipeline data reduction technique for thematic mapper data was assessed and principal components analysis and its transformation as a noise reduction technique was examined. Two primary factors were considered: (1) how might data reduction and noise reduction using the principal components transformation affect the extraction of accurate spectral classifications; and (2) what are the real savings in terms of computer processing and storage costs of using reduced data over the full 7-band TM complement. An area in central Pennsylvania was chosen for a study area. The image data for the project were collected using the Earth Resources Laboratory's thematic mapper simulator (TMS) instrument.

  4. Deliberating emission reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, A.M.; Rodriguez, M.; Jeanneret, T. [Commonwealth Scientific and Industrial Research Organisation CSIRO, 37 Graham Rd, Highett VIC 3190 (Australia); De Best-Waldhober, M.; Straver, K.; Mastop, J.; Paukovic, M. [Energy research Centre of the Netherlands ECN, Policy Studies, Amsterdam (Netherlands)

    2012-06-15

    For more than 20 years there has been a concerted international effort toward addressing climate change. International conventions, such as the United Nations Foreign Convention on Climate Change (UNFCCC; ratified in 1994), have been established by committed nations seeking to address global climate change through the reduction of greenhouse gases emitted into the Earth's atmosphere (Global CCS Institute, 2011). Long recognised as the most crucial of the greenhouse gases to impact global warming, the majority of carbon dioxide's anthropogenic global emissions are directly related to fuel combustion of which both Australia and the Netherlands' energy production is significantly reliant. Both these nations will need to consider many opinions and make hard decisions if alternative energy options are to be implemented at the scale that is required to meet international emission targets. The decisions that are required not only need to consider the many options available but also their consequences. Along with politicians, policy developers and industry, the general public also need to be active participants in deciding which energy options, and their subsequent consequences, are acceptable for implementation at the national level. Access to balanced and factual information is essential in establishing informed opinions on the many policy options available. Past research has used several methods to measure public perceptions and opinions yet for complex issues, such as emission reduction, some of these methods have shown to be problematic. For example, semi structured interviews can provide data that is flexible and context rich yet is does also come with the limitations such as it seldom provides a practical assessment that can be utilised from researcher to researcher, across disciplines and public participation techniques. Surveys on the other hand usually address these limitations but surveys that do not encourage comparison of information or ask

  5. ERLN Biological Focus Area

    Science.gov (United States)

    The Environmental Response Laboratory Network supports the goal to increase national capacity for biological analysis of environmental samples. This includes methods development and verification, technology transfer, and collaboration with USDA, FERN, CDC.

  6. Biological and Pharmacological properties

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Biological and Pharmacological properties. NOEA inhibits Ceramidase. Anandamide inhibits gap junction conductance and reduces sperm fertilizing capacity. Endogenous ligands for Cannabinoid receptors (anandamide and NPEA). Antibacterial and antiviral ...

  7. Synthetic Biological Membrane (SBM)

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate goal of the Synthetic Biological Membrane project is to develop a new type of membrane that will enable the wastewater treatment system required on...

  8. EDITORIAL: Physical Biology

    Science.gov (United States)

    Roscoe, Jane

    2004-06-01

    Physical Biology is a new peer-reviewed publication from Institute of Physics Publishing. Launched in 2004, the journal will foster the integration of biology with the traditionally more quantitative fields of physics, chemistry, computer science and other math-based disciplines. Its primary aim is to further the understanding of biological systems at all levels of complexity, ranging from the role of structure and dynamics of a single molecule to cellular networks and organisms. The journal encourages the development of a new biology-driven physics based on the extraordinary and increasingly rich data arising in biology, and provides research directions for those involved in the creation of novel bio-engineered systems. Physical Biology will publish a stimulating combination of full length research articles, communications, perspectives, reviews and tutorials from a wide range of disciplines covering topics such as: Single-molecule studies and nanobiotechnology Molecular interactions and protein folding Charge transfer and photobiology Ion channels; structure, function and ion regulation Molecular motors and force generation Subcellular processes Biological networks and neural systems Modeling aspects of molecular and cell biology Cell-cell signaling and interaction Biological patterns and development Evolutionary processes Novel tools and methods in physical biology Experts in the areas encompassed by the journal's scope have been appointed to the Editorial Scientific Committee and the composition of the Committee will be updated regularly to reflect the developments in this new and exciting field. Physical Biology is free online to everyone in 2004; you are invited to take advantage of this offer by visiting the journal homepage at http://physbio.iop.org This special print edition of Physical Biology is a combination of issues 1 and 2 of this electronic-only journal and it brings together an impressive range of articles in the fields covered, including a popular

  9. The Biology of Behaviour.

    Science.gov (United States)

    Broom, D. M.

    1981-01-01

    Discusses topics to aid in understanding animal behavior, including the value of the biological approach to psychology, functional systems, optimality and fitness, universality of environmental effects on behavior, and evolution of social behavior. (DS)

  10. Large Pelagics Biological Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Large Pelagics Biological Survey (LPBS) collects additional length and weight information and body parts such as otoliths, caudal vertebrae, dorsal spines, and...

  11. Fishery Biology Database (AGDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basic biological data are the foundation on which all assessments of fisheries resources are built. These include parameters such as the size and age composition of...

  12. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...

  13. Study of biological compartments

    International Nuclear Information System (INIS)

    Rocha, A.F.G. da

    1976-01-01

    The several types of biological compartments are studied such as monocompartmental system, one-compartment balanced system irreversible fluxes, two closed compartment system, three compartment systems, catenary systems and mammilary systems [pt

  14. Enhanced Biological Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of a variety of biological, reproductive, and energetic data collected from fish on the continental shelf in the northwest Atlantic Ocean. Species...

  15. Hammond Bay Biological Station

    Data.gov (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  16. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to a...

  17. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  18. Standardization in synthetic biology.

    Science.gov (United States)

    Müller, Kristian M; Arndt, Katja M

    2012-01-01

    Synthetic Biology is founded on the idea that complex biological systems are built most effectively when the task is divided in abstracted layers and all required components are readily available and well-described. This requires interdisciplinary collaboration at several levels and a common understanding of the functioning of each component. Standardization of the physical composition and the description of each part is required as well as a controlled vocabulary to aid design and ensure interoperability. Here, we describe standardization initiatives from several disciplines, which can contribute to Synthetic Biology. We provide examples of the concerted standardization efforts of the BioBricks Foundation comprising the request for comments (RFC) and the Registry of Standardized Biological parts as well as the international Genetically Engineered Machine (iGEM) competition.

  19. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  20. Coordination Compounds in Biology

    Indian Academy of Sciences (India)

    . Some of the other important examples are chlorophyll, haemoglobin, myoglobin and cytochromes. The common feature in .... Biochemical Function (in vivo Studies). B. 12 functions in biological systems as a coenzyme. That is, it binds.

  1. Human papillomavirus molecular biology.

    Science.gov (United States)

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Graphs in molecular biology

    Directory of Open Access Journals (Sweden)

    Falcon Seth

    2007-09-01

    Full Text Available Abstract Graph theoretical concepts are useful for the description and analysis of interactions and relationships in biological systems. We give a brief introduction into some of the concepts and their areas of application in molecular biology. We discuss software that is available through the Bioconductor project and present a simple example application to the integration of a protein-protein interaction and a co-expression network.

  3. Molecular Biology Database List.

    Science.gov (United States)

    Burks, C

    1999-01-01

    Molecular Biology Database List (MBDL) includes brief descriptions and pointers to Web sites for the various databases described in this issue as well as other Web sites presenting data sets relevant to molecular biology. This information is compiled into a list (http://www.oup.co.uk/nar/Volume_27/Issue_01/summary/ gkc105_gml.html) which includes links both to source Web sites and to on-line versions of articles describing the databases. PMID:9847130

  4. Teaching systems biology.

    Science.gov (United States)

    Alves, R; Vilaprinyo, E; Sorribas, A

    2011-03-01

    Advances in systems biology are increasingly dependent upon the integration of various types of data and different methodologies to reconstruct how cells work at the systemic level. Thus, teams with a varied array of expertise and people with interdisciplinary training are needed. So far this training was thought to be more productive if aimed at the Masters or PhD level. At this level, multiple specialised and in-depth courses on the different subject matters of systems biology are taught to already well-prepared students. This approach is mostly based on the recognition that systems biology requires a wide background that is hard to find in undergraduate students. Nevertheless, and given the importance of the field, the authors argue that exposition of undergraduate students to the methods and paradigms of systems biology would be advantageous. Here they present and discuss a successful experiment in teaching systems biology to third year undergraduate biotechnology students at the University of Lleida in Spain. The authors' experience, together with that from others, argues for the adequateness of teaching systems biology at the undergraduate level. [Includes supplementary material].

  5. Developmental biology, the stem cell of biological disciplines.

    Science.gov (United States)

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  6. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  7. Robust methods for data reduction

    CERN Document Server

    Farcomeni, Alessio

    2015-01-01

    Robust Methods for Data Reduction gives a non-technical overview of robust data reduction techniques, encouraging the use of these important and useful methods in practical applications. The main areas covered include principal components analysis, sparse principal component analysis, canonical correlation analysis, factor analysis, clustering, double clustering, and discriminant analysis.The first part of the book illustrates how dimension reduction techniques synthesize available information by reducing the dimensionality of the data. The second part focuses on cluster and discriminant analy

  8. Logistics Reduction: Heat Melt Compactor

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction (LR) project Heat Melt Compactor (HMC) technology is a waste management technology. Currently, there are...

  9. Supracondylar fractures in children-closed reduction vs open reduction

    Directory of Open Access Journals (Sweden)

    Boparai RPS

    2006-01-01

    Full Text Available Back ground: Supracondylar fracture is the most common fracture around the elbow in children of the age group 5-10 yrs. The issue of open reduction in such fractures is always a matter of debate as even closed reduction gives satisfactory results. However the present study of 50 cases aims to highlight the benefits of open reduction over closed reduction in such cases. Methods: Patients were divided into two groups, 25 cases (group I were treated by ORIF using K-wires while 25 cases (group II were treated by closed reduction and P.O.P. splint in pronation. Group I patients were treated under G/A by two mini incisions medial and lateral and fragments fixed with K-wires. Post-operatively P.O.P. back splint was given. In both groups, the back splint was discarded after three weeks and active exercises encouraged. Results: Minor complications as superficial infections and pin tract infection were observed in group I patients. However variation of carrying angle (cubitus varus was more in group II. Limitation of movement was more in group II due to mal-rotation and anterior ledge formation, not seen with open reduction group. Conclusion: We conclude from above series that ORIF of supracondylar fracture is better than closed reduction as incidence of malunion is less and range of motion near normal as compared to closed reduction.

  10. Effect of Calcination and Reduction Temperatures on the Reduction ...

    African Journals Online (AJOL)

    The effect of calcination and reduction temperatures on the reducibility, dispersion and Fischer-Tropsch activity of 10 wt% cobalt supported on titania catalyst modified by 0.1 wt% boron has been studied. The percentage reduction and percentage dispersion were found to decrease with increasing calcination temperature.

  11. Biological process linkage networks.

    Directory of Open Access Journals (Sweden)

    Dikla Dotan-Cohen

    Full Text Available The traditional approach to studying complex biological networks is based on the identification of interactions between internal components of signaling or metabolic pathways. By comparison, little is known about interactions between higher order biological systems, such as biological pathways and processes. We propose a methodology for gleaning patterns of interactions between biological processes by analyzing protein-protein interactions, transcriptional co-expression and genetic interactions. At the heart of the methodology are the concept of Linked Processes and the resultant network of biological processes, the Process Linkage Network (PLN.We construct, catalogue, and analyze different types of PLNs derived from different data sources and different species. When applied to the Gene Ontology, many of the resulting links connect processes that are distant from each other in the hierarchy, even though the connection makes eminent sense biologically. Some others, however, carry an element of surprise and may reflect mechanisms that are unique to the organism under investigation. In this aspect our method complements the link structure between processes inherent in the Gene Ontology, which by its very nature is species-independent. As a practical application of the linkage of processes we demonstrate that it can be effectively used in protein function prediction, having the power to increase both the coverage and the accuracy of predictions, when carefully integrated into prediction methods.Our approach constitutes a promising new direction towards understanding the higher levels of organization of the cell as a system which should help current efforts to re-engineer ontologies and improve our ability to predict which proteins are involved in specific biological processes.

  12. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  13. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  14. Stochastic Methods in Biology

    CERN Document Server

    Kallianpur, Gopinath; Hida, Takeyuki

    1987-01-01

    The use of probabilistic methods in the biological sciences has been so well established by now that mathematical biology is regarded by many as a distinct dis­ cipline with its own repertoire of techniques. The purpose of the Workshop on sto­ chastic methods in biology held at Nagoya University during the week of July 8-12, 1985, was to enable biologists and probabilists from Japan and the U. S. to discuss the latest developments in their respective fields and to exchange ideas on the ap­ plicability of the more recent developments in stochastic process theory to problems in biology. Eighteen papers were presented at the Workshop and have been grouped under the following headings: I. Population genetics (five papers) II. Measure valued diffusion processes related to population genetics (three papers) III. Neurophysiology (two papers) IV. Fluctuation in living cells (two papers) V. Mathematical methods related to other problems in biology, epidemiology, population dynamics, etc. (six papers) An important f...

  15. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  16. Chronic sleep reduction in adolescents

    NARCIS (Netherlands)

    Dewald-Kaufmann, J.F.

    2012-01-01

    Based on the results of this thesis, it can be concluded that sleep problems and chronic sleep reduction have a high impact on adolescents’ daytime functioning. Additionally, this research shows that gradual sleep extension can improve adolescents’ sleep and especially their chronic sleep reduction.

  17. Confluence reduction for probabilistic systems

    NARCIS (Netherlands)

    Timmer, Mark; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette

    In this presentation we introduce a novel technique for state space reduction of probabilistic specifications, based on a newly developed notion of confluence for probabilistic automata. We proved that this reduction preserves branching probabilistic bisimulation and can be applied on-the-fly. To

  18. Casting light on harm reduction

    DEFF Research Database (Denmark)

    Jourdan, Michael

    2009-01-01

    Background: Harm reduction is commonly regarded as complementary to other drug problem responses - as the fourth tier. Yet even core examples of harm reduction such as the provision of injection equipment and methadone treatment has over and over encountered considerable opposition, and harm...

  19. Reduction of chemical reaction models

    Science.gov (United States)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  20. Theory reduction and non-Boolean theories.

    Science.gov (United States)

    Primas, H

    1977-07-19

    It is suggested that biological theories should be embedded into the family of non-Boolean theories based on an orthomodular propositional calculus. The structure of universal theories that include quantal phenomena is investigated and it is shown that their subtheories form a directed set which cannot be totally orders. A precise definition of theory reduction is given; it turns out that hierarchically different descriptive levels are not related by a homomorphic map. A subtheory that is reducible to a more general theory can be associated with the emergence of novel concepts and is in general subject to a wider empirical clissification scheme than the reducing theory. The implications of these results for reductionism, holism, emergence, and their conceptual unification are discussed.

  1. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  2. Biological therapy of psoriasis

    Directory of Open Access Journals (Sweden)

    Sivamani Raja

    2010-01-01

    Full Text Available The treatment of psoriasis has undergone a revolution with the advent of biologic therapies, including infliximab, etanercept, adalimumab, efalizumab, and alefacept. These medications are designed to target specific components of the immune system and are a major technological advancement over traditional immunosuppressive medications. These usually being well tolerated are being found useful in a growing number of immune-mediated diseases, psoriasis being just one example. The newest biologic, ustekinumab, is directed against the p40 subunit of the IL-12 and IL-23 cytokines. It has provided a new avenue of therapy for an array of T-cell-mediated diseases. Biologics are generally safe; however, there has been concern over the risk of lymphoma with use of these agents. All anti-TNF-α agents have been associated with a variety of serious and "routine" opportunistic infections.

  3. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    materials are characterized by their hierarchical and composite design, where features with sizes ranging from nanometers to centimeters provide the basis for the functionality of the material. Understanding of biological materials is, while very interesting from a basic research perspective, also valuable...... as inspiration for the development of new materials for medical and technological applications. In order to successfully mimic biological materials we must first have a thorough understanding of their design. As such, the purpose of the characterization of biological materials can be defined as the establishment...... mineral and the organic matrix in biomineralized calcite. High resolution powder diffraction was used to study how calcite in chalk, coccoliths, and mollusk shell is affected by the co-existent organic matrix. The calcified attachment organ in the saddle oyster, Anomia simplex serves as a brilliant...

  4. Topics in mathematical biology

    CERN Document Server

    Hadeler, Karl Peter

    2017-01-01

    This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability...

  5. Biological Soft Robotics.

    Science.gov (United States)

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  6. Many Faces of Dimensional Reduction

    Science.gov (United States)

    Filippov, A. T.

    2006-06-01

    After a brief discussion of dimensional reductions leading to the 1+1 dimensional dilaton gravity theory we consider general properties of these theories and identify problems that arise in its further reductions to one dimensional theories - cosmological models, static states (in particular, black holes) and gravity-matter waves. To bypass shortcomings of the standard ('naive') reduction we propose to exploit more general ideas: 1. separating the space and time variables in generic models, 2. reductions of the moduli spaces in integrable models that may also be viewed as dimensional reductions. This allows us to clearly see a duality between static and cosmological solutions (that we call 'SC-duality') and to demonstrate a close relation of these objects to gravity-matter waves.

  7. Informing biological design by integration of systems and synthetic biology.

    Science.gov (United States)

    Smolke, Christina D; Silver, Pamela A

    2011-03-18

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Digital biology and chemistry.

    Science.gov (United States)

    Witters, Daan; Sun, Bing; Begolo, Stefano; Rodriguez-Manzano, Jesus; Robles, Whitney; Ismagilov, Rustem F

    2014-09-07

    This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and

  9. Determination of reduction yield of lithium metal reduction process

    International Nuclear Information System (INIS)

    Choi, In Kyu; Cho, Young Hwan; Kim, Taek Jin; Jee, Kwang Young

    2004-01-01

    Metal reduction of spent oxide fuel is the first step for the effective storage of spent fuel in Korea as well as transmutation purpose of long-lived radio-nuclides. During the reduction of uranium oxide by lithium metal to uranium metal, lithium oxide is stoichiometrically produced. By determining the concentration of lithium oxide in lithium chloride, we can estimate that how much uranium oxide is converted to uranium metal. Previous method to determine the lithium oxide concentration in lithium chloride is tedious and timing consuming. This paper describe the on-line monitoring method of lithium oxide during the reduction process

  10. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  11. Neutron structural biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1999-01-01

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  12. Introduction to radiation biology

    International Nuclear Information System (INIS)

    Gensicke, F.

    1977-01-01

    The textbook is written with special regard to radiation protection of man. It shall enable the reader to assess the potential radiation risks to living organisms and lead him to an insight into radiation protection measures. The following topics are covered: physical fundamentals of ionizing radiations; physical and chemical fundamentals of biological radiation effects; radiation effects on cells, organs, organ systems, and whole animal organisms focussing on mammals and man; modification of radiation effects; chemical radiation protection; therapy of radiation injuries; radionuclide kinetics; biological radiation effects in connection with radiation hazards and with the limitation of radiation exposure. It is intended for vocational education of medical personnel

  13. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  14. Systems biology in animal sciences

    NARCIS (Netherlands)

    Woelders, H.; Pas, te M.F.W.; Bannink, A.; Veerkamp, R.F.; Smits, M.A.

    2011-01-01

    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes

  15. Coordination Compounds in Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Coordination Compounds in Biology - The Chemistry of Vitamin B12 and Model Compounds. K Hussian Reddy. General Article Volume 4 Issue 6 June 1999 pp 67-77 ...

  16. Fusion of biological membranes

    Indian Academy of Sciences (India)

    small hemifusion diaphragm. To obtain a direct view of the fusion process, we have carried out extensive simulations of two bilayers, composed of block copolymers, which are immersed in a solvent which favors one of the blocks. As in the biological case, the membranes are placed under tension. This is essential as fusion ...

  17. Biological dose estimation

    African Journals Online (AJOL)

    a radiation. •. In exposure. Biological dose estimation involving low-dose. S. JANSEN, G. J. VAN HUYSSTEEN. Summary. Blood specimens were collected from 8 people 18 days after they had been accidentally exposed to a 947,2 GBq iridium-. 192 source during industrial application. The equivalent whole-body dose ...

  18. Coordination Compounds in Biology

    Indian Academy of Sciences (India)

    Coordination Compounds in Biology equatorial ligand, there are two axial ligands in most B. 12 derivatives. Derivatives of B12. The various derivatives of B. 12 result most commonly from changes in the axial ligands bound to cobalt. Often it is convenient to draw a greatly abbreviated structure for a B. 12 molecule using a ...

  19. Tree biology and dendrochemistry

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle

    1996-01-01

    Dendrochemistry, the interpretation of elemental analysis of dated tree rings, can provide a temporal record of environmental change. Using the dendrochemical record requires an understanding of tree biology. In this review, we pose four questions concerning assumptions that underlie recent dendrochemical research: 1) Does the chemical composition of the wood directly...

  20. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  1. Next-generation biology

    DEFF Research Database (Denmark)

    Rodrigues da Fonseca, Rute Andreia; Albrechtsen, Anders; Themudo, Goncalo Espregueira Cruz

    2016-01-01

    we present an overview of the current sequencing technologies and the methods used in typical high-throughput data analysis pipelines. Subsequently, we contextualize high-throughput DNA sequencing technologies within their applications in non-model organism biology. We include tips regarding managing...

  2. Radiation biology at CRNL

    International Nuclear Information System (INIS)

    Myers, D.K.

    1986-01-01

    This paper gives a broad overview of radiation biology at Chalk River Nuclear Laboratories (CRNL). The research group consists of 8 professionals and approximately 12 support staff. Objectives of the group are listed. Current research programs discussed are: 1) recombinant dna technology; 2) the hyperthermia program; 3) cancer-prone families; 4) animal studies; and 5) assessment of radiation hazards

  3. Biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  4. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Evolutionary Biology Today - What do Evolutionary Biologists do? Amitabh Joshi. Series Article Volume 8 Issue 2 February 2003 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Cryptochromes and Biological Clocks

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Cryptochromes and Biological Clocks. V R Bhagwat. General Article Volume 7 Issue 9 September 2002 pp 36-48. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/09/0036-0048. Keywords.

  6. Situeret interesse i biologi

    DEFF Research Database (Denmark)

    Dohn, Niels Bonderup

    2006-01-01

    Interesse hævdes at spille en vigtig rolle i læring. Med udgangspunkt i interesseteori og situeret læring har jeg foretaget et studium i en gymnasieklasse med biologi på højt niveau, med henblik på at identificere hvilke forhold der har betydning for hvad der fanger elevers interesse. Jeg har...

  7. Fusion of biological membranes

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of ... Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 6. Fusion of biological ... The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in ...

  8. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  9. Evolution, Entropy, & Biological Information

    Science.gov (United States)

    Peterson, Jacob

    2014-01-01

    A logical question to be expected from students: "How could life develop, that is, change, evolve from simple, primitive organisms into the complex forms existing today, while at the same time there is a generally observed decline and disorganization--the second law of thermodynamics?" The explanations in biology textbooks relied upon by…

  10. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology

    1996-12-31

    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  11. Systems biology at work

    NARCIS (Netherlands)

    Martins Dos Santos, V.A.P.; Damborsky, J.

    2010-01-01

    In his editorial overview for the 2008 Special Issue on this topic, the late Jaroslav Stark pointedly noted that systems biology is no longer a niche pursuit, but a recognized discipline in its own right “noisily” coming of age [1]. Whilst general underlying principles and basic techniques are now

  12. Diversity in Biological Molecules

    Science.gov (United States)

    Newbury, H. John

    2010-01-01

    One of the striking characteristics of fundamental biological processes, such as genetic inheritance, development and primary metabolism, is the limited amount of variation in the molecules involved. Natural selective pressures act strongly on these core processes and individuals carrying mutations and producing slightly sub-optimal versions of…

  13. Biologically inspired intelligent robots

    Science.gov (United States)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  14. Biology=Sinh Vat.

    Science.gov (United States)

    Hung, Nguyen Manh, Ed.

    This volume contains 32 biology self-study learning packets designed primarily for Indochinese students in grades 9 to 12. The materials could be used by "English as a Second Language" teachers who may/may not speak one of the Indochinese languages, or by mainstream teachers who have a number of low-English-proficiency Indochinese students in…

  15. Allometry and astro biology

    International Nuclear Information System (INIS)

    Sertorio, L.; Renda, E.

    2009-01-01

    Allometric laws expressing power and lifespan as a function of mass for both inorganic and organic systems are analyzed. This way of dealing with complexity unveils striking analogies between domains of science that we are used to consider conceptually irreducible to each other and therefore can be considered a new vision of astro biology.

  16. Molecular Biology of Medulloblastoma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-12-01

    Full Text Available Current methods of diagnosis and treatment of medulloblastoma, and the influence of new biological advances in the development of more effective and less toxic therapies are reviewed by researchers at Children’s National Medical Center, The George Washington University, Washington, DC.

  17. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Amitabh Joshi studies and teaches evolutionary genetics and population ecology at the Jawaharlal. Nehru Centre for Advanced. Scientific Research,. Bangalore. His current research interests are in life- history evolution, the evolutionary genetics of biological clocks, and small population and meta population dynamics.

  18. Antiprotons get biological

    CERN Multimedia

    2003-01-01

    After its final run in September, the first results of the Antiproton Cell Experiment (ACE) look very promising. It was the first experiment to take data on the biological effects of antiproton beams to evaluate the potential of antiprotons in radiation therapy.

  19. Bayes in biological anthropology.

    Science.gov (United States)

    Konigsberg, Lyle W; Frankenberg, Susan R

    2013-12-01

    In this article, we both contend and illustrate that biological anthropologists, particularly in the Americas, often think like Bayesians but act like frequentists when it comes to analyzing a wide variety of data. In other words, while our research goals and perspectives are rooted in probabilistic thinking and rest on prior knowledge, we often proceed to use statistical hypothesis tests and confidence interval methods unrelated (or tenuously related) to the research questions of interest. We advocate for applying Bayesian analyses to a number of different bioanthropological questions, especially since many of the programming and computational challenges to doing so have been overcome in the past two decades. To facilitate such applications, this article explains Bayesian principles and concepts, and provides concrete examples of Bayesian computer simulations and statistics that address questions relevant to biological anthropology, focusing particularly on bioarchaeology and forensic anthropology. It also simultaneously reviews the use of Bayesian methods and inference within the discipline to date. This article is intended to act as primer to Bayesian methods and inference in biological anthropology, explaining the relationships of various methods to likelihoods or probabilities and to classical statistical models. Our contention is not that traditional frequentist statistics should be rejected outright, but that there are many situations where biological anthropology is better served by taking a Bayesian approach. To this end it is hoped that the examples provided in this article will assist researchers in choosing from among the broad array of statistical methods currently available. Copyright © 2013 Wiley Periodicals, Inc.

  20. Entropy in Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy in Biology. Jayant B Udgaonkar. General Article Volume 6 Issue 9 September 2001 pp 61-66. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/09/0061-0066. Author Affiliations.

  1. Biological science in conservation

    Science.gov (United States)

    David M. Johns

    2000-01-01

    Large-scale wildlands reserve systems offer one of the best hopes for slowing, if not reversing, the loss of biodiversity and wilderness. Establishing such reserves requires both sound biology and effective advocacy. Attempts by The Wildlands Project and its cooperators to meld science and advocacy in the service of conservation is working, but is not without some...

  2. Perchlorate Reduction by Yeast for Mars Exploration

    Science.gov (United States)

    Sharma, Alaisha

    2015-01-01

    Martian soil contains high levels (0.6 percentage by mass) of calcium perchlorate (Ca(ClO4)2), which readily dissociates into calcium and the perchlorate ion (ClO4-) in water. Even in trace amounts, perchlorates are toxic to humans and have been implicated in thyroid dysfunction. Devising methods to lessen perchlorate contamination is crucial to minimizing the health risks associated with human exploration and colonization of Mars. We designed a perchlorate reduction pathway, which sequentially reduces perchlorate to chloride (Cl-) and oxygen (O2), for implementation in the yeast Saccharomyces cerevisiae. Using genes obtained from perchlorate reducing bacteria Azospira oryzae and Dechloromonas aromatica, we plan to assemble this pathway directly within S. cerevisiae through recombinational cloning. A perchlorate reduction pathway would enable S. cerevisiae to lower perchlorate levels and produce oxygen, which may be harvested or used directly by S. cerevisiae for aerobic growth and compound synthesis. Moreover, using perchlorate as an external electron acceptor could improve the efficiency of redox-imbalanced production pathways in yeast. Although several perchlorate reducing bacteria have been identified and utilized in water treatment systems on Earth, the widespread use of S. cerevisiae as a synthetic biology platform justifies the development of a perchlorate reducing strain for implementation on Mars.

  3. Cost reduction through system integration

    International Nuclear Information System (INIS)

    Helsing, P.

    1994-01-01

    In resent years cost reduction has been a key issue in the petroleum industry. Several findings are not economically attractive at the current cost level, and for this and other reasons some of the major oil companies require the suppliers to have implemented a cost reduction programme to prequalify for projects. The present paper addresses cost reduction through system design and integration in both product development and working methods. This is to be obtained by the combination of contracts by reducing unnecessary coordination and allow re-use of proven interface designs, improve subsystem integration by ''top down'' system design, and improve communication and exchange of experience. 3 figs

  4. Drugs, prisons, and harm reduction.

    Science.gov (United States)

    Hughes, Rhidian

    2003-01-01

    The use of drugs in society raises important considerations for health and social policy. Critical health and social care issues arise when drugs are used inside prisons. This paper argues that there is an urgent need for prison drug policies to adopt the principles of harm reduction. However, current policy orthodoxy emphasises the control of drugs and punishment for drug taking. Key components of harm reduction are operationalised in this article by exploring the potential for harm reduction in prison within the context of English drug policy. Whilst the focus is on English policy debates, the discussion will have wider international resonance. Copyright 2003 The Haworth Press, Inc.

  5. Biological trade and markets.

    Science.gov (United States)

    Hammerstein, Peter; Noë, Ronald

    2016-02-05

    Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other 'commodities'. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten 'terms of contract' that 'self-stabilize' trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models-often called 'Walrasian' markets-are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying 'principal-agent' problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists studying cooperation but need

  6. CASPIAN BIOLOGICAL RESOURCES

    Directory of Open Access Journals (Sweden)

    M. K. Guseynov

    2015-01-01

    Full Text Available Aim. We present the data on the biological resources of the Caspian Sea, based on the analysis of numerous scientific sources published between years of 1965 and 2011. Due to changes in various biotic and abiotic factors we find it important to discuss the state of the major groups of aquatic biocenosis including algae, crayfish, shrimp, pontogammarus, fish and Caspian seal. Methods. Long-term data has been analyzed on the biology and ecology of the main commercial fish stocks and their projected catches for qualitative and quantitative composition, abundance and biomass of aquatic organisms that make up the food base for fish. Results and discussion. It has been found that the widespread commercial invertebrates in the Caspian Sea are still poorly studied; their stocks are not identified and not used commercially. There is a great concern about the current state of the main commercial fish stocks of the Caspian Sea. A critical challenge is to preserve the pool of biological resources and the restoration of commercial stocks of Caspian fish. For more information about the state of the marine ecosystem in modern conditions, expedition on Caspian Sea should be carried out to study the hydrochemical regime and fish stocks, assessment of sturgeon stocks, as well as the need to conduct sonar survey for sprat stocks. Conclusions. The main condition for preserving the ecosystem of the Caspian Sea and its unique biological resources is to develop and apply environmentally-friendly methods of oil, issuing concerted common fisheries rules in various regions of theCaspian Sea, strengthening of control for sturgeon by all Caspian littoral states. The basic principle of the protection of biological resources is their rational use, based on the preservation of optimal conditions of their natural or artificial reproduction. 

  7. Integrating Concepts in Biology

    Science.gov (United States)

    Luckie, Douglas B; Hoskinson, Anne-Marie; Griffin, Caleigh E; Hess, Andrea L; Price, Katrina J; Tawa, Alex; Thacker, Samantha M

    2017-01-01

    The purpose of this study was to examine the educational impact of an intervention, the inquiry-focused textbook Integrating Concepts in Biology ( ICB ), when used in a yearlong introductory biology course sequence. Student learning was evaluated using three published instruments: 1) The Biology Concept Inventory probed depth of student mastery of fundamental concepts in organismal and cellular topics when confronting misconceptions as distractors. ICB students had higher gains in all six topic categories (+43% vs. peers overall, p concepts, like experts. The frequency with which ICB students connected deep-concept pairs, or triplets, was similar to peers; but deep understanding of structure/function was much higher (for pairs: 77% vs. 25%, p < 0.01). 3) A content-focused Medical College Admission Test (MCAT) posttest compared ICB student content knowledge with that of peers from 15 prior years. Historically, MCAT performance for each semester ranged from 53% to 64%; the ICB cohort scored 62%, in the top quintile. Longitudinal tracking in five upper-level science courses the following year found ICB students outperformed peers in physiology (85% vs. 80%, p < 0.01). © 2017 D. B. Luckie et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Biological Carbon Sequestration and Carbon Trading Re-Visited

    NARCIS (Netherlands)

    Kooten, van G.C.

    2009-01-01

    Biological activities that sequester carbon create CO2 offset credits that could obviate the need for reductions in fossil fuel use. Credits are earned by storing carbon in terrestrial ecosystems and wood products, although CO2 emissions are also mitigated by delaying deforestation, which accounts

  9. Acute IPPS - Readmissions Reduction Program

    Data.gov (United States)

    U.S. Department of Health & Human Services — Section 3025 of the Affordable Care Act added section 1886(q) to the Social Security Act establishing the Hospital Readmissions Reduction Program, which requires CMS...

  10. Logistics Reduction and Repurposing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project will enable a mission-independent cradle-to-grave-to-cradle...

  11. Fermion masses from dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.)

  12. Fermion masses from dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1990-10-11

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.).

  13. Dimensionality Reduction with Adaptive Approximation

    OpenAIRE

    Kokiopoulou, Effrosyni; Frossard, Pascal

    2007-01-01

    In this paper, we propose the use of (adaptive) nonlinear approximation for dimensionality reduction. In particular, we propose a dimensionality reduction method for learning a parts based representation of signals using redundant dictionaries. A redundant dictionary is an overcomplete set of basis vectors that spans the signal space. The signals are jointly represented in a common subspace extracted from the redundant dictionary, using greedy pursuit algorithms for simultaneous sparse approx...

  14. Dimensionality reduction in complex models

    OpenAIRE

    Boukouvalas, Alexis; Maniyar, Dharmesh M.; Cornford, Dan

    2007-01-01

    As a part of the Managing Uncertainty in Complex Models (MUCM) project, research at Aston University will develop methods for dimensionality reduction of the input and/or output spaces of models, as seen within the emulator framework. Towards this end this report describes a framework for generating toy datasets, whose underlying structure is understood, to facilitate early investigations of dimensionality reduction methods and to gain a deeper understanding of the algorithms employed, both i...

  15. Reduction of Dimensionality for Classification

    OpenAIRE

    Cuevas-Covarrubias, Carlos; Riccomagno, Eva

    2017-01-01

    We present an algorithm for the reduction of dimensionality useful in statistical classification problems where observations from two multivariate normal distributions are discriminated. It is based on Principal Components Analysis and consists of a simultaneous diagonalization of two covariance matrices. The criterion for reduction of dimensionality is given by the contribution of each principal component to the area under the ROC curve of a discriminant function. Linear and quadratic scores...

  16. 2dfdr: Data reduction software

    Science.gov (United States)

    AAO software Team

    2015-05-01

    2dfdr is an automatic data reduction pipeline dedicated to reducing multi-fibre spectroscopy data, with current implementations for AAOmega (fed by the 2dF, KOALA-IFU, SAMI Multi-IFU or older SPIRAL front-ends), HERMES, 2dF (spectrograph), 6dF, and FMOS. A graphical user interface is provided to control data reduction and allow inspection of the reduced spectra.

  17. Chemical model reduction under uncertainty

    KAUST Repository

    Najm, Habib

    2016-01-05

    We outline a strategy for chemical kinetic model reduction under uncertainty. We present highlights of our existing deterministic model reduction strategy, and describe the extension of the formulation to include parametric uncertainty in the detailed mechanism. We discuss the utility of this construction, as applied to hydrocarbon fuel-air kinetics, and the associated use of uncertainty-aware measures of error between predictions from detailed and simplified models.

  18. Speckle Reduction in Projection Systems

    OpenAIRE

    Riechert, Falko

    2009-01-01

    A speckle pattern is a quasi-random interference pattern which typically emerges when lasers are used as illumination sources in projection applications and which severely degrades the image quality. Since in most projection applications high speckle disturbance is not tolerable, speckle reduction is a major issue. This work gives an introduction into the theoretical description of speckle and investigates different practical methods for speckle reduction in laser projection systems.

  19. INEL waste reduction: summary paper

    International Nuclear Information System (INIS)

    Rhoades, W.A.

    1987-01-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE) facility located in southeastern Idaho. Located at the INEL are a Waste Experimental Reduction Facility (WERF) which processes low level radioactive waste (LLW) materials and a Radioactive Waste Management Complex (RWMC) which provides for disposal of radioactive waste materials. There are currently 9 active facilities (waste generators) at the INEL which produce an average total volume of about 5000 cubic meters of solid LLW annually. This boxed or bulk waste is ultimately disposed of at the RWMC Subsurface Disposal Area (SDA). The SDA is currently the only active LLW disposal site at the INEL, and the prospects for opening another shallow land burial disposal facility are uncertain. Therefore, it has become imperative that EG and G Idaho Waste Management Department make every reasonable effort to extend the disposal life of the SDA. Among Waste Management Department's principal efforts to extend the SDA disposal life are operation of the Waste Experimental Reduction Facility (WERF) and administration of the INEL Waste Reduction Program. The INEL Waste Reduction Program is charged with providing assistance to all INEL facilities in reducing LLW generation rates to the lowest practical levels while at the same time encouraging optimum utilization of the volume reduction capabilities of WERF. Both waste volume and waste generation reductions are discussed

  20. Biological Threats Detection Technologies

    International Nuclear Information System (INIS)

    Bartoszcze, M.

    2007-01-01

    Among many decisive factors, which can have the influence on the possibility of decreases the results of use biological agents should be mentioned obligatory: rapid detection and identification of biological factor used, the proper preventive treatment and the medical management. The aims of identification: to identify the factor used, to estimate the area of contamination, to evaluate the possible countermeasure efforts (antibiotics, disinfectants) and to assess the effectiveness of the decontamination efforts (decontamination of the persons, equipment, buildings, environment etc.). The objects of identification are: bacteria and bacteria's spores, viruses, toxins and genetically modified factors. The present technologies are divided into: based on PCR techniques (ABI PRISM, APSIS, BIOVERIS, RAPID), immuno (BADD, RAMP, SMART) PCR and immuno techniques (APDS, LUMINEX) and others (BDS2, LUNASCAN, MALDI). The selected technologies assigned to field conditions, mobile and stationary laboratories will be presented.(author)