Sample records for biological recognition processes

  1. Image processing and recognition for biological images. (United States)

    Uchida, Seiichi


    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  2. Comparative Study on Interaction of Form and Motion Processing Streams by Applying Two Different Classifiers in Mechanism for Recognition of Biological Movement (United States)


    Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility. PMID:25276860

  3. Comparative Study on Interaction of Form and Motion Processing Streams by Applying Two Different Classifiers in Mechanism for Recognition of Biological Movement

    Directory of Open Access Journals (Sweden)

    Bardia Yousefi


    Full Text Available Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility.

  4. Computer image processing and recognition (United States)

    Hall, E. L.


    A systematic introduction to the concepts and techniques of computer image processing and recognition is presented. Consideration is given to such topics as image formation and perception; computer representation of images; image enhancement and restoration; reconstruction from projections; digital television, encoding, and data compression; scene understanding; scene matching and recognition; and processing techniques for linear systems.

  5. Phosphate Recognition in Structural Biology

    NARCIS (Netherlands)

    Hirsch, Anna K.H.; Fischer, Felix R.; Diederich, François


    Drug-discovery research in the past decade has seen an increased selection of targets with phosphate recognition sites, such as protein kinases and phosphatases, in the past decade. This review attempts, with the help of database-mining tools, to give an overview of the most important principles in

  6. Biologically inspired emotion recognition from speech

    Directory of Open Access Journals (Sweden)

    Buscicchio Cosimo


    Full Text Available Abstract Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  7. Fingerprint recognition using image processing (United States)

    Dholay, Surekha; Mishra, Akassh A.


    Finger Print Recognition is concerned with the difficult task of matching the images of finger print of a person with the finger print present in the database efficiently. Finger print Recognition is used in forensic science which helps in finding the criminals and also used in authentication of a particular person. Since, Finger print is the only thing which is unique among the people and changes from person to person. The present paper describes finger print recognition methods using various edge detection techniques and also how to detect correct finger print using a camera images. The present paper describes the method that does not require a special device but a simple camera can be used for its processes. Hence, the describe technique can also be using in a simple camera mobile phone. The various factors affecting the process will be poor illumination, noise disturbance, viewpoint-dependence, Climate factors, and Imaging conditions. The described factor has to be considered so we have to perform various image enhancement techniques so as to increase the quality and remove noise disturbance of image. The present paper describe the technique of using contour tracking on the finger print image then using edge detection on the contour and after that matching the edges inside the contour.

  8. Speech recognition employing biologically plausible receptive fields

    DEFF Research Database (Denmark)

    Fereczkowski, Michal; Bothe, Hans-Heinrich


    The main idea of the project is to build a widely speaker-independent, biologically motivated automatic speech recognition (ASR) system. The two main differences between our approach and current state-of-the-art ASRs are that i) the features used here are based on the responses of neuronlike...... Model-based adaptation procedures. Two databases are used, TI46 for discrete speech a subset of the TIMIT database collected from speakers belonging to the New York dialect region. Each of the selection of 10 sentences is uttered once by each of 35 speakers. The major differences between the two data...... sets initiate the development and comparison of two distinct ASRs within the project, which will be presented in the following. Employing a reduced sampling frequency and bandwidth of the signals, the ASR algorithm reaches and goes beyond recognition results that are known from humans....

  9. Pattern recognition in speech and language processing

    CERN Document Server

    Chou, Wu


    Minimum Classification Error (MSE) Approach in Pattern Recognition, Wu ChouMinimum Bayes-Risk Methods in Automatic Speech Recognition, Vaibhava Goel and William ByrneA Decision Theoretic Formulation for Adaptive and Robust Automatic Speech Recognition, Qiang HuoSpeech Pattern Recognition Using Neural Networks, Shigeru KatagiriLarge Vocabulary Speech Recognition Based on Statistical Methods, Jean-Luc GauvainToward Spontaneous Speech Recognition and Understanding, Sadaoki FuruiSpeaker Authentication, Qi Li and Biing-Hwang JuangHMMs for Language Processing Problems, Ri

  10. Branching processes in biology

    CERN Document Server

    Kimmel, Marek


    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  11. A robust and biologically plausible spike pattern recognition network. (United States)

    Larson, Eric; Perrone, Ben P; Sen, Kamal; Billimoria, Cyrus P


    The neural mechanisms that enable recognition of spiking patterns in the brain are currently unknown. This is especially relevant in sensory systems, in which the brain has to detect such patterns and recognize relevant stimuli by processing peripheral inputs; in particular, it is unclear how sensory systems can recognize time-varying stimuli by processing spiking activity. Because auditory stimuli are represented by time-varying fluctuations in frequency content, it is useful to consider how such stimuli can be recognized by neural processing. Previous models for sound recognition have used preprocessed or low-level auditory signals as input, but complex natural sounds such as speech are thought to be processed in auditory cortex, and brain regions involved in object recognition in general must deal with the natural variability present in spike trains. Thus, we used neural recordings to investigate how a spike pattern recognition system could deal with the intrinsic variability and diverse response properties of cortical spike trains. We propose a biologically plausible computational spike pattern recognition model that uses an excitatory chain of neurons to spatially preserve the temporal representation of the spike pattern. Using a single neural recording as input, the model can be trained using a spike-timing-dependent plasticity-based learning rule to recognize neural responses to 20 different bird songs with >98% accuracy and can be stimulated to evoke reverse spike pattern playback. Although we test spike train recognition performance in an auditory task, this model can be applied to recognize sufficiently reliable spike patterns from any neuronal system.

  12. Pattern recognition software and techniques for biological image analysis.

    Directory of Open Access Journals (Sweden)

    Lior Shamir


    Full Text Available The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays.

  13. Biological process linkage networks.

    Directory of Open Access Journals (Sweden)

    Dikla Dotan-Cohen

    Full Text Available The traditional approach to studying complex biological networks is based on the identification of interactions between internal components of signaling or metabolic pathways. By comparison, little is known about interactions between higher order biological systems, such as biological pathways and processes. We propose a methodology for gleaning patterns of interactions between biological processes by analyzing protein-protein interactions, transcriptional co-expression and genetic interactions. At the heart of the methodology are the concept of Linked Processes and the resultant network of biological processes, the Process Linkage Network (PLN.We construct, catalogue, and analyze different types of PLNs derived from different data sources and different species. When applied to the Gene Ontology, many of the resulting links connect processes that are distant from each other in the hierarchy, even though the connection makes eminent sense biologically. Some others, however, carry an element of surprise and may reflect mechanisms that are unique to the organism under investigation. In this aspect our method complements the link structure between processes inherent in the Gene Ontology, which by its very nature is species-independent. As a practical application of the linkage of processes we demonstrate that it can be effectively used in protein function prediction, having the power to increase both the coverage and the accuracy of predictions, when carefully integrated into prediction methods.Our approach constitutes a promising new direction towards understanding the higher levels of organization of the cell as a system which should help current efforts to re-engineer ontologies and improve our ability to predict which proteins are involved in specific biological processes.

  14. Physiological arousal in processing recognition information

    Directory of Open Access Journals (Sweden)

    Guy Hochman


    Full Text Available The recognition heuristic (RH; Goldstein and Gigerenzer, 2002 suggests that, when applicable, probabilistic inferences are based on a noncompensatory examination of whether an object is recognized or not. The overall findings on the processes that underlie this fast and frugal heuristic are somewhat mixed, and many studies have expressed the need for considering a more compensatory integration of recognition information. Regardless of the mechanism involved, it is clear that recognition has a strong influence on choices, and this finding might be explained by the fact that recognition cues arouse affect and thus receive more attention than cognitive cues. To test this assumption, we investigated whether recognition results in a direct affective signal by measuring physiological arousal (i.e., peripheral arterial tone in the established city-size task. We found that recognition of cities does not directly result in increased physiological arousal. Moreover, the results show that physiological arousal increased with increasing inconsistency between recognition information and additional cue information. These findings support predictions derived by a compensatory Parallel Constraint Satisfaction model rather than predictions of noncompensatory models. Additional results concerning confidence ratings, response times, and choice proportions further demonstrated that recognition information and other cognitive cues are integrated in a compensatory manner.

  15. Advances in image processing and pattern recognition

    International Nuclear Information System (INIS)

    Cappellini, V.


    The conference papers reported provide an authorative and permanent record of the contributions. Some papers are more theoretical or of review nature, while others contain new implementations and applications. They are conveniently grouped into the following 7 fields (after a general overview): Acquisition and Presentation of 2-D and 3-D Images; Static and Dynamic Image Processing; Determination of Object's Position and Orientation; Objects and Characters Recognition; Semantic Models and Image Understanding; Robotics and Computer Vision in Manufacturing; Specialized Processing Techniques and Structures. In particular, new digital image processing and recognition methods, implementation architectures and special advanced applications (industrial automation, robotics, remote sensing, biomedicine, etc.) are presented. (Auth.)

  16. Biological and chemical terrorism: recognition and management. (United States)

    Noeller, T P


    Primary care physicians will be on the front line in detecting and managing any future terrorist attacks that use chemical or biological agents. This article reviews how to recognize and treat disease caused by exposure to nerve agents, blistering agents, hydrogen cyanide, ricin, anthrax, smallpox, plague, and botulinum toxin.

  17. Biological object recognition in μ-radiography images (United States)

    Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.


    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.

  18. Biological object recognition in μ-radiography images

    International Nuclear Information System (INIS)

    Prochazka, A.; Dammer, J.; Benes, J.; Zeman, J.; Weyda, F.; Sopko, V.; Jandejsek, I.


    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest

  19. Detection, information fusion, and temporal processing for intelligence in recognition

    Energy Technology Data Exchange (ETDEWEB)

    Casasent, D. [Carnegie Mellon Univ., Pittsburgh, PA (United States)


    The use of intelligence in vision recognition uses many different techniques or tools. This presentation discusses several of these techniques for recognition. The recognition process is generally separated into several steps or stages when implemented in hardware, e.g. detection, segmentation and enhancement, and recognition. Several new distortion-invariant filters, biologically-inspired Gabor wavelet filter techniques, and morphological operations that have been found very useful for detection and clutter rejection are discussed. These are all shift-invariant operations that allow multiple object regions of interest in a scene to be located in parallel. We also discuss new algorithm fusion concepts by which the results from different detection algorithms are combined to reduce detection false alarms; these fusion methods utilize hierarchical processing and fuzzy logic concepts. We have found this to be most necessary, since no single detection algorithm is best for all cases. For the final recognition stage, we describe a new method of representing all distorted versions of different classes of objects and determining the object class and pose that most closely matches that of a given input. Besides being efficient in terms of storage and on-line computations required, it overcomes many of the problems that other classifiers have in terms of the required training set size, poor generalization with many hidden layer neurons, etc. It is also attractive in its ability to reject input regions as clutter (non-objects) and to learn new object descriptions. We also discuss its use in processing a temporal sequence of input images of the contents of each local region of interest. We note how this leads to robust results in which estimation efforts in individual frames can be overcome. This seems very practical, since in many scenarios a decision need not be made after only one frame of data, since subsequent frames of data enter immediately in sequence.

  20. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner


    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  1. Biological agent detection and identification using pattern recognition (United States)

    Braun, Jerome J.; Glina, Yan; Judson, Nicholas; Transue, Kevin D.


    This paper discusses a novel approach for the automatic identification of biological agents. The essence of the approach is a combination of gene expression, microarray-based sensing, information fusion, machine learning and pattern recognition. Integration of these elements is a distinguishing aspect of the approach, leading to a number of significant advantages. Amongst them are the applicability to various agent types including bacteria, viruses, toxins, and other, ability to operate without the knowledge of a pathogen's genome sequence and without the need for bioagent-speciific materials or reagents, and a high level of extensibility. Furthermore, the approach allows detection of uncatalogued agents, including emerging pathogens. The approach offers a promising avenue for automatic identification of biological agents for applications such as medical diagnostics, bioforensics, and biodefense.

  2. A Biological-Plausable Architecture for Shape Recognition (United States)


    found in literature. The state of the art of these methods is analyzed further in detail, and some experiments are described in section 5.1 4A similarity...architecture for shape processing developed at the Computer Science and Artificial Intelligence Laboratory, MIT and the “VisNet,” proposed by Rolls and Deco a neural network architecture for shape recognition developed by Rolls and Deco and described in their book [28]. The general philosophy involves

  3. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C


    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  4. Recognition of landforms from digital elevation models and satellite imagery with expert systems, pattern recognition and image processing techniques


    Miliaresis, George


    Recognition of landforms from digital elevation models and satellite imagery with expert systems, pattern recognition and image processing techniques. PhD Thesis, Remote Sensing & Terrain Pattern Recognition),National Technical University of Athens, Dpt. of Topography (2000).

  5. Post processing for offline Chinese handwritten character string recognition (United States)

    Wang, YanWei; Ding, XiaoQing; Liu, ChangSong


    Offline Chinese handwritten character string recognition is one of the most important research fields in pattern recognition. Due to the free writing style, large variability in character shapes and different geometric characteristics, Chinese handwritten character string recognition is a challenging problem to deal with. However, among the current methods over-segmentation and merging method which integrates geometric information, character recognition information and contextual information, shows a promising result. It is found experimentally that a large part of errors are segmentation error and mainly occur around non-Chinese characters. In a Chinese character string, there are not only wide characters namely Chinese characters, but also narrow characters like digits and letters of the alphabet. The segmentation error is mainly caused by uniform geometric model imposed on all segmented candidate characters. To solve this problem, post processing is employed to improve recognition accuracy of narrow characters. On one hand, multi-geometric models are established for wide characters and narrow characters respectively. Under multi-geometric models narrow characters are not prone to be merged. On the other hand, top rank recognition results of candidate paths are integrated to boost final recognition of narrow characters. The post processing method is investigated on two datasets, in total 1405 handwritten address strings. The wide character recognition accuracy has been improved lightly and narrow character recognition accuracy has been increased up by 10.41% and 10.03% respectively. It indicates that the post processing method is effective to improve recognition accuracy of narrow characters.

  6. Development of biological movement recognition by interaction between active basis model and fuzzy optical flow division. (United States)

    Yousefi, Bardia; Loo, Chu Kiong


    Following the study on computational neuroscience through functional magnetic resonance imaging claimed that human action recognition in the brain of mammalian pursues two separated streams, that is, dorsal and ventral streams. It follows up by two pathways in the bioinspired model, which are specialized for motion and form information analysis (Giese and Poggio 2003). Active basis model is used to form information which is different from orientations and scales of Gabor wavelets to form a dictionary regarding object recognition (human). Also biologically movement optic-flow patterns utilized. As motion information guides share sketch algorithm in form pathway for adjustment plus it helps to prevent wrong recognition. A synergetic neural network is utilized to generate prototype templates, representing general characteristic form of every class. Having predefined templates, classifying performs based on multitemplate matching. As every human action has one action prototype, there are some overlapping and consistency among these templates. Using fuzzy optical flow division scoring can prevent motivation for misrecognition. We successfully apply proposed model on the human action video obtained from KTH human action database. Proposed approach follows the interaction between dorsal and ventral processing streams in the original model of the biological movement recognition. The attained results indicate promising outcome and improvement in robustness using proposed approach.

  7. How can selection of biologically inspired features improve the performance of a robust object recognition model?

    Directory of Open Access Journals (Sweden)

    Masoud Ghodrati

    Full Text Available Humans can effectively and swiftly recognize objects in complex natural scenes. This outstanding ability has motivated many computational object recognition models. Most of these models try to emulate the behavior of this remarkable system. The human visual system hierarchically recognizes objects in several processing stages. Along these stages a set of features with increasing complexity is extracted by different parts of visual system. Elementary features like bars and edges are processed in earlier levels of visual pathway and as far as one goes upper in this pathway more complex features will be spotted. It is an important interrogation in the field of visual processing to see which features of an object are selected and represented by the visual cortex. To address this issue, we extended a hierarchical model, which is motivated by biology, for different object recognition tasks. In this model, a set of object parts, named patches, extracted in the intermediate stages. These object parts are used for training procedure in the model and have an important role in object recognition. These patches are selected indiscriminately from different positions of an image and this can lead to the extraction of non-discriminating patches which eventually may reduce the performance. In the proposed model we used an evolutionary algorithm approach to select a set of informative patches. Our reported results indicate that these patches are more informative than usual random patches. We demonstrate the strength of the proposed model on a range of object recognition tasks. The proposed model outperforms the original model in diverse object recognition tasks. It can be seen from the experiments that selected features are generally particular parts of target images. Our results suggest that selected features which are parts of target objects provide an efficient set for robust object recognition.

  8. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    CERN Document Server

    Pisharady, Pramod Kumar; Poh, Loh Ai


    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  9. Applications of evolutionary computation in image processing and pattern recognition

    CERN Document Server

    Cuevas, Erik; Perez-Cisneros, Marco


    This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an...

  10. Indian Issues: More Consistent and Timely Tribal Recognition Process Needed

    National Research Council Canada - National Science Library

    Hill, Barry


    ...) regulatory process for federally recognizing Indian tribes. Federal recognition of an Indian tribe can have a tremendous effect on the tribe, surrounding communities, and the nation as a whole...

  11. The Constitutionality of a Biological Father's Recognition as a Parent

    Directory of Open Access Journals (Sweden)

    A Louw


    Full Text Available Despite the increased recognition afforded to biological fathers as legal parents, the Children's Act 38 of 2005 still does not treat fathers on the same basis as mothers as far as the automatic allocation of parental responsibilities and rights is concerned. This article investigates the constitutionality of the differential treatment of fathers in this respect, given South Africa's international obligations, especially in terms of the United Nations Convention on the Rights of the Child, to ensure that both parents have common responsibilities for the upbringing of their child. After a brief consideration of the constitutionality of the mother's position as parent, the constitutionality of the father's position is investigated, firstly, with reference to Section 9 of the Constitution and the question of whether the differentiation between mothers and fathers as far as the allocation of parental responsibilities and rights is concerned, amounts to unfair discrimination. The inquiry also considers whether the differentiation between committed fathers (that is, those who have shown the necessary commitment in terms of Sections 20 and 21 of the Children's Act to acquire parental responsibilities and rights and uncommitted fathers may amount to discrimination on an unspecified ground. Since the limitation of the father's rights to equality may be justifiable, the outcomes of both inquiries are shown to be inconclusive. Finally, the legal position of the father is considered in relation to the child's constitutional rights – the rights to parental care and the right of the child to the paramountcy of its interests embodied in Section 28 of the Constitution. While there appears to be some justification for the limitation of the child's right to committed paternal care, it is submitted that an equalisation of the legal position of mothers and fathers as far as the automatic acquisition of parental responsibilities and rights is concerned, is not

  12. Technical Reviews on Pattern Recognition in Process Analytical Technology

    International Nuclear Information System (INIS)

    Kim, Jong Yun; Choi, Yong Suk; Ji, Sun Kyung; Park, Yong Joon; Song, Kyu Seok; Jung, Sung Hee


    Pattern recognition is one of the first and the most widely adopted chemometric tools among many active research area in chemometrics such as design of experiment(DoE), pattern recognition, multivariate calibration, signal processing. Pattern recognition has been used to identify the origin of a wine and the time of year that the vine was grown by using chromatography, cause of fire by using GC/MS chromatography, detection of explosives and land mines, cargo and luggage inspection in seaports and airports by using a prompt gamma-ray activation analysis, and source apportionment of environmental pollutant by using a stable isotope ratio mass spectrometry. Recently, pattern recognition has been taken into account as a major chemometric tool in the so-called 'process analytical technology (PAT)', which is a newly-developed concept in the area of process analytics proposed by US Food and Drug Administration (US FDA). For instance, identification of raw material by using a pattern recognition analysis plays an important role for the effective quality control of the production process. Recently, pattern recognition technique has been used to identify the spatial distribution and uniformity of the active ingredients present in the product such as tablet by transforming the chemical data into the visual information


    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko


    Full Text Available Purpose: The represented research results are aimed to improve theoretical basics of computer vision and artificial intelligence of dynamical system. Proposed approach of object detection and recognition is based on probabilistic fundamentals to ensure the required level of correct object recognition. Methods: Presented approach is grounded at probabilistic methods, statistical methods of probability density estimation and computer-based simulation at verification stage of development. Results: Proposed approach for object detection and recognition for video stream data processing has shown several advantages in comparison with existing methods due to its simple realization and small time of data processing. Presented results of experimental verification look plausible for object detection and recognition in video stream. Discussion: The approach can be implemented in dynamical system within changeable environment such as remotely piloted aircraft systems and can be a part of artificial intelligence in navigation and control systems.

  14. Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events (United States)

    Javidi, Bahram; Yeom, Seokwon; Moon, Inkyu; Daneshpanah, Mehdi


    In this paper, we present an overview of three-dimensional (3D) optical imaging techniques for real-time automated sensing, visualization, and recognition of dynamic biological microorganisms. Real time sensing and 3D reconstruction of the dynamic biological microscopic objects can be performed by single-exposure on-line (SEOL) digital holographic microscopy. A coherent 3D microscope-based interferometer is constructed to record digital holograms of dynamic micro biological events. Complex amplitude 3D images of the biological microorganisms are computationally reconstructed at different depths by digital signal processing. Bayesian segmentation algorithms are applied to identify regions of interest for further processing. A number of pattern recognition approaches are addressed to identify and recognize the microorganisms. One uses 3D morphology of the microorganisms by analyzing 3D geometrical shapes which is composed of magnitude and phase. Segmentation, feature extraction, graph matching, feature selection, and training and decision rules are used to recognize the biological microorganisms. In a different approach, 3D technique is used that are tolerant to the varying shapes of the non-rigid biological microorganisms. After segmentation, a number of sampling patches are arbitrarily extracted from the complex amplitudes of the reconstructed 3D biological microorganism. These patches are processed using a number of cost functions and statistical inference theory for the equality of means and equality of variances between the sampling segments. Also, we discuss the possibility of employing computational integral imaging for 3D sensing, visualization, and recognition of biological microorganisms illuminated under incoherent light. Experimental results with several biological microorganisms are presented to illustrate detection, segmentation, and identification of micro biological events.


    NARCIS (Netherlands)

    Iwayama, N.; Ishigaki, K.


    We propose a new approach to context processing in on-line handwritten character recognition (OLCR). Based on the observation that writers often repeat the strings that they input, we take the approach of adaptive context processing. (ACP). In ACP, the strings input by a writer are automatically

  16. Featural processing in recognition of emotional facial expressions. (United States)

    Beaudry, Olivia; Roy-Charland, Annie; Perron, Melanie; Cormier, Isabelle; Tapp, Roxane


    The present study aimed to clarify the role played by the eye/brow and mouth areas in the recognition of the six basic emotions. In Experiment 1, accuracy was examined while participants viewed partial and full facial expressions; in Experiment 2, participants viewed full facial expressions while their eye movements were recorded. Recognition rates were consistent with previous research: happiness was highest and fear was lowest. The mouth and eye/brow areas were not equally important for the recognition of all emotions. More precisely, while the mouth was revealed to be important in the recognition of happiness and the eye/brow area of sadness, results are not as consistent for the other emotions. In Experiment 2, consistent with previous studies, the eyes/brows were fixated for longer periods than the mouth for all emotions. Again, variations occurred as a function of the emotions, the mouth having an important role in happiness and the eyes/brows in sadness. The general pattern of results for the other four emotions was inconsistent between the experiments as well as across different measures. The complexity of the results suggests that the recognition process of emotional facial expressions cannot be reduced to a simple feature processing or holistic processing for all emotions.

  17. A literature-based similarity metric for biological processes

    Directory of Open Access Journals (Sweden)

    Chagoyen Monica


    Full Text Available Abstract Background Recent analyses in systems biology pursue the discovery of functional modules within the cell. Recognition of such modules requires the integrative analysis of genome-wide experimental data together with available functional schemes. In this line, methods to bridge the gap between the abstract definitions of cellular processes in current schemes and the interlinked nature of biological networks are required. Results This work explores the use of the scientific literature to establish potential relationships among cellular processes. To this end we haveused a document based similarity method to compute pair-wise similarities of the biological processes described in the Gene Ontology (GO. The method has been applied to the biological processes annotated for the Saccharomyces cerevisiae genome. We compared our results with similarities obtained with two ontology-based metrics, as well as with gene product annotation relationships. We show that the literature-based metric conserves most direct ontological relationships, while reveals biologically sounded similarities that are not obtained using ontology-based metrics and/or genome annotation. Conclusion The scientific literature is a valuable source of information from which to compute similarities among biological processes. The associations discovered by literature analysis are a valuable complement to those encoded in existing functional schemes, and those that arise by genome annotation. These similarities can be used to conveniently map the interlinked structure of cellular processes in a particular organism.

  18. Neural Mechanisms and Information Processing in Recognition Systems

    Directory of Open Access Journals (Sweden)

    Mamiko Ozaki


    Full Text Available Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.

  19. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision. (United States)

    Li, Heng; Su, Xiaofan; Wang, Jing; Kan, Han; Han, Tingting; Zeng, Yajie; Chai, Xinyu


    Current retinal prostheses can only generate low-resolution visual percepts constituted of limited phosphenes which are elicited by an electrode array and with uncontrollable color and restricted grayscale. Under this visual perception, prosthetic recipients can just complete some simple visual tasks, but more complex tasks like face identification/object recognition are extremely difficult. Therefore, it is necessary to investigate and apply image processing strategies for optimizing the visual perception of the recipients. This study focuses on recognition of the object of interest employing simulated prosthetic vision. We used a saliency segmentation method based on a biologically plausible graph-based visual saliency model and a grabCut-based self-adaptive-iterative optimization framework to automatically extract foreground objects. Based on this, two image processing strategies, Addition of Separate Pixelization and Background Pixel Shrink, were further utilized to enhance the extracted foreground objects. i) The results showed by verification of psychophysical experiments that under simulated prosthetic vision, both strategies had marked advantages over Direct Pixelization in terms of recognition accuracy and efficiency. ii) We also found that recognition performance under two strategies was tied to the segmentation results and was affected positively by the paired-interrelated objects in the scene. The use of the saliency segmentation method and image processing strategies can automatically extract and enhance foreground objects, and significantly improve object recognition performance towards recipients implanted a high-density implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of buffer at nanoscale molecular recognition interfaces - electrostatic binding of biological polyanions. (United States)

    Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K


    We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.

  1. Piecewise deterministic processes in biological models

    CERN Document Server

    Rudnicki, Ryszard


    This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological processes into a unified mathematical theory, and...

  2. Biologically motivated computationally intensive approaches to image pattern recognition

    NARCIS (Netherlands)

    Petkov, Nikolay

    This paper presents some of the research activities of the research group in vision as a grand challenge problem whose solution is estimated to need the power of Tflop/s computers and for which computational methods have yet to be developed. The concerned approaches are biologically motivated, in

  3. Speech and audio processing for coding, enhancement and recognition

    CERN Document Server

    Togneri, Roberto; Narasimha, Madihally


    This book describes the basic principles underlying the generation, coding, transmission and enhancement of speech and audio signals, including advanced statistical and machine learning techniques for speech and speaker recognition with an overview of the key innovations in these areas. Key research undertaken in speech coding, speech enhancement, speech recognition, emotion recognition and speaker diarization are also presented, along with recent advances and new paradigms in these areas. ·         Offers readers a single-source reference on the significant applications of speech and audio processing to speech coding, speech enhancement and speech/speaker recognition. Enables readers involved in algorithm development and implementation issues for speech coding to understand the historical development and future challenges in speech coding research; ·         Discusses speech coding methods yielding bit-streams that are multi-rate and scalable for Voice-over-IP (VoIP) Networks; ·     �...

  4. Motor cortical processing is causally involved in object recognition (United States)


    Background Motor activity during vicarious experience of actions is a widely reported and studied phenomenon, and motor system activity also accompanies observation of graspable objects in the absence of any actions. Such motor activity is thought to reflect simulation of the observed action, or preparation to interact with the object, respectively. Results Here, in an initial exploratory study, we ask whether motor activity during observation of object directed actions is involved in processes related to recognition of the object after initial exposure. Single pulse Transcranial Magnetic Stimulation (TMS) was applied over the thumb representation of the motor cortex, or over the vertex, during observation of a model thumb typing on a cell-phone, and performance on a phone recognition task at the end of the trial was assessed. Disrupting motor processing over the thumb representation 100 ms after the onset of the typing video impaired the ability to recognize the phone in the recognition test, whereas there was no such effect for TMS applied over the vertex and no TMS trials. Furthermore, this effect only manifested for videos observed from the first person perspective. In an additional control condition, there was no evidence for any effects of TMS to the thumb representation or vertex when observing and recognizing non-action related shape stimuli. Conclusion Overall, these data provide evidence that motor cortical processing during observation of object-directed actions from a first person perspective is causally linked to the formation of enduring representations of objects-of-action. PMID:24330638

  5. Motor cortical processing is causally involved in object recognition. (United States)

    Decloe, Rebecca; Obhi, Sukhvinder S


    Motor activity during vicarious experience of actions is a widely reported and studied phenomenon, and motor system activity also accompanies observation of graspable objects in the absence of any actions. Such motor activity is thought to reflect simulation of the observed action, or preparation to interact with the object, respectively. Here, in an initial exploratory study, we ask whether motor activity during observation of object directed actions is involved in processes related to recognition of the object after initial exposure. Single pulse Transcranial Magnetic Stimulation (TMS) was applied over the thumb representation of the motor cortex, or over the vertex, during observation of a model thumb typing on a cell-phone, and performance on a phone recognition task at the end of the trial was assessed. Disrupting motor processing over the thumb representation 100 ms after the onset of the typing video impaired the ability to recognize the phone in the recognition test, whereas there was no such effect for TMS applied over the vertex and no TMS trials. Furthermore, this effect only manifested for videos observed from the first person perspective. In an additional control condition, there was no evidence for any effects of TMS to the thumb representation or vertex when observing and recognizing non-action related shape stimuli. Overall, these data provide evidence that motor cortical processing during observation of object-directed actions from a first person perspective is causally linked to the formation of enduring representations of objects-of-action.

  6. Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture. (United States)

    Layher, Georg; Brosch, Tobias; Neumann, Heiko


    Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks ( Eedn ) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based

  7. Invariant visual object recognition and shape processing in rats (United States)

    Zoccolan, Davide


    Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. PMID:25561421

  8. Compact hybrid optoelectrical unit for image processing and recognition (United States)

    Cheng, Gang; Jin, Guofan; Wu, Minxian; Liu, Haisong; He, Qingsheng; Yuan, ShiFu


    In this paper a compact opto-electric unit (CHOEU) for digital image processing and recognition is proposed. The central part of CHOEU is an incoherent optical correlator, which is realized with a SHARP QA-1200 8.4 inch active matrix TFT liquid crystal display panel which is used as two real-time spatial light modulators for both the input image and reference template. CHOEU can do two main processing works. One is digital filtering; the other is object matching. Using CHOEU an edge-detection operator is realized to extract the edges from the input images. Then the reprocessed images are sent into the object recognition unit for identifying the important targets. A novel template- matching method is proposed for gray-tome image recognition. A positive and negative cycle-encoding method is introduced to realize the absolute difference measurement pixel- matching on a correlator structure simply. The system has god fault-tolerance ability for rotation distortion, Gaussian noise disturbance or information losing. The experiments are given at the end of this paper.

  9. Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models

    Directory of Open Access Journals (Sweden)

    Ming-Shi Wang


    Full Text Available A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle’s speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.

  10. Conserving forest biological diversity: How the Montreal Process helps achieve sustainability (United States)

    Mark Nelson; Guy Robertson; Kurt. Riitters


    Forests support a variety of ecosystems, species and genes — collectively referred to as biological diversity — along with important processes that tie these all together. With the growing recognition that biological diversity contributes to human welfare in a number of important ways such as providing food, medicine and fiber (provisioning services...

  11. Advanced biologically plausible algorithms for low-level image processing (United States)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan


    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  12. Recognition of Biological Motion in Children with Autistic Spectrum Disorders (United States)

    Parron, Carole; Da Fonseca, David; Santos, Andreia; Moore, David G.; Monfardini, Elisa; Deruelle, Christine


    It is widely accepted that autistic children experience difficulties in processing and recognizing emotions. Most relevant studies have explored the perception of faces. However, context and bodily gestures are also sources from which we derive emotional meanings. We tested 23 autistic children and 23 typically developing control children on their…

  13. Pattern Recognition and Natural Language Processing: State of the Art

    Directory of Open Access Journals (Sweden)

    Mirjana Kocaleva


    Full Text Available Development of information technologies is growing steadily. With the latest software technologies development and application of the methods of artificial intelligence and machine learning intelligence embededs in computers, the expectations are that in near future computers will be able to solve problems themselves like people do. Artificial intelligence emulates human behavior on computers. Rather than executing instructions one by one, as theyare programmed, machine learning employs prior experience/data that is used in the process of system’s training. In this state of the art paper, common methods in AI, such as machine learning, pattern recognition and the natural language processing (NLP are discussed. Also are given standard architecture of NLP processing system and the level thatisneeded for understanding NLP. Lastly the statistical NLP processing and multi-word expressions are described.

  14. InSAR processing for the recognition of landslides

    Directory of Open Access Journals (Sweden)

    B. Riedel


    Full Text Available Synthetic Aperture Radar Interferometry (InSAR is an established method for the detection and monitoring of earth surface processes. This approach has been most successful where the observed area fulfills specific requirements, such as sufficient backscattering, flat slope gradients or very slow changes of vegetation. We investigated the capability of two different InSAR techniques and achieved good results for the recognition of landslides in China and Greece that compared well with geodetic derived movement rates. This demonstrates the strong potential of SAR Interferometry for the detection of landslides and earth surface movements.

  15. Recognition

    DEFF Research Database (Denmark)

    Gimmler, Antje


    In this article, I shall examine the cognitive, heuristic and theoretical functions of the concept of recognition. To evaluate both the explanatory power and the limitations of a sociological concept, the theory construction must be analysed and its actual productivity for sociological theory must...... be evaluated. In the first section, I will introduce the concept of recognition as a travelling concept playing a role both on the intellectual stage and in real life. In the second section, I will concentrate on the presentation of Honneth’s theory of recognition, emphasizing the construction of the concept...... and its explanatory power. Finally, I will discuss Honneth’s concept in relation to the critique that has been raised, addressing the debate between Honneth and Fraser. In a short conclusion, I will return to the question of the explanatory power of the concept of recognition....

  16. Why the long face? The importance of vertical image structure for biological "barcodes" underlying face recognition. (United States)

    Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H


    Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.

  17. Biologically Inspired Target Recognition in Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liang Qilian


    Full Text Available One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC. Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human's innate ability to process and integrate information from disparate, network-based sources, we apply human-inspired information integration mechanisms to target detection in cognitive radar sensor network. Humans' information integration mechanisms have been modelled using maximum-likelihood estimation (MLE or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform (DCT is used to process the integrated data from MLE or soft-max. We apply fuzzy logic system (FLS to automatic target detection based on the AC power values from DCT. Simulation results show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network target detection, whereas the existing 2D construction algorithm does not work in this study.

  18. Graphics processing units in bioinformatics, computational biology and systems biology. (United States)

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela


    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at © The Author 2016. Published by Oxford University Press.

  19. Biological Processes Associated with Impact Events (United States)

    Cockell, Charles; Koeberl, Christian; Gilmour, Iain

    The diversity of papers presented in this volume attest to the fact that impact cratering is very much a biological process. This volume is the tenth in a series of books resulting from the activities of the scientific programme, "Response of the Earth System to Impact Processes" (IMPACT), by the European Science Foundation. The papers were presented at an international meeting at King's College, Cambridge in 2003. These papers investigate the effects of asteroid and comet impacts on a diversity of biological and evolutionary processes including the survival of organics and microbial ecosystems to the extinction of organisms.

  20. Contextual System of Symbol Structural Recognition based on an Object-Process Methodology


    Delalandre, Mathieu


    We present in this paper a symbol recognition system for the graphic documents. This one is based on a contextual approach for symbol structural recognition exploiting an Object-Process Methodology. It uses a processing library composed of structural recognition processings and contextual evaluation processings. These processings allow our system to deal with the multi-representation of symbols. The different processings are controlled, in an automatic way, by an inference engine during the r...

  1. Effects of Early Neglect Experience on Recognition and Processing of Facial Expressions: A Systematic Review. (United States)

    Doretto, Victoria; Scivoletto, Sandra


    Background: Child neglect is highly prevalent and associated with a series of biological and social consequences. Early neglect may alter the recognition of emotional faces, but its precise impact remains unclear. We aim to review and analyze data from recent literature about recognition and processing of facial expressions in individuals with history of childhood neglect. Methods: We conducted a systematic review using PubMed, PsycINFO, ScIELO and EMBASE databases in the search of studies for the past 10 years. Results: In total, 14 studies were selected and critically reviewed. A heterogeneity was detected across methods and sample frames. Results were mixed across studies. Different forms of alterations to perception of facial expressions were found across 12 studies. There was alteration to the recognition and processing of both positive and negative emotions, but for emotional face processing there was predominance in alteration toward negative emotions. Conclusions: This is the first review to examine specifically the effects of early neglect experience as a prevalent condition of child maltreatment. The results of this review are inconclusive due to methodological diversity, implement of distinct instruments and differences in the composition of the samples. Despite these limitations, some studies support our hypothesis that individuals with history of early negligence may present alteration to the ability to perceive face expressions of emotions. The article brings relevant information that can help in the development of more effective therapeutic strategies to reduce the impact of neglect on the cognitive and emotional development of the child.

  2. Using Face Recognition System in Ship Protection Process

    Directory of Open Access Journals (Sweden)

    Miroslav Bača


    Full Text Available The process of security improvement is a huge problem especiallyin large ships. Terrorist attacks and everyday threatsagainst life and property destroy transport and tourist companies,especially large tourist ships. Every person on a ship can berecognized and identified using something that the personknows or by means of something the person possesses. The bestresults will be obtained by using a combination of the person'sknowledge with one biometric characteristic. Analyzing theproblem of biometrics in ITS security we can conclude that facerecognition process supported by one or two traditional biometriccharacteristics can give very good results regarding ship security.In this paper we will describe a biometric system basedon face recognition. Special focus will be given to crew member'sbiometric security in crisis situation like kidnapping, robbelyor illness.

  3. Optical Processing of Speckle Images with Bacteriorhodopsin for Pattern Recognition (United States)

    Downie, John D.; Tucker, Deanne (Technical Monitor)


    Logarithmic processing of images with multiplicative noise characteristics can be utilized to transform the image into one with an additive noise distribution. This simplifies subsequent image processing steps for applications such as image restoration or correlation for pattern recognition. One particularly common form of multiplicative noise is speckle, for which the logarithmic operation not only produces additive noise, but also makes it of constant variance (signal-independent). We examine the optical transmission properties of some bacteriorhodopsin films here and find them well suited to implement such a pointwise logarithmic transformation optically in a parallel fashion. We present experimental results of the optical conversion of speckle images into transformed images with additive, signal-independent noise statistics using the real-time photochromic properties of bacteriorhodopsin. We provide an example of improved correlation performance in terms of correlation peak signal-to-noise for such a transformed speckle image.

  4. Biological processes influencing contaminant release from sediments

    International Nuclear Information System (INIS)

    Reible, D.D.


    The influence of biological processes, including bioturbation, on the mobility of contaminants in freshwater sediments is described. Effective mass coefficients are estimated for tubificid oligochaetes as a function of worm behavior and biomass density. The mass transfer coefficients were observed to be inversely proportional to water oxygen content and proportional to the square root of biomass density. The sediment reworking and contaminant release are contrasted with those of freshwater amphipods. The implications of these and other biological processes for contaminant release and i n-situ remediation of soils and sediments are summarized. 4 figs., 1 tab

  5. Towards distributed multiscale simulation of biological processes

    NARCIS (Netherlands)

    Bernsdorf, J.; Berti, G.; Chopard, B.; Hegewald, J.; Krafczyk, M.; Wang, D.; Lorenz, E.; Hoekstra, A.


    The understanding of biological processes, e.g. related to cardio-vascular disease and treatment, can significantly be improved by numerical simulation. In this paper, we present an approach for a multiscale simulation environment, applied for the prediction of in-stent re-stenos is. Our focus is on

  6. BIOCAT: a pattern recognition platform for customizable biological image classification and annotation. (United States)

    Zhou, Jie; Lamichhane, Santosh; Sterne, Gabriella; Ye, Bing; Peng, Hanchuan


    Pattern recognition algorithms are useful in bioimage informatics applications such as quantifying cellular and subcellular objects, annotating gene expressions, and classifying phenotypes. To provide effective and efficient image classification and annotation for the ever-increasing microscopic images, it is desirable to have tools that can combine and compare various algorithms, and build customizable solution for different biological problems. However, current tools often offer a limited solution in generating user-friendly and extensible tools for annotating higher dimensional images that correspond to multiple complicated categories. We develop the BIOimage Classification and Annotation Tool (BIOCAT). It is able to apply pattern recognition algorithms to two- and three-dimensional biological image sets as well as regions of interest (ROIs) in individual images for automatic classification and annotation. We also propose a 3D anisotropic wavelet feature extractor for extracting textural features from 3D images with xy-z resolution disparity. The extractor is one of the about 20 built-in algorithms of feature extractors, selectors and classifiers in BIOCAT. The algorithms are modularized so that they can be "chained" in a customizable way to form adaptive solution for various problems, and the plugin-based extensibility gives the tool an open architecture to incorporate future algorithms. We have applied BIOCAT to classification and annotation of images and ROIs of different properties with applications in cell biology and neuroscience. BIOCAT provides a user-friendly, portable platform for pattern recognition based biological image classification of two- and three- dimensional images and ROIs. We show, via diverse case studies, that different algorithms and their combinations have different suitability for various problems. The customizability of BIOCAT is thus expected to be useful for providing effective and efficient solutions for a variety of biological

  7. Layered recognition networks that pre-process, classify, and describe (United States)

    Uhr, L.


    A brief overview is presented of six types of pattern recognition programs that: (1) preprocess, then characterize; (2) preprocess and characterize together; (3) preprocess and characterize into a recognition cone; (4) describe as well as name; (5) compose interrelated descriptions; and (6) converse. A computer program (of types 3 through 6) is presented that transforms and characterizes the input scene through the successive layers of a recognition cone, and then engages in a stylized conversation to describe the scene.

  8. Impaired processing of self-face recognition in anorexia nervosa. (United States)

    Hirot, France; Lesage, Marine; Pedron, Lya; Meyer, Isabelle; Thomas, Pierre; Cottencin, Olivier; Guardia, Dewi


    Body image disturbances and massive weight loss are major clinical symptoms of anorexia nervosa (AN). The aim of the present study was to examine the influence of body changes and eating attitudes on self-face recognition ability in AN. Twenty-seven subjects suffering from AN and 27 control participants performed a self-face recognition task (SFRT). During the task, digital morphs between their own face and a gender-matched unfamiliar face were presented in a random sequence. Participants' self-face recognition failures, cognitive flexibility, body concern and eating habits were assessed with the Self-Face Recognition Questionnaire (SFRQ), Trail Making Test (TMT), Body Shape Questionnaire (BSQ) and Eating Disorder Inventory-2 (EDI-2), respectively. Subjects suffering from AN exhibited significantly greater difficulties than control participants in identifying their own face (p = 0.028). No significant difference was observed between the two groups for TMT (all p > 0.1, non-significant). Regarding predictors of self-face recognition skills, there was a negative correlation between SFRT and body mass index (p = 0.01) and a positive correlation between SFRQ and EDI-2 (p recognition.

  9. Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition. (United States)

    Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus


    Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.

  10. Pattern Recognition in Optical Remote Sensing Data Processing (United States)

    Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir

    Computational procedures of the land surface biophysical parameters retrieval imply that modeling techniques are available of the outgoing radiation description together with monitoring techniques of remote sensing data processing using registered radiances between the related optical sensors and the land surface objects called “patterns”. Pattern recognition techniques are a valuable approach to the processing of remote sensing data for images of the land surface - atmosphere system. Many simplified codes of the direct and inverse problems of atmospheric optics are considered applicable for the imagery processing of low and middle spatial resolution. Unless the authors are not interested in the accuracy of the final information products, they utilize these standard procedures. The emerging necessity of processing data of high spectral and spatial resolution given by imaging spectrometers puts forward the newly defined pattern recognition techniques. The proposed tools of using different types of classifiers combined with the parameter retrieval procedures for the forested environment are maintained to have much wider applications as compared with the image features and object shapes extraction, which relates to photometry and geometry in pixel-level reflectance representation of the forested land cover. The pixel fraction and reflectance of “end-members” (sunlit forest canopy, sunlit background and shaded background for a particular view and solar illumination angle) are only a part in the listed techniques. It is assumed that each pixel views collections of the individual forest trees and the pixel-level reflectance can thus be computed as a linear mixture of sunlit tree tops, sunlit background (or understory) and shadows. Instead of these photometry and geometry constraints, the improved models are developed of the functional description of outgoing spectral radiation, in which such parameters of the forest canopy like the vegetation biomass density for

  11. The role of pattern recognition in creative problem solving: a case study in search of new mathematics for biology. (United States)

    Hong, Felix T


    Rosen classified sciences into two categories: formalizable and unformalizable. Whereas formalizable sciences expressed in terms of mathematical theories were highly valued by Rutherford, Hutchins pointed out that unformalizable parts of soft sciences are of genuine interest and importance. Attempts to build mathematical theories for biology in the past century was met with modest and sporadic successes, and only in simple systems. In this article, a qualitative model of humans' high creativity is presented as a starting point to consider whether the gap between soft and hard sciences is bridgeable. Simonton's chance-configuration theory, which mimics the process of evolution, was modified and improved. By treating problem solving as a process of pattern recognition, the known dichotomy of visual thinking vs. verbal thinking can be recast in terms of analog pattern recognition (non-algorithmic process) and digital pattern recognition (algorithmic process), respectively. Additional concepts commonly encountered in computer science, operations research and artificial intelligence were also invoked: heuristic searching, parallel and sequential processing. The refurbished chance-configuration model is now capable of explaining several long-standing puzzles in human cognition: a) why novel discoveries often came without prior warning, b) why some creators had no ideas about the source of inspiration even after the fact, c) why some creators were consistently luckier than others, and, last but not least, d) why it was so difficult to explain what intuition, inspiration, insight, hunch, serendipity, etc. are all about. The predictive power of the present model was tested by means of resolving Zeno's paradox of Achilles and the Tortoise after one deliberately invoked visual thinking. Additional evidence of its predictive power must await future large-scale field studies. The analysis was further generalized to constructions of scientific theories in general. This approach

  12. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition. (United States)

    Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael


    Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain

  13. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart


    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  14. Diffusion processes and related topics in biology

    CERN Document Server

    Ricciardi, Luigi M


    These notes are based on a one-quarter course given at the Department of Biophysics and Theoretical Biology of the University of Chicago in 1916. The course was directed to graduate students in the Division of Biological Sciences with interests in population biology and neurobiology. Only a slight acquaintance with probability and differential equations is required of the reader. Exercises are interwoven with the text to encourage the reader to play a more active role and thus facilitate his digestion of the material. One aim of these notes is to provide a heuristic approach, using as little mathematics as possible, to certain aspects of the theory of stochastic processes that are being increasingly employed in some of the population biol­ ogy and neurobiology literature. While the subject may be classical, the nov­ elty here lies in the approach and point of view, particularly in the applica­ tions such as the approach to the neuronal firing problem and its related dif­ fusion approximations. It is a ple...

  15. Role of syllable segmentation processes in peripheral word recognition. (United States)

    Bernard, Jean-Baptiste; Calabrèse, Aurélie; Castet, Eric


    Previous studies of foveal visual word recognition provide evidence for a low-level syllable decomposition mechanism occurring during the recognition of a word. We investigated if such a decomposition mechanism also exists in peripheral word recognition. Single words were visually presented to subjects in the peripheral field using a 6° square gaze-contingent simulated central scotoma. In the first experiment, words were either unicolor or had their adjacent syllables segmented with two different colors (color/syllable congruent condition). Reaction times for correct word identification were measured for the two different conditions and for two different print sizes. Results show a significant decrease in reaction time for the color/syllable congruent condition compared with the unicolor condition. A second experiment suggests that this effect is specific to syllable decomposition and results from strategic, presumably involving attentional factors, rather than stimulus-driven control.

  16. Understanding recognition and self-assembly in biology using the chemist's toolbox. Insight into medicinal chemistry. (United States)

    Quirolo, Z B; Benedini, L A; Sequeira, M A; Herrera, M G; Veuthey, T V; Dodero, V I


    Medicinal chemistry is intimately connected with basic science such as organic synthesis, chemical biology and biophysical chemistry among other disciplines. The reason of such connections is due to the power of organic synthesis to provide designed molecules; chemical biology to give tools to discover biological and/or pathological pathways and biophysical chemistry which provides the techniques to characterize and the theoretical background to understand molecular behaviour. The present review provides some selective examples of these research areas. Initially, template dsDNA organic synthesis and the spatio-temporal control of transcription are presenting following by the supramolecular entities used in drug delivery, such as liposomes and liquid crystal among others. Finally, peptides and protein self-assembly is connected with biomaterials and as an important event in the balance between health and disease. The final aim of the present review is to show the power of chemical tools not only for the synthesis of new molecules but also to improve our understanding of recognition and self-assembly in the biological context.

  17. Theoretical Investigation of Optical Detection and Recognition of Single Biological Molecules Using Coherent Dynamics of Exciton-Plasmon Coupling. (United States)

    Sadeghi, S M; Hood, B; Patty, K D; Mao, C-B


    We use quantum coherence in a system consisting of one metallic nanorod and one semi-conductor quantum dot to investigate a plasmonic nanosensor capable of digital optical detection and recognition of single biological molecules. In such a sensor the adsorption of a specific molecule to the nanorod turns off the emission of the system when it interacts with an optical pulse having a certain intensity and temporal width. The proposed quantum sensors can count the number of molecules of the same type or differentiate between molecule types with digital optical signals that can be measured with high certainty. We show that these sensors are based on the ultrafast upheaval of coherent dynamics of the system and the removal of coherent blockage of energy transfer from the quantum dot to the nanorod once the adsorption process has occurred.

  18. Processing laboratory of radio sterilized biological tissues

    International Nuclear Information System (INIS)

    Aguirre H, Paulina; Zarate S, Herman; Silva R, Samy; Hitschfeld, Mario


    The nuclear development applications have also reached those areas related to health. The risk of getting contagious illnesses through applying biological tissues has been one of the paramount worries to be solved since infectious illnesses might be provoked by virus, fungis or bacterias coming from donors or whether they have been introduced by means of intermediate stages before the use of these tissues. Therefore it has been concluded that the tissue allografts must be sterilized. The sterilization of medical products has been one of the main applications of the ionizing radiations and that it is why the International Organization of Atomic Energy began in the 70s promoting works related to the biological tissue sterilization and pharmaceutical products. The development of different tissue preservation methods has made possible the creation of tissue banks in different countries, to deal with long-term preservation. In our country, a project was launched in 1998, 'Establishment of a Tissue Bank in Latino america', this project was supported by the OIEA through the project INT/ 6/ 049, and was the starting of the actual Processing Laboratory of Radioesterilized Biological Tissues (LPTR), leaded by the Chilean Nuclear Energy Commission (CCHEN). This first organization is part of a number of entities compounding the Tissue Bank in Chile, organizations such as the Transplantation Promotion Corporation hospitals and the LPTR. The working system is carried out by means of the interaction between the hospitals and the laboratory. The medical professionals perform the procuring of tissues in the hospitals, then send them to the LPTR where they are processed and sterilized with ionizing radiation. The cycle ends up with the tissues return released to the hospitals, where they are used, and then the result information is sent to the LPTR as a form of feedback. Up to now, human skin has been processed (64 donors), amniotic membranes (35 donors) and pig skin (175 portions

  19. 2nd International Symposium on Signal Processing and Intelligent Recognition Systems

    CERN Document Server

    Bandyopadhyay, Sanghamitra; Krishnan, Sri; Li, Kuan-Ching; Mosin, Sergey; Ma, Maode


    This Edited Volume contains a selection of refereed and revised papers originally presented at the second International Symposium on Signal Processing and Intelligent Recognition Systems (SIRS-2015), December 16-19, 2015, Trivandrum, India. The program committee received 175 submissions. Each paper was peer reviewed by at least three or more independent referees of the program committee and the 59 papers were finally selected. The papers offer stimulating insights into biometrics, digital watermarking, recognition systems, image and video processing, signal and speech processing, pattern recognition, machine learning and knowledge-based systems. The book is directed to the researchers and scientists engaged in various field of signal processing and related areas. .

  20. Stages of Processing in Associative Recognition : Evidence from Behavior, EEG, and Classification

    NARCIS (Netherlands)

    Borst, Jelmer P.; Schneider, Darryl W.; Walsh, Matthew M.; Anderson, John R.


    In this study, we investigated the stages of information processing in associative recognition. We recorded EEG data while participants performed an associative recognition task that involved manipulations of word length, associative fan, and probe type, which were hypothesized to affect the

  1. Stochastic Simulation of Process Calculi for Biology

    Directory of Open Access Journals (Sweden)

    Andrew Phillips


    Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.

  2. Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies. (United States)

    Dingjan, Tamir; Spendlove, Ian; Durrant, Lindy G; Scott, Andrew M; Yuriev, Elizabeth; Ramsland, Paul A


    Monoclonal antibodies represent the most successful class of biopharmaceuticals for the treatment of cancer. Mechanisms of action of therapeutic antibodies are very diverse and reflect their ability to engage in antibody-dependent effector mechanisms, internalize to deliver cytotoxic payloads, and display direct effects on cells by lysis or by modulating the biological pathways of their target antigens. Importantly, one of the universal changes in cancer is glycosylation and carbohydrate-binding antibodies can be produced to selectively recognize tumor cells over normal tissues. A promising group of cell surface antibody targets consists of carbohydrates presented as glycolipids or glycoproteins. In this review, we outline the basic principles of antibody-based targeting of carbohydrate antigens in cancer. We also present a detailed structural view of antibody recognition and the conformational properties of a series of related tissue-blood group (Lewis) carbohydrates that are being pursued as potential targets of cancer immunotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Nanostructuring of hybrid silicas through a self-recognition process. (United States)

    Arrachart, Guilhem; Creff, Gaëlle; Wadepohl, Hubert; Blanc, Christophe; Bonhomme, Christian; Babonneau, Florence; Alonso, Bruno; Bantignies, Jean-Louis; Carcel, Carole; Moreau, Joël J E; Dieudonné, Philippe; Sauvajol, Jean-Louis; Massiot, Dominique; Wong Chi Man, Michel


    The hydrolysis and condensation of a silylated derivative of ureidopyrimidinone led to nanostructured hybrid silica, such as that depicted, as clearly shown by powder XRD studies. The nanostructuring was directly related to molecular recognition through hydrogen bonding. By combining FTIR, solution and solid-state NMR spectroscopic data, the transcription of the hydrogen-bonding networks from the precursor to the final product was clearly evidenced.

  4. "Product" Versus "Process" Measures in Assessing Speech Recognition Outcomes in Adults With Cochlear Implants. (United States)

    Moberly, Aaron C; Castellanos, Irina; Vasil, Kara J; Adunka, Oliver F; Pisoni, David B


    1) When controlling for age in postlingual adult cochlear implant (CI) users, information-processing functions, as assessed using "process" measures of working memory capacity, inhibitory control, information-processing speed, and fluid reasoning, will predict traditional "product" outcome measures of speech recognition. 2) Demographic/audiologic factors, particularly duration of deafness, duration of CI use, degree of residual hearing, and socioeconomic status, will impact performance on underlying information-processing functions, as assessed using process measures. Clinicians and researchers rely heavily on endpoint product measures of accuracy in speech recognition to gauge patient outcomes postoperatively. However, these measures are primarily descriptive and were not designed to assess the underlying core information-processing operations that are used during speech recognition. In contrast, process measures reflect the integrity of elementary core subprocesses that are operative during behavioral tests using complex speech signals. Forty-two experienced adult CI users were tested using three product measures of speech recognition, along with four process measures of working memory capacity, inhibitory control, speed of lexical/phonological access, and nonverbal fluid reasoning. Demographic and audiologic factors were also assessed. Scores on product measures were associated with core process measures of speed of lexical/phonological access and nonverbal fluid reasoning. After controlling for participant age, demographic and audiologic factors did not correlate with process measure scores. Findings provide support for the important foundational roles of information processing operations in speech recognition outcomes of postlingually deaf patients who have received CIs.

  5. Investigating the Use of Term Recall and Recognition Tools in Learning Terminology and Concepts in a Senior Biology Classroom (United States)

    Evergreen, Merrin; Cooper, Rebecca; Loughran, John


    This paper investigated the use of term recall and recognition tools for learning terminology and concepts in a senior biology classroom. The paper responded to a set of research questions from a teacher researcher perspective, making use of data collected from the teacher researcher's classrooms over several years, based on the implementation of…

  6. Brain correlates of recognition of communicative interactions from biological motion in schizophrenia. (United States)

    Okruszek, Ł; Wordecha, M; Jarkiewicz, M; Kossowski, B; Lee, J; Marchewka, A


    Recognition of communicative interactions is a complex social cognitive ability which is associated with a specific neural activity in healthy individuals. However, neural correlates of communicative interaction processing from whole-body motion have not been known in patients with schizophrenia (SCZ). Therefore, the current study aims to examine the neural activity associated with recognition of communicative interactions in SCZ by using displays of the dyadic interactions downgraded to minimalistic point-light presentations. Twenty-six healthy controls (HC) and 25 SCZ were asked to judge whether two agents presented only by point-light displays were communicating or acting independently. Task-related activity and functional connectivity of brain structures were examined with General Linear Model and Generalized Psychophysiological Interaction approach, respectively. HC were significantly more efficient in recognizing each type of action than SCZ. At the neural level, the activity of the right posterior superior temporal sulcus (pSTS) was observed to be higher in HC compared with SCZ for communicative v. individual action processing. Importantly, increased connectivity of the right pSTS with structures associated with mentalizing (left pSTS) and mirroring networks (left frontal areas) was observed in HC, but not in SCZ, during the presentation of social interactions. Under-recruitment of the right pSTS, a structure known to have a pivotal role in social processing, may also be of importance for higher-order social cognitive deficits in SCZ. Furthermore, decreased task-related connectivity of the right pSTS may result in reduced use of additional sources of information (for instance motor resonance signals) during social cognitive processing in schizophrenia.

  7. Shape Recognition in Presence of Occlusion from Fourier Plane Processing (United States)

    Pohit, Mausumi; Goel, Alpana


    A new technique for recognition of objects in presence of occlusion is presented in this paper. The Fourier spectrum of a partially occluded shape differs from that of the whole object shape thereby decreasing the 2D correlation between two images. The present method is based on 1D correlation of Fourier Spectrum slices taken from the 2D Fourier Transform of the reference and the test object. For small occlusion, some of the slices are affected depending on the nature of occlusion. Responses of the rest of the slices are unaffected. This study shows that this method not only identify the object in presence of occlusion but at the same time has good discrimination capability.

  8. Not all visual features are created equal: early processing in letter and word recognition. (United States)

    Lanthier, Sophie N; Risko, Evan F; Stolz, Jennifer A; Besner, Derek


    In four experiments, we investigated the effect of deleting specific features of letters on letter and word recognition in the context of reading aloud. Experiments 1 and 2 assessed the relative importance of vertices versus midsegments in letter recognition. Experiments 3 and 4 tested the relative importance of vertices versus midsegments in word recognition. The results demonstrate that deleting vertices is more detrimental to letter and word identification than is deleting midsegments of letters. These results converge with those of previous research on the role of vertices in object identification. Theoretical implications for early processing in reading are noted.

  9. Face recognition in simulated prosthetic vision: face detection-based image processing strategies. (United States)

    Wang, Jing; Wu, Xiaobei; Lu, Yanyu; Wu, Hao; Kan, Han; Chai, Xinyu


    Given the limited visual percepts elicited by current prosthetic devices, it is essential to optimize image content in order to assist implant wearers to achieve better performance of visual tasks. This study focuses on recognition of familiar faces using simulated prosthetic vision. Combined with region-of-interest (ROI) magnification, three face extraction strategies based on a face detection technique were used: the Viola-Jones face region, the statistical face region (SFR) and the matting face region. These strategies significantly enhanced recognition performance compared to directly lowering resolution (DLR) with Gaussian dots. The inclusion of certain external features, such as hairstyle, was beneficial for face recognition. Given the high recognition accuracy achieved and applicable processing speed, SFR-ROI was the preferred strategy. DLR processing resulted in significant face gender recognition differences (i.e. females were more easily recognized than males), but these differences were not apparent with other strategies. Face detection-based image processing strategies improved visual perception by highlighting useful information. Their use is advisable for face recognition when using low-resolution prosthetic vision. These results provide information for the continued design of image processing modules for use in visual prosthetics, thus maximizing the benefits for future prosthesis wearers.

  10. Multiple synergistic effects of emotion and memory on proactive processes leading to scene recognition. (United States)

    Schettino, Antonio; Loeys, Tom; Pourtois, Gilles


    Visual scene recognition is a proactive process through which contextual cues and top-down expectations facilitate the extraction of invariant features. Whether the emotional content of the scenes exerts a reliable influence on these processes or not, however, remains an open question. Here, topographic ERP mapping analysis and a distributed source localization method were used to characterize the electrophysiological correlates of proactive processes leading to scene recognition, as well as the potential modulation of these processes by memory and emotion. On each trial, the content of a complex neutral or emotional scene was progressively revealed, and participants were asked to decide whether this scene had previously been encountered or not (delayed match-to-sample task). Behavioral results showed earlier recognition for old compared to new scenes, as well as delayed recognition for emotional vs. neutral scenes. Electrophysiological results revealed that, ~400 ms following stimulus onset, activity in ventral object-selective regions increased linearly as a function of accumulation of perceptual evidence prior to recognition of old scenes. The emotional content of the scenes had an early influence in these areas. By comparison, at the same latency, the processing of new scenes was mostly achieved by dorsal and medial frontal brain areas, including the anterior cingulate cortex and the insula. In the latter region, emotion biased recognition at later stages, likely corresponding to decision making processes. These findings suggest that emotion can operate at distinct and multiple levels during proactive processes leading to scene recognition, depending on the extent of prior encounter with these scenes. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Electrical Detection of Dengue Biomarker Using Egg Yolk Immunoglobulin as the Biological Recognition Element (United States)

    Figueiredo, Alessandra; Vieira, Nirton C. S.; Dos Santos, Juliana F.; Janegitz, Bruno C.; Aoki, Sergio M.; Junior, Paulo P.; Lovato, Rodrigo L.; Nogueira, Maurício L.; Zucolotto, Valtencir; Guimarães, Francisco E. G.


    Nonstructural protein 1 (NS1) is secreted by dengue virus in the first days of infection and acts as an excellent dengue biomarker. Here, the direct electrical detection of NS1 from dengue type 2 virus has been achieved by the measurement of variations in open circuit potential (OCP) between a reference electrode and a disposable Au electrode containing immobilized anti-NS1 antibodies acting as immunosensor. Egg yolk immunoglobulin (IgY) was utilized for the first time as the biological recognition element alternatively to conventional mammalian antibodies in the detection of dengue virus NS1 protein. NS1 protein was detected in standard samples in a 0.1 to 10 µg.mL-1 concentration range with (3.2 +/- 0.3) mV/µg.mL-1 of sensitivity and 0.09 µg.mL-1 of detection limit. Therefore, the proposed system can be extended to detect NS1 in real samples and provide an early diagnosis of dengue.

  12. Learning during processing Word learning doesn’t wait for word recognition to finish (United States)

    Apfelbaum, Keith S.; McMurray, Bob


    Previous research on associative learning has uncovered detailed aspects of the process, including what types of things are learned, how they are learned, and where in the brain such learning occurs. However, perceptual processes, such as stimulus recognition and identification, take time to unfold. Previous studies of learning have not addressed when, during the course of these dynamic recognition processes, learned representations are formed and updated. If learned representations are formed and updated while recognition is ongoing, the result of learning may incorporate spurious, partial information. For example, during word recognition, words take time to be identified, and competing words are often active in parallel. If learning proceeds before this competition resolves, representations may be influenced by the preliminary activations present at the time of learning. In three experiments using word learning as a model domain, we provide evidence that learning reflects the ongoing dynamics of auditory and visual processing during a learning event. These results show that learning can occur before stimulus recognition processes are complete; learning does not wait for ongoing perceptual processing to complete. PMID:27471082

  13. Pathways to Medical Home Recognition: A Qualitative Comparative Analysis of the PCMH Transformation Process. (United States)

    Mendel, Peter; Chen, Emily K; Green, Harold D; Armstrong, Courtney; Timbie, Justin W; Kress, Amii M; Friedberg, Mark W; Kahn, Katherine L


    To understand the process of practice transformation by identifying pathways for attaining patient-centered medical home (PCMH) recognition. The CMS Federally Qualified Health Center (FQHC) Advanced Primary Care Practice Demonstration was designed to help FQHCs achieve NCQA Level 3 PCMH recognition and improve patient outcomes. We used a stratified random sample of 20 (out of 503) participating sites for this analysis. We developed a conceptual model of structural, cultural, and implementation factors affecting PCMH transformation based on literature and initial qualitative interview themes. We then used conventional cross-case analysis, followed by qualitative comparative analysis (QCA), a cross-case method based on Boolean logic algorithms, to systematically identify pathways (i.e., combinations of factors) associated with attaining-or not attaining-Level 3 recognition. Site-level indicators were derived from semistructured interviews with site leaders at two points in time (mid- and late-implementation) and administrative data collected prior to and during the demonstration period. The QCA results identified five distinct pathways to attaining PCMH recognition and four distinct pathways to not attaining recognition by the end of the demonstration. Across these pathways, one condition (change leader capacity) was common to all pathways for attaining recognition, and another (previous improvement or recognition experience) was absent in all pathways for not attaining recognition. In general, sites could compensate for deficiencies in one factor with capacity in others, but they needed a threshold of strengths in cultural and implementation factors to attain PCMH recognition. Future efforts at primary care transformation should take into account multiple pathways sites may pursue. Sites should be assessed on key cultural and implementation factors, in addition to structural components, in order to differentiate interventions and technical assistance. © Health

  14. The method validation step of biological dosimetry accreditation process

    International Nuclear Information System (INIS)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph.


    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was considered as

  15. Morphological Processing during Visual Word Recognition in Hebrew as a First and a Second Language (United States)

    Norman, Tal; Degani, Tamar; Peleg, Orna


    The present study examined whether sublexical morphological processing takes place during visual word-recognition in Hebrew, and whether morphological decomposition of written words depends on lexical activation of the complete word. Furthermore, it examined whether morphological processing is similar when reading Hebrew as a first language (L1)…

  16. Learning during Processing: Word Learning Doesn't Wait for Word Recognition to Finish (United States)

    Apfelbaum, Keith S.; McMurray, Bob


    Previous research on associative learning has uncovered detailed aspects of the process, including what types of things are learned, how they are learned, and where in the brain such learning occurs. However, perceptual processes, such as stimulus recognition and identification, take time to unfold. Previous studies of learning have not addressed…

  17. Data management in pattern recognition and image processing systems (United States)

    Zobrist, A. L.; Bryant, N. A.


    Data management considerations are important to any system which handles large volumes of data or where the manipulation of data is technically sophisticated. A particular problem is the introduction of image-formatted files into the mainstream of data processing application. This report describes a comprehensive system for the manipulation of image, tabular, and graphical data sets which involve conversions between the various data types. A key characteristic is the use of image processing technology to accomplish data management tasks. Because of this, the term 'image-based information system' has been adopted.


    EcoMat, Inc. of Hayward, CA has developed a two-stage ex situ anoxic biofilter biodenitrification process. The process is a fixed film bioremediation, using biocarriers and specific bacteria to treat nitrate-contaminated water. Unique to EcoMat's process is a patented mixed bed r...

  19. Automatic recognition of lactating sow behaviors through depth image processing (United States)

    Manual observation and classification of animal behaviors is laborious, time-consuming, and of limited ability to process large amount of data. A computer vision-based system was developed that automatically recognizes sow behaviors (lying, sitting, standing, kneeling, feeding, drinking, and shiftin...

  1. Aromatic-Mediated Carbohydrate Recognition in Processive Serratia marcescens Chitinases. (United States)

    Jana, Suvamay; Hamre, Anne Grethe; Wildberger, Patricia; Holen, Matilde Mengkrog; Eijsink, Vincent G H; Beckham, Gregg T; Sørlie, Morten; Payne, Christina M


    Microorganisms use a host of enzymes, including processive glycoside hydrolases, to deconstruct recalcitrant polysaccharides to sugars. Processive glycoside hydrolases closely associate with polymer chains and repeatedly cleave glycosidic linkages without dissociating from the crystalline surface after each hydrolytic step; they are typically the most abundant enzymes in both natural secretomes and industrial cocktails by virtue of their significant hydrolytic potential. The ubiquity of aromatic residues lining the enzyme catalytic tunnels and clefts is a notable feature of processive glycoside hydrolases. We hypothesized that these aromatic residues have uniquely defined roles, such as substrate chain acquisition and binding in the catalytic tunnel, that are defined by their local environment and position relative to the substrate and the catalytic center. Here, we investigated this hypothesis with variants of Serratia marcescens family 18 processive chitinases ChiA and ChiB. We applied molecular simulation and free energy calculations to assess active site dynamics and ligand binding free energies. Isothermal titration calorimetry provided further insight into enthalpic and entropic contributions to ligand binding free energy. Thus, the roles of six aromatic residues, Trp-167, Trp-275, and Phe-396 in ChiA, and Trp-97, Trp-220, and Phe-190 in ChiB, have been examined. We observed that point mutation of the tryptophan residues to alanine results in unfavorable changes in the free energy of binding relative to wild-type. The most drastic effects were observed for residues positioned at the "entrances" of the deep substrate-binding clefts and known to be important for processivity. Interestingly, phenylalanine mutations in ChiA and ChiB had little to no effect on chito-oligomer binding, in accordance with the limited effects of their removal on chitinase functionality.

  2. Bayesian network modeling of operator's state recognition process

    International Nuclear Information System (INIS)

    Hatakeyama, Naoki; Furuta, Kazuo


    Nowadays we are facing a difficult problem of establishing a good relation between humans and machines. To solve this problem, we suppose that machine system need to have a model of human behavior. In this study we model the state cognition process of a PWR plant operator as an example. We use a Bayesian network as an inference engine. We incorporate the knowledge hierarchy in the Bayesian network and confirm its validity using the example of PWR plant operator. (author)

  3. Image and Sensor Data Processing for Target Acquisition and Recognition. (United States)


    de points du bord de la cible, done, de points oai le contracs local eat fort dana L’image...tdristiques de la prem...Are photo et on dresse le tableau des vecteurs de translation avec paur cha- cun le noinbre de couples de points qui se...AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD) AGARDonferenceJoceedin io.290 IMAGE AND SENSOR DATA PROCESSING FOR

  4. Image processing tool for automatic feature recognition and quantification (United States)

    Chen, Xing; Stoddard, Ryan J.


    A system for defining structures within an image is described. The system includes reading of an input file, preprocessing the input file while preserving metadata such as scale information and then detecting features of the input file. In one version the detection first uses an edge detector followed by identification of features using a Hough transform. The output of the process is identified elements within the image.

  5. Automaticity of phonological and semantic processing during visual word recognition. (United States)

    Pattamadilok, Chotiga; Chanoine, Valérie; Pallier, Christophe; Anton, Jean-Luc; Nazarian, Bruno; Belin, Pascal; Ziegler, Johannes C


    Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.


    EcoMat, Inc. of Hayward, California (EcoMat) has developed an ex situ anoxic biofilter biodenitrification (BDN) process. The process uses specific biocarriers and bacteria to treat nitrate-contaminated water and employs a patented reactor that retains biocarrier within the syste...

  7. The influence of background music on recognition processes of Chinese characters: an ERP study. (United States)

    Liu, Baolin; Huang, Yizhou; Wang, Zhongning; Wu, Guangning


    In this paper, we employed RSS (rapid stream stimulation) paradigm to study the recognition processes of Chinese characters in background music. Real Chinese characters (upright or rotated) were used as target stimuli, while pseudo-words were used as background stimuli. Subjects were required to detect real characters while listening to Mozart's Sonata K. 448 and in silence. Both behavioral results and ERP results supported that Mozart's music mainly served as a distracter in the recognition processes of real Chinese characters in the experiment. The modulation of Mozart's music on RP (recognition potential) was different across different orientations of Chinese characters; in particular, the modulation of RP elicited by upright Chinese characters was more significant, suggesting that the music factor and orientation factor interact to affect the RP component. In brief, the simultaneous playing of Mozart's music did not improve subjects' performance in the detection of real Chinese characters. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. The Importance of Recognition for Equal Representation in Participatory Processes: Lessons from Husby

    Directory of Open Access Journals (Sweden)

    Karin Hansson


    Full Text Available Despite the ambition to involve people on more equal terms, participation often still means that the audience is involved in clearly demarcated parts of the process and attempts to develop more deliberative democratic processes in urban planning often fail due to unequal representation in the participatory process.While sharing the general idea of the value of participatory processes, we will investigate some problematic features involved and suggest how some of these can be remedied. We employ the concept of recognition to analyse the conditions for public participation in a recent case of urban planning in the Stockholm suburb of Husby. This case is particularly interesting as it clearly demonstrates the impact of globalisation on local participatory processes.The results show the importance of broad recognition for equal representation in participatory processes, and the need for a plurality of public spheres to support long-term participation in the development of the common urban space.

  9. Reading component skills in dyslexia: word recognition, comprehension and processing speed

    Directory of Open Access Journals (Sweden)

    Darlene Godoy Oliveira


    Full Text Available The cognitive model of reading comprehension posits that reading comprehension is a result of the interaction between decoding and linguistic comprehension. Recently, the notion of decoding skill was expanded to include word recognition. In addition, some studies suggest that other skills could be integrated into this model, like processing speed, and have consistently indicated that this skill influences and is an important predictor of the main components of the model, such as vocabulary for comprehension and phonological awareness of word recognition. The following study evaluated the components of the reading comprehension model and predictive skills in children and adolescents with dyslexia. 40 children and adolescents (8-13 years were divided in a Dyslexic Group (DG, 18 children, MA = 10.78, SD = 1.66 and Control Group (CG 22 children, MA = 10.59, SD = 1.86. All were students from the 2nd to 8th grade of elementary school and groups were equivalent in school grade, age, gender, and IQ. Oral and reading comprehension, word recognition, processing speed, picture naming, receptive vocabulary and phonological awareness were assessed. There were no group differences regarding the accuracy in oral and reading comprehension, phonological awareness, naming, and vocabulary scores. DG performed worse than the CG in word recognition (general score and orthographic confusion items and were slower in naming. Results corroborated the literature regarding word recognition and processing speed deficits in dyslexia. However, dyslexics can achieve normal scores on reading comprehension test. Data supports the importance of delimitation of different reading strategies embedded in the word recognition component. The role of processing speed in reading problems remain unclear.

  10. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    Directory of Open Access Journals (Sweden)

    Béla Fiser

    Full Text Available Non-reactive, comparative (2 × 1.2 μs molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule and hydroxyl radical (OH(•, guest molecule. From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(• complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels.

  11. A Novel Optical/digital Processing System for Pattern Recognition (United States)

    Boone, Bradley G.; Shukla, Oodaye B.


    This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network.

  12. The Coding of Biological Information: From Nucleotide Sequence to Protein Recognition (United States)

    Štambuk, Nikola

    The paper reviews the classic results of Swanson, Dayhoff, Grantham, Blalock and Root-Bernstein, which link genetic code nucleotide patterns to the protein structure, evolution and molecular recognition. Symbolic representation of the binary addresses defining particular nucleotide and amino acid properties is discussed, with consideration of: structure and metric of the code, direct correspondence between amino acid and nucleotide information, and molecular recognition of the interacting protein motifs coded by the complementary DNA and RNA strands.

  13. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space

    Directory of Open Access Journals (Sweden)

    Kan Li


    Full Text Available This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM speech processing as well as neuromorphic implementations based on spiking neural network (SNN, yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR regime.

  14. Lexical-Semantic Processing and Reading: Relations between Semantic Priming, Visual Word Recognition and Reading Comprehension (United States)

    Nobre, Alexandre de Pontes; de Salles, Jerusa Fumagalli


    The aim of this study was to investigate relations between lexical-semantic processing and two components of reading: visual word recognition and reading comprehension. Sixty-eight children from private schools in Porto Alegre, Brazil, from 7 to 12 years, were evaluated. Reading was assessed with a word/nonword reading task and a reading…

  15. Is Syntactic-Category Processing Obligatory in Visual Word Recognition? Evidence from Chinese (United States)

    Wong, Andus Wing-Kuen; Chen, Hsuan-Chih


    Three experiments were conducted to investigate how syntactic-category and semantic information is processed in visual word recognition. The stimuli were two-character Chinese words in which semantic and syntactic-category ambiguities were factorially manipulated. A lexical decision task was employed in Experiment 1, whereas a semantic relatedness…

  16. Using Regression to Measure Holistic Face Processing Reveals a Strong Link with Face Recognition Ability (United States)

    DeGutis, Joseph; Wilmer, Jeremy; Mercado, Rogelio J.; Cohan, Sarah


    Although holistic processing is thought to underlie normal face recognition ability, widely discrepant reports have recently emerged about this link in an individual differences context. Progress in this domain may have been impeded by the widespread use of subtraction scores, which lack validity due to their contamination with control condition…

  17. Representational Explanations of "Process" Dissociations in Recognition: The DRYAD Theory of Aging and Memory Judgments (United States)

    Benjamin, Aaron S.


    It is widely assumed that older adults suffer a deficit in the psychological processes that underlie remembering of contextual or source information. This conclusion is based in large part on empirical interactions, including disordinal ones, that reveal differential effects of manipulations of memory strength on recognition in young and old…

  18. A Habermasian Analysis of a Process of Recognition of Prior Learning for Health Care Assistants (United States)

    Sandberg, Fredrik


    This article discusses a process of recognition of prior learning for accreditation of prior experiential learning to qualify for course credits used in an adult in-service education program for health care assistants at the upper-secondary level in Sweden. The data are based on interviews and observations drawn from a field study, and Habermas's…

  19. Advanced Functional Nanomaterials for Biological Processes (United States)


    regeneration based on HA, gold nanoparticles, and graphene. We devised a one- step method in which Au and hydroxyapatite were used as a catalytic system in a...detection of cancer cells/nanomaterials in circulation.  We showed that graphitic materials can increase the osteogenesis of bone cells.  We finished...GCNFs) were produced by a single- step reduction process and used for the growth and differentiation of human adult stem cells. The nanomaterials were

  20. Banknote recognition: investigating processing and cognition framework using competitive neural network. (United States)

    Oyedotun, Oyebade K; Khashman, Adnan


    Humans are apt at recognizing patterns and discovering even abstract features which are sometimes embedded therein. Our ability to use the banknotes in circulation for business transactions lies in the effortlessness with which we can recognize the different banknote denominations after seeing them over a period of time. More significant is that we can usually recognize these banknote denominations irrespective of what parts of the banknotes are exposed to us visually. Furthermore, our recognition ability is largely unaffected even when these banknotes are partially occluded. In a similar analogy, the robustness of intelligent systems to perform the task of banknote recognition should not collapse under some minimum level of partial occlusion. Artificial neural networks are intelligent systems which from inception have taken many important cues related to structure and learning rules from the human nervous/cognition processing system. Likewise, it has been shown that advances in artificial neural network simulations can help us understand the human nervous/cognition system even furthermore. In this paper, we investigate three cognition hypothetical frameworks to vision-based recognition of banknote denominations using competitive neural networks. In order to make the task more challenging and stress-test the investigated hypotheses, we also consider the recognition of occluded banknotes. The implemented hypothetical systems are tasked to perform fast recognition of banknotes with up to 75 % occlusion. The investigated hypothetical systems are trained on Nigeria's Naira banknotes and several experiments are performed to demonstrate the findings presented within this work.

  1. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits

    Directory of Open Access Journals (Sweden)

    Jeroen J A Van Boxtel


    Full Text Available People with Autism Spectrum Disorder (ASD are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  2. Fuzzy method of recognition of high molecular substances in evidence-based biology (United States)

    Olevskyi, V. I.; Smetanin, V. T.; Olevska, Yu. B.


    Nowadays modern requirements to achieving reliable results along with high quality of researches put mathematical analysis methods of results at the forefront. Because of this, evidence-based methods of processing experimental data have become increasingly popular in the biological sciences and medicine. Their basis is meta-analysis, a method of quantitative generalization of a large number of randomized trails contributing to a same special problem, which are often contradictory and performed by different authors. It allows identifying the most important trends and quantitative indicators of the data, verification of advanced hypotheses and discovering new effects in the population genotype. The existing methods of recognizing high molecular substances by gel electrophoresis of proteins under denaturing conditions are based on approximate methods for comparing the contrast of electrophoregrams with a standard solution of known substances. We propose a fuzzy method for modeling experimental data to increase the accuracy and validity of the findings of the detection of new proteins.

  3. Supervised dimensionality reduction and contextual pattern recognition in medical image processing


    Loog, Marco


    The past few years have witnessed a significant increase in the number of supervised methods employed in diverse image processing tasks. Especially in medical image analysis the use of, for example, supervised shape and appearance modelling has increased considerably and has proven to be successful. This thesis focuses on applying supervised pattern recognition methods in medical image processing. We consider a local, pixel-based approach in which image segmentation, regression, and filtering...

  4. Looking at My Own Face: Visual Processing Strategies in Self–Other Face Recognition

    Directory of Open Access Journals (Sweden)

    Anya Chakraborty


    Full Text Available We live in an age of ‘selfies.’ Yet, how we look at our own faces has seldom been systematically investigated. In this study we test if the visual processing of the highly familiar self-face is different from other faces, using psychophysics and eye-tracking. This paradigm also enabled us to test the association between the psychophysical properties of self-face representation and visual processing strategies involved in self-face recognition. Thirty-three adults performed a self-face recognition task from a series of self-other face morphs with simultaneous eye-tracking. Participants were found to look longer at the lower part of the face for self-face compared to other-face. Participants with a more distinct self-face representation, as indexed by a steeper slope of the psychometric response curve for self-face recognition, were found to look longer at upper part of the faces identified as ‘self’ vs. those identified as ‘other’. This result indicates that self-face representation can influence where we look when we process our own vs. others’ faces. We also investigated the association of autism-related traits with self-face processing metrics since autism has previously been associated with atypical self-processing. The study did not find any self-face specific association with autistic traits, suggesting that autism-related features may be related to self-processing in a domain specific manner.

  5. Biological process of soil improvement in civil engineering: A review


    Murtala Umar; Khairul Anuar Kassim; Kenny Tiong Ping Chiet


    The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically co...

  6. Fast vision through frameless event-based sensing and convolutional processing: application to texture recognition. (United States)

    Perez-Carrasco, Jose Antonio; Acha, Begona; Serrano, Carmen; Camunas-Mesa, Luis; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe


    Address-event representation (AER) is an emergent hardware technology which shows a high potential for providing in the near future a solid technological substrate for emulating brain-like processing structures. When used for vision, AER sensors and processors are not restricted to capturing and processing still image frames, as in commercial frame-based video technology, but sense and process visual information in a pixel-level event-based frameless manner. As a result, vision processing is practically simultaneous to vision sensing, since there is no need to wait for sensing full frames. Also, only meaningful information is sensed, communicated, and processed. Of special interest for brain-like vision processing are some already reported AER convolutional chips, which have revealed a very high computational throughput as well as the possibility of assembling large convolutional neural networks in a modular fashion. It is expected that in a near future we may witness the appearance of large scale convolutional neural networks with hundreds or thousands of individual modules. In the meantime, some research is needed to investigate how to assemble and configure such large scale convolutional networks for specific applications. In this paper, we analyze AER spiking convolutional neural networks for texture recognition hardware applications. Based on the performance figures of already available individual AER convolution chips, we emulate large scale networks using a custom made event-based behavioral simulator. We have developed a new event-based processing architecture that emulates with AER hardware Manjunath's frame-based feature recognition software algorithm, and have analyzed its performance using our behavioral simulator. Recognition rate performance is not degraded. However, regarding speed, we show that recognition can be achieved before an equivalent frame is fully sensed and transmitted.

  7. Impaired visual processing preceding image recognition in Parkinson's disease patients with visual hallucinations. (United States)

    Meppelink, Anne Marthe; de Jong, Bauke M; Renken, Remco; Leenders, Klaus L; Cornelissen, Frans W; van Laar, Teus


    Impaired visual processing may play a role in the pathophysiology of visual hallucinations in Parkinson's disease. In order to study involved neuronal circuitry, we assessed cerebral activation patterns both before and during recognition of gradually revealed images in Parkinson's disease patients with visual hallucinations (PDwithVHs), Parkinson's disease patients without visual hallucinations (PDnonVHs) and healthy controls. We hypothesized that, before image recognition, PDwithVHs would show reduced bottom-up visual activation in occipital-temporal areas and increased (pre)frontal activation, reflecting increased top-down demand. Overshoot of the latter has been proposed to play a role in generating visual hallucinations. Nine non-demented PDwithVHs, 14 PDnonVHs and 13 healthy controls were scanned on a 3 Tesla magnetic resonance imaging scanner. Static images of animals and objects gradually appearing out of random visual noise were used in an event-related design paradigm. Analyses were time-locked on the moment of image recognition, indicated by the subjects' button-press. Subjects were asked to press an additional button on a colour-changing fixation dot, to keep attention and motor action constant and to assess reaction times. Data pre-processing and statistical analysis were performed with statistical parametric mapping-5 software. Bilateral activation of the fusiform and lingual gyri was seen during image recognition in all groups (P image recognition, PDwithVHs showed reduced activation of the lateral occipital cortex, compared with both PDnonVHs and healthy controls. In addition, reduced activation of extrastriate temporal visual cortices was seen just before image recognition in PDwithVHs. The association between increased vulnerability for visual hallucinations in Parkinson's disease and impaired visual object processing in occipital and temporal extrastriate visual cortices supported the hypothesis of impaired bottom-up visual processing in PDwith

  8. A word language model based contextual language processing on Chinese character recognition (United States)

    Huang, Chen; Ding, Xiaoqing; Chen, Yan


    The language model design and implementation issue is researched in this paper. Different from previous research, we want to emphasize the importance of n-gram models based on words in the study of language model. We build up a word based language model using the toolkit of SRILM and implement it for contextual language processing on Chinese documents. A modified Absolute Discount smoothing algorithm is proposed to reduce the perplexity of the language model. The word based language model improves the performance of post-processing of online handwritten character recognition system compared with the character based language model, but it also increases computation and storage cost greatly. Besides quantizing the model data non-uniformly, we design a new tree storage structure to compress the model size, which leads to an increase in searching efficiency as well. We illustrate the set of approaches on a test corpus of recognition results of online handwritten Chinese characters, and propose a modified confidence measure for recognition candidate characters to get their accurate posterior probabilities while reducing the complexity. The weighted combination of linguistic knowledge and candidate confidence information proves successful in this paper and can be further developed to achieve improvements in recognition accuracy.

  9. High-order hidden Markov model for piecewise linear processes and applications to speech recognition. (United States)

    Lee, Lee-Min; Jean, Fu-Rong


    The hidden Markov models have been widely applied to systems with sequential data. However, the conditional independence of the state outputs will limit the output of a hidden Markov model to be a piecewise constant random sequence, which is not a good approximation for many real processes. In this paper, a high-order hidden Markov model for piecewise linear processes is proposed to better approximate the behavior of a real process. A parameter estimation method based on the expectation-maximization algorithm was derived for the proposed model. Experiments on speech recognition of noisy Mandarin digits were conducted to examine the effectiveness of the proposed method. Experimental results show that the proposed method can reduce the recognition error rate compared to a baseline hidden Markov model.

  10. Biological process of soil improvement in civil engineering: A review

    Directory of Open Access Journals (Sweden)

    Murtala Umar


    Full Text Available The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically controlled and biologically induced mineralization, were also discussed. Environmental and other factors that may be encountered in situ during microbially induced calcite precipitation (MICP and their influences on the process were identified and presented. Improvements in the engineering properties of soil such as strength/stiffness and permeability as evaluated in some studies were explored. Potential applications of the process in geotechnical engineering and the challenges of field application of the process were identified.

  11. Image Processing Strategies Based on a Visual Saliency Model for Object Recognition Under Simulated Prosthetic Vision. (United States)

    Wang, Jing; Li, Heng; Fu, Weizhen; Chen, Yao; Li, Liming; Lyu, Qing; Han, Tingting; Chai, Xinyu


    Retinal prostheses have the potential to restore partial vision. Object recognition in scenes of daily life is one of the essential tasks for implant wearers. Still limited by the low-resolution visual percepts provided by retinal prostheses, it is important to investigate and apply image processing methods to convey more useful visual information to the wearers. We proposed two image processing strategies based on Itti's visual saliency map, region of interest (ROI) extraction, and image segmentation. Itti's saliency model generated a saliency map from the original image, in which salient regions were grouped into ROI by the fuzzy c-means clustering. Then Grabcut generated a proto-object from the ROI labeled image which was recombined with background and enhanced in two ways--8-4 separated pixelization (8-4 SP) and background edge extraction (BEE). Results showed that both 8-4 SP and BEE had significantly higher recognition accuracy in comparison with direct pixelization (DP). Each saliency-based image processing strategy was subject to the performance of image segmentation. Under good and perfect segmentation conditions, BEE and 8-4 SP obtained noticeably higher recognition accuracy than DP, and under bad segmentation condition, only BEE boosted the performance. The application of saliency-based image processing strategies was verified to be beneficial to object recognition in daily scenes under simulated prosthetic vision. They are hoped to help the development of the image processing module for future retinal prostheses, and thus provide more benefit for the patients. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Directory of Open Access Journals (Sweden)

    Eric Young


    Full Text Available The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1 the process units and associated streams of the central dogma, (2 the intrinsic regulatory mechanisms, and (3 the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  13. Synthetic biology: tools to design, build, and optimize cellular processes. (United States)

    Young, Eric; Alper, Hal


    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  14. An introduction to stochastic processes with applications to biology

    CERN Document Server

    Allen, Linda J S


    An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes.New to the Second EditionA new chapter on stochastic differential equations th

  15. Students' Learning Activities While Studying Biological Process Diagrams (United States)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert


    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal…

  16. Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning. (United States)

    Chen, Chien-Chang; Juan, Hung-Hui; Tsai, Meng-Yuan; Lu, Henry Horng-Shing


    By introducing the methods of machine learning into the density functional theory, we made a detour for the construction of the most probable density function, which can be estimated by learning relevant features from the system of interest. Using the properties of universal functional, the vital core of density functional theory, the most probable cluster numbers and the corresponding cluster boundaries in a studying system can be simultaneously and automatically determined and the plausibility is erected on the Hohenberg-Kohn theorems. For the method validation and pragmatic applications, interdisciplinary problems from physical to biological systems were enumerated. The amalgamation of uncharged atomic clusters validated the unsupervised searching process of the cluster numbers and the corresponding cluster boundaries were exhibited likewise. High accurate clustering results of the Fisher's iris dataset showed the feasibility and the flexibility of the proposed scheme. Brain tumor detections from low-dimensional magnetic resonance imaging datasets and segmentations of high-dimensional neural network imageries in the Brainbow system were also used to inspect the method practicality. The experimental results exhibit the successful connection between the physical theory and the machine learning methods and will benefit the clinical diagnoses.

  17. Is metabolic rate a universal 'pacemaker' for biological processes? (United States)

    Glazier, Douglas S


    A common, long-held belief is that metabolic rate drives the rates of various biological, ecological and evolutionary processes. Although this metabolic pacemaker view (as assumed by the recent, influential 'metabolic theory of ecology') may be true in at least some situations (e.g. those involving moderate temperature effects or physiological processes closely linked to metabolism, such as heartbeat and breathing rate), it suffers from several major limitations, including: (i) it is supported chiefly by indirect, correlational evidence (e.g. similarities between the body-size and temperature scaling of metabolic rate and that of other biological processes, which are not always observed) - direct, mechanistic or experimental support is scarce and much needed; (ii) it is contradicted by abundant evidence showing that various intrinsic and extrinsic factors (e.g. hormonal action and temperature changes) can dissociate the rates of metabolism, growth, development and other biological processes; (iii) there are many examples where metabolic rate appears to respond to, rather than drive the rates of various other biological processes (e.g. ontogenetic growth, food intake and locomotor activity); (iv) there are additional examples where metabolic rate appears to be unrelated to the rate of a biological process (e.g. ageing, circadian rhythms, and molecular evolution); and (v) the theoretical foundation for the metabolic pacemaker view focuses only on the energetic control of biological processes, while ignoring the importance of informational control, as mediated by various genetic, cellular, and neuroendocrine regulatory systems. I argue that a comprehensive understanding of the pace of life must include how biological activities depend on both energy and information and their environmentally sensitive interaction. This conclusion is supported by extensive evidence showing that hormones and other regulatory factors and signalling systems coordinate the processes of

  18. Hidden Markov processes theory and applications to biology

    CERN Document Server

    Vidyasagar, M


    This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are t

  19. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process (United States)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.


    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  20. Neural correlates of the self-reference effect: evidence from evaluation and recognition processes. (United States)

    Yaoi, Ken; Osaka, Mariko; Osaka, Naoyuki


    The self-reference effect (SRE) is defined as better recall or recognition performance when the memorized materials refer to the self. Recently, a number of neuroimaging studies using self-referential and other-referential tasks have reported that self- and other-referential judgments basically show greater activation in common brain regions, specifically in the medial prefrontal cortex (MPFC) when compared with nonmentalizing judgments, but that a ventral-to-dorsal gradient in MPFC emerges from a direct comparison between self- and other-judgments. However, most of these previous studies could not provide an adequate explanation for the neural basis of SRE because they did not directly compare brain activation for recognition/recall of the words referenced to the self with another person. Here, we used an event-related functional magnetic resonance imaging (fMRI) that measured brain activity during processing of references to the self and another, and for recognition of self and other referenced words. Results from the fMRI evaluation task indicated greater activation in ventromedial prefrontal cortex (VMPFC) in the self-referential condition. While in the recognition task, VMPFC, posterior cingulate cortex (PCC) and bilateral angular gyrus (AG) showed greater activation when participants correctly recognized self-referenced words versus other-referenced words. These data provide evidence that the self-referenced words evoked greater activation in the self-related region (VMPFC) and memory-related regions (PCC and AG) relative to another person in the retrieval phase, and that the words remained as a stronger memory trace that supports recognition.

  1. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Loubette, N.; Junker, M.


    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  2. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker


    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  3. Tracking cognitive processing stages with MEG : A spatio-temporal model of associative recognition in the brain

    NARCIS (Netherlands)

    Borst, Jelmer P; Ghuman, Avniel S; Anderson, John R


    In this study, we investigated the cognitive processing stages underlying associative recognition using MEG. Over the last four decades, a model of associative recognition has been developed in the ACT-R cognitive architecture. This model was first exclusively based on behavior, but was later

  4. Early processing of orthographic language membership information in bilingual visual word recognition: Evidence from ERPs. (United States)

    Hoversten, Liv J; Brothers, Trevor; Swaab, Tamara Y; Traxler, Matthew J


    For successful language comprehension, bilinguals often must exert top-down control to access and select lexical representations within a single language. These control processes may critically depend on identification of the language to which a word belongs, but it is currently unclear when different sources of such language membership information become available during word recognition. In the present study, we used event-related potentials to investigate the time course of influence of orthographic language membership cues. Using an oddball detection paradigm, we observed early neural effects of orthographic bias (Spanish vs. English orthography) that preceded effects of lexicality (word vs. pseudoword). This early orthographic pop-out effect was observed for both words and pseudowords, suggesting that this cue is available prior to full lexical access. We discuss the role of orthographic bias for models of bilingual word recognition and its potential role in the suppression of nontarget lexical information. Published by Elsevier Ltd.

  5. Recognition Memory and Prefrontal Cortex: Dissociating Recollection and Familiarity Processes Using rTMS (United States)

    Turriziani, Patrizia; Oliveri, Massimiliano; Salerno, Silvia; Costanzo, Floriana; Koch, Giacomo; Caltagirone, Carlo; Carlesimo, Giovanni Augusto


    Recognition memory can be supported by both the assessment of the familiarity of an item and by the recollection of the context in which an item was encountered. The neural substrates of these memory processes are controversial. To address these issues we applied repetitive transcranial magnetic stimulation (rTMS) over the right and left dorsolateral prefrontal cortex (DLPFC) of healthy subjects performing a remember/know task. rTMS disrupted familiarity judgments when applied before encoding of stimuli over both right and left DLPFC. rTMS disrupted recollection when applied before encoding of stimuli over the right DLPFC. These findings suggest that the DLPFC plays a critical role in recognition memory based on familiarity as well as recollection. PMID:18413912

  6. Modeling the Process of Color Image Recognition Using ART2 Neural Network

    Directory of Open Access Journals (Sweden)

    Todor Petkov


    Full Text Available This paper thoroughly describes the use of unsupervised adaptive resonance theory ART2 neural network for the purposes of image color recognition of x-ray images and images taken by nuclear magnetic resonance. In order to train the network, the pixel values of RGB colors are regarded as learning vectors with three values, one for red, one for green and one for blue were used. At the end the trained network was tested by the values of pictures and determines the design, or how to visualize the converted picture. As a result we had the same pictures with colors according to the network. Here we use the generalized net to prepare a model that describes the process of the color image recognition.

  7. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition. (United States)

    Zhang, Yong; Li, Peng; Jin, Yingyezhe; Choe, Yoonsuck


    This paper presents a bioinspired digital liquid-state machine (LSM) for low-power very-large-scale-integration (VLSI)-based machine learning applications. To the best of the authors' knowledge, this is the first work that employs a bioinspired spike-based learning algorithm for the LSM. With the proposed online learning, the LSM extracts information from input patterns on the fly without needing intermediate data storage as required in offline learning methods such as ridge regression. The proposed learning rule is local such that each synaptic weight update is based only upon the firing activities of the corresponding presynaptic and postsynaptic neurons without incurring global communications across the neural network. Compared with the backpropagation-based learning, the locality of computation in the proposed approach lends itself to efficient parallel VLSI implementation. We use subsets of the TI46 speech corpus to benchmark the bioinspired digital LSM. To reduce the complexity of the spiking neural network model without performance degradation for speech recognition, we study the impacts of synaptic models on the fading memory of the reservoir and hence the network performance. Moreover, we examine the tradeoffs between synaptic weight resolution, reservoir size, and recognition performance and present techniques to further reduce the overhead of hardware implementation. Our simulation results show that in terms of isolated word recognition evaluated using the TI46 speech corpus, the proposed digital LSM rivals the state-of-the-art hidden Markov-model-based recognizer Sphinx-4 and outperforms all other reported recognizers including the ones that are based upon the LSM or neural networks.

  8. The study on the method of image recognition and processing for digital nuclear signals

    International Nuclear Information System (INIS)

    Wang Dongyang; Zhang Ruanyu; Wang Peng; Yan Yangyang; Hao Dejian


    Since there are many limits in the method of the traditional DSP system, a new method of digital nuclear signal processing based on the digital image recognition is presented in this paper. This method converts the time-series digital nuclear signal into the pulse image with adjustable pixels. A new principle and method have been taken to develop the SNR of the digital nuclear signal with the theory and method of the digital image processing. A method called ISC is presented, by which it is convenient to extract the template parameters. (authors)

  9. Characterizing cognitive aging of recognition memory and related processes in animal models and in humans

    Directory of Open Access Journals (Sweden)

    Carol A Barnes


    Full Text Available Analyses of complex behaviors across the lifespan of animals can reveal the brain regions that are impacted by the normal aging process, thereby, elucidating potential therapeutic targets. Recent data from rats, monkeys and humans converge, all indicating that recognition memory and complex visual perception are impaired in advanced age. These cognitive processes are also disrupted in animals with lesions of the perirhinal cortex, indicating that the the functional integrity of this structure is disrupted in old age. This current review summarizes these data, and highlights current methodologies for assessing perirhinal cortex-dependent behaviors across the lifespan.

  10. Boolean Models of Biological Processes Explain Cascade-Like Behavior (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen


    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either “on” or “off” and along with the molecules interact with each other, their individual status changes from “on” to “off” or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes. PMID:26821940

  11. A biologically plausible transform for visual recognition that is invariant to translation, scale and rotation

    Directory of Open Access Journals (Sweden)

    Pavel eSountsov


    Full Text Available Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled or rotated.

  12. Ultraperformance liquid chromatography-mass spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets. (United States)

    Zhang, Ai-hua; Sun, Hui; Han, Ying; Yan, Guang-li; Yuan, Ye; Song, Gao-chen; Yuan, Xiao-xia; Xie, Ning; Wang, Xi-jun


    Metabolomics is the study of metabolic changes in biological systems and provides the small molecule fingerprints related to the disease. Extracting biomedical information from large metabolomics data sets by multivariate data analysis is of considerable complexity. Therefore, more efficient and optimizing metabolomics data processing technologies are needed to improve mass spectrometry applications in biomarker discovery. Here, we report the findings of urine metabolomic investigation of hepatitis C virus (HCV) patients by high-throughput ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) coupled with pattern recognition methods (principal component analysis, partial least-squares, and OPLS-DA) and network pharmacology. A total of 20 urinary differential metabolites (13 upregulated and 7 downregulated) were identified and contributed to HCV progress, involve several key metabolic pathways such as taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, histidine metabolism, arginine and proline metabolism, and so forth. Metabolites identified through metabolic profiling may facilitate the development of more accurate marker algorithms to better monitor disease progression. Network analysis validated close contact between these metabolites and implied the importance of the metabolic pathways. Mapping altered metabolites to KEGG pathways identified alterations in a variety of biological processes mediated through complex networks. These findings may be promising to yield a valuable and noninvasive tool that insights into the pathophysiology of HCV and to advance the early diagnosis and monitor the progression of disease. Overall, this investigation illustrates the power of the UPLC-MS platform combined with the pattern recognition and network analysis methods that can engender new insights into HCV pathobiology.

  13. Parallel effects of processing fluency and positive affect on familiarity-based recognition decisions for faces

    Directory of Open Access Journals (Sweden)

    Devin eDuke


    Full Text Available According to attribution models of familiarity assessment, people can use a heuristic in recognition-memory decisions, in which they attribute the subjective ease of processing of a memory probe to a prior encounter with the stimulus in question. Research in social cognition suggests that experienced positive affect may be the proximal cue that signals fluency in various experimental contexts. In the present study, we compared the effects of positive affect and fluency on recognition-memory judgments for faces with neutral emotional expression. We predicted that if positive affect is indeed the critical cue that signals processing fluency at retrieval, then its manipulation should produce effects that closely mirror those produced by manipulations of processing fluency. In two experiments, we employed a masked-priming procedure in combination with a Remember-Know paradigm that aimed to separate familiarity- from recollection-based memory decisions. In addition, participants performed a prime-discrimination task that allowed us to take inter-individual differences in prime awareness into account. We found highly similar effects of our priming manipulations of processing fluency and of positive affect. In both cases, the critical effect was specific to familiarity-based recognition responses. Moreover, in both experiments it was reflected in a shift towards a more liberal response bias, rather than in changed discrimination. Finally, in both experiments, the effect was found to be related to prime awareness; it was present only in participants who reported a lack of such awareness on the prime-discrimination task. These findings add to a growing body of evidence that points not only to a role of fluency, but also of positive affect in familiarity assessment. As such they are consistent with the idea that fluency itself may be hedonically marked.

  14. A unique memory process modulated by emotion underpins successful odor recognition and episodic retrieval in humans (United States)

    Saive, Anne-Lise; Royet, Jean-Pierre; Ravel, Nadine; Thévenet, Marc; Garcia, Samuel; Plailly, Jane


    We behaviorally explore the link between olfaction, emotion and memory by testing the hypothesis that the emotion carried by odors facilitates the memory of specific unique events. To investigate this idea, we used a novel behavioral approach inspired by a paradigm developed by our team to study episodic memory in a controlled and as ecological as possible way in humans. The participants freely explored three unique and rich laboratory episodes; each episode consisted of three unfamiliar odors (What) positioned at three specific locations (Where) within a visual context (Which context). During the retrieval test, which occurred 24–72 h after the encoding, odors were used to trigger the retrieval of the complex episodes. The participants were proficient in recognizing the target odors among distractors and retrieving the visuospatial context in which they were encountered. The episodic nature of the task generated high and stable memory performances, which were accompanied by faster responses and slower and deeper breathing. Successful odor recognition and episodic memory were not related to differences in odor investigation at encoding. However, memory performances were influenced by the emotional content of the odors, regardless of odor valence, with both pleasant and unpleasant odors generating higher recognition and episodic retrieval than neutral odors. Finally, the present study also suggested that when the binding between the odors and the spatio-contextual features of the episode was successful, the odor recognition and the episodic retrieval collapsed into a unique memory process that began as soon as the participants smelled the odors. PMID:24936176

  15. A unique memory process modulated by emotion underpins successful odor recognition and episodic retrieval in humans

    Directory of Open Access Journals (Sweden)

    Anne-Lise eSaive


    Full Text Available We behaviorally explore the link between olfaction, emotion and memory by testing the hypothesis that the emotion carried by odors facilitates the memory of specific unique events. To investigate this idea, we used a novel behavioral approach inspired by a paradigm developed by our team to study episodic memory in a controlled and as ecological as possible way in humans. The participants freely explored three unique and rich laboratory episodes; each episode consisted of three unfamiliar odors (What positioned at three specific locations (Where within a visual context (Which context. During the retrieval test, which occurred 24 to 72 hours after the encoding, odors were used to trigger the retrieval of the complex episodes. The participants were proficient in recognizing the target odors among distractors and retrieving the visuospatial context in which they were encountered. The episodic nature of the task generated high and stable memory performances, which were accompanied by faster responses and slower and deeper breathing. Successful odor recognition and episodic memory were not related to differences in odor investigation at encoding. However, memory performances were influenced by the emotional content of the odors, regardless of odor valence, with both pleasant and unpleasant odors generating higher recognition and episodic retrieval than neutral odors. Finally, the present study also suggested that when the binding between the odors and the spatio-contextual features of the episode was successful, the odor recognition and the episodic retrieval collapsed into a unique memory process that began as soon as the participants smelled the odors.

  16. Cancer systems biology: signal processing for cancer research (United States)

    Yli-Harja, Olli; Ylipää, Antti; Nykter, Matti; Zhang, Wei


    In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts. PMID:21439242


    An innovative, cost-effective, biological treatment process has been designed by MSE Technology Applications, Inc. to treat acid mine drainage (AMD). A pilot-scale demonstration is being conducted under the Mine Waste Technology Program using water flowing from an abandoned mine ...

  18. Coupling carbon nanotubes through DNA linker using a biological recognition complex (United States)

    Goux-Capes, L.; Filoramo, A.; Cote, D.; Bourgoin, J.-Ph.; Patillon, J.-N.


    We present a simple and versatile method for linking single wall carbon nanotubes (SWNT) together through DNA by non-covalent chemistry using streptavidin-biotin recognition complex. Streptavidin coated SWNTs are reacted with biotin or bis-biotin ended DNA double strands leading to SWNT-DNA and SWNT-DNA-SWNT adducts in high yield. This method avoids strong acidic treatment of SWNTs prior to functionalization as usually required in covalent routes. Complementary characterizations by gel electrophoresis and AFM demonstrated the efficiency of the present binding method. In addition, SWNTs bound to DNA can be aligned on a substrate using the combing properties of DNA strands, bringing a new tool into the toolkit for self-assembling SWNTs onto surfaces.

  19. Non-Covalent Binding of DNA to Carbon Nanotubes Controlled by Biological Recognition Complex (United States)

    Goux-Capes, Laurence; Filoramo, Arianna; Cote, Denis; Valentin, Emmanuel; Bourgoin, Jean-Philippe; Patillon, Jean-Nöel


    Single wall carbon nanotubes (SWNTs) occupy a special place within molecular electronics. Indeed, they exist as semiconducting or metallic wires and have been used to demonstrate molecular devices like transistors, diodes or SET (single electron transistor). However, the future of this class of SWNT-based devices is strictly related to the development of a bottom-up self-assembly technique. The exceptional recognition properties of DNA molecule make it an ideal candidate for this task. Here, we describe a non-covalent method to connect carbon nanotubes to DNA strands using the streptavidin/biotin complex. Control experiments show that in absence of biotin, the DNA strand do not bind to SWNT. The binding of SWNT to DNA strand has also been carefully checked by washing experiments, showing the strength of the DNA anchorage on SWNTs. Combining this approach with molecular combing enable us to align nanotubes on substrate.

  20. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan


    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  1. The Prototype of Indicators of a Responsive Partner Shapes Information Processing: A False Recognition Study. (United States)

    Turan, Bulent


    When judging whether a relationship partner can be counted on to "be there" when needed, people may draw upon knowledge structures to process relevant information. We examined one such knowledge structure using the prototype methodology: indicators of a partner who is likely to be there when needed. In the first study (N = 91), the structure, content, and reliability of the prototype of indicators were examined. Then, using a false recognition study (N = 77), we demonstrated that once activated, the prototype of indicators of a partner who is likely to be there when needed affects information processing. Thus, the prototype of indicators may shape how people process support-relevant information in everyday life, affecting relationship outcomes. Using this knowledge structure may help a person process relevant information quickly and with cognitive economy. However, it may also lead to biases in judgments in certain situations.


    Directory of Open Access Journals (Sweden)

    Mirela NICHITA


    Full Text Available Consistent with the Financial Reporting Standards Board's international convergence and harmonization policy it is proposed that a new accounting regime will prescribe the financial reporting practice and minimum disclosure requirements for agricultural activities, including the fair value of biological assets. In any financial report, the inclusion of biological assets may confuse the reality of the income profit and the wealth profit. There are many reasons it may provide misleading figures, the most obvious would be because the entity may have reported the value of heritage properties that do not actually generate any income but rather they are properties, which actually generate expenses for the entity, for example in maintenance costs. For any regime that requires entities to account and report on biological assets there should be a clear classification system that takes into account the different types of ownership structures in a society. Therefore in Romania, it is important that any financial reporting regime on biological assets should provide for the difference between business assets and cultural assets.

  3. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina


    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  4. Automatic solar feature detection using image processing and pattern recognition techniques (United States)

    Qu, Ming

    The objective of the research in this dissertation is to develop a software system to automatically detect and characterize solar flares, filaments and Corona Mass Ejections (CMEs), the core of so-called solar activity. These tools will assist us to predict space weather caused by violent solar activity. Image processing and pattern recognition techniques are applied to this system. For automatic flare detection, the advanced pattern recognition techniques such as Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Support Vector Machine (SVM) are used. By tracking the entire process of flares, the motion properties of two-ribbon flares are derived automatically. In the applications of the solar filament detection, the Stabilized Inverse Diffusion Equation (SIDE) is used to enhance and sharpen filaments; a new method for automatic threshold selection is proposed to extract filaments from background; an SVM classifier with nine input features is used to differentiate between sunspots and filaments. Once a filament is identified, morphological thinning, pruning, and adaptive edge linking methods are applied to determine filament properties. Furthermore, a filament matching method is proposed to detect filament disappearance. The automatic detection and characterization of flares and filaments have been successfully applied on Halpha full-disk images that are continuously obtained at Big Bear Solar Observatory (BBSO). For automatically detecting and classifying CMEs, the image enhancement, segmentation, and pattern recognition techniques are applied to Large Angle Spectrometric Coronagraph (LASCO) C2 and C3 images. The processed LASCO and BBSO images are saved to file archive, and the physical properties of detected solar features such as intensity and speed are recorded in our database. Researchers are able to access the solar feature database and analyze the solar data efficiently and effectively. The detection and characterization system greatly improves

  5. Is nanotechnology the key to unravel and engineer biological processes? (United States)

    Navarro, Melba; Planell, Josep A


    Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.

  6. Classical and spatial stochastic processes with applications to biology

    CERN Document Server

    Schinazi, Rinaldo B


    The revised and expanded edition of this textbook presents the concepts and applications of random processes with the same illuminating simplicity as its first edition, but with the notable addition of substantial modern material on biological modeling. While still treating many important problems in fields such as engineering and mathematical physics, the book also focuses on the highly relevant topics of cancerous mutations, influenza evolution, drug resistance, and immune response. The models used elegantly apply various classical stochastic models presented earlier in the text, and exercises are included throughout to reinforce essential concepts. The second edition of Classical and Spatial Stochastic Processes is suitable as a textbook for courses in stochastic processes at the advanced-undergraduate and graduate levels, or as a self-study resource for researchers and practitioners in mathematics, engineering, physics, and mathematical biology. Reviews of the first edition: An appetizing textbook for a f...

  7. Effect of physical properties of nanogel particles on the kinetic constants of multipoint protein recognition process. (United States)

    Nakamoto, Masahiko; Hoshino, Yu; Miura, Yoshiko


    We report the effect of physical properties, such as flexibility and polymer density, of nanogel particles (NPs) on the association/dissociation rates constant (kon and koff) and equilibrium constants (Kd) of multipoint protein recognition process. NPs having different flexibilities and densities at 25 °C were synthesized by tuning cross-linking degrees and the volume phase transition (VPT) temperature. Rate constants were quantified by analyzing time course of protein binding process on NPs monitored by a quartz crystal microbalance (QCM). Both kon and koff of swollen phase NPs increased with decreasing cross-linking degree, whereas cross-linking degree did not affect kon and koff of the collapsed phase NPs, indicating that polymer density of NPs governs kon and koff. The results also suggest that the mechanical flexibility of NPs, defined as the Young's modulus, does not always have crucial roles in the multipoint molecular recognition process. On the other hand, Kd was independent of the cross-linking degree and depended only on the phase of NPs, indicating that molecular-scale flexibility, such as side-chain and segmental-mode mobility, as well as the conformation change, of polymer chains assist the formation of stable binding sites in NPs. Our results reveal the rationale for designing NPs having desired affinity and binding kinetics to target molecules.

  8. Parallel processing and VLSI architectures for syntactic pattern recognition and image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Y.T.P.


    Computation speed of syntatic pattern recognition and image analysis algorithms have always been regarded as slow. Several parallel processing techniques are proposed, especially for the syntatic analyzer, to speed up the computation. The distance calculations between strings and trees have been implemented on three different parallel processing systems, namely, the SIMD system, the dedicated SIMD system and the MIMD system. The results show that distance calculation can be sped up when it is implemented on a parallel computer. Earley's algorithm has wide applications in many fields. A parallel Earley's algorithm is proposed, and the recognition algorithm is implemented on a VLSI architecture, the parse extraction algorithm and the complete algorithm on a processor array. This parallel execution only takes linear time. Simulation results prove the correctness of this design. The same Earley's algorithm has been extended to process erroneous input data. This error-correcting syntatic recognizer has also been implemented on a VLSI system. The results from the simulation not only prove the correctness of this design, but also indicate that this recognizer can be used to classify patterns.

  9. iBiology: communicating the process of science. (United States)

    Goodwin, Sarah S


    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (, a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (

  10. Electrophysiological signals associated with fluency of different levels of processing reveal multiple contributions to recognition memory. (United States)

    Li, Bingbing; Taylor, Jason R; Wang, Wei; Gao, Chuanji; Guo, Chunyan


    Processing fluency appears to influence recognition memory judgements, and the manipulation of fluency, if misattributed to an effect of prior exposure, can result in illusory memory. Although it is well established that fluency induced by masked repetition priming leads to increased familiarity, manipulations of conceptual fluency have produced conflicting results, variously affecting familiarity or recollection. Some recent studies have found that masked conceptual priming increases correct recollection (Taylor & Henson, 2012), and the magnitude of this behavioural effect correlates with analogous fMRI BOLD priming effects in brain regions associated with recollection (Taylor, Buratto, & Henson, 2013). However, the neural correlates and time-courses of masked repetition and conceptual priming were not compared directly in previous studies. The present study used event-related potentials (ERPs) to identify and compare the electrophysiological correlates of masked repetition and conceptual priming and investigate how they contribute to recognition memory. Behavioural results were consistent with previous studies: Repetition primes increased familiarity, whereas conceptual primes increased correct recollection. Masked repetition and conceptual priming also decreased the latency of late parietal component (LPC). Masked repetition priming was associated with an early P200 effect and a later parietal maximum N400 effect, whereas masked conceptual priming was only associated with a central-parietal maximum N400 effect. In addition, the topographic distributions of the N400 repetition priming and conceptual priming effects were different. These results suggest that fluency at different levels of processing is associated with different ERP components, and contributes differentially to subjective recognition memory experiences. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Biological signal processing with a genetic toggle switch.

    Directory of Open Access Journals (Sweden)

    Patrick Hillenbrand

    Full Text Available Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems.

  12. Biological signal processing with a genetic toggle switch. (United States)

    Hillenbrand, Patrick; Fritz, Georg; Gerland, Ulrich


    Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems.

  13. An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network (United States)

    Su, Zhongqing; Ye, Lin


    The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.

  14. 100 years after Smoluchowski: stochastic processes in cell biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z


    100 years after Smoluchowski introduced his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from a large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here Smoluchowski’s approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation. (topical review)

  15. The critical role of the Poison Center in the recognition, mitigation and management of biological and chemical terrorism. (United States)

    Krenzelok, E P


    Nuclear, biological and chemical (NBC) terrorism counter measures are a major priority with healthcare providers, municipalities, states and the federal government. Significant resources are being invested to enhance civilian domestic preparedness through training in anticipation of a NBC terroristic incident. The key to a successful response, in addition to education, is integration of efforts as well as thorough communication and understanding the role that each agency would play in an actual or impending NBC incident. In anticipation of a NBC event, a regional counter-terrorism task force was established in southwestern Pennsylvania to identify resources, establish responsibilities and coordinate the response to NBC terrorism. Members of the task force include first responders, hazmat, law enforcement (local, regional, national), government officials, health departments, the statewide emergency management agency and the regional poison information center. The poison center is one of several critical components of a regional counter-terrorism response force. It can conduct active and passive toxicosurveillance and identify sentinel events. To be responsive, the poison center staff must be knowledgeable about biological and chemical agents. The development of basic protocols and a standardized staff education program is essential. The use of the RaPID-T (R-recognition, P-protection, D-detection, T-triage/treatment) course can provide basic staff education for responding to this important but rare consultation to the poison center.

  16. Influence of different natural physical fields on biological processes (United States)

    Mashinsky, A. L.


    In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus ( Proteus vulgaris), spatial disorientation in coleoptiles of Wheat ( Triticum aestivum) and Pea ( Pisum sativum) seedlings, mutational changes in Crepis ( Crepis capillaris) and Arabidopsis ( Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.

  17. Auto-recognition of surfaces and auto-generation of material removal volume for finishing process (United States)

    Kataraki, Pramod S.; Salman Abu Mansor, Mohd


    Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.

  18. Mineralization associated geo-processes recognition by multifractal/fractal filtering theory (United States)

    Wang, Wenlei; Cheng, Qiuming; Zhang, Shengyuan; Zhao, Jie


    Geo-processes dominating the formation of mineral deposits are often various and cascaded. Recent progresses in the global geochemical mapping project and spatial analysis techniques enhance utilization of geochemical exploratory datasets to investigate mineralization and its associated geo-processes. Techniques including principal component analysis (PCA) and extended PCA have been considered as suitable treatments to characterize geo-processes. In our former studies, PCA has been successfully employed to investigate ore-controlling geo-processes. The resulting characterized geo-variables were further integrated to indicate mineralization-favorable spaces. However, there remains at least one more unsolved problem, that is whether the underlying cascaded geo-processes are characterized appropriately and completely. Theoretically, controlling effects of cascaded ore-forming processes cannot be exactly the same, but individual geo-processes have their own signatures. From the viewpoint of fractal/multifractal theory, results caused by a particular ore-controlling geo-process may have properties of self-similarity. Geochemical distribution patterns as final products of mineralization can be considered as mixtures of patterns possessing self-similarities of these geo-processes. Based on this consideration and choosing the Malipo mineral district in southeastern Yunnan Province, China as study area, fractal/multifractal filtering techniques were used to separate between mixed signals. Geo-information concealed in different sections of power spectrum could be extracted and more detailed geo-processes defined, consequently. In addition to recognition of hydrothermal mineralization associated magmatic, tectonic and sedimentary processes, clues to infer geo-processes dividing the study area into diverse geochemical background and geological units help to enhance geological understanding of the study area.

  19. Alpha and theta brain oscillations index dissociable processes in spoken word recognition. (United States)

    Strauß, Antje; Kotz, Sonja A; Scharinger, Mathias; Obleser, Jonas


    Slow neural oscillations (~1-15 Hz) are thought to orchestrate the neural processes of spoken language comprehension. However, functional subdivisions within this broad range of frequencies are disputed, with most studies hypothesizing only about single frequency bands. The present study utilizes an established paradigm of spoken word recognition (lexical decision) to test the hypothesis that within the slow neural oscillatory frequency range, distinct functional signatures and cortical networks can be identified at least for theta- (~3-7 Hz) and alpha-frequencies (~8-12 Hz). Listeners performed an auditory lexical decision task on a set of items that formed a word-pseudoword continuum: ranging from (1) real words over (2) ambiguous pseudowords (deviating from real words only in one vowel; comparable to natural mispronunciations in speech) to (3) pseudowords (clearly deviating from real words by randomized syllables). By means of time-frequency analysis and spatial filtering, we observed a dissociation into distinct but simultaneous patterns of alpha power suppression and theta power enhancement. Alpha exhibited a parametric suppression as items increasingly matched real words, in line with lowered functional inhibition in a left-dominant lexical processing network for more word-like input. Simultaneously, theta power in a bilateral fronto-temporal network was selectively enhanced for ambiguous pseudowords only. Thus, enhanced alpha power can neurally 'gate' lexical integration, while enhanced theta power might index functionally more specific ambiguity-resolution processes. To this end, a joint analysis of both frequency bands provides neural evidence for parallel processes in achieving spoken word recognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Neural Dissociation of Number from Letter Recognition and Its Relationship to Parietal Numerical Processing (United States)

    Park, Joonkoo; Hebrank, Andrew; Polk, Thad A.; Park, Denise C.


    The visual recognition of letters dissociates from the recognition of numbers at both the behavioral and neural level. In this article, using fMRI, we investigate whether the visual recognition of numbers dissociates from letters, thereby establishing a double dissociation. In Experiment 1, participants viewed strings of consonants and Arabic…

  1. Performance Recognition for Sulphur Flotation Process Based on Froth Texture Unit Distribution

    Directory of Open Access Journals (Sweden)

    Mingfang He


    Full Text Available As an important indicator of flotation performance, froth texture is believed to be related to operational condition in sulphur flotation process. A novel fault detection method based on froth texture unit distribution (TUD is proposed to recognize the fault condition of sulphur flotation in real time. The froth texture unit number is calculated based on texture spectrum, and the probability density function (PDF of froth texture unit number is defined as texture unit distribution, which can describe the actual textual feature more accurately than the grey level dependence matrix approach. As the type of the froth TUD is unknown, a nonparametric kernel estimation method based on the fixed kernel basis is proposed, which can overcome the difficulty when comparing different TUDs under various conditions is impossible using the traditional varying kernel basis. Through transforming nonparametric description into dynamic kernel weight vectors, a principle component analysis (PCA model is established to reduce the dimensionality of the vectors. Then a threshold criterion determined by the TQ statistic based on the PCA model is proposed to realize the performance recognition. The industrial application results show that the accurate performance recognition of froth flotation can be achieved by using the proposed method.

  2. Mother Vocal Recognition in Antarctic Fur Seal Arctocephalus gazella Pups: A Two-Step Process.

    Directory of Open Access Journals (Sweden)

    Thierry Aubin

    Full Text Available In otariids, mother's recognition by pups is essential to their survival since females nurse exclusively their own young and can be very aggressive towards non-kin. Antarctic fur seal, Arctocephalus gazella, come ashore to breed and form dense colonies. During the 4-month lactation period, females alternate foraging trips at sea with suckling period ashore. On each return to the colony, females and pups first use vocalizations to find each other among several hundred conspecifics and olfaction is used as a final check. Such vocal identification has to be highly efficient. In this present study, we investigated the components of the individual vocal signature used by pups to identify their mothers by performing playback experiments on pups with synthetic signals. We thus tested the efficiency of this individual vocal signature by performing propagation tests and by testing pups at different playback distances. Pups use both amplitude and frequency modulations to identify their mother's voice, as well as the energy spectrum. Propagation tests showed that frequency modulations propagated reliably up to 64m, whereas amplitude modulations and spectral content greatly were highly degraded for distances over 8m. Playback on pups at different distances suggested that the individual identification is a two-step process: at long range, pups identified first the frequency modulation pattern of their mother's calls, and other components of the vocal signature at closer range. The individual vocal recognition system developed by Antarctic fur seals is well adapted to face the main constraint of finding kin in a crowd.

  3. Orange Recognition on Tree Using Image Processing Method Based on Lighting Density Pattern

    Directory of Open Access Journals (Sweden)

    H. R Ahmadi


    Full Text Available Within the last few years, a new tendency has been created towards robotic harvesting of oranges and some of citrus fruits. The first step in robotic harvesting is accurate recognition and positioning of fruits. Detection through image processing by color cameras and computer is currently the most common method. Obviously, a harvesting robot faces with natural conditions and, therefore, detection must be done in various light conditions and environments. In this study, it was attempted to provide a suitable algorithm for recognizing the orange fruits on tree. In order to evaluate the proposed algorithm, 500 images were taken in different conditions of canopy, lighting and the distance to the tree. The algorithm included sub-routines for optimization, segmentation, size filtering, separation of fruits based on lighting density method and coordinates determination. In this study, MLP neural network (with 3 hidden layers was used for segmentation that was found to be successful with an accuracy of 88.2% in correct detection. As there exist a high percentage of the clustered oranges in images, any algorithm aiming to detect oranges on the trees successfully should offer a solution to separate these oranges first. A new method based on the light and shade density method was applied and evaluated in this research. Finally, the accuracies for differentiation and recognition were obtained to be 89.5% and 88.2%, respectively.

  4. Multiresolution stroke sketch adaptive representation and neural network processing system for gray-level image recognition (United States)

    Meystel, Alexander M.; Rybak, Ilya A.; Bhasin, Sanjay


    This paper describes a method for multiresolutional representation of gray-level images as hierarchial sets of strokes characterizing forms of objects with different degrees of generalization depending on the context of the image. This method transforms the original image into a hierarchical graph which allows for efficient coding in order to store, retrieve, and recognize the image. The method which is described is based upon finding the resolution levels for each image which minimizes the computations required. This becomes possible because of the use of a special image representation technique called Multiresolutional Attentional Representation for Recognition, based upon a feature which the authors call a stroke. This feature turns out to be efficient in the process of finding the appropriate system of resolutions and construction of the relational graph. Multiresolutional Attentional Representation for Recognition (MARR) is formed by a multi-layer neural network with recurrent inhibitory connections between neurons, the receptive fields of which are selectively tuned to detect the orientation of local contrasts in parts of the image with appropriate degree of generalization. This method simulates the 'coarse-to-fine' algorithm which an artist usually uses, making at attentional sketch of real images. The method, algorithms, and neural network architecture in this system can be used in many machine-vision systems with AI properties; in particular, robotic vision. We expect that systems with MARR can become a component of intelligent control systems for autonomous robots. Their architectures are mostly multiresolutional and match well with the multiple resolutions of the MARR structure.

  5. Optimising chemical named entity recognition with pre-processing analytics, knowledge-rich features and heuristics. (United States)

    Batista-Navarro, Riza; Rak, Rafal; Ananiadou, Sophia


    The development of robust methods for chemical named entity recognition, a challenging natural language processing task, was previously hindered by the lack of publicly available, large-scale, gold standard corpora. The recent public release of a large chemical entity-annotated corpus as a resource for the CHEMDNER track of the Fourth BioCreative Challenge Evaluation (BioCreative IV) workshop greatly alleviated this problem and allowed us to develop a conditional random fields-based chemical entity recogniser. In order to optimise its performance, we introduced customisations in various aspects of our solution. These include the selection of specialised pre-processing analytics, the incorporation of chemistry knowledge-rich features in the training and application of the statistical model, and the addition of post-processing rules. Our evaluation shows that optimal performance is obtained when our customisations are integrated into the chemical entity recogniser. When its performance is compared with that of state-of-the-art methods, under comparable experimental settings, our solution achieves competitive advantage. We also show that our recogniser that uses a model trained on the CHEMDNER corpus is suitable for recognising names in a wide range of corpora, consistently outperforming two popular chemical NER tools. The contributions resulting from this work are two-fold. Firstly, we present the details of a chemical entity recognition methodology that has demonstrated performance at a competitive, if not superior, level as that of state-of-the-art methods. Secondly, the developed suite of solutions has been made publicly available as a configurable workflow in the interoperable text mining workbench Argo. This allows interested users to conveniently apply and evaluate our solutions in the context of other chemical text mining tasks.

  6. Investigating molecular recognition and biological function at interfaces using piscidins, antimicrobial peptides from fish. (United States)

    Chekmenev, Eduard Y; Vollmar, Breanna S; Forseth, Kristen T; Manion, McKenna N; Jones, Shiela M; Wagner, Tim J; Endicott, RaeLynn M; Kyriss, Brandon P; Homem, Lorraine M; Pate, Michelle; He, Jing; Raines, Joshua; Gor'kov, Peter L; Brey, William W; Mitchell, Dan J; Auman, Ann J; Ellard-Ivey, Mary J; Blazyk, Jack; Cotten, Myriam


    We studied amidated and non-amidated piscidins 1 and 3, amphipathic cationic antimicrobial peptides from fish, to characterize functional and structural similarities and differences between these peptides and better understand the structural motifs involved in biological activity and functional diversity among amidated and non-amidated isoforms. Antimicrobial and hemolytic assays were carried out to assess their potency and toxicity, respectively. Site-specific high-resolution solid-state NMR orientational restraints were obtained from (15)N-labeled amidated and non-amidated piscidins 1 and 3 in the presence of hydrated oriented lipid bilayers. Solid-state NMR and circular dichroism results indicate that the peptides are alpha-helical and oriented parallel to the membrane surface. This orientation was expected since peptide-lipid interactions are enhanced at the water-bilayer interface for amphipathic cationic antimicrobial peptides. (15)N solid-state NMR performed on oriented samples demonstrate that piscidin experiences fast, large amplitude backbone motions around an axis parallel to the bilayer normal. Under the conditions tested here, piscidin 1 was confirmed to be more antimicrobially potent than piscidin 3 and antimicrobial activity was not affected by amidation. In light of functional and structural similarities between piscidins 1 and 3, we propose that their topology and fast dynamics are related to their mechanism of action.

  7. A Parallel Supercomputer Implementation of a Biological Inspired Neural Network and its use for Pattern Recognition

    International Nuclear Information System (INIS)

    De Ladurantaye, Vincent; Lavoie, Jean; Bergeron, Jocelyn; Parenteau, Maxime; Lu Huizhong; Pichevar, Ramin; Rouat, Jean


    A parallel implementation of a large spiking neural network is proposed and evaluated. The neural network implements the binding by synchrony process using the Oscillatory Dynamic Link Matcher (ODLM). Scalability, speed and performance are compared for 2 implementations: Message Passing Interface (MPI) and Compute Unified Device Architecture (CUDA) running on clusters of multicore supercomputers and NVIDIA graphical processing units respectively. A global spiking list that represents at each instant the state of the neural network is described. This list indexes each neuron that fires during the current simulation time so that the influence of their spikes are simultaneously processed on all computing units. Our implementation shows a good scalability for very large networks. A complex and large spiking neural network has been implemented in parallel with success, thus paving the road towards real-life applications based on networks of spiking neurons. MPI offers a better scalability than CUDA, while the CUDA implementation on a GeForce GTX 285 gives the best cost to performance ratio. When running the neural network on the GTX 285, the processing speed is comparable to the MPI implementation on RQCHP's Mammouth parallel with 64 notes (128 cores).

  8. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater (United States)

    Li, Zhenchen; Yang, Ping


    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  9. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita


    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  10. The Use of Microwave Incineration to Process Biological Wastes (United States)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Alan (Technical Monitor)


    The handling and disposal of solid waste matter that has biological or biohazardous components is a difficult issue for hospitals, research laboratories, and industry. NASA faces the same challenge as it is developing regenerative systems that will process waste materials into materials that can be used to sustain humans living in space for extended durations. Plants provide critical functions in such a regenerative life support scheme in that they photosynthesize carbon dioxide and water into glucose and oxygen. The edible portions of the plant provide a food source for the crew. Inedible portions can be processed into materials that are more recyclable. The Advanced Life Support Division at NASA Ames Research Center has been evaluating a microwave incinerator that will oxidize inedible plant matter into carbon dioxide and water. The commercially available microwave incinerator is produced by Matsushita Electronic Instruments Corporation of Japan. Microwave incineration is a technology that is simple, safe, and compact enough for home use. It also has potential applications for institutions that produce biological or biohazardous waste. The incinerator produces a sterile ash that has only 13% of the mass of the original waste. The authors have run several sets of tests with the incinerator to establish its viability in processing biological material. One goal of the tests is to show that the incinerator does not generate toxic compounds as a byproduct of the combustion process. This paper will describe the results of the tests, including analyses of the resulting ash and exhaust gases. The significance of the results and their implications on commercial applications of the technology will also be discussed.

  11. The Müller-Lyer Illusion in a computational model of biological object recognition.

    Directory of Open Access Journals (Sweden)

    Astrid Zeman

    Full Text Available Studying illusions provides insight into the way the brain processes information. The Müller-Lyer Illusion (MLI is a classical geometrical illusion of size, in which perceived line length is decreased by arrowheads and increased by arrowtails. Many theories have been put forward to explain the MLI, such as misapplied size constancy scaling, the statistics of image-source relationships and the filtering properties of signal processing in primary visual areas. Artificial models of the ventral visual processing stream allow us to isolate factors hypothesised to cause the illusion and test how these affect classification performance. We trained a feed-forward feature hierarchical model, HMAX, to perform a dual category line length judgment task (short versus long with over 90% accuracy. We then tested the system in its ability to judge relative line lengths for images in a control set versus images that induce the MLI in humans. Results from the computational model show an overall illusory effect similar to that experienced by human subjects. No natural images were used for training, implying that misapplied size constancy and image-source statistics are not necessary factors for generating the illusion. A post-hoc analysis of response weights within a representative trained network ruled out the possibility that the illusion is caused by a reliance on information at low spatial frequencies. Our results suggest that the MLI can be produced using only feed-forward, neurophysiological connections.

  12. Stochasticity in processes fundamentals and applications to chemistry and biology

    CERN Document Server

    Schuster, Peter


    This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t...

  13. Empirical Study on Sustainable Opportunities Recognition. A Polyvinyl Chloride (PVC Joinery Industry Analysis Using Augmented Sustainable Development Process Model

    Directory of Open Access Journals (Sweden)

    Eduard-Gabriel Ceptureanu


    Full Text Available This paper analyzes factors influencing recognition of sustainable opportunities by using an augmented sustainability process model. The conceptual model used two main factors, Knowledge and Motivation, and one moderating variable, Social embeddedness. We investigated entrepreneurs from PVC joinery industry and concluded that while market orientation and sustainable entrepreneurial orientation definitely and positively influence sustainable opportunity recognition, others variables like knowledge of the natural/communal environment, awareness of sustainable development or focus on success have less support. Among all variables analyzed, perception of the threat of the natural/communal environment and altruism toward others have the poorest impact on opportunity recognition. Finally, we concluded that social embeddedness has a moderating effect on sustainable opportunity recognition, even though the results were mixed.

  14. Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Shi-wang Hou


    Full Text Available Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.

  15. Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic. (United States)

    Hou, Shi-Wang; Feng, Shunxiao; Wang, Hui


    Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.

  16. Pattern recognition of concrete surface cracks and defects using integrated image processing algorithms (United States)

    Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie


    Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.

  17. Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition. (United States)

    Hedwig, Berthold G


    Intraspecific acoustic communication requires filtering processes and feature detectors in the auditory pathway of the receiver for the recognition of species-specific signals. Insects like acoustically communicating crickets allow describing and analysing the mechanisms underlying auditory processing at the behavioral and neural level. Female crickets approach male calling song, their phonotactic behavior is tuned to the characteristic features of the song, such as the carrier frequency and the temporal pattern of sound pulses. Data from behavioral experiments and from neural recordings at different stages of processing in the auditory pathway lead to a concept of serially arranged filtering mechanisms. These encompass a filter for the carrier frequency at the level of the hearing organ, and the pulse duration through phasic onset responses of afferents and reciprocal inhibition of thoracic interneurons. Further, processing by a delay line and coincidence detector circuit in the brain leads to feature detecting neurons that specifically respond to the species-specific pulse rate, and match the characteristics of the phonotactic response. This same circuit may also control the response to the species-specific chirp pattern. Based on these serial filters and the feature detecting mechanism, female phonotactic behavior is shaped and tuned to the characteristic properties of male calling song.

  18. Process for the biological purification of waste water

    DEFF Research Database (Denmark)


    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  19. Unconfined alluvial flow processes: Recognition and interpretation of their deposits, and the significance for palaeogeographic reconstruction (United States)

    North, Colin P.; Davidson, Stephanie K.


    Palaeogeographic interpretation of the sedimentary rock record depends on correct recognition from the preserved evidence of the processes responsible for transporting and depositing the sediment. This in turn depends on robust knowledge transfer from previous workers, and the successful exchange of ideas between workers requires consistent use of a well-defined vocabulary. We have identified serious breakdowns in all these interpretation steps in the case of terrestrial unconfined flow and its deposits, and these failures are leading to unreliable environmental and climatic interpretation. This is significant because such alluvial deposits commonly form a majority of the rock record of continental environments. Working from the basic principles of geomorphology and fluid dynamics, we have undertaken a wide-ranging analysis of the nature of out-of-channel flow and from this make predictions about the characteristics of its deposits. We identify the range of possible locations and conditions that lead to the development of unconfined flow, review the processes operating in each case, and examine the range of lithological features that can be produced by these processes. This allows us to evaluate the reliability of the criteria claimed for identification of out-of-channel flow deposits, and examine how our new insights might alter palaeoclimatic and palaeogeographic reconstructions published previously by others. The sedimentary record of unconfined flows is much more diverse and complex than usually portrayed. The received wisdom that the record of unconfined flow consists solely of upwards-fining thin beds produced from shallow waning flows is shown to be flawed. A wide range of lithofacies are possible, and the variation in both flow steadiness and uniformity needs to be taken into account. The previously published criteria for recognition of flows of this type are not diagnostic of process or location; unconfined flow deposits cannot reliably be identified from

  20. Magnetic Nanotweezers for Interrogating Biological Processes in Space and Time. (United States)

    Kim, Ji-Wook; Jeong, Hee-Kyung; Southard, Kaden M; Jun, Young-Wook; Cheon, Jinwoo


    The ability to sense and manipulate the state of biological systems has been extensively advanced during the past decade with the help of recent developments in physical tools. Unlike standard genetic and pharmacological perturbation techniques-knockdown, overexpression, small molecule inhibition-that provide a basic on/off switching capability, these physical tools provide the capacity to control the spatial, temporal, and mechanical properties of the biological targets. Among the various physical cues, magnetism offers distinct advantages over light or electricity. Magnetic fields freely penetrate biological tissues and are already used for clinical applications. As one of the unique features, magnetic fields can be transformed into mechanical stimuli which can serve as a cue in regulating biological processes. However, their biological applications have been limited due to a lack of high-performance magnetism-to-mechanical force transducers with advanced spatiotemporal capabilities. In this Account, we present recent developments in magnetic nanotweezers (MNTs) as a useful tool for interrogating the spatiotemporal control of cells in living tissue. MNTs are composed of force-generating magnetic nanoparticles and field generators. Through proper design and the integration of individual components, MNTs deliver controlled mechanical stimulation to targeted biomolecules at any desired space and time. We first discuss about MNT configuration with different force-stimulation modes. By modulating geometry of the magnetic field generator, MNTs exert pulling, dipole-dipole attraction, and rotational forces to the target specifically and quantitatively. We discuss the key physical parameters determining force magnitude, which include magnetic field strength, magnetic field gradient, magnetic moment of the magnetic particle, as well as distance between the field generator and the particle. MNTs also can be used over a wide range of biological time scales. By simply

  1. The time course of morphological processing during spoken word recognition in Chinese. (United States)

    Shen, Wei; Qu, Qingqing; Ni, Aiping; Zhou, Junyi; Li, Xingshan


    We investigated the time course of morphological processing during spoken word recognition using the printed-word paradigm. Chinese participants were asked to listen to a spoken disyllabic compound word while simultaneously viewing a printed-word display. Each visual display consisted of three printed words: a semantic associate of the first constituent of the compound word (morphemic competitor), a semantic associate of the whole compound word (whole-word competitor), and an unrelated word (distractor). Participants were directed to detect whether the spoken target word was on the visual display. Results indicated that both the morphemic and whole-word competitors attracted more fixations than the distractor. More importantly, the morphemic competitor began to diverge from the distractor immediately at the acoustic offset of the first constituent, which was earlier than the whole-word competitor. These results suggest that lexical access to the auditory word is incremental and morphological processing (i.e., semantic access to the first constituent) that occurs at an early processing stage before access to the representation of the whole word in Chinese.

  2. Recognition of malignant processes with neural nets from ESR spectra of serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P. [Inst. of Medical Physics and Biophysics, Univ. Leipzig (Germany); Gurachevsky, A.; Muravsky, V.; Schnurr, K.; Seibt, G. [Medinnovation GmbH, Wildau (Germany); Matthes, G. [Inst. of Transfusion Medicine, Univ. Hospital Leipzig (Germany)


    Cancer diseases are the focus of intense research due to their frequent occurrence. It is known from the literature that serum proteins are changed in the case of malignant processes. Changes of albumin conformation, transport efficiency, and binding characteristics can be determined by electron spin resonance spectroscopy (ESR). The present study analysed the binding/dissociation function of albumin with an ESR method using 16-doxyl stearate spin probe as reporter molecule and ethanol as modifier of hydrophobic interactions. Native and frozen plasma of healthy donors (608 samples), patients with malignant diseases (423 samples), and patients with benign conditions (221 samples) were analysed. The global specificity was 91% and the sensitivity 96%. In look-back samples of 27 donors, a malignant process could be detected up to 30 months before clinical diagnosis. To recognise different entities of malignant diseases from the ESR spectra, Artificial neural networks were implemented. For 48 female donors with breast cancer, the recognition specificity was 85%. Other carcinoma entities (22 colon, 18 prostate, 12 stomach) were recognised with specificities between 75% and 84%. Should these specificity values be reproduced in larger studies, the described method could be used as a new specific tumour marker for the early detection of malignant processes. Since transmission of cancer via blood transfusion cannot be excluded as yet, the described ESR method could also be used as a quality test for plasma products. (orig.)

  3. Recognition of malignant processes with neural nets from ESR spectra of serum albumin

    International Nuclear Information System (INIS)

    Seidel, P.; Gurachevsky, A.; Muravsky, V.; Schnurr, K.; Seibt, G.; Matthes, G.


    Cancer diseases are the focus of intense research due to their frequent occurrence. It is known from the literature that serum proteins are changed in the case of malignant processes. Changes of albumin conformation, transport efficiency, and binding characteristics can be determined by electron spin resonance spectroscopy (ESR). The present study analysed the binding/dissociation function of albumin with an ESR method using 16-doxyl stearate spin probe as reporter molecule and ethanol as modifier of hydrophobic interactions. Native and frozen plasma of healthy donors (608 samples), patients with malignant diseases (423 samples), and patients with benign conditions (221 samples) were analysed. The global specificity was 91% and the sensitivity 96%. In look-back samples of 27 donors, a malignant process could be detected up to 30 months before clinical diagnosis. To recognise different entities of malignant diseases from the ESR spectra, Artificial neural networks were implemented. For 48 female donors with breast cancer, the recognition specificity was 85%. Other carcinoma entities (22 colon, 18 prostate, 12 stomach) were recognised with specificities between 75% and 84%. Should these specificity values be reproduced in larger studies, the described method could be used as a new specific tumour marker for the early detection of malignant processes. Since transmission of cancer via blood transfusion cannot be excluded as yet, the described ESR method could also be used as a quality test for plasma products. (orig.)

  4. Biological shielding design calculation for agricultural radiation processing facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Sandha, R.S.; Soni, H.C.; Subbaiah, K.V.


    An electron beam radiation processing facility for agricultural products is being set-up at Centre for Advanced Technology Indore. The facility will be based on a pulsed linear accelerator and will be used in electron and photon modes to process various products e.g. onion, potato, home-pack items and medical products. When electron beam interact with structural components of accelerator or high Z-target used in photon mode, it generates intense Bremsstrahlung radiation field, which poses radiation protection problem. Biological shielding has been designed to provide protection against the generated radiation. Different conveying schemes and hence design of irradiation cell have been studied and results are presented for two promising designs. (author)

  5. Adoption: biological and social processes linked to adaptation. (United States)

    Grotevant, Harold D; McDermott, Jennifer M


    Children join adoptive families through domestic adoption from the public child welfare system, infant adoption through private agencies, and international adoption. Each pathway presents distinctive developmental opportunities and challenges. Adopted children are at higher risk than the general population for problems with adaptation, especially externalizing, internalizing, and attention problems. This review moves beyond the field's emphasis on adoptee-nonadoptee differences to highlight biological and social processes that affect adaptation of adoptees across time. The experience of stress, whether prenatal, postnatal/preadoption, or during the adoption transition, can have significant impacts on the developing neuroendocrine system. These effects can contribute to problems with physical growth, brain development, and sleep, activating cascading effects on social, emotional, and cognitive development. Family processes involving contact between adoptive and birth family members, co-parenting in gay and lesbian adoptive families, and racial socialization in transracially adoptive families affect social development of adopted children into adulthood.

  6. Functional annotation of chemical libraries across diverse biological processes. (United States)

    Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles


    Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.

  7. Quantum Processes and Dynamic Networks in Physical and Biological Systems. (United States)

    Dudziak, Martin Joseph

    Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain

  8. Automated force volume image processing for biological samples.

    Directory of Open Access Journals (Sweden)

    Pavel Polyakov


    Full Text Available Atomic force microscopy (AFM has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image.

  9. A Sensor-Based Wrist Pulse Signal Processing and Lung Cancer Recognition. (United States)

    Zhang, Zhichao; Zhang, Yuan; Song, Houbing; Yao, Lina; Kos, Anton


    Pulse diagnosis is an efficient method in traditional Chinese medicine for detecting the health status of a person in a non-invasive and convenient way. Jin's pulse diagnosis (JPD) is a very efficient recent development that is gradually recognized and well validated by the medical community in recent years. However, no acceptable results have been achieved for lung cancer recognition in the field of biomedical signal processing using JPD. More so, there is no standard JPD pulse feature defined with respect to pulse signals. Our work is designed mainly for care giving service conveniently at home to the people having lung cancer by proposing a novel wrist pulse signal processing method, having an insight from JPD. We developed an iterative slide window (ISW) algorithm to segment the de-noised signal into single periods. We analyzed the characteristics of the segmented pulse waveform and for the first time summarized 26 features to classify the pulse waveforms of healthy individuals and lung cancer patients using a cubic support vector machine (CSVM). The result achieved by the proposed method is found to be 78.13% accurate. Copyright © 2018. Published by Elsevier Inc.

  10. Man Versus Machine: Comparing Double Data Entry and Optical Mark Recognition for Processing CAHPS Survey Data. (United States)

    Fifolt, Matthew; Blackburn, Justin; Rhodes, David J; Gillespie, Shemeka; Bennett, Aleena; Wolff, Paul; Rucks, Andrew

    Historically, double data entry (DDE) has been considered the criterion standard for minimizing data entry errors. However, previous studies considered data entry alternatives through the limited lens of data accuracy. This study supplies information regarding data accuracy, operational efficiency, and cost for DDE and Optical Mark Recognition (OMR) for processing the Consumer Assessment of Healthcare Providers and Systems 5.0 survey. To assess data accuracy, we compared error rates for DDE and OMR by dividing the number of surveys that were arbitrated by the total number of surveys processed for each method. To assess operational efficiency, we tallied the cost of data entry for DDE and OMR after survey receipt. Costs were calculated on the basis of personnel, depreciation for capital equipment, and costs of noncapital equipment. The cost savings attributed to this method were negated by the operational efficiency of OMR. There was a statistical significance between rates of arbitration between DDE and OMR; however, this statistical significance did not create a practical significance. The potential benefits of DDE in terms of data accuracy did not outweigh the operational efficiency and thereby financial savings of OMR.


    Directory of Open Access Journals (Sweden)

    Jussara Oliveira Araújo


    Full Text Available The reading is a hard activity to being developed, demanding an extensive learning. On this perspective, the objective is describe and analyze the abilities of recognition of words through of Model of Recognition of the Words, proposed by Ellis (1995. The results could contribute to a more efficient pedagogical practice in the formation of reading competence.

  12. Metacognitive Processes in Emotion Recognition: Are They Different in Adults with Asperger's Disorder? (United States)

    Sawyer, Alyssa C. P.; Williamson, Paul; Young, Robyn


    Deficits in emotion recognition and social interaction characterize individuals with Asperger's Disorder (AS). Moreover they also appear to be less able to accurately use confidence to gauge their emotion recognition accuracy (i.e., metacognitive monitoring). The aim of this study was to extend this finding by considering both monitoring and…

  13. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method

    Directory of Open Access Journals (Sweden)

    Sette Alessandro


    Full Text Available Abstract Background Many processes in molecular biology involve the recognition of short sequences of nucleic-or amino acids, such as the binding of immunogenic peptides to major histocompatibility complex (MHC molecules. From experimental data, a model of the sequence specificity of these processes can be constructed, such as a sequence motif, a scoring matrix or an artificial neural network. The purpose of these models is two-fold. First, they can provide a summary of experimental results, allowing for a deeper understanding of the mechanisms involved in sequence recognition. Second, such models can be used to predict the experimental outcome for yet untested sequences. In the past we reported the development of a method to generate such models called the Stabilized Matrix Method (SMM. This method has been successfully applied to predicting peptide binding to MHC molecules, peptide transport by the transporter associated with antigen presentation (TAP and proteasomal cleavage of protein sequences. Results Herein we report the implementation of the SMM algorithm as a publicly available software package. Specific features determining the type of problems the method is most appropriate for are discussed. Advantageous features of the package are: (1 the output generated is easy to interpret, (2 input and output are both quantitative, (3 specific computational strategies to handle experimental noise are built in, (4 the algorithm is designed to effectively handle bounded experimental data, (5 experimental data from randomized peptide libraries and conventional peptides can easily be combined, and (6 it is possible to incorporate pair interactions between positions of a sequence. Conclusion Making the SMM method publicly available enables bioinformaticians and experimental biologists to easily access it, to compare its performance to other prediction methods, and to extend it to other applications.

  14. Accelerating Computer-Based Recognition of Fynbos Leaves Using a Graphics Processing Unit

    Directory of Open Access Journals (Sweden)

    Simon Lucas Winberg


    Full Text Available The Cape Floristic Kingdom (CFK is the most diverse floristic kingdom in the world and has been declared an international heritage site. However, it is under threat from wild fires and invasive species. Much of the work of managing this natural resource, such as removing alien vegetation or fighting wild fires, is done by volunteers and casual workers. Many fynbos species, for which the Table Mountain National Park is known, are difficult to identify, particularly by non-expert volunteers. Accurate and fast identification of plant species would be beneficial in these contexts. The Fynbos Leaf Optical Recognition Application (FLORA was thus developed to assist in the recognition of plants of the CFK. The first version of FLORA was developed as a rapid prototype in MATLAB; it utilized sequential algorithms to identify plant leaves, and much of this code was interpreted M files. The initial implementation suffered from slow performance, though, and could not run as a lightweight standalone executable, making it cumbersome. FLORA was thus re-developed as a standalone C++ version that was subsequently enhanced further by accelerating critical routines, by running them on a graphics processing unit (GPU. This paper presents the design and testing of both the C++ version and the GPU-accelerated version of FLORA. Comparative testing was done on all three versions of FLORA, viz., the original MATLAB prototype, the C++ non-accelerated version, and the C++ GPU-accelerated version to show the performance and accuracy of the different versions. The accuracy of the predictions remained consistent across versions. The C++ version was noticeable faster than the original prototype, achieving an average speed-up of 8.7 for high-resolution 3456x2304 pixel images. The GPU-accelerated version was even faster, saving 51.85 ms on average for high-resolution images. Such a time saving would be perceptible for batch processing, such as rebuilding feature descriptors for

  15. Implied Movement in Static Images Reveals Biological Timing Processing

    Directory of Open Access Journals (Sweden)

    Francisco Carlos Nather


    Full Text Available Visual perception is adapted toward a better understanding of our own movements than those of non-conspecifics. The present study determined whether time perception is affected by pictures of different species by considering the evolutionary scale. Static (“S” and implied movement (“M” images of a dog, cheetah, chimpanzee, and man were presented to undergraduate students. S and M images of the same species were presented in random order or one after the other (S-M or M-S for two groups of participants. Movement, Velocity, and Arousal semantic scales were used to characterize some properties of the images. Implied movement affected time perception, in which M images were overestimated. The results are discussed in terms of visual motion perception related to biological timing processing that could be established early in terms of the adaptation of humankind to the environment.

  16. EPR imaging of diffusional processes in biologically relevant polymers (United States)

    Berliner, Lawrence J.; Fujii, Hirotada

    Diffusion processes in biological tissue are important problems for noninvasive investigation. As a model study, this work addresses the diffusion of an electrolyte buffer (Krebs) solution containing a nitroxide spin probe into a cylindrical polyacrylamide gel rod. The nitroxide spin density distribution was imaged at 1.6 GHz in gel cross sections at various time intervals for both homogeneous radial diffusion and inhomogeneous diffusion. A one-dimensional radial diffusion constant was calculated for the nitroxide spin probe, TEMPOL, of 3.7 ± 0.7 × 10 -6 cm 2/s at ambient temperature. The EPR spectrometer, using low-field flat-loop surface coils (H. Nishikawa, H. Fujii, and L. J. Berliner, J. Magn. Reson.62, 79 (1985)), showed minimal dielectric or magnetic losses in sensitity for electrolyte vs nondielectric samples.

  17. Embryo fossilization is a biological process mediated by microbial biofilms. (United States)

    Raff, Elizabeth C; Schollaert, Kaila L; Nelson, David E; Donoghue, Philip C J; Thomas, Ceri-Wyn; Turner, F Rudolf; Stein, Barry D; Dong, Xiping; Bengtson, Stefan; Huldtgren, Therese; Stampanoni, Marco; Chongyu, Yin; Raff, Rudolf A


    Fossilized embryos with extraordinary cellular preservation appear in the Late Neoproterozoic and Cambrian, coincident with the appearance of animal body fossils. It has been hypothesized that microbial processes are responsible for preservation and mineralization of organic tissues. However, the actions of microbes in preservation of embryos have not been demonstrated experimentally. Here, we show that bacterial biofilms assemble rapidly in dead marine embryos and form remarkable pseudomorphs in which the bacterial biofilm replaces and exquisitely models details of cellular organization and structure. The experimental model was the decay of cleavage stage embryos similar in size and morphology to fossil embryos. The data show that embryo preservation takes place in 3 distinct steps: (i) blockage of autolysis by reducing or anaerobic conditions, (ii) rapid formation of microbial biofilms that consume the embryo but form a replica that retains cell organization and morphology, and (iii) bacterially catalyzed mineralization. Major bacterial taxa in embryo decay biofilms were identified by using 16S rDNA sequencing. Decay processes were similar in different taphonomic conditions, but the composition of bacterial populations depended on specific conditions. Experimental taphonomy generates preservation states similar to those in fossil embryos. The data show how fossilization of soft tissues in sediments can be mediated by bacterial replacement and mineralization, providing a foundation for experimentally creating biofilms from defined microbial species to model fossilization as a biological process.

  18. The Effects of Multiple Script Priming on Word Recognition by the Two Cerebral Hemispheres: Implications for Discourse Processing (United States)

    Faust, Miriam; Barak, Ofra; Chiarello, Christine


    The present study examined left (LH) and right (RH) hemisphere involvement in discourse processing by testing the ability of each hemisphere to use world knowledge in the form of script contexts for word recognition. Participants made lexical decisions to laterally presented target words preceded by centrally presented script primes (four…

  19. Activation and Binding in Verbal Working Memory: A Dual-Process Model for the Recognition of Nonwords (United States)

    Oberauer, Klauss; Lange, Elke B.


    The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. "Journal of Experimental Psychology: Learning, Memory, and Cognition, 28", 411-421]. Familiarity arises…

  20. Advancing Microwave Technology for Dehydration Processing of Biologics (United States)

    Cellemme, Stephanie L.; Van Vorst, Matthew; Paramore, Elisha


    Our prior work has shown that microwave processing can be effective as a method for dehydrating cell-based suspensions in preparation for anhydrous storage, yielding homogenous samples with predictable and reproducible drying times. In the current work an optimized microwave-based drying process was developed that expands upon this previous proof-of-concept. Utilization of a commercial microwave (CEM SAM 255, Matthews, NC) enabled continuous drying at variable low power settings. A new turntable was manufactured from Ultra High Molecular Weight Polyethylene (UHMW-PE; Grainger, Lake Forest, IL) to provide for drying of up to 12 samples at a time. The new process enabled rapid and simultaneous drying of multiple samples in containment devices suitable for long-term storage and aseptic rehydration of the sample. To determine sample repeatability and consistency of drying within the microwave cavity, a concentration series of aqueous trehalose solutions were dried for specific intervals and water content assessed using Karl Fischer Titration at the end of each processing period. Samples were dried on Whatman S-14 conjugate release filters (Whatman, Maidestone, UK), a glass fiber membrane used currently in clinical laboratories. The filters were cut to size for use in a 13 mm Swinnex® syringe filter holder (Millipore™, Billerica, MA). Samples of 40 μL volume could be dehydrated to the equilibrium moisture content by continuous processing at 20% with excellent sample-to-sample repeatability. The microwave-assisted procedure enabled high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit. PMID:24835259

  1. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals

    Directory of Open Access Journals (Sweden)

    Micheal J. Baum


    Full Text Available Until recently it was widely believed that the ability of female mammals (with the likely exception of women to identify and seek out a male breeding partner relied on the detection of non-volatile male pheromones by the female’s vomeronasal organ and their subsequent processing by a neural circuit that includes the accessory olfactory bulb, vomeronasal amygdala, and hypothalamus. Emperical data are reviewed in this paper that demonstrate the detection of volatile pheromones by the main olfactory epithelium of female mice which, in turn, leads to the activation of a population of glomeruli and abutting mitral cells in the main olfactory bulb (MOB. Anatomical results along with functional neuroanatomical data demonstrate that some of these MOB mitral cells project to the vomeronasal amygdala. These particular MOB mitral cells were selectively activated (i.e., expressed Fos protein by exposure to male as opposed to female urinary volatiles. A similar selectivity to opposite sex urinary volatiles was also seen in mitral cells of the accessory olfactory bulb of female mice. Behavioral data from female mouse, ferret, and human are reviewed that implicate the main olfactory system, in some cases interacting with the accessory olfactory system, in mate recognition.

  2. Hemispheric asymmetries in memory processes as measured in a false recognition paradigm. (United States)

    Westerberg, Carmen E; Marsolek, Chad J


    Although memory differs in important ways between the left and right cerebral hemispheres, the nature of these differences remains controversial. We examined this issue in two experiments using a false memory paradigm that allowed novel tests of two theories that have not been assessed in a common paradigm previously. Lists of semantically related words (e.g., bed, rest, wake...), all highly associated to one "critical" word (e.g., sleep), were presented auditorily during a study phase. Memory for both the related words and the critical words was measured in a subsequent old/new recognition test using divided-visual-field word presentations. The most important results were that the ability to correctly reject previously unpresented words was greater when test items were presented to the right visual field/left hemisphere (RVF/LH) than to the left visual field/right hemisphere (LVF/RH) and that participants were more confident in correctly rejecting unpresented words when test items were presented to the RVF/LH than to the LVF/RH. Results were in line with the theory that associative activation of semantic information is restricted in the left hemisphere but diffuse in the right; however, these results contrasted with the theory that memory traces are interpretive in the left hemisphere but veridical in the right. A potential resolution to the seemingly contradictory theories of asymmetries in memory processing is briefly discussed.

  3. Signal processing, sensor fusion, and target recognition; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992 (United States)

    Libby, Vibeke; Kadar, Ivan

    Consideration is given to a multiordered mapping technique for target prioritization, a neural network approach to multiple-target-tracking problems, a multisensor fusion algorithm for multitarget multibackground classification, deconvolutiom of multiple images of the same object, neural networks and genetic algorithms for combinatorial optimization of sensor data fusion, classification of atmospheric acoustic signals from fixed-wing aircraft, and an optics approach to sensor fusion for target recognition. Also treated are a zoom lens for automatic target recognition, a hybrid model for the analysis of radar sensors, an innovative test bed for developing and assessing air-to-air noncooperative target identification algorithms, SAR imagery scene segmentation using fractal processing, sonar feature-based bandwidth compression, laboratory experiments for a new sonar system, computational algorithms for discrete transform using fixed-size filter matrices, and pattern recognition for power systems.

  4. Ontology of physics for biology: representing physical dependencies as a basis for biological processes. (United States)

    Cook, Daniel L; Neal, Maxwell L; Bookstein, Fred L; Gennari, John H


    In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale "physiome" projects such as the EU's Virtual Physiological Human (VPH) and NIH's Virtual Physiological Rat (VPR). Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the "rules" by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm's law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke's law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. We have developed the OPB and annotation methods to represent the meaning-the biophysical semantics-of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes.

  5. Deficits in auditory processing contribute to impairments in vocal affect recognition in autism spectrum disorders: A MEG study. (United States)

    Demopoulos, Carly; Hopkins, Joyce; Kopald, Brandon E; Paulson, Kim; Doyle, Lauren; Andrews, Whitney E; Lewine, Jeffrey David


    The primary aim of this study was to examine whether there is an association between magnetoencephalography-based (MEG) indices of basic cortical auditory processing and vocal affect recognition (VAR) ability in individuals with autism spectrum disorder (ASD). MEG data were collected from 25 children/adolescents with ASD and 12 control participants using a paired-tone paradigm to measure quality of auditory physiology, sensory gating, and rapid auditory processing. Group differences were examined in auditory processing and vocal affect recognition ability. The relationship between differences in auditory processing and vocal affect recognition deficits was examined in the ASD group. Replicating prior studies, participants with ASD showed longer M1n latencies and impaired rapid processing compared with control participants. These variables were significantly related to VAR, with the linear combination of auditory processing variables accounting for approximately 30% of the variability after controlling for age and language skills in participants with ASD. VAR deficits in ASD are typically interpreted as part of a core, higher order dysfunction of the "social brain"; however, these results suggest they also may reflect basic deficits in auditory processing that compromise the extraction of socially relevant cues from the auditory environment. As such, they also suggest that therapeutic targeting of sensory dysfunction in ASD may have additional positive implications for other functional deficits. (c) 2015 APA, all rights reserved).

  6. Improving the reviewing process in Ecology and Evolutionary Biology

    Directory of Open Access Journals (Sweden)

    Grossman, G. D.


    Full Text Available I discuss current issues in reviewing and editorial practices in ecology and evolutionary biology and suggest possible solutions for current problems. The reviewing crisis is unlikely to change unless steps are taken by journals to provide greater inclusiveness and incentives to reviewers. In addition, both journals and institutions should reduce their emphasis on publication numbers (least publishable units and impact factors and focus instead on article synthesis and quality which will require longer publications. Academic and research institutions should consider reviewing manuscripts and editorial positions an important part of a researcher’s professional activities and reward them accordingly. Rewarding reviewers either monetarily or via other incentives such as free journal subscriptions may encourage participation in the reviewing process for both profit and non–profit journals. Reviewer performance will likely be improved by measures that increase inclusiveness, such as sending reviews and decision letters to reviewers. Journals may be able to evaluate the efficacy of their reviewing process by comparing citations of rejected but subsequently published papers with those published within the journal at similar times. Finally, constructive reviews: 1 identify important shortcomings and suggest solutions when possible, 2 distinguish trivial from non–trivial problems, and 3 include editor’s evaluations of the reviews including identification of trivial versus substantive comments (i.e., those that must be addressed.

  7. Exploiting graphics processing units for computational biology and bioinformatics. (United States)

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H


    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.

  8. Imaging and pattern recognition techniques applied to particulate solids material characterization in mineral processing

    International Nuclear Information System (INIS)

    Bonifazi, G.; La Marca, F.; Massacci, P.


    The characterization of particulate solids can be carried out by chemical and mineralogical analysis, or, in some cases, following a new approach based on the combined use of: i) imaging techniques to detect the surface features of the particles, and ii) pattern recognition procedures, to identify and classify the mineralogical composition on the bases of the previously detected 'pictorial' features. The aim of this methodology is to establish a correlation between image parameters (texture and color) and physical chemical parameters characterizing the set of particles to be evaluated. The technique was applied to characterize the raw-ore coming from a deposit of mineral sands of three different lithotypes. An appropriate number of samples for each lithotype has been collected. A vector of attributes (pattern vector), by either texture and color parameters, has been associated to each sample. Image analysis demonstrated as the selected parameters are quite sensitive to the conditions of image acquisition: in fact optical properties may be strongly influenced by physical condition, in terms of moisture content and optics set-up and lighting conditions. Standard conditions for acquisition have been selected according to the in situ conditions during sampling. To verify the reliability of the proposed methodology, images have been acquired under different conditions of humidity, focusing and illumination. In order to evaluate the influence of these parameters on image pictorial properties, textural analysis procedures have been applied to the image acquired from different samples. Data resulting from the processing have been used for remote controlling of the material fed to the mineral processing plant. (author)

  9. Performance of IFAS wastewater treatment processes for biological phosphorus removal. (United States)

    Sriwiriyarat, T; Randall, C W


    Integrated fixed film activated sludge (IFAS) is a promising process for the enhancement of nitrification and denitrification in conventional activated sludge systems that need to be upgraded for biological nutrient removal (BNR), particularly when they have space limitations or need modifications that will require large monetary expenses. Several studies have reported successful implementations of IFAS at temperate zone wastewater treatment facilities, typically by placement of fixed film media into aerobic zones. However, nearly all of the implementations have not included enhanced biological phosphorus removal (EBPR) in the upgraded systems. This is possibly because the treatment plants have been operated at low mixed liquor mean cell residence times (MCRTs), and EBPR would wash out of the systems at the low temperatures encountered, making it difficult to maintain EBPR. The primary objective of this study was to investigate the incorporation of EBPR into IFAS systems, and study the interactions between the fixed biomass and the mixed liquor suspended solids with respect to substrate competition and nutrient removal efficiencies. Three pilot-scale UCT/VIP configuration systems were used, one as a control and the other two with Bioweb media integrated into some of the anoxic and aerobic reactors. The systems were operated at different MCRTs, and influent COD/TP ratios, and with split influent flows. The experimental results confirmed that EBPR could be incorporated successfully into IFAS systems, but the redistribution of biomass resulting from the integration of fixed film media, and the competition of organic substrate between EBPR and denitrification would affect performances. Also, the integration of fixed film media into the anoxic reactors affected performances differently from media in aerobic reactors.

  10. Emotional Processing, Recognition, Empathy and Evoked Facial Expression in Eating Disorders: An Experimental Study to Map Deficits in Social Cognition


    Cardi, Valentina; Corfield, Freya; Leppanen, Jenni; Rhind, Charlotte; Deriziotis, Stephanie; Hadjimichalis, Alexandra; Hibbs, Rebecca; Micali, Nadia; Treasure, Janet


    Background Difficulties in social cognition have been identified in eating disorders (EDs), but the exact profile of these abnormalities is unclear. The aim of this study is to examine distinct processes of social-cognition in this patient group, including attentional processing and recognition, empathic reaction and evoked facial expression in response to discrete vignettes of others displaying positive (i.e. happiness) or negative (i.e. sadness and anger) emotions. Method One hundred and th...

  11. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. (United States)

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing


    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris (United States)

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM


    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  13. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume


    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  14. Exploring Biological Motion Processing in Parkinson's Disease Using Temporal Dilation.

    Directory of Open Access Journals (Sweden)

    Ruihua Cao

    Full Text Available Biological motion (BM perception is the compelling ability of the visual system to perceive complex animated movements effortlessly and promptly. A recent study has shown that BM can automatically lengthen perceived temporal duration independent of global configuration. The present study aimed mainly to investigate this temporal dilation effect of BM signals in Parkinson's disease (PD patients. We used the temporal dilation effect as an implicit measure of visual processing of BM. In all, 32 PD patients (under off-therapy conditions and 32 healthy controls (HCs participated in our study. In each trial, an upright BM sequence and an inverted BM sequence were presented within an interval in the center of the screen. We tested both canonical and scrambled BM sequences; the scrambled ones were generated by disturbing the global configuration of the canonical ones but preserving exactly the same local motion components. Observers were required to make a verbal two-alternative forced choice response to indicate which interval (the first or the second appeared longer. Statistical analyses were conducted on the points of subjective equality (PSEs. We found that the temporal dilation effect was significantly reduced for PD patients compared with HCs in both canonical and scrambled BM conditions. Moreover, no temporal dilation effects of scrambled BM were shown in both early- and late-stage PD patients, while the temporal dilation effect of canonical BM was relatively preserved in the early stages.

  15. Crowdsourcing and curation: perspectives from biology and natural language processing. (United States)

    Hirschman, Lynette; Fort, Karën; Boué, Stéphanie; Kyrpides, Nikos; Islamaj Doğan, Rezarta; Cohen, Kevin Bretonnel


    Crowdsourcing is increasingly utilized for performing tasks in both natural language processing and biocuration. Although there have been many applications of crowdsourcing in these fields, there have been fewer high-level discussions of the methodology and its applicability to biocuration. This paper explores crowdsourcing for biocuration through several case studies that highlight different ways of leveraging 'the crowd'; these raise issues about the kind(s) of expertise needed, the motivations of participants, and questions related to feasibility, cost and quality. The paper is an outgrowth of a panel session held at BioCreative V (Seville, September 9-11, 2015). The session consisted of four short talks, followed by a discussion. In their talks, the panelists explored the role of expertise and the potential to improve crowd performance by training; the challenge of decomposing tasks to make them amenable to crowdsourcing; and the capture of biological data and metadata through community editing.Database URL: © The Author(s) 2016. Published by Oxford University Press.

  16. SU-E-I-75: Development of New Biological Fingerprints for Patient Recognition to Identify Misfiled Images in a PACS Server

    International Nuclear Information System (INIS)

    Shimizu, Y; Yoon, Y; Iwase, K; Yasumatsu, S; Matsunobu, Y; Morishita, J


    Purpose: We are trying to develop an image-searching technique to identify misfiled images in a picture archiving and communication system (PACS) server by using five biological fingerprints: the whole lung field, cardiac shadow, superior mediastinum, lung apex, and right lower lung. Each biological fingerprint in a chest radiograph includes distinctive anatomical structures to identify misfiled images. The whole lung field was less effective for evaluating the similarity between two images than the other biological fingerprints. This was mainly due to the variation in the positioning for chest radiographs. The purpose of this study is to develop new biological fingerprints that could reduce influence of differences in the positioning for chest radiography. Methods: Two hundred patients were selected randomly from our database (36,212 patients). These patients had two images each (current and previous images). Current images were used as the misfiled images in this study. A circumscribed rectangular area of the lung and the upper half of the rectangle were selected automatically as new biological fingerprints. These biological fingerprints were matched to all previous images in the database. The degrees of similarity between the two images were calculated for the same and different patients. The usefulness of new the biological fingerprints for automated patient recognition was examined in terms of receiver operating characteristic (ROC) analysis. Results: Area under the ROC curves (AUCs) for the circumscribed rectangle of the lung, upper half of the rectangle, and whole lung field were 0.980, 0.994, and 0.950, respectively. The new biological fingerprints showed better performance in identifying the patients correctly than the whole lung field. Conclusion: We have developed new biological fingerprints: circumscribed rectangle of the lung and upper half of the rectangle. These new biological fingerprints would be useful for automated patient identification system

  17. Depth Value Pre-Processing for Accurate Transfer Learning Based RGB-D Object Recognition

    DEFF Research Database (Denmark)

    Aakerberg, Andreas; Nasrollahi, Kamal; Moeslund, Thomas B.


    that the RGB stream of the FusionNetmodel can benefit from using deeper network architectures, namely the 16-layered VGGNet, in exchange forthe 8-layered CaffeNet. In combination, these changes improves the recognition performance with 2.2% incomparison to the original FusionNet, when evaluating...

  18. Coupled Gaussian Process Regression for pose-invariant facial expression recognition

    NARCIS (Netherlands)

    Rudovic, Ognjen; Patras, Ioannis; Pantic, Maja; Daniilidis, Kostas; Maragos, Petros; Paragios, Nikos


    We present a novel framework for the recognition of facial expressions at arbitrary poses that is based on 2D geometric features. We address the problem by first mapping the 2D locations of landmark points of facial expressions in non-frontal poses to the corresponding locations in the frontal pose.

  19. Production of hydrogen using an anaerobic biological process (United States)

    Kramer, Robert; Pelter, Libbie S.; Patterson, John A.


    Various embodiments of the present invention pertain to methods for biological production of hydrogen. More specifically, embodiments of the present invention pertain to a modular energy system and related methods for producing hydrogen using organic waste as a feed stock.

  20. Different neural processes accompany self-recognition in photographs across the lifespan: an ERP study using dizygotic twins.

    Directory of Open Access Journals (Sweden)

    David L Butler

    Full Text Available Our appearance changes over time, yet we can recognize ourselves in photographs from across the lifespan. Researchers have extensively studied self-recognition in photographs and have proposed that specific neural correlates are involved, but few studies have examined self-recognition using images from different periods of life. Here we compared ERP responses to photographs of participants when they were 5-15, 16-25, and 26-45 years old. We found marked differences between the responses to photographs from these time periods in terms of the neural markers generally assumed to reflect (i the configural processing of faces (i.e., the N170, (ii the matching of the currently perceived face to a representation already stored in memory (i.e., the P250, and (iii the retrieval of information about the person being recognized (i.e., the N400. There was no uniform neural signature of visual self-recognition. To test whether there was anything specific to self-recognition in these brain responses, we also asked participants to identify photographs of their dizygotic twins taken from the same time periods. Critically, this allowed us to minimize the confounding effects of exposure, for it is likely that participants have been similarly exposed to each other's faces over the lifespan. The same pattern of neural response emerged with only one exception: the neural marker reflecting the retrieval of mnemonic information (N400 differed across the lifespan for self but not for twin. These results, as well as our novel approach using twins and photographs from across the lifespan, have wide-ranging consequences for the study of self-recognition and the nature of our personal identity through time.

  1. Slow molecular recognition by RNA. (United States)

    Gleitsman, Kristin R; Sengupta, Raghuvir N; Herschlag, Daniel


    Molecular recognition is central to biological processes, function, and specificity. Proteins associate with ligands with a wide range of association rate constants, with maximal values matching the theoretical limit set by the rate of diffusional collision. As less is known about RNA association, we compiled association rate constants for all RNA/ligand complexes that we could find in the literature. Like proteins, RNAs exhibit a wide range of association rate constants. However, the fastest RNA association rates are considerably slower than those of the fastest protein associations and fall well below the diffusional limit. The apparently general observation of slow association with RNAs has implications for evolution and for modern-day biology. Our compilation highlights a quantitative molecular property that can contribute to biological understanding and underscores our need to develop a deeper physical understanding of molecular recognition events. © 2017 Gleitsman et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mei Zhan


    Full Text Available Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM. These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a

  3. Students' Ability to Solve Process-Diagram Problems in Secondary Biology Education (United States)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert


    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and working memory. For this purpose, we developed a test…

  4. Students’ Ability to Solve Process-diagram Problems in Secondary Biology Education

    NARCIS (Netherlands)

    Kragten, M.; Admiraal, W.; Rijlaarsdam, G.


    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and

  5. Biological processing of dinuclear ruthenium complexes in eukaryotic cells. (United States)

    Li, Xin; Heimann, Kirsten; Dinh, Xuyen Thi; Keene, F Richard; Collins, J Grant


    The biological processing - mechanism of cellular uptake, effects on the cytoplasmic and mitochondrial membranes, intracellular sites of localisation and induction of reactive oxygen species - of two dinuclear polypyridylruthenium(ii) complexes has been examined in three eukaryotic cells lines. Flow cytometry was used to determine the uptake of [{Ru(phen)2}2{μ-bb12}](4+) (Rubb12) and [Ru(phen)2(μ-bb7)Ru(tpy)Cl](3+) {Rubb7-Cl, where phen = 1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine and bbn = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane} in baby hamster kidney (BHK), human embryonic kidney (HEK-293) and liver carcinoma (HepG2) cell lines. The results demonstrated that the major uptake mechanism for Rubb12 and Rubb7-Cl was active transport, although with a significant contribution from carrier-assisted diffusion for Rubb12 and passive diffusion for Rubb7-Cl. Flow cytometry coupled with Annexin V/TO-PRO-3 double-staining was used to compare cell death by membrane damage or apoptosis. Rubb12 induced significant direct membrane damage, particularly with HepG2 cells, while Rubb7-Cl caused considerably less membrane damage but induced greater levels of apoptosis. Confocal microscopy, coupled with JC-1 assays, demonstrated that Rubb12 depolarises the mitochondrial membrane, whereas Rubb7-Cl had a much smaller affect. Cellular localisation experiments indicated that Rubb12 did not accumulate in the mitochondria, whereas significant mitochondrial accumulation was observed for Rubb7-Cl. The effect of Rubb12 and Rubb7-Cl on intracellular superoxide dismutase activity showed that the ruthenium complexes could induce cell death via a reactive oxygen species-mediated pathway. The results of this study demonstrate that Rubb12 predominantly kills eukaryotic cells by damaging the cytoplasmic membrane. As this dinuclear ruthenium complex has been previously shown to exhibit greater toxicity towards bacteria than eukaryotic cells, the results of the present study suggest that

  6. Simulating biological processes: stochastic physics from whole cells to colonies (United States)

    Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida


    The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

  7. Autonomic nervous system dynamics for mood and emotional-state recognition significant advances in data acquisition, signal processing and classification

    CERN Document Server

    Valenza, Gaetano


    This monograph reports on advances in the measurement and study of autonomic nervous system (ANS) dynamics as a source of reliable and effective markers for mood state recognition and assessment of emotional responses. Its primary impact will be in affective computing and the application of emotion-recognition systems. Applicative studies of biosignals such as: electrocardiograms; electrodermal responses; respiration activity; gaze points; and pupil-size variation are covered in detail, and experimental results explain how to characterize the elicited affective levels and mood states pragmatically and accurately using the information thus extracted from the ANS. Nonlinear signal processing techniques play a crucial role in understanding the ANS physiology underlying superficially noticeable changes and provide important quantifiers of cardiovascular control dynamics. These have prognostic value in both healthy subjects and patients with mood disorders. Moreover, Autonomic Nervous System Dynamics for Mood and ...

  8. Reconfigurable optical differential phase-shift-keying pattern recognition based on incoherent photonic processing. (United States)

    Malacarne, Antonio; Ashrafi, Reza; Park, Yongwoo; Azaña, José


    We propose and experimentally demonstrate asynchronous optical differential phase-shift-keying (DPSK) pattern recognition using a fully reconfigurable technique. The proposed method uses optical phase-to-bipolar intensity conversion through all-optical differentiation in conjunction with an incoherent time-spectrum convolution system where the pattern to be recognized is implemented directly in the spectral domain through optical amplitude-only linear filtering. Full reconfigurability in terms of bit rate, pattern sequence, and pattern length is achieved using electronically programmable optical filters. We demonstrate dynamically switching recognition of different 64 bit patterns in a continuous 12 Gb/s DPSK pseudorandom optical bit stream with contrast ratio up to 3.8 dB.

  9. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process. (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian


    Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW. Copyright © 2014 Elsevier Ltd. All rights reserved.


    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  11. Activated Sludge. Student Manual. Biological Treatment Process Control. (United States)

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  12. A self-teaching image processing and voice-recognition-based, intelligent and interactive system to educate visually impaired children (United States)

    Iqbal, Asim; Farooq, Umar; Mahmood, Hassan; Asad, Muhammad Usman; Khan, Akrama; Atiq, Hafiz Muhammad


    A self teaching image processing and voice recognition based system is developed to educate visually impaired children, chiefly in their primary education. System comprises of a computer, a vision camera, an ear speaker and a microphone. Camera, attached with the computer system is mounted on the ceiling opposite (on the required angle) to the desk on which the book is placed. Sample images and voices in the form of instructions and commands of English, Urdu alphabets, Numeric Digits, Operators and Shapes are already stored in the database. A blind child first reads the embossed character (object) with the help of fingers than he speaks the answer, name of the character, shape etc into the microphone. With the voice command of a blind child received by the microphone, image is taken by the camera which is processed by MATLAB® program developed with the help of Image Acquisition and Image processing toolbox and generates a response or required set of instructions to child via ear speaker, resulting in self education of a visually impaired child. Speech recognition program is also developed in MATLAB® with the help of Data Acquisition and Signal Processing toolbox which records and process the command of the blind child.

  13. Building the process-drug–side effect network to discover the relationship between biological Processes and side effects (United States)


    Background Side effects are unwanted responses to drug treatment and are important resources for human phenotype information. The recent development of a database on side effects, the side effect resource (SIDER), is a first step in documenting the relationship between drugs and their side effects. It is, however, insufficient to simply find the association of drugs with biological processes; that relationship is crucial because drugs that influence biological processes can have an impact on phenotype. Therefore, knowing which processes respond to drugs that influence the phenotype will enable more effective and systematic study of the effect of drugs on phenotype. To the best of our knowledge, the relationship between biological processes and side effects of drugs has not yet been systematically researched. Methods We propose 3 steps for systematically searching relationships between drugs and biological processes: enrichment scores (ES) calculations, t-score calculation, and threshold-based filtering. Subsequently, the side effect-related biological processes are found by merging the drug-biological process network and the drug-side effect network. Evaluation is conducted in 2 ways: first, by discerning the number of biological processes discovered by our method that co-occur with Gene Ontology (GO) terms in relation to effects extracted from PubMed records using a text-mining technique and second, determining whether there is improvement in performance by limiting response processes by drugs sharing the same side effect to frequent ones alone. Results The multi-level network (the process-drug-side effect network) was built by merging the drug-biological process network and the drug-side effect network. We generated a network of 74 drugs-168 side effects-2209 biological process relation resources. The preliminary results showed that the process-drug-side effect network was able to find meaningful relationships between biological processes and side effects in an

  14. Cognitive diffusion model with user-oriented context-to-text recognition for learning to promote high level cognitive processes

    Directory of Open Access Journals (Sweden)

    Wu-Yuin Hwang


    Full Text Available There is a large number of studies on how to promote students’ cognitive processes and learning achievements through various learning activities supported by advanced learning technologies. However, not many of them focus on applying the knowledge that students learn in school to solve authentic daily life problems. This study aims to propose a cognitive diffusion model called User-oriented Context-to-Text Recognition for Learning (U-CTRL to facilitate and improve students’ learning and cognitive processes from lower levels (i.e., Remember and Understand to higher levels (i.e., Apply and above through an innovative approach, called User-Oriented Context-to-Text Recognition for Learning (U-CTRL. With U-CTRL, students participate in learning activities in which they capture the learning context that can be scanned and recognized by a computer application as text. Furthermore, this study proposes the use of an innovative model, called Cognitive Diffusion Model, to investigate the diffusion and transition of students’ cognitive processes in different learning stages including pre-schooling, after-schooling, crossing the chasm, and higher cognitive processing. Finally, two cases are presented to demonstrate how the U-CTRL approach can be used to facilitate student cognition in their learning of English and Natural science.

  15. The self-advantage in visual speech processing enhances audiovisual speech recognition in noise. (United States)

    Tye-Murray, Nancy; Spehar, Brent P; Myerson, Joel; Hale, Sandra; Sommers, Mitchell S


    Individuals lip read themselves more accurately than they lip read others when only the visual speech signal is available (Tye-Murray et al., Psychonomic Bulletin & Review, 20, 115-119, 2013). This self-advantage for vision-only speech recognition is consistent with the common-coding hypothesis (Prinz, European Journal of Cognitive Psychology, 9, 129-154, 1997), which posits (1) that observing an action activates the same motor plan representation as actually performing that action and (2) that observing one's own actions activates motor plan representations more than the others' actions because of greater congruity between percepts and corresponding motor plans. The present study extends this line of research to audiovisual speech recognition by examining whether there is a self-advantage when the visual signal is added to the auditory signal under poor listening conditions. Participants were assigned to sub-groups for round-robin testing in which each participant was paired with every member of their subgroup, including themselves, serving as both talker and listener/observer. On average, the benefit participants obtained from the visual signal when they were the talker was greater than when the talker was someone else and also was greater than the benefit others obtained from observing as well as listening to them. Moreover, the self-advantage in audiovisual speech recognition was significant after statistically controlling for individual differences in both participants' ability to benefit from a visual speech signal and the extent to which their own visual speech signal benefited others. These findings are consistent with our previous finding of a self-advantage in lip reading and with the hypothesis of a common code for action perception and motor plan representation.

  16. Socializing processes in relation to the recognition of unskilled adults’ prior learning

    DEFF Research Database (Denmark)

    Aarkrog, Vibe

    The ordinary Danish VET programs are organized as dual programs in which the students alternate between school-based education and training and workplace-based training. The adult students in the course “From unskilled worker to skilled worker in record time” are automatically credited...... for the workplace-based training. However the study can contribute to the discussion of the value of practical experiences: are practical experiences creditable in educational programs? The study shows that the recognition and assessment of prior learning requires that the students can verbalize and preferably also...

  17. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing. (United States)

    Kriegeskorte, Nikolaus


    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  18. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes. (United States)

    Farré, Jean-Claude; Kramer, Michael; Ideker, Trey; Subramani, Suresh


    Increasingly, various 'omics data are contributing significantly to our understanding of novel biological processes, but it has not been possible to iteratively elucidate hierarchical functions in complex phenomena. We describe a general systems biology approach called Active Interaction Mapping (AI-MAP), which elucidates the hierarchy of functions for any biological process. Existing and new 'omics data sets can be iteratively added to create and improve hierarchical models which enhance our understanding of particular biological processes. The best datatypes to further improve an AI-MAP model are predicted computationally. We applied this approach to our understanding of general and selective autophagy, which are conserved in most eukaryotes, setting the stage for the broader application to other cellular processes of interest. In the particular application to autophagy-related processes, we uncovered and validated new autophagy and autophagy-related processes, expanded known autophagy processes with new components, integrated known non-autophagic processes with autophagy and predict other unexplored connections.

  19. Electrophysiological correlates of word recognition memory process in patients with ischemic left ventricular dysfunction. (United States)

    Giovannelli, Fabio; Simoni, David; Gavazzi, Gioele; Giganti, Fiorenza; Olivotto, Iacopo; Cincotta, Massimo; Pratesi, Alessandra; Baldasseroni, Samuele; Viggiano, Maria Pia


    The relationship between left ventricular ejection fraction (LVEF) and cognitive performance in patients with coronary artery disease without overt heart failure is still under debate. In this study we combine behavioral measures and event-related potentials (ERPs) to verify whether electrophysiological correlates of recognition memory (old/new effect) are modulated differently as a function of LVEF. Twenty-three male patients (12 without [LVEF>55%] and 11 with [LVEF25 were enrolled. ERPs were recorded while participants performed an old/new visual word recognition task. A late positive ERP component between 350 and 550ms was differentially modulated in the two groups: a clear old/new effect (enhanced mean amplitude for old respect to new items) was observed in patients without LVEF dysfunction; whereas patients with overt LVEF dysfunction did not show such effect. In contrast, no significant differences emerged for behavioral performance and neuropsychological evaluations. These data suggest that ERPs may reveal functional brain abnormalities that are not observed at behavioral level. Detecting sub-clinical measures of cognitive decline may contribute to set appropriate treatments and to monitor asymptomatic or mildly symptomatic patients with LVEF dysfunction. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping

    Directory of Open Access Journals (Sweden)

    Yasmine Probst


    Full Text Available Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT, local binary patterns (LBP, and colour are used for describing food images. The popular bag-of-words (BoW model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.

  1. Microclimate effects of crop residues on biological processes (United States)

    Hatfield, J. L.; Prueger, J. H.


    Residues from crops left on the soil surface have an impact on the microclimate, primarily temperature, within the soil and the atmosphere; but, the impact on the biological system is largely unknown. Residue is assumed to have a positive impact on the biological system in the soil and a negative impact on crop growth. This report investigates the effect of standing residue on the microclimate surrounding a cotton ( Gossypium hirsutum L.) crop in a semi-arid environment and the effect of flat residue on the seasonal soil temperature and soil water regimes in a humid climate with a corn ( Zea mays L.) and soybean [ Glycine max (L.) Merr.] production system. A study was conducted during 1987 and 1988 in a semi-arid climate at Lubbock, Texas using standing wheat stubble to shelter cotton from wind. In this study soil water, microclimatic variables, and plant growth were measured within standing stubble and bare soil during the early vegetative growth period. Air temperatures were warmer at night within the standing residue and the air more humid throughout the day. This led to a reduction in the soil water evaporation rate and an increase in the water use efficiency of the cotton plant within the stubble. Studies on corn residue with continuous corn and corn-soybean rotations with no-till, chiselplow, and moldboard plow tillage practices in central Iowa showed that the average soil temperatures in the upper soil profile were not affected by the presence of flat residue after tillage. Diurnal temperature ranges were most affected by the residue throughout the year. The largest effect of the residue on soil temperature was in the fall after harvest when no-till fields cooled more slowly than tilled fields. In the spring, surface residue decreased the soil water evaporation rate and increased the soil water storage within the soil profile covered with residue. In years with below normal rainfall, the additional stored soil water due to the surface residue was used by the

  2. Pulsed electrical discharges for medicine and biology techniques, processes, applications

    CERN Document Server

    Kolikov, Victor


    This book presents the application of pulsed electrical discharges in water and water dispersions of metal nanoparticles in medicine (surgery, dentistry, and oncology), biology, and ecology. The intensive electrical and shock waves represent a novel technique to destroy viruses and this way to  prepare anti-virus vaccines. The method of pulsed electrical discharges in water allows to decontaminate water from almost all known bacteria and spores of fungi being present in human beings. The nanoparticles used are not genotoxic and mutagenic. This book is useful for researchers and graduate students.

  3. Emotional Processing, Recognition, Empathy and Evoked Facial Expression in Eating Disorders: An Experimental Study to Map Deficits in Social Cognition (United States)

    Cardi, Valentina; Corfield, Freya; Leppanen, Jenni; Rhind, Charlotte; Deriziotis, Stephanie; Hadjimichalis, Alexandra; Hibbs, Rebecca; Micali, Nadia; Treasure, Janet


    Background Difficulties in social cognition have been identified in eating disorders (EDs), but the exact profile of these abnormalities is unclear. The aim of this study is to examine distinct processes of social-cognition in this patient group, including attentional processing and recognition, empathic reaction and evoked facial expression in response to discrete vignettes of others displaying positive (i.e. happiness) or negative (i.e. sadness and anger) emotions. Method One hundred and thirty-eight female participants were included in the study: 73 healthy controls (HCs) and 65 individuals with an ED (49 with Anorexia Nervosa and 16 with Bulimia Nervosa). Self-report and behavioural measures were used. Results Participants with EDs did not display specific abnormalities in emotional processing, recognition and empathic response to others’ basic discrete emotions. However, they had poorer facial expressivity and a tendency to turn away from emotional displays. Conclusion Treatments focusing on the development of non-verbal emotional communication skills might be of benefit for patients with EDs. PMID:26252220

  4. Emotional Processing, Recognition, Empathy and Evoked Facial Expression in Eating Disorders: An Experimental Study to Map Deficits in Social Cognition.

    Directory of Open Access Journals (Sweden)

    Valentina Cardi

    Full Text Available Difficulties in social cognition have been identified in eating disorders (EDs, but the exact profile of these abnormalities is unclear. The aim of this study is to examine distinct processes of social-cognition in this patient group, including attentional processing and recognition, empathic reaction and evoked facial expression in response to discrete vignettes of others displaying positive (i.e. happiness or negative (i.e. sadness and anger emotions.One hundred and thirty-eight female participants were included in the study: 73 healthy controls (HCs and 65 individuals with an ED (49 with Anorexia Nervosa and 16 with Bulimia Nervosa. Self-report and behavioural measures were used.Participants with EDs did not display specific abnormalities in emotional processing, recognition and empathic response to others' basic discrete emotions. However, they had poorer facial expressivity and a tendency to turn away from emotional displays.Treatments focusing on the development of non-verbal emotional communication skills might be of benefit for patients with EDs.

  5. Vanadium in Biosphere and Its Role in Biological Processes. (United States)

    Tripathi, Deepika; Mani, Veena; Pal, Ravi Prakash


    Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.

  6. Lignocellulose Biomass: Constitutive Polymers. Biological Processes of Lignin Degradation

    International Nuclear Information System (INIS)

    Martin, C.; Manzanares, P.


    The structure of the lignocellulosic materials and the chemical composition of their main constitutive polymers, cellulose, hemicelluloses and lignin are described. The most promising transformation processes according to the type of biomass considered: hardwood, softwood an herbaceous and the perspectives of biotechnological processes for bio pulping, bio bleaching and effluents decolorisation in the paper pulp industry are also discussed. (Author) 7 refs

  7. Pretreatment of lignocellulose with biological acid recycling (the Biosulfurol process)

    NARCIS (Netherlands)

    Groenestijn, van J.; Hazewinkel, O.; Bakker, R.R.C.


    A biomass pretreatment process is being developed based on contacting lignocellulosic biomass with 70% sulfuric acid and subsequent hydrolysis by adding water. In this process, the hydrolysate can be fermented yielding ethanol, while the sulfuric acid is partly recovered by anion-selective membranes

  8. Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide. (United States)

    Klopping, Paul H.

    This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…

  9. Morphological structure processing during word recognition and its relationship to character reading among third-grade Chinese children. (United States)

    Liu, Duo; McBride-Chang, Catherine


    In the present study, we explored the characteristics of morphological structure processing during word recognition among third grade Chinese children and its possible relationship with Chinese character reading. By using the modified priming lexical decision paradigm, a significant morphological structure priming effect was found in the subject analysis when reaction time difference was considered as dependent variable. In the regression analyses, the children's implicit morphological structure processing demonstrated a significant effect on Chinese character reading, even though its effect became non-significant when morphological awareness was entered. We achieved this result after controlling for the children's age, non-verbal intelligence, and phonological awareness. These findings indicate that third grade Chinese children are sensitive to morphological structure information in the processing of compound words. Moreover, such sensitivity is, to some extent, a good predictor of Chinese children's word reading performance.

  10. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Shively, John E [Arcadia, CA; Li, Lin [Monrovia, CA


    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  11. Striatal and Hippocampal Entropy and Recognition Signals in Category Learning: Simultaneous Processes Revealed by Model-Based fMRI (United States)

    Davis, Tyler; Love, Bradley C.; Preston, Alison R.


    Category learning is a complex phenomenon that engages multiple cognitive processes, many of which occur simultaneously and unfold dynamically over time. For example, as people encounter objects in the world, they simultaneously engage processes to determine their fit with current knowledge structures, gather new information about the objects, and adjust their representations to support behavior in future encounters. Many techniques that are available to understand the neural basis of category learning assume that the multiple processes that subserve it can be neatly separated between different trials of an experiment. Model-based functional magnetic resonance imaging offers a promising tool to separate multiple, simultaneously occurring processes and bring the analysis of neuroimaging data more in line with category learning’s dynamic and multifaceted nature. We use model-based imaging to explore the neural basis of recognition and entropy signals in the medial temporal lobe and striatum that are engaged while participants learn to categorize novel stimuli. Consistent with theories suggesting a role for the anterior hippocampus and ventral striatum in motivated learning in response to uncertainty, we find that activation in both regions correlates with a model-based measure of entropy. Simultaneously, separate subregions of the hippocampus and striatum exhibit activation correlated with a model-based recognition strength measure. Our results suggest that model-based analyses are exceptionally useful for extracting information about cognitive processes from neuroimaging data. Models provide a basis for identifying the multiple neural processes that contribute to behavior, and neuroimaging data can provide a powerful test bed for constraining and testing model predictions. PMID:22746951

  12. Graphical symbol recognition


    K.C. , Santosh; Wendling , Laurent


    International audience; The chapter focuses on one of the key issues in document image processing i.e., graphical symbol recognition. Graphical symbol recognition is a sub-field of a larger research domain: pattern recognition. The chapter covers several approaches (i.e., statistical, structural and syntactic) and specially designed symbol recognition techniques inspired by real-world industrial problems. It, in general, contains research problems, state-of-the-art methods that convey basic s...

  13. Behaviour of radionuclides in biological and non-biological processes at very low concentrations

    International Nuclear Information System (INIS)

    Sinnaeve, J.; Frissel, M.J.; Klugt, N. van der; Geijn, S.C. van de.


    Four experiments using a 'biological exchange column', i.e. a cut papyrus stem were carried out. Prior to the passage of the labelled solution containing 250 μCi 137 Cs.l -1 , and 1 μCi 134 Cs.l -1 , the exchange sites of the stem were protonated. Two treatments were carried out, the first with 10 -4 M stable caesium in the labelled solution and the second with 10 -4 M potassium. After detection of the front of activity half way up the stem, 5 cm segments of the stem were cut and counted. (Auth.)

  14. Test of Science Process Skills of Biology Students towards Developing of Learning Exercises

    Directory of Open Access Journals (Sweden)

    Judith S. Rabacal


    Full Text Available This is a descriptive study aimed to determine the academic achievement on science process skills of the BS Biology Students of Northern Negros State College of Science and Technology, Philippines with the end view of developing learning exercises which will enhance their academic achievement on basic and integrated science process skills. The data in this study were obtained using a validated questionnaire. Mean was the statistical tool used to determine the academic achievement on the above mentioned science process skills; t-test for independent means was used to determine significant difference on the academic achievement of science process skills of BS Biology students while Pearson Product Moment of Correlation Coefficient was used to determine the significant relationship between basic and integrated science process skills of the BS Biology students. A 0.05 level of significance was used to determine whether the hypothesis set in the study will be rejected or accepted. Findings revealed that the academic achievement on basic and integrated science process skills of the BS Biology students was average. Findings revealed that there are no significant differences on the academic performance of the BS Biology students when grouped according to year level and gender. Findings also revealed that there is a significant difference on the academic achievement between basic and integrated science process skills of the BS Biology students. Findings revealed that there is a significant relationship between academic achievement on the basic and integrated science process skills of the BS Biology students.

  15. Two-way feedback between biology and deep Earth processes

    DEFF Research Database (Denmark)

    Sleep, Norman; Bird, Dennis K.; Pope, Emily Catherine

    ’s surface and interior cooled following the moon-forming impact. The oceans passed through conditions favored by thermophile organisms before becoming clement. Ocean pH was ~6 and bars of CO2 existed in the atmosphere. Subduction removed the CO2 into the mantle before the time of rock record. Serpentinite......The presence of the metamorphic products of banded iron formation and black shale indicate that the Earth teemed with life by the time of the earliest preserved rocks, ca. 3.85 Ga. Iron and sulfur-based anoxygenic photosynthesis with full carbon cycles was present by this time. The pH of the ocean...... was ~8. The lack of older rock record cloaks pre-biotic evolution and the origin of life. Nascent and early life obtained energy from chemical disequilibria in rocks rather than sunlight. Appraising putative rock pre-biological environments is difficult in that life has modified the composition...

  16. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3. (United States)

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice


    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  17. Mistaking geography for biology: inferring processes from species distributions. (United States)

    Warren, Dan L; Cardillo, Marcel; Rosauer, Dan F; Bolnick, Daniel I


    Over the past few decades, there has been a rapid proliferation of statistical methods that infer evolutionary and ecological processes from data on species distributions. These methods have led to considerable new insights, but they often fail to account for the effects of historical biogeography on present-day species distributions. Because the geography of speciation can lead to patterns of spatial and temporal autocorrelation in the distributions of species within a clade, this can result in misleading inferences about the importance of deterministic processes in generating spatial patterns of biodiversity. In this opinion article, we discuss ways in which patterns of species distributions driven by historical biogeography are often interpreted as evidence of particular evolutionary or ecological processes. We focus on three areas that are especially prone to such misinterpretations: community phylogenetics, environmental niche modelling, and analyses of beta diversity (compositional turnover of biodiversity). Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  18. Brief Report: Recognition of Emotional and Non-Emotional Biological Motion in Individuals with Autistic Spectrum Disorders (United States)

    Hubert, B.; Wicker, B.; Moore, D. G.; Monfardini, E.; Duverger, H.; Da Fonseca, D.; Deruelle, C.


    This study aimed to explore the perception of different components of biological movement in individuals with autism and Asperger syndrome. The ability to recognize a person's actions, subjective states, emotions, and objects conveyed by moving point-light displays was assessed in 19 participants with autism and 19 comparable typical control…

  19. Integrated chemical/physical and biological processes modeling Part 2

    African Journals Online (AJOL)

    The approach of characterising sewage sludge into carbohydrates, lipids and proteins, as is done in the International Water Association (IWA) AD model No 1 ... found to be 64 to 68% biodegradable (depending on the kinetic formulation selected for the hydrolysis process) and to have a C,sub>3.5H7O2N0.196 composition.

  20. Benchmarking Combined Biological Phosphorus and Nitrogen Removal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jørgensen, Sten Bay


    conditions respectively, the definition of performance indexes that include the phosphorus removal processes, and the selection of a suitable operating point for the plant. Two control loops were implemented: one for dissolved oxygen control using the oxygen transfer coefficient K(L)a as manipulated variable...

  1. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)


    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  2. Anaerobic Digestion. Student Manual. Biological Treatment Process Control. (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  3. Early recognition of multiple sclerosis using natural language processing of the electronic health record. (United States)

    Chase, Herbert S; Mitrani, Lindsey R; Lu, Gabriel G; Fulgieri, Dominick J


    Diagnostic accuracy might be improved by algorithms that searched patients' clinical notes in the electronic health record (EHR) for signs and symptoms of diseases such as multiple sclerosis (MS). The focus this study was to determine if patients with MS could be identified from their clinical notes prior to the initial recognition by their healthcare providers. An MS-enriched cohort of patients with well-established MS (n = 165) and controls (n = 545), was generated from the adult outpatient clinic. A random sample cohort was generated from randomly selected patients (n = 2289) from the same adult outpatient clinic, some of whom had MS (n = 16). Patients' notes were extracted from the data warehouse and signs and symptoms mapped to UMLS terms using MedLEE. Approximately 1000 MS-related terms occurred significantly more frequently in MS patients' notes than controls'. Synonymous terms were manually clustered into 50 buckets and used as classification features. Patients were classified as MS or not using Naïve Bayes classification. Classification of patients known to have MS using notes of the MS-enriched cohort entered after the initial ICD9[MS] code yielded an ROC AUC, sensitivity, and specificity of 0.90 [0.87-0.93], 0.75[0.66-0.82], and 0.91 [0.87-0.93], respectively. Similar classification accuracy was achieved using the notes from the random sample cohort. Classification of patients not yet known to have MS using notes of the MS-enriched cohort entered before the initial ICD9[MS] documentation identified 40% [23-59%] as having MS. Manual review of the EHR of 45 patients of the random sample cohort classified as having MS but lacking an ICD9[MS] code identified four who might have unrecognized MS. Diagnostic accuracy might be improved by mining patients' clinical notes for signs and symptoms of specific diseases using NLP. Using this approach, we identified patients with MS early in the course of their disease which could potentially shorten

  4. Performance Comparison of Several Pre-Processing Methods in a Hand Gesture Recognition System based on Nearest Neighbor for Different Background Conditions

    Directory of Open Access Journals (Sweden)

    Iwan Setyawan


    Full Text Available This paper presents a performance analysis and comparison of several pre-processing methods used in a hand gesture recognition system. The pre-processing methods are based on the combinations of several image processing operations, namely edge detection, low pass filtering, histogram equalization, thresholding and desaturation. The hand gesture recognition system is designed to classify an input image into one of six possible classes. The input images are taken with various background conditions. Our experiments showed that the best result is achieved when the pre-processing method consists of only a desaturation operation, achieving a classification accuracy of up to 83.15%.

  5. The administrative process for recognition and compensation for occupational diseases in Korea. (United States)

    Kwon, Soon-Chan; Kim, Hyoung-Ryoul; Kwon, Young-Jun


    In the Workers' Compensation Insurance (WCI) system in Korea, occupational diseases (ODs) are approved through deliberation meetings of the Committee on Occupational Disease Judgment (CODJ) after disease investigations when workers or medical institutions requested the Korea Workers' Compensation and Welfare Service (COMWEL) for medical care benefits. Insufficient data presented by employers or workers or lack of objective evidence may increase the possibility of disapproval. The expertise of accident investigation staff members should be reinforced and employers' and related institutions' obligations to cooperate and submit data should be specified under the law. The deliberation meetings of the CODJ are held separately for musculoskeletal, cerebro-cardiovascular, and medical diseases, and the judgments of ODs are made by the chairperson of COMWEL and six committee members by majority vote by issue. To reinforce the expertise of the members of the CODJ, periodic education and a system to accredit the committee members after appropriate education should be introduced. To fairly and quickly compensate for diseases that occur in workers, the criteria for the recognition of occupational diseases should be continuously amended and the systems for disease investigations and judgments should be continuously improved.

  6. The role of mnemonic processes in pure-target and pure-foil recognition memory. (United States)

    Koop, Gregory J; Criss, Amy H; Malmberg, Kenneth J


    Surprisingly, response patterns in a recognition memory test are very similar regardless of whether the test list contains both targets and foils or just one class of items. To better understand these effects, we evaluate performance over the course of testing. Output interference (OI) is the decrease in performance across test trials due to an increase in noise caused by encoded test items. Critically, OI is predicted on pure lists if the mnemonic evidence for each test item is evaluated. In two experiments, participants received accurate feedback, no feedback, or random feedback that was unrelated to the response on each test trial and pure or standard test lists. When no feedback was provided, performance was nearly identical for standard and pure test lists, replicating previous findings. Only in the presence of accurate feedback were participants able to successfully adapt to pure list environments and improve their accuracy. Critically, OI was observed, demonstrating that participants continued to evaluate mnemonic evidence even in pure list conditions. We discuss the implication of these data for models of memory.

  7. Biological Treatment of tannery wastewater using activated sludge process

    International Nuclear Information System (INIS)

    Haydar, S.; Aziz, J.A.


    A study was conducted to evaluate the feasibility of Activated Sludge Process (ASP) for the treatment of tannery wastewater and to develop a simple design criteria under local conditions. A bench scale model comprising of an aeration tank and final clarifier was used for this purpose. The model was operated continuously for 267 days. Settled tannery wastewater was used as influent to the aeration tank. Five days Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) of the influent and effluent were measured to find process efficiency at various mixed liquor volatile suspended solids (MLVSS) and hydraulic detention time. The results of the study demonstrated that an efficiency of above 90% and 80% for BOD5 and COD, respectively could be obtained if the ASP is operated at an MLVSS concentration of 3500 mg/L keeping an aeration time of 12 hours. (author)

  8. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Shumate, S.E. II; Strandberg, G.W.; Parrott, J.R. Jr.


    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m 3 must be reduced to 1 g/m 3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m 3 , where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  9. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)


    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  10. Development of biological coal gasification (MicGAS Process)

    Energy Technology Data Exchange (ETDEWEB)

    Walia, D.S.; Srivastava, K.C.


    The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

  11. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process. (United States)

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin


    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biologically-based signal processing system applied to noise removal for signal extraction (United States)

    Fu, Chi Yung; Petrich, Loren I.


    The method and system described herein use a biologically-based signal processing system for noise removal for signal extraction. A wavelet transform may be used in conjunction with a neural network to imitate a biological system. The neural network may be trained using ideal data derived from physical principles or noiseless signals to determine to remove noise from the signal.

  13. Recognition of unnatural variation patterns in metal-stamping process using artificial neural network and statistical features (United States)

    Rahman, Norasulaini Abdul; Masood, Ibrahim; Nasrull Abdol Rahman, Mohd


    Unnatural process variation (UPV) is vital in quality problem of a metalstamping process. It is a major contributor to a poor quality product. The sources of UPV usually found from special causes. Recently, there is still debated among researchers in finding an effective technique for on-line monitoring-diagnosis the sources of UPV. Control charts pattern recognition (CCPR) is the most investigated technique. The existing CCPR schemes were mainly developed using raw data-based artificial neural network (ANN) recognizer, whereby the process samples were mainly generated artificially using mathematical equations. This is because the real process samples were commonly confidential or not economically available. In this research, the statistical features - ANN recognizer was utilized as the control chart pattern recognizer, whereby process sample was taken directly from an actual manufacturing process. Based on dynamic data training, the proposed recognizer has resulted in better monitoring-diagnosis performance (Normal = 100%, Unnatural = 100%) compared to the raw data- ANN (Normal = 66.67%, Unnatural = 26.97%).

  14. Improved biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)


    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using recombinant host cells. More particularly, the present invention pertains to recombinant host cells comprising (e.g., expressing) a polypeptide having aryl sulfotransferase...... activity, wherein said recombinant host cells have been modified to have an increased uptake of sulfate compared to identical host cells that does not carry said modification. Further provided are processes for the production of aryl sulfates, such as zosteric acid, employing such recombinant host cells....

  15. Process for rapidly determining biological toxicity of wastewater

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, C.S.


    This patent describes a process for determining the quality of a wastewater solution or a solution of a specific chemical. The process comprises mixing microrganisms with a test solution, measuring the dissolved oxygen content in the test solution, and correlating dissolved oxygen content of the mixture with a standard solution. The improvement described here is for enhancing the sensitivity of the test while reducing the amount of time necessary to conduct a test which comprises: a. utilizing a bacterial culture in the form of a dried powder, the bacterial culture being capable of aerobic biodegradation of organic wastes; b. placing a preselected amount of the bacterial culture into a test vessel containing a preselected amount of aqueous waste which has been saturated with oxygen; c. measuring the dissolved oxygen content in the test sample as a function of time; d. determining the rate of dissolved oxygen decline at a preselected time, and; e. determining the ratio between the rate of dissolved oxygen decline at the preselected time and the rate of decline for a preselected baseline standard solution, and thereby determining the degree of inhibition of bacterial respiration or growth.

  16. Multiresolution, Geometric, and Learning Methods in Statistical Image Processing, Object Recognition, and Sensor Fusion

    National Research Council Canada - National Science Library

    Willsky, Alan


    .... Our research blends methods from several fields-statistics and probability, signal and image processing, mathematical physics, scientific computing, statistical learning theory, and differential...

  17. The bacterial interlocked process ONtology (BiPON): a systemic multi-scale unified representation of biological processes in prokaryotes. (United States)

    Henry, Vincent J; Goelzer, Anne; Ferré, Arnaud; Fischer, Stephan; Dinh, Marc; Loux, Valentin; Froidevaux, Christine; Fromion, Vincent


    High-throughput technologies produce huge amounts of heterogeneous biological data at all cellular levels. Structuring these data together with biological knowledge is a critical issue in biology and requires integrative tools and methods such as bio-ontologies to extract and share valuable information. In parallel, the development of recent whole-cell models using a systemic cell description opened alternatives for data integration. Integrating a systemic cell description within a bio-ontology would help to progress in whole-cell data integration and modeling synergistically. We present BiPON, an ontology integrating a multi-scale systemic representation of bacterial cellular processes. BiPON consists in of two sub-ontologies, bioBiPON and modelBiPON. bioBiPON organizes the systemic description of biological information while modelBiPON describes the mathematical models (including parameters) associated with biological processes. bioBiPON and modelBiPON are related using bridge rules on classes during automatic reasoning. Biological processes are thus automatically related to mathematical models. 37% of BiPON classes stem from different well-established bio-ontologies, while the others have been manually defined and curated. Currently, BiPON integrates the main processes involved in bacterial gene expression processes. BiPON is a proof of concept of the way to combine formally systems biology and bio-ontology. The knowledge formalization is highly flexible and generic. Most of the known cellular processes, new participants or new mathematical models could be inserted in BiPON. Altogether, BiPON opens up promising perspectives for knowledge integration and sharing and can be used by biologists, systems and computational biologists, and the emerging community of whole-cell modeling.

  18. Kinetics of quasi-isoenergetic transition processes in biological macromolecules

    International Nuclear Information System (INIS)

    Petrov, E.G.; Teslenko, V.I.


    A master equation describing the evolution of averaged molecular state occupancies in molecular systems where alternation of molecular energy levels is caused by discrete dichotomous and trichotomous stochastic fields, is derived. This study is focused on the kinetics of quasi-isoenergetic transition processes in the presence of moderately high frequency stochastic field. A novel physical mechanism for temperature-independent transitions in flexible molecular systems is proposed. This mechanism becomes effective when the conformation transitions between quasi-isoenergetic molecular states take place. At room temperatures, stochastic broadening of molecular energy levels predominates the energy of low-frequency vibrations accompanying the transition. This leads to a cancellation of the temperature dependence in the stochastically averaged rate constants. As examples, physical interpretations of the temperature-independent onset of P2X 3 receptor desensitization in neuronal membranes, as well as degradation of PER2 protein in embrionic fibroblasts, are provided.

  19. Quickprop method to speed up learning process of Artificial Neural Network in money's nominal value recognition case (United States)

    Swastika, Windra


    A money's nominal value recognition system has been developed using Artificial Neural Network (ANN). ANN with Back Propagation has one disadvantage. The learning process is very slow (or never reach the target) in the case of large number of iteration, weight and samples. One way to speed up the learning process is using Quickprop method. Quickprop method is based on Newton's method and able to speed up the learning process by assuming that the weight adjustment (E) is a parabolic function. The goal is to minimize the error gradient (E'). In our system, we use 5 types of money's nominal value, i.e. 1,000 IDR, 2,000 IDR, 5,000 IDR, 10,000 IDR and 50,000 IDR. One of the surface of each nominal were scanned and digitally processed. There are 40 patterns to be used as training set in ANN system. The effectiveness of Quickprop method in the ANN system was validated by 2 factors, (1) number of iterations required to reach error below 0.1; and (2) the accuracy to predict nominal values based on the input. Our results shows that the use of Quickprop method is successfully reduce the learning process compared to Back Propagation method. For 40 input patterns, Quickprop method successfully reached error below 0.1 for only 20 iterations, while Back Propagation method required 2000 iterations. The prediction accuracy for both method is higher than 90%.

  20. Heat transfer and fluid flow in biological processes advances and applications

    CERN Document Server

    Becker, Sid


    Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...

  1. Modulation of pathogen recognition by autophagy

    Directory of Open Access Journals (Sweden)

    Ji Eun eOh


    Full Text Available Autophagy is an ancient biological process for maintaining cellular homeostasis by degradation of long-lived cytosolic proteins and organelles. Recent studies demonstrated that autophagy is availed by immune cells to regulate innate immunity. On the one hand, cells exert direct effector function by degrading intracellular pathogens; on the other hand, autophagy modulates pathogen recognition and downstream signaling for innate immune responses. Pathogen recognition via pattern recognition receptors induces autophagy. The function of phagocytic cells is enhanced by recruitment of autophagy-related proteins. Moreover, autophagy acts as a delivery system for viral replication complexes to migrate to the endosomal compartments where virus sensing occurs. In another case, key molecules of the autophagic pathway have been found to negatively regulate immune signaling, thus preventing aberrant activation of cytokine production and consequent immune responses. In this review, we focus on the recent advances in the role of autophagy in pathogen recognition and modulation of innate immune responses.

  2. Life's origin: the cosmic, planetary and biological processes (United States)

    Scattergood, T.; Des Marais, D.; Jahnke, L.


    From elements formed in interstellar furnaces to humans peering back at the stars, the evolution of life has been a long, intricate and perhaps inevitable process. Life as we know it requires a planet orbiting a star at just the right distance so that water can exist in liquid form. It needs a rich supply of chemicals and energy sources. On Earth, the combination of chemistry and energy generated molecules that evolved ways of replicating themselves and of passing information from one generation to the next. Thus, the thread of life began. This chart traces the thread, maintained by DNA molecules for much of its history, as it weaves its way through the primitive oceans, gaining strength and diversity along the way. Organisms eventually moved onto the land, where advanced forms, including humans, ultimately arose. Finally, assisted by a technology of its own making, life has reached back out into space to understand its own origins, to expand into new realms, and to seek other living threads in the cosmos.

  3. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes. (United States)

    Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen


    This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.

  4. Contextual classification on PASM. [multimicroprocessor system for image processing and pattern recognition (United States)

    Siegel, H. J.; Swain, P. H.


    The use of N microprocessors in the SIMD mode of parallel processing to do classifications almost N times faster than a single microprocessor is discussed. Examples of contextual classifiers are given, uniprocessor algorithms for performing contextual classifications are presented, and their computational complexity is analyzed. The SIMD mode of parallel processing is defined and PASM is overviewed. The presented uniprocessor algorithms are used as a basis for developing parallel algorithms for performing computationally intensive contextual classifications.

  5. Image processing and pattern recognition with CVIPtools MATLAB toolbox: automatic creation of masks for veterinary thermographic images (United States)

    Mishra, Deependra K.; Umbaugh, Scott E.; Lama, Norsang; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph


    CVIPtools is a software package for the exploration of computer vision and image processing developed in the Computer Vision and Image Processing Laboratory at Southern Illinois University Edwardsville. CVIPtools is available in three variants - a) CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MATLAB toolbox, which makes it accessible to a variety of different users. It offers students, faculty, researchers and any user a free and easy way to explore computer vision and image processing techniques. Many functions have been implemented and are updated on a regular basis, the library has reached a level of sophistication that makes it suitable for both educational and research purposes. In this paper, the detail list of the functions available in the CVIPtools MATLAB toolbox are presented and how these functions can be used in image analysis and computer vision applications. The CVIPtools MATLAB toolbox allows the user to gain practical experience to better understand underlying theoretical problems in image processing and pattern recognition. As an example application, the algorithm for the automatic creation of masks for veterinary thermographic images is presented.

  6. Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology

    CERN Document Server


    This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of s...

  7. Word Recognition Processing Efficiency as a Component of Second Language Listening (United States)

    Joyce, Paul


    This study investigated the application of the speeded lexical decision task to L2 aural processing efficiency. One-hundred and twenty Japanese university students completed an aural word/nonword task. When the variation of lexical decision time (CV) was correlated with reaction time (RT), the results suggested that the single-word recognition…

  8. Supervised dimensionality reduction and contextual pattern recognition in medical image processing

    NARCIS (Netherlands)

    Loog, Marco


    The past few years have witnessed a significant increase in the number of supervised methods employed in diverse image processing tasks. Especially in medical image analysis the use of, for example, supervised shape and appearance modelling has increased considerably and has proven to be

  9. The emergence of semantic categorization in early visual processing: ERP indices of animal vs. artifact recognition

    Directory of Open Access Journals (Sweden)

    Del Zotto Marzia


    Full Text Available Abstract Background Neuroimaging and neuropsychological literature show functional dissociations in brain activity during processing of stimuli belonging to different semantic categories (e.g., animals, tools, faces, places, but little information is available about the time course of object perceptual categorization. The aim of the study was to provide information about the timing of processing stimuli from different semantic domains, without using verbal or naming paradigms, in order to observe the emergence of non-linguistic conceptual knowledge in the ventral stream visual pathway. Event related potentials (ERPs were recorded in 18 healthy right-handed individuals as they performed a perceptual categorization task on 672 pairs of images of animals and man-made objects (i.e., artifacts. Results Behavioral responses to animal stimuli were ~50 ms faster and more accurate than those to artifacts. At early processing stages (120–180 ms the right occipital-temporal cortex was more activated in response to animals than to artifacts as indexed by posterior N1 response, while frontal/central N1 (130–160 showed the opposite pattern. In the next processing stage (200–260 the response was stronger to artifacts and usable items at anterior temporal sites. The P300 component was smaller, and the central/parietal N400 component was larger to artifacts than to animals. Conclusion The effect of animal and artifact categorization emerged at ~150 ms over the right occipital-temporal area as a stronger response of the ventral stream to animate, homomorphic, entities with faces and legs. The larger frontal/central N1 and the subsequent temporal activation for inanimate objects might reflect the prevalence of a functional rather than perceptual representation of manipulable tools compared to animals. Late ERP effects might reflect semantic integration and cognitive updating processes. Overall, the data are compatible with a modality-specific semantic memory

  10. Recognition of Roasted Coffee Bean Levels using Image Processing and Neural Network (United States)

    Nasution, T. H.; Andayani, U.


    The coffee beans roast levels have some characteristics. However, some people cannot recognize the coffee beans roast level. In this research, we propose to design a method to recognize the coffee beans roast level of images digital by processing the image and classifying with backpropagation neural network. The steps consist of how to collect the images data with image acquisition, pre-processing, feature extraction using Gray Level Co-occurrence Matrix (GLCM) method and finally normalization of data extraction using decimal scaling features. The values of decimal scaling features become an input of classifying in backpropagation neural network. We use the method of backpropagation to recognize the coffee beans roast levels. The results showed that the proposed method is able to identify the coffee roasts beans level with an accuracy of 97.5%.

  11. New evidence for phonological processing during visual word recognition: the case of Arabic. (United States)

    Bentin, S; Ibrahim, R


    Lexical decision and naming were examined with words and pseudowords in literary Arabic and with transliterations of words in a Palestinian dialect that has no written form. Although the transliterations were visually unfamiliar, they were not easily rejected in lexical decision, and they were more slowly accepted in phonologically based lexical decision. Naming transliterations of spoken words was slower than naming of literary words and pseudowords. Apparently, phonological computation is mandatory for both lexical decision and naming. A large frequency effect in both lexical decision and naming suggests that addressed phonology is an option for familiar orthographic patterns. The frequency effect on processing transliterations indicated that lexical phonology is involved with prelexical phonological computation even if addressed phonology is not possible. These data support a combination between a cascade-type process, in which partial products of the grapheme-to-phoneme translation activate phonological units in the lexicon, and an interactive model, in which the activated lexical units feed back, shaping the prelexical phonological computation process.

  12. Removal of reactive blue 19 from wastewaters by physicochemical and biological processes - a review

    International Nuclear Information System (INIS)

    Siddique, M.; Farooq, R.; Shaheen, A.


    The developments for the removal of reactive blue 19 dye (RB 19) by various physicochemical methods such as sonolysis, photo catalysis, electrochemical, ozonolysis, adsorption, hydrolysis and biological methods like microbial degradation, bio sorption, chemical and biological reductive decolorisation has been presented. It was found that none of the individual physical and chemical technique can be used in wastewater treatment with good economics and high energy efficiency. For example, the application of adsorption method is restricted as adsorbent materials requires frequent regenerations; ozonolysis and photo catalysis processes can efficiently decolorize and degrade the dye but these face operational difficulties are not cost effective. Similarly the performance of biological treatment processes is required to enhance by developing efficient strains of bacteria, fungi. The comparison of physiochemical and biological treatment of RB 19 dye suggested that biological treatment of RB 19 dye is comparatively cost-effective process. However, the integrated approach can be used to decolorize and degrade the dye by combining both physicochemical and biological processes. (author)

  13. Stable nanoconjugates of transferrin with alloyed quaternary nanocrystals Ag-In-Zn-S as a biological entity for tumor recognition. (United States)

    Matysiak-Brynda, Edyta; Bujak, Piotr; Augustin, Ewa; Kowalczyk, Agata; Mazerska, Zofia; Pron, Adam; Nowicka, Anna M


    One way to limit the negative effects of anti-tumor drugs on healthy cells is targeted therapy employing functionalized drug carriers. Here we present a biocompatible and stable nanoconjugate of transferrin anchored to Ag-In-Zn-S quantum dots modified with 11-mercaptoundecanoic acid (Tf-QD) as a drug carrier versus typical anticancer drug, doxorubicin. Detailed investigations of Tf-QD nanoconjugates without and with doxorubicin by fluorescence studies and cytotoxic measurements showed that the biological activity of both the transferrin and doxorubicin was fully retained in the nanoconjugate. In particular, the intercalation capabilities of free doxorubicin versus ctDNA remained essentially intact upon its binding to the nanoconjugate. In order to evaluate these capabilities, we studied the binding constant of doxorubicin attached to Tf-QDs with ctDNA as well as the binding site size on the ctDNA molecule. The binding constant slightly decreased compared to that of free doxorubicin while the binding site size, describing the number of consecutive DNA lattice residues involved in the binding, increased. It was also demonstrated that the QDs alone and in the form of a nanoconjugate with Tf were not cytotoxic towards human non-small cell lung carcinoma (H460 cell line) and the tumor cell sensitivity of the DOX-Tf-QD nanoconjugate was comparable to that of doxorubicin alone.

  14. TF-finder: A software package for identifying transcription factors involved in biological processes using microarray data and existing knowledge base

    Directory of Open Access Journals (Sweden)

    Cui Xiaoqi


    Full Text Available Abstract Background Identification of transcription factors (TFs involved in a biological process is the first step towards a better understanding of the underlying regulatory mechanisms. However, due to the involvement of a large number of genes and complicated interactions in a gene regulatory network (GRN, identification of the TFs involved in a biology process remains to be very challenging. In reality, the recognition of TFs for a given a biological process can be further complicated by the fact that most eukaryotic genomes encode thousands of TFs, which are organized in gene families of various sizes and in many cases with poor sequence conservation except for small conserved domains. This poses a significant challenge for identification of the exact TFs involved or ranking the importance of a set of TFs to a process of interest. Therefore, new methods for recognizing novel TFs are desperately needed. Although a plethora of methods have been developed to infer regulatory genes using microarray data, it is still rare to find the methods that use existing knowledge base in particular the validated genes known to be involved in a process to bait/guide discovery of novel TFs. Such methods can replace the sometimes-arbitrary process of selection of candidate genes for experimental validation and significantly advance our knowledge and understanding of the regulation of a process. Results We developed an automated software package called TF-finder for recognizing TFs involved in a biological process using microarray data and existing knowledge base. TF-finder contains two components, adaptive sparse canonical correlation analysis (ASCCA and enrichment test, for TF recognition. ASCCA uses positive target genes to bait TFS from gene expression data while enrichment test examines the presence of positive TFs in the outcomes from ASCCA. Using microarray data from salt and water stress experiments, we showed TF-finder is very efficient in recognizing

  15. Simulation and Analysis of Complex Biological Processes: an Organisation Modelling Perspective

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.


    This paper explores how the dynamics of complex biological processes can be modelled and simulated as an organisation of multiple agents. This modelling perspective identifies organisational structure occurring in complex decentralised processes and handles complexity of the analysis of the dynamics

  16. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    International Nuclear Information System (INIS)

    McMahon, S.


    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  17. Moving beyond a descriptive aquatic toxicology: the value of biological process and trait information. (United States)

    Segner, Helmut


    In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor. 2011 Elsevier B.V. All rights reserved.

  18. Image processing-based framework for continuous lane recognition in mountainous roads for driver assistance system (United States)

    Manoharan, Kodeeswari; Daniel, Philemon


    This paper presents a robust lane detection technique for roads on hilly terrain. The target of this paper is to utilize image processing strategies to recognize lane lines on structured mountain roads with the help of improved Hough transform. Vision-based approach is used as it performs well in a wide assortment of circumstances by abstracting valuable information contrasted with other sensors. The proposed strategy processes the live video stream, which is a progression of pictures, and concentrates on the position of lane markings in the wake of sending the edges through different channels and legitimate thresholding. The algorithm is tuned for Indian mountainous curved and paved roads. A technique of computation is utilized to discard the disturbing lines other than the credible lane lines and show just the required prevailing lane lines. This technique will consequently discover two lane lines that are nearest to the vehicle in a picture as right on time as could reasonably be expected. Various video sequences on hilly terrain are tested to verify the effectiveness of our method, and it has shown good performance with a detection accuracy of 91.89%.

  19. Automated recognition of the pericardium contour on processed CT images using genetic algorithms. (United States)

    Rodrigues, É O; Rodrigues, L O; Oliveira, L S N; Conci, A; Liatsis, P


    This work proposes the use of Genetic Algorithms (GA) in tracing and recognizing the pericardium contour of the human heart using Computed Tomography (CT) images. We assume that each slice of the pericardium can be modelled by an ellipse, the parameters of which need to be optimally determined. An optimal ellipse would be one that closely follows the pericardium contour and, consequently, separates appropriately the epicardial and mediastinal fats of the human heart. Tracing and automatically identifying the pericardium contour aids in medical diagnosis. Usually, this process is done manually or not done at all due to the effort required. Besides, detecting the pericardium may improve previously proposed automated methodologies that separate the two types of fat associated to the human heart. Quantification of these fats provides important health risk marker information, as they are associated with the development of certain cardiovascular pathologies. Finally, we conclude that GA offers satisfiable solutions in a feasible amount of processing time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology. (United States)

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P


    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  1. Operation and control of SBR processes for enhanced biological nutrient removal from wastewater


    Puig Broch, Sebastià


    In the last decades, the awareness of environmental issues has increased in society considerably. There is an increasing need to improve the effluent quality of domestic wastewater treatment processes. This thesis describes the application of the Sequencing Batch Reactor (SBR) technology for Biological Nutrient Removal (BNR) from the wastewater. In particular, the work presented evolves from the nitrogen removal to the biological nutrient removal (i.e. nitrogen plus phosphorous removal) with ...

  2. Image processing for hazard recognition in on-board weather radar (United States)

    Kelly, Wallace E. (Inventor); Rand, Timothy W. (Inventor); Uckun, Serdar (Inventor); Ruokangas, Corinne C. (Inventor)


    A method of providing weather radar images to a user includes obtaining radar image data corresponding to a weather radar image to be displayed. The radar image data is image processed to identify a feature of the weather radar image which is potentially indicative of a hazardous weather condition. The weather radar image is displayed to the user along with a notification of the existence of the feature which is potentially indicative of the hazardous weather condition. Notification can take the form of textual information regarding the feature, including feature type and proximity information. Notification can also take the form of visually highlighting the feature, for example by forming a visual border around the feature. Other forms of notification can also be used.

  3. Serial and parallel processing in reading: investigating the effects of parafoveal orthographic information on nonisolated word recognition. (United States)

    Dare, Natasha; Shillcock, Richard


    We present a novel lexical decision task and three boundary paradigm eye-tracking experiments that clarify the picture of parallel processing in word recognition in context. First, we show that lexical decision is facilitated by associated letter information to the left and right of the word, with no apparent hemispheric specificity. Second, we show that parafoveal preview of a repeat of word n at word n + 1 facilitates reading of word n relative to a control condition with an unrelated word at word n + 1. Third, using a version of the boundary paradigm that allowed for a regressive eye movement, we show no parafoveal "postview" effect on reading word n of repeating word n at word n - 1. Fourth, we repeat the second experiment but compare the effects of parafoveal previews consisting of a repeated word n with a transposed central bigram (e.g., caot for coat) and a substituted central bigram (e.g., ceit for coat), showing the latter to have a deleterious effect on processing word n, thereby demonstrating that the parafoveal preview effect is at least orthographic and not purely visual.

  4. The Importance of Locally Embedded Personal Relationships for SME Internationalisation Processes – from Opportunity Recognition to Company Growth

    Directory of Open Access Journals (Sweden)

    Milena Ratajczak-Mrozek


    Full Text Available The purpose of the paper is to present the importance of locally embedded personal relationships and individuals’ networks for the rise of small and medium enterprises (SMEs’ opportunities in the internationalisation process (especially the market entry phase as well as their international operations and growth. Above all, the aim of the article is to answer the question what is influencing the actual impact of these resulting opportunities on internationalisation and growth. This paper adopts both a conceptual and empirical approach to the problem based upon a critical review of pertinent literature. Two case studies of companies from industries representing different levels of technological advancement, that is the furniture industry and IT industry, are presented. The theoretical and empirical analysis presented in the article points to the fact that relationships simultaneously facilitate opportunity recognition and themselves constitute such an opportunity. The analysis carried out as part of the case study proves that main factors determining the rise of the opportunity based on locally embedded personal relationships are trust and mutual understanding, in this way emphasising the importance of relational embeddedness. At the same time the realisation of these opportunities and therefore their impact on the internationalisation process and a company’s growth requires additional social factors (an entrepreneurial attitude as well as economic factors (such as quality and competitive prices.

  5. A New Contactless Fault Diagnosis Approach for Pantograph-Catenary System Using Pattern Recognition and Image Processing Methods

    Directory of Open Access Journals (Sweden)

    AYDIN, I.


    Full Text Available Comfort and safety of railway transport has become more important as train speeds continue to increase. In electrified railways, the electrical current of the train is produced by the sliding contact between the pantograph and catenary. The quality of the current depends on the reliability of contact between the pantograph and catenary. So, pantograph inspection is very important task in electrified railways and it is periodically made for preventing dangerous situations. This inspection is operated manually by taking the pantograph to the service for visual anomalies. However, this monitoring is impractical because of time consuming and slowness, as locomotive remains disabled. An innovative method based on image processing and pattern recognition is proposed in this paper for online monitoring of the catenary-pantograph interaction. The images are acquired from a digital line-scan camera. Data are simultaneously processed according to edge detection and Hough transform, and then the obtained features are provided to a D-Markov based state machine, and the pantograph related faults, such as overheating of the pantograph strip, bursts of arcing, and irregular positioning of the contact line are diagnosed. The proposed method is verified by real faulty and healthy pantograph videos.

  6. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  7. A multispecies comparison of the metazoan 3'-processing downstream elements and the CstF-64 RNA recognition motif

    Directory of Open Access Journals (Sweden)

    Hutchison Keith W


    Full Text Available Abstract Background The Cleavage Stimulation Factor (CstF is a required protein complex for eukaryotic mRNA 3'-processing. CstF interacts with 3'-processing downstream elements (DSEs through its 64-kDa subunit, CstF-64; however, the exact nature of this interaction has remained unclear. We used EST-to-genome alignments to identify and extract large sets of putative 3'-processing sites for mRNA from ten metazoan species, including Homo sapiens, Canis familiaris, Rattus norvegicus, Mus musculus, Gallus gallus, Danio rerio, Takifugu rubripes, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans. In order to further delineate the details of the mRNA-protein interaction, we obtained and multiply aligned CstF-64 protein sequences from the same species. Results We characterized the sequence content and specific positioning of putative DSEs across the range of organisms studied. Our analysis characterized the downstream element (DSE as two distinct parts – a proximal UG-rich element and a distal U-rich element. We find that while the U-rich element is largely conserved in all of the organisms studied, the UG-rich element is not. Multiple alignment of the CstF-64 RNA recognition motif revealed that, while it is highly conserved throughout metazoans, we can identify amino acid changes that correlate with observed variation in the sequence content and positioning of the DSEs. Conclusion Our analysis confirms the early reports of separate U- and UG-rich DSEs. The correlated variations in protein sequence and mRNA binding sequences provide novel insights into the interactions between the precursor mRNA and the 3'-processing machinery.

  8. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar


    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  9. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks (United States)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.


    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  10. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p group may have scored higher on the posttest (M = 8.830 +/- .477 vs. M = 7.330 +/- .330; z =-1.729, p = .084) and the traditional group may have scored higher on the pretest than the posttest (M = 8.333 +/- .333 vs M = 7.333 +/- .333; z = -1.650 , p = .099). Two themes emerged after the interviews and instructor reflections: 1) After instruction students had a more extensive understanding of classification in three areas: vocabulary terms, physical characteristics, and types of evidence used to classify. Both groups extended their understanding, but only POGIL students could explain how molecular evidence is used in classification. 2) The challenges preventing students from understanding classification were: familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to

  11. An overview of biological processes and their potential for CO2 capture. (United States)

    Goli, Amin; Shamiri, Ahmad; Talaiekhozani, Amirreza; Eshtiaghi, Nicky; Aghamohammadi, Nasrin; Aroua, Mohamed Kheireddine


    The extensive amount of available information on global warming suggests that this issue has become prevalent worldwide. Majority of countries have issued laws and policies in response to this concern by requiring their industrial sectors to reduce greenhouse gas emissions, such as CO2. Thus, introducing new and more effective treatment methods, such as biological techniques, is crucial to control the emission of greenhouse gases. Many studies have demonstrated CO2 fixation using photo-bioreactors and raceway ponds, but a comprehensive review is yet to be published on biological CO2 fixation. A comprehensive review of CO2 fixation through biological process is presented in this paper as biological processes are ideal to control both organic and inorganic pollutants. This process can also cover the classification of methods, functional mechanisms, designs, and their operational parameters, which are crucial for efficient CO2 fixation. This review also suggests the bio-trickling filter process as an appropriate approach in CO2 fixation to assist in creating a pollution-free environment. Finally, this paper introduces optimum designs, growth rate models, and CO2 fixation of microalgae, functions, and operations in biological CO2 fixation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Glycine-rich loop of mitochondrial processing peptidase α-subunit is responsible for substrate recognition by a mechanism analogous to mitochondrial receptor Tom20

    Czech Academy of Sciences Publication Activity Database

    Dvořáková-Holá, Klára; Matušková, Anna; Kubala, M.; Otyepka, M.; Kučera, Tomáš; Večeř, J.; Heřman, P.; Parkhomenko, Natalia; Kutejová, E.; Janata, Jiří


    Roč. 396, č. 5 (2010), s. 1197-1210 ISSN 0022-2836 R&D Projects: GA AV ČR IAA501110631 Institutional research plan: CEZ:AV0Z50200510 Keywords : mitochondrial processing peptidase * presequence * substrate recognition Subject RIV: EE - Microbiology, Virology Impact factor: 4.008, year: 2010

  13. Pattern recognition

    CERN Document Server

    Theodoridis, Sergios


    Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to ""learn"" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10

  14. Brushing Your Spacecrafts Teeth: A Review of Biological Reduction Processes for Planetary Protection Missions (United States)

    Pugel, D.E. (Betsy); Rummel, J. D.; Conley, C. A.


    Much like keeping your teeth clean, where you brush away biofilms that your dentist calls plaque, there are various methods to clean spaceflight hardware of biological contamination, known as biological reduction processes. Different approaches clean your hardwares teeth in different ways and with different levels of effectiveness. We know that brushing at home with a simple toothbrush is convenient and has a different level of impact vs. getting your teeth cleaned at the dentist. In the same way, there are some approaches to biological reduction that may require simple tools or more complex implementation approaches (think about sonicating or just soaking your dentures, vs. brushing them). There are also some that are more effective for different degrees of cleanliness and still some that have materials compatibility concerns. In this article, we review known and NASA-certified approaches for biological reduction, pointing out materials compatibility concerns and areas where additional research is needed.

  15. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate. (United States)

    Baiju, Archa; Gandhimathi, R; Ramesh, S T; Nidheesh, P V


    Treatment of stabilized landfill leachate is a great challenge due to its poor biodegradability. Present study made an attempt to treat this wastewater by combining electro-Fenton (E-Fenton) and biological process. E-Fenton treatment was applied prior to biological process to enhance the biodegradability of leachate, which will be beneficial for the subsequent biological process. This study also investigates the efficiency of iron molybdophosphate (FeMoPO) nanoparticles as a heterogeneous catalyst in E-Fenton process. The effects of initial pH, catalyst dosage, applied voltage and electrode spacing on Chemical Oxygen Demand (COD) removal efficiency were analyzed to determine the optimum conditions. Heterogeneous E-Fenton process gave 82% COD removal at pH 2, catalyst dosage of 50 mg/L, voltage 5 V, electrode spacing 3 cm and electrode area 25 cm 2 . Combined E-Fenton and biological treatment resulted an overall COD removal of 97%, bringing down the final COD to 192 mg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Neuroanatomical substrates involved in unrelated false facial recognition. (United States)

    Ronzon-Gonzalez, Eliane; Hernandez-Castillo, Carlos R; Pasaye, Erick H; Vaca-Palomares, Israel; Fernandez-Ruiz, Juan


    Identifying faces is a process central for social interaction and a relevant factor in eyewitness theory. False recognition is a critical mistake during an eyewitness's identification scenario because it can lead to a wrongful conviction. Previous studies have described neural areas related to false facial recognition using the standard Deese/Roediger-McDermott (DRM) paradigm, triggering related false recognition. Nonetheless, misidentification of faces without trying to elicit false memories (unrelated false recognition) in a police lineup could involve different cognitive processes, and distinct neural areas. To delve into the neural circuitry of unrelated false recognition, we evaluated the memory and response confidence of participants while watching faces photographs in an fMRI task. Functional activations of unrelated false recognition were identified by contrasting the activation on this condition vs. the activations related to recognition (hits) and correct rejections. The results identified the right precentral and cingulate gyri as areas with distinctive activations during false recognition events suggesting a conflict resulting in a dysfunction during memory retrieval. High confidence suggested that about 50% of misidentifications may be related to an unconscious process. These findings add to our understanding of the construction of facial memories and its biological basis, and the fallibility of the eyewitness testimony.

  17. Pattern recognition and data mining techniques to identify factors in wafer processing and control determining overlay error (United States)

    Lam, Auguste; Ypma, Alexander; Gatefait, Maxime; Deckers, David; Koopman, Arne; van Haren, Richard; Beltman, Jan


    On-product overlay can be improved through the use of context data from the fab and the scanner. Continuous improvements in lithography and processing performance over the past years have resulted in consequent overlay performance improvement for critical layers. Identification of the remaining factors causing systematic disturbances and inefficiencies will further reduce overlay. By building a context database, mappings between context, fingerprints and alignment & overlay metrology can be learned through techniques from pattern recognition and data mining. We relate structure (`patterns') in the metrology data to relevant contextual factors. Once understood, these factors could be moved to the known effects (e.g. the presence of systematic fingerprints from reticle writing error or lens and reticle heating). Hence, we build up a knowledge base of known effects based on data. Outcomes from such an integral (`holistic') approach to lithography data analysis may be exploited in a model-based predictive overlay controller that combines feedback and feedforward control [1]. Hence, the available measurements from scanner, fab and metrology equipment are combined to reveal opportunities for further overlay improvement which would otherwise go unnoticed.

  18. Pattern recognition principles (United States)

    Tou, J. T.; Gonzalez, R. C.


    The present work gives an account of basic principles and available techniques for the analysis and design of pattern processing and recognition systems. Areas covered include decision functions, pattern classification by distance functions, pattern classification by likelihood functions, the perceptron and the potential function approaches to trainable pattern classifiers, statistical approach to trainable classifiers, pattern preprocessing and feature selection, and syntactic pattern recognition.

  19. Can color changes alter the neural correlates of recognition memory? Manipulation of processing affects an electrophysiological indicator of conceptual implicit memory. (United States)

    Cui, Xiaoyu; Gao, Chuanji; Zhou, Jianshe; Guo, Chunyan


    It has been widely shown that recognition memory includes two distinct retrieval processes: familiarity and recollection. Many studies have shown that recognition memory can be facilitated when there is a perceptual match between the studied and the tested items. Most event-related potential studies have explored the perceptual match effect on familiarity on the basis of the hypothesis that the specific event-related potential component associated with familiarity is the FN400 (300-500 ms mid-frontal effect). However, it is currently unclear whether the FN400 indexes familiarity or conceptual implicit memory. In addition, on the basis of the findings of a previous study, the so-called perceptual manipulations in previous studies may also involve some conceptual alterations. Therefore, we sought to determine the influence of perceptual manipulation by color changes on recognition memory when the perceptual or the conceptual processes were emphasized. Specifically, different instructions (perceptually or conceptually oriented) were provided to the participants. The results showed that color changes may significantly affect overall recognition memory behaviorally and that congruent items were recognized with a higher accuracy rate than incongruent items in both tasks, but no corresponding neural changes were found. Despite the evident familiarity shown in the two tasks (the behavioral performance of recognition memory was much higher than at the chance level), the FN400 effect was found in conceptually oriented tasks, but not perceptually oriented tasks. It is thus highly interesting that the FN400 effect was not induced, although color manipulation of recognition memory was behaviorally shown, as seen in previous studies. Our findings of the FN400 effect for the conceptual but not perceptual condition support the explanation that the FN400 effect indexes conceptual implicit memory.

  20. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal


    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  1. What and Where in auditory sensory processing: A high-density electrical mapping study of distinct neural processes underlying sound object recognition and sound localization

    Directory of Open Access Journals (Sweden)

    Victoria M Leavitt


    Full Text Available Functionally distinct dorsal and ventral auditory pathways for sound localization (where and sound object recognition (what have been described in non-human primates. A handful of studies have explored differential processing within these streams in humans, with highly inconsistent findings. Stimuli employed have included simple tones, noise bursts and speech sounds, with simulated left-right spatial manipulations, and in some cases participants were not required to actively discriminate the stimuli. Our contention is that these paradigms were not well suited to dissociating processing within the two streams. Our aim here was to determine how early in processing we could find evidence for dissociable pathways using better titrated what and where task conditions. The use of more compelling tasks should allow us to amplify differential processing within the dorsal and ventral pathways. We employed high-density electrical mapping using a relatively large and environmentally realistic stimulus set (seven animal calls delivered from seven free-field spatial locations; with stimulus configuration identical across the where and what tasks. Topographic analysis revealed distinct dorsal and ventral auditory processing networks during the where and what tasks with the earliest point of divergence seen during the N1 component of the auditory evoked response, beginning at approximately 100 ms. While this difference occurred during the N1 timeframe, it was not a simple modulation of N1 amplitude as it displayed a wholly different topographic distribution to that of the N1. Global dissimilarity measures using topographic modulation analysis confirmed that this difference between tasks was driven by a shift in the underlying generator configuration. Minimum norm source reconstruction revealed distinct activations that corresponded well with activity within putative dorsal and ventral auditory structures.

  2. Degradation of chlorinated paraben by integrated irradiation and biological treatment process. (United States)

    Wang, Shizong; Wang, Jianlong; Sun, Yuliang


    Chlorinated paraben, namely, methyl 3, 5-dichloro-4-hydroxybenzoate (MDHB) is the by-product of chlorination disinfection of paraben and frequently detected in the aquatic environments, which exhibited higher persistence and toxicity than paraben itself. In this paper, the combined irradiation and biological treatment process was employed to investigate the removal of MDHB from aqueous solution. The results showed that the removal efficiency of MDHB and total organic carbon (TOC) by irradiation process increased with radiation dose no matter what the initial concentration of MDHB was. The maximum removal efficiency of MDHB was 100%, 91.1%, 93%, respectively, for the initial concentration of MDHB of 1 mg/L, 5 mg/L and 10 mg/L with the radiation dose of 800 Gy. However, the maximum removal efficiency of TOC among all the experimental groups was only 15.3% obtained with the initial concentration of 1 mg/L at dose of 800 Gy. The subsequent biological treatment enhanced the mineralization of MDHB. The suitable radiation dose for the subsequent biological treatment was determined to be 600 Gy. In this case the removal efficiency of TOC increased to about 70%. Compared to the single biological treatment, the integrated irradiation and biological treatment significantly increase the degradation and mineralization of MDHB. Moreover, the dechlorination efficiency reached 77.4% during the integrated irradiation and biological treatment process. In addition, eight intermediates were identified during the combined process and the possible degradation pathway was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors. (United States)

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko


    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors are absorbed in sufficient quantity, and then reach target organs while maintaining beneficial effects. These are the reasons why the bioavailability of functional food factors has been well investigated using rodent models. Recently, many of the biological processes have been reported to follow diurnal rhythms recurring every 24 h. Therefore, absorption and metabolism of functional food factors influenced by the biological processes may vary with time of day. Consequently, the evaluation of the bioavailability of functional food factors using rodent models should take into consideration the timing of consumption. In this review, we provide a perspective overview of the diurnal rhythm of biological processes involved in the bioavailability of functional food factors, particularly flavonoids.

  4. Investigation of the Nature of Metaconceptual Processes of Pre-Service Biology Teachers (United States)

    Yuruk, Nejla; Selvi, Meryem; Yakisan, Mehmet


    Purpose of Study: The aim of this study is to investigate the nature of pre-service biology teachers' metaconceptual processes that were active as they participated in metaconceptual teaching activities. Methods: Several instructional activities, including poster drawing, concept mapping, group and class discussions, and journal writing, were…

  5. Arctic Biotechnology – Sustainable Products and Processes from Arctic Biological Resources

    DEFF Research Database (Denmark)

    Thøgersen, Mariane Schmidt; Hennessy, Rosanna Catherine; Stougaard, Peter

    Biological resources from the Arctic hold the potential for development of sustainable products and/or processes within areas such as pharma, agriculture, and biotech. Here, we present the identification of cold-active enzymes and biocontrol agents isolated from cold-adapted bacteria. Truly cold...

  6. Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes? (United States)

    Drier, Yotam; Domany, Eytan


    The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis, controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was well known long before gene expression profiling. We found that the claims reported by others, of wider concordance between the biological processes captured by the two prognostic signatures studied, were found either to be lacking statistical rigor or were in fact based on addressing some other question.

  7. Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?

    Directory of Open Access Journals (Sweden)

    Yotam Drier


    Full Text Available The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis, controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was well known long before gene expression profiling. We found that the claims reported by others, of wider concordance between the biological processes captured by the two prognostic signatures studied, were found either to be lacking statistical rigor or were in fact based on addressing some other question.

  8. The chemistry-biology-medicine continuum and the drug discovery and development process in academia. (United States)

    Nicolaou, K C


    Admirable as it is, the drug discovery and development process is continuously undergoing changes and adjustments in search of further improvements in efficiency, productivity, and profitability. Recent trends in academic-industrial partnerships promise to provide new opportunities for advancements of this process through transdisciplinary collaborations along the entire spectrum of activities involved in this complex process. This perspective discusses ways to promote the emerging academic paradigm of the chemistry-biology-medicine continuum as a means to advance the drug discovery and development process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants


    Salman Chaudhary Awais; Schwede Sebastian; Thorin Eva; Yan Jinyue


    Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents ...

  10. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.


    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  11. Microbiology and atmospheric processes: the role of biological particles in cloud physics

    Directory of Open Access Journals (Sweden)

    O. Möhler


    Full Text Available As part of a series of papers on the sources, distribution and potential impact of biological particles in the atmosphere, this paper introduces and summarizes the potential role of biological particles in atmospheric clouds. Biological particles like bacteria or pollen may be active as both cloud condensation nuclei (CCN and heterogeneous ice nuclei (IN and thereby can contribute to the initial cloud formation stages and the development of precipitation through giant CCN and IN processes. The paper gives an introduction to aerosol-cloud processes involving CCN and IN in general and provides a short summary of previous laboratory, field and modelling work which investigated the CCN and IN activity of bacterial cells and pollen. Recent measurements of atmospheric ice nuclei with a continuous flow diffusion chamber (CFDC and of the heterogeneous ice nucleation efficiency of bacterial cells are also briefly discussed. As a main result of this overview paper we conclude that a proper assessment of the impact of biological particles on tropospheric clouds needs new laboratory, field and modelling work on the abundance of biological particles in the atmosphere and their CCN and heterogeneous IN properties.

  12. Evaluation of Speech Recognition of Cochlear Implant Recipients Using Adaptive, Digital Remote Microphone Technology and a Speech Enhancement Sound Processing Algorithm. (United States)

    Wolfe, Jace; Morais, Mila; Schafer, Erin; Agrawal, Smita; Koch, Dawn


    Cochlear implant recipients often experience difficulty with understanding speech in the presence of noise. Cochlear implant manufacturers have developed sound processing algorithms designed to improve speech recognition in noise, and research has shown these technologies to be effective. Remote microphone technology utilizing adaptive, digital wireless radio transmission has also been shown to provide significant improvement in speech recognition in noise. There are no studies examining the potential improvement in speech recognition in noise when these two technologies are used simultaneously. The goal of this study was to evaluate the potential benefits and limitations associated with the simultaneous use of a sound processing algorithm designed to improve performance in noise (Advanced Bionics ClearVoice) and a remote microphone system that incorporates adaptive, digital wireless radio transmission (Phonak Roger). A two-by-two way repeated measures design was used to examine performance differences obtained without these technologies compared to the use of each technology separately as well as the simultaneous use of both technologies. Eleven Advanced Bionics (AB) cochlear implant recipients, ages 11 to 68 yr. AzBio sentence recognition was measured in quiet and in the presence of classroom noise ranging in level from 50 to 80 dBA in 5-dB steps. Performance was evaluated in four conditions: (1) No ClearVoice and no Roger, (2) ClearVoice enabled without the use of Roger, (3) ClearVoice disabled with Roger enabled, and (4) simultaneous use of ClearVoice and Roger. Speech recognition in quiet was better than speech recognition in noise for all conditions. Use of ClearVoice and Roger each provided significant improvement in speech recognition in noise. The best performance in noise was obtained with the simultaneous use of ClearVoice and Roger. ClearVoice and Roger technology each improves speech recognition in noise, particularly when used at the same time

  13. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)


    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  14. Performance Comparison of Several Pre-Processing Methods in a Hand Gesture Recognition System based on Nearest Neighbor for Different Background Conditions

    Directory of Open Access Journals (Sweden)

    Regina Lionnie


    Full Text Available This paper presents a performance analysis and comparison of several pre-processing  methods  used  in  a  hand  gesture  recognition  system.  The  preprocessing methods are based on the combinations ofseveral image processing operations,  namely  edge  detection,  low  pass  filtering,  histogram  equalization, thresholding and desaturation. The hand gesture recognition system is designed to classify an input image into one of six possibleclasses. The input images are taken with various background conditions. Our experiments showed that the best result is achieved when the pre-processing method consists of only a desaturation operation, achieving a classification accuracy of up to 83.15%.

  15. Transmission as a basic process in microbial biology. Lwoff Award Prize Lecture. (United States)

    Baquero, Fernando


    Transmission is a basic process in biology and evolution, as it communicates different biological entities within and across hierarchical levels (from genes to holobionts) both in time and space. Vertical descent, replication, is transmission of information across generations (in the time dimension), and horizontal descent is transmission of information across compartments (in the space dimension). Transmission is essentially a communication process that can be studied by analogy of the classic information theory, based on 'emitters', 'messages' and 'receivers'. The analogy can be easily extended to the triad 'emigration', 'migration' and 'immigration'. A number of causes (forces) determine the emission, and another set of causes (energies) assures the reception. The message in fact is essentially constituted by 'meaningful' biological entities. A DNA sequence, a cell and a population have a semiotic dimension, are 'signs' that are eventually recognized (decoded) and integrated by receiver biological entities. In cis-acting or unenclosed transmission, the emitters and receivers correspond to separated entities of the same hierarchical level; in trans-acting or embedded transmission, the information flows between different, but frequently nested, hierarchical levels. The result (as in introgressive events) is constantly producing innovation and feeding natural selection, influencing also the evolution of transmission processes. This review is based on the concepts presented at the André Lwoff Award Lecture in the FEMS Microbiology Congress in Maastricht in 2015. © FEMS 2017. All rights reserved. For permissions, please e-mail:

  16. Natural physical and biological processes compromise the long-term performance of compacted soil caps

    International Nuclear Information System (INIS)

    Smith, E.D.


    Compacted soil barriers are components of essentially all caps placed on closed waste disposal sites. The intended functions of soil barriers in waste facility caps include restricting infiltration of water and release of gases and vapors, either independently or in combination with synthetic membrane barriers, and protecting other manmade or natural barrier components. Review of the performance of installed soil barriers and of natural processes affecting their performance indicates that compacted soil caps may function effectively for relatively short periods (years to decades), but natural physical and biological processes can be expected to cause them to fail in the long term (decades to centuries). This paper addresses natural physical and biological processes that compromise the performance of compacted soil caps and suggests measures that may reduce the adverse consequences of these natural failure mechanisms

  17. Molecularly imprinted surface acoustic wave sensors: The synergy of electrochemical and gravimetric transductions in chemical recognition processes

    International Nuclear Information System (INIS)

    Lattach, Youssef; Fourati, Najla; Zerrouki, Chouki; Fougnion, Jean-Marie; Garnier, Francis; Pernelle, Christine; Remita, Samy


    Chemical sensor based on molecularly imprinted conducting polymers (MICP) is described. Polythiophenes – acetic acid thiophene MICP films with different thicknesses have been electrosynthesized over the sensing area of an original electrochemical surface acoustic wave sensor (ESAW). To investigate the sensing properties of the developed sensor, electrochemical and gravimetric combined transductions have been applied to atrazine (ATZ) detection. Films of poly(3,4-ethylenedioxythiophene) noted PEDOT as well as non imprinted conducting polymers (NICP), were also prepared, in order to lead a comparative study. The structure of all films was investigated by IR spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). Films growth and their doping/undoping processes were investigated by simultaneous gravimetric/electrochemical transduction. Real time measurements highlighted difference between the two polymers electrosynthesis kinetics. MICP and NICP films grow linearly with time, whereas PEDOT film thickness presents a limit value of 1 μm in the implied conditions. Considering ESAW sensor response towards charge “transfer”, a linear relationship between sensor phase variations and charges density have been found for PEDOT film, with a sensitivity of about 470 ° C −1 cm 2 . The same sensitivity can also be considered for MICP and NICP films up to 200 mC cm −2 . Beyond this value, saturation has been observed. This divergence have been attributed to difference in films thicknesses, which led to values of weight ratio MICP (NICP)/PEDOT included between 3 and 4.6 for electropolymerization duration going from 10 s to 30 s. Combined use of electrochemical and gravimetric transductions, using MICP as sensitive layer, have also been considered to highlight the ability of the developed ESAW sensor to detect the specific recognition of polymer functional cavities towards ATZ molecules.

  18. A comparison of form processing involved in the perception of biological and nonbiological movements. (United States)

    Thurman, Steven M; Lu, Hongjing


    Although there is evidence for specialization in the human brain for processing biological motion per se, few studies have directly examined the specialization of form processing in biological motion perception. The current study was designed to systematically compare form processing in perception of biological (human walkers) to nonbiological (rotating squares) stimuli. Dynamic form-based stimuli were constructed with conflicting form cues (position and orientation), such that the objects were perceived to be moving ambiguously in two directions at once. In Experiment 1, we used the classification image technique to examine how local form cues are integrated across space and time in a bottom-up manner. By comparing with a Bayesian observer model that embodies generic principles of form analysis (e.g., template matching) and integrates form information according to cue reliability, we found that human observers employ domain-general processes to recognize both human actions and nonbiological object movements. Experiments 2 and 3 found differential top-down effects of spatial context on perception of biological and nonbiological forms. When a background does not involve social information, observers are biased to perceive foreground object movements in the direction opposite to surrounding motion. However, when a background involves social cues, such as a crowd of similar objects, perception is biased toward the same direction as the crowd for biological walking stimuli, but not for rotating nonbiological stimuli. The model provided an accurate account of top-down modulations by adjusting the prior probabilities associated with the internal templates, demonstrating the power and flexibility of the Bayesian approach for visual form perception.

  19. Group processing in an undergraduate biology course for preservice teachers: Experiences and attitudes (United States)

    Schellenberger, Lauren Brownback

    Group processing is a key principle of cooperative learning in which small groups discuss their strengths and weaknesses and set group goals or norms. However, group processing has not been well-studied at the post-secondary level or from a qualitative or mixed methods perspective. This mixed methods study uses a phenomenological framework to examine the experience of group processing for students in an undergraduate biology course for preservice teachers. The effect of group processing on students' attitudes toward future group work and group processing is also examined. Additionally, this research investigated preservice teachers' plans for incorporating group processing into future lessons. Students primarily experienced group processing as a time to reflect on past performance. Also, students experienced group processing as a time to increase communication among group members and become motivated for future group assignments. Three factors directly influenced students' experiences with group processing: (1) previous experience with group work, (2) instructor interaction, and (3) gender. Survey data indicated that group processing had a slight positive effect on students' attitudes toward future group work and group processing. Participants who were interviewed felt that group processing was an important part of group work and that it had increased their group's effectiveness as well as their ability to work effectively with other people. Participants held positive views on group work prior to engaging in group processing, and group processing did not alter their atittude toward group work. Preservice teachers who were interviewed planned to use group work and a modified group processing protocol in their future classrooms. They also felt that group processing had prepared them for their future professions by modeling effective collaboration and group skills. Based on this research, a new model for group processing has been created which includes extensive

  20. Forensic speaker recognition

    NARCIS (Netherlands)

    Meuwly, Didier


    The aim of forensic speaker recognition is to establish links between individuals and criminal activities, through audio speech recordings. This field is multidisciplinary, combining predominantly phonetics, linguistics, speech signal processing, and forensic statistics. On these bases, expert-based

  1. Word Recognition in Auditory Cortex (United States)

    DeWitt, Iain D. J.


    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  2. Skilled readers begin processing sub-phonemic features by 80 ms during visual word recognition: evidence from ERPs. (United States)

    Ashby, Jane; Sanders, Lisa D; Kingston, John


    Two masked priming experiments investigated the time-course of the activation of sub-phonemic information during visual word recognition. EEG was recorded as participants read targets with voiced and unvoiced final consonants (e.g., fad and fat), preceded by nonword primes that were incongruent or congruent in voicing and vowel duration (e.g., fap or faz). Experiment 1 used a long duration mask (100 ms) between prime and target, whereas Experiment 2 used a short mask (22 ms). Phonological feature congruency began modulating the amplitude of brain potentials by 80 ms; the feature incongruent condition evoked greater negativity than the feature congruent condition in both experiments. The early onset of the congruency effect indicates that skilled readers initially activate sub-phonemic feature information during word identification. Congruency effects also appeared in the middle and late periods of word recognition, suggesting that readers use phonological representations in multiple aspects of visual word recognition.

  3. On the Application of Image Processing Methods for Bubble Recognition to the Study of Subcooled Flow Boiling of Water in Rectangular Channels. (United States)

    Paz, Concepción; Conde, Marcos; Porteiro, Jacobo; Concheiro, Miguel


    This work introduces the use of machine vision in the massive bubble recognition process, which supports the validation of boiling models involving bubble dynamics, as well as nucleation frequency, active site density and size of the bubbles. The two algorithms presented are meant to be run employing quite standard images of the bubbling process, recorded in general-purpose boiling facilities. The recognition routines are easily adaptable to other facilities if a minimum number of precautions are taken in the setup and in the treatment of the information. Both the side and front projections of subcooled flow-boiling phenomenon over a plain plate are covered. Once all of the intended bubbles have been located in space and time, the proper post-process of the recorded data become capable of tracking each of the recognized bubbles, sketching their trajectories and size evolution, locating the nucleation sites, computing their diameters, and so on. After validating the algorithm's output against the human eye and data from other researchers, machine vision systems have been demonstrated to be a very valuable option to successfully perform the recognition process, even though the optical analysis of bubbles has not been set as the main goal of the experimental facility.

  4. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review. (United States)

    Ioannou, L A; Li Puma, G; Fatta-Kassinos, D


    Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.


    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  6. Marketing the use of the space environment for the processing of biological and pharmaceutical materials (United States)


    The perceptions of U.S. biotechnology and pharmaceutical companies concerning the potential use of the space environment for the processing of biological substances was examined. Physical phenomena that may be important in space-base processing of biological materials are identified and discussed in the context of past and current experiment programs. The capabilities of NASA to support future research and development, and to engage in cooperative risk sharing programs with industry are discussed. Meetings were held with several biotechnology and pharmaceutical companies to provide data for an analysis of the attitudes and perceptions of these industries toward the use of the space environment. Recommendations are made for actions that might be taken by NASA to facilitate the marketing of the use of the space environment, and in particular the Space Shuttle, to the biotechnology and pharmaceutical industries.

  7. Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia). (United States)

    Jemli, Meryem; Karray, Fatma; Feki, Firas; Loukil, Slim; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami


    The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR. Copyright © 2015. Published by Elsevier B.V.

  8. Sensory processing sensitivity: a review in the light of the evolution of biological responsivity. (United States)

    Aron, Elaine N; Aron, Arthur; Jagiellowicz, Jadzia


    This article reviews the literature on sensory processing sensitivity (SPS) in light of growing evidence from evolutionary biology that many personality differences in nonhuman species involve being more or less responsive, reactive, flexible, or sensitive to the environment. After briefly defining SPS, it first discusses how biologists studying animal personality have conceptualized this general environmental sensitivity. Second, it reviews relevant previous human personality/temperament work, focusing on crossover interactions (where a trait generates positive or negative outcomes depending on the environment), and traits relevant to specific hypothesized aspects of SPS: inhibition of behavior, sensitivity to stimuli, depth of processing, and emotional/physiological reactivity. Third, it reviews support for the overall SPS model, focusing on development of the Highly Sensitive Person (HSP) Scale as a measure of SPS then on neuroimaging and genetic studies using the scale, all of which bears on the extent to which SPS in humans corresponds to biological responsivity.

  9. Microbialites and microbial communities: Biological diversity, biogeochemical functioning, diagenetic processes, tracers of environmental changes


    Camoin, Gilbert; Gautret, Pascale


    Editorial; This special issue is dedicated to microbialites and microbial communities and addresses their biological diversity, their biogeochemical functioning, their roles in diagenetic processes and their environmental significance. It is the logical successor of the special issue that one of us edited after the workshop on “Microbial mediation in carbonate diagenesis” which was held in Chichilianne (France) in 1997 (Camoin, G., Ed., 1999. Microbial mediation in carbonate diagenesis. Sedim...

  10. A short comparison of electron and proton transfer processes in biological systems

    International Nuclear Information System (INIS)

    Bertrand, Patrick


    The main differences between electron and proton transfers that take place in biological systems are examined. The relation between the distance dependence of the rate constant and the mass of the transferred particle is analyzed in detail. Differences between the two processes have important consequences at the experimental level, which are discussed. The various mechanisms that ensure the coupling between electron and proton transfers are briefly described

  11. Influence of Technological Processes on Biologically Active Compounds of Produced Grapes Juices

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Balík, J.; Strohalm, J.; Novotná, P.; Vrchotová, Naděžda; Lefnerová, D.; Landfeld, A.; Híc, P.; Tománková, E.; Veverka, J.; Houška, M.


    Roč. 9, č. 3 (2016), s. 421-429 ISSN 1935-5130 R&D Projects: GA MŠk(CZ) LO1415; GA MZe QJ1210258; GA MZe QI91B094 Institutional support: RVO:67179843 Keywords : Grapevine juices * Thermomaceration * Biologically active compounds * Antioxidative capacity * Total polyphenols * Antimutagenic activity Subject RIV: GM - Food Processing Impact factor: 2.576, year: 2016

  12. Computer-Assisted Face Processing Instruction Improves Emotion Recognition, Mentalizing, and Social Skills in Students with ASD (United States)

    Rice, Linda Marie; Wall, Carla Anne; Fogel, Adam; Shic, Frederick


    This study examined the extent to which a computer-based social skills intervention called "FaceSay"™ was associated with improvements in affect recognition, mentalizing, and social skills of school-aged children with Autism Spectrum Disorder (ASD). "FaceSay"™ offers students simulated practice with eye gaze, joint attention,…

  13. Speech Recognition

    Directory of Open Access Journals (Sweden)

    Adrian Morariu


    Full Text Available This paper presents a method of speech recognition by pattern recognition techniques. Learning consists in determining the unique characteristics of a word (cepstral coefficients by eliminating those characteristics that are different from one word to another. For learning and recognition, the system will build a dictionary of words by determining the characteristics of each word to be used in the recognition. Determining the characteristics of an audio signal consists in the following steps: noise removal, sampling it, applying Hamming window, switching to frequency domain through Fourier transform, calculating the magnitude spectrum, filtering data, determining cepstral coefficients.

  14. Identification of key processes underlying cancer phenotypes using biologic pathway analysis.

    Directory of Open Access Journals (Sweden)

    Sol Efroni


    Full Text Available Cancer is recognized to be a family of gene-based diseases whose causes are to be found in disruptions of basic biologic processes. An increasingly deep catalogue of canonical networks details the specific molecular interaction of genes and their products. However, mapping of disease phenotypes to alterations of these networks of interactions is accomplished indirectly and non-systematically. Here we objectively identify pathways associated with malignancy, staging, and outcome in cancer through application of an analytic approach that systematically evaluates differences in the activity and consistency of interactions within canonical biologic processes. Using large collections of publicly accessible genome-wide gene expression, we identify small, common sets of pathways - Trka Receptor, Apoptosis response to DNA Damage, Ceramide, Telomerase, CD40L and Calcineurin - whose differences robustly distinguish diverse tumor types from corresponding normal samples, predict tumor grade, and distinguish phenotypes such as estrogen receptor status and p53 mutation state. Pathways identified through this analysis perform as well or better than phenotypes used in the original studies in predicting cancer outcome. This approach provides a means to use genome-wide characterizations to map key biological processes to important clinical features in disease.

  15. Determination of Biological Treatability Processes of Textile Wastewater and Implementation of a Fuzzy Logic Model

    Directory of Open Access Journals (Sweden)

    Harun Akif Kabuk


    Full Text Available This study investigated the biological treatability of textile wastewater. For this purpose, a membrane bioreactor (MBR was utilized for biological treatment after the ozonation process. Due to the refractory organic contents of textile wastewater that has a low biodegradability capacity, ozonation was implemented as an advanced oxidation process prior to the MBR system to increase the biodegradability of the wastewater. Textile wastewater, oxidized by ozonation, was fed to the MBR at different hydraulic retention times (HRT. During the process, color, chemical oxygen demand (COD, and biochemical oxygen demand (BOD removal efficiencies were monitored for 24-hour, 12-hour, 6-hour, and 3-hour retention times. Under these conditions, 94% color, 65% COD, and 55% BOD removal efficiencies were obtained in the MBR system. The experimental outputs were modeled with multiple linear regressions (MLR and fuzzy logic. MLR results suggested that color removal is more related to COD removal relative to BOD removal. A surface map of this issue was prepared with a fuzzy logic model. Furthermore, fuzzy logic was employed to the whole modeling of the biological system treatment. Determination coefficients for COD, BOD, and color removal efficiencies were 0.96, 0.97, and 0.92, respectively.

  16. Posttranslational modifications of desmin and their implication in biological processes and pathologies. (United States)

    Winter, Daniel L; Paulin, Denise; Mericskay, Mathias; Li, Zhenlin


    Desmin, the muscle-specific intermediate filament, is involved in myofibrillar myopathies, dilated cardiomyopathy and muscle wasting. Desmin is the target of posttranslational modifications (PTMs) such as phosphorylation, ADP-ribosylation and ubiquitylation as well as nonenzymatic modifications such as glycation, oxidation and nitration. Several PTM target residues and their corresponding modifying enzymes have been discovered in human and nonhuman desmin. The major effect of phosphorylation and ADP-ribosylation is the disassembly of desmin filaments, while ubiquitylation of desmin leads to its degradation. The regulation of the desmin filament network by phosphorylation and ADP-ribosylation was found to be implicated in several major biological processes such as myogenesis, myoblast fusion, muscle contraction, muscle atrophy, cell division and possibly desmin interactions with its binding partners. Phosphorylation of desmin is also implicated in many forms of desmin-related myopathies (desminopathies). In this review, we summarize the findings on desmin PTMs and their implication in biological processes and pathologies, and discuss the current knowledge on the regulation of the desmin network by PTMs. We conclude that the desmin filament network can be seen as an intricate scaffold for muscle cell structure and biological processes and that its dynamics can be affected by PTMs. There are now precise tools to investigate PTMs and visualize cellular structures that have been underexploited in the study of desminopathies. Future studies should focus on these aspects.

  17. DNA recognition by synthetic constructs. (United States)

    Pazos, Elena; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L


    The interaction of transcription factors with specific DNA sites is key for the regulation of gene expression. Despite the availability of a large body of structural data on protein-DNA complexes, we are still far from fully understanding the molecular and biophysical bases underlying such interactions. Therefore, the development of non-natural agents that can reproduce the DNA-recognition properties of natural transcription factors remains a major and challenging goal in chemical biology. In this review we summarize the basics of double-stranded DNA recognition by transcription factors, and describe recent developments in the design and preparation of synthetic DNA binders. We mainly focus on synthetic peptides that have been designed by following the DNA interaction of natural proteins, and we discuss how the tools of organic synthesis can be used to make artificial constructs equipped with functionalities that introduce additional properties to the recognition process, such as sensing and controllability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. (United States)

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester


    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  19. Survey of biological processes for odor reduction; Kartlaeggning och studie av biologiska processer foer luktreduktion

    Energy Technology Data Exchange (ETDEWEB)

    Arrhenius, Karine; Rosell, Lars [SP Technical Research Inst. of Sweden, Boraas (Sweden); Hall, Gunnar [SIK Swedish Inst. for Food and Biotechnology, Gothenburg (Sweden)


    This project aims to characterize chemical and subsequently odor emissions from a digester plant located closed to Boraas in Sweden (Boraas Energi och Miljoe AB). The digestion produces mainly 2 by-products, biogas and high quality organic biofertilizer. Biogas is a renewable source of electrical and heat energy and subsequently digester have a promising future. Unfortunately, release of unpleasant odours is one of the problems that may limit development of the technique as odours strongly influence the level of acceptance of the neighbours. The number of complaints due to odours depends mostly, upon the degree of odour release, the weather condition and plant environment (which influence the risks for spreading out), and the tolerance of the neighbours. These parameters are strongly variable. Many processes inside the plant distributed on a large surface may contribute to odour release. Chemical emissions were studied, in this project, by extensive sampling inside the plant. Results were then evaluated regarding risk for odour releases. The goal was to suggest controls and routines to limit releases. The conditions leading to the higher risks for odour emissions were studied by performing sampling at different periods of the year and subsequently different weather conditions. At first, places for measurement were chosen together with personal of the plant. Three zones are considered to mainly contribute to the odour emissions: the landfill region, the cisterns region and the leaching lake region. Totally 13 places were studied with regard to odour and chemical emissions under 2008-2009 at different weather conditions. Some results from a previous project (2007) are also presented here. Results show that the spreading out of can be maintained to an acceptable level as long as the plant is functioning without disturbances. The early stages of the treatment of waste should be confined in locals with closed doors to avoid spreading out of odours. Through controlled

  20. Preliminary degradation process study of infectious biological waste in a 5 k W thermal plasma equipment

    International Nuclear Information System (INIS)

    Xochihua S M, M.C.


    This work is a preliminary study of infectious biological waste degradation process by thermal plasma and was made in Thermal Plasma Applications Laboratory of Environmental Studies Department of the National Institute of Nuclear Research (ININ). Infectious biological waste degradation process is realized by using samples such polyethylene, cotton, glass, etc., but the present study scope is to analyze polyethylene degradation process with mass and energy balances involved. Degradation method is realized as follow: a polyethylene sample is put in an appropriated crucible localized inside a pyrolysis reactor chamber, the plasma jet is projected to the sample, by the pyrolysis phenomena the sample is degraded into its constitutive particles: carbon and hydrogen. Air was utilized as a recombination gas in order to obtain the higher percent of CO 2 if amount of O 2 is greater in the recombination gas, the CO generation is reduced. The effluent gases of exhaust pyrolysis reactor through are passed through a heat exchanger to get cooled gases, the temperature water used is 15 Centigrade degrees. Finally the gases was tried into absorption tower with water as an absorbent fluid. Thermal plasma degradation process is a very promising technology, but is necessary to develop engineering process area to avail all advantages of thermal plasma. (Author)

  1. [Analysis of novel style biological fluidized bed A/O combined process in dyeing wastewater treatment]. (United States)

    Wei, Chao-Hai; Huang, Hui-Jing; Ren, Yuan; Wu, Chao-Fei; Wu, Hai-Zhen; Lu, Bin


    A novel biological fluidized bed was designed and developed to deal with high-concentration refractory organic industrial wastewater. From 12 successful projects, three cases of dyeing wastewater treatment projects with the scale of 1200, 2000 and 13000 m3/d respectively were selected to analyze the principle of treating refractory organic wastewater with fluidized bed technology and discuss the superiority of self-developed biological fluidized bed from the aspects of technical and economic feasibility. In the three cases, when the hydraulic retention time (HRT) of biological system were 23, 34 and 21. 8 h, and the volume loading of influents (COD) were 1.75, 4.75 and 2.97 kg/(m3 x d), the corresponding COD removal were 97.3%, 98.1% and 95.8%. Furthermore the operating costs of projects were 0.91, 1.17 and 0.88 yuan per ton of water respectively. The index of effluent all met the 1st grade of Guangdong Province wastewater discharge standard. Results showed that the biological fluidized bed had characteristics of shorter retention time, greater oxygen utilization rate, faster conversion rate of organic pollutants and less sludge production, which made it overcome the shortcomings of traditional methods in printing and dyeing wastewater treatment. Considering the development of technology and the combination of ecological security and recycling resources, a low-carbon wastewater treatment process was proposed.

  2. Prospects for energy recovery during hydrothermal and biological processing of waste biomass. (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L


    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Development of a retrospective process for analyzing results of a HMM based posture recognition system in a functionalized nursing bed

    Directory of Open Access Journals (Sweden)

    Demmer Julia


    Full Text Available In the area of care in general but especially in the care of elderly, there is a great interest in deriving patient parameters preparation free. For this purpose, a load cell functionalized nursing bed has been developed at Niederrhein University of Applied Science. The system allows analysis and recognition of the persons’ positions and actions in the bed. The Hidden Markov Toolkit (HTK based posture recognition system was initially presented at the BMT 2015 by our research group. The initial system shows good results but to draw conclusions about the patient's condition, a minimum possible error rate should be achieved. For this purpose, a two-step retrospective analysis of the initial results was developed as an extension to improve the accuracy of the system.

  4. Process of Argumentation in High School Biology Class: A Qualitative Analysis (United States)

    Ramli, M.; Rakhmawati, E.; Hendarto, P.; Winarni


    Argumentation skill can be nurtured by designing a lesson in which students are provided with the opportunity to argue. This research aims to analyse argumentation process in biology class. The participants were students of three biology classes from different high schools in Surakarta Indonesia. One of the classroom was taught by a student teacher, and the rest were instructed by the assigned teachers. Through a classroom observation, oral activities were noted, audio-recorded and video-taped. Coding was done based on the existence of claiming-reasoning-evidence (CRE) process by McNeill and Krajcik. Data was analysed qualitatively focusing on the role of teachers to initiate questioning to support argumentation process. The lesson design of three were also analysed. The result shows that pedagogical skill of teachers to support argumentation process, such as skill to ask, answer, and respond to students’ question and statements need to be trained intensively. Most of the argumentation found were only claiming, without reasoning and evidence. Teachers have to change the routine of mostly posing open-ended questions to students, and giving directly a correct answer to students’ questions. Knowledge and skills to encourage student to follow inquiry-based learning have to be acquired by teachers.

  5. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. (United States)

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A


    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment.

  6. Biological shielding design and qualification of concreting process for construction of electron beam irradiation facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Kumar, P.; Suresh, N.; Parchani, G.; Dwivedi, J.; Thakurta, A.C.


    A technology demonstration facility for irradiation of food and agricultural products is being set-up by RRCAT at Indore. The facility design is based on linear electron accelerator with maximum beam power of 10 kW and can be operated either in electron mode at 10 MeV or photon modes at 5/7.5 MeV. Biological shielding has been designed in accordance with NCRP 51 to achieve dose rate at all accessible points outside the irradiation vault less than the permissible limit of 0.1 mR/hr. In addition to radiation attenuation property, concrete must have satisfactory mechanical properties to meet the structural requirements. There are number of site specific variables which affect the structural, thermal and radiological properties of concrete, leading to considerable difference in actual values and design values. Hence it is essential to establish a suitable site and environmental specific process to cast the concrete and qualify the process by experimental measurement. For process qualification we have cast concrete test blocks of different thicknesses up to 3.25 m and evaluated the radiological and mechanical properties by radiometry, ultrasonic and mechanical tests. In this paper we describe the biological shielding design of the facility and analyse the results of tests carried out for qualification of the process. (author)

  7. Maturational changes in ear advantage for monaural word recognition in noise among listeners with central auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Mohsin Ahmed Shaikh


    Full Text Available This study aimed to investigate differences between ears in performance on a monaural word recognition in noise test among individuals across a broad range of ages assessed for (CAPD. Word recognition scores in quiet and in speech noise were collected retrospectively from the medical files of 107 individuals between the ages of 7 and 30 years who were diagnosed with (CAPD. No ear advantage was found on the word recognition in noise task in groups less than ten years. Performance in both ears was equally poor. Right ear performance improved across age groups, with scores of individuals above age 10 years falling within the normal range. In contrast, left ear performance remained essentially stable and in the impaired range across all age groups. Findings indicate poor left hemispheric dominance for speech perception in noise in children below the age of 10 years with (CAPD. However, a right ear advantage on this monaural speech in noise task was observed for individuals 10 years and older.

  8. Development of biology student worksheets to facilitate science process skills of student (United States)

    Rahayu, Y. S.; Pratiwi, R.; Indana, S.


    This research aims to describe development of Biology student worksheets to facilitate science process skills of student, at the same time to facilitate thinking skills of students in senior high school are equipped with Assesment Sheets. The worksheets development refers to cycle which includes phase analysis (analysis), planning (planning), design (design), development (development), implementation (implementation), evaluation and revision (evaluation and revision). Phase evaluation and revision is an ongoing activity conducted in each phase of the development cycle. That is, after the evaluation of the results of these activities and make revisions at any phase, then continue to the next phase. Based on the test results for grade X, XI, and XII in St. Agnes Surabaya high school, obtained some important findings. The findings are as follows. (1) Developed biology student worksheets could be used to facilitate thinking ability of students in particular skills integrated process that includes components to formulate the problem, formulate hypotheses, determine the study variables, formulate an operational definition of variables, determine the steps in the research, planning data tables, organizing Data in the form of tables/charts, drawing conclusions, (2) Developed biology student worksheets could also facilitate the development of social interaction of students such as working together, listening/respect the opinions of others, assembling equipment and materials, discuss and share information and facilitate the upgrading of skills hands-on student activity. (3) Developed biology worksheets basically could be implemented with the guidance of the teacher step by step, especially for students who have never used a similar worksheet. Guidance at the beginning of this need, especially for worksheets that require special skills or understanding of specific concepts as a prerequisite, such as using a microscope, determine the heart rate, understand the mechanism of

  9. Wood Species Recognition System


    Bremananth R; Nithya B; Saipriya R


    The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing te...

  10. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Directory of Open Access Journals (Sweden)

    D. Weichgrebe


    Full Text Available Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  11. Audio-visual gender recognition (United States)

    Liu, Ming; Xu, Xun; Huang, Thomas S.


    Combining different modalities for pattern recognition task is a very promising field. Basically, human always fuse information from different modalities to recognize object and perform inference, etc. Audio-Visual gender recognition is one of the most common task in human social communication. Human can identify the gender by facial appearance, by speech and also by body gait. Indeed, human gender recognition is a multi-modal data acquisition and processing procedure. However, computational multimodal gender recognition has not been extensively investigated in the literature. In this paper, speech and facial image are fused to perform a mutli-modal gender recognition for exploring the improvement of combining different modalities.

  12. Process-driven inference of biological network structure: feasibility, minimality, and multiplicity.

    Directory of Open Access Journals (Sweden)

    Guanyu Wang

    Full Text Available A common problem in molecular biology is to use experimental data, such as microarray data, to infer knowledge about the structure of interactions between important molecules in subsystems of the cell. By approximating the state of each molecule as "on" or "off", it becomes possible to simplify the problem, and exploit the tools of boolean analysis for such inference. Amongst boolean techniques, the process-driven approach has shown promise in being able to identify putative network structures, as well as stability and modularity properties. This paper examines the process-driven approach more formally, and makes four contributions about the computational complexity of the inference problem, under the "dominant inhibition" assumption of molecular interactions. The first is a proof that the feasibility problem (does there exist a network that explains the data? can be solved in polynomial-time. Second, the minimality problem (what is the smallest network that explains the data? is shown to be NP-hard, and therefore unlikely to result in a polynomial-time algorithm. Third, a simple polynomial-time heuristic is shown to produce near-minimal solutions, as demonstrated by simulation. Fourth, the theoretical framework explains how multiplicity (the number of network solutions to realize a given biological process, which can take exponential-time to compute, can instead be accurately estimated by a fast, polynomial-time heuristic.

  13. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Oller, I.; Malato, S.; Sanchez-Perez, J.A.


    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  14. Potential biological hazard of importance for HACCP plans in fresh fish processing

    Directory of Open Access Journals (Sweden)

    Baltić Milan Ž.


    Full Text Available The Hazard Analysis and Critical Control Point (HACCP system is scientifically based and focused on problem prevention in order to assure the produced food products are safe to consume. Prerequisite programs such as GMP (Good Manufacturing Practices, GHP (Good Hygienic Practices are an essential foundation for the development and implementation of successful HACCP plans. One of the preliminary tasks in the development of HACCP plan is to conduct a hazard analysis. The process of conducting a hazard analysis involves two stages. The first is hazard identification and the second stage is the HACCP team decision which potential hazards must be addressed in the HACCP plan. By definition, the HACCP concept covers all types of potential food safety hazards: biological, chemical and physical, whether they are naturally occurring in the food, contributed by the environment or generated by a mistake in the manufacturing process. In raw fish processing, potential significant biological hazards which are reasonably likely to cause illness of humans are parasites (Trematodae, Nematodae, Cestodae, bacteria (Salmonella, E. coli, Vibrio parahemolyticus, Vibrio vulnificus, Listeria monocytogenes, Clostridium botulinum, Staphyloccocus aureus, viruses (Norwalk virus, Entero virusesi, Hepatitis A, Rotovirus and bio-toxins. Upon completion of hazard analysis, any measure(s that are used to control the hazard(s should be described.

  15. Comparing biological and thermochemical processing of sugarcane bagasse: An energy balance perspective

    International Nuclear Information System (INIS)

    Leibbrandt, N.H.; Knoetze, J.H.; Goergens, J.F.


    The technical performance of lignocellulosic enzymatic hydrolysis and fermentation versus pyrolysis processes for sugarcane bagasse was evaluated, based on currently available technology. Process models were developed for bioethanol production from sugarcane bagasse using three different pretreatment methods, i.e. dilute acid, liquid hot water and steam explosion, at various solid concentrations. Two pyrolysis processes, namely fast pyrolysis and vacuum pyrolysis, were considered as alternatives to biological processing for the production of biofuels from sugarcane bagasse. For bioethanol production, a minimum of 30% solids in the pretreatment reactor was required to render the process energy self-sufficient, which led to a total process energy demand equivalent to roughly 40% of the feedstock higher heating value. Both vacuum pyrolysis and fast pyrolysis could be operated as energy self-sufficient if 45% of the produced char from fast pyrolysis is used to fuel the process. No char energy is required to fuel the vacuum pyrolysis process due to lower process energy demands (17% compared to 28% of the feedstock higher heating value). The process models indicated that effective process heat integration can result in a 10-15% increase in all process energy efficiencies. Process thermal efficiencies between 52 and 56% were obtained for bioethanol production at pretreatment solids at 30% and 50%, respectively, while the efficiencies were 70% for both pyrolysis processes. The liquid fuel energy efficiency of the best bioethanol process is 41%, while that of crude bio-oil production before upgrading is 67% and 56% via fast and vacuum pyrolysis, respectively. Efficiencies for pyrolysis processes are expected to decrease by up to 15% should upgrade to a transportation fuel of equivalent quality to bioethanol be taken into consideration. -- Highlights: → Liquid biofuels can be produced via lignocellulosic enzymatic hydrolysis and fermentation or pyrolysis. → A minimum of

  16. The what, when, where, and how of visual word recognition. (United States)

    Carreiras, Manuel; Armstrong, Blair C; Perea, Manuel; Frost, Ram


    A long-standing debate in reading research is whether printed words are perceived in a feedforward manner on the basis of orthographic information, with other representations such as semantics and phonology activated subsequently, or whether the system is fully interactive and feedback from these representations shapes early visual word recognition. We review recent evidence from behavioral, functional magnetic resonance imaging, electroencephalography, magnetoencephalography, and biologically plausible connectionist modeling approaches, focusing on how each approach provides insight into the temporal flow of information in the lexical system. We conclude that, consistent with interactive accounts, higher-order linguistic representations modulate early orthographic processing. We also discuss how biologically plausible interactive frameworks and coordinated empirical and computational work can advance theories of visual word recognition and other domains (e.g., object recognition). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Process development for biological cleaning of industrial waste water; Prozessentwicklung fuer die biologische Reinigung industrieller Abwaesser

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, D.C. [Technische Univ. Braunschweig (Germany). Inst. fuer Bioverfahrenstechnik; Noertemann, B. [Technische Univ. Braunschweig (Germany). Inst. fuer Bioverfahrenstechnik


    Surface water, and drinking water obtained from surface water, should be largely free of organic compounds. This applies particularly to substances that are not or poorly degradable in the environment. Pollution of surface water with poorly degradable toxic substances - especially from industrial applications - can be avoided or at least largely reduced by means of specially adapted biological waste water cleaning techniques. The compound ethylene diamine tetraacetate (EDTA), which has multiple technical applications and is used in large amounts, demonstrates that even contaminants considered to be unsuitable for biological treatment can be eliminated from waste water by means of certain biological processes employing specially enriched bacterial cultures. (orig.) [Deutsch] Oberflaechengewaesser und daraus gewonnenes Trinkwasser sollen moeglichst frei von organischen Verbindungen sein. Dies gilt insbesondere fuer Substanzen, die in der Umwelt nicht oder nur sehr langsam abbaubar sind. Eine Belastung von Oberflaechengewaessern mit schwer abbaubaren `Problemstoffen` - insbesondere aus industriellen Anwendungsbereichen - kann unter anderem mit Hilfe speziell angepasster Verfahren zur biologischen Abwasserreinigung vermieden beziehungsweise weitestgehend reduziert werden. Am Beispiel der technisch sehr vielfaeltig und in grossen Mengen eingesetzten Verbindung EDTA (Ethylendiamintetraacetat) laesst sich erkennen, dass durch bestimmte bioverfahrenstechnische Massnahmen mit Hilfe speziell angereicherter Bakterienkulturen auch als `biologieunfaehig` eingestufte Problemstoffe aus Abwaessern eliminiert werden koennen. (orig.)

  18. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology. (United States)

    Margaritelis, Nikos V; Cobley, James N; Paschalis, Vassilis; Veskoukis, Aristidis S; Theodorou, Anastasios A; Kyparos, Antonios; Nikolaidis, Michalis G


    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater. (United States)

    Yuan, Qing-Bin; Guo, Mei-Ting; Wei, Wu-Ji; Yang, Jian


    Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions.

  20. Gas transport processes in sea ice: How convection and diffusion processes might affect biological imprints, a challenge for modellers

    DEFF Research Database (Denmark)

    Tison, J.-L.; Zhou, Shaola J. G.; Thomas, D. N.


    ice cover. These rates were however obtained surmising that neither convection, nor diffusion had affected the gas concentration profiles in the ice between discrete ice core collections. This paper discusses examples from three different field surveys (the above-mentioned Barrow experiment......, the INTERICE IV tank experiment in Hamburg and a short field survey close to the Kapisilit locality in the South-East Greenland fjords) where convection or diffusion processes have clearly affected the temporal evolution of the gas profiles in the ice, therefore potentially affecting biological signatures....... The INTERICE IV and Barrow experiment show that the initial equilibrium dissolved gas entrapment within the skeletal layer basically governs most of the profiles higher up in the sea ice cover during the active sea ice growth. However, as the ice layers age and cool down under the temperature gradient, bubble...

  1. Advances in wastewater nitrogen removal by biological processes: state of the art review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio


    Full Text Available The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE process (pre-denitrification and nitrification in the activated sludge process, the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs that can be operated both in oxidation and reduction mode.

  2. Research on rural sewage treatment using biological-ecological coupling process

    Directory of Open Access Journals (Sweden)

    Chang SHI


    Full Text Available Developing low-investment, low-energy consumption and low-maintenance sewage treatment process is important for sewage treatment in rural areas. An upflow anaerobic filter (UAF without energy consumption and a subsurface flow wetland (SFW are utilized as a biological-ecological coupling process to treat rural domestic sewage. The effect of the coupling process on treatment performance of domestic sewage under different hydraulic retention time (HRT is investigated. The removal of nitrogen and phosphorus in the SFW is improved by increasing plant density. The results show that the coupling process of UAF and SFW has no power consumption and is maintenance-free, suitable for rural sewage treatment; the removal of nitrogen and phosphorus mainly happens in the SFW phase; increasing the density of reed plants in the SFW can obviously enhance the capacity to remove nitrogen and phosphorus, and ensure that the efficient performance of the coupling process of UAF and SFW is stabilized in a high level. When the HRTs of UAF and SFW are 18 h and 3 d, respectively, the concentrations of COD, ammonia nitrogen, total nitrogen and total phosphorus in the final effluent treated by UAF and SFW process are 44.07, 4.25, 13.36 and 0.44 mg/L, respectively, meeting the requirement of first grade class A in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002.

  3. Nitrous oxide production from reactive nitrification intermediates: a concerted action of biological and chemical processes (United States)

    Brüggemann, Nicolas; Heil, Jannis; Liu, Shurong; Wei, Jing; Vereecken, Harry


    This contribution tries to open up a new perspective on biogeochemical N2O production processes, taking the term bio-geo-chemistry literally. What if a major part of N2O is produced from reactive intermediates of microbiological N turnover processes ("bio…") leaking out of the involved microorganisms into the soil ("…geo…") and then reacting chemically ("…chemistry") with the surrounding matrix? There are at least two major reactive N intermediates that might play a significant role in these coupled biological-chemical reactions, i.e. hydroxylamine (NH2OH) and nitrite (NO2-), both of which are produced during nitrification under oxic conditions, while NO2- is also produced during denitrification under anoxic conditions. Furthermore, NH2OH is assumed to be also a potential intermediate of DNRA and/or anammox. First, this contribution will summarize information about several chemical reactions involving NH2OH and NO2- leading to the formation of N2O. These abiotic reactions are: reactions of NO2- with reduced metal cations, nitrosation reactions of NO2- and soil organic matter (SOM), the reaction between NO2- and NH2OH, and the oxidation of NH2OH by oxidized metal ions. While these reactions can occur over a broad range of soil characteristics, they are ignored in most current N trace gas studies in favor of biological processes only. Disentangling microbiological from purely chemical N2O production is further complicated by the fact that the chemically formed N2O is either undiscernible from N2O produced during nitrification, or shows an intermediate 15N site preference between that of N2O from nitrification and denitrification, respectively. Results from experiments with live and sterilized soil samples, with artificial soil mixtures and with phenolic lignin decomposition model compounds will be presented that demonstrate the potential contribution of these abiotic processes to soil N trace gas emissions, given a substantial leakage rate of these reactive

  4. Effects of input processing and type of personal frequency modulation system on speech-recognition performance of adults with cochlear implants. (United States)

    Wolfe, Jace; Schafer, Erin; Parkinson, Aaron; John, Andrew; Hudson, Mary; Wheeler, Julie; Mucci, Angie


    The objective of this study was to compare speech recognition in quiet and in noise for cochlear implant recipients using two different types of personal frequency modulation (FM) systems (directly coupled [direct auditory input] versus induction neckloop) with each of two sound processors (Cochlear Nucleus Freedom versus Cochlear Nucleus 5). Two different experiments were conducted within this study. In both these experiments, mixing of the FM signal within the Freedom processor was implemented via the same scheme used clinically for the Freedom sound processor. In Experiment 1, the aforementioned comparisons were conducted with the Nucleus 5 programmed so that the microphone and FM signals were mixed and then the mixed signals were subjected to autosensitivity control (ASC). In Experiment 2, comparisons between the two FM systems and processors were conducted again with the Nucleus 5 programmed to provide a more complex multistage implementation of ASC during the preprocessing stage. This study was a within-subject, repeated-measures design. Subjects were recruited from the patient population at the Hearts for Hearing Foundation in Oklahoma City, OK. Fifteen subjects participated in Experiment 1, and 16 subjects participated in Experiment 2. Subjects were adults who had used either unilateral or bilateral cochlear implants for at least 1 year. In this experiment, no differences were found in speech recognition in quiet obtained with the two different FM systems or the various sound-processor conditions. With each sound processor, speech recognition in noise was better with the directly coupled direct auditory input system relative to the neckloop system. The multistage ASC processing of the Nucleus 5 sound processor provided better performance than the single-stage approach for the Nucleus 5 and the Nucleus Freedom sound processor. Speech recognition in noise is substantially affected by the type of sound processor, FM system, and implementation of ASC used by a

  5. Large Domain Motions in Ago Protein Controlled by the Guide DNA-Strand Seed Region Determine the Ago-DNA-mRNA Complex Recognition Process (United States)

    Xia, Zhen; Huynh, Tien; Ren, Pengyu; Zhou, Ruhong


    The recognition mechanism and cleavage activity of argonaute (Ago), miRNA, and mRNA complexes are the core processes to the small non-coding RNA world. The 5′ nucleation at the ‘seed’ region (position 2–8) of miRNA was believed to play a significant role in guiding the recognition of target mRNAs to the given miRNA family. In this paper, we have performed all-atom molecular dynamics simulations of the related and recently revealed Ago-DNA:mRNA ternary complexes to study the dynamics of the guide-target recognition and the effect of mutations by introducing “damaging” C·C mismatches at different positions in the seed region of the DNA-RNA duplex. Our simulations show that the A-form-like helix duplex gradually distorts as the number of seed mismatches increases and the complex can survive no more than two such mismatches. Severe distortions of the guide-target heteroduplex are observed in the ruinous 4-sites mismatch mutant, which give rise to a bending motion of the PAZ domain along the L1/L2 “hinge-like” connection segment, resulting in the opening of the nucleic-acid-binding channel. These long-range interactions between the seed region and PAZ domain, moderated by the L1/L2 segments, reveal the central role of the seed region in the guide-target strands recognition: it not only determines the guide-target heteroduplex’s nucleation and propagation, but also regulates the dynamic motions of Ago domains around the nucleic-acid-binding channel. PMID:23382927

  6. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing. (United States)

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin


    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  7. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    International Nuclear Information System (INIS)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio


    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO 2 kg V S −1 h −1 . Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS 13 C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  8. [Experimental study on the mechanism of oilfield wastewater treatment by using hydrolysis-acidification with aerobic biological processes]. (United States)

    Wen, Yue; Huang, Xiang-feng; Qiu, Zhan; Wang, Feng; Zhang, Fei-juan; Zhou, Qi


    Hydrolysis-acidification + aerobic biological processes were conducted experimentally to treat oilfield wastewater pretreated with physical and chemical treatment in Xinjiang oilfield. The results showed that when the COD concentration in influent was 190-220 mg x L(-1), that in effluent reduced to 65-75 mg x L(-1) under HRT of 10h in both hydrolysis-acidification process and aerobic biological process, reaching the strictest requirement of Effluent Standards for Wastewater from Petroleum Development Industry (GB3550-83). Using GC/MS technology, the relative content of various organic pollutants was analyzed to discover the transfer and degradation law in the oilfield wastewater in biological treatment process. The system of DNA extraction technique, PCR and DGGE reacting systems were practical to analyze the microbial community in the hydrolysis-acidification and aerobic biological processes. The predominant sequences of several 16S rDNA DGGE fragments were determined and confirmed in comparison in GeneBank (NCBI).

  9. A novel theory: biological processes mostly involve two types of mediators, namely general and specific mediators Endogenous small radicals such as superoxide and nitric oxide may play a role of general mediator in biological processes. (United States)

    Mo, Jian


    A great number of papers have shown that free radicals as well as bioactive molecules can play a role of mediator in a wide spectrum of biological processes, but the biological actions and chemical reactivity of the free radicals are quite different from that of the bioactive molecules, and that a wide variety of bioactive molecules can be easily modified by free radicals due to having functional groups sensitive to redox, and the significance of the interaction between the free radicals and the bioactive molecules in biological processes has been confirmed by the results of some in vitro and in vivo studies. Based on these evidence, this article presented a novel theory about the mediators of biological processes. The essentials of the theory are: (a) mediators of biological processes can be classified into general and specific mediators; the general mediators include two types of free radicals, namely superoxide and nitric oxide; the specific mediators include a wide variety of bioactive molecules, such as specific enzymes, transcription factors, cytokines and eicosanoids; (b) a general mediator can modify almost any class of the biomolecules, and thus play a role of mediator in nearly every biological process via diverse mechanisms; a specific mediator always acts selectively on certain classes of the biomolecules, and may play a role of mediator in different biological processes via a same mechanism; (c) biological processes are mostly controlled by networks of their mediators, so the free radicals can regulate the last consequence of a biological process by modifying some types of the bioactive molecules, or in cooperation with these bioactive molecules; the biological actions of superoxide and nitric oxide may be synergistic or antagonistic. According to this theory, keeping the integrity of these networks and the balance between the free radicals and the bioactive molecules as well as the balance between the free radicals and the free radical scavengers

  10. Chemical and biological agent incident response and decision process for civilian and public sector facilities. (United States)

    Raber, Ellen; Hirabayashi, Joy M; Mancieri, Saverio P; Jin, Alfred L; Folks, Karen J; Carlsen, Tina M; Estacio, Pete


    In the event of a terrorist attack or catastrophic release involving potential chemical and/or biological warfare agents, decisionmakers will need to make timely and informed choices about whether, or how, to respond. The objective of this article is to provide a decision framework to specify initial and follow-up actions, including possible decontamination, and to address long-term health and environmental issues. This decision framework consists of four phases, beginning with the identification of an incident and ending with verification that cleanup and remediation criteria have been met. The flowchart takes into account both differences and similarities among potential agents or toxins at key points in the decision-making process. Risk evaluation and communication of information to the public must be done throughout the process to ensure a successful effort.

  11. Environmental performance of biological nutrient removal processes from a life cycle perspective. (United States)

    Ontiveros, Guillermo A; Campanella, Enrique A


    The goal of the present study is to assess different alternatives for a wastewater treatment plant module with capacity to remove nutrients biologically, taking into account present Argentine regulations for effluent discharge. A computational modeling tool (GPS-X) was employed to simulate the behavior of the different alternatives, and Life Cycle Assessment was applied to quantify the environmental impact. A 2000 m(3)/d municipal wastewater flow was used to carry out the simulations, the annual flow was utilized as functional units and the main topics analyzed were energy efficiency, land use, eutrophication reduction and biosolid reuse. Biogas and biosolid generation was evaluated as a good opportunity to generate a cleaner process. This study highlights the fact that nutrient removal processes significantly improve the quality of effluent and biosolids and reduces energy consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Biological processes in the water column of the South Atlantic Bight: Zooplankton responses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Paffenhofer, G.A.


    This study sought to determine and understand the major processes governing the abundance, distribution, composition and eventual fate of zooplankton on the southeastern shelf of the US in relation to water circulation. Over much of the shelf circulation is dominated by the Gulf Stream and/or atmospheric forcing. Most of our studies concentrated on processes on the middle and outer shelf. On the latter, pronounced biological production occurs year-round at frequent intervals and is due to Gulf Stream eddies which move by at an average frequency of one every week. These eddies are rich in nutrients which, when upwelled into the euphoric zone, lead to pronounced primary production which then triggers zooplankton production.

  13. Biological processes in the water column of the South Atlantic Bight: Zooplankton responses

    Energy Technology Data Exchange (ETDEWEB)

    Paffenhofer, G.A.


    This study sought to determine and understand the major processes governing the abundance, distribution, composition and eventual fate of zooplankton on the southeastern shelf of the US in relation to water circulation. Over much of the shelf circulation is dominated by the Gulf Stream and/or atmospheric forcing. Most of our studies concentrated on processes on the middle and outer shelf. On the latter, pronounced biological production occurs year-round at frequent intervals and is due to Gulf Stream eddies which move by at an average frequency of one every week. These eddies are rich in nutrients which, when upwelled into the euphoric zone, lead to pronounced primary production which then triggers zooplankton production.

  14. Distorted wave calculations for electron loss process induced by bare ion impact on biological targets

    International Nuclear Information System (INIS)

    Monti, J.M.; Tachino, C.A.; Hanssen, J.; Fojón, O.A.; Galassi, M.E.; Champion, C.; Rivarola, R.D.


    Distorted wave models are employed to investigate the electron loss process induced by bare ions on biological targets. The two main reactions which contribute to this process, namely, the single electron ionization as well as the single electron capture are here studied. In order to further assess the validity of the theoretical descriptions used, the influence of particular mechanisms are studied, like dynamic screening for the case of electron ionization and energy deposition on the target by the impacting projectile for the electron capture one. Results are compared with existing experimental data. - Highlights: ► Distorted wave models are used to investigate ion-molecule collisions. ► Differential and total cross-sections for capture and ionization are evaluated. ► The influence of dynamic screening is determined. ► Capture reaction dominates the mean energy deposited by the projectile on the target

  15. Biological sludge reduction during abattoir wastewater treatment process using a sequencing batch aerobic system. (United States)

    Keskes, Sajiâa; Bouallagui, Hassib; Godon, Jean Jacques; Abid, Sami; Hamdi, Moktar


    Excess sludge disposal during biological treatment of wastewater is subject to numerous constraints, including social, health and regulatory factors. To reduce the amount of excess sludge, coupled processes involving different biological technologies are currently under taken. This work presents a laboratory scale sequencing batch aerobic system included an anaerobic zone for biomass synchronization (SBAAS: sequencing batch aerobic anaerobic system). This system was adopted to reduce sludge production during abattoir wastewater (AW) treatment. The average chemical oxygen demand (COD) removal efficiency of 89% was obtained at a hydraulic retention time (HRT) and a sludge retention time (SRT) of 2 days and 15-20 days, respectively. The comparison of SBAAS performances with a conventional sequencing batch activated sludge system (SBASS) found that the observed biomass production yield (Y(obs)) were in the ranges of 0.26 and 0.7 g suspended solids g(-1) COD removed, respectively. A significant reduction in the excess biomass production of 63% was observed by using the SBAAS. In fact, in the anaerobic zone microorganisms consume the intracellular stocks of energy by endogenous metabolism, which limits biosynthesis and accelerates sludge decay. The single strand conformation polymorphism (SSCP) method was used to study the dynamic and the diversity of bacterial communities. Results showed a significant change in the population structure by including the anaerobic stage in the process, and revealed clearly that the sludge production yield can be correlated with the bacterial communities present in the system.

  16. Carbon Isotope Fractionation of 1,2-Dibromoethane by Biological and Abiotic Processes. (United States)

    Koster van Groos, Paul G; Hatzinger, Paul B; Streger, Sheryl H; Vainberg, Simon; Philp, R Paul; Kuder, Tomasz


    1,2-Dibromethane (EDB) is a toxic fuel additive that likely occurs at many sites where leaded fuels have impacted groundwater. This study quantified carbon (C) isotope fractionation of EDB associated with anaerobic and aerobic biodegradation, abiotic degradation by iron sulfides, and abiotic hydrolysis. These processes likely contribute to EDB degradation in source zones (biodegradation) and in more dilute plumes (hydrolysis). Mixed anaerobic cultures containing dehalogenating organisms (e.g., Dehaloccoides spp.) were examined, as were aerobic cultures that degrade EDB cometabolically. Bulk C isotope enrichment factors (ε bulk ) associated with biological degradation covered a large range, with mixed anaerobic cultures fractionating more (ε bulk from -8 to -20‰) than aerobic cultures (ε bulk from -3 to -6‰). ε bulk magnitudes associated with the abiotic processes (dihaloelimination by FeS/FeS 2 and hydrolysis) were large but fairly well constrained (ε bulk from -19 to -29‰). As expected, oxidative mechanisms fractionated EDB less than dihaloelimination and substitution mechanisms, and biological systems exhibited a larger range of fractionation, potentially due to isotope masking effects. In addition to quantifying and discussing ε bulk values, which are highly relevant for quantifying in situ EDB degradation, an innovative approach for constraining the age of EDB in the aqueous phase, based on fractionation during hydrolysis, is described.

  17. Dispensing processes impact apparent biological activity as determined by computational and statistical analyses.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    Full Text Available Dispensing and dilution processes may profoundly influence estimates of biological activity of compounds. Published data show Ephrin type-B receptor 4 IC50 values obtained via tip-based serial dilution and dispensing versus acoustic dispensing with direct dilution differ by orders of magnitude with no correlation or ranking of datasets. We generated computational 3D pharmacophores based on data derived by both acoustic and tip-based transfer. The computed pharmacophores differ significantly depending upon dispensing and dilution methods. The acoustic dispensing-derived pharmacophore correctly identified active compounds in a subsequent test set where the tip-based method failed. Data from acoustic dispensing generates a pharmacophore containing two hydrophobic features, one hydrogen bond donor and one hydrogen bond acceptor. This is consistent with X-ray crystallography studies of ligand-protein interactions and automatically generated pharmacophores derived from this structural data. In contrast, the tip-based data suggest a pharmacophore with two hydrogen bond acceptors, one hydrogen bond donor and no hydrophobic features. This pharmacophore is inconsistent with the X-ray crystallographic studies and automatically generated pharmacophores. In short, traditional dispensing processes are another important source of error in high-throughput screening that impacts computational and statistical analyses. These findings have far-reaching implications in biological research.

  18. Biological Niches within Human Calcified Aortic Valves: Towards Understanding of the Pathological Biomineralization Process

    Directory of Open Access Journals (Sweden)

    Valentina Cottignoli


    Full Text Available Despite recent advances, mineralization site, its microarchitecture, and composition in calcific heart valve remain poorly understood. A multiscale investigation, using scanning electron microscopy (SEM, transmission electron microscopy (TEM, and energy dispersive X-ray spectrometry (EDS, from micrometre up to nanometre, was conducted on human severely calcified aortic and mitral valves, to provide new insights into calcification process. Our aim was to evaluate the spatial relationship existing between bioapatite crystals, their local growing microenvironment, and the presence of a hierarchical architecture. Here we detected the presence of bioapatite crystals in two different mineralization sites that suggest the action of two different growth processes: a pathological crystallization process that occurs in biological niches and is ascribed to a purely physicochemical process and a matrix-mediated mineralized process in which the extracellular matrix acts as the template for a site-directed nanocrystals nucleation. Different shapes of bioapatite crystallization were observed at micrometer scale in each microenvironment but at the nanoscale level crystals appear to be made up by the same subunits.

  19. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study. (United States)

    Torrijos, M; Carrera, J; Lafuente, J


    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  20. Impact of nitinol stent surface processing on in-vivo nickel release and biological response. (United States)

    Nagaraja, Srinidhi; Sullivan, Stacey J L; Stafford, Philip R; Lucas, Anne D; Malkin, Elon


    Although nitinol is widely used in percutaneous cardiovascular interventions, a causal relationship between nickel released from implanted cardiovascular devices and adverse systemic or local biological responses has not been established. The objective of this study was to investigate the relationship between nitinol surface processing, in-vivo nickel release, and biocompatibility. Nitinol stents manufactured using select surface treatments were implanted into the iliac arteries of minipigs for 6 months. Clinical chemistry profile, complete blood count, serum and urine nickel analyses were performed periodically during the implantation period. After explant, stented arteries were either digested and analyzed for local nickel concentration or fixed and sectioned for histopathological analysis of stenosis and inflammation within the artery. The results indicated that markers for liver and kidney function were not different than baseline values throughout 180 days of implantation regardless of surface finish. In addition, white blood cell, red blood cell, and platelet counts were similar to baseline values for all surface finishes. Systemic nickel concentrations in serum and urine were not significantly different between processing groups and comparable to baseline values during 180 days of implantation. However, stents with non-optimized surface finishing had significantly greater nickel levels in the surrounding artery compared to polished stents. These stents had increased stenosis with potential for local inflammation compared to polished stents. These findings demonstrate that proper polishing of nitinol surfaces can reduce in-vivo nickel release locally, which may aid in minimizing adverse inflammatory reactions and restenosis. Nitinol is a commonly used material in cardiovascular medical devices. However, relationships between nitinol surface finishing, in-vivo metal ion release, and adverse biological responses have yet to be established. We addressed

  1. Development of a computational system for management of risks in radiosterilization processes of biological tissues

    International Nuclear Information System (INIS)

    Montoya, Cynara Viterbo


    Risk management can be understood to be a systematic management which aims to identify record and control the risks of a process. Applying risk management becomes a complex activity, due to the variety of professionals involved. In order to execute risk management the following are requirements of paramount importance: the experience, discernment and judgment of a multidisciplinary team, guided by means of quality tools, so as to provide standardization in the process of investigating the cause and effects of risks and dynamism in obtaining the objective desired, i.e. the reduction and control of the risk. This work aims to develop a computational system of risk management (software) which makes it feasible to diagnose the risks of the processes of radiosterilization of biological tissues. The methodology adopted was action-research, according to which the researcher performs an active role in the establishment of the problems found, in the follow-up and in the evaluation of the actions taken owing to the problems. The scenario of this action-research was the Laboratory of Biological Tissues (LTB) in the Radiation Technology Center IPEN/CNEN-SP - Sao Paulo/Brazil. The software developed was executed in PHP and Flash/MySQL language, the server (hosting), the software is available on the Internet (, which the user can access from anywhere by means of the login/access password previously sent by email to the team responsible for the tissue to be analyzed. The software presents friendly navigability whereby the user is directed step-by-step in the process of investigating the risk up to the means of reducing it. The software 'makes' the user comply with the term and present the effectiveness of the actions taken to reduce the risk. Applying this system provided the organization (LTB/CTR/IPEN) with dynamic communication, effective between the members of the multidisciplinary team: a) in decision-making; b) in lessons learned; c) in knowing the new risk

  2. Open Water Processes of the San Francisco Estuary: From Physical Forcing to Biological Responses

    Directory of Open Access Journals (Sweden)

    Wim Kimmerer


    Full Text Available This paper reviews the current state of knowledge of the open waters of the San Francisco Estuary. This estuary is well known for the extent to which it has been altered through loss of wetlands, changes in hydrography, and the introduction of chemical and biological contaminants. It is also one of the most studied estuaries in the world, with much of the recent research effort aimed at supporting restoration efforts. In this review I emphasize the conceptual foundations for our current understanding of estuarine dynamics, particularly those aspects relevant to restoration. Several themes run throughout this paper. First is the critical role physical dynamics play in setting the stage for chemical and biological responses. Physical forcing by the tides and by variation in freshwater input combine to control the movement of the salinity field, and to establish stratification, mixing, and dilution patterns throughout the estuary. Many aspects of estuarine dynamics respond to interannual variation in freshwater flow; in particular, abundance of several estuarine-dependent species of fish and shrimp varies positively with flow, although the mechanisms behind these relationships are largely unknown. The second theme is the importance of time scales in determining the degree of interaction between dynamic processes. Physical effects tend to dominate when they operate at shorter time scales than biological processes; when the two time scales are similar, important interactions can arise between physical and biological variability. These interactions can be seen, for example, in the response of phytoplankton blooms, with characteristic time scales of days, to stratification events occurring during neap tides. The third theme is the key role of introduced species in all estuarine habitats; particularly noteworthy are introduced waterweeds and fishes in the tidal freshwater reaches of the estuary, and introduced clams there and in brackish water. The

  3. Transcriptomic variation of eyestalk reveals the genes and biological processes associated with molting in Portunus trituberculatus.

    Directory of Open Access Journals (Sweden)

    Jianjian Lv

    Full Text Available Molting is an essential biological process throughout the life history of crustaceans, which is regulated by many neuropeptide hormones expressed in the eyestalk. To better understand the molting mechanism in Portunus trituberculatus, we used digital gene expression (DGE to analyze single eyestalk samples during the molting cycle by high-throughput sequencing.We obtained 14,387,942, 12,631,508 and 13,060,062 clean sequence reads from inter-molt (InM, pre-molt (PrM and post-molt (PoM cDNA libraries, respectively. A total of 1,394 molt-related differentially expressed genes (DEGs were identified. GO and KEGG enrichment analysis identified some important processes and pathways with key roles in molting regulation, such as chitin metabolism, peptidase inhibitor activity, and the ribosome. We first observed a pattern associated with the neuromodulator-related pathways during the molting cycle, which were up-regulated in PrM and down-regulated in PoM. Four categories of important molting-related transcripts were clustered and most of them had similar expression patterns, which suggests that there is a connection between these genes throughout the molt cycle.Our work is the first molt-related investigation of P. trituberculatus focusing on the eyestalk at the whole transcriptome level. Together, our results, including DEGs, identification of molting-related biological processes and pathways, and observed expression patterns of important genes, provide a novel insight into the function of the eyestalk in molting regulation.

  4. Neurophysiological markers of high anxiety level in man during the process of preparing for a visual recognition. (United States)

    Cheremushkin, Evgeniy A; Petrenko, Nadezda E; Yakovenko, Irina A; Gordeev, Sergei A; Alipov, Nikolay N; Sergeeva, Olga V


    By means of EEG analysis the functional state of subjects with high and low levels of anxiety was studied in different periods preceding a cognitive task - a visual expression recognition. Several conditions were investigated: background/eyes closed; background/eyes opened; listening the instruction for the cognitive task; operative rest (time lapse between listening the instruction and the beginning of the task), as well as short intervals immediately preceding the exposition of target stimuli (stage of preparation) - pairs of faces pictures with identical or different emotional expressions. At all these pre-task stages high-anxiety subjects exhibited much lower amplitude values in alpha and theta bands (as compared with low-anxiety subjects). The most prominent differences were revealed in the phases of instruction listening and operative rest. These data could provide more precise electrophysiological markers of anxiety level in conditions preceeding cognitive task performance.

  5. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG). (United States)

    Lee, Chun-Yue I; Delaney, James C; Kartalou, Maria; Lingaraju, Gondichatnahalli M; Maor-Shoshani, Ayelet; Essigmann, John M; Samson, Leona D


    The human 3-methyladenine DNA glycosylase (AAG) recognizes and excises a broad range of purines damaged by alkylation and oxidative damage, including 3-methyladenine, 7-methylguanine, hypoxanthine (Hx), and 1,N(6)-ethenoadenine (epsilonA). The crystal structures of AAG bound to epsilonA have provided insights into the structural basis for substrate recognition, base excision, and exclusion of normal purines and pyrimidines from its substrate recognition pocket. In this study, we explore the substrate specificity of full-length and truncated Delta80AAG on a library of oligonucleotides containing structurally diverse base modifications. Substrate binding and base excision kinetics of AAG with 13 damaged oligonucleotides were examined. We found that AAG bound to a wide variety of purine and pyrimidine lesions but excised only a few of them. Single-turnover excision kinetics showed that in addition to the well-known epsilonA and Hx substrates, 1-methylguanine (m1G) was also excised efficiently by AAG. Thus, along with epsilonA and ethanoadenine (EA), m1G is another substrate that is shared between AAG and the direct repair protein AlkB. In addition, we found that both the full-length and truncated AAG excised 1,N(2)-ethenoguanine (1,N(2)-epsilonG), albeit weakly, from duplex DNA. Uracil was excised from both single- and double-stranded DNA, but only by full-length AAG, indicating that the N-terminus of AAG may influence glycosylase activity for some substrates. Although AAG has been primarily shown to act on double-stranded DNA, AAG excised both epsilonA and Hx from single-stranded DNA, suggesting the possible significance of repair of these frequent lesions in single-stranded DNA transiently generated during replication and transcription.

  6. Novel MBR_based main stream biological nutrient removal process: high performance and microbial community. (United States)

    Zhang, Chuanyi; Xu, Xinhai; Zhao, Kuixia; Tang, Lianggang; Zou, Siqi; Yuan, Limei


    For municipal wastewater treatment, main stream biological nutrient removal (BNR) process is becoming more and more important. This lab-scale study, novel MBR_based BNR processes (named A 2 N-MBR and A 2 NO-MBR) were built. Comparison of the COD removal, results obtained demonstrated that COD removal efficiencies were almost the same in three processes, with effluent concentration all bellowed 30 mg L -1 . However, the two-sludge systems (A 2 N-MBR and A 2 NO-MBR) had an obvious advantage over the A 2 /O for denitrification and phosphorus removal, with the average TP removal rates of 91.20, 98.05% and TN removal rates of 73.00, 79.49%, respectively, higher than that of 86.45 and 61.60% in A 2 /O process. Illumina Miseq sequencing revealed that Candidatus_Accumulibacter, which is capable of using nitrate as an electron acceptor for phosphorus and nitrogen removal simultaneously, was the dominant phylum in both A 2 N-MBR and A 2 NO-MBR process, accounting for 28.74 and 23.98%, respectively. Distinguishingly, major organism groups related to nitrogen and phosphorus removal in A 2 /O system were Anaerolineaceae_uncultured, Saprospiraceae_uncultured and Thauera, with proportions of 11.31, 8.56 and 5.00%, respectively. Hence, the diversity of dominant PAOs group was likely responsible for the difference in nitrogen and phosphorus removal in the three processes.

  7. State observers for a biological wastewater nitrogen removal process in a sequential batch reactor. (United States)

    Boaventura, K M; Roqueiro, N; Coelho, M A; Araújo, O Q


    Biological removal of nitrogen is a two-step process: aerobic autotrophic microorganisms oxidize ammoniacal nitrogen to nitrate, and the nitrate is further reduced to elementary nitrogen by heterotrophic microorganisms under anoxic condition with concomitant organic carbon removal. Several state variables are involved which render process monitoring a demanding task, as in most biotechnological processes, measurement of primary variables such as microorganism, carbon and nitrogen concentrations is either difficult or expensive. An alternative is to use a process model of reduced order for on-line inference of state variables based on secondary process measurements, e.g. pH and redox potential. In this work, two modeling approaches were investigated: a generic reduced order model based on the generally accepted IAWQ No. 1 Model [M. Henze, C.P.L., Grady, W., Gujer, G.V.R., Marais, T., Matsuo, Water Res. 21 (5) (1987) 505-515]-generic model (GM), and a reduced order model specially validated with the data acquired from a benchscale sequential batch reactor (SBR) specific model (SM). Model inaccuracies and measurement errors were compensated for with a Kalman filter structure to develop two state observers: one built with GM, the generic observer (GO), and another based on SM, the specific observer (SO). State variables estimated by GM, SM, GO and SO were compared to experimental data from the SBR unit. GM gave the worst performance while SM predictions presented some model to data mismatch. GO and SO, on the other hand, were both in very good agreement with experimental data showing that filters add robustness against model errors, which reduces the modeling effort while assuring adequate inference of process variables.

  8. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlaja, O.O., E-mail:; Parker, W.J., E-mail:


    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD{sup −1} d{sup −1} for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD{sup −1} d{sup −1}. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2.

  9. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    International Nuclear Information System (INIS)

    Ogunlaja, O.O.; Parker, W.J.


    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD −1 d −1 for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD −1 d −1 . A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2

  10. Pattern recognition and modelling of earthquake registrations with interactive computer support

    International Nuclear Information System (INIS)

    Manova, Katarina S.


    The object of the thesis is Pattern Recognition. Pattern recognition i.e. classification, is applied in many fields: speech recognition, hand printed character recognition, medical analysis, satellite and aerial-photo interpretations, biology, computer vision, information retrieval and so on. In this thesis is studied its applicability in seismology. Signal classification is an area of great importance in a wide variety of applications. This thesis deals with the problem of (automatic) classification of earthquake signals, which are non-stationary signals. Non-stationary signal classification is an area of active research in the signal and image processing community. The goal of the thesis is recognition of earthquake signals according to their epicentral zone. Source classification i.e. recognition is based on transformation of seismograms (earthquake registrations) to images, via time-frequency transformations, and applying image processing and pattern recognition techniques for feature extraction, classification and recognition. The tested data include local earthquakes from seismic regions in Macedonia. By using actual seismic data it is shown that proposed methods provide satisfactory results for classification and recognition.(Author)

  11. Moral processing deficit in behavioral variant frontotemporal dementia is associated with facial emotion recognition and brain changes in default mode and salience network areas. (United States)

    Van den Stock, Jan; Stam, Daphne; De Winter, François-Laurent; Mantini, Dante; Szmrecsanyi, Benedikt; Van Laere, Koen; Vandenberghe, Rik; Vandenbulcke, Mathieu


    Behavioral variant frontotemporal dementia (bvFTD) is associated with abnormal emotion recognition and moral processing. We assessed emotion detection, discrimination, matching, selection, and categorization as well as judgments of nonmoral, moral impersonal, moral personal low- and high-conflict scenarios. bvFTD patients gave more utilitarian responses on low-conflict personal moral dilemmas. There was a significant correlation between a facial emotion processing measure derived through principal component analysis and utilitarian responses on low-conflict personal scenarios in the bvFTD group (controlling for MMSE-score and syntactic abilities). Voxel-based morphometric multiple regression analysis in the bvFTD group revealed a significant association between the proportion of utilitarian responses on personal low-conflict dilemmas and gray matter volume in ventromedial prefrontal areas ( p height  importance of emotions in moral cognition and suggest a common basis for deficits in both abilities, possibly related to reduced experience of emotional sensations. At the neural level abnormal moral cognition in bvFTD is related to structural integrity of the medial prefrontal cortex and functional characteristics of the anterior insula. The present findings provide a common basis for emotion recognition and moral reasoning and link them with areas in the default mode and salience network.

  12. Evaluating the feasibility of biological waste processing for long term space missions (United States)

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)


    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  13. Safety Assessment and Biological Effects of a New Cold Processed SilEmulsion for Dermatological Purpose

    Directory of Open Access Journals (Sweden)

    Sara Raposo


    Full Text Available It is of crucial importance to evaluate the safety profile of the ingredients used in dermatological emulsions. A suitable equilibrium between safety and efficacy is a pivotal concern before the marketing of a dermatological product. The aim was to assess the safety and biological effects of a new cold processed silicone-based emulsion (SilEmulsion. The hazard, exposure, and dose-response assessment were used to characterize the risk for each ingredient. EpiSkin assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the SilEmulsion was studied using biophysical measurements in human volunteers during 21 days. According to the safety assessment of the ingredients, 1,5-pentanediol was an ingredient of special concern since its margin of safety was below the threshold of 100 (36.53. EpiSkin assay showed that the tissue viability after the application of the SilEmulsion was 92 ± 6% and, thus considered nonirritant to the skin. The human studies confirmed that the SilEmulsion was not a skin irritant and did not induce any sensitization on the volunteers, being safe for human use. Moreover, biological effects demonstrated that the SilEmulsion increased both the skin hydration and skin surface lipids.

  14. Comprehension of complex biological processes by analytical methods: how far can we go using mass spectrometry?

    International Nuclear Information System (INIS)

    Gerner, C.


    Comprehensive understanding of complex biological processes is the basis for many biomedical issues of great relevance for modern society including risk assessment, drug development, quality control of industrial products and many more. Screening methods provide means for investigating biological samples without research hypothesis. However, the first boom of analytical screening efforts has passed and we again need to ask whether and how to apply screening methods. Mass spectrometry is a modern tool with unrivalled analytical capacities. This applies to all relevant characteristics of analytical methods such as specificity, sensitivity, accuracy, multiplicity and diversity of applications. Indeed, mass spectrometry qualifies to deal with complexity. Chronic inflammation is a common feature of almost all relevant diseases challenging our modern society; these diseases are apparently highly diverse and include arteriosclerosis, cancer, back pain, neurodegenerative diseases, depression and other. The complexity of mechanisms regulating chronic inflammation is the reason for the practical challenge to deal with it. The presentation shall give an overview of capabilities and limitations of the application of this analytical tool to solve critical questions with great relevance for our society. (author)

  15. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Thomas, David; Rysgaard, Søren


    Knowledge on the relative effects of biological activity and precipitation/dissolution of calcium carbonate (CaCO3) in influencing the air-ice CO2 exchange in sea-ice-covered season is currently lacking. Furthermore, the spatial and temporal occurrence of CaCO3 and other biogeochemical parameters...... in sea ice are still not well described. Here we investigated autotrophic and heterotrophic activity as well as the precipitation/dissolution of CaCO3 in subarctic sea ice in South West Greenland. Integrated over the entire ice season (71 days), the sea ice was net autotrophic with a net carbon fixation...... and CaCO3 precipitation. The net biological production could only explain 4 % of this sea-ice-driven CO2 uptake. Abiotic processes contributed to an air-sea CO2 uptake of 1.5 mmol m(-2) sea ice day(-1), and dissolution of CaCO3 increased the air-sea CO2 uptake by 36 % compared to a theoretical estimate...

  16. Process of inorganic nitrogen transformation and design of kinetics model in the biological aerated filter reactor. (United States)

    Yan, Gang; Xu, Xia; Yao, Lirong; Lu, Liqiao; Zhao, Tingting; Zhang, Wenyi


    As one of the plug-flow reactors, biological aerated filter (BAF) reactor was divided into four sampling sectors to understand the characteristics of elemental nitrogen transformation during the reaction process, and then the different characteristics of elemental nitrogen transformation caused by different NH(3)-N loadings, biological quantities and activities in each section were obtained. The results showed that the total transformation ratio in the nitrifying reactor was more than 90% in the absence of any organic carbon resource, at the same time, more than 65% NH(3)-N in the influent were nitrified at the filter height of 70 cm below under the conditions of the influent runoff 9-19 L/h, the gas-water ratio 4-5:1, the dissolved oxygen 3.0-5.8 mg/L and the NH(3)-N load 0.28-0.48 kg NH(3)-N/m(3) d. On the base of the Eckenfelder mode, the kinetics equation of the NH(3)-N transformation along the reactor was S(e)=S(0) exp(-0.0134D/L(1.2612)). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM). (United States)

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao


    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Comparative biology approaches for charged particle exposures and cancer development processes (United States)

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Sudo, Hiroko; Wiese, Claudia; Dan, Cristian; Turker, Mitchell

    Comparative biology studies can provide useful information for the extrapolation of results be-tween cells in culture and the more complex environment of the tissue. In other circumstances, they provide a method to guide the interpretation of results obtained for cells from differ-ent species. We have considered several key cancer development processes following charged particle exposures using comparative biology approaches. Our particular emphases have been mutagenesis and genomic instability. Carcinogenesis requires the accumulation of mutations and most of htese mutations occur on autosomes. Two loci provide the greatest avenue for the consideration of charged particle-induced mutation involving autosomes: the TK1 locus in human cells and the APRT locus in mouse cells. Each locus can provide information on a wide variety of mutational changes, from small intragenic mutations through multilocus dele-tions and extensive tracts of mitotic recombination. In addition, the mouse model can provide a direct measurement of chromosome loss which cannot be accomplished in the human cell system. Another feature of the mouse APRT model is the ability to examine effects for cells exposed in vitro with those obtained for cells exposed in situ. We will provide a comparison of the results obtained for the TK1 locus following 1 GeV/amu Fe ion exposures to the human lymphoid cells with those obtained for the APRT locus for mouse kidney epithelial cells (in vitro or in situ). Substantial conservation of mechanisms is found amongst these three exposure scenarios, with some differences attributable to the specific conditions of exposure. A similar approach will be applied to the consideraiton of proton-induced autosomal mutations in the three model systems. A comparison of the results obtained for Fe ions vs. protons in each case will highlight LET-specificc differences in response. Another cancer development process that is receiving considerable interest is genomic instability. We

  19. Biological impact of preschool music classes on processing speech in noise (United States)

    Strait, Dana L.; Parbery-Clark, Alexandra; O’Connell, Samantha; Kraus, Nina


    Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. PMID:23872199

  20. Biological processes in the water column of the South Atlantic Bight: Zooplankton responses

    Energy Technology Data Exchange (ETDEWEB)


    The goal of the Fall Removal Experiment 1987 was to determine the processes affecting the dependent and fate of low salinity coastal water and of biological material therein during fall when winds are mainly south-to westward. Five zooplankton taxa, Acartia tonsa, (A. tonsa) Paracalanus species (sp), Temora turbinata (T. turbinata), Oncaea sp, and Sagitta enflata were examined. Data on the distribution of all five taxa were presented, and distribution over time was also studied. The abundance of A. tonsa decreased tenfold over the 13 day sampling period, Paracalanus varied twofold and T. Turbinata showed little variability. The A. tonsa decrease was postulated to result from food abundance or predation, although the possible role of size distribution, water displacement and chlorophyll distribution will be examined in the future. A possible role of turbulence in zooplankton abundance is being examined. 8 refs., 5 figs.

  1. Study on substrate metabolism process of saline waste sludge and its biological hydrogen production potential. (United States)

    Zhang, Zengshuai; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian


    With the increasing of high saline waste sludge production, the treatment and utilization of saline waste sludge attracted more and more attention. In this study, the biological hydrogen production from saline waste sludge after heating pretreatment was studied. The substrate metabolism process at different salinity condition was analyzed by the changes of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS), and dissolved organic matters (DOM). The excitation-emission matrix (EEM) with fluorescence regional integration (FRI) was also used to investigate the effect of salinity on EPS and DOM composition during hydrogen fermentation. The highest hydrogen yield of 23.6 mL H 2 /g VSS and hydrogen content of 77.6% were obtained at 0.0% salinity condition. The salinity could influence the hydrogen production and substrate metabolism of waste sludge.

  2. Application of magnetic iron oxide nanoparticles in stabilization process of biological molecules

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani


    Conclusion: Co-precipitation method is an easy way to prepare magnetic nanoparticles of iron with a large surface and small particle size, which increases the ability of these particles to act as a suitable carrier for enzyme stabilization. Adequate modification of the surface of these nanoparticles enhances their ability to bind to biological molecules. The immobilized protein or enzyme on magnetic nanoparticles are more stable against structural changes, temperature and pH in comparison with un-stabilized structures, and it is widely used in various sciences, including protein isolation and purification, pharmaceutical science, and food analysis. Stabilization based on the covalent bonds and physical absorption is nonspecific, which greatly limits their functionality. The process of stabilization through bio-mediums provide a new method to overcome the selectivity problem.

  3. Insights into biological information processing: structural and dynamical analysis of a human protein signalling network

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, Alberto de la; Fotia, Giorgio; Maggio, Fabio; Mancosu, Gianmaria; Pieroni, Enrico [CRS4 Bioinformatica, Parco Tecnologico POLARIS, Ed.1, Loc Piscinamanna, Pula (Italy)], E-mail:


    We present an investigation on the structural and dynamical properties of a 'human protein signalling network' (HPSN). This biological network is composed of nodes that correspond to proteins and directed edges that represent signal flows. In order to gain insight into the organization of cell information processing this network is analysed taking into account explicitly the edge directions. We explore the topological properties of the HPSN at the global and the local scale, further applying the generating function formalism to provide a suitable comparative model. The relationship between the node degrees and the distribution of signals through the network is characterized using degree correlation profiles. Finally, we analyse the dynamical properties of small sub-graphs showing high correlation between their occurrence and dynamic stability.

  4. Composting of biological waste. Processes and utilisation. Summary report; Bioabfallkompostierung. Verfahren und Verwertung. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.


    The project investigated environmentally compatible concepts for processing and utilisation of biological waste by means of composting and spreading on agriculataural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die Zusammenfassung der genannten drei Teilberichte. (orig./SR)

  5. Biological effect of Muller's Ratchet: distant capsid site can affect picornavirus protein processing. (United States)

    Escarmís, Cristina; Perales, Celia; Domingo, Esteban


    Repeated bottleneck passages of RNA viruses result in accumulation of mutations and fitness decrease. Here, we show that clones of foot-and-mouth disease virus (FMDV) subjected to bottleneck passages, in the form of plaque-to-plaque transfers in BHK-21 cells, increased the thermosensitivity of the viral clones. By constructing infectious FMDV clones, we have identified the amino acid substitution M54I in capsid protein VP1 as one of the lesions associated with thermosensitivity. M54I affects processing of precursor P1, as evidenced by decreased production of VP1 and accumulation of VP1 precursor proteins. The defect is enhanced at high temperatures. Residue M54 of VP1 is exposed on the virion surface, and it is close to the B-C loop where an antigenic site of FMDV is located. M54 is not in direct contact with the VP1-VP3 cleavage site, according to the three-dimensional structure of FMDV particles. Models to account for the effect of M54 in processing of the FMDV polyprotein are proposed. In addition to revealing a distance effect in polyprotein processing, these results underline the importance of pursuing at the biochemical level the biological defects that arise when viruses are subjected to multiple bottleneck events.

  6. Video-rate processing in tomographic phase microscopy of biological cells using CUDA. (United States)

    Dardikman, Gili; Habaza, Mor; Waller, Laura; Shaked, Natan T


    We suggest a new implementation for rapid reconstruction of three-dimensional (3-D) refractive index (RI) maps of biological cells acquired by tomographic phase microscopy (TPM). The TPM computational reconstruction process is extremely time consuming, making the analysis of large data sets unreasonably slow and the real-time 3-D visualization of the results impossible. Our implementation uses new phase extraction, phase unwrapping and Fourier slice algorithms, suitable for efficient CPU or GPU implementations. The experimental setup includes an external off-axis interferometric module connected to an inverted microscope illuminated coherently. We used single cell rotation by micro-manipulation to obtain interferometric projections from 73 viewing angles over a 180° angular range. Our parallel algorithms were implemented using Nvidia's CUDA C platform, running on Nvidia's Tesla K20c GPU. This implementation yields, for the first time to our knowledge, a 3-D reconstruction rate higher than video rate of 25 frames per second for 256 × 256-pixel interferograms with 73 different projection angles (64 × 64 × 64 output). This allows us to calculate additional cellular parameters, while still processing faster than video rate. This technique is expected to find uses for real-time 3-D cell visualization and processing, while yielding fast feedback for medical diagnosis and cell sorting.

  7. A novel A-B process for enhanced biological nutrient removal in municipal wastewater reclamation. (United States)

    Xu, Guangjing; Wang, Han; Gu, Jun; Shen, Nan; Qiu, Zheng; Zhou, Yan; Liu, Yu


    This study developed an innovative A-B process for enhanced nutrients removal in municipal wastewater reclamation, in which a micro-aerated moving bed biofilm reactor served as A-stage and a step-feed sequencing batch reactor (SBR) as B-stage. In the A-stage, 55% of COD and 15% of ammonia nitrogen was removed, while more than 88% of the total nitrogen was removed via nitritation and denitritation, together with 93% of phosphorous removal at the B-stage where ammonia oxidizing bacteria activity was significantly higher than nitrite oxidizing bacteria activity. Meanwhile substantial phenotype of polyphosphate accumulating organisms (PAOs) was also observed in the B-stage SBR. Fluorescence in situ hybridization revealed that Accumulibacter was the dominant PAOs with undetectable Competibacter. Compared to the conventional activated sludge process, the proposed A-B process could offer a more cost-effective alternative for enhanced biological nutrients removal from municipal wastewater with less energy consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Electron processing at low energies: from basics to environmental and biological applications. (United States)

    Illenberger, Eugen


    Electron initiated reactions play a key role in nearly any field of pure and applied sciences, in the gas phase as well as in condensed phases or at interfaces. This include substrate induced photochemistry, radiation damage of biological material (and, accordingly, the molecular mechanisms, how radio sensitizers used in tumour therapy operate), reactions induced by electrons in surface tunnelling microscopy (STM), or any kind of plasma used in industrial plasma processing. In each of these fields the electron-molecule interaction represents a key step within an eventually complex reaction sequence. A particularly interesting field is the interaction of electrons with molecules at energies below the level of electronic excitation. In this range many molecules exhibit large cross sections for resonant electron capture, often followed by the decomposition of the transient negative compound (M^-# ) according to e^- + M --> M^-# --> R + X^-.^ We report on such dissociative electron attachment (DEA) processes studied at different stages of aggregation, namely in single molecules under collision free conditions, in clusters formed by supersonic gas expansion, and on the surface of solids or in molecular nanofilms. In the meantime it has also been recognised that in the damage of living cells by high energy radiation the attachment of low energy secondary electrons to DNA is a key initial process leading to strand breaks. These secondary electrons are created along the ionisation track of the primary high-energy quantum. Apart from that, bio-molecular systems exhibit unique features in DEA, like bond and site selective decompositions.

  9. Spies and Bloggers: New Synthetic Biology Tools to Understand Microbial Processes in Soils and Sediments (United States)

    Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.


    Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.

  10. Biological treatment processes for PCB contaminated soil at a site in Newfoundland

    International Nuclear Information System (INIS)

    Punt, M.; Cooper, D.; Velicogna, D.; Mohn, W.; Reimer, K.; Parsons, D.; Patel, T.; Daugulis, A.


    SAIC Canada is conducting a study under the direction of a joint research and development contract between Public Works and Government Services Canada and Environment Canada to examine the biological options for treating PCB contaminated soil found at a containment cell at a former U.S. Military Base near Stephenville, Newfoundland. In particular, the study examines the feasibility of using indigenous microbes for the degradation of PCBs. The first phase of the study involved the testing of the microbes in a bioreactor. The second phase, currently underway, involves a complete evaluation of possible microbes for PCB degradation. It also involves further study into the biological process options for the site. Suitable indigenous and non-indigenous microbes for PCB dechlorination and biphenyl degradation are being identified and evaluated. In addition, the effectiveness and economics of microbial treatment in a conventional bioreactor is being evaluated. The conventional bioreactor used in this study is the two-phase partitioning bioreactor (TPPB) using a biopile process. Results thus far will be used to help Public Works and Government Services Canada to choose the most appropriate remedial technology. Preliminary results suggest that the use of soil classification could reduce the volume of soil requiring treatment. The soil in the containment cell contains microorganisms that could grow in isolation on biphenyl, naphthalene and potentially Aroclor 1254. Isolated native microbes were inoculated in the TPPB for growth. The TPPB was also run successfully under anaerobic conditions. Future work will involve lab-scale evaluation of microbes for PCB dechlorination and biphenyl degradation using both indigenous and non-indigenous microbes. The next phase of study may also involve field-scale demonstration of treatment methods. 2 refs., 3 tabs., 5 figs

  11. Biological processes for concentrating trace elements from uranium mine waters. Technical completion report

    International Nuclear Information System (INIS)

    Brierley, C.L.; Brierley, J.A.


    Waste water from uranium mines in the Ambrosia Lake district near Grants, New Mexico, USA, contains uranium, selenium, radium and molybdenum. The Kerr-McGee Corporation has a novel treatment process for waters from two mines to reduce the concentrations of the trace contaminants. Particulates are settled by ponding, and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters. Some of the conclusions derived from this study are: (1) The concentrations of soluble uranium, selenium and molybdenum were not diminished in the mine waters by passage through the series of impoundments which constituted the mine water treatment facility. Uranium concentrations were reduced but this was due to passage of the water through an ion exchange column. (2) The particulate concentrations of the mine water were reduced at least ten-fold by passage of the waters through the impoundments. (3) The sediments were anoxic and enriched in uranium, molybdenum and selenium. The deposition of particulates and the formation of insoluble compounds were proposed as mechanisms for sediment enrichment. (4) The predominant algae of the treatment ponds were the filamentous Spirogyra and Oscillatoria, and the benthic alga, Chara. (5) Adsorptive processes resulted in the accumulation of metals in the algae cells. (6) Stimulation of sulfate reduction by the bacteria resulted in retention of molybdenum, selenium, and uranium in sediments. 1 figure, 16 tables

  12. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  13. Degradation of benzalkonium chloride coupling photochemical advanced oxidation technologies with biological processes

    International Nuclear Information System (INIS)

    Meichtry, J; Lamponi, A; Gautier, E; Acosta, T; Fiol, P; Curutchet, G; Candal, R; Litter, M


    The combination of Advanced Oxidation Technologies (AOTs) and biological processes can be visualized as a very successful technological option for treatment of effluents, because it combines high oxidizing technologies with a conventional, low-cost and well-established treatment technology.Photochemical AOTs, like UV-C with or without H 2 O 2 , photo-Fenton (PF, UV/H 2 O 2 /Fe(II-III)) and UV/TiO 2 heterogeneous photo catalysis involve the generation and use of powerful oxidizing species, mainly the hydroxyl radical.In almost all AOTs, it is possible to use sunlight. Benzalkonium chloride (dodecyldimetylbencylammonium chloride, BKC) is a widely used surfactant, which has many industrial applications.Due to its antibacterial effect, it cannot be eliminated from effluents by a biological treatment, and the complexity of its chemical structure makes necessary the use of drastic oxidizing treatments to achieve complete mineralization and to avoid the formation of byproducts even more toxic than the initial compound.In this study, different alternatives for BKC treatment using photochemical AOTs followed by bio catalytic techniques are presented.Three AOTs were tested: a) UV-C (254 nm, germicide lamp) with and without H 2 O 2 , b) PF (366 nm), c) UV/TiO 2 (254 and 366 nm). PF at a 15:1:1 H 2 O 2 total/BKC 0 /Fe 0 molar ratio at 55 degree C was the most efficient treatment in order to decrease the tensioactivity and the total organic carbon of the solution . The biocatalysis was studied in a reactor fitted with a biofilm of microorganisms coming from a sludge-water treatment plant. To evaluate the maximal BKC concentration that could be allowed to ingress to the biological reactor after the AOT treatment, the toxicity of solutions of different BKC concentrations was analyzed. The study of the relevant parameters of both processes and their combination allowed to establish the preliminary conditions for optimizing the pollutant degradation

  14. CONTROLAB: integration of intelligent systems for speech recognition, image processing, and trajectory control with obstacle avoidance aiming at robotics applications (United States)

    Aude, Eliana P. L.; Silveira, Julio T. C.; Silva, Fabricio A. B.; Martins, Mario F.; Serdeira, Henrique; Lopes, Emerson P.


    CONTROLAB is an environment which integrates intelligent systems and control algorithms aiming at applications in the area of robotics. Within CONTROLAB, two neural network architectures based on the backpropagation and the recursive models are proposed for the implementation of a robust speaker-independent word recognition system. The robustness of the system using the backpropagation network has been largely verified through use by children and adults in totally uncontrolled environments such as large public halls for the exhibition of new technology products. Experimental results with the recursive network show that it is able to overcome the backpropagation network major drawback, the frequent generation of false alarms. In addition, within CONTROLAB, the trajectory to be followed by a robot arm under self-tuning control is determined by a system which uses either VGRAPH or PFIELD algorithms to avoid obstacles detected by the computer vision system. The performance of the second algorithm is greatly improved when it is applied under the control of a rule-based system. An application in which a SCARA robot arm is commanded by voice to pick up a specific tool placed on a table among other tools and obstacles is currently running. This application is used to evaluate the performance of each sub-system within CONTROLAB.

  15. Speaker Recognition

    DEFF Research Database (Denmark)

    Mølgaard, Lasse Lohilahti; Jørgensen, Kasper Winther


    Speaker recognition is basically divided into speaker identification and speaker verification. Verification is the task of automatically determining if a person really is the person he or she claims to be. This technology can be used as a biometric feature for verifying the identity of a person...

  16. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens (United States)

    Cors, J. F.; Lovchik, R. D.; Delamarche, E.; Kaigala, G. V.


    The microfluidic probe (MFP) is a non-contact, scanning microfluidic technology for local (bio)chemical processing of surfaces based on hydrodynamically confining nanoliter volumes of liquids over tens of micrometers. We present here a compact MFP (cMFP) that can be used on a standard inverted microscope and assist in the local processing of tissue sections and biological specimens. The cMFP has a footprint of 175 × 100 × 140 mm3 and can scan an area of 45 × 45 mm2 on a surface with an accuracy of ±15 μm. The cMFP is compatible with standard surfaces used in life science laboratories such as microscope slides and Petri dishes. For ease of use, we developed self-aligned mounted MFP heads with standardized "chip-to-world" and "chip-to-platform" interfaces. Switching the processing liquid in the flow confinement is performed within 90 s using a selector valve with a dead-volume of approximately 5 μl. We further implemented height-compensation that allows a cMFP head to follow non-planar surfaces common in tissue and cellular ensembles. This was shown by patterning different macroscopic copper-coated topographies with height differences up to 750 μm. To illustrate the applicability to tissue processing, 5 μm thick M000921 BRAF V600E+ melanoma cell blocks were stained with hematoxylin to create contours, lines, spots, gradients of the chemicals, and multiple spots over larger areas. The local staining was performed in an interactive manner using a joystick and a scripting module. The compactness, user-friendliness, and functionality of the cMFP will enable it to be adapted as a standard tool in research, development and diagnostic laboratories, particularly for the interaction with tissues and cells.

  17. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes. (United States)

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P


    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total dissolved polyphenols content of 0.35 mg caffeic acid equivalent L(-1) was found. Respirometry tests revealed low biodegradability enhancement along the SPEF process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens


    The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch...... that external carbon source addition may serve as a suitable control variable to improve process performance....... process, the addition of either carbon source to the anoxic zone also resulted in an instantaneous and fairly reproducible increase in the denitrification rate. Some release of phosphate associated with the carbon source addition was observed. With respect to nitrogen removal, these results indicate...

  19. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants (United States)

    Awais Salman, Chaudhary; Schwede, Sebastian; Thorin, Eva; Yan, Jinyue


    Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.

  20. Preferential biological processes in the human limbus by differential gene profiling.

    Directory of Open Access Journals (Sweden)

    Martin N Nakatsu

    Full Text Available Corneal epithelial stem cells or limbal stem cells (LSCs are responsible for the maintenance of the corneal epithelium in humans. The exact location of LSCs is still under debate, but the increasing need for identifying the biological processes in the limbus, where LSCs are located, is of great importance in the regulation of LSCs. In our current study we identified 146 preferentially expressed genes in the human limbus in direct comparison to that in the cornea and conjunctiva. The expression of newly identified limbal transcripts endomucin, fibromodulin, paired-like homeodomain 2 (PITX2 and axin-2 were validated using qRT-PCR. Further protein analysis on the newly identified limbal transcripts showed protein localization of PITX2 in the basal and suprabasal layer of the limbal epithelium and very low expression in the cornea and conjunctiva. Two other limbal transcripts, frizzled-7 and tenascin-C, were expressed in the basal epithelial layer of the limbus. Gene ontology and network analysis of the overexpressed limbal genes revealed cell-cell adhesion, Wnt and TGF-β/BMP signaling components among other developmental processes in the limbus. These results could aid in a better understanding of the regulatory elements in the LSC microenvironment.

  1. Comparison of biological and advanced treatment processes for ciprofloxacin removal in a raw hospital wastewater. (United States)

    Guney, Gokce; Sponza, Delia Teresa


    The treatability of ciprofloxacin (CIP) antibiotic was investigated using a single aerobic, a single anaerobic, an anaerobic/aerobic sequential reactor system, a sonicator and a photocatalytic reactor with TiO2 nanoparticles in a raw hospital wastewater in Izmir, Turkey. The effects of increasing organic loading on the performance of all biological systems were investigated, while the effects of power and time on the yields of sonication and photocatalysis were determined. The maximum COD and CIP yields were 95% and 83% in anaerobic/aerobic sequential reactor system at an HRT of 10 days and at an OLR of 0.19 g COD/L × day after 50 days of incubation, respectively. The maximum CH4 gas production was 580 mL day(-1) at an HRT of 6.7 days. The maximum COD and CIP yields were 95% and 81% after 45 min sonication time at a power of 640 W and a frequency of 35 kHz while the maximum yield of COD and CIP were 98% and 88% after 45 min UV irradiation time with a UV power of 210 W using 0.5 g L(-1) TiO2. Among the aforementioned treatment processes, it was found that the highest treatment yields for COD (98%) and CIP (88%) pollutants were obtained with the photocatalytic process due to high OH((●)) radical productions.

  2. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate

    International Nuclear Information System (INIS)

    Wang Xiaojun; Song Yang; Mai Junsheng


    The present study is to investigate the treatment of a surfactant wastewater containing abundant sulfate by Fenton oxidation and aerobic biological processes. The operating conditions have been optimized. Working at an initial pH value of 8, a Fe 2+ dosage of 600 mg L -1 and a H 2 O 2 dosage of 120 mg L -1 , the chemical oxidation demand (COD) and linear alkylbenzene sulfonate (LAS) were decreased from 1500 and 490 mg L -1 to 230 and 23 mg L -1 after 40 min of Fenton oxidation, respectively. Advanced oxidation pretreatment using Fenton reagent was very effective at enhancing the biodegradability of this kind of wastewater. The wastewater was further treated by a bio-chemical treatment process based on an immobilized biomass reactor with a hydraulic detention time (HRT) of 20 h after Fenton oxidation pretreatment under the optimal operating conditions. It was found that the COD and LAS of the final effluent were less than 100 and 5 mg L -1 , corresponding to a removal efficiencies of over 94% and 99%, respectively

  3. In vitro biological outcome of laser application for modification or processing of titanium dental implants. (United States)

    Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat


    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.

  4. A biological/chemical process for reduced waste and energy consumption: caprolactam production. Final report

    Energy Technology Data Exchange (ETDEWEB)



    A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable to metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.

  5. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants

    Directory of Open Access Journals (Sweden)

    Salman Chaudhary Awais


    Full Text Available Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc. and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.

  6. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, Nikola, E-mail: [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Hartmann, Johannes [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Schittl, Heike [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Gerschpacher, Marion [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Quint, Ruth Maria [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria)


    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light ({lambda}=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  7. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger (United States)

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R.; Nörtemann, Bernd

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  8. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    International Nuclear Information System (INIS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria


    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  9. Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatmen : A laboratory batch study

    NARCIS (Netherlands)

    Wang, F.; van Halem, D.; Liu, G.; Lekkerkerker-Teunissen, K.; van der Hoek, J.P.


    H2O2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H2O2 residuals influence sand systems with an emphasis on

  10. Evaluation of the processing of dry biological ferment for gamma radiation

    International Nuclear Information System (INIS)

    Sabundjian, Ingrid Traete


    The developed work had with objectives to demonstrate if it had alteration in the growth of UFC in plate and in the viability of yeasts and total bacteria when dry biological ferment was dealt with by different doses to gamma radiation and under different times storage, to determine the D10 dose for total bacteria and yeasts in this product and to analyzed the processing of this product it promoted some benefit without causing unfeasibility of exactly. The different samples of dry biological ferment had been irradiated at IPEN in a Gammacell - 220 source at 0.5; 1; 2 and 3 kGy doses (dose rate of 3.51 kGy/h). This procedure referring samples to each dose of radiation had been after destined to the microbiological analysis and the test of viability while excessively the samples had been stored the ambient temperature (23 degree C). The increase of the dose of radiation caused a reduction in the counting of yeasts growth, of total bacteria growth and also in the frequency of viable yeast cells, demonstrated by FDA-EB fluorescent method. Beyond of radiation the storage time also it influenced in counting reduction of total bacteria and reduction of frequency of viable cells. According with the analysis of simple linear regression, the dose of radiation necessary to eliminate 90% of the yeast population was between 1.10 and 2.23 kGy and for the bacterial population varied between 2.31 and 2.95 kGy. These results demonstrated clearly the negative points of the application of ionizing radiation in dry biological ferment; therefore the interval of D10 found for total bacteria is superior to found for yeasts. Being thus, the use of this resource for the improvement of the product quality becomes impracticable, since to reduce significantly the bacterial population necessarily we have that to diminish the population of yeasts. With yeasts reduction of we will go significantly to modify the quality and the viability of product. (author)

  11. Facial Expression Recognition

    NARCIS (Netherlands)

    Pantic, Maja; Li, S.; Jain, A.


    Facial expression recognition is a process performed by humans or computers, which consists of: 1. Locating faces in the scene (e.g., in an image; this step is also referred to as face detection), 2. Extracting facial features from the detected face region (e.g., detecting the shape of facial

  12. Striatal and Hippocampal Entropy and Recognition Signals in Category Learning: Simultaneous Processes Revealed by Model-Based fMRI (United States)

    Davis, Tyler; Love, Bradley C.; Preston, Alison R.


    Category learning is a complex phenomenon that engages multiple cognitive processes, many of which occur simultaneously and unfold dynamically over time. For example, as people encounter objects in the world, they simultaneously engage processes to determine their fit with current knowledge structures, gather new information about the objects, and…


    Directory of Open Access Journals (Sweden)

    Figen ERTAŞ


    Full Text Available The explosive growth of information technology in the last decade has made a considerable impact on the design and construction of systems for human-machine communication, which is becoming increasingly important in many aspects of life. Amongst other speech processing tasks, a great deal of attention has been devoted to developing procedures that identify people from their voices, and the design and construction of speaker recognition systems has been a fascinating enterprise pursued over many decades. This paper introduces speaker recognition in general and discusses its relevant parameters in relation to system performance.

  14. Processing of cell-surface signalling anti-sigma factors prior to signal recognition is a conserved autoproteolytic mechanism that produces two functional domains. (United States)

    Bastiaansen, Karlijn C; Otero-Asman, Joaquín R; Luirink, Joen; Bitter, Wilbert; Llamas, María A


    Cell-surface signalling (CSS) enables Gram-negative bacteria to transduce an environmental signal into a cytosolic response. This regulatory cascade involves an outer membrane receptor that transmits the signal to an anti-sigma factor in the cytoplasmic membrane, allowing the activation of an extracytoplasmic function (ECF) sigma factor. Recent studies have demonstrated that RseP-mediated proteolysis of the anti-sigma factors is key to σ(ECF) activation. Using the Pseudomonas aeruginosa FoxR anti-sigma factor, we show here that RseP is responsible for the generation of an N-terminal tail that likely contains pro-sigma activity. Furthermore, it has been reported previously that this anti-sigma factor is processed in two separate domains prior to signal recognition. Here, we demonstrate that this process is common in these types of proteins and that the processing event is probably due to autoproteolytic activity. The resulting domains interact and function together to transduce the CSS signal. However, our results also indicate that this processing event is not essential for activity. In fact, we have identified functional CSS anti-sigma factors that are not cleaved prior to signal perception. Together, our results indicate that CSS regulation can occur through both complete and initially processed anti-sigma factors. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. HiResolution and conventional sound processing in the HiResolution bionic ear: using appropriate outcome measures to assess speech recognition ability. (United States)

    Koch, Dawn Burton; Osberger, Mary Joe; Segel, Phil; Kessler, Dorcas


    This study compared speech perception benefits in adults implanted with the HiResolution (HiRes) Bionic Ear who used both conventional and HiRes sound processing. A battery of speech tests was used to determine which formats were most appropriate for documenting the wide range of benefit experienced by cochlear-implant users. A repeated-measures design was used to assess postimplantation speech perception in adults who received the HiResolution Bionic Ear in a recent clinical trial. Patients were fit first with conventional strategies and assessed after 3 months of use. Patients were then switched to HiRes sound processing and assessed again after 3 months of use. To assess the immediate effect of HiRes sound processing on speech perception performance, consonant recognition testing was performed in a subset of patients after 3 days of HiRes use and compared with their 3-month performance with conventional processing. Subjects were implanted and evaluated at 19 cochlear implant programs in the USA and Canada affiliated primarily with tertiary medical centers. Patients were 51 postlinguistically deafened adults. Speech perception was assessed using CNC monosyllabic words, CID sentences and HINT sentences in quiet and noise. Consonant recognition testing was also administered to a subset of patients (n = 30) using the Iowa Consonant Test presented in quiet and noise. All patients completed a strategy preference questionnaire after 6 months of device use. Consonant identification in quiet and noise improved significantly after only 3 days of HiRes use. The mean improvement from conventional to HiRes processing was significant on all speech perception tests. The largest differences occurred for the HINT sentences in noise. Ninety-six percent of the patients preferred HiRes to conventional sound processing. Ceiling effects occurred for both sentence tests in quiet. Although most patients improved after switching to HiRes sound processing, the greatest differences were

  16. Advanced low carbon-to-nitrogen ratio wastewater treatment by electrochemical and biological coupling process. (United States)

    Deng, Shihai; Li, Desheng; Yang, Xue; Zhu, Shanbin; Xing, Wei


    Nitrogen pollution in ground and surface water significantly affects the environment and its organisms, thereby leading to an increasingly serious environmental problem. Such pollution is difficult to degrade because of the lack of carbon sources. Therefore, an electrochemical and biological coupling process (EBCP) was developed with a composite catalytic biological carrier (CCBC) and applied in a pilot-scale cylindrical reactor to treat wastewater with a carbon-to-nitrogen (C/N) ratio of 2. The startup process, coupling principle, and dynamic feature of the EBCP were examined along with the effects of hydraulic retention time (HRT), dissolved oxygen (DO), and initial pH on nitrogen removal. A stable coupling system was obtained after 51 days when plenty of biofilms were cultivated on the CCBC without inoculation sludge. Autotrophic denitrification, with [Fe(2+)] and [H] produced by iron-carbon galvanic cells in CCBC as electron donors, was confirmed by equity calculation of CODCr and nitrogen removal. Nitrogen removal efficiency was significantly influenced by HRT, DO, and initial pH with optimal values of 3.5 h, 3.5 ± 0.1 mg L(-1), and 7.5 ± 0.1, respectively. The ammonia, nitrate, and total nitrogen (TN) removal efficiencies of 90.1 to 95.3 %, 90.5 to 99.0 %, and 90.3 to 96.5 % were maintained with corresponding initial concentrations of 40 ± 2 mg L(-1) (NH3-N load of 0.27 ± 0.01 kg NH3-N m(-3) d(-1)), 20 ± 1 mg L(-1), and 60 ± 2 mg L(-1) (TN load of 0.41 ± 0.02 kg TN m(-3) d(-1)). Based on the Eckenfelder model, the kinetics equation of the nitrogen transformation along the reactor was N e  = N 0 exp (-0.04368 h/L(1.8438)). Hence, EBCP is a viable method for advanced low C/N ratio wastewater treatment.

  17. Interpreting complex data by methods of recognition and classification in an automated system of aerogeophysical material processing

    Energy Technology Data Exchange (ETDEWEB)

    Koval' , L.A.; Dolgov, S.V.; Liokumovich, G.B.; Ovcharenko, A.V.; Priyezzhev, I.I.


    The system of automated processing of aerogeophysical data, ASOM-AGS/YeS, is equipped with complex interpretation of multichannel measurements. Algorithms of factor analysis, automatic classification and apparatus of a priori specified (selected) decisive rules are used. The areas of effect of these procedures can be initially limited to the specified geological information. The possibilities of the method are demonstrated by the results of automated processing of the aerogram-spectrometric measurements in the region of the known copper-porphyr manifestation in Kazakhstan. This ore deposit was clearly noted after processing by the method of main components by complex aureole of independent factors U (severe increase), Th (noticeable increase), K (decrease).

  18. Nucleobase recognition at alkaline pH and apparent pK(a) of single DNA bases immobilised within a biological nanopore

    NARCIS (Netherlands)

    Fransceschini, Lorenzo; Mikhailova, Ellina; Bayley, Hagan; Maglia, Giovanni


    The four DNA bases are recognized in immobilized DNA strands at high alkaline pH by nanopore current recordings. Ionic currents through the biological nanopores are also employed to measure the apparent pK(a) values of single nucleobases within the immobilised DNA strands.

  19. Processes that Drove the Transition from Chemistry to Biology: Concepts and Evidence (United States)

    Pohorille, Andrew


    above background was evolved in vitro. This enzyme does not look like any contemporary protein. It is very flexible and its structure is kept together just by a single salt bridge between a charged residue and a coordinating zinc. A similar picture emerges from studies of simple transmembrane channels that mimic those in ancestral cells. Again, they are extremely flexible and do not form a conventional pore. Yet, they efficiently mediate ion transport. Studies on simple proteins that are on-going in several laboratories hold promise of revealing crucial links between chemical and biological catalysis and other ubiquitous cell functions. Interaction between composition, growth and division of protobiologically relevant vesicles and metabolic reactions that they encapsulate is an example of coupling between simple functions that promotes reproduction and evolution. Recent studies have demonstrated possible mechanisms by which vesicles might have evolved their composition from fatty acids to phospholipids, thus facilitating a number of new cellular functions. Conversely, it has been also demonstrated that an encapsulated metabolism might drive vesicle division. These are, again, examples of processes that might have driven the transition from chemistry to biology.

  20. Primate Auditory Recognition Memory Performance Varies With Sound Type


    Chi-Wing, Ng; Bethany, Plakke; Amy, Poremba


    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g. social status, kinship, environment),have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition, and/or memory. The present study employs a de...

  1. A DO- and pH-Based Early Warning System of Nitrification Inhibition for Biological Nitrogen Removal Processes

    Directory of Open Access Journals (Sweden)

    Hyunook Kim


    Full Text Available In Korea, more than 80% of municipal wastewater treatment plants (WWTPs with capacities of 500 m3·d−1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L−1 Hg2+, 0.5 mg·L−1 allythiourea, or 0.25 mg·L−1 chloroform could be successfully detected.

  2. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process

    Directory of Open Access Journals (Sweden)

    Jiuyi Li


    Full Text Available Biologically treated leachate usually contains considerable amount of refractory organics and trace concentrations of xenobiotic pollutants. Removal of refractory organics from biologically treated landfill leachate by a novel microwave discharge electrodeless lamp (MDEL assisted Fenton process was investigated in the present study in comparison to conventional Fenton and ultraviolet Fenton processes. Conventional Fenton and ultraviolet Fenton processes could substantially remove up to 70% of the refractory organics in a membrane bioreactor treated leachate. MDEL assisted Fenton process achieved excellent removal performance of the refractory components, and the effluent chemical oxygen demand concentration was lower than 100 mg L−1. Most organic matters were transformed into smaller compounds with molecular weights less than 1000 Da. Ten different polycyclic aromatic hydrocarbons were detected in the biologically treated leachate, most of which were effectively removed by MDEL-Fenton treatment. MDEL-Fenton process provides powerful capability in degradation of refractory and xenobiotic organic pollutants in landfill leachate and could be adopted as a single-stage polishing process for biologically treated landfill leachate to meet the stringent discharge limit.

  3. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter. (United States)

    Fan, Li; Ni, Jinren; Wu, Yanjun; Zhang, Yongyong


    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD(Cr) removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD(Cr) was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m(-3)d(-1) when the total HRT was 43.4h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD(Cr) removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp.

  4. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter

    Energy Technology Data Exchange (ETDEWEB)

    Fan Li [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China); Ni Jinren [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)], E-mail:; Wu Yanjun; Zhang Yongyong [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)


    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD{sub Cr} removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD{sub Cr} was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m{sup -3} d{sup -1} when the total HRT was 43.4 h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD{sub Cr} removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp.

  5. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter

    International Nuclear Information System (INIS)

    Fan Li; Ni Jinren; Wu Yanjun; Zhang Yongyong


    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD Cr removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD Cr was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m -3 d -1 when the total HRT was 43.4 h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD Cr removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp

  6. Biological Processes that Prepare Mammalian Spermatozoa to Interact with an Egg and Fertilize It

    Directory of Open Access Journals (Sweden)

    Daulat R. P. Tulsiani


    Full Text Available In the mouse and other mammals studied, including man, ejaculated spermatozoa cannot immediately fertilize an egg. They require a certain period of residence in the female genital tract to become functionally competent cells. As spermatozoa traverse through the female genital tract, they undergo multiple biochemical and physiological changes collectively referred to as capacitation. Only capacitated spermatozoa interact with the extracellular egg coat, the zona pellucida. The tight irreversible binding of the opposite gametes triggers a Ca2+-dependent signal transduction cascade. The net result is the fusion of the sperm plasma membrane and the underlying outer acrosomal membrane at multiple sites that causes the release of acrosomal contents at the site of sperm-egg adhesion. The hydrolytic action of the acrosomal enzymes released, along with the hyperactivated beat pattern of the bound spermatozoon, is important factor that directs the sperm to penetrate the egg coat and fertilize the egg. The sperm capacitation and the induction of the acrosomal reaction are Ca2+-dependent signaling events that have been of wide interest to reproductive biologists for over half a century. In this paper, we intend to discuss data from this and other laboratories that highlight the biological processes which prepare spermatozoa to interact with an egg and fertilize it.

  7. Assessment of the propensity of biofilm growth on newfloat carrier media through process and biological experiments. (United States)

    Podedworna, J; Zubrowska-Sudoł, M; Grabińska-Łoniewska, A


    This paper presents the results of research on biomass growth on Newfloat carrier elements and the implications of this growth on the wastewater treatment process. Supervision of the experiment comprised of the analysis of treatment efficiency (dynamic experiments), the estimation of the content of nitrifying bacteria in the biofilm (batch tests) and biological investigations of the biofilm structure and composition. It has been demonstrated that the biofilm growing on the carrier elements was rich in nitrifying bacteria and that this in turn guaranteed the highly efficient oxidation of ammoniacal nitrogen. After the full growth of biofilm had been established, average removal efficiencies were as follows: organic C removal-88.8% (effluent COD below 60 mg O2 l(-1)), nitrification-97.9% (effluent ammoniacal N below 1 mg N-NH4+ l(-1)), denitrification (after the COD loading rate increased to over 0.53 kg COD m(-3) d(-1))-95.7% (total N in the effluent below 8 mg N l(-1)).

  8. Enhanced biological nutrient removal in sequencing batch reactors operated as static/oxic/anoxic (SOA) process. (United States)

    Xu, Dechao; Chen, Hongbo; Li, Xiaoming; Yang, Qi; Zeng, Tianjing; Luo, Kun; Zeng, Guangming


    An innovative static/oxic/anoxic (SOA) activated sludge process characterized by static phase as a substitute for conventional anaerobic stage was developed to enhance biological nutrient removal (BNR) with influent ammonia of 20 and 40 mg/L in R1 and R2 reactors, respectively. The results demonstrated that static phase could function as conventional anaerobic stage. In R1 lower influent ammonia concentration facilitated more polyphosphate accumulating organisms (PAOs) growth, but secondary phosphorus release occurred due to NOx(-) depletion during post-anoxic period. In R2, however, denitrifying phosphorus removal proceeded with sufficient NOx(-). Both R1 and R2 saw simultaneous nitrification-denitrification. Glycogen was utilized to drive post-denitrification with denitrification rates in excess of typical endogenous decay rates. The anoxic stirring duration could be shortened from 3 to 1.5h to avoid secondary phosphorus release in R1 and little adverse impact was found on nutrients removal in R2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Allele-specific gene expression is widespread across the genome and biological processes.

    Directory of Open Access Journals (Sweden)

    Ricardo Palacios

    Full Text Available Allelic specific gene expression (ASGE appears to be an important factor in human phenotypic variability and as a consequence, for the development of complex traits and diseases. In order to study ASGE across the human genome, we have performed a study in which genotyping was coupled with an analysis of ASGE by screening 11,500 SNPs using the Mapping 10 K Array to identify differential allelic expression. We found that from the 5,133 SNPs that were suitable for analysis (heterozygous in our sample and expressed in peripheral blood mononuclear cells, 2,934 (57% SNPs had differential allelic expression. Such SNPs were equally distributed along human chromosomes and biological processes. We validated the presence or absence of ASGE in 18 out 20 SNPs (90% randomly selected by real time PCR in 48 human subjects. In addition, we observed that SNPs close to -but not included in- segmental duplications had increased levels of ASGE. Finally, we found that transcripts of unknown function or non-coding RNAs, also display ASGE: from a total of 2,308 intronic SNPs, 1510 (65% SNPs underwent differential allelic expression. In summary, ASGE is a widespread mechanism in the human genome whose regulation seems to be far more complex than expected.

  10. [Achieve single-stage autotrophic biological nitrogen removal process by controlling the concentration of free ammonia]. (United States)

    Ji, Li-Li; Yang, Zhao-Hui; Xu, Zheng-Yong; Li, Xiao-Jiang; Tang, Zhi-Gang; Deng, Jiu-Hu


    Through controlling the concentration of free ammonia in the sequencing batch reactor (SBR), the single-stage autotrophic biological nitrogen removal process was achieved, including partial nitrification and anaerobic ammonium oxidation. The experiment was completed via two steps, the enrichment of nitrite bacteria and the inoculation of the mixture of anammox biomass. The operating temperature in the SBR was (31 +/- 2) degrees C. During the step of the enrichment of nitrite bacteria, pH was about 7.8. Changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N(56-446 mg x L(-1)), in order to inhibit and eliminate the nitrate bacteria. The activity tests of the sludge, 55d after enrichment, showed strong activity of aerobic ammonium oxidation [2.91 kg x (kg x d)(-1)] and low activity of nitrite oxidation [0.03 kg x(kg x d)(-1)]. During the inoculation of the mixture of anammox biomass, changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N and pH. As the inoculation of anammox biomass, abundant of bacteria and nutrient content were into the reactor and there kept high activity of aerobic ammonium oxidation [2.83 kg x (kg x d)(-1)] and a certain activity of nitrite oxidation, at the same time, the activity of anammox and heterotrophic denitrification reached 0.65 kg x (kg x d)(-1) and 0.11 kg x (kg x d)(-1), respectively.

  11. Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. (United States)

    Wu, Jin; Kobayashi, Hideki; Stark, Scott C; Meng, Ran; Guan, Kaiyu; Tran, Ngoc Nguyen; Gao, Sicong; Yang, Wei; Restrepo-Coupe, Natalia; Miura, Tomoaki; Oliviera, Raimundo Cosme; Rogers, Alistair; Dye, Dennis G; Nelson, Bruce W; Serbin, Shawn P; Huete, Alfredo R; Saleska, Scott R


    Satellite observations of Amazon forests show seasonal and interannual variations, but the underlying biological processes remain debated. Here we combined radiative transfer models (RTMs) with field observations of Amazon forest leaf and canopy characteristics to test three hypotheses for satellite-observed canopy reflectance seasonality: seasonal changes in leaf area index, in canopy-surface leafless crown fraction and/or in leaf demography. Canopy RTMs (PROSAIL and FLiES), driven by these three factors combined, simulated satellite-observed seasonal patterns well, explaining c. 70% of the variability in a key reflectance-based vegetation index (MAIAC EVI, which removes artifacts that would otherwise arise from clouds/aerosols and sun-sensor geometry). Leaf area index, leafless crown fraction and leaf demography independently accounted for 1, 33 and 66% of FLiES-simulated EVI seasonality, respectively. These factors also strongly influenced modeled near-infrared (NIR) reflectance, explaining why both modeled and observed EVI, which is especially sensitive to NIR, captures canopy seasonal dynamics well. Our improved analysis of canopy-scale biophysics rules out satellite artifacts as significant causes of satellite-observed seasonal patterns at this site, implying that aggregated phenology explains the larger scale remotely observed patterns. This work significantly reconciles current controversies about satellite-detected Amazon phenology, and improves our use of satellite observations to study climate-phenology relationships in the tropics. No claim to original US Government works New Phytologist © 2017 New Phytologist Trust.

  12. Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater. (United States)

    Badawy, Mohamed I; Wahaab, Rifaat A; El-Kalliny, A S


    A treatability study of pharmaceutical wastewater from El-Nasr Pharmaceutical and Chemical Company, South-East of Cairo, was carried out. The company discharges both industrial (6000 m(3)/d) and municipal wastewater (128 m(3)/d) into a nearby evaporation pond without any treatment. The generated raw wastewater is characterized by high values of COD (4100-13,023), TSS (20-330 mg/L), and oil grease (17.4-600 mg/L). In addition, the presence of refractory compounds decreases BOD/COD ratio (0.25-0.30). Analysis of raw wastewater confirmed that pre-treatment is required prior to discharge into public sewers to comply with the Egyptian Environmental laws and regulations. The obtained results indicated that the refractory compounds and their by-products cannot be readily removed by biological treatment and always remain in the treated effluent or adsorbed on the sludge flocs. The application of Fenton oxidation process as a pre-treatment improved the removal of pharmaceuticals from wastewater and appears to be an affective solution to achieve compliance with the law legislation with respect to discharge in a determined receptor medium.

  13. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa


    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer polyhydroxybutyrate (PHB). Using the same medium in both stages, first, acetic acid is produced (3.2 g L−1) by Acetobacterium woodii from 5.2 L gas-mixture of CO2:H2 (15:85 v/v) under elevated pressure (≥2.0 bar) to increase H2-solubility in water. Second, acetic acid is converted to PHB (3 g L−1 acetate into 0.5 g L−1 PHB) by Ralstonia eutropha H16. The efficiencies and space-time yields were evaluated, and our data show the conversion of CO2 into PHB with a 33.3% microbial cell content (percentage of the ratio of PHB concentration to cell concentration) after 217 h. Collectively, our results provide a resourceful platform for future optimization and commercialization of a Bio-GTL for PHB production.

  14. The microbial community in a high-temperature enhanced biological phosphorus removal (EBPR process

    Directory of Open Access Journals (Sweden)

    Ying Hui Ong


    Full Text Available An enhanced biological phosphorus removal (EBPR process operated at a relatively high temperature, 28 °C, removed 85% carbon and 99% phosphorus from wastewater over a period of two years. This study investigated its microbial community through fluorescent in situ hybridization (FISH and clone library generation. Through FISH, considerably more Candidatus “Accumulibacter phosphatis” (Accumulibacter-polyphosphate accumulating organisms (PAOs than Candidatus ‘Competibacter phosphatis’ (Competibacter-glycogen accumulating organisms were detected in the reactor, at 36 and 7% of total bacterial population, respectively. A low ratio of Glycogen/Volatile Fatty Acid of 0.69 further indicated the dominance of PAOs in the reactor. From clone library generated, 26 operational taxonomy units were retrieved from the sludge and a diverse population was shown, comprising Proteobacteria (69.6%, Actinobacteria (13.7%, Bacteroidetes (9.8%, Firmicutes (2.94%, Planctomycetes (1.96%, and Acidobacteria (1.47%. Accumulibacter are the only recognized PAOs revealed by the clone library. Both the clone library and FISH results strongly suggest that Accumulibacter are the major PAOs responsible for the phosphorus removal in this long-term EBPR at relatively high temperature.

  15. Sudden Event Recognition: A Survey

    Directory of Open Access Journals (Sweden)

    Mohd Asyraf Zulkifley


    Full Text Available Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1 the importance of a sudden event over a general anomalous event; (2 frameworks used in sudden event recognition; (3 the requirements and comparative studies of a sudden event recognition system and (4 various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition.

  16. Sudden Event Recognition: A Survey (United States)

    Suriani, Nor Surayahani; Hussain, Aini; Zulkifley, Mohd Asyraf


    Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1) the importance of a sudden event over a general anomalous event; (2) frameworks used in sudden event recognition; (3) the requirements and comparative studies of a sudden event recognition system and (4) various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition. PMID:23921828

  17. Fröhlich Condensate: Emergence of Synergetic Dissipative Structures in Information Processing Biological and Condensed Matter Systems

    Directory of Open Access Journals (Sweden)

    Roberto Luzzi


    Full Text Available We consider the case of a peculiar complex behavior in open boson systems sufficiently away from equilibrium, having relevance in the functioning of information-processing biological and condensed matter systems. This is the so-called Fröhlich–Bose–Einstein condensation, a self-organizing-synergetic dissipative structure, a phenomenon apparently working in biological processes and present in several cases of systems of boson-like quasi-particles in condensed inorganic matter. Emphasis is centered on the quantum-mechanical-statistical irreversible thermodynamics of these open systems, and the informational characteristics of the phenomena.

  18. Image processing and pattern recognition algorithms for evaluation of crossed immunoelectrophoretic patterns (crossed radioimmunoelectrophoresis analysis manager; CREAM)

    DEFF Research Database (Denmark)

    Søndergaard, I; Poulsen, L K; Hagerup, M


    points along the precipitation curve in the curve-fitting process. The system has been tested on crossed immunoelectrophoretic patterns as well as crossed radioimmunoelectrophoretic patterns and it has been shown that the system can recognize the same precipitation curves on different immunoplates...

  19. Unity and disunity in evolutionary sciences: process-based analogies open common research avenues for biology and linguistics. (United States)

    List, Johann-Mattis; Pathmanathan, Jananan Sylvestre; Lopez, Philippe; Bapteste, Eric


    For a long time biologists and linguists have been noticing surprising similarities between the evolution of life forms and languages. Most of the proposed analogies have been rejected. Some, however, have persisted, and some even turned out to be fruitful, inspiring the transfer of methods and models between biology and linguistics up to today. Most proposed analogies were based on a comparison of the research objects rather than the processes that shaped their evolution. Focusing on process-based analogies, however, has the advantage of minimizing the risk of overstating similarities, while at the same time reflecting the common strategy to use processes to explain the evolution of complexity in both fields. We compared important evolutionary processes in biology and linguistics and identified processes specific to only one of the two disciplines as well as processes which seem to be analogous, potentially reflecting core evolutionary processes. These new process-based analogies support novel methodological transfer, expanding the application range of biological methods to the field of historical linguistics. We illustrate this by showing (i) how methods dealing with incomplete lineage sorting offer an introgression-free framework to analyze highly mosaic word distributions across languages; (ii) how sequence similarity networks can be used to identify composite and borrowed words across different languages; (iii) how research on partial homology can inspire new methods and models in both fields; and (iv) how constructive neutral evolution provides an original framework for analyzing convergent evolution in languages resulting from common descent (Sapir's drift). Apart from new analogies between evolutionary processes, we also identified processes which are specific to either biology or linguistics. This shows that general evolution cannot be studied from within one discipline alone. In order to get a full picture of evolution, biologists and linguists need to