WorldWideScience

Sample records for biological reaction barrier

  1. Use of a permeable biological reaction barrier for groundwater remediation at a uranium mill tailings remedial action (UMTRA) site

    International Nuclear Information System (INIS)

    Previous work at the University of New Mexico and elsewhere has shown that sulfate reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed groundwater remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected and the precipitated U(IV) was determined to be crystalline UO2(s) by X-ray Diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials

  2. DNA nanovehicles and the biological barriers

    DEFF Research Database (Denmark)

    Okholm, Anders Hauge; Kjems, Jørgen

    2016-01-01

    modules. The applications of DNA nanostructures are still in its infancy, but one of the high expectations are to deliver solutions for targeted therapy. Nucleic acids, however, do not easily enter cells unassisted and biological barriers and harsh nucleolytic conditions in the human body must also be...

  3. DNA nanovehicles and the biological barriers

    DEFF Research Database (Denmark)

    Okholm, Anders Hauge; Kjems, Jørgen

    2016-01-01

    modules. The applications of DNA nanostructures are still in its infancy, but one of the high expectations are to deliver solutions for targeted therapy. Nucleic acids, however, do not easily enter cells unassisted and biological barriers and harsh nucleolytic conditions in the human body must also...

  4. Heavy ion reactions around the Coulomb barrier

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The angular distributions of fission fragments for the 32S+184W reaction near Coulomb barrier energies are measured. The ex perimental fission excitation function is obtained. The measured fission cross sections are decomposed into fusion-fission, quasi-fission and fast fission contributions by the dinuclear system (DNS) model. The hindrance to completing fusion both at small and large collision energies is explained. The fusion excitation functions of 32S+90,96Zr in an energy range from above to below the Coulomb barrier are measured and analyzed within a semi-classical model. The obvious effect of positive Q-value multi-neutron transfers on the sub-barrier fusion enhancement is observed in the 32S+96Zr system. In addition, the excitation functions of quasi-elastic scattering at a backward angle have been measured with high precision for the systems of 16O+208Pb, 196Pt, 184W, and 154,152Sm at energies well below the Coulomb barrier. Considering the deformed coupling effects, the extracted diffuseness parameters are close to the values extracted from the systematic analysis of elastic and inelastic scattering data. The elastic scattering angular distribution of 17F+12C at 60 MeV is measured and calculated by using the continuum-discretized coupled-channels (CDCC) approach. It is found that the diffuseness parameter of the real part of core-target potential has to be increased by 20% to reproduce the experimental result, which corresponds to an increment of potential depth at the surface re gion. The breakup cross section and the coupling between breakup and elastic scattering are small.

  5. The biological significance of brain barrier mechanisms

    DEFF Research Database (Denmark)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld;

    2016-01-01

    Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain's internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses. In addit...... addition, such studies, if applied to brain pathologies such as stroke, trauma, or multiple sclerosis, will aid in defining the contribution of brain barrier pathology to these conditions, either causative or secondary....

  6. Many-body quantum reaction dynamics near the fusion barrier

    International Nuclear Information System (INIS)

    The understanding of quantum effects in determining nuclear reaction outcomes is evolving as improved experimental techniques reveal new facets of interaction dynamics. Whilst the phenomenon of coupling-enhanced quantum tunnelling is understood to arise due to quantum superposition, the observed inhibition of fusion at energies well below the barrier is not yet quantitatively understood. Collisions involving weakly-bound nuclei, which have low energy thresholds against breakup, present further challenges. Recent coincidence measurements for reactions of weakly bound stable nuclei have not only provided a complete picture of the physical mechanisms triggering breakup, but have also shown how information on reaction dynamics occurring on time-scales of ∼ zepto-seconds can be obtained experimentally. These new experimental findings demand major developments in quantum models of near-barrier nuclear reactions. (authors)

  7. Many-body Quantum Reaction Dynamics near the Fusion Barrier

    Directory of Open Access Journals (Sweden)

    Dasgupta M.

    2014-03-01

    Full Text Available The understanding of quantum effects in determining nuclear reaction outcomes is evolving as improved experimental techniques reveal new facets of interaction dynamics. Whilst the phenomenon of coupling-enhanced quantum tunnelling is understood to arise due to quantum superposition, the observed inhibition of fusion at energies well below the barrier is not yet quantitatively understood. Collisions involving weakly-bound nuclei, which have low energy thresholds against breakup, present further challenges. Recent coincidence measurements for reactions of weakly bound stable nuclei have not only provided a complete picture of the physical mechanisms triggering breakup, but have also shown how information on reaction dynamics occurring on time-scales of ~zepto-seconds can be obtained experimentally. These new experimental findings demand major developments in quantum models of near-barrier nuclear reactions.

  8. Angular momentum effects in fusion reactions near the Coulomb barrier

    International Nuclear Information System (INIS)

    Cross sections and γ-ray multiplicities have been measured for neutron evaporation channels in the reactions 16O + 144Nd, 37Cl + 123Sb, 64Ni + 96Zr and 80Se + 80Se leading to the compound system 160Er at common excitation energies. In the near-barrier energy regime average angular momentum transfers depend dramatically on the asymmetry of the entrance channel. The results can be interpreted in terms of barrier fluctuations induced by target and projectile ground-state vibrations

  9. Compound nucleus formation in reactions between massive nuclei. Fusion barrier

    International Nuclear Information System (INIS)

    The evaporation residue cross sections σER in reactions between massive nuclei have been analyzed within different models of complete fusion. The calculations in the framework of the optical model, the surface friction model and the macroscopic dynamic model can give the results which are by few orders of magnitude different from experimental data. This takes place due to neglect of the competition between complete fusion and quasifission. A possible mechanism of compound nucleus formation in heavy ion-induced reaction has been suggested. A model is proposed for calculation of this competition in a massive symmetric dinuclear system. This model is applied for collision energies above the Coulomb barrier. The σER values calculated in the framework of the approach suggested seem to be close to the experimental data. For illustration the reactions 100Mo + 100Mo, 110Pd + 110Pd and 124Sn + 96Zn have been considered. 35 refs., 6 figs

  10. Compound nucleus formation in reactions between massive nuclei: Fusion barrier

    International Nuclear Information System (INIS)

    The evaporation residue cross sections σER in reactions between massive nuclei have been analyzed within different models of complete fusion. The calculations in the framework of the optical model, the surface friction model, and the macroscopic dynamic model can give the results which are by few orders of magnitude different from experimental data. This takes place due to neglect of the competition between complete fusion and quasifission. A possible mechanism of compound nucleus formation in heavy-ion-induced reactions has been suggested. The analysis of the complete fusion of nuclei on the basis of dinuclear system approach has allowed one to reveal an important feature of the fusion process of massive nuclei, that is, the appearance of the fusion barrier during dinuclear system evolution to a compound nucleus. As a result, the competition between complete fusion and quasifission arises and strongly reduces the cross section of the compound nucleus formation. A model is proposed for calculation of this competition in a massive symmetric dinuclear system. This model is applied for collision energies above the Coulomb barrier. The σER values calculated in the framework of dinuclear system approach seem to be close to the experimental data. For illustration the reactions 100Mo+100Mo, 110Pd+110Pd, and 124Sn+96Zr have been considered

  11. Entrance channel effects in fusion reactions near the barrier: Reaction dynamics or nuclear structure?

    International Nuclear Information System (INIS)

    The origin of previously reported entrance channel effects by symmetric and asymmetric fusion reactions leading to rare earth nuclei near the Coulomb barrier is critically reviewed. Possible influences of reaction dynamics or structure effects due to the proximity of superdeformation are discussed using new charged-particle spectra and angular distributions associated with specific axn exit channels. For axn channels, nonstatistical effects in the fusion of the asymmetric entrance channel are responsible for the large difference in the spin distributions in the evaporation residues formed by symmetric and asymmetric entrance channels. Whereas GDR spectra show significant entrance channel effects, the authors find no influence on the subbarrier α spectra from possible elongated shapes associated with early reaction dynamics. New data and analyses of γ-ray multiplicity distributions from the xn exit channels show that previously reported entrance channel effects are due to mapping from l to residue spin and then to γ-ray multiplicity

  12. Quantifying electron transfer reactions in biological systems

    DEFF Research Database (Denmark)

    Sjulstok, Emil Sjulstok; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-01-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling...... quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to...

  13. Sub- and near-barrier fusion reactions experimental results

    Directory of Open Access Journals (Sweden)

    Montagnoli G.

    2016-01-01

    Furthermore, light heavy-ion systems show cross section oscillations above the Coulomb barrier. Recent experiments have been performed on the fusion of 28,30Si+28,30Si systems where all phenomena cited above show up. In particular regular oscillations that have been revealed above the barrier for 28Si+28Si and have been interpreted as the consequence of the strong channel couplings and/or the oblate deformation of 28Si.

  14. Static and dynamic fusion barriers in heavy-ion reactions

    International Nuclear Information System (INIS)

    We have calculated the potential energy of two interacting nuclei within the liquid-drop model including the nuclear proximity energy. We use a two-parameter family of shapes which simply describes the path leading from two separated nuclei to the spherical compound nucleus. Double-humped fusion barriers appear when Z1Z2> or approx.1800+-100. The inner barrier is the highest for Z1Z2> or approx.2300+-100. The existence and the shape of the external minimum may be at origin of the development of fusion-fission or fast-fission phenomena. Our phenomenological dynamic model depends only on one parameter: the radial friction coefficient, fixed once and for all. The empirical barrier heights are very well reproduced. For very heavy systems (Z1Z2> or approx.2100+-100, alternatively (Z2/A)sub(eff)> or approx.38 or xsub(eff)> or approx.0.8), a dynamic fusion barrier appears, significantly higher than the static one and in close agreement with the experimental data. This dynamic barrier is mostly governed by the entrance channel, no evidence for dynamic deformations being found. The slope of the fusion cross sections is better reproduced if the angular momentum dissipation rule varies from the sticking limit for medium systems to the sliding limit for very heavy systems. The possibility of forming superheavy elements is strongly hindered by this double-humped dynamic barrier. (orig.)

  15. Comparative studies for different proximity potentials applied to sub-barrier fusion reactions

    International Nuclear Information System (INIS)

    Coulomb barrier heights calculated by using 14 different versions of proximity potentials are studied and applied for experimental data of fusion in terms of a recently proposed energy scaling approach. The results show that the descriptions of proximity potentials 77 and 88 for the barrier heights seem to be closest to the values required by the systematics. On the basis of proximity potential 77, the parameterized formulas of the barrier height and radius are obtained. These formulas can calculate the barrier positions and barrier heights reasonably well within the error, respectively. Thus it provides a simple and direct way to calculate the barrier positions and barrier heights for heavy-ion fusion reactions. (orig.)

  16. Comparative studies for different proximity potentials applied to sub-barrier fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.L. [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Beihang University, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Beijing (China); Qu, W.W. [Medical College of Soochow University, School of Radiation Medicine and Protection, Soochow (China); Guo, M.F.; Qian, J.Q. [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Zhang, H.Q. [China Institute of Atomic Energy, Beijing (China); Wolski, R. [Henryk Niewodniczanski Institute of Nuclear Physics PAS, Cracow (Poland)

    2016-02-15

    Coulomb barrier heights calculated by using 14 different versions of proximity potentials are studied and applied for experimental data of fusion in terms of a recently proposed energy scaling approach. The results show that the descriptions of proximity potentials 77 and 88 for the barrier heights seem to be closest to the values required by the systematics. On the basis of proximity potential 77, the parameterized formulas of the barrier height and radius are obtained. These formulas can calculate the barrier positions and barrier heights reasonably well within the error, respectively. Thus it provides a simple and direct way to calculate the barrier positions and barrier heights for heavy-ion fusion reactions. (orig.)

  17. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    OpenAIRE

    Liu, Min; Wang, Ning; Li, Zhuxia; Wu, Xizhen; Zhao, Enguang

    2005-01-01

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametriza...

  18. Sub-barrier fusion reactions and related experimental techniques

    International Nuclear Information System (INIS)

    The fusion cross sections below the Coulomb barrier have been measured for the systems sup(28,30)Si + sup(58,62,64)Ni and 37Cl + sup(58,62,64)Ni. The measurements were done mainly at 0 0 with help of an electrostatic separator. The results tell that cross sections enhancements are not systematically related to positive Q-values transfer channels even in similar systems. (author)

  19. Spin distributions in near-barrier and sub-barrier fusion reactions

    International Nuclear Information System (INIS)

    A new study of the mean-square value of the spin distribution of compound nuclei, exploiting the sensitivity of fission fragment angular distributions to the compound nucleus spin distribution, is described. The technique is extended to low sub-barrier and near barrier energies. The spin distribution for two entrance channels involving deformed nuclei and leading to the compound nucleus 248Cf and the 16O + 208Pb system, where the target nucleus is spherical, are studied. Comparisons are made of mean spin values and excitation functions computed using experimental data with model predictions. The author concludes that models which are successful in accounting for the shapes of sub-barrier excitation functions fail to reproduce the mean-square spin values at the lowest bombarding energies. 26 refs., 8 figs

  20. Performance of VAMOS for reactions near the Coulomb barrier

    International Nuclear Information System (INIS)

    VAMOS (VAriable MOde Spectrometer) is a large solid angle ray-tracing spectrometer employing numerical methods for reconstructing the particle trajectory. Complete identification of reaction products has been achieved by trajectory reconstruction. Equipped with a versatile detection system, VAMOS is capable of identifying reaction products from diverse reactions using beams at GANIL. The technique for trajectory reconstruction and its application for identifying reaction products are presented. The angular acceptance of the spectrometer has been studied using Monte Carlo simulation by an ion optics code. The spectrometer was coupled to the high efficiency EXOGAM γ-array to obtain γ-recoil coincidences for studying nuclei far from stability. The main features of the spectrometer as well as some results applied to experiments in deep inelastic collisions are described

  1. Exact solutions for logistic reaction-diffusion in biology

    OpenAIRE

    Broadbridge, P; Bradshaw-Hajek, BH

    2016-01-01

    Reaction-diffusion equations with a nonlinear source have been widely used to model various systems, with particular application to biology. Here, we provide a solution technique for these types of equations in $N$-dimensions. The nonclassical symmetry method leads to a single relationship between the nonlinear diffusion coefficient and the nonlinear reaction term; the subsequent solutions for the Kirchhoff variable are exponential in time (either growth or decay) and satisfy the linear Helmh...

  2. Exact solutions for logistic reaction-diffusion equations in biology

    Science.gov (United States)

    Broadbridge, P.; Bradshaw-Hajek, B. H.

    2016-08-01

    Reaction-diffusion equations with a nonlinear source have been widely used to model various systems, with particular application to biology. Here, we provide a solution technique for these types of equations in N-dimensions. The nonclassical symmetry method leads to a single relationship between the nonlinear diffusion coefficient and the nonlinear reaction term; the subsequent solutions for the Kirchhoff variable are exponential in time (either growth or decay) and satisfy the linear Helmholtz equation in space. Example solutions are given in two dimensions for particular parameter sets for both quadratic and cubic reaction terms.

  3. Parabolic equations in biology growth, reaction, movement and diffusion

    CERN Document Server

    Perthame, Benoît

    2015-01-01

    This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.

  4. Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case

    CERN Document Server

    Kiselev, Alexander

    2012-01-01

    Many phenomena in biology involve both reactions and chemotaxis. These processes can clearly influence each other, and chemotaxis can play an important role in sustaining and speeding up the reaction. In continuation of our earlier work, we consider a model with a single density function involving diffusion, advection, chemotaxis, and absorbing reaction. The model is motivated, in particular, by the studies of coral broadcast spawning, where experimental observations of the efficiency of fertilization rates significantly exceed the data obtained from numerical models that do not take chemotaxis (attraction of sperm gametes by a chemical secreted by egg gametes) into account. We consider the case of the weakly coupled quadratic reaction term, which is the most natural from the biological point of view and was left open. The result is that similarly to higher power coupling, the chemotaxis plays a crucial role in ensuring efficiency of reaction. However, mathematically, the picture is quite different in the qua...

  5. Reaction Pathway and Free Energy Barrier for Urea Elimination in Aqueous Solution

    OpenAIRE

    Yao, Min; Chen, Xi; Zhan, Chang-Guo

    2015-01-01

    To accurately predict the free energy barrier for urea elimination in aqueous solution, we examined the reaction coordinates for the direct and water-assisted elimination pathways, and evaluated the corresponding free energy barriers by using the surface and volume polarization for electrostatics (SVPE) model-based first-principles electronic-structure calculations. Based on the computational results, the water-assisted elimination pathway is dominant for urea elimination in aqueous solution,...

  6. Modeling the Catalysis of Anti-Cocaine Catalytic Antibody: Competing Reaction Pathways and Free Energy Barriers

    OpenAIRE

    Pan, Yongmei; Gao, Daquan; Zhan, Chang-Guo

    2008-01-01

    The competing reaction pathways and the corresponding free energy barriers for cocaine hydrolysis catalyzed by an anti-cocaine catalytic antibody, mAb 15A10, were studied by using a novel computational strategy based on the binding free energy calculations on the antibody binding with cocaine and transition states. The calculated binding free energies were used to evaluate the free energy barrier shift from the cocaine hydrolysis in water to the antibody-catalyzed cocaine hydrolysis for each ...

  7. An Overview of the Biology of Reaction Wood Formation

    Institute of Scientific and Technical Information of China (English)

    Sheng Du; Fukuju Yamamoto

    2007-01-01

    Reaction wood possesses altered properties and performs the function of regulating a tree's form, but it is a serious defect in wood utility. Trees usually develop reaction wood in response to a gravistimulus. Reaction wood in gymnosperms is referred to as compression wood and develops on the lower side of leaning stems or branches.In arboreal, dicotyledonous angiosperms, however, it is called tension wood and is formed on the upper side of the leaning. Exploring the biology of reaction wood formation is of great value for the understanding of the wood differentiation mechanisms, cambial activity, gravitropism, and the systematics and evolution of plants. After giving an outline of the variety of wood and properties of reaction wood, this review lays emphasis on various stimuli for reaction wood induction and the extensive studies carried out so far on the roles of plant hormones in reaction wood formation. Inconsistent results have been reported for the effects of plant hormones. Both auxin and ethylene regulate the formation of compression wood in gymnosperms. However, the role of ethylene may be indirect as exogenous ethylene cannot induce compression wood formation. Tension wood formation is mainly regulated by auxin and gibberellin. Interactions among hormones and other substances may play important parts in the regulation of reaction wood formation.

  8. Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier

    CERN Document Server

    Keeley, N; Raabe, R; Sida, J L

    2007-01-01

    The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The dat...

  9. Nuclear fusion reactions involving weakly bound nuclei at near barrier energies

    International Nuclear Information System (INIS)

    The studies on nuclear fusion reactions involving loosely bound nuclei around barrier energies have attracted significant attention since last almost three decades. One of the primary aim of these studies is to investigate the role of unique characteristics features of nuclei lying in the close vicinity of drip lines in determination of the fusion cross section. The static effects arising because of large spatial extension of some highly neutron-rich or proton-rich nuclear isotopes have been found to enhance the fusion cross section due to barrier lowering. However regarding the role of various channel coupling dynamical effects in the description of fusion reactions conflicting results have been observed

  10. Observation of the one- to six-neutron transfer reactions at sub-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.L.; Rehm, K.E.; Gehring, J. [and others

    1995-08-01

    It was suggested many years ago that when two heavy nuclei are in contact during a grazing collision, the transfer of several correlated neutron-pairs could occur. Despite considerable experimental effort, however, so far only cross sections for up to four-neutron transfers have been uniquely identified. The main difficulties in the study of multi-neutron transfer reactions are the small cross sections encountered at incident energies close to the barrier, and various experimental uncertainties which can complicate the analysis of these reactions. We have for the first time found evidence for multi-neutron transfer reactions covering the full sequence from one- to six-neutron transfer reactions at sub-barrier energies in the system {sup 58}Ni + {sup 100}Mo.

  11. Reactome: a database of reactions, pathways and biological processes

    OpenAIRE

    Croft, David; O’Kelly, Gavin; Wu, Guanming; Haw, Robin; Gillespie, Marc; Matthews, Lisa; Caudy, Michael; Garapati, Phani; Gopinath, Gopal; Jassal, Bijay; Jupe, Steven; Kalatskaya, Irina; Mahajan, Shahana; May, Bruce; Ndegwa, Nelson

    2010-01-01

    Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualiz...

  12. Biological intrusion barriers for large-volume waste-disposal sites

    International Nuclear Information System (INIS)

    intrusion of plants and animals into shallow land burial sites with subsequent mobilization of toxic and radiotoxic materials has occured. Based on recent pathway modeling studies, such intrusions can contribute to the dose received by man. This paper describes past work on developing biological intrusion barrier systems for application to large volume waste site stabilization. State-of-the-art concepts employing rock and chemical barriers are discussed relative to long term serviceability and cost of application. The interaction of bio-intrusion barrier systems with other processes affecting trench cover stability are discussed to ensure that trench cover designs minimize the potential dose to man. 3 figures, 6 tables

  13. Biomixing by chemotaxis and enhancement of biological reactions

    CERN Document Server

    Kiselev, Alexander

    2011-01-01

    Many processes in biology involve both reactions and chemotaxis. However, to the best of our knowledge, the question of interaction between chemotaxis and reactions has not yet been addressed either analytically or numerically. We consider a model with a single density function involving diffusion, advection, chemotaxis, and absorbing reaction. The model is motivated, in particular, by studies of coral broadcast spawning, where experimental observations of the efficiency of fertilization rates significantly exceed the data obtained from numerical models that do not take chemotaxis (attraction of sperm gametes by a chemical secreted by egg gametes) into account. We prove that in the framework of our model, chemotaxis plays a crucial role. There is a rigid limit to how much the fertilization efficiency can be enhanced if there is no chemotaxis but only advection and diffusion. On the other hand, when chemotaxis is present, the fertilization rate can be arbitrarily close to being complete provided that the chemo...

  14. Inactivation efficiencies of radical reactions with biologically active DNA

    Science.gov (United States)

    Lafleur, M. V. M.; Retèl, J.; Loman, H.

    Dilute aqueous solutions of biologically active θX174 DNA may serve as a simplified model system of the cell. Damage to the DNA after irradiation with γ-rays, may be ascribed to reactions with .OH, .H and e -aq or secondary radicals, arising from reactions of water radicals with added scavengers. Conversion of primary (water) radicals into secondary (scavenger) radicals leads to a considerable protection of the DNA, which, however, would have been larger if these secondary radicals did not contribute to DNA inactivation. The inactivation yield due to isopropanol or formate (secondary) radicals depends on dose rate as well as DNA concentration. Furthermore the inactivation efficiencies of the reactions of both the primary and the secondary radicals with single-stranded DNA could be established.

  15. Inactivation efficiencies of radical reactions with biologically active DNA

    International Nuclear Information System (INIS)

    Dilute aqueous solutions of biologically active ΦX174 DNA may serve as a simplified model system of the cell. Damage to the DNA after irradiation with γ-rays, may be ascribed to reactions with radical OH, radical H and esub(aq)- or secondary radicals, arising from reactions of water radicals with added scavengers. Conversion of primary (water) radicals into secondary (scavenger) radicals leads to a considerable protection of the DNA, which however, would have been larger if these secondary radicals did not contribute to DNA inactivation. The inactivation yield due to isopropanol or formate (secondary) radicals depends on dose rate as well as DNA concentration. Furthermore the inactivation efficiencies of the reactions of both the primary and the secondary radicals with single-stranded DNA could be established. (author)

  16. A computational method for the systematic screening of reaction barriers in enzymes

    DEFF Research Database (Denmark)

    Hediger, Martin R; Svendsen, Casper Steinmann; Vico, Luca De;

    2013-01-01

    We present a semi-empirical (PM6-based) computational method for systematically estimating the effect of all possible single mutants, within a certain radius of the active site, on the barrier height of an enzymatic reaction. The intent of this method is not a quantitative prediction of the barrier...... heights, but rather to identify promising mutants for further computational or experimental study. The method is applied to identify promising single and double mutants of Bacillus circulans xylanase (BCX) with increased hydrolytic activity for the artificial substrate ortho-nitrophenyl β...... point mutations are recomputed using FMO-MP2/PCM/6-31G(d) single points. PM6 predicts an increase in barrier height for all eight mutants while FMO predicts an increase for six of the eight mutants. Both methods predict that the largest change in barrier occurs for N35F, where PM6 and FMO predict a 9...

  17. CDCC analysis of 118Sn(d, p) reaction below Coulomb barrier

    International Nuclear Information System (INIS)

    CDCC wave function was used to study energy dependence of the 118Sn(d, p) cross sections well below Coulomb barrier. Cross section of deuteron break up followed by a neutron absorption is larger and has moderate energy dependence compared with that of direct reaction approach. Binding energy dependence is studied by introducing virtual deuterons

  18. Radiochemical measurement of mass distribution in 16O+238U reaction at sub-barrier energy

    International Nuclear Information System (INIS)

    In the present, radiochemical study of the mass distribution in 16O+238U has been carried out at sub-barrier energy to investigate the nature of mass distribution in CFF and TF channels. In addition, cross sections of evaporation residues formed in one nucleon transfer/pick-up reactions have also been measured

  19. Near-Barrier Neutron Transfer in Reactions 3,6He+197Au

    Science.gov (United States)

    Samarin, V. V.; Naumenko, M. A.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Kroha, V.; Mrazek, J.

    2015-06-01

    Experimental excitation functions for near-barrier neutron transfer in 3,6He+197Au reactions have been measured and analyzed. Time-dependent Schrödinger equation and coupled channel equations for external neutrons of 3,6He and 197Au nuclei have been solved numerically taking into account spin-orbit interaction and Pauli exclusion principle.

  20. Role of transfer reactions in heavy-ion collisions at the Coulomb barrier

    Directory of Open Access Journals (Sweden)

    Pollarolo Giovanni

    2011-10-01

    Full Text Available One and two neutron transfer reactions are discussed in the semiclassical formalism. The twoneutrons transfer cross sections are calculated in the successive approximation. Comparisons with new experimental data below the Coulomb barrier are discussed in term of transfer probabilities as a function of the distance of closest approach for Coulomb scattering.

  1. Fission barriers of super-heavy nuclei produced in cold-fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Peter, J. [LPC Caen, ENSICAEN, Caen cedex (France)

    2004-11-01

    Excitation functions of super-heavy evaporation residues formed in cold-fusion reactions were analyzed with the aim of getting information on the fission barrier height of these nuclei. The method uses the location of the maximum of 1n and 2n excitation functions. The results obtained on nuclei from Z=104 to 112 are compared to three theoretical predictions. (orig.)

  2. Fusion Reactions of ~(16)O+~(76)Ge and ~(18)O+~(74)Ge Near Coulomb Barrier

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The fusion excitation functions of 16O+76Ge and 18O+74Ge at near-barrier region are measured, to research the positive Q-2n effect on the fusion reaction. The properties of the lower excited states are similar for the two targets. For neutron transfer channels,

  3. A unified biological modeling and simulation system for analyzing biological reaction networks

    Science.gov (United States)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2013-12-01

    In order to understand the biological response in a cell, a researcher has to create a biological network and design an experiment to prove it. Although biological knowledge has been accumulated, we still don't have enough biological models to explain complex biological phenomena. If a new biological network is to be created, integrated modeling software supporting various biological models is required. In this research, we design and implement a unified biological modeling and simulation system, called ezBioNet, for analyzing biological reaction networks. ezBioNet designs kinetic and Boolean network models and simulates the biological networks using a server-side simulation system with Object Oriented Parallel Accelerator Library framework. The main advantage of ezBioNet is that a user can create a biological network by using unified modeling canvas of kinetic and Boolean models and perform massive simulations, including Ordinary Differential Equation analyses, sensitivity analyses, parameter estimates and Boolean network analysis. ezBioNet integrates useful biological databases, including the BioModels database, by connecting European Bioinformatics Institute servers through Web services Application Programming Interfaces. In addition, we employ Eclipse Rich Client Platform, which is a powerful modularity framework to allow various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool and a simulation system for understanding the control mechanism by monitoring the change of each component in a biological network. The simulation result can be managed and visualized on ezBioNet, which is available free of charge at http://ezbionet.sourceforge.net or http://ezbionet.cbnu.ac.kr.

  4. Biologic TNFα-inhibitors that cross the human blood-brain barrier

    OpenAIRE

    Pardridge, William M.

    2010-01-01

    Tumor necrosis factor (TNF)α inhibitors (TNFI) are a major class of biologic therapeutics, and include decoy receptor and monoclonal antibody (MAb) therapeutics that block TNFα action. TNFα is a pro-inflammatory cytokine in brain disease, such as stroke, brain or spinal cord injury, or Alzheimer disease. However, the biologic TNFIs cannot be developed for the brain, because these large molecules do not cross the blood-brain barrier (BBB). Brain penetrating forms of TNFα decoy receptors or ant...

  5. Improved Quantum Molecular Dynamics Model and its Application to Fusion Reaction Near Barrier

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An improved quantum molecular dynamics model is proposed. By using this model, the properties of ground state of nuclei from 6Li to 208Pb can be described very well with one set of parameters. The fusion reactions for 40Ca+90Zr, 40Ca+96Zr and 48Ca+90Zr at the energy near the barrier are studied by this model. The experimental data of the fusion cross sections for 40Ca+90,96Zr at the energy near the barrier can be reproduced remarkably well without introducing any new parameters. The mechanism

  6. Reaction mechanism study of 7Li(7Li, 6He) reaction at above Coulomb barrier energies

    Indian Academy of Sciences (India)

    V V Parkar; V Jha; S Santra; B J Roy; K Ramachandran; A Shrivastava; K Mahata; A Chatterjee; S Kailas

    2009-02-01

    The elastic scattering and the 6He angular distributions were measured in 7Li + 7Li reaction at two energies, lab = 20 and 25 MeV. FRDWBA calculations have been performed to explain the measured 6He data. The calculations were very sensitive to the choice of the optical model potentials in entrance and exit channels. The one-step proton transfer was found to be the dominant reaction mechanism in 6He production.

  7. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  8. Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes

    International Nuclear Information System (INIS)

    This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the

  9. Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes

    Energy Technology Data Exchange (ETDEWEB)

    Luke, S J

    2011-12-20

    This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the

  10. Transfer reactions for the /sup 50/Ti + /sup 90/Zr system below the Coulomb barrier

    International Nuclear Information System (INIS)

    The analysis of quasielastic cross section data for the /sup 90/Zr projectile plus /sup 50/Ti target system shows that the probability for /sup 50/Ti(/sup 90/Zr, /sup 49/Ti)/sup 91/Zr, 1n-transfer reaction near the barrier is much larger than estimates based on semiclassical theory. The probability for /sup 50/Ti(/sup 90/Zr,/sup 51/V)/sup 89/Y, 1p-transfer reaction, on the other hand, agrees with the same theory. The internuclear distance where the 1n-transfer probability first deviates from tunneling predictions coincides with the threshold of the fusion barrier distribution deduced from the experimental fusion cross sections of the /sup 50/Ti+/sup 90/Zr system, suggesting a common mechanism for the large enhancement of 1n-transfer and fusion cross sections

  11. Fission barriers of 237 to 240 plutonium isotopes with the 236U(α,xn) reactions

    International Nuclear Information System (INIS)

    Excitation functions for the reactions 236U(α,xn)sup(240-x)Pu have been measured for x=2, 3, 4. The production of 236U targets as well as the chemical separation of Pu from the irradied targets are given. Experimental results have been analysed using the preequilibrium mechanism (PREEQ code) and the statistical model description of fission through a double humped barrier (GIVAB code)

  12. 7Be- and 8B-reaction dynamics at Coulomb barrier energies

    Science.gov (United States)

    Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Keeley, N.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lay, J. A.; Lin, C. J.; Marquinez-Duran, G.; Martel, I.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Pakou, A.; Rusek, K.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Sava, T.; Sgouros, O.; Stefanini, C.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Stroe, L.; Teranishi, T.; Toniolo, N.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.

    2016-05-01

    We investigated the reaction dynamics induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target at energies around the Coulomb barrier. The two measurements are strongly interconnected, being 7Be (Sα = 1.586 MeV) the loosely bound core of the even more exotic 8B (Sp = 0.1375 MeV) nucleus. Here we summarize the present status of the data analysis for the measurement of the elastic scattering process for both reactions and the preliminary results for the optical model analysis of the collected data.

  13. 7Be- and 8B-reaction dynamics at Coulomb barrier energies

    Directory of Open Access Journals (Sweden)

    Mazzocco M.

    2016-01-01

    Full Text Available We investigated the reaction dynamics induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target at energies around the Coulomb barrier. The two measurements are strongly interconnected, being 7Be (Sα = 1.586 MeV the loosely bound core of the even more exotic 8B (Sp = 0.1375 MeV nucleus. Here we summarize the present status of the data analysis for the measurement of the elastic scattering process for both reactions and the preliminary results for the optical model analysis of the collected data.

  14. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  15. Experimental study of the 13C+12C fusion reaction at deep sub-barrier energies

    Science.gov (United States)

    Tudor, D.; Chilug, A. I.; Straticiuc, M.; Trache, L.; Chesneanu, D.; Toma, S.; Ghita, D. G.; Burducea, I.; Margineanu, R.; Pantelica, A.; Gomoiu, C.; Zhang, N. T.; Tang, X.; Li, Y. J.

    2016-04-01

    Heavy-ion fusion reactions between light nuclei such as carbon and oxygen isotopes have been studied because of their significance for a wide variety of stellar burning scenarios. One important stellar reaction is 12C+12C, but it is difficult to measure it in the Gamow window because of very low cross sections and several resonances occurring. Hints can be obtained from the study of 13C+12C reaction. We have measured this process by an activation method for energies down to Ecm=2.5 MeV using 13C beams from the Bucharest 3 MV tandetron and gamma-ray deactivation measurements in our low and ultralow background laboratories, the latter located in a salt mine about 100 km north of Bucharest. Results obtained so far are shown and discussed in connection with the possibility to go even further down in energy and with the interpretation of the reaction mechanism at such deep sub-barrier energies.

  16. Total reaction cross sections for 8Li + 90Zr at near-barrier energies

    International Nuclear Information System (INIS)

    Total reaction cross sections for the radioactive nucleus 8Li on 90Zr are reported at the near-barrier energies of 18.5 and 21.5MeV, derived from quasi-elastic scattering measurements. An analysis of the quasi-elastic scattering results is performed within an optical model framework using the BDM3Y1 interaction and total reaction cross sections are deduced. These quantities, appropriately reduced, are compared with previous data obtained in elastic scattering measurements with well and weakly bound projectiles on various targets and a formula for predicting total reaction cross sections with an uncertainty of ∝ 20 % is obtained. Further on, the ratios of direct to total reaction cross sections are estimated for 6,8Li on various targets and are compared with CDCC or CRC calculations. The energy dependence of the optical potential is also discussed. (orig.)

  17. Barrier distribution of quasi-elastic backward scattering in very heavy reaction systems

    International Nuclear Information System (INIS)

    We have measured quasi-elastic backward scattering in the reactions of 48Ti, 54Cr, 56Fe, 64Ni, 70Zn, 76Ge and 86Kr + 208Pb to study the nucleus-nucleus interaction in Pb-based cold fusion. The barrier distributions were obtained from the first derivative of the measured excitation functions of quasi-elastic scattering cross sections normalized to the Rutherford scattering cross sections. The centroids of the barrier distributions showed deviations from several predicted barrier heights toward the low energy side except for the Christensen-Winther potential and the Akuez-Winther potential. The shapes of the barrier distributions were well reproduced by the results of a coupled-channel calculation taking account of the coupling effects of multi-phonon excitations of the quadrupole vibration for the projectiles and of the octupole vibration for the 208Pb target. The present barrier distributions were also well reproduced by a semiclassical calculation taking into account the couplings of transfer channels and single-phonon excitations in the projectiles and the target. (author)

  18. Direct and compound reactions induced by unstable helium beams near the Coulomb barrier

    Science.gov (United States)

    Navin, A.; Tripathi, V.; Blumenfeld, Y.; Nanal, V.; Simenel, C.; Casandjian, J. M.; de France, G.; Raabe, R.; Bazin, D.; Chatterjee, A.; Dasgupta, M.; Kailas, S.; Lemmon, R. C.; Mahata, K.; Pillay, R. G.; Pollacco, E. C.; Ramachandran, K.; Rejmund, M.; Shrivastava, A.; Sida, J. L.; Tryggestad, E.

    2004-10-01

    Reactions induced by radioactive 6,8 He beams from the SPIRAL facility were studied on 63,65 Cu and 188,190,192 Os targets and compared to reactions with the stable 4He projectiles from the Mumbai Pelletron. Partial residue cross sections for fusion and neutron transfer obtained from the measured intensities of characteristic in-beam γ rays for the 6He + 63,65 Cu systems are presented. Coincidence measurements of heavy reaction products, identified by their characteristic γ rays, with projectilelike charged particles, provide direct evidence for a large transfer cross section with Borromean nuclei 6He at 19.5 and 30 MeV and 8He at 27 MeV. Reaction cross sections were also obtained from measured elastic angular distributions for 6,8 He +Cu systems. Cross sections for fusion and direct reactions with 4,6 He beams on heavier targets of 188,192 Os at 30 MeV are also presented. The present work underlines the need to distinguish between various reaction mechanisms leading to the same products before drawing conclusions about the effect of weak binding on the fusion process. The feasibility of extracting small cross sections from inclusive in-beam γ -ray measurements for reaction studies near the Coulomb barrier with low intensity isotope separation on-line beams is highlighted.

  19. Recent developments in heavy-ion fusion reactions around the Coulomb barrier

    Directory of Open Access Journals (Sweden)

    Hagino K.

    2016-01-01

    Full Text Available The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as 12C+12C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of 58Ni+58Ni and 40Ca+58Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.

  20. Fusion and direct reactions around the Coulomb barrier with the neutron-rich 8He

    International Nuclear Information System (INIS)

    Radioactive ion beams like 8He, open new possibilities to investigate the influence of new and exotic structures on reaction mechanisms. This thesis presents the first investigations of reactions of the weakly bound, Borromean nucleus, 8He, at energies around the Coulomb barrier. The low intensity of radioactive ion beams (∼ 105 pps) necessitated the development of a new sensitive and selective technique for the precise and accurate measurement of fusion cross sections. In the 8He+197Au system, excitation functions for fusion and neutron(s) transfer were measured. In the 8He+65Cu system, differential and integral cross sections for various processes like elastic scattering, neutron transfer and fusion were measured using both, inclusive and exclusive measurements of characteristic γ-rays, charged particles and neutrons. These experimental results combined with coupled reaction channels calculations demonstrated the inter-connectivity among the various reaction processes. The internal structure of 8He influenced the tunneling process and neutron(s) transfer and interestingly, revealed an unexpected behavior within the Helium isotopic chain. Further, a systematic analysis of the known fusion excitation functions showed that the increase in sub-barrier fusion cross sections associated with the internal structure of nuclei, is in fact much larger for 'normal' nuclei than for light, weakly-bound 'exotic' nuclei. (author)

  1. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    Science.gov (United States)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  2. Recent developments in heavy-ion fusion reactions around the Coulomb barrier

    Science.gov (United States)

    Hagino, K.; Rowley, N.; Yao, J. M.

    2016-06-01

    The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as 12C+12C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of 58Ni+58Ni and 40Ca+58Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.

  3. The Role of Carrier Geometry in Overcoming Biological Barriers to Drug Delivery.

    Science.gov (United States)

    Jordan, Carolyn; Shuvaev, Vladimir V; Bailey, Mark; Muzykantov, Vladimir R; Dziubla, Thomas D

    2016-01-01

    For a variety of diseases, effective therapy is severely limited or rendered impossible due to an inability to deliver medications to the intended sites of action. Multiple barriers exist through the body, which have evolved over time to limit the migration of foreign compounds from entering the tissues. Turning toward biology as inspiration, it has been the general goal of drug delivery to create carrier strategies that mimic, in part, features of bacteria/ viruses that allow them overcome these barriers. By packaging drugs into nano and micron scale vehicles, it should be possible to completely change the biodistribution and residence times of pharmaceutically active compounds. Recently, due to advances in formulation technologies, it has become possible to control not just the material selection, surface chemistry, and/or size, but also the overall geometry and plasticity of the drug carriers. These approaches aid in the formulation of nonspherical particles such as, discs, rods, and even unique structures such as cubes and nanodiamonds. The adjustment of size and shape can be used for the aid or prevention in cellular uptake and also to overcome the vascular and mucosal barrier. In this review, we present a summary of some approaches used to control carrier shape and the impact these geometries have upon drug transport across biological barriers. PMID:26675218

  4. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, John [Dept. of Energy (DOE), Washington DC (United States); Weatherwax, Sharlene [Dept. of Energy (DOE), Washington DC (United States); Ferrell, John [Dept. of Energy (DOE), Washington DC (United States)

    2006-06-07

    The Biomass to Biofuels Workshop, held December 7–9, 2005, was convened by the Department of Energy’s Office of Biological and Environmental Research in the Office of Science; and the Office of the Biomass Program in the Office of Energy Efficiency and Renewable Energy. The purpose was to define barriers and challenges to a rapid expansion of cellulosic-ethanol production and determine ways to speed solutions through concerted application of modern biology tools as part of a joint research agenda. Although the focus was ethanol, the science applies to additional fuels that include biodiesel and other bioproducts or coproducts having critical roles in any deployment scheme.

  5. Elastic scattering and reaction mechanisms of the halo nucleus $^{11}$Be around the Coulomb barrier

    CERN Document Server

    Di Pietro, A; Fisichella, M; Borge, M J G; Randisi, G; Milin, M; Figuera, P; Gomez-Camacho, J; Raabe, R; Amorini, F; Fraile, L M; Rizzo, F; Zadro, M; Torresi, D; Wenander, F; Pellegriti, M G; Papa, M; Jeppesen, H; Santonocito, D; Scuderi, V; Acosta, L; Perez-Bernal, F; Tengblad, O; Lattuada, M; Musumarra, A; Scalia, G; Maira Vidal, A; Voulot, D

    2010-01-01

    Collisions induced by $^{9}$Be, $^{10}$Be, $^{11}$Be on a $^{64}$Zn target at the same c. m. energy were studied. For the first time, strong effects of the $^{11}$Be halo structure on elastic-scattering and reaction mechanisms at energies near the Coulomb barrier are evidenced experimentally. The elastic-scattering cross section of the $^{11}$Be halo nucleus shows unusual behavior in the Coulomb-nuclear interference peak angular region. The extracted total-reaction cross section for the $^{11}$Be collision is more than double the ones measured in the collisions induced by $^{9}$Be, $^{10}$Be. It is shown that such a strong enhancement of the total-reaction cross section with $^{11}$Be is due to transfer and breakup processes.

  6. Spin distribution of the compound nucleus in heavy ion reactions at near-barrier energies

    International Nuclear Information System (INIS)

    Gamma ray multiplicities and the (HI,xn) cross sections for the dominant reaction channel were measured at near-barrier bombarding energies for the systems α (15 to 24 MeV) + 154Sm and 12C (46 to 61 MeV) + 154Sm. The mean value of the spin distribution of the compound nucleus was obtained for each of the systems studied. The results of these measurements together with the results of an earlier study on 16O + 154Sm indicate that at bombarding energies near and below the Coulomb barrier the spin distributions of the compound nucleus are broader than the triangular distributions expected from a sharp cutoff model, these deviations being larger for the more massive projectiles. The different behavior of the three systems clearly indicates the importance of the centrifugal barrier penetrability in determining the spin distribution of the compound nucleus. The absolute values of the mean angular momentum can be accounted for if one also includes deformation effects. A one-dimensional barrier-penetration model including the effect of averaging over the orientation of the deformed target can account for the experimental results. 29 references

  7. Role of projectile breakup in {sup 6}He and {sup 6}Li induced fusion reactions around barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Anju; Kharab, Rajesh, E-mail: kharabrajesh@rediffmail.com

    2015-09-15

    The influence of projectile breakup on fusion cross section for {sup 6}He + {sup 209}Bi, {sup 6}He + {sup 64}Zn, {sup 6}Li + {sup 209}Bi and {sup 6}Li + {sup 64}Zn reactions at near barrier energies is studied within the framework of quantum diffusion approach. The breakup does not affect the fusion induced by {sup 6}He, whereas a significant suppression for {sup 6}Li induced reaction is observed in below barrier energy region.

  8. Recent developments in heavy-ion fusion reactions around the Coulomb barrier

    CERN Document Server

    Hagino, K; Yao, J M

    2015-01-01

    The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as $^{12}$C+$^{12}$C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion ...

  9. Systematic study of anomalous fragment anisotropies in near- and sub-barrier fusion-fission reactions

    International Nuclear Information System (INIS)

    The fusion cross sections and fragment angular distributions for the complete fusion-fission reactions of 11B+238U, 237Np, 12C+237Np, 16O+232Th, 238U, and 19F+23Th at near- and sub-barrier energies have been measured by the fragment folding angle technique. It is revealed that the anomalous anisotropies of fission fragments in latter three systems are existence. Based on the experimental observations and Dressing and Randrup's theory, a new version model of preequilibrium fission is put forward to explain the anomaly. (author)

  10. Reaction mechanisms in collisions induced by 8B beam close to the barrier

    CERN Multimedia

    The aim of the proposed experiment is to investigate on the reaction dynamics of proton-halo induced collisions at energies around the Coulomb barrier where coupling to continuum effects are expected to be important. We propose to measure $^{8}$B+$^{64}$Zn elastic scattering angular distribution together with the measurement, for the first time, of p-$^{7}$Be coincidences coming from transfer and/or break-up of $^{8}$B. The latter will allow a better understanding of the relative contribution of elastic $\\textit{vs}$ non-elastic break-up in reactions induced by extremely weakly-bound nuclei. We believe that with the availability of the post accelerated $^{8}$B beam at REX-ISOLDE we will be able to collect for the first time high quality data for the study of such an important topic.

  11. Human epithelial cells in vitro – Are they an advantageous tool to help understand the nanomaterial-biological barrier interaction?

    OpenAIRE

    Rothen-Rutishauser, Barbara; Clift, Martin J. D.; Jud, Corinne; Fink, Alke; Wick, Peter

    2013-01-01

    The human body can be exposed to nanomaterials through a variety of different routes. As nanomaterials get in contact with the skin, the gastrointestinal tract, and the respiratory tract, these biological compartments are acting as barriers to the passage of nano-sized materials into the organism. These structural and functional barriers are provided by the epithelia serving as an interface between biological compartments. In order to initiate the reduction, refinement and replacement of time...

  12. Reactome: a database of reactions, pathways and biological processes.

    Science.gov (United States)

    Croft, David; O'Kelly, Gavin; Wu, Guanming; Haw, Robin; Gillespie, Marc; Matthews, Lisa; Caudy, Michael; Garapati, Phani; Gopinath, Gopal; Jassal, Bijay; Jupe, Steven; Kalatskaya, Irina; Mahajan, Shahana; May, Bruce; Ndegwa, Nelson; Schmidt, Esther; Shamovsky, Veronica; Yung, Christina; Birney, Ewan; Hermjakob, Henning; D'Eustachio, Peter; Stein, Lincoln

    2011-01-01

    Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice. PMID:21067998

  13. Fusability and fissionability in 86Kr induced reactions near and below the fusion barrier

    International Nuclear Information System (INIS)

    Evaporation-residue excitation functions for the reactions 86Kr + sup(70,76)Ge, sup(92,100)Mo, sup(99,102,104)Ru have been measured using activation methods and the velocity filter SHIP. The data span the region from well below the fusion barrier up to and beyond the energy where limitation by fission competition takes place. The data are shown to be compatible with the concept of complete fusion followed by the statistical decay of the equilibrated compound nucleus. Information on both the fusion probability at and below the fusion threshold and the fissionability of the compound nuclei formed is extracted. The model dependence of the extracted fission barriers is discussed in detail. In analogy to studies involving lighter projectiles, strong correlations between the low-energy nuclear-structure properties of the nuclei and the subbarrier fusion probability are found. A relative shift of the fusion barrier to higher energies, that increases with the number of valence neutrons in the target nuclei, is observed. (orig.)

  14. Iodine Oxide Thermite Reactions: Physical and Biological Effects

    Science.gov (United States)

    Russell, Rod; Pantoya, Michelle; Bless, Stephan; Clark, William

    2009-06-01

    We investigated the potential for some thermite-like material reactions to kill bacteria spores. Iodine oxides and silver oxides react vigorously with metals like aluminum, tantalum, and neodymium. These reactions theoretically produce temperatures as high as 8000K, leading to vaporization of the reactants, producing very hot iodine and/or silver gases. We performed a series of computations and experiments to characterize these reactions under both quasi-static and ballistic impact conditions. Criteria for impact reaction were established. Measurements of temperature and pressure changes and chemical evolution will be reported. Basic combustion characterizations of these reactions, such as thermal equilibrium analysis and reaction propagation rates as well as ignition sensitivity, will be discussed. Additionally, testing protocols were developed to characterize the biocidal effects of these reactive materials on B. subtilis spores. The evidence from these tests indicates that these reactions produce heat, pressure, and highly biocidal gases.

  15. Importance of neutron transfer channels in sub-barrier fusion reaction mechanism

    International Nuclear Information System (INIS)

    Heavy ion fusion reaction has been extensively studied for the last two decades. Fusion cross-sections show large enhancement with respect to theoretical prediction in sub-barrier energy region. It is well known that the enhancement occurs due to nuclear vibration, deformation and nucleon transfer. The influence of nuclear vibration and deformation is well described within the framework of coupled channel (CC) calculations. However, the role of neutron transfer is not yet explained. Experimental investigations have shown that large enhancement in fusion cross-sections is due to neutron transfer channels with positive Q value. But, few systems did not show any enhancement in spite of having positive Q value neutron transfer channels. Hence, Q value is not the only criteria to infer the importance of neutron transfer on fusion. In a recent article, it was stated that enhancement is related to the increase in deformation of interacting nuclei after neutron transfer. In other words, fusion will be weakly influenced by positive Q value neutron transfer channel if deformation of nuclei do not change or decrease after transfer. Moreover, it was recently reported that only valence neutrons i.e. 1n and 2n transfer channel with positive Q value has significant impact on sub-barrier fusion

  16. Systematic investigations of deep sub-barrier fusion reactions using an adiabatic approach

    CERN Document Server

    Ichikawa, Takatoshi

    2015-01-01

    To describe fusion hindrance observed in fusion reactions at extremely low incident energies, I propose a novel extension of the standard CC model by introducing a damping factor that describes a smooth transition from sudden to adiabatic processes. I demonstrate the performance of this model by systematically investigating various deep sub-barrier fusion reactions. I extend the standard CC model by introducing a damping factor into the coupling matrix elements in the standard CC model. I adopt the Yukawa-plus-exponential (YPE) model as a basic heavy ion-ion potential, which is advantageous for a unified description of the one- and two-body potentials. For the purpose of these systematic investigations, I approximate the one-body potential with a third-order polynomial function based on the YPE model. Calculated fusion cross sections for the medium-heavy mass systems of $^{64}$Ni + $^{64}$Ni, $^{58}$Ni + $^{58}$Ni, and $^{58}$Ni + $^{54}$Fe, the medium-light mass systems of $^{40}$Ca + $^{40}$Ca, $^{48}$Ca + ...

  17. Sahara: Barrier or corridor? Nonmetric cranial traits and biological affinities of North African late Holocene populations.

    Science.gov (United States)

    Nikita, Efthymia; Mattingly, David; Lahr, Marta Mirazón

    2012-02-01

    The Garamantes flourished in southwestern Libya, in the core of the Sahara Desert ~3,000 years ago and largely controlled trans-Saharan trade. Their biological affinities to other North African populations, including the Egyptian, Algerian, Tunisian and Sudanese, roughly contemporary to them, are examined by means of cranial nonmetric traits using the Mean Measure of Divergence and Mahalanobis D(2) distance. The aim is to shed light on the extent to which the Sahara Desert inhibited extensive population movements and gene flow. Our results show that the Garamantes possess distant affinities to their neighbors. This relationship may be due to the Central Sahara forming a barrier among groups, despite the archaeological evidence for extended networks of contact. The role of the Sahara as a barrier is further corroborated by the significant correlation between the Mahalanobis D(2) distance and geographic distance between the Garamantes and the other populations under study. In contrast, no clear pattern was observed when all North African populations were examined, indicating that there was no uniform gene flow in the region. PMID:22183688

  18. Transcending epithelial and intracellular biological barriers; a prototype DNA delivery device.

    Science.gov (United States)

    McCaffrey, Joanne; McCrudden, Cian M; Ali, Ahlam A; Massey, Ashley S; McBride, John W; McCrudden, Maelíosa T C; Vicente-Perez, Eva M; Coulter, Jonathan A; Robson, Tracy; Donnelly, Ryan F; McCarthy, Helen O

    2016-03-28

    Microneedle technology provides the opportunity for the delivery of DNA therapeutics by a non-invasive, patient acceptable route. To deliver DNA successfully requires consideration of both extra and intracellular biological barriers. In this study we present a novel two tier platform; i) a peptide delivery system, termed RALA, that is able to wrap the DNA into nanoparticles, protect the DNA from degradation, enter cells, disrupt endosomes and deliver the DNA to the nucleus of cells ii) a microneedle (MN) patch that will house the nanoparticles within the polymer matrix, breach the skin's stratum corneum barrier and dissolve upon contact with skin interstitial fluid thus releasing the nanoparticles into the skin. Our data demonstrates that the RALA is essential for preventing DNA degradation within the poly(vinylpyrrolidone) (PVP) polymer matrix. In fact the RALA/DNA nanoparticles (NPs) retained functionality when in the MN arrays after 28days and over a range of temperatures. Furthermore the physical strength and structure of the MNs was not compromised when loaded with the NPs. Finally we demonstrated the effectiveness of our MN-NP platform in vitro and in vivo, with systemic gene expression in highly vascularised regions. Taken together this 'smart-system' technology could be applied to a wide range of genetic therapies. PMID:26883753

  19. Surface and near-surface passivation, chemical reaction, and Schottky barrier formation at ZnO surfaces and interfaces

    International Nuclear Information System (INIS)

    Using a combination of depth-resolved cathodoluminescence spectroscopy, electronic transport, and surface science techniques, we have demonstrated the primary role of native defects within ZnO single crystals as well as native defects created by metallization on metal-ZnO Schottky barrier heights and their ideality factors. Native defects and impurities resident within the ZnO depletion region as well as defects extending into the bulk from the intimate metal-ZnO interface contribute to barrier thinning of, carrier hopping across, and tunneling through these Schottky barriers. Chemical reactions at clean ZnO-metal interfaces lead to metal-specific eutectic or oxide formation with pronounced transport effects. These results highlight the importance of bulk crystal quality, surface cleaning, metal interaction, and post-metallization annealing for controlling Schottky barriers

  20. Non-Biological Barriers to Referral and the Pre-Kidney Transplant Evaluation Among African Americans in the United States: A Systematic Review.

    Science.gov (United States)

    Lockwood, Mark B; Bidwell, Julie T; Werner, Debra A; Lee, Christopher S

    2016-01-01

    African Americans face a disproportionate burden related to the incidence of end stage renal disease. A literature search was conducted for research articles published between 2006-2015 to synthesize current literature related to non-biological barriers to early stages of the pre-kidney transplant continuum for African Americans in the United States. Twenty-four articles were included in the final sample. Eleven barriers were identified. Barriers were categorized as socioeconomic-based barriers, culture-based barriers, and knowledge-based barriers. Resources to develop educational interventions for both patients and providers may help reduce existing barriers. PMID:27501630

  1. Reaction of Small Insects to an Ambient Pressure Dielectric Barrier Discharge

    Science.gov (United States)

    Bures, Brian; Gray, Travis; Bourham, Mohamed; Roe, R. Michael; Long, Shengyou; Donohue, Kevin

    2003-10-01

    Ambient Pressure Dielectric Barrier Discharges (DBD's) are commonly studied for rapid sterilization of surfaces. In an effort to expand the application of DBD's to larger biological species, small insect species are directly exposed to a large gap(5 cm) DBD composed primarily of helium gas. In order to control the temperature, the electrodes are actively cooled and the current density remains low (insect (40 ^oC). A microwave interferometer is used to measure the line average, time average, electron density. The electron density is between 10^8 and 10^10 cm-3 for the operating conditions of interest. Under these operating conditions, optical emission spectroscopy shows only a significant emission of helium lines with some emission of molecular nitrogen lines. Under these operational conditions green peach aphids and western flower thrips show a reduction in population by at least 50% with a 60 s exposure time. The goal of this research is to replace currently existing chemical and thermal insect control techniques with the more rapid plasma techniques for quarantine applications.

  2. A Universal Damping Mechanism of Quantum Vibrations in Deep Sub-Barrier Fusion Reactions

    CERN Document Server

    Ichikawa, Takatoshi

    2015-01-01

    We demonstrate the damping of quantum octupole vibrations near the touching point when two colliding nuclei approach each other in the mass-asymmetric $^{208}$Pb + $^{16}$O system, for which the strong fusion hindrance was clearly observed. We, for the first time, apply the random-phase approximation method to the heavy-mass asymmetric di-nuclear system to calculate the transition strength $B$(E3) as a function of the center-of-mass distance. The obtained $B$(E3) strengths are substantially damped near the touching point, because the single-particle wave functions of the two nuclei strongly mix with each other and a neck is formed. The energy-weighted sums of $B$(E3) are also strongly correlated with the damping factor which is phenomenologically introduced in the standard coupled-channel calculations to reproduce the fusion hindrance. This strongly indicates that the damping of the quantum vibrations universally occurs in the deep sub-barrier fusion reactions.

  3. Reduction of dynamical biochemical reactions networks in computational biology

    OpenAIRE

    Radulescu, O.; Gorban, A.N.; Zinovyev, A.; Noel, V.

    2012-01-01

    Biochemical networks are used in computational biology, to model mechanistic details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multiscaleness, an important property of these networks, can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to...

  4. Selective Chemical-Lithographic Reaction Techniques Using Radiation Technology for Biological Application

    International Nuclear Information System (INIS)

    This report, titled 'selective Chemical-Lithographic Reaction Techniques Using Radiation Technology for Biological Application' contains a research summary, 1) development of selective reaction technology using irradiation of electron beams, 2) preparation of functional surfaces using selective radiation technology on carbon-based nanomaterials, and 3) development of bio-applicable biochips using combinatorial surface modification

  5. Kinetics of the reaction between dissolved sodium sulfide and biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2005-01-01

    The kinetics of the heterogeneous reaction between dissolved sodium sulfide and biologically produced sulfur particles has been studied by measuring the formation of polysulfide ions, Sx2-, in time (pH = 8.0, T = 30-50 °C). Detailed knowledge of this reaction is essential to understand its effect on

  6. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers

    International Nuclear Information System (INIS)

    Solid reactive mixtures were tested as filling material for the development of biological permeable reactive barriers for the treatment of heavy metals contaminated waters. Mixture selection was performed by taking into account the different mechanisms operating in sulphate and cadmium removal with particular attention to bioprecipitation and sorption onto the organic matrices in the mixtures. Suspensions of eight reactive mixtures were tested for sulphate removal (initial concentration 3 g L-1). Each mixture was made up of four main functional components: a mix of organic sources for bacterial growth, a neutralizing agent, a porous medium and zero-valent iron. The best mixture among the tested ones (M8: 6% leaves, 9% compost, 3% zero-valent iron, 30% silica sand, 30% perlite, 22% limestone) presented optimal conditions for SRB growth (pH 7.8 ± 0.1; Eh = -410 ± 5 mV) and 83% sulphate removal in 22 days (25% due to bioreduction, 32% due to sorption onto compost and 20% onto leaves). M8 mixture allowed the complete abatement of cadmium with a significant contribution of sorption over bioprecipitation (6% Cd removal due to SRB activity). Sorption properties, characterised by potentiometric titrations and related modelling, were mainly due to carboxylic sites of organic components used in reactive mixtures.

  7. Elastic scattering and direct reactions of the 1n halo 11Be nucleus on 64Zn near the barrier

    OpenAIRE

    Scuderi, V.; Di Pietro, A.; Acosta Sánchez, Luis Armando; Amorini, F.; Borge, M. J. G.; Figuera, P; Fisichella, M.; Fraile, L. M.; Gómez Camacho, Joaquín; Jeppesen, H.; Lattuada, M.; Martel Bravo, Ismael; Milin, M.; Musumarra, A.; Papa, M.

    2012-01-01

    Elastic scattering and direct reactions have been studied for the collisions induced by the three Beryllium isotopes 9,10,11Be, on a medium mass 64Zn target at energies near the Coulomb barrier. The elastic-scattering angular distribution of the 11Be halo nucleus shows a deviation from the classical Fresnel type diffraction behavior in the Coulomb-nuclear interference peak angular region. The deduced total reaction cross-sections for the 11Be collision is more than a factor of ...

  8. Fission barrier formula and its application to thorium based fuel cycle: calculation of fission cross sections for 233Pa (n, f) reaction

    International Nuclear Information System (INIS)

    Recently, direct measurements of fission cross-sections for 233Pa (n, f) reaction are available which stimulated the calculation of fission cross-sections for this reaction. For this calculation we have derived an analytical barrier formula based on microscopic-macroscopic description by fitting the actinide fission barrier data for the double humped barrier. Pairing effects have also been taken into account. The cross sections calculated for using the analytical barrier formula with the code EMPIRE 2.19 give better agreement with the available measurements. (author)

  9. Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier

    Science.gov (United States)

    Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.

    2016-08-01

    Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this

  10. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    Science.gov (United States)

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.

    2015-12-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  11. Role of wave packet width in quantum molecular dynamics in fusion reactions near barrier

    International Nuclear Information System (INIS)

    The dynamical fusion process of 48Ca + 144Sm with different impact parameters near barrier is studied by an extended quantum molecular dynamics (EQMD) model, where width of wavepacket is dynamically treated based on variational principle. The time evolution of different energy components such as potential energy, kinetic energy, Coulomb energy and Pauli potential are analyzed when dynamical or fixed width is assumed in calculation. It is found that the dynamical wavepacket width can enhance the dissipation of incident energy and the fluctuations, which are important to form compound nuclei. Moreover, we compare the fusion barrier dependence on the incident energy when it is determined by both dynamical and fixed wavepacket width.

  12. Fusion and peripheral reactions in the systems /sup 16/O+sup(148,152)Sm at sub-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Kittl, J.A.; Testoni, J.E.

    1986-05-12

    Cross sections for fusion and peripheral reactions in the sub-barrier region obtained with the coupled-channel and equivalent-spheres methods are compared for the systems /sup 16/O+sup(148,152)Sm. A barrier-like real potential plus a residual surface-imaginary potential is introduced as an alternative approach which allows the simultaneous fit of elastic, inelastic, fusion and peripheral reaction cross sections.

  13. ezBioNet: A modeling and simulation system for analyzing biological reaction networks

    Science.gov (United States)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2012-10-01

    To achieve robustness against living environments, a living organism is composed of complicated regulatory mechanisms ranging from gene regulations to signal transduction. If such life phenomena are to be understand, an integrated analysis tool that should have modeling and simulation functions for biological reactions, as well as new experimental methods for measuring biological phenomena, is fundamentally required. We have designed and implemented modeling and simulation software (ezBioNet) for analyzing biological reaction networks. The software can simultaneously perform an integrated modeling of various responses occurring in cells, ranging from gene expressions to signaling processes. To support massive analysis of biological networks, we have constructed a server-side simulation system (VCellSim) that can perform ordinary differential equations (ODE) analysis, sensitivity analysis, and parameter estimates. ezBioNet integrates the BioModel database by connecting the european bioinformatics institute (EBI) servers through Web services APIs and supports the handling of systems biology markup language (SBML) files. In addition, we employed eclipse RCP (rich client platform) which is a powerful modularity framework allowing various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool, as well as a simulation system, to understand the control mechanism by monitoring the change of each component in a biological network. A researcher may perform the kinetic modeling and execute the simulation. The simulation result can be managed and visualized on ezBioNet, which is freely available at http://ezbionet.cbnu.ac.kr.

  14. Nucleon-nucleon correlations in heavy ion transfer reactions: Recent investigations at energies far below the Coulomb barrier

    International Nuclear Information System (INIS)

    Excitation functions of one- and two-neutron transfer channels have been measured for the 96Zr+40Ca and 116Sn+60Ni systems at bombarding energies ranging from the Coulomb barrier to ∼25% below. Target-like recoils have been identified in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental transfer probabilities have been compared, in absolute values and in slope, with semiclassical microscopic calculations which incorporate nucleon-nucleon pairing correlations. For the first time in a heavy ion collision, one was able to provide a consistent description of one and two neutron transfer reactions by incorporating, in the reaction mechanism, all known structure information of entrance and exit channels nuclei. In particular, there is no need to introduce any enhancement factor for the description of two neutron transfer, of course very important are the correlations induced by the pairing interaction

  15. Nucleon-nucleon correlations in heavy ion transfer reactions: Recent investigations at energies far below the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Corradi, Lorenzo, E-mail: corradi@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro, Viale dell’Universita’ 2 - 35020, Legnaro (Padova) - Italy (Italy)

    2015-10-15

    Excitation functions of one- and two-neutron transfer channels have been measured for the {sup 96}Zr+{sup 40}Ca and {sup 116}Sn+{sup 60}Ni systems at bombarding energies ranging from the Coulomb barrier to ∼25% below. Target-like recoils have been identified in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental transfer probabilities have been compared, in absolute values and in slope, with semiclassical microscopic calculations which incorporate nucleon-nucleon pairing correlations. For the first time in a heavy ion collision, one was able to provide a consistent description of one and two neutron transfer reactions by incorporating, in the reaction mechanism, all known structure information of entrance and exit channels nuclei. In particular, there is no need to introduce any enhancement factor for the description of two neutron transfer, of course very important are the correlations induced by the pairing interaction.

  16. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  17. Coupled processes of fluid flow, solute transport, and geochemical reactions in reactive barriers

    OpenAIRE

    Kim, Jeongkon; Schwartz, Franklin W.; Xu, Tianfu; Choi, Heechul, and Kim, In S.

    2004-01-01

    A complex pattern of coupling between fluid flow and mass transport develops when heterogeneous reactions occur. For instance, dissolution and precipitation reactions can change a porous medium's physical properties, such as pore geometry and thus permeability. These changes influence fluid flow, which in turn impacts the composition of dissolved constituents and the solid phases, and the rate and direction of advective transport. Two-dimensional modeling studies using TOUGHREACT were c...

  18. A kinetic model for chemical reactions without barriers : transport coefficients and eigenmodes

    OpenAIRE

    Alves, Giselle M.; Marques Júnior, Wilson; Soares, A. J.; Kremer, Gilberto M.

    2011-01-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solution of the Boltzmann equation is determined through an expansion in Sonine polyn...

  19. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    Energy Technology Data Exchange (ETDEWEB)

    Mussard, Bastien, E-mail: bastien.mussard@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Reinhardt, Peter; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Ángyán, János G. [CRM2, Institut Jean Barriol, Université de Lorraine, F-54506 Vandoeuvre-lés-Nancy (France); CRM2, Institut Jean Barriol, CNRS, F-54506 Vandoevre-lés-Nancy (France)

    2015-04-21

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Szabo and Ostlund [J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse et al., J. Chem. Phys. 135, 084119 (2011)], this works confirms range-separated RPAx-SO2 as a promising method for general chemical applications.

  20. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    CERN Document Server

    Mussard, Bastien; Angyan, Janos; Toulouse, Julien

    2015-01-01

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Sz-abo and Ostlund [A. Szabo and N. S. Ostlund, J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse, W. Zhu, A. Savin, G. Jansen, and J. G. {\\'A}ngy{\\'a}n, J. Chem. Phys. 135, 084119 (2011)], this works confirms...

  1. Tandem Reactions Using Nitrile Imines: Synthesis of Some Novel Heterocyclic Compounds with Expected Biological Activity

    Directory of Open Access Journals (Sweden)

    Adil A. H. Gobouri

    2016-03-01

    Full Text Available New functionalized 7,9-dimethylpyrimido[4,5-d][1,2,4]triazolo[4,3-a]pyrimidine-5,6,8(1H,7H,9H-trione derivatives were synthesized via reaction of the hydrazonoyl halides with 7,8-dihydro-1,3-dimethyl-7-thioxopyrimido[4,5-d]pyrimidine-2,4,5(1H,3H,6Htrione. The biological activity of the products has been evaluated. The mechanism and the regioselectivity of the studied reactions have been discussed.

  2. Cross-sectional study exploring barriers to adverse drug reactions reporting in community pharmacy settings in Dhaka, Bangladesh

    Science.gov (United States)

    Amin, Mohammad Nurul; Khan, Tahir Mehmood; Dewan, Syed Masudur Rahman; Islam, Mohammad Safiqul; Moghal, Mizanur Rahman

    2016-01-01

    Objectives To assess community pharmacists'/pharmacy technicians' knowledge and perceptions about adverse drug reactions (ADRs) and barriers towards the reporting of such reactions in Dhaka, Bangladesh. Method A cross-sectional study was planned to approach potential respondents for the study. A self-administered questionnaire was delivered to community pharmacists/pharmacy technicians (N=292) practising in Dhaka, Bangladesh. Results The overall response to the survey was 69.5% (n=203). The majority of the sample was comprised of pharmacy technicians (152, 74.9%) who possessed a diploma in pharmacy, followed by pharmacists (37, 18.2%) and others (12, 5.9%). Overall, 72 (35.5%) of the respondents disclosed that they had experienced an ADR at their pharmacy, yet more than half (105, 51.7%) were not familiar with the existence of an ADR reporting body in Bangladesh. Exploring the barriers to the reporting of ADRs, it was revealed that the top four barriers to ADR reporting were ‘I do not know how to report (Relative Importance Index (RII)=0.998)’, ‘reporting forms are not available (0.996)’, ‘I am not motivated to report (0.997)’ and ‘Unavailability of professional environment to discuss about ADR (RII=0.939)’. In addition to these, a majority (141, 69.46%) were not confident about the classification of ADRs (RII=0.889) and were afraid of legal liabilities associated with reporting ADRs (RII=0.806). Moreover, a lack of knowledge about pharmacotherapy and the detection of ADRs was another major factor hindering their reporting (RII=0.731). Conclusions The Directorate of Drug Administration in Bangladesh needs to consider the results of this study to help it improve and simplify ADR reporting in Bangladeshi community pharmacy settings. PMID:27489151

  3. On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He-N2 mixtures

    International Nuclear Information System (INIS)

    In dielectric barrier discharges in helium-nitrogen mixtures of 1 bar the rotational temperature of the first negative system (transitions N+2(B→X)) depends on the nitrogen partial pressure pN2 and increases up to 600 K at high pN2 while that of the second positive system (transitions N2(C→B)) is equal to 310±10 K for all discharge conditions. This difference comes from two different classes of excitation processes: 'fast' reactions mainly of He metastables and ions during or immediately after the active microdischarge, i.e. in a hot environment, and 'slow' reactions of the metastable N2(A3Σ+u) state. Chemical reactions in general determine the effective lifetimes of the metastables. The long-living nitrogen metastables diffuse far away from the microdischarge area and react in the (cool) ambient gas. For the various discharge conditions we evaluated, from absolutely measured line intensities, the concentrations of N2(A3Σ+u), NO, and OH (formed as a consequence of surface reactions) as functions of the average discharge power and estimated the electron density in the discharge. The variation of the measured rotational temperature of the first negative system with pN2 can be attributed to changes of the gas heating and, consequently, the gas dynamics in the microdischarges. (author)

  4. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Directory of Open Access Journals (Sweden)

    Redzic Zoran

    2011-01-01

    Full Text Available Abstract Efficient processing of information by the central nervous system (CNS represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB, which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF barrier (BCSFB, which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC transport proteins at those two barriers and underlines

  5. Stochastic semi-classical description of sub-barrier fusion reactions

    Directory of Open Access Journals (Sweden)

    Ayik Sakir

    2011-10-01

    Full Text Available A semi-classical method that incorporates the quantum effects of the low-lying vibrational modes is applied to fusion reactions. The quantum effect is simulated by stochastic sampling of initial zero-point fluctuations of the surface modes. In this model, dissipation of the relative energy into non-collective excitations of nuclei can be included straightforwardly. The inclusion of dissipation is shown to increase the agreement with the fusion cross section data of Ni isotopes.

  6. Stochastic semi-classical description of sub-barrier fusion reactions

    OpenAIRE

    Ayik Sakir; Yilmaz Bulent; Lacroix Denis

    2011-01-01

    International audience A semi-classical method that incorporates the quantum e ects of the low-lying vibrational modes is applied to fusion reactions. The quantum e ect is simulated by stochastic sampling of initial zero-point fluc- tuations of the surface modes. In this model, dissipation of the relative energy into non-collective excitations of nuclei can be included straightforwardly. The inclusion of dissipation is shown to increase the agreement with the fusion cross section data of N...

  7. Rape against Women in Tanzania : Studies of Social Reactions and Barriers to Disclosure

    OpenAIRE

    Muganyizi, c

    2010-01-01

    This thesis assessed responses toward rape against women as experienced by the victims and victim supporters in the context of the interaction between victims, supporters, and formal agencies in Tanzania. The overall research design was based on triangulation with a combination of qualitative and quantitative methods. A semi-qualitative study, in which free listings and semi-structured questionnaires were used, explored social reactions from 44 community nurses and 50 rape victims (Paper I). ...

  8. Study of the angular momentum distribution of compound nuclei obtained from fusion reactions close to the Coulomb barrier

    International Nuclear Information System (INIS)

    The effect of the mass asymmetry of the input channel on the compound nuclei spin distribution. The 16O + 144Nd and 80Se + 80Se reactions produce the same 160Er compound nucleus in the 38 to 68 MeV energy range. In certain cases, the incident energies required to form the compound nucleus, at the same excitation energies, are very close to the Coulomb barrier. In the experimental device, the 'Chateau de Cristal' multidetector and additional sensors are used. The angular momentum distribution of the different evaporation products are measured by gamma spectrometry techniques. The fusion cross sections are measured by the time-of-flight technique. Theoretical predictions and experimental results concerning the distribution of the compound nucleus angular momentum are compared

  9. Understanding 6He induced reactions at energies around the Coulomb barrier

    International Nuclear Information System (INIS)

    Recent developments aimed to understand the observed features arising in the scattering of the Borromean nucleus 6He on heavy targets are discussed and compared with recent data for 6He+208Pb measured at the RIB facility at Louvain-la-Neuve at energies around the Coulomb barrier. The analysis of the elastic scattering data in terms of the optical model, reveals the presence of a long range absorption mechanism, that manifests in the form of a large value of the imaginary diffuseness parameter. The elastic data have been also compared with three--body CDCC calculations, based on a di-neutron model of 6He, and four--body CDCC calculations, based on a more realistic three-body model of this nucleus. Finally, the angular and energy distribution of α particles emitted at backward angles are discussed and compared with different theoretical approaches. We find that these α particles are produced mainly by a two-neutron transfer mechanism to very excited states in the residual nucleus.

  10. Quantum description of coupling to neutron-rearrangement channels in fusion reactions near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Samarin, V. V., E-mail: samarin@jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2015-10-15

    The fusion cross sections for the {sup 17,18}O+{sup 27}Al, {sup 18}O+{sup 58}Ni, and {sup 6}He+{sup 197}Au reactions were calculated by the coupled-channel method. The radial dependence of matrices that describe coupling to valence-neutron-rearrangement channels was determined with the aid of two-center wave functions. The coupling-strength parameters were evaluated on the basis of numerically solving the time-dependent Schrödinger equation. Satisfactory agreement with experimental data was obtained.

  11. Factors influencing the movement biology of migrant songbirds confronted with an ecological barrier

    Science.gov (United States)

    Smolinsky, J. A.; Diehl, Robert H.; Radzio, T. A.; Delaney, D. K.; Moore, F. R

    2013-01-01

    Whether or not a migratory songbird embarks on a long-distance flight across an ecological barrier is likely a response to a number of endogenous and exogenous factors. During autumn 2008 and 2009, we used automated radio tracking to investigate how energetic condition, age, and weather influenced the departure timing and direction of Swainson’s thrushes (Catharus ustulatus) during migratory stopover along the northern coast of the Gulf of Mexico. Most birds left within 1 h after sunset on the evening following capture. Those birds that departed later on the first night or remained longer than 1 day were lean. Birds that carried fat loads sufficient to cross the Gulf of Mexico generally departed in a seasonally appropriate southerly direction, whereas lean birds nearly always flew inland in a northerly direction. We did not detect an effect of age or weather on departures. The decision by lean birds to reorient movement inland may reflect the suitability of the coastal stopover site for deposition of fuel stores and the motivation to seek food among more extensive forested habitat away from the barrier.

  12. Adverse reactions after cosmetic lip augmentation with permanent biologically inert implant materials.

    Science.gov (United States)

    Hoffmann, C; Schuller-Petrovic, S; Soyer, H P; Kerl, H

    1999-01-01

    Augmentation of lips is a common aesthetic procedure that is mostly performed with alloplastic materials or autologous tissue. Various alloplastic injectable implants have been developed for soft tissue augmentation without surgery. Most biologic materials are resorbed within a few months, fluid silicone may migrate, and autologous fat is not ideal for fine contouring of the lips. The search for a biocompatible, permanent, nontoxic, and biologically inert filler material led to the development of some new materials for subdermal or intradermal implantation. Recently Bioplastique, Artecoll, and Gore-Tex have been well established and recommended by many authors. Although these materials meet most of the characteristics that constitute an ideal injectable prosthetic material, we describe 3 examples of adverse reactions after their implantation into lips. PMID:9922021

  13. Dynamical Effects of Orientations on reaction 238U+238U near Coulomb Barrier

    International Nuclear Information System (INIS)

    The dynamical effects of three orientations (nose-nose, nose-side, and side-side) on reaction 238U+238U have been investigated by using Improved Quantum Molecular Dynamics(ImQMD) model. Due to Coulomb repulsive interaction, the change of the deformations or orientations of colliding nuclei is found even before touching configuration, especially for nose-nose. The average lifetime of the giant system and the probability producing super-heavy fragments (SHF) with Z>110 are found to be dependent on the orientations of two nuclei. At the time of 1000fm/c after re-separation of giant system, side-side orientation provide a larger probability of producing SHF than nose-nose case. And the maximum value of the probability locates a smaller incident energy for side-side orientation compared with nose-nose.

  14. Examination of the validity of statistical models for the 12C + 12C fusion reaction at sub-barrier energies

    Science.gov (United States)

    Dahlstrom, Erin

    2011-10-01

    Previous experimental studies of 12C + 12C fusion at sub-barrier energies using gamma spectroscopy have been limited by the use of a single detector. Use of the Gammasphere at the Argonne National Laboratory, however, allows for an array of germanium detectors to pick up the characteristic gamma rays, greatly increasing the information received. These decay products do not give us the total cross section for the fusion reaction though; we rely on statistical models that relate them to how the excited states are originally populated and decay. Using a combination of gamma spectroscopy based on data from the Gammasphere and proton spectroscopy from a recent 12C + 12C fusion experiment at Notre Dame, we tested these statistical models. The initial population of excited states for 23Na predicted by Empire, a standard statistical model for the decay of different 24Mg spins, was compared with the population determined from the gamma and proton spectroscopy. This comparison will potentially help us more accurately predict the spin population of 24Mg, further constraining the fusion reaction theory. Thanks: NSF grants PHY-1068192, PHY-0822648; ND REU.

  15. [Plasma antioxidant activity--a test for impaired biological functions of endoecology, exotrophy, and inflammation reactions].

    Science.gov (United States)

    Titov, V N; Krylin, V V; Dmitriev, V A; Iashin, Ia I

    2010-07-01

    The authors discuss the diagnostic value of a test for total serum antioxidant activity determined by an electrochemistry method on a liquid chromatograph (without a column), by using an amperometric detector, as well as the composition of the endogenously synthesized hydrophilic and hydrophobic acceptors of reactive oxygen species (ROS). Uric acid is a major hydrophilic acceptor of ROS; monoenic oleic fatty acid acts as its major lipophilic acceptor. The constant determined by the authors for of 03 oleic acid oxidation during automatic titration in the organic medium is an order of magnitude higher than that for alpha-tocopherol, beta-carotene and linoleic fatty acid; its concentration is also an order of magnitude higher. In oxidative stress, the adrenal steroid hormone dehydroepiandrosterone initiates oleic acid synthesis via expression of palmitoyl elongase and steatoryl desaturase. In early steps of phylogenesis in primates, spontaneous mutation resulted in ascorbic acid synthesis gene knockout; phylogenetically, further other mutation knocked out the gene encoding the synthesis of uricase and the conversion of uric acid to alantoin. In primates, uric acid became not only a catabolite of purine bases in vivo, but also the major endogenous hydrophilic acceptor of ROS. This philogenetic order makes it clear why the epithelium in the proximal nephron tubule entirely reabsorbs uric acid (a catabolite?) from primary urine and then secretes it again to urine depending on the impairment of biological functions of endoecology (the intercellular medium being contaminated with biological rubbish), the activation of a biological inflammatory reaction, the cellular production of ROS, and the reduction in serum total antioxidant activity. With each biological reaction, there was an increase in the blood content of uric acid as a hydrophilic acceptor of ROS, by actively lowering its secretion into urine. Uric acid is a diagnostic test of inflammation, or rather compensatory

  16. Effects of anaerobic reaction time and sludge age on the biological phosphorus removal in SBR

    International Nuclear Information System (INIS)

    In this research, a pilot consisting of two Sequencing Batch Reactors used to remove phosphorus biologically. Both reactors were in operation in a 12 hours cycle and they were controlled by a computer. The blank one had no primary anaerobic stage and its aeration time was 9.5 hours. The other one had the primary anaerobic stage with no change in the total reaction time (9.5 hours). The average concentration of influent phosphorus and COD in reactors were 7.5 and 800 milligram per litre respectively. In two months periods, the average efficiencies of ph osporus removal for the blank reactor and the second reactor with anaerobic reaction times of 2,3, and 4.5 hours were 16%, 26%, 64%, and 99% respectively. In the reactor with anaerobic reaction time of 4.5 hours, increasing the sludge age from 5 days to 10 days resulted in decreasing of phosphorus removal efficiency from 99% to 87%. In general, the result of this investigation show that the increases of anaerobic reaction time can increase the efficiency of phosphorus removal, because of the prevalence of phosphorus removing microorganisms over other species. Also, the accurate control of additional sludge volume (clogged age) has an appropriate effect on the removal efficiency

  17. Change of the chemical barrier performance of cement materials altered by hydrothermal reaction

    International Nuclear Information System (INIS)

    Cement has been considered to be a useful material because its chemical property is potentially suitable for immobilization of radioactive waste. In particular, the sorption of radionuclides onto cement material is very important parameter in the TRU waste disposal system containing long-life radionuclides. For the long term, in the disposal environment, cement materials must be altered by dissolution, chemical reaction with ions dissolved in the ground water, and hydrothermal reaction etc. Once the composition or crystallinity of minerals in cement is changed, the chemical properties, especially sorption, might be changed. However, the mechanism of the process of cement alteration and mechanism of radionuclide sorption onto cement are not yet fully understood. In this paper, the hydrothermal alteration process was studied experimentally, and the effect of alteration on the sorption properties of cement was investigated by the bath sorption test for Sr and Se. The results follow: 1) OPC and OPC/BFS-blended cement (hereafter BFS cement) were heated at temperatures up to 70degC in the synthetic cement equilibrated groundwater or distilled water for 1 month. Changes of crystallinity of the minerals were observed. For example, it was observed that the crystallinity of CSH-gel might increase. Ettringite decomposed on heating. For treatment in distilled water, monosulphate was formed only in the case of BFS cement. 2) In the case of Sr (as a representative cation) sorption, the distribution coefficient for hydrothermally altered OPC and BFS cement decreased as the alteration temperature increased. This is mainly caused by the decrease of distribution coefficient for the CSH-gel phase in cement accompanying the change of its crystallinity. In the case of Se(as a model anion, selenite) sorption, the distribution coefficient decreased as the alteration temperature increased for OPC in both distilled water and synthetic ground water, and also for BFS in groundwater. This is

  18. Traveling wave solutions of a biological reaction-convection-diffusion equation model by using $(G'/G$ expansion method

    Directory of Open Access Journals (Sweden)

    Shahnam Javadi

    2013-07-01

    Full Text Available In this paper, the $(G'/G$-expansion method is applied to solve a biological reaction-convection-diffusion model arising in mathematical biology. Exact traveling wave solutions are obtained by this method. This scheme can be applied to a wide class of nonlinear partial differential equations.

  19. Methods and systems for carrying out a pH-influenced chemical and/or biological reaction

    Science.gov (United States)

    Stern, Michael C.; Simeon, Fritz; Hatton, Trevor Alan

    2016-04-05

    The present invention generally relates to methods and systems for carrying out a pH-influenced chemical and/or biological reaction. In some embodiments, the pH-influenced reaction involves the conversion of CO.sub.2 to a dissolved species.

  20. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals.

    Science.gov (United States)

    Szebeni, Janos

    2014-10-01

    Intravenous injection of a variety of nanotechnology enhanced (liposomal, micellar, polymer-conjugated) and protein-based (antibodies, enzymes) drugs can lead to hypersensitivity reactions (HSRs), also known as infusion, or anaphylactoid reactions. The molecular mechanism of mild to severe allergy symptoms may differ from case to case and is mostly not known, however, in many cases a major cause, or contributing factor is activation of the complement (C) system. The clinical relevance of C activation-related HSRs, a non-IgE-mediated pseudoallergy (CARPA), lies in its unpredictability and occasional lethal outcome. Accordingly, there is an unmet medical need to develop laboratory assays and animal models that quantitate CARPA. This review provides basic information on CARPA; a short history, issues of nomenclature, incidence, classification of reactogenic drugs and symptoms, and the mechanisms of C activation via different pathways. It is pointed out that anaphylatoxin-induced mast cell release may not entirely explain the severe reactions; a "second hit" on allergy mediating cells may also contribute. In addressing the increasing requirements for CARPA testing, the review evaluates the available assays and animal models, and proposes a possible algorithm for the screening of reactogenic drugs and hypersensitive patients. Finally, an analogy is proposed between CARPA and the classic stress reaction, suggesting that CARPA represents a "blood stress" reaction, a systemic fight of the body against harmful biological and chemical agents via the anaphylatoxin/mast-cell/circulatory system axis, in analogy to the body's fight of physical and emotional stress via the hypothalamo/pituitary/adrenal axis. In both cases the response to a broad variety of noxious effects are funneled into a uniform pattern of physiological changes. PMID:25124145

  1. Study of 9Be breakup influence by comparing fusion around the barrier in the reactions: 9Be + 116Sn and 10B + 115In

    International Nuclear Information System (INIS)

    The weakly bound 9Be and tightly bound 10B, neighbouring projectiles were used on the 116Sn and 115In respectively; both reactions leading to the same compound nucleus 125Xe. The present study was carried out near the barrier varying the beam energy

  2. Stochastic simulation of biological reactions, and its applications for studying actin polymerization

    International Nuclear Information System (INIS)

    Molecular events in biological cells occur in local subregions, where the molecules tend to be small in number. The cytoskeleton, which is important for both the structural changes of cells and their functions, is also a countable entity because of its long fibrous shape. To simulate the local environment using a computer, stochastic simulations should be run. We herein report a new method of stochastic simulation based on random walk and reaction by the collision of all molecules. The microscopic reaction rate Pr is calculated from the macroscopic rate constant k. The formula involves only local parameters embedded for each molecule. The results of the stochastic simulations of simple second-order, polymerization, Michaelis–Menten-type and other reactions agreed quite well with those of deterministic simulations when the number of molecules was sufficiently large. An analysis of the theory indicated a relationship between variance and the number of molecules in the system, and results of multiple stochastic simulation runs confirmed this relationship. We simulated Ca2+ dynamics in a cell by inward flow from a point on the cell surface and the polymerization of G-actin forming F-actin. Our results showed that this theory and method can be used to simulate spatially inhomogeneous events

  3. A novel platform for engineering blood-brain barrier-crossing bispecific biologics.

    Science.gov (United States)

    Farrington, Graham K; Caram-Salas, Nadia; Haqqani, Arsalan S; Brunette, Eric; Eldredge, John; Pepinsky, Blake; Antognetti, Giovanna; Baumann, Ewa; Ding, Wen; Garber, Ellen; Jiang, Susan; Delaney, Christie; Boileau, Eve; Sisk, William P; Stanimirovic, Danica B

    2014-11-01

    The blood-brain barrier (BBB) prevents the access of therapeutic antibodies to central nervous system (CNS) targets. The engineering of bispecific antibodies in which a therapeutic "arm" is combined with a BBB-transcytosing arm can significantly enhance their brain delivery. The BBB-permeable single-domain antibody FC5 was previously isolated by phenotypic panning of a naive llama single-domain antibody phage display library. In this study, FC5 was engineered as a mono- and bivalent fusion with the human Fc domain to optimize it as a modular brain delivery platform. In vitro studies demonstrated that the bivalent fusion of FC5 with Fc increased the rate of transcytosis (Papp) across brain endothelial monolayer by 25% compared with monovalent fusion. Up to a 30-fold enhanced apparent brain exposure (derived from serum and cerebrospinal fluid pharmacokinetic profiles) of FC5- compared with control domain antibody-Fc fusions after systemic dosing in rats was observed. Systemic pharmacological potency was evaluated in the Hargreaves model of inflammatory pain using the BBB-impermeable neuropeptides dalargin and neuropeptide Y chemically conjugated with FC5-Fc fusion proteins. Improved serum pharmacokinetics of Fc-fused FC5 contributed to a 60-fold increase in pharmacological potency compared with the single-domain version of FC5; bivalent and monovalent FC5 fusions with Fc exhibited similar systemic pharmacological potency. The study demonstrates that modular incorporation of FC5 as the BBB-carrier arm in bispecific antibodies or antibody-drug conjugates offers an avenue to develop pharmacologically active biotherapeutics for CNS indications. PMID:25070367

  4. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.

  5. Effects of $\\beta_{6}$ deformation and low-lying vibrational bands on heavy-ion fusion reactions at sub-barrier energies

    CERN Document Server

    Rumin, T; Takigawa, N; Rumin, Tamanna; Hagino, Kouichi; Takigawa, Noboru

    2000-01-01

    We study fusion reactions of $^{16}$O with $^{154}$Sm, $^{186}$W and $^{238}$U at sub-barrier energies by a coupled-channels framework. We focus especially on the effects of $\\beta_{6}$ deformation and low-lying vibrational excitations of the target nucleus. It is shown that the inclusion of experimental data for all of these reactions. For the $^{154}$Sm and $^{238}$U targets, the octupole vibration significantly affects the fusion barrier distribution. The effect of $\\beta$ band is negligible in all the three reactions, while the $\\gamma$ band causes a non-negligible effect on the barrier distribution at energies above the main fusion barrier. We compare the optimum values of the deformation parameters obtained by fitting the fusion data with those obtained from inelastic scatterings and the ground state mass calculations. We show that the channel coupling of high multipolarity beyond the quadrupole coupling is dominated by the nuclear coupling and hence higher order Coulomb coupling does not much influence...

  6. Evaporation residue formation competing with the fission process in the 197Au+16O, 12C reactions and fission barriers at a specified J window

    International Nuclear Information System (INIS)

    Evaporation-residue excitation functions for 16O and 12C+197Au reactions were measured by means of the activation technique. The competition between evaporation and fission of the compound nuclei was studied by comparing the observed evaporation-residue data with the published fission excitation functions. A newly devised analysis was applied in order to deduce a fission barrier height at a specified angular momentum and determine the relevant fissioning nucleus as well. We found the fission barriers to be 8.2 MeV for the 211Fr nucleus at 16 ℎ and 8.2 MeV for the 207At nucleus at 27 ℎ. (orig.)

  7. The effect of reaction processing on the physical, morphological, and barrier properties of poly(ethylene 2,6-naphthalene dicarboxylate)/poly(ethylene terephthalate) blends

    Science.gov (United States)

    Uthaisombut, Rujida

    PET/PEN blends have been considered as a new material, combining the economic advantages of PET with the high barrier and thermal properties of PEN, which can extend the limitation of PET packaging applications. However, PET and PEN are inherently incompatible. Extrusion of PET/PEN blends above the melting temperature of both polymers results in transesterification, which was shown to enhance the miscibility of the blend and improve both the clarity and barrier properties of the resultant films. This research focused on the study of the effect of the processing conditions and the blend composition on the transesterification reaction. In addition, the effect of degree of transesterification, the blend composition, and the orientation on the blend characteristics was also studied. The results showed that the primary factors controlling the transesterification reaction were blending time and temperature, whereas the composition of the blends was found to have little or no effect on the interchange reaction. The PET/PEN blends with a degree of transesterification of at least 6% were miscible, homogeneous and optically clear. Further the transesterification reaction had less of an effect on the Tg, the barrier, and the mechanical properties. However, the Tm, % crystallinity, density, and molecular weight average were dependent on the degree of transesterification, regardless of how this degree of transesterification was achieved. The blend composition was a very important factor controlling the thermal, mechanical, and barrier properties of the blends. A depression of the T m, % crystallinity, and molecular weight was found, when a small amount of PEN was added to the PET rich phase, or vice versa. The Tm, % crystallinity and molecular weight average were lowest, when the PEN composition was 40--50 mole %. Moreover, the density of the blends decreased, as the PEN composition increased. However, the Tg, the gas barrier properties and the tensile strength of the blends

  8. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  9. Coupled modelling (transport-reaction) of the fluid-clay interactions and their feed back on the physical properties of the bentonite engineered clay barrier system

    International Nuclear Information System (INIS)

    The originality of this work is to process feed back effects of mineralogical and chemical modifications of clays, in storage conditions, on their physical properties and therefore on their transport characteristics (porosity, molecular diffusion, permeability). These feed back effects are modelled using the KIRMAT code (Kinetic of Reaction and MAss Transfer) developed from the kinetic code KINDIS by adding the effect of water renewal in the mineral-solution reactive cells. KIRMAT resolves mass balance equations associated with mass transport together with the geochemical reactions in a 1D approach. After 100 000 years of simulated interaction at 100 C, with the fluid of the Callovo-Oxfordian geological level (COX) and with iron provided by the steel overpack corrosion, the montmorillonite of the clay barrier is only partially transformed (into illite, chlorite, saponite...). Only outer parts of the modelled profile seem to be significantly affected by smectite dissolution processes, mainly at the interface with the geological environment. The modifications of physical properties show a closure of the porosity at the boundaries of the barrier, by creating a decrease of mass transport by molecular diffusion, essentially at the interface with the iron. Permeability laws applied to this system show a decrease of the hydraulic conductivity correlated with the porosity evolution. Near the COX, the swelling pressure of the clays from the barrier decreases. In the major part of the modelled profile, the engineered clay barrier system seems to keep its initial physical properties (porosity, molecular diffusion, permeability, swelling pressure) and functionalities. (author)

  10. Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode Caenorhabditis elegans

    Science.gov (United States)

    Wu, Qiuli; Li, Yinxia; Li, Yiping; Zhao, Yunli; Ge, Ling; Wang, Haifang; Wang, Dayong

    2013-10-01

    Multi-walled carbon nanotubes (MWCNTs) can be translocated into the targeted organs of organisms. We employed a model organism of the nematode Caenorhabditis elegans to investigate the role of a biological barrier at the primary targeted organs in regulating the translocation and toxicity formation of MWCNTs. A prolonged exposure to MWCNTs at predicted environmental relevant concentrations caused adverse effects associated with both the primary and secondary targeted organs on nematodes. The function of PEGylated modification in reducing MWCNTs toxicity might be mainly due to the suppression of their translocation into secondary targeted organs through the primary targeted organs. A biological barrier at the primary targeted organs contributed greatly to the control of MWCNTs translocation into secondary targeted organs, as indicated by functions of Mn-SODs required for prevention of oxidative stress in the primary targeted organs. Over-expression of Mn-SODs in primary targeted organs effectively suppressed the translocation and toxicity of MWCNTs. Our work highlights the crucial role of the biological barrier at the primary targeted organs in regulating the translocation and toxicity formation of MWCNTs. Our data also shed light on the future development of engineered nanomaterials (ENMs) with improved biocompatibility and design of prevention strategies against ENMs toxicity.Multi-walled carbon nanotubes (MWCNTs) can be translocated into the targeted organs of organisms. We employed a model organism of the nematode Caenorhabditis elegans to investigate the role of a biological barrier at the primary targeted organs in regulating the translocation and toxicity formation of MWCNTs. A prolonged exposure to MWCNTs at predicted environmental relevant concentrations caused adverse effects associated with both the primary and secondary targeted organs on nematodes. The function of PEGylated modification in reducing MWCNTs toxicity might be mainly due to the suppression

  11. Modelling chemical and biological reactions during unsaturated flow in silty arable soils

    Science.gov (United States)

    Michel, Kerstin; Herrmann, Sandra; Ludwig, Bernard

    2010-05-01

    Ion dynamics in arable soils are strongly affected by the chemical and biological transformations triggered by fertilizer input. Hydrogeochemical models may improve our understanding of underlying processes. Our objective was to test the ability of the hydrogeochemical model PHREEQC2 in combination with the parameter optimization programme PEST to describe and predict chemical and biological processes in silty soils triggered by fertilizer application or acidification and to investigate the usefulness of different parameterization approaches. Three different experiments were carried out using undisturbed columns of two topsoils (0-25 cm) from Germany (Göttingen, GO) and from the Oman (Qasha', QA). The columns were irrigated at 10 oC with 3 mm day-1 for one year using 1 mM HCl (HCl experiment) and two fertilizer solutions with low (0.1 to 0.9 mmol L-1) and high concentrations (1.3 to 14.7 mmol L-1) of N (as NH4NO3), K, Ca and Mg. In the fertilization experiments (Fert1, Fert2), the columns were alternately irrigated with the two different solutions for variable time periods. One-dimensional transport and homogenous and heterogenous reactions were calculated using PHREEQC2. The Fert1 experiment was used for calibration. The models were validated using the Fert2 and HCl experiments. The models tested were model variant m1 with no adjustable parameters, model variant m2 in which nitrate concentrations in input solutions and cation exchange capacity were optimized for Fert1, and m3 in which additionally all cation exchange coefficients and ion concentrations in the initial solution were optimized. Model variant m1 failed to predict the concentrations of several cations for both soils (modelling efficiencies (EF) ≤ 0), since N dynamics were not considered adequately. Model variants m2 and m3 described (Fert1 treatment) and predicted (Fert2 and HCl treatment) pH, cation and NO3- concentrations generally more accurately for both soils. For nutrient cations, EF values

  12. A computational method for the systematic screening of reaction barriers in enzymes: Searching for Bacillus circulans xylanase mutants with greater activity towards a synthetic substrate

    CERN Document Server

    Hediger, Martin R; De Vico, Luca; Jensen, Jan H

    2013-01-01

    We present a semi-empirical (PM6-based) computational method for systematically estimating the effect of all possible single mutants, within a certain radius of the active site, on the barrier height of an enzymatic reaction. The intent of this method is not a quantitative prediction of the barrier heights, but rather to identify promising mutants for further computational or experimental study. The method is applied to identify promising single and double mutants of Bacillus circulans xylanase (BCX) with increased hydrolytic activity for the artificial substrate ortho-nitrophenyl \\beta-xylobioside (ONPX$_2$). The estimated reaction barrier for wild-type (WT) BCX is 18.5 kcal/mol, which is in good agreement with the experimental activation free energy value of 17.0 kcal/mol extracted from the observed k$_\\text{cat}$ using transition state theory (Joshi et al., Biochemistry 2001, 40, 10115). The PM6 reaction profiles for eight single point mutations are recomputed using FMO-MP2/PCM/6-31G(d) single points. PM6 ...

  13. Reactions of hypochlorous acid with biological substrates are activated catalytically by tertiary amines.

    Science.gov (United States)

    Prütz, W A

    1998-09-15

    The activation of reactions of HOCl with a variety of model substrates by tertiary amines was investigated spectroscopically by tandem-mix and stopped-flow techniques. HOCl-induced chlorination of salicylate can be sped up by several orders of magnitude by catalytic amounts of trimethylamine (TMN). The effect is obviously due to the fast generation of reactive quarternary chloramonium ions, TMN+ Cl, which act as chain carrier in a catalytic reaction cycle. Of various catalysts tested, quinine shows the highest activity; this is attributable to the quinuclidine (QN) substituent, a bicyclic tertiary amine, forming a particularly reactive chloro derivative, QN+ Cl, which does not decompose autocatalytically. The rate of catalytic salicylate chlorination as a function of pH (around pH 7) depends not at least on the basicity of the tertiary amine; the rate increases with pH in the cases of TMN and quinuclidine (high basicity), but decreases with pH in the case of MES (low basicity). Tertiary amines also catalyze the interaction between HOCl and alkenes, as shown using sorbate as model. Reaction of HOCl with the nucleotides GMP and CMP is sped up remarkably by catalytic amounts of tertiary amines. In the case of GMP the same product spectrum is produced by HOCl in absence and presence of catalyst, but a change in the product spectra is obtained when AMP and CMP are reacted with HOCl in presence of catalyst. Using poly(dA-dT).poly(dA-dT) as DNA model, it is shown that HOCl primarily induces an absorbance increase at 263 nm, which indicates unfolding of the double strand due to fast chlorination of thymidine; a subsequent secondary absorbance decrease can be explained by slow chlorination of adenosine. Both the primary and secondary processes are activated by catalytic amounts of quinine. No evidence was found for a radical pathway in TMN-mediated oxidation of formate by HOCl. The present results suggest that low concentrations of certain tertiary amines have the potential

  14. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    Science.gov (United States)

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  15. A computational method for the systematic screening of reaction barriers in enzymes: searching for Bacillus circulans xylanase mutants with greater activity towards a synthetic substrate

    Directory of Open Access Journals (Sweden)

    Martin R. Hediger

    2013-07-01

    Full Text Available We present a semi-empirical (PM6-based computational method for systematically estimating the effect of all possible single mutants, within a certain radius of the active site, on the barrier height of an enzymatic reaction. The intent of this method is not a quantitative prediction of the barrier heights, but rather to identify promising mutants for further computational or experimental study. The method is applied to identify promising single and double mutants of Bacillus circulans xylanase (BCX with increased hydrolytic activity for the artificial substrate ortho-nitrophenyl β-xylobioside (ONPX2. The estimated reaction barrier for wild-type (WT BCX is 18.5 kcal/mol, which is in good agreement with the experimental activation free energy value of 17.0 kcal/mol extracted from the observed kcat using transition state theory (Joshi et al., 2001. The PM6 reaction profiles for eight single point mutations are recomputed using FMO-MP2/PCM/6-31G(d single points. PM6 predicts an increase in barrier height for all eight mutants while FMO predicts an increase for six of the eight mutants. Both methods predict that the largest change in barrier occurs for N35F, where PM6 and FMO predict a 9.0 and 15.8 kcal/mol increase, respectively. We thus conclude that PM6 is sufficiently accurate to identify promising mutants for further study. We prepared a set of all theoretically possible (342 single mutants in which every amino acid of the active site (except for the catalytically active residues E78 and E172 was mutated to every other amino acid. Based on results from the single mutants we construct a set of 111 double mutants consisting of all possible pairs of single mutants with the lowest barrier for a particular position and compute their reaction profile. None of the mutants have, to our knowledge, been prepared experimentally and therefore present experimentally testable predictions.

  16. Development of dielectric-barrier-discharge ionization.

    Science.gov (United States)

    Guo, Cheng'an; Tang, Fei; Chen, Jin; Wang, Xiaohao; Zhang, Sichun; Zhang, Xinrong

    2015-03-01

    Dielectric-barrier-discharge ionization is an ambient-ionization technique. Since its first description in 2007, it has attracted much attention in such fields as biological analysis, food safety, mass-spectrometry imaging, forensic identification, and reaction monitoring for its advantages, e.g., low energy consumption, solvent-free method, and easy miniaturization. In this review a brief introduction to dielectric barrier discharge is provided, and then a detailed introduction to the dielectric-barrier-discharge-ionization technique is given, including instrumentation, applications, and mechanistic studies. Based on the summary of reported work, possible future uses of this type of ionization source are discussed at the end. PMID:25510973

  17. Zeolite H-BEA catalysed multicomponent reaction: One-pot synthesis of amidoalkyl naphthols - Biologically active drug-like molecules

    Indian Academy of Sciences (India)

    Sunil R Mistry; Rikesh S Joshi; Kalpana C Maheria

    2011-07-01

    Zeolite has been used as an efficient and a novel heterogeneous catalyst for one-pot synthesis of biologically active drug-like molecules, amidoalkyl naphthols. This green route involves multicomponent reaction of 2-naphthol, aromatic aldehydes and amide in the presence of a catalytic amount of zeolite H-Beta (H-BEA) under solvent reflux as well as solvent-free conditions.

  18. Sensitive and Selective Determination of Orotic Acid in Biological Specimens Using a Novel Fluorogenic Reaction.

    Science.gov (United States)

    Yin, Sheng; Dragusha, Shpend; Ejupi, Valon; Shibata, Takayuki; Kabashima, Tsutomu; Kai, Masaaki

    2015-07-01

    Orotic acid is an intermediate in the synthesis pathway of uridine-5'-monophosphate, and increases in body fluids of patients suffering from hereditary disorders such as orotic aciduria and hyperammonemia. In this study, we developed a spectrofluorometric method with or without high-performance liquid chromatography for the selective and sensitive quantification of orotic acid in human biological specimens, using 4-trifluoromethylbenzamidoxime (4-TFMBAO) as a fluorogenic reagent. This reagent provided intensive fluorescence for only orotic acid amongst 62 compounds including structurally related bio-substances such as nucleic acid bases, nucleosides, nucleotides, amino acids, vitamins, bilirubin, uric acid, urea, creatine, creatinine and sugars. Under optimized reaction conditions, orotic acid was reacted with 4-TFMBAO, K3[Fe(CN)6] and K2CO3 in an aqueous solution. The fluorescence produced from the orotic acid derivative was measured at an excitation of 340 nm and an emission of 460 nm. A concentration of 1.2 μM orotic acid per 1.0 mM creatinine in normal urine and 0.64 nmol orotic acid per 5.0 × 10(5) HeLa cells were determined by this method. The present method permitted the facile quantification of orotic acid in healthy human urine and cultured HeLa cells by spectrofluorometry and/or high-performance liquid chromatography. PMID:26026930

  19. Calibration of model constants in a biological reaction model for sewage treatment plants.

    Science.gov (United States)

    Amano, Ken; Kageyama, Kohji; Watanabe, Shoji; Takemoto, Takeshi

    2002-02-01

    Various biological reaction models have been proposed which estimate concentrations of soluble and insoluble components in effluent of sewage treatment plants. These models should be effective to develop a better operation system and plant design, but their formulas consist of nonlinear equations, and there are many model constants, which are not easy to calibrate. A technique has been proposed to decide the model constants by precise experiments, but it is not practical for design engineers or process operators to perform these experiments regularly. Other approaches which calibrate the model constants by mathematical techniques should be used. In this paper, the optimal regulator method of modern control theory is applied as a mathematical technique to calibrate the model constants. This method is applied in a small sewage treatment testing facility. Calibration of the model constants is examined to decrease the deviations between calculated and measured concentrations. Results show that calculated values of component concentrations approach measured values and the method is useful for actual plants. PMID:11848341

  20. BORRELIA BURGDORFERI DNA IN BIOLOGICAL SAMPLES FROM PATIENTS WITH SARCOIDOSIS USING THE POLYMERASE CHAIN REACTION TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    连伟; 罗慰慈

    1995-01-01

    Polymerase chain reaction (PCR) was used to detect the presence of Borretia burgdoferi DNA in biological samples from patients with sarcoidcsis. The target DNA sequence was of chromosomal origin. The amplified DNA sequence was analyzed by agarose gel electrophoresis, PAGE with silver staining, and the identity of amplified DNA was confirmed by restriction enzyme cleavage and DNA-DNA hybridlzation with a 32P-labelled probe. The assay was sensitive to fewer than two copies of B. burgdor feri genome, even in the presence of a 104-fold excess of human eukaryotic DNA, and was also specific to different B. burgdorferl strains tested. Sera seroiogieally positive to B. burgdorferi (n=26), broncbemlveolar lavage fluid and supematant of BALF (n=26) and peripheral blood (n=9) from sarcoidosis patients were tested. The positive rate was low (4/26, 2/26, and 0/9, respectively). It was considered that DNA from B. bur gdor feri may be identified in a minority of patients with s,arcoidosis, and it may play a pathogenetic rote in such cases. More studies need to be done before advancing the hypothesis of an etiologic role of B. burgdorferi in sarcoidosis.

  1. A new approach to the non-oxidative conversion of gaseous alkanes in a barrier discharge and features of the reaction mechanism

    Science.gov (United States)

    Kudryashov, S.; Ryabov, A.; Shchyogoleva, G.

    2016-01-01

    A new approach to the non-oxidative conversion of C1-C4 alkanes into gaseous and liquid products in a barrier discharge is proposed. It consists in inhibiting the formation of deposits on the reactor electrode surfaces due to the addition of distilled water into the flow of hydrocarbon gases. The energy consumption on hydrocarbon conversion decreases from methane to n-butane from ~46 to 35 eV molecule-1. The main gaseous products of the conversion of light alkanes are hydrogen and C2-C4 hydrocarbons. The liquid reaction products contain C5+ alkanes with a predominantly isomeric structure. The results of modeling the kinetics of chemical reactions show that an increase in the molecular weight of the reaction products is mainly due to processes involving CH2 radical and the recombination of alkyl radicals.

  2. A seven-degree-of-freedom, time-dependent quantum dynamics study on the energy efficiency in surmounting the central energy barrier of the OH + CH3 → O + CH4 reaction

    International Nuclear Information System (INIS)

    A time-dependent, quantum reaction dynamics calculation with seven degrees of freedom was carried out to study the energy efficiency in surmounting the approximate center energy barrier of OH + CH3. The calculation shows the OH vibration excitations greatly enhance the reactivity, whereas the vibrational excitations of CH3 and the rotational excitations hinder the reactivity. On the basis of equal amount of total energy, although this reaction has a slight early barrier, it is the OH vibrational energy that is the dominate force in promoting the reactivity, not the translational energy. The studies on both the forward O + CH4 and reverse OH + CH3 reactions demonstrate, for these central barrier reactions, a small change of the barrier location can significantly change the energy efficacy roles on the reactivity. The calculated rate constants agree with the experimental data

  3. Population of isomeric states in fusion and transfer reactions in beams of loosely bound nuclei near the Coulomb barrier

    International Nuclear Information System (INIS)

    The influence of the mechanisms of nuclear reactions on the population of 195mHg and 197mHg(7/2−), 198mTl and 196mTl(7+), and 196mAu and 198mAu(12−) isomeric nuclear states obtained in reactions induced by beams of 3He, 6Li, and 6He weakly bound nuclei is studied. The behavior of excitation functions and high values of isomeric ratios (δm/δg) for products of nuclear reactions proceeding through a compound nucleus and involving neutron evaporation are explained within statistical models. Reactions in which the emission of charged particles occurs have various isomeric ratios depending on the reaction type. The isomeric ratio is lower in direct transfer reactions involving charged-particle emission than in reactions where the evaporation of charged particles occurs. Reactions accompanied by neutron transfer usually have a lower isomeric ratio, which behaves differently for different direct-reaction types (stripping versus pickup reactions)

  4. Reaction pathways by quantum Monte Carlo: Insight on the torsion barrier of 1,3-butadiene, and the conrotatory ring opening of cyclobutene

    Science.gov (United States)

    Barborini, Matteo; Guidoni, Leonardo

    2012-12-01

    Quantum Monte Carlo (QMC) methods are used to investigate the intramolecular reaction pathways of 1,3-butadiene. The ground state geometries of the three conformers s-trans, s-cis, and gauche, as well as the cyclobutene structure are fully optimised at the variational Monte Carlo (VMC) level, obtaining an excellent agreement with the experimental results and other quantum chemistry high level calculations. Transition state geometries are also estimated at the VMC level for the s-trans to gauche torsion barrier of 1,3-butadiene and for the conrotatory ring opening of cyclobutene to the gauche-1,3-butadiene conformer. The energies of the conformers and the reaction barriers are calculated at both variational and diffusional Monte Carlo levels providing a precise picture of the potential energy surface of 1,3-butadiene and supporting one of the two model profiles recently obtained by Raman spectroscopy [Boopalachandran et al., J. Phys. Chem. A 115, 8920 (2011), 10.1021/jp2051596]. Considering the good scaling of QMC techniques with the system's size, our results also demonstrate how variational Monte Carlo calculations can be applied in the future to properly investigate the reaction pathways of large and correlated molecular systems.

  5. Numerical Modeling of In-situ Reaction Barrier by Injection of Ca(OH)2 Solution for CO2 Geological Storage

    Science.gov (United States)

    Xu, T.; Ito, T.

    2008-12-01

    Containment of CO2 in the storage reservoir is a very important issue. We present here an in-situ reaction barrier method to reduce the medium permeability along potential leakage paths of a deep CO2 storage reservoir in a saline formation. An aqueous solution will be injected into the fractures and rocks through injection wells. The solution will have a low viscosity and will not impact formation permeability as long as the solution is left as it is, but when the solution encounters dissolved CO2, precipitation will occur due to chemical reaction. As a result, the permeability will be reduced by filling the pores and fractures in the rocks with the precipitates. This concept has been successfully demonstrated previously through a laboratory experiment using Ca(OH)2 solution. The reduction of permeability in the laboratory experiment has been reproduced by reactive transport modeling using TOUGHREACT. The concept of the in-situ reaction barrier has been applied to a 2-D caprock-aquifer system under field physical and chemical conditions using the modeling tool. Calcite precipitation, permeability reduction, and CO2 leakage mitigation was achieved in the numerical experiment. This concept may be also applicable to prevent the leakage through abandoned wells, to mitigate well cement degradation, and to enhance CO2 mineral trapping.

  6. Role of the interfacial thermal barrier in the effective thermal diffusivity/conductivity of SiC-fiber-reinforced reaction-bonded silicon nitride

    Science.gov (United States)

    Bhatt, Hemanshu; Donaldson, Kimberly Y.; Hasselman, D. P. H.; Bhatt, R. T.

    1990-01-01

    Experimental thermal diffusivity data transverse to the fiber direction for composites composed of a reaction bonded silicon nitride matrix reinforced with uniaxially aligned carbon-coated silicon carbide fibers indicate the existence of a significant thermal barrier at the matrix-fiber interface. Calculations of the interfacial thermal conductances indicate that at 300 C and 1-atm N2, more than 90 percent of the heat conduction across the interface occurs by gaseous conduction. Good agreement is obtained between thermal conductance values for the oxidized composite at 1 atm calculated from the thermal conductivity of the N2 gas and those inferred from the data for the effective composite thermal conductivity.

  7. Nanobarcoding: detecting nanoparticles in biological samples using in situ polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Eustaquio T

    2012-11-01

    Full Text Available Trisha Eustaquio, James F LearyWeldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USABackground: Determination of the fate of nanoparticles (NPs in a biological system, or NP biodistribution, is critical in evaluating an NP formulation for nanomedicine. Current methods to determine NP biodistribution are greatly inadequate, due to their limited detection thresholds. Herein, proof of concept of a novel method for improved NP detection based on in situ polymerase chain reaction (ISPCR, coined “nanobarcoding,” is demonstrated.Methods: Nanobarcoded superparamagnetic iron oxide nanoparticles (NB-SPIONs were characterized by dynamic light scattering, zeta potential, and hyperspectral imaging measurements. Cellular uptake of Cy5-labeled NB-SPIONs (Cy5-NB-SPIONs was imaged by confocal microscopy. The feasibility of the nanobarcoding method was first validated by solution-phase PCR and “pseudo”-ISPCR before implementation in the model in vitro system of HeLa human cervical adenocarcinoma cells, a cell line commonly used for ISPCR-mediated detection of human papilloma virus (HPV.Results: Dynamic light-scattering measurements showed that NB conjugation stabilized SPION size in different dispersion media compared to that of its precursor, carboxylated SPIONs (COOH-SPIONs, while the zeta potential became more positive after NB conjugation. Hyperspectral imaging confirmed NB conjugation and showed that the NB completely covered the SPION surface. Solution-phase PCR and pseudo-ISPCR showed that the expected amplicons were exclusively generated from the NB-SPIONs in a dose-dependent manner. Although confocal microscopy revealed minimal cellular uptake of Cy5-NB-SPIONs at 50 nM over 24 hours in individual cells, ISPCR detected definitive NB-SPION signals inside HeLa cells over large sample areas.Conclusion: Proof of concept of the nanobarcoding method has been demonstrated in in vitro systems, but the technique needs further

  8. (d,p) reactions on 124Sn, 130Te, 138Ba, 140Ce, 142Nd, and 208Pb below and near the Coulomb barrier

    International Nuclear Information System (INIS)

    The reactions 124Sn(d,p)125Sn, 130Te(d,p)131Te, 138Ba(d,p)139Ba, 140Ce(d,p)141Ce, 142Nd(d,p)143Nd, and 208Pb(d,p)209Pb have been investigated by measuring the differential cross sections of the (d,p) reactions and of the elastic scattering of deuterons at various incident energies below and near the Coulomb barrier. Using scattering potentials which describe the elastic scattering of the particles in the entrance and exit channels, reduced normalizations of 40 final states have been determined which are nearly independent of the uncertainties due to the ambiguities of optical potentials. The experimental errors are 8% on the average. In the energy region studied the expected constancy of derived spectroscopic factors is demonstrated

  9. Search for quasifission in 12C + 238U and 18O + 232Th reactions at near and sub-barrier energies

    International Nuclear Information System (INIS)

    The main motivation of this present work is to study the onset of quasifission process in the fissility region > 0.8. It was observed that angular distribution of fission fragments produced in reaction in this fissility region showed anomalously large anisotropies at subbarrier energies as compared to SSPM, implying presence of pre-equilibrium fission. Here, mass-angle correlation studies of 12C + 238U and 18O + 232Th reactions has been reported, forming same compound nucleus 250Cf (Fissility = 0.86), at similar excitation energy and angular momentum. The measurements were carried out in the energy range Ecm /Vb ∼ 0.88 - 1.1, where Ecm is the energy in centre of mass frame and Vb is the Coulomb barrier

  10. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  11. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates.

    Science.gov (United States)

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2015-01-01

    Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol) of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%), methanol extract of Andrographis paniculata (72.15%), and methanol extract of Canthium parviflorum (49.55%) in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r = 0.816) and low-density lipoprotein (r = 0.948) and Costus speciosus in brain (r = 0.977, polyphenols, and r = 0.949, flavonoids) correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates. PMID:26933511

  12. Coupled modelling (transport-reaction) of the fluid-clay interactions and their feed back on the physical properties of the bentonite engineered clay barrier system; Modelisation couplee (transport - reaction) des interactions fluides - argiles et de leurs effets en retour sur les proprietes physiques de barrieres ouvragees en bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Marty, N

    2006-11-15

    The originality of this work is to process feed back effects of mineralogical and chemical modifications of clays, in storage conditions, on their physical properties and therefore on their transport characteristics (porosity, molecular diffusion, permeability). These feed back effects are modelled using the KIRMAT code (Kinetic of Reaction and MAss Transfer) developed from the kinetic code KINDIS by adding the effect of water renewal in the mineral-solution reactive cells. KIRMAT resolves mass balance equations associated with mass transport together with the geochemical reactions in a 1D approach. After 100 000 years of simulated interaction at 100 C, with the fluid of the Callovo-Oxfordian geological level (COX) and with iron provided by the steel overpack corrosion, the montmorillonite of the clay barrier is only partially transformed (into illite, chlorite, saponite...). Only outer parts of the modelled profile seem to be significantly affected by smectite dissolution processes, mainly at the interface with the geological environment. The modifications of physical properties show a closure of the porosity at the boundaries of the barrier, by creating a decrease of mass transport by molecular diffusion, essentially at the interface with the iron. Permeability laws applied to this system show a decrease of the hydraulic conductivity correlated with the porosity evolution. Near the COX, the swelling pressure of the clays from the barrier decreases. In the major part of the modelled profile, the engineered clay barrier system seems to keep its initial physical properties (porosity, molecular diffusion, permeability, swelling pressure) and functionalities. (author)

  13. Enhancement of delayed hypersensitivity reaction with varieties of anti- cancer drugs. A common biological phenomenon

    OpenAIRE

    1981-01-01

    Delayed hypersensitivity reaction in mice was commonly enhanced with various anti-cancer agents administered as single or intermittent high doses but not consecutive divided doses. The effect of anti-cancer agents on the delayed hypersensitivity reaction was thought to be due to elimination of suppressor T cell activity.

  14. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system?

    Science.gov (United States)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld; Dziegielewska, Katarzyna M

    2016-01-01

    Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain's internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses. In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal environment of the body. An essential morphological component of all but one of the barriers is the presence of specialized intercellular tight junctions between the cells comprising the interface: endothelial cells in the blood-brain barrier itself, cells of the arachnoid membrane, choroid plexus epithelial cells, and tanycytes (specialized glial cells) in the circumventricular organs. In the ependyma lining the cerebral ventricles in the adult brain, the cells are joined by gap junctions, which are not restrictive for intercellular movement of molecules. But in the developing brain, the forerunners of these cells form the neuroepithelium, which restricts exchange of all but the smallest molecules between cerebrospinal fluid and brain interstitial fluid because of the presence of strap junctions between the cells. The intercellular junctions in all these interfaces are the physical basis for their barrier properties. In the blood-brain barrier proper, this is combined with a paucity of vesicular transport that is a characteristic of other vascular beds. Without such a diffusional restrain, the cellular transport mechanisms in the barrier interfaces would be ineffective. Superimposed on these physical structures are physiological mechanisms as the cells of the interfaces contain various metabolic transporters and efflux pumps, often ATP-binding cassette (ABC) transporters, that

  15. Near-barrier neutron transfer in reactions 3,6He + 45Sc and 3,6He + 197Au

    Science.gov (United States)

    Samarin, V. V.; Naumenko, M. A.; Penionzhkevich, Yu E.; Skobelev, N. K.; Kroha, V.; Mrazek, J.

    2016-06-01

    Experimental cross sections for formation of 196,198Au isotopes in reactions 3,6He + 197Au and cross sections for formation of 44,46Sc isotopes in reactions 3,6He + 45Sc have been analyzed. To calculate neutron transfer probabilities and cross sections the time- dependent Schrödinger equation for external neutrons of 3He, 6He, 45Sc and 197Au nuclei has been solved numerically. It is shown that the contribution of fusion and subsequent evaporation is significant in the case of reactions 3,6He + 45Sc, whereas in the case of reactions 3,6He + 197Au, it is negligible. Fusion-evaporation was taken into account using NRV evaporation code. Results of calculations demonstrate overall satisfactory agreement with experimental data.

  16. The Mechanisms and Quantification of the Selective Permeability in Transport Across Biological Barriers : the Example of Kyotorphin

    NARCIS (Netherlands)

    Serrano, Isa D.; Freire, Joao M.; Carvalho, Miguel V.; Neves, Mafalda; Melo, Manuel N.; Castanho, Miguel A. R. B.

    2014-01-01

    This paper addresses the mechanisms behind selective endothelial permeability and their regulations. The singular properties of each of the seven blood-tissues barriers. Then, it further revisits the physical, quantitative meaning of permeability, and the way it should be measured based on sound phy

  17. Properties of Random Complex Chemical Reaction Networks and Their Relevance to Biological Toy Models

    OpenAIRE

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2013-01-01

    We investigate the properties of large random conservative chemical reaction networks composed of elementary reactions endowed with either mass-action or saturating kinetics, assigning kinetic parameters in a thermodynamically-consistent manner. We find that such complex networks exhibit qualitatively similar behavior when fed with external nutrient flux. The nutrient is preferentially transformed into one specific chemical that is an intrinsic property of the network. We propose a self-consi...

  18. Perceived Barriers to the Use of High-Fidelity Hands-On Simulation Training for Contrast Reaction Management: Why Programs are Not Using It.

    Science.gov (United States)

    Chinnugounder, Sankar; Hippe, Daniel S; Maximin, Suresh; O'Malley, Ryan B; Wang, Carolyn L

    2015-01-01

    Although subjective and objective benefits of high-fidelity simulation have been reported in medicine, there has been slow adoption in radiology. The purpose of our study was to identify the perceived barriers in the use of high-fidelity hands-on simulation for contrast reaction management training. An IRB exempt 32 questions online web survey was sent to 179 non-military radiology residency program directors listed in the Fellowship and Residency Electronic Interactive Database Access system (FREIDA). Survey questions included the type of contrast reaction management training, cost, time commitment of residents and faculty, and the reasons for not using simulation training. Responses from the survey were summarized as count (percentage), mean ± standard deviation (SD), or median (range). 84 (47%) of 179 programs responded, of which 88% offered CRM training. Most (72%) conducted the CRM training annually while only 4% conducted it more frequently. Didactic lecture was the most frequently used training modality (97%), followed by HFS (30%) and computer-based simulation (CBS) (19%); 5.5% used both HFS and CBS. Of the 51 programs that offer CRM training but do not use HFS, the most common reason reported was insufficient availability (41%). Other reported reasons included cost (33%), no access to simulation centers (33%), lack of trained faculty (27%) and time constraints (27%). Although high-fidelity hands-on simulation training is the best way to reproduce real-life contrast reaction scenarios, many institutions do not provide this training due to constraints such as cost, lack of access or insufficient availability of simulation labs, and lack of trained faculty. As a specialty, radiology needs to better address these barriers at both an institutional and national level. PMID:25939562

  19. Keeping Abreast of the Multiple Biological, Cultural, and Psycho-Social Barriers to Breastfeeding in Modern Society

    OpenAIRE

    Ping, Elizabeth

    2014-01-01

    Breastfeeding provides good-quality nutrition for babies and can be very beneficial for both mom and baby. However, modern women face many challenges in breastfeeding their babies that can be attributed to today’s ever-evolving cultural and psycho-social underpinnings. These multiple barriers to breastfeeding in today’s society hinder women from developing a good breastfeeding relationship with their babies. The various factors that prohibit initiation and prolonged breastfeeding however can ...

  20. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    Energy Technology Data Exchange (ETDEWEB)

    Harca, I. M. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna, Russia and Faculty of Physics, University of Bucharest - P.O. Box MG 11, RO 77125, Bucharest-Magurele (Romania); Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna (Russian Federation); Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D. [IPN, CNRS/IN2P3, Univ. Paris-Sud, 91405 Orsay (France); Chubarian, G. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Piot, J.; Schmitt, C. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Trzaska, W. H. [Accelerator Laboratory of University of Jyväskylä (JYFL), Jyväskylä (Finland); Vardaci, E. [Dipartamento di Scienze Fisiche and INFN (INFN-Na), Napoli (Italy)

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  1. Quasi-elastic heavy-ion transfer reactions from the coulomb barrier up to several tens MeV/u

    International Nuclear Information System (INIS)

    Quasi-elastic transfer reactions populating the continuum states will be analyzed in terms of diffractional model calculations. Optimum Q value predictions will be compared to the data. Competition with other processes such as fragmentation or break-up will be also presented

  2. THE SIZE AND SURFACE COATING OF NANOSILVER DIFFERENTIALLY AFFECTS BIOLOGICAL ACTIVITY IN BLOOD BRAIN BARRIER (RBEC4) CELLS.

    Science.gov (United States)

    Linking the physical properties of nanoparticles with differences in their biological activity is critical for understanding their potential toxicity and mode of action. The influence of aggregate size, surface coating, and surface charge on nanosilver's (nanoAg) movement through...

  3. Fission barrier determinations and fragment angular correlations for the 244Pu, 242Pu, 240U, 238U, 234Th, and 232Th compound nuclei from (t, pf) reactions

    International Nuclear Information System (INIS)

    Fission probabilities and the angular distribution of the fission fragments have been measured for six even-even compound nuclear systems using the (t, pf) reaction. Angular correlations of fission fragments obtained in these experiments provide information about the low-lying collective excitations or transition states at the fission barrier. The (t, p) reaction in particular leads to neutron-rich residual nuclei unobtainable by other methods. The absence of spin coupling for (t, p) reactions on even-even targets provides angular distributions with well defined structure in the region of the fission barrier. The experimental data were obtained using an 18-MeV triton beam on targets of 242Pu, 240Pu, 238U, 236U, 232Th and 230Th at Los Alamos Van-de-Graaff accelerator facility. Outgoing protons were detected at 140 deg relative to the incident triton beam. Excitation energies ranging from 3.0 to 9.0 MeV were obtained in these experiments. Fission fragment angular distributions were measured at 24 angles from 0 deg to 140 deg relative to the kinematic recoil angle. The data were fitted to a series of even Legendre polynomials W(θ) = A0 [1 + ΣL gL PL (cos θ)] and the coefficients g2 through g12 and A0 were determined as a function of excitation energy. The fission probability Pf was obtained from the ratio of A0 to the (t, p) cross-section for the target nucleus. The results exhibit well defined structure in the angular coefficients which correlates with structure in the fission probability for most of the nuclei studied. In an attempt to interpret this observed structure the experimentally determined fitting parameters Pf and g are compared with calculated results of a microscopic model. This model takes into consideration the penetrability and angular dependence of fission through each member of the various transition bands at the saddle point and appropriately sums the results for comparison with the data. The effects of barrier penetration through a two

  4. The role of nuclear reactions in Monte Carlo calculations of absorbed and biological effective dose distributions in hadron therapy

    CERN Document Server

    Brons, S; Elsässer, T; Ferrari, A; Gadioli, E; Mairani, A; Parodi, K; Sala, P; Scholz, M; Sommerer, F

    2010-01-01

    Monte Carlo codes are rapidly spreading among hadron therapy community due to their sophisticated nuclear/electromagnetic models which allow an improved description of the complex mixed radiation field produced by nuclear reactions in therapeutic irradiation. In this contribution results obtained with the Monte Carlo code FLUKA are presented focusing on the production of secondary fragments in carbon ion interaction with water and on CT-based calculations of absorbed and biological effective dose for typical clinical situations. The results of the simulations are compared with the available experimental data and with the predictions of the GSI analytical treatment planning code TRiP.

  5. The mechanisms and quantification of the selective permeability in transport across biological barriers: the example of kyotorphin.

    Science.gov (United States)

    Serrano, Isa D; Freire, Joao M; Carvalho, Miguel V; Neves, Mafalda; Melo, Manuel N; Castanho, Miguel A R B

    2014-02-01

    This paper addresses the mechanisms behind selective endothelial permeability and their regulations. The singular properties of each of the seven blood-tissues barriers. Then, it further revisits the physical, quantitative meaning of permeability, and the way it should be measured based on sound physical chemistry reasoning and methodologies. Despite the relevance of permeability studies one often comes across inaccurate determinations, mostly from oversimplified data analyses. To worsen matters, the exact meaning of permeability is being lost along with this loss of accuracy. The importance of proper permeability calculation is illustrated with a family of derivatives of kyotorphin, an analgesic dipeptide. PMID:24456269

  6. Theoretical study on the degradation reaction of octachlorinated dibenzo-p-dioxin with atomic oxygen O((3)P) in dielectric barrier discharge reactor.

    Science.gov (United States)

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Hu, Jingtian; Qi, Chuansong

    2014-11-01

    Dielectric barrier discharges (DBD) have been used in the degradation of dioxins due to the large number of excimers and free radicals produced in discharge process. In this article, the density functional theory (DFT) is used to study the degradation mechanism of octachlorinated dibenzo-p-dioxin (OCDD) with the atomic oxygen O((3)P) in DBD reactor. The reactants, intermediates, transition states and products are optimized at the MPWB1K/6-31+G(d,p) level. The vibrational frequencies have been calculated at the same level. The reaction pathways and mechanisms are analyzed in detail. The effect of removing the chlorine atom on environment also has been discussed. PMID:25458683

  7. Scattering, fusion and transfer reactions in /sup 16/O+/sup A/Sm at energies close to the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Kittl, J.A.; Testoni, J.E.; Macchiavelli, A.O.; Pacheco, A.J.; Abriola, D.; Gregorio, D.E. di; Etchegoyen, A.; Etchegoyen, M.C.; Fernandez Niello, J.O.; Ferrero, A.M.J.

    1987-09-14

    Recently measured scattering cross sections for the /sup 16/O+/sup 144/Sm system allow to extract a bare potential which is used in a global analysis of scattering, fusion and transfer experimental data for /sup 16/O on different samarium isotopes at energies close to the Coulomb barrier. The analysis is done within the framework of an extension of a method based on the intrinsic-coordinate-dependent phase shifts and the equivalent-spheres formalisms which has been previously reported. Consistent fits are obtained for an important amount of data covering a wide range of target deformations, bombarding energies and scattering angles for different reaction channels. As a significant exception, the fusion excitation function for /sup 144/Sm is overestimated.

  8. Extended optical model analyses of elastic scattering, direct reaction, and fusion cross sections for the 9Be+208Pb system at near-Coulomb-barrier energies

    International Nuclear Information System (INIS)

    Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous χ2 analyses are performed for elastic scattering, DR, and fusion cross section data for the 9Be+208Pb system at near-Coulomb-barrier energies. Similar χ2 analyses are also performed by taking into account only the elastic scattering and fusion data as was previously done by the present authors, and the results are compared with those of the full analysis including the DR cross section data as well. We find that the analyses using only elastic scattering and fusion data can produce very consistent and reliable predictions of cross sections, particularly when the DR cross section data are incomplete. Discussions are also given on the results obtained from similar analyses made earlier for the 9Be+209Bi system

  9. Biological autoxidation. II. Cholesterol esters as inert barrier antioxidants. Self-assembly of porous membrane sacs. An hypothesis.

    Science.gov (United States)

    Kon, S H

    1978-01-01

    The antioxidation defenses recognized thus far appear too weak. Needed are inert barriers to encapsulate foci of activated oxygen (FAOs) and contain their spreading. These capsules must: 1. self-assemble nonenzymatically and spontaneously in face of adversity; 2. resist oxidation and dissolution in water; and 3. be moderately fluid and elastic enough to withstand flexing by tissues. Evidence shows activated oxygen: a. is produced by common cholesterolester (CE)-raising agents; b. boosts accumulation of CEs; and c. splits low-density lipoproteins (LDL), thus releasing CE-rich coalescence-prone lipid micelles. I am proposing that CEs, combined with polar lipids, are uniquely suited to form inert-lipid antioxidation barriers (ILABs). Porous ILAB capsules self-assemble from lipid micelles released by oxidatively degraded LDL. The capsules are thermodynamically unstable but elastic, durable and capable of self-repair through oxidation of ambient LDL. All capsules tend to contract into spheres. Enclosed needle-like "foreign bodies", such as asbestos, puncture the contracting capsules. Hence the odd bulbous architecture of asbestos bodies. ILABs protect from--and their failure initiates and promotes--carcinogenesis and atherosclerosis. ILABs may be mediators of membrane biogenesis. The loss of arterial flexibility in atherosclerosis protects ILAB capsules from breakage. PMID:748727

  10. Comparison between cross sections, saddle point and scission point barriers for the 32S+24Mg reaction

    International Nuclear Information System (INIS)

    One of the principal characteristics of nuclear multifragmentation is the emission of complex fragments of intermediate mass. The statistical multifragmentation model has been used for many years to describe the distribution of these fragments. An extension of the statistical multifragmentation model to include partial widths and lifetimes for emission, interprets the fragmentation process as the near simultaneous limit of a series of sequential binary decays. In this extension, the expression describing intermediate mass fragment emission is almost identical to that of light particle emission. At lower temperatures, similar expressions have been shown to furnish a good description of very light intermediate mass fragment emission. However, this is usually not considered a good approximation to the emission of heavier fragments. These emissions seem to be determined by the characteristics of the system at the saddle-point and its subsequent dynamical evolution rather than by the scission point. Here, we compare the barriers and decay widths of these different formulations of intermediate fragment emission and analyze the extent to which they remain distinguishable at high excitation energy. (author)

  11. The influence of transfer reactions on the sub-barrier fusion enhancement in the systems {sup 58.64}Ni +, {sup 92,100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others

    1995-08-01

    High resolution experiments performed during the past few years demonstrated that the various reaction modes occurring in heavy ion collisions can strongly influence each other. This interrelation of the different reaction modes brings a nuclear structure dependence to the fusion and deep-inelastic channels that were previously described in the framework of pure statistical models. In order to fully understand the interrelation between these reaction channels, a complete set of measurements including elastic and inelastic scattering, few-nucleon transfer and fusion is required. In continuation of our earlier measurements of the fusion cross sections in the system {sup 58,64}Ni + {sup 92,100}Mo we finished the studies of the quasielastic process in these systems. The experiments were done in inverse reaction kinematics using the split-pole spectrograph with its hybrid focal-plane detector for particle identification. The experiments with {sup 100}Mo beams were performed previously. First test runs with {sup 92}Mo showed the possible interference with {sup 98}Mo ions which could be eliminated by using the 13{sup +} charge state from the ECR source. The data from these experiments were completely analyzed. The smallest transfer cross sections are observed for the systems {sup 64}Ni + {sup 100}Mo and {sup 58}Ni + {sup 92}Mo, i.e., the most neutron-rich and neutron-deficient systems, respectively. For the other systems, {sup 64}Ni + {sup 92}Mo and {sup 58}Ni + {sup 100}Mo, the transfer cross sections at energies close to the barrier are about of equal magnitude. This observation does not correlate with the deviation of the experimental fusion cross sections from the coupled-channels predictions. While for {sup 58}Ni + {sup 100}Mo discrepancies between the experimental and theoretical fusion cross sections are observed, the system {sup 64}Ni + {sup 92}Mo which shows about the same transfer yields, is quite well described by the coupled-channels calculations.

  12. On the role of dynamical barriers in barrierless-reactions at low energies: S($^1$D) + H$_2$

    CERN Document Server

    Lara, Manuel; Varandas, A J C; Launay, J -M; Aoiz, F J

    2011-01-01

    Reaction probabilities as a function of total angular momentum and the resulting reaction cross-sections for the collision of open shell S($^1$D) atoms with para-hydrogen have been calculated in the kinetic energy range 0.09--10 meV (1--120 K). The quantum mechanical (QM) hyperspherical reactive scattering method and quasi--classical trajectory (QCT) and statistical quasiclassical trajectory (SQCT) approaches were used. Two different ab initio potential energy surfaces (PESs) have been considered. The widely used RKHS PES by Ho et al. (J. Chem. Phys. 116, 4124, 2002) and the recently published DMBE/CBS PES by Song and Varandas (J. Chem. Phys. 130, 134317, 2009). The calculations at low collision energies reveal very different dynamical behaviors on the two PESs. The reactivity on the RKHS PES is found to be considerably larger than that on the DMBE/CBS PES. The observed differences have their origin in two major distinct topography features. Although both PESs are essentially barrierless for equilibrium H--H ...

  13. Reproductive biology of three sponge species of the genus Xestospongia (Porifera: Demospongiae: Petrosida) from the Great Barrier Reef

    Science.gov (United States)

    Fromont, J.; Bergquist, P. R.

    1994-05-01

    The reproductive development of three species of the Petrosida, Xestospongia bergquistia, X. exigua, and X. testudinaria, was monitored for four years on a fringing reef at Orpheus Island, Great Barrier Reef, Australia. All three species were oviparous and female reproductive activity began prior to males becoming active. X. bergquistia and X. testudinaria were gonochoric and broadcast eggs in spawning events that were synchronous within species. Egg development occurred over more than five months in X. bergquistia and X. testudinaria and two months in X. exigua. Spawning was during periods of warm temperature and occurred in October or November for X. bergquistia and X. testudinaria, and January or February for X. exigua. Lunar phase was implicated in timing of spawning of X. testudinaria. Diel timing of spawning in X. testudinaria and X. bergquistia was consistently a morning event.

  14. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  15. [Control of continuous potato monoculture barrier via biological soil disinfestation method in Yellow River irrigation areas of central Gansu Province, Northwest China].

    Science.gov (United States)

    Zhang, Shu-le; Liu, Guo-feng; Qiu, Hui-zhen; Wang, Di; Zhang, Jun-lian; Shen, Qi-rong

    2015-04-01

    The potential of biological soil disinfestation (BSD) in control of continuous potato monoculture barrier was investigated in present study. BSD involves the induction of soil reduction conditions through incorporation of easily decomposed organic materials into soil, flooding the soil by irrigation, and covering the soil surface with plastic film. Control (CK) was left without cover and organic amendment as well as flooding. Field experiment was conducted for testing the effect of BSD approach on the control of continuous potato monoculture barrier, especially on tube yield, plant growth and development, suppression of soil-borne pathogen, and soil microbial community and enzyme activities. Compared with CK, BSD treatment significantly increased tuber yield by 16.1% and plant biomass by 30.8%, respectively. Meanwhile, the incidence of diseased plant and the ratio of diseased tuber in BSD treatment also significantly decreased by 68.0% and 46.7% as compared to those in CK, respectively. BSD treatment significantly increased the content of chlorophyll and branch numbers per main stem of potato plants, improved the morphological characteristics of potato root system. In the course of BSD before potato sowing, soil pH value and bacteria/fungi significantly increased, but populations of fungi and Fusarium sp. significantly decreased compared with CK. There were no significant changes in populations of bacteria and actinomycetes between CK and BSD treatments. During potato growing stage, the populations of both soil fungi and Fusarium sp. were lower in BSD treatment than those of CK. With the advance of potato growth, the population of Fusarium sp. in BSD treatment gradually increased compared with CK. There were no significant changes in soil enzyme activities in the course of BSD before potato sowing and the whole of potato growing stage. It was concluded that BSD has the potential to control continuous potato monoculture barrier and may be an important element in a

  16. Barriers to accessing biologic treatment for rheumatoid arthritis in Greece: the unseen impact of the fiscal crisis--the Health Outcomes Patient Environment (HOPE) study.

    Science.gov (United States)

    Souliotis, Kyriakos; Papageorgiou, Manto; Politi, Anastasia; Ioakeimidis, Dimitrios; Sidiropoulos, Prodromos

    2014-01-01

    The latest regulatory change in the distribution system of biologic disease-modifying, antirheumatic drugs limited their sale only through the designated pharmacies of the National Organization for Healthcare Services Provision (EOPYY) or the National Health System (NHS) hospitals, adding to the complexity of access to effective treatment for rheumatoid arthritis (RA) in Greece. The aim of this paper was to assess the barriers to access RA treatment, by recording patients', rheumatologists' and EOPYY pharmacists' experiences. One twenty-three patients, 12 rheumatologists and 27 pharmacists from Athens and other urban areas in Greece participated in the study. Three types of standardized questionnaires were used to elicit information from each group of respondents using the method of personal interview for patients and the method of postal survey for doctors and pharmacists. During the last year, 26% of patients encountered problems in accessing their rheumatologist and 49% of patients experienced difficulties in accessing their medication. Ninety-two percent of rheumatologists and 96% of pharmacists confirmed that patients experience difficulties in accessing RA medication. The most commonly reported reasons for reduced access to medical treatment were travel difficulties and long distance from doctor's clinic, as well as delays in booking an appointment. The most frequently reported barriers to access pharmaceutical treatment were difficulties in the prescription process, distance from EOPYY pharmacies and medicine shortages in NHS hospitals. The study showed that RA patients are facing increased barriers to access timely and effective treatment. Redesign of the current system of distribution ensuring the operation of additional points of sale is deemed necessary. PMID:24057144

  17. Study of the (16O, 12C) and (16O, 14C) transfer reactions on the even-even isotopes of samarium near the Coulomb barrier

    International Nuclear Information System (INIS)

    The (16O, 15N), (16O, 14C) and (16O, 12C) reactions at 66 MeV on all the even isotopes of samarium: 144Sm, 148Sm, 150Sm, 152Sm, 154Sm were studied systematically. The energy window positions, angular distributions and integral cross-sections were measured. Data are thus available on all these nuclei from the spherical 144Sm to the permanently deformed 154Sm, through that of the transition region 150Sm. In the passage from the spherical to the highly deformed target the variation of certain parameters could be explained by the volume increase alone. The Q-optimum values (center of gravity of the enegy distributions) reveal no effect attributable to deformation. On the other hand the angular variation of Q-optimum seems to correspond to a lowering of the Coulomb barrier as the mass of the target increases. Finally the integral cross-section variation showed quite different behaviors for the two reactions studied: whereas the alpha transfer remains practically constant the transfer of two protons increases through the neutron shell. This is probably an indication of the important part played by the 2p-2n configurations

  18. Optimization of electrochemical reaction for nitrogen removal from biological secondary-treated milking centre wastewater.

    Science.gov (United States)

    Won, Seung-Gun; Jeon, Dae-Yong; Rahman, Md Mukhlesur; Kwag, Jung-Hoon; Ra, Chang-Six

    2016-01-01

    In order to remove the residual nitrogen from the secondary-treated milking centre wastewater, the electrochemical reaction including NH4-N oxidation and NOx-N reduction has been known as a relatively simple technique. Through the present study, the electrochemical reactor using the Ti-coated IrO2 anode and stainless steel cathode was optimized for practical use on farm. The key operational parameters [electrode area (EA) (cm(2)/L), current density (CD) (A/cm(2)), electrolyte concentration (EC) (mg/L as NaCl), and reaction time (RT) (min)] were selected and their effects were evaluated using response surface methodology for the responses of nitrogen and colour removal efficiencies, and power consumption. The experimental design was followed for the central composite design as a fractional factorial design. As a result of the analysis of variance, the p-values of the second-order polynomial models for three responses were significantly fit to the empirical values. The nitrogen removal was significantly influenced by CD, EC, and RT (p NaCl; RT, 240 min] was revealed as an optimal operational condition. The investigation on cathodic reduction of NOx-N may be required with respect to nitrite and nitrate separately as a future work. PMID:26582173

  19. PLATYPUS: A code for reaction dynamics of weakly-bound nuclei at near-barrier energies within a classical dynamical model

    Science.gov (United States)

    Diaz-Torres, Alexis

    2011-04-01

    A self-contained Fortran-90 program based on a three-dimensional classical dynamical reaction model with stochastic breakup is presented, which is a useful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates (i) integrated complete and incomplete fusion cross sections and their angular momentum distribution, (ii) the excitation energy distribution of the primary incomplete-fusion products, (iii) the asymptotic angular distribution of the incomplete-fusion products and the surviving breakup fragments, and (iv) breakup observables, such as angle, kinetic energy and relative energy distributions. Program summaryProgram title: PLATYPUS Catalogue identifier: AEIG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 342 No. of bytes in distributed program, including test data, etc.: 344 124 Distribution format: tar.gz Programming language: Fortran-90 Computer: Any Unix/Linux workstation or PC with a Fortran-90 compiler Operating system: Linux or Unix RAM: 10 MB Classification: 16.9, 17.7, 17.8, 17.11 Nature of problem: The program calculates a wide range of observables in reactions induced by weakly-bound two-body nuclei near the Coulomb barrier. These include integrated complete and incomplete fusion cross sections and their spin distribution, as well as breakup observables (e.g. the angle, kinetic energy, and relative energy distributions of the fragments). Solution method: All the observables are calculated using a three-dimensional classical dynamical model combined with the Monte Carlo sampling of probability-density distributions. See Refs. [1,2] for further details. Restrictions: The

  20. Determination of the antiepileptics vigabatrin and gabapentin in dosage forms and biological fluids using Hantzsch reaction.

    Science.gov (United States)

    al-Zehouri, J; al-Madi, S; Belal, F

    2001-02-01

    A selective and sensitive method was developed for the determination of the anticonvulsants vigabatrin (I) (CAS 60643-86-9) and gabapentin (II) (CAS 60142-96-3). The method is based on the condensation of the drugs through their amino groups with acetylacetone and formaldehyde according to Hantzsch reaction yeilding the highly fluorescent dihydropyridine derivatives. The yellowish-orange color was also measured spectrophotometrically at 410 nm and 415 nm for I and II, respectively. The absorbance-concentration plots were rectilinear over the ranges 10-70 micrograms/ml and 20-140 micrograms/ml for I and II, respectively. As for the fluorescence-concentration plots, they were linear over the ranges 0.5-10 micrograms/ml and 2.5-20 micrograms/ml with minimum detection limits (S/N = 2) of 0.05 microgram/ml (approximately 2.1 x 10(-8) mol/l) and 0.1 microgram/ml (approximately 5.8 x 10(-7) mol/l) for I and II, respectively. The spectrophotometric method was applied to the determination of I and II in their tablets. The percentage recoveries +/- SD (n = 6) were 99.45 +/- 0.13 and 98.05 +/- 0.53, respectively. The spectrofluorimetric method was successfully applied to the determination of I and II in spiked human urine and plasma. The % recoveries +/- SD (n = 5) were 98.77 +/- 0.29 and 98.39 +/- 0.53 for urine and 99.32 +/- 0.74 and 98.90 +/- 0.96 for plasma, for I and II, respectively. No interference was encountered with the co-administered drugs: valproic acid (CAS 99-66-1), diphenylhydantoin (CAS 57-41-0), phenobarbital (CAS 50-06-6), carbamazepine (CAS 298-46-4), clonazepam (CAS 1622-61-3), clobazam (CAS 22316-47-8) or cimetidine (CAS 51481-61-9). A proposal of the reaction pathway is suggested. The advantages of the proposed methods over existing method are discussed. PMID:11258050

  1. Biological Effects of Thermal Neutrons and the B10(n, α) Li7 reaction

    International Nuclear Information System (INIS)

    Irradiation of animals with thermal neutrons from the Medical Research Reactor (MRR) produces tissue effects which result from the gamma- and particulate-radiations arising from thermal-neutron capture by elements in tissue and shielding materials, and from gamma-radiation and fast neutrons from the fission process in the reactor core. The overall results from thermal-neutron irradiation are a function of the incident nvt. Because the thermal neutron flux decreases rapidly in tissue (HVL ≅ 8 cm), large doses have to be incident on the suríace to ensure an adequate dose at depth. Consequently reactions of lung, gut, bone marrow and mucosa are attributed largely to the gamma-irradiation from thermal-neutron capture in the overlying tissue. Irradiation of dogs heads with an nvt of 1.4 x 1014/cm2 results in epilation, erythema and moist desquamation with an accompanying haematological depression. However, recovery of the bone marrow and healing of the skin occurs in 25 to 30 days. When irradiated with an nvt of 5 x 1013n/cm2 30 min following intravenous injection of 35 mg/kg of boron-10 (B10), the animals show a necrotizing epidermitis, scalp oedema, and conjunctivitis. The brain shows capillary haemorrhages and stasis with neutronal and astrocyte damage and alteration of the capillary endothelium. A marked platelet depression ensues which aggravates the local changes. The animals die from haemorrhage and/or cerebral damage on the fifth to ninth day following irradiation. The effects are attributed to both the gamma-irradiation and the alpha-irradiation produced from the neutron capture of boron B10(n, α) Li7. Irradiation of pig's skin with an nvt of 5 x 1012 n/cm2 produces no histological change. When the skin is irradiated with the same nvt following intravenous injection of 35 mg/kg of boron-10, a classic radioepidermitis is produced which heals in 36 to 40 days. Fractionation of the total nvt into eight applications over 12 days does not reduce the severity of

  2. Study of ecologo-biological reactions of common flax to finely dispersed metallurgical wastes

    Science.gov (United States)

    Zakharova, O.; Gusev, A.; Skripnikova, E.; Skripnikova, M.; Krutyakov, Yu; Kudrinsky, A.; Mikhailov, I.; Senatova, S.; Chuprunov, C.; Kuznetsov, D.

    2015-11-01

    Study was carried out on the influence of metallurgic industrial sludge on morphometric and biochemical indicators as well as productivity of common flax under laboratory and field conditions. In laboratory settings negative influence on seed germinating ability and positive influence on sprouts biomass production in water medium were observed. In sand medium suppression of biological productivity under the influence of sludge together with photosynthetic system II (FS II) activity stimulation were registered. Biochemical study showed peroxidase activity decrease in laboratory, while activity of polyphenol oxidase, superoxide dismutase and catalase were given a mild boost under the influence of sludge. In the field trial, positive influence of sludge on flax photosynthetic apparatus was shown. Positive influence of sludge on vegetation and yield indicators was observed. The analysis of heavy metals content showed excess over maximum allowable concentration (MAC) of copper and zinc in control plants, it may point to the background soil pollution. In the plants from the trial groups receiving 0.5 and 2 ton/ha heavy metals content below the control values was registered. Application of 4 ton/ha led to the maximum content of copper and zinc in the plants among the trial groups. The analysis of soils from the test plots indicated no excess over maximum allowable concentrations of heavy metals. Thus, further study of possibilities of using metallurgic industrial sludge as a soil stimulator in flax cultivation at the application rate of 0.5 t/ha seems promising.

  3. Microwave-assisted digestion procedures for biological samples with diluted nitric acid: identification of reaction products.

    Science.gov (United States)

    Gonzalez, Mário H; Souza, Gilberto B; Oliveira, Regina V; Forato, Lucimara A; Nóbrega, Joaquim A; Nogueira, Ana Rita A

    2009-07-15

    Microwave-assisted sample preparation using diluted nitric acid solutions is an alternative procedure for digesting organic samples. The efficiency of this procedure depends on the chemical properties of the samples and in this work it was evaluated by the determination of crude protein amount, fat and original carbon. Soybeans grains, bovine blood, bovine muscle and bovine viscera were digested in a cavity-microwave oven using oxidant mixtures in different acid concentrations. The digestion efficiency was evaluated based on the determination of residual carbon content and element recoveries using inductively coupled plasma optical emission spectrometry (ICP OES). In order to determine the main residual organic compounds, the digests were characterized by nuclear magnetic resonance ((1)H NMR). Subsequently, studies concerning separation of nitrobenzoic acid isomers were performed by ion pair reversed phase liquid chromatography using a C18 stationary phase, water:acetonitrile:methanol (75:20:5, v/v/v)+0.05% (v/v) TFA as mobile phase and ultraviolet detection at 254 nm. Sample preparation based on diluted acids proved to be feasible and a recommendable alternative for organic sample digestion, reducing both the reagent volumes and the variability of the residues as a result of the process of decomposition. It was shown that biological matrices containing amino acids, proteins and lipids in their composition produced nitrobenzoic acid isomers and other organic compounds after cleavage of chemical bonds. PMID:19559896

  4. PEGylation of SPIONs by polycondensation reactions: a new strategy to improve colloidal stability in biological media

    International Nuclear Information System (INIS)

    In this study, we report on a new route of PEGylation of superparamagnetic iron oxide nanoparticles (SPIONs) by polycondensation reaction with carboxylate groups. Structural and magnetic characterizations were performed by X-ray diffractometry (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The XRD confirmed the spinel structure with a crystallite average diameter in the range of 3.5–4.1 nm in good agreement with the average diameter obtained by TEM (4.60–4.97 nm). The TGA data indicate the presence of PEG attached onto the SPIONs’ surface. The SPIONs were superparamagnetic at room temperature with saturation magnetization (MS) from 36.7 to 54.1 emu/g. The colloidal stability of citrate- and PEG-coated SPIONs was evaluated by means of dynamic light scattering measurements as a function of pH, ionic strength, and nature of dispersion media (phosphate buffer and cell culture media). Our findings demonstrated that the PEG polymer chain length plays a key role in the coagulation behavior of the Mag-PEG suspensions. The excellent colloidal stability under the extreme conditions we evaluated, such as high ionic strength, pH near the isoelectric point, and cell culture media, revealed that suspensions comprising PEG-coated SPION, with PEG of molecular weight 600 and above, present steric stabilization attributed to the polymer chains attached onto the surface of SPIONs

  5. PEGylation of SPIONs by polycondensation reactions: a new strategy to improve colloidal stability in biological media

    Energy Technology Data Exchange (ETDEWEB)

    Viali, Wesley Renato; Silva Nunes, Eloiza da; Santos, Caio Carvalho dos [Universidade Estadual Paulista, Laboratorio de Materiais Magneticos e Coloides, Departamento de Fisico-quimica, Instituto de Quimica (Brazil); Silva, Sebastiao William da; Aragon, Fermin Herrera; Coaquira, Jose Antonio Huamani; Morais, Paulo Cesar [Universidade de Brasilia, Instituto de Fisica, Nucleo de Fisica Aplicada (Brazil); Jafelicci, Miguel, E-mail: jafeli@iq.unesp.br [Universidade Estadual Paulista, Laboratorio de Materiais Magneticos e Coloides, Departamento de Fisico-quimica, Instituto de Quimica (Brazil)

    2013-08-15

    In this study, we report on a new route of PEGylation of superparamagnetic iron oxide nanoparticles (SPIONs) by polycondensation reaction with carboxylate groups. Structural and magnetic characterizations were performed by X-ray diffractometry (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The XRD confirmed the spinel structure with a crystallite average diameter in the range of 3.5-4.1 nm in good agreement with the average diameter obtained by TEM (4.60-4.97 nm). The TGA data indicate the presence of PEG attached onto the SPIONs' surface. The SPIONs were superparamagnetic at room temperature with saturation magnetization (M{sub S}) from 36.7 to 54.1 emu/g. The colloidal stability of citrate- and PEG-coated SPIONs was evaluated by means of dynamic light scattering measurements as a function of pH, ionic strength, and nature of dispersion media (phosphate buffer and cell culture media). Our findings demonstrated that the PEG polymer chain length plays a key role in the coagulation behavior of the Mag-PEG suspensions. The excellent colloidal stability under the extreme conditions we evaluated, such as high ionic strength, pH near the isoelectric point, and cell culture media, revealed that suspensions comprising PEG-coated SPION, with PEG of molecular weight 600 and above, present steric stabilization attributed to the polymer chains attached onto the surface of SPIONs.

  6. Nuclear reactions of the system {sup 6} Li on {sup 58} Ni near the Coulomb barrier; Reacciones nucleares del sistema {sup 6} Li sobre {sup 58} Ni cerca de la barrera de Coulomb

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D.; Aguilera, E.F.; Garcia M, H.; Martinez Q, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    Protons, alpha particles and deuterons coming from the reactions {sup 6} Li + {sup 58} Ni are detected to three different energy around the Coulomb barrier. The possible effects of the weakly bound character of the projectile are studied and the results are compared with previous data for the system {sup 6} Li + {sup 59} Co. (Author)

  7. Biological activities and physicochemical properties of Maillard reaction products in sugar-bovine casein peptide model systems.

    Science.gov (United States)

    Jiang, Zhanmei; Wang, Lizhe; Wu, Wei; Wang, Yu

    2013-12-15

    The purpose of this study was to evaluate the biological activities and physicochemical properties of Maillard reaction products (MRPs), derived from aqueous reducing sugar (ribose, galactose and lactose) and bovine casein peptide (BCP) model systems. The fluorescence intensity of ribose-BCP MRPs reached the maximum value within 1h, while it took 3h for galactose-BCP MRPs. Size exclusion chromatography of all the MRPs indicated molecular rearrangements and production of new smaller molecules, as a function of the heating time. The consumption of ribose and amino groups was the highest in the ribose-BCP MRPs. BCP lost its known angiotensin-I-converting enzyme (ACE) inhibitory activity by the Maillard reaction with reducing sugars. Ribose-BCP MRPs had the lowest ACE inhibitory activity, but they showed the highest 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity and ferrous reducing power among all the MRPs. Galactose-BCP MRPs inhibited, slightly the growth of Caco-2 cells, while ribose-BCPand lactose-BCP MRPs had no cytotoxicity. PMID:23993556

  8. Barrier for the H2CO→H2+CO reaction: A discrepancy between high-level electronic structure calculations and experiment

    International Nuclear Information System (INIS)

    The unimolecular dissociation of formaldehyde to H2+CO was studied using extended basis set calculations and a variety of medium-to-high accuracy correlation recovery techniques. These included second and fourth order perturbation theory, multireference configuration interaction wave functions, coupled cluster theory with perturbative triples and full iterative triples, and estimated full configuration interaction wave functions. The intrinsic error of the electronic structure methods was assessed by extrapolating total energies to the complete basis set limit. Our best estimate of the barrier height, including zero point vibrational effects, is 81.9±0.3 kcal/mol, almost 3 kcal/mol larger than the experimental value of 79.2±0.8 kcal/mol. This estimate includes corrections for the effects of finite basis set truncation (which is negligible at the quintuple zeta level), higher order correlation recovery, core/valence correlation, and scalar relativistic effects. Using the same theoretical approach, we estimate the exothermicity of the dissociation reaction to be -1.6 kcal/mol, compared to experimental values in the -0.4 to -2.2 kcal/mol range. New calculations of the unimolecular dissociation rate constants using a variety of techniques failed to reconcile theory and experiment. (c) 2000 American Institute of Physics

  9. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies

    Directory of Open Access Journals (Sweden)

    Frank eSchreiber

    2012-10-01

    Full Text Available Nitrous oxide (N2O is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH or the reduction of nitrite (NO2- to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO2- to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria. In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO2-, NH2OH and nitroxyl (HNO. Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser based absorption spectroscopy. In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.

  10. Characterisation by PIXE method of trace elements during physico-chemical reactions at the periphery of bioactive glass pastilles in contact with biological fluids

    OpenAIRE

    Jallot, Edouard; Moretto, P.

    2005-01-01

    The prerequisite for bioactive glasses to bond to living bone is the formation of biologically active apatites on their surface in the body. Reactions and bioactivity mechanisms between bioactive glasses and bone depend on the glass composition. We study a glass in the SiO2-Na2O-CaO-P2O5-K2O-Al2O3-MgO system. To characterise physico-chemical reactions at the materials periphery, we immersed the glass pastilles into biological fluids for delays of 5, 10 and 20 days. The surface changes were st...

  11. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    Science.gov (United States)

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. PMID:27211507

  12. Evolution of direct mechanisms with incident energy from the Coulomb-barrier to relativistic energies. - Two-center effects in nucleon transfer between nuclei. - Signatures of nucleon promotion in heavy ion reactions at barrier energies

    International Nuclear Information System (INIS)

    This report contains a review article considering the evolution of direct mechanisms with incident energy in heavy ion reactions and two theoretical articles concerning two-center effects in transfer reactions between heavy ions and the nucleon promotion in heavy ion reactions. See hints under the relevant topics. (HSI)

  13. Static versus energy-dependent nucleus-nucleus potential for description of sub-barrier fusion dynamics of {}_{8}^{16}O+{}^{112,116,120}\\!\\!\\!\\!\\!\\!{}_{50}Sn reactions

    Science.gov (United States)

    Manjeet Singh, Gautam

    2015-11-01

    The static and energy-dependent nucleus-nucleus potentials are simultaneously used along with the Wong formula for exploration of fusion dynamics of {}816O+{}112,116,120{}50Sn reactions. The role of internal structure degrees of freedom of colliding pairs, such as inelastic surface vibrations, are examined within the context of coupled channel calculations performed using the code CCFULL. Theoretical calculations based on the static Woods-Saxon potential along with the one-dimensional Wong formula fail to address the fusion data of {}816O+{}112,116,120{}50Sn reactions. Such discrepancies can be removed if one uses couplings to internal structure degrees of freedom of colliding nuclei. However, the energy-dependent Woods-Saxon potential model (EDWSP model) accurately describes the sub-barrier fusion enhancement of {}816O+{}112,116,120{}50Sn reactions. Therefore, in sub-barrier fusion dynamics, energy dependence in the nucleus-nucleus potential governs barrier modification effects in a closely similar way to that of the coupled channel approach. Supported by Dr. D. S. Kothari Post-Doctoral Fellowship Scheme sponsored by University Grants Commission (UGC), New Delhi, India

  14. Comment on "Fission Mass Widths in $^{19}$F + $^{232}$Th, $^{16}$O + $^{235,238}$ U reactions at near barrier energies

    OpenAIRE

    Ghosh, T.K.; Bhattacharya, P

    2005-01-01

    A critical re-analysis of the experimental data to reject transfer fission component did not change the fragment mass widths and hence the conclusion regarding abrupt rise in mass widths with decreasing energy around Coulomb barrier remains unchanged

  15. Study of the fusion-evaporation reactions for the compound nuclei 58Ni, 60Ni, 62Ni formed by symmetrical and asymmetrical channels from energies below the Coulomb barrier

    International Nuclear Information System (INIS)

    The base of this experimental work is the study of the fusion-evaporation reactions for the compound nuclei 51Ni, 60Ni, 62Ni formed by symmetrical and asymmetrical entrance channels at energies near and below of the Coulomb barrier. The absolute cross sections were determined by means of in-beam γ-ray spectroscopy technique associated with the use of a turning target. Six fusion excitation functions have been established corresponding to the measurements of about 2000 absolute cross sections. The experimental errors are of the order of 10-20%. The excitation functions for complete fusion are analysed with a semi-classical model, and fusion barriers, radii and potential curvatures are extracted. The data are compared with the predictions of several heavy ion potentials. The enhancement of the fusion cross sections at sub-barrier energies can be reproduced either by one dimensional barrier penetration taking into account the zero point motion of the reaction partners, or by quantum mechanical calculations with two degrees of freedom indicating the presence of neck formation is sub-barrier fusion. It seems that the formation of these compound nuclei is limited neither by the entrance channels nor by the Yrast line. The Hauser-Feshbach statistical model (Cascade calculation) predictions for the deexcitation of the compound nuclei agree sufficiently with the data for the exit channels having an intensity superior to 10% of the fusion cross section. On the other hand, a systematic underestimation of the 2α decay mode is observed. A correct parametrization of the entrance channel transmission coefficients does not improve significantly the agreement between the measured and calculated evaporation residue cross sections

  16. A Computational Systems Biology Software Platform for Multiscale Modeling and Simulation: Integrating Whole-Body Physiology, Disease Biology, and Molecular Reaction Networks

    Science.gov (United States)

    Eissing, Thomas; Kuepfer, Lars; Becker, Corina; Block, Michael; Coboeken, Katrin; Gaub, Thomas; Goerlitz, Linus; Jaeger, Juergen; Loosen, Roland; Ludewig, Bernd; Meyer, Michaela; Niederalt, Christoph; Sevestre, Michael; Siegmund, Hans-Ulrich; Solodenko, Juri; Thelen, Kirstin; Telle, Ulrich; Weiss, Wolfgang; Wendl, Thomas; Willmann, Stefan; Lippert, Joerg

    2011-01-01

    Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multiscale by nature, project work, and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug–drug, or drug–metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach. PMID:21483730

  17. A computational systems biology software platform for multiscale modeling and simulation: Integrating whole-body physiology, disease biology, and molecular reaction networks

    Directory of Open Access Journals (Sweden)

    Thomas eEissing

    2011-02-01

    Full Text Available Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multi-scale by nature, project work and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug-drug or drug-metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach.

  18. A Computational Systems Biology Software Platform for Multiscale Modeling and Simulation: Integrating Whole-Body Physiology, Disease Biology, and Molecular Reaction Networks

    OpenAIRE

    ThomasEissing

    2011-01-01

    Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multi-scale by nature, project work and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform co...

  19. Comparative study of fusion barrier distribution in 16O and 18O induced reactions on 232Th and 209Bi targets

    International Nuclear Information System (INIS)

    In order to investigate the influence of projectile excitations and transfer channels, quasi-elastic excitation function measurements with 16,18O projectile on two targets, one heavy (232Th) and the other a lighter target (209Bi) at energies around their Coulomb barrier are investigated. The results are compared with a new CC code CCFULL

  20. Biological Fireproof Barrier Construction and its Fireproof Performance in Tonghai%通海县生物防火隔离带营建及其防火性能研究

    Institute of Scientific and Technical Information of China (English)

    陈玉新

    2012-01-01

    Biological fireproof harrier dominated by Alnus nepalensis and Alnus ferdinamd tree species, which total of 21 , and 25 m wide, 36 km length were built in Hexi, Jiujie, Sijie Township from 2002 to 2005. The effect of fire prevention has been analyzed, results showed that barrier tree of biological fireproof grows rapidly, and have a good function of fire resistance, also, build biological fireproof barrier was economy and with mature technology which can be used wildly.%2002~2005年,在通海县河西、九街、四街镇人工营造以旱冬瓜、川滇桤木为主栽树种的生物防火隔离带,共计21条,宽25m,总长36km.对所营造防火林带的防火效果进行调查分析,结果认为,防火林带树木生长讯速,抗火、耐火性强,有较好的阻火、隔火、断火功能,且节约经费,营造技术较为成熟,可以推广应用.

  1. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Norman R. Saunders

    2016-03-01

    Full Text Available Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain’s internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses. In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal environment of the body. An essential morphological component of all but one of the barriers is the presence of specialized intercellular tight junctions between the cells comprising the interface: endothelial cells in the blood-brain barrier itself, cells of the arachnoid membrane, choroid plexus epithelial cells, and tanycytes (specialized glial cells in the circumventricular organs. In the ependyma lining the cerebral ventricles in the adult brain, the cells are joined by gap junctions, which are not restrictive for intercellular movement of molecules. But in the developing brain, the forerunners of these cells form the neuroepithelium, which restricts exchange of all but the smallest molecules between cerebrospinal fluid and brain interstitial fluid because of the presence of strap junctions between the cells. The intercellular junctions in all these interfaces are the physical basis for their barrier properties. In the blood-brain barrier proper, this is combined with a paucity of vesicular transport that is a characteristic of other vascular beds. Without such a diffusional restrain, the cellular transport mechanisms in the barrier interfaces would be ineffective. Superimposed on these physical structures are physiological mechanisms as the cells of the interfaces contain various metabolic transporters and efflux pumps, often ATP-binding cassette (ABC

  2. More Ideas for Monitoring Biological Experiments with the BBC Computer: Absorption Spectra, Yeast Growth, Enzyme Reactions and Animal Behaviour.

    Science.gov (United States)

    Openshaw, Peter

    1988-01-01

    Presented are five ideas for A-level biology experiments using a laboratory computer interface. Topics investigated include photosynthesis, yeast growth, animal movements, pulse rates, and oxygen consumption and production by organisms. Includes instructions specific to the BBC computer system. (CW)

  3. Characterization of the classical biological false-positive reaction in the serological test for syphilis in the modern era.

    Science.gov (United States)

    Liu, Fan; Liu, Li-Li; Guo, Xiao-Jing; Xi, Ya; Lin, Li-Rong; Zhang, Hui-Lin; Huang, Song-Jie; Chen, Yu-Yan; Zhang, Ya-Feng; Zhang, Qiao; Huang, Ge-Ling; Tong, Man-Li; Jiang, Jie; Yang, Tian-Ci

    2014-06-01

    To characterize the CBFP reaction in the modern era, we analyzed the results of parallel rapid plasma reagin (RPR) and Treponema pallidum particle agglutination (TPPA) tests from a total of 63,765 blood samples obtained at Zhongshan Hospital in the Medical College of Xiamen University from May 2008 to February 2013. Among the 63,765 tested blood samples, 206 (0.32%) had the CBFP reaction. In multivariate analysis, an increased likelihood of the CBFP reaction was associated with female subjects, subjects ≥80years old, and subjects between 16 and 35years old (PRPR test, including false labor, megaloblastic anemias, aplastic anemias, redundant prepuce, congenital malformation of heart, and salpingitis. Among the 206 patients with the CBFP reaction, 35 patients were subjected to follow-up for five years. 26 out of 35 these patients were at a 1:1 initial RPR titer, 8 out of 35 patients were at a 1:2 initial RPR titer, and 1 out of 35 patients were at a 1:4 initial RPR titer. 30 subjects had their RPR seroreverted. In our opinion, additional CBFP research using a large sample population will contribute to the identification of additional underlying serious disorders that are not related to syphilis. Such results could be useful for the prediction and diagnosis of these diseases. PMID:24690532

  4. Synthesis of a Biologically Active Oxazol-5-(4H)-One via an Erlenmeyer-Plo¨chl Reaction

    Science.gov (United States)

    Rodrigues, Catarina A. B.; Martinho, Jose´ M. G.; Afonso, Carlos A. M.

    2015-01-01

    The synthesis of (Z)-4-(4-nitrobenzylidene)-2- phenyloxazol-5(4"H")-one, which is a potent immunomodulator and tyrosinase inhibitor, is described as an experiment for an upper-division undergraduate organic chemistry laboratory course. This compound is produced via an Erlenmeyer-Plo¨chl reaction in the absence of any additional solvents…

  5. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    OpenAIRE

    Namratha Pai Kotebagilu; Vanitha Reddy Palvai; Asna Urooj

    2015-01-01

    Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol) of four medicinal plants, Andrographis paniculata, Cost...

  6. Spectrophotometric Determination of Thioridazine Hydrochloride in Tablets and Biological Fluids by Ion-Pair and Oxidation Reactions

    OpenAIRE

    El-Didamony, Akram; Hafeez, Sameh

    2012-01-01

    Two simple, sensitive and selective spectrophotometric methods have been described for the determination of the psychoactive drug, thioridazine HCl in tablets and in biological fluids. The first method is based on the oxidation of thioridazine HCl with measured excess of KMnO4 under acidic conditions followed by the determination of unreacted oxidant using indigo carmine and methyl orange. The second method is based on the formation of ion-pair complexes with the acidic sulphophthalein dyes s...

  7. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    OpenAIRE

    Yongki Choi; Siu-Tung Yau

    2011-01-01

    Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1) the thermodynamics of the system using electrochemical setup and 2) the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed...

  8. Mass distributions of the system 136Xe + 208Pb at lab energies around the Coulomb barrier: a candidate reactions for production neutron-rich nuclei at N=126

    OpenAIRE

    Kozulin, E. M.; Vardaci, E.; Knyazheva, Galina; Bogachev, Alexey; Dmitriev, S.N.; Itkis, Ioulia; Itkis, M.G.; Knyazev, A.G.; Loktev, T. A.; Novikov, K.V.; Razinkov, E.A.; Rudakov, O.V.; Smirnov, S. V.; Trzaska, Wladyslaw; Zagrebaev, V.I.

    2012-01-01

    Reaction products from the system 136Xe+208Pb at 136Xe ions laboratory energies of 700, 870, and 1020 MeV were studied by two-body kinematics and by a catcher-foil activity analysis to explore the theoretically proposed suitability of such reaction as a means to produce neutron-rich nuclei in the neutron shell closure N=126. Cross sections for products heavier than 208Pb were measured and were found sensibly larger than new theoretical predictions. Transfers of up to 16 nucleons from Xe to Pb...

  9. Reaction 48Ca+208Pb: the capture-fission cross-sections and the mass-energy distributions of fragments above and deep below the Coulomb barrier

    OpenAIRE

    Prokhorova, E. V.; Cherepanov, E. A.; Itkis, M.G.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu.Ts.; Pashkevich, V. V.; Pokrovsky, I. V.; Rusanov, A. Ya.

    2003-01-01

    The capture-fission cross-sections in an energy range of 206-242 MeV of 48Ca-projectiles and mass-energy distributions (MEDs) of reaction products in an energy range of 211-242 MeV have been measured in the 48Ca+208Pb reaction using the double-arm time-of-flight spectrometer CORSET. The MEDs of fragments for heated fission were shown to consist of two components. One component, which is due to classical fusion-fission, is associated with the symmetric fission of the 256No compound nucleus. Th...

  10. Fuzzy barrier distributions

    International Nuclear Information System (INIS)

    Heavy-ion collisions often produce a fusion barrier distribution with structures displaying a fingerprint of couplings to highly collective excitations [1]. Basically the same distribution can be obtained from large-angle quasi-elastic scattering, though here the role of the many weak direct-reaction channels is unclear. For 20Ne + 90Zr we have observed the barrier structures expected for the highly deformed neon projectile, but for 20Ne + 92Zr we find completely smooth distribution (see Fig.1). We find that transfer channels in these systems are of similar strength but single particle excitations are significantly stronger in the latter case. They apparently reduce the 'resolving power' of the quasi-elastic channel, what leads to smeared out, or 'fuzzy' barrier distribution. This is the first case when such a phenomenon has been observed.(author)

  11. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  12. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples

    DEFF Research Database (Denmark)

    Chiper, Alina Silvia; Chen, Weifeng; Mejlholm, Ole;

    2011-01-01

    The generation and evaluation of a dielectric barrier discharge produced inside a closed package made of a commercially available packaging film and filled with gas mixtures of Ar/CO2 at atmospheric pressure is reported. The discharge parameters were analysed by electrical measurements and optical...... emission spectroscopy in two modes of operation: trapped gas atmosphere and flowing gas atmosphere. Gas temperature was estimated using the OH(A–X) emission spectrum and the rotational temperature reached a saturation level after a few minutes of plasma running. The rotational temperature was almost three...

  13. An efficient domino reaction in ionic liquid: synthesis and biological evaluation of some pyrano- and thiopyrano-fused heterocycles.

    Science.gov (United States)

    Parmar, Narsidas J; Patel, Rikin A; Parmar, Bhagyashri D; Talpada, Navin P

    2013-03-15

    An improved domino/Knoevenagel-hetero-Diels-Alder reaction of two new aldehyde substrates; 7-olefinoxy-coumarin-8-carbaldehyde and 2-alkensulfanyl-quinoline-3-carbaldehyde, with pyrazolones was studied in ionic liquid triethylammonium acetate (TEAA), affording a series of pyrazolopyran annulated-pyrano-fused coumarins, and thiopyrano-fused quinolones. Besides acting as catalyst, since no additional catalyst used, the ionic liquid TEAA also promised its easy recovery. In all new polyheterocycles, the cis-fusion of two pyranyl rings had been inferred from 2D NMR COSY and NOESY experiments. All are good antitubercular agents, as they are found active against Mycobacterium tuberculosis H37Rv, and antibacterial agents, as they are found active against three Gram-positive (Streptococcus pneumoniae, Clostridium tetani, Bacillus subtilis) and three Gram-negative (Salmonella typhi, Vibrio cholerae, Escherichia coli) bacteria. PMID:23414843

  14. SU-E-T-26: A Study On the Influence of Photonuclear Reactions On the Biological Effectiveness of Therapeutic High Energy X-Ray Beam

    Energy Technology Data Exchange (ETDEWEB)

    Wakita, A [Tokyo Institute of Technology, Yokohama-shi, Kanagawa (Japan); National Cancer Center Hospital, Chuo-ku, Tokyo (Japan); Matsufuji, N [Tokyo Institute of Technology, Yokohama-shi, Kanagawa (Japan); National Institute of Radiological Sciences, Chiba-shi, Chiba (Japan); Kohno, T [Tokyo Institute of Technology, Yokohama-shi, Kanagawa (Japan); Kodaira, S [National Institute of Radiological Sciences, Chiba-shi, Chiba (Japan); Yokoyama, K; Suzuki, Y; Itami, J [National Cancer Center Hospital, Chuo-ku, Tokyo (Japan)

    2014-06-01

    Purpose: Photons from a modern high-energy therapeutic linear accelerator used in X-ray radiotherapy causes photonuclear reactions in an accelerator or patient's body. The aim of this study is to evaluate the biological effectiveness including these particles by Microdosimetric Kinetic Model (MKM) based on microdosimetry. Methods: A linear accelerator operating at 15 MV was used. CR-39 was used to obtain LET spectra of secondary ions selectively, as CR-39 is regarded insensitive to photons. CR-39 was put on the central axis of the X-ray beam at depths of 0, 5 and 10 cm in plastic phantom at a source to detector distance of 100 cm. Pits formed by the traversal of ions were etched then analyzed to obtain restricted LET distribution. Frequency-mean and dose-mean lineal energy was evaluated from the relationship between the restricted LET and the lineal energy required to evaluate the biological effectiveness by MKM. The relationship was calculated by Monte Carlo simulations with GEANT4. Results: Restricted LET distributions of secondary particles showed broad distributions that decreases exponentially with increasing LET. Frequency-mean and dose-mean lineal energy were determined uniquely within the scope of the energies of secondary particles generated from photons of 15 MeV. The frequency-mean lineal energies at the depth of 0, 5 and 10 cm were 15.1, 16.0 and 19.7 keV/μm respectively, and the dose-mean lineal energies were 18.6, 20.5 and 19.6 keV/μm, respectively. RBE of secondary particles for HSG cell evaluated by MKM was about 2.0 at all depths, and RBE of all particles including photons was evaluated 1.0. Conclusion: We investigated the biological effectiveness of secondary particles by photonuclear reactions. The method to evaluate RBE by MKM was established with measurements and simulations. However, the influence of these secondary ions on RBE was found negligible in the entire biological effectiveness of the high-energy X-ray. This study has been

  15. Neutron spectrometry in a natural uranium slab using the 6Li(n,t)4He reaction and surface barrier detectors

    International Nuclear Information System (INIS)

    The advantage of using neutron spectrometry based on the energy distributions of the tritons produced by the reaction 6Li(n,t)4He has already been stressed in previous publications. The data are presented from two series of measurements carried out on a natural uranium slab. The stability and the reproducibility of Et distribution measurements have been verified. In the second series the background noise was eliminated. Preliminary treatment of the data has made it possible to define the energy range analyzed; it covers the whole field of low energies. (authors)

  16. Spectroscopic factors measurements in the s,d and f,p shells below and above the Coulomb barrier by (3He,d) reactions

    International Nuclear Information System (INIS)

    The overlap of t and d or 3He and d wave functions may be measured by one neutron transfer in (d,t) or one proton transfer in (3He,d). The measurement of the resulting normalization constant has been performed in subcoulombic conditions in the case of 58Ni(3He,d)59Cu and 60Ni(3He,d)61Cu leading to the first 3/2- and 1/2- states with a position sensitive detector in a Buechner spectrograph. The result: D2=2.7+-0.2 104MeV2 fm3 is in agreement with the D2 measurement for (t,d) reactions [3.1+-0.2 104 MeV2 fm3] and with the theoretical value proposed by L.J.B. Goldfarg and coworkers. This result was used for a determination of the spectroscopic factors of the 1.379MeV 3/2- state, the 1.507MeV 1/2- state and the 1.758MeV 3/2- state in 57Co. The subcoulombic approximation is also shown to be valid even in the case of (d,p) reactions, by the measurement of angular distributions and excitation curves of 60Ni(d,p) reactions leading to the excited states at 4.760MeV (l=2) and 4.907MeV (l=0). In the second part, some spectroscopic factors in the s-d shell were measured by (3He,d) reactions at MP Tandem energies. In the case of 27Al(3He,d)28Si (states at 4.62, 6.88, 6.89, 9.32 and 0.38MeV) the normalization constant D02 (deduced from the subcoulombic D2 value) together with the first order finite range approximation leads to spectroscopic factors in good agreement with Wildenthal theoretical results. For 28Si(3He,d)29p however, the values are too high compared to 29Si. The conclusion is that it is better to use the DWBA treatment at subcoulombic energies everytime the experimental conditions may be fulfilled

  17. Structure and reaction studies of biological organic and inorganic composite materials: Abalone shells, diatoms, and a unique birch bark

    Science.gov (United States)

    Zaremba, Charlotte Marie

    Biopolymer/calcium carbonate composites grown on inorganic abiotic substrates implanted between the shell and the shell-secreting epithelium of live red abalones (Haliotis rufescens) results in an unusual highly (104)-oriented aggregate of microcrystalline calcite that precedes nacre deposition. Calcite of this orientation has never before been observed in nature. Also with this method, nacre deposition is found to correct for calcite surface roughness and chemically anomalous surfaces. Pole figure X-ray diffraction studies of these "flat pearls" provide comparisons of preferred orientation of the various mineral components of the abalone shell. Complete conversion of the aragonite in abalone nacre to hydroxyapatite in hydrothermal phosphate solution results in an oriented polycrystalline aggregate with ultrastructure preservation and an unexpected preferred orientation different from that of other biominerals and abiogenic CaCO3 samples subjected to this reaction. The new orientation, which increases with reaction time, may result from the organization of the organic matrix in the nacre, which directs the hydrothermal solution through the material. This orientation suggests strongly that the conversion proceeds via a dissolution-recrystallization mechanism, rather than by topotaxy, which was previously proposed. In addition to cellulose I, a highly oriented cellulose-II-like polymer was found in the bark of Prunus serrula, an exceptionally strong, tough, and extensible composite film. The cellulose II polymorph, which has not previously been found in nature, may be accordion-folded in the plane of the bark thickness and contribute to the strength and unusual behavior with plasticization of this natural film. The silica frustule of the diatom Skeletonema costatum has a surface area of 135 mm2/g and contains 1.5--2 wt % occluded organic. This organic includes a water-insoluble scaffolding. When treated with organic oxidizers, the chitin secreted by the diatom

  18. Synthesis, Reactions and Biological Evaluation of Some New Naphtho[2,1-b]furan Derivatives Bearing a Pyrazole Nucleus

    Directory of Open Access Journals (Sweden)

    Ahemed M. El-Agrody

    2011-01-01

    Full Text Available Vilsmeier formylation of 2-(1-phenylhydrazonoethylnaphtho[2,1-b]furan (2 gave 3-naphtho[2,1-b]furan-2-yl-1-phenyl-1H-pyrazole-4-carbaldehyde (3, which was reacted with C- and N-nucleophiles to afford naphthofuranpyrazol derivatives 4-8. Treatment of 2-[(3-(naphtho[2,1-b]furan-2-yl-1-phenyl-1H-pyrazol-4-ylmethylene]-malononitrile (4a with reactants having active hydrogen and Et3N gave the corresponding pyrazoline, pyran and chromene addition product derivatives 10, 12 and 13, consisting of three different connected heterocyclic moieties. Reaction of 1-((3-(naphtho[2,1-b]furan-2-yl-1-phenyl-1H-pyrazol-4-yl methylene-2-phenylhydrazone (6b with AcONa and ethyl bromoacetate or chloroacetone afforded the thiazolidinone and methylthiazole derivatives 14 and 15, respectively. In addition, intramolecular cyclization of 6d with Ac2O afford the corresponding 1,3,4-thiadiazol-2-yl acetamide derivative 16. The structures of the synthesized compounds were confirmed by IR, 1H-NMR/13C-NMR and mass spectral studies. Compound 14 showed promising effects against the tested Gram positive and negative bacteria and fungi.

  19. Information barriers

    International Nuclear Information System (INIS)

    An information barrier (IB) consists of procedures and technology that prevent the release of sensitive information during a joint inspection of a sensitive nuclear item, and provides confidence that the measurement system into which it has been integrated functions exactly as designed and constructed. Work in the U.S. on radiation detection system information barriers dates back at least to 1990, even though the term is more recent. In January 1999, an Information Barrier Working Group (IBWG) was formed in the United States to help coordinate technical efforts related to information barrier research and development (R and D). This paper presents an overview of the efforts of this group, by its present and former Chairs, as well as recommendations for further information barrier R and D. Progress on the demonstration of monitoring systems containing IBs is also provided. From the U.S. IBWG perspective, the top-level functional requirements for the information barrier portion of an integrated radiation signature-information barrier inspection system are twofold: The host must be assured that its classified information is protected from disclosure to the inspecting party; and The inspecting party must be confident that the integrated inspection system measures, processes, and presents the radiation-signature-based measurement conclusion in an accurate and reproducible manner. It is the position in the United States that in the absence of any agreement to share classified nuclear weapons design information while implementing an inspection regime, the need to protect host country classified warhead design information is paramount and overrules the need to provide confidence to the inspecting party regarding the accuracy and reproducibility of the measurements. The U.S. IBWG has reached a consensus on several critical design elements that define a general standard for radiation signature information barrier design. Technical specialists from cooperating parties must be

  20. X-ray microanalysis in STEM of short-term physico-chemical reactions at bioactive glass particles / biological fluids interface. Determination of O/Si atomic ratios

    CERN Document Server

    Blanchet, V; Michel, J; Wortham, L; Laurent-Maquin, D; Balossier, G

    2004-01-01

    Short-term physico-chemical reactions at the interface between bioactive glass particles and biological fluids are studied and we focus our attention on the measurements of O/Si atomic ratio. The studied bioactive glass is in the SiO2-Na2O-CaO-P2O5-K2O-Al2O3-MgO system. The elemental analysis is performed at the submicrometer scale by STEM associated with EDXS and EELS. We previously developed an EDXS quantification method based on the ratio method and taking into account local absorption corrections. In this way, we use EELS data to determine, by an iterative process, the local mass thickness which is an essential parameter to correct absorption in EDXS spectra. After different delays of immersion of bioactive glass particles in a simulated biological solution, results show the formation of different surface layers at the bioactive glass periphery. Before one day of immersion, we observe the presence of an already shown (Si,O,Al) rich layer at the periphery. In this paper, we demonstrate that a thin electron...

  1. The fusion fission and quasi-fission processes in the reaction 48Ca + 208Pb at energies near the Coulomb barrier

    Science.gov (United States)

    Prokhorova, E. V.; Bogachev, A. A.; Itkis, M. G.; Itkis, I. M.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Pashkevich, V. V.; Rusanov, A. Ya.

    2008-04-01

    Mass-energy distributions (MEDs) and capture-fission cross sections have been measured in the reaction 48Ca + 208Pb → 256No at the energies E=206-242 MeV using a double-arm time-of-flight spectrometer CORSET. It has been observed that MED of the fragments consists of two parts, namely, the classical fusion-fission process corresponding to the symmetric fission of 256No and quasi-fission "shoulders" corresponding to the light fragment masses ˜60-90 u and complimentary heavy fragment masses. The quasi-fission "shoulders" have a higher total kinetic energy (TKE) as compared with that expected for the classical fission. A mathematical formalism was employed for the MEDs fragment decomposition into fusion-fission and quasi-fission components. In the fusion-fission process a high-energy Super-Short mode has been discovered for the masses M=130-135 u and the TKE of ≈233 MeV.

  2. The fusion-fission and quasi-fission processes in the reaction 48Ca + 208Pb at energies near the Coulomb barrier

    International Nuclear Information System (INIS)

    Mass-energy distributions (MEDs) and capture-fission cross sections have been measured in the reaction 48Ca + 208Pb →256No at the energies Elab=206-242 MeV using a double-arm time-of-flight spectrometer CORSET. It has been observed that MED of the fragments consists of two parts, namely, the classical fusion-fission process corresponding to the symmetric fission of 256No and quasi-fission 'shoulders' corresponding to the light fragment masses ∼60-90 u and complimentary heavy fragment masses. The quasi-fission 'shoulders' have a higher total kinetic energy (TKE) as compared with that expected for the classical fission. A mathematical formalism was employed for the MEDs fragment decomposition into fusion-fission and quasi-fission components. In the fusion-fission process a high-energy Super-Short mode has been discovered for the masses MH=130-135 u and the TKE of ∼233 MeV

  3. A Green Approach to the Synthesis of Biologically Important Indeno[2,1-e]pyrazolo[5,4-b]pyridines via Microwave-assisted Multi-component Reactions in Water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A green approach to the synthesis of biologically important indeno[2,1-e]pyrazolo[5,4-b]pyridines was suc-cessfully realized via multi-component reactions of aldehyde, 3-methyl-l-phenyl-1H-pyrazol-5-amine and 1,3-indanedione in water under microwave irradiation without catalyst. This protocol has the prominent advantages of environmental-friendliness, short reaction time, excellent yields, low cost, easy operation as well as broad scope of applicability.

  4. Information barriers

    International Nuclear Information System (INIS)

    Full text: An information barrier (IB) consists of procedures and technology that prevent the release of sensitive information during a joint inspection of a sensitive nuclear item, and provides confidence that the measurement system into which it has been integrated functions exactly as designed and constructed. Work in the U.S. on radiation detection system information barriers dates back at least to 1990, even though the terminology is more recent. In January 1999 the Joint DoD-DOE Information Barrier Working Group was formed in the United States to help coordinate technical efforts related to information barrier R and D. This paper presents an overview of the efforts of this group, by its Chairs, as well as recommendations for further information barrier R and D. Progress on the demonstration of monitoring systems containing IBs is also provided. From the U.S. perspective, the basic, top-level functional requirements for the information barrier portion of an integrated radiation signature-information barrier inspection system are twofold: The host must be assured that his classified information is protected from disclosure to the inspecting party; and The inspecting party must be confident that the integrated inspection system measures, processes, and presents the radiation-signature-based measurement conclusion in an accurate and reproducible manner. It is the position of the United States that in the absence of any agreement to share classified nuclear weapons design information in the conduct of an inspection regime, the requirement to protect host country classified warhead design information is paramount and admits no tradeoff versus the confidence provided to the inspecting party in the accuracy and reproducibility of the measurements. The U.S. has reached an internal consensus on several critical design elements that define a general standard for radiation signature information barrier design. These criteria have stood the test of time under intense

  5. Temporal Lobe Reactions After Carbon Ion Radiation Therapy: Comparison of Relative Biological Effectiveness–Weighted Tolerance Doses Predicted by Local Effect Models I and IV

    International Nuclear Information System (INIS)

    Purpose: To compare the relative biological effectiveness (RBE)–weighted tolerance doses for temporal lobe reactions after carbon ion radiation therapy using 2 different versions of the local effect model (LEM I vs LEM IV) for the same patient collective under identical conditions. Methods and Materials: In a previous study, 59 patients were investigated, of whom 10 experienced temporal lobe reactions (TLR) after carbon ion radiation therapy for low-grade skull-base chordoma and chondrosarcoma at Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany in 2002 and 2003. TLR were detected as visible contrast enhancements on T1-weighted MRI images within a median follow-up time of 2.5 years. Although the derived RBE-weighted temporal lobe doses were based on the clinically applied LEM I, we have now recalculated the RBE-weighted dose distributions using LEM IV and derived dose-response curves with Dmax,V-1 cm³ (the RBE-weighted maximum dose in the remaining temporal lobe volume, excluding the volume of 1 cm³ with the highest dose) as an independent dosimetric variable. The resulting RBE-weighted tolerance doses were compared with those of the previous study to assess the clinical impact of LEM IV relative to LEM I. Results: The dose-response curve of LEM IV is shifted toward higher values compared to that of LEM I. The RBE-weighted tolerance dose for a 5% complication probability (TD5) increases from 68.8 ± 3.3 to 78.3 ± 4.3 Gy (RBE) for LEM IV as compared to LEM I. Conclusions: LEM IV predicts a clinically significant increase of the RBE-weighted tolerance doses for the temporal lobe as compared to the currently applied LEM I. The limited available photon data do not allow a final conclusion as to whether RBE predictions of LEM I or LEM IV better fit better clinical experience in photon therapy. The decision about a future clinical application of LEM IV therefore requires additional analysis of temporal lobe reactions in a comparable

  6. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0.

    Science.gov (United States)

    Cheng, Tao; Xiao, Hai; Goddard, William A

    2015-12-01

    The great interest in the photochemical reduction from CO2 to fuels and chemicals has focused attention on Cu because of its unique ability to catalyze formation of carbon-containing fuels and chemicals. A particular goal is to learn how to modify the Cu catalysts to enhance the production selectivity while reducing the energy requirements (overpotential). To enable such developments, we report here the free-energy reaction barriers and mechanistic pathways on the Cu(100) surface, which produces only CH4 (not C2H4 or CH3OH) in acid (pH 0). We predict a threshold potential for CH4 formation of -0.52 V, which compares well to experiments at low pH, -0.45 to -0.50 V. These quantum molecular dynamics simulations included ∼5 layers of explicit water at the water/electrode interface using enhanced sampling methodology to obtain the free energies. We find that that chemisorbed hydroxyl-methylene (CH-OH) is the key intermediate determining the selectivity for methane over methanol. PMID:26562750

  7. Structure information from fusion barriers

    Indian Academy of Sciences (India)

    S V S Sastry; S Santra

    2000-06-01

    It is shown that the analysis of fusion barrier distributions is not always an unambiguous test or a ‘fingerprint’ of the structure information of the colliding nuclei. Examples are presented with same fusion barrier distributions for nuclei having different structures. The fusion excitation functions for 16O+208Pb, using the coupled reaction channel (CRC) method and correct structure information, have been analysed. The barrier distributions derived from these excitation functions including many of the significant channels are featureless, although these channels have considerable effects on the fusion excitation function. However, a simultaneous analysis of the fusion, elastic and quasi-elastic channels would fix the structure and the reaction unambiguously

  8. Fish barriers

    International Nuclear Information System (INIS)

    In addition to literature reviews laboratory experiments with both strobe light and different kinds of sound stimuli were carried out. In the experiments silver eel, brown trout, arctic char and salmon smolts were tested. The experiments showed that in darkness silver eel avoided strobe light with intensities between 0.4 and 8.7 lux with 80-90% avoidance in 8.7 lux. The avoidance reactions decreased when background light was raised to 9 lux. Brown trout did not show as strong avoidance reactions possibly due to aggressive behaviour between different individuals of brown trout. The avoidance reaction was however more pronounced in dim background lift with an intensity of 5 lux than in darkness. The experiments also showed that the avoidance reactions started within a few seconds after exposure to strobe light. The frequencies 6.0 and 15 Hz were more effective as triggers of avoidance reactions than were the frequencies 2.1 and 160 Hz. Arctic char did not show any avoidance reactions to strobe light. It was actually attracted to strobe light with the frequency 160 Hz in total darkness and indifferent in dim background light 10 lux. Experiments in running water also showed that salmon smolts could be diverted from an area exposed to strobe light with the frequency 15.0 Hz. The effect was more pronounced in darkness than in dim background light and also more pronounced when water current was 20 cm/s than when it was 40 or 60 cm/s. Experiments to test the avoidance reactions to sound was also performed. The evaluation of these results where however complicated by the fact that the fishes swam rapidly to and fro in the experimental chamber and thus by pure chance very frequently were close to the sound generator

  9. Exploring techniques for determining fusion barrier distributions

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, J.R.; Timmers, H.; Dasgupta, M.; Hinde, D.J.; Lemmon, R.C.; Mein, J.C.; Morton, C.R.; Newton, J.O.

    1994-06-01

    Quasi-elastic scattering excitation functions, at backward angles, for reactions of {sup 16} O on {sup 92} Zr, {sup 144} Sm, {sup 154} Sm and {sup 186} W have been measured. A method for extracting barrier distributions from these data is presented. The distributions from the scattering data are compared with those from fusion, previously measured for these same reactions. All measured quasi-elastic functions decrease smoothly with energy although the rate of decrease is different for each reaction. The first differential with respect to energy of the quasi-elastic excitation function reflects the distribution of barriers for each reaction. 18 refs., 7 figs.

  10. Neutron spectrometry in a natural uranium slab using the {sup 6}Li(n,t){sup 4}He reaction and surface barrier detectors; Spectrometrie des neutrons dans un massif d'uranium naturel au moyen de la reaction {sup 6}Li(n,t){sup 4}He a l'aide de detecteurs a barriere de surface

    Energy Technology Data Exchange (ETDEWEB)

    De Leeuw-Gierts, G.; De Leeuw, S. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1966-10-01

    The advantage of using neutron spectrometry based on the energy distributions of the tritons produced by the reaction {sup 6}Li(n,t){sup 4}He has already been stressed in previous publications. The data are presented from two series of measurements carried out on a natural uranium slab. The stability and the reproducibility of E{sub t} distribution measurements have been verified. In the second series the background noise was eliminated. Preliminary treatment of the data has made it possible to define the energy range analyzed; it covers the whole field of low energies. (authors) [French] L'interet d'effectuer la spectrometrie des neutrons a partir des distributions des energies de tritons emis lors de la reaction {sup 6}Li(n,t){sup 4}He a ete souligne dans des publications precedentes. Dans ce travail, on presente les donnees de deux series de mesures dans un massif d'uranium naturel. On a pu verifier la stabilite et la reproductibilite des mesures des distributions E{sub t}. Dans la deuxieme serie, le bruit de fond a ete elimine. Un traitement preliminaire des donnees a permis de mettre en evidence le domaine analyse des energies, on voit qu'il couvre tout le domaine des faibles energies. (auteurs)

  11. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  12. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  13. Innovatives liposomes for overcoming biological barriers

    OpenAIRE

    Chessa, Maura

    2013-01-01

    In this thesis work were prepared and characterized liposomes and liposomes modified with a coating of chitosan called chitosomes. Through these structures were conveyed drugs of natural origin with anti-inflammatory and antioxidant properties: quercetin,phycocyanin and curcumin. The liposomes loading quercetin and phycocyanin are designed for a topical application and were tested on new born pig skin. Liposomes and chitosomes loading curcumin are designed for pulmonary delivery as a cure for...

  14. Barrier experiment: Shock initiation under complex loading

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-12

    The barrier experiments are a variant of the gap test; a detonation wave in a donor HE impacts a barrier and drives a shock wave into an acceptor HE. The question we ask is: What is the trade-off between the barrier material and threshold barrier thickness to prevent the acceptor from detonating. This can be viewed from the perspective of shock initiation of the acceptor subject to a complex pressure drive condition. Here we consider key factors which affect whether or not the acceptor undergoes a shock-to-detonation transition. These include the following: shock impedance matches for the donor detonation wave into the barrier and then the barrier shock into the acceptor, the pressure gradient behind the donor detonation wave, and the curvature of detonation front in the donor. Numerical simulations are used to illustrate how these factors affect the reaction in the acceptor.

  15. Sprache als Barriere (Language as a Barrier)

    Science.gov (United States)

    Mattheier, Klaus

    1974-01-01

    The concept of language barrier has its derivations in the fields of dialectology, sociology and psychology. In contemporary usage however, the concept has two meanings i.e. regional-cultural barrier and socio-cultural barrier. (Text is in German.) (DS)

  16. Apparent tunneling in chemical reactions

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Hansen, Flemming Yssing; Billing, G. D.

    2000-01-01

    A necessary condition for tunneling in a chemical reaction is that the probability of crossing a barrier is non-zero, when the energy of the reactants is below the potential energy of the barrier. Due to the non-classical nature (i.e, momentum uncertainty) of vibrational states this is, however...

  17. Apparent tunneling in chemical reactions

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Hansen, Flemming Yssing; Billing, G. D.

    A necessary condition for tunneling in a chemical reaction is that the probability of crossing a barrier is non-zero, when the energy of the reactants is below the potential energy of the barrier. Due to the non-classical nature (i.e, momentum uncertainty) of vibrational states this is, however...

  18. Exposure, Uptake, and Barriers

    Science.gov (United States)

    Baeza-Squiban, Armelle; Lanone, Sophie

    The nanotechnologies market is booming, e.g., in the food industry (powder additives, etc.) and in medical applications (drug delivery, prosthetics, diagnostic imaging, etc.), but also in other industrial sectors, such as sports, construction, cosmetics, and so on. In this context, with an exponential increase in the number of current and future applications, it is particularly important to evaluate the problem of unintentional (i.e., non-medical) exposure to manufactured nanoparticles (so excluding nanoparticles found naturally in the environment). In this chapter, we begin by discussing the various parameters that must be taken into account in any serious assessment of exposure to man-made nanoparticles. We then list the potential routes by which nanoparticles might enter into the organism, and outline the mechanisms whereby they could get past the different biological barriers. Finally, we describe the biodistribution of nanoparticles in the organism and the way they are eliminated.

  19. Removing Barriers to Interdisciplinary Research

    CERN Document Server

    Jacobs, Naomi

    2010-01-01

    A significant amount of high-impact contemporary scientific research occurs where biology, computer science, engineering and chemistry converge. Although programmes have been put in place to support such work, the complex dynamics of interdisciplinarity are still poorly understood. In this paper we interrogate the nature of interdisciplinary research and how we might measure its "success", identify potential barriers to its implementation, and suggest possible mechanisms for removing these impediments.

  20. SYNTHESIS, REACTIONS AND BIOLOGICAL ACTIVITY OF DERIVATIVES OF OXIMES OF THREE-MEMBERED HETEROCYCLES Synthese, Reaktionen und biologische Aktivität von DERIVATE Oxime DREIGLIEDRIGEM HETEROCYCLEN

    OpenAIRE

    Edgars Abele

    2013-01-01

    Literature data on the synthesis and structure of oximes of three-membered heterocycles with one heteroatom were reviewed. Synthesis of novel heterocycles from oximes of three-membered heterocycles was described. Biological activity of these oximes was also reviewed.

  1. SYNTHESIS, REACTIONS AND BIOLOGICAL ACTIVITY OF DERIVATIVES OF OXIMES OF FOUR-MEMBERED HETEROCYCLES Synthese, Reaktionen und biologische Aktivität von DERIVATE Oxime der viergliedrigen HETEROCYCLEN

    OpenAIRE

    Edgars Abele

    2013-01-01

    Literature data on the synthesis and structure of oximes of four-membered heterocycles with one heteroatom were reviewed. Synthesis of novel heterocycles from oximes of four-membered heterocycles was described. Biological activity of these oximes was also reviewed.

  2. SYNTHESIS, REACTIONS AND BIOLOGICAL ACTIVITY OF DERIVATIVES OF OXIMES OF SIX-MEMBERED OXYGEN HETEROCYCLES Synthese, Reaktionen und biologische Aktivität von DERIVATEOxime sechsgliedrigen Sauerstoffheterocyclen

    OpenAIRE

    Edgars Abele

    2012-01-01

    Literature data on the synthesis and structure of oximes of six-membered oxygen heterocycles with one heteroatom were reviewed. Synthesis of novel heterocycles from oximes of sixmembered oxygen heterocycles was described. Biological activity of these oximes was also reviewed

  3. Fission Barriers of Compound Superheavy Nuclei

    OpenAIRE

    Pei, J C; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.

    2009-01-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for $^{264}$Fm, $^{272}$Ds, $^{278}$112, $^{292}$114, and $^{312}$124. F...

  4. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  5. Disciplined Reactions - A Facile One-Flask Synthesis of 2-Substituted-4-m-methoxy -p-hydroxybezylidene-1-phenyl-2-imidazolin-5-ones and its Biological Evaluation.

    Directory of Open Access Journals (Sweden)

    Aditi Taunk

    2013-08-01

    Full Text Available Condensation reactions of N-acetyl-, N-benzoyl and N-ptolylglycines with vanillin in presence of isothiocyanate gives 2-m-methoxyp- hydroxystyryl-, 2-p-tolyl- and 2-phenyl -4-m-methoxy- phydroxybenzylidene- 1-phenyl-2-imidazolin-5-ones respectively. These compounds were evaluated in vitro for antibacterial activity.

  6. Alternative approach to study fusion barrier distribution

    International Nuclear Information System (INIS)

    Fusion reactions induced by heavy-ions (HIs) at around barrier energies, play an important role in nuclear physics since they enable to study the nuclei away from the valley of stability. On the other hand, heavy-ion collisions, at below and near barrier energies, provide an ideal opportunity to study quantum tunneling phenomena in systems with many degrees of freedom. In a simple model, a potential barrier for the relative motion between the interacting nuclei is created by the strong interplay of the repulsive Coulomb and the attractive nuclear force. It has, now, been well recognized that heavy-ion collisions at energies around the Coulomb barrier are strongly affected by the internal structure of interacting nuclei. The couplings of the relative motion to the intrinsic degrees of freedom (such as collective inelastic excitations of the colliding nuclei and/or transfer processes) replaced a single potential barrier to a number of distributed barriers, leading to the enhancement in heavy ion fusion cross sections at energies near and below the Coulomb barrier than those expected from single one-dimensional barrier

  7. Paradoxical reactions under TNF-α blocking agents and other biological agents given for chronic immune-mediated diseases: an analytical and comprehensive overview

    Science.gov (United States)

    Toussirot, Éric; Aubin, François

    2016-01-01

    Paradoxical adverse events (PAEs) have been reported during biological treatment for chronic immune-mediated diseases. PAEs are defined as the occurrence during biological agent therapy of a pathological condition that usually responds to this class of drug. A wide range of PAEs have been reported including dermatological, intestinal and ophthalmic conditions, mainly with antitumour necrosis factor α (TNF-α) agents. True PAEs include psoriasis, Crohn's disease and hidradenitis suppurativa. Other PAEs may be qualified as borderline and include uveitis, scleritis, sarcoidosis and other granulomatous diseases (granuloma annulare, interstitial granulomatous dermatitis), vasculitis, vitiligo and alopecia areata. Proposed hypotheses to explain these PAEs include an imbalance in cytokine production, the differential immunological properties between the monoclonal antibodies and TNF-α soluble receptor, an unopposed type I interferon production and a shift towards a Th1/Th2 profile. Data from registries suggest that the risk for paradoxical psoriasis is low and non-significant. We discuss management of these PAEs, which depends on the type and severity of the adverse events, pre-existing treated conditions and the possibility of alternative therapeutic options for the underlying disease. Paradoxical adverse events are not restricted to anti-TNF-α agents and close surveillance of new available biological drugs (anti-interleukin-17/23, anti-integrin) is warranted in order to detect the occurrence of new or as yet undescribed events. PMID:27493788

  8. An ONIOM study of the Bergman reaction: a computationally efficient and accurate method for modeling the enediyne anticancer antibiotics

    Science.gov (United States)

    Feldgus, Steven; Shields, George C.

    2001-10-01

    The Bergman cyclization of large polycyclic enediyne systems that mimic the cores of the enediyne anticancer antibiotics was studied using the ONIOM hybrid method. Tests on small enediynes show that ONIOM can accurately match experimental data. The effect of the triggering reaction in the natural products is investigated, and we support the argument that it is strain effects that lower the cyclization barrier. The barrier for the triggered molecule is very low, leading to a reasonable half-life at biological temperatures. No evidence is found that would suggest a concerted cyclization/H-atom abstraction mechanism is necessary for DNA cleavage.

  9. Barrier Certificates Revisited

    OpenAIRE

    Dai, Liyun; Gan, Ting; Xia, Bican; Zhan, Naijun

    2013-01-01

    A barrier certificate can separate the state space of a con- sidered hybrid system (HS) into safe and unsafe parts ac- cording to the safety property to be verified. Therefore this notion has been widely used in the verification of HSs. A stronger condition on barrier certificates means that less expressive barrier certificates can be synthesized. On the other hand, synthesizing more expressive barrier certificates often means high complexity. In [9], Kong et al consid- ered how to relax the ...

  10. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.

    Science.gov (United States)

    Wang, Vincent C-C

    2016-08-10

    Finding fundamental and general mechanisms for electrochemical reactions, such as the oxygen evolution reaction (OER) from water and reduction of CO2, plays vital roles in developing the desired electrocatalysts for facilitating solar fuel production. Recently, density functional theory (DFT) calculations have shown that there is a universal scaling relation of adsorption energy between key intermediate species, HO(ad) and HOO(ad), on the surface of metal oxides as OER electrocatalysts. In this paper, a kinetic and thermodynamic model for the four-electron electrochemical reaction based on previous OER mechanisms proposed by DFT calculations is developed to further investigate the electrocatalytic properties over a wide range of metal oxides and photosystem II. The OER activity of metal oxides (i.e. electrocatalytic current) calculated from the DFT-calculated equilibrium potentials with kinetic properties, such as the rate constants for interfacial electron transfer and catalytic turnover, can lead to a volcano-shaped trend that agrees with the results observed in experiments. In addition, the kinetic aspects of the impact on the electrocatalysts are evaluated. Finally, comparing the results of metal oxides and photosystem II, and fitting experimental voltammograms give further insights into kinetic and thermodynamic roles. Here, the general guidelines for designing OER electrocatalysts with unified kinetic and thermodynamic properties are presented. PMID:27460039

  11. Resonance Reaction in Diffusion-Influenced Bimolecular Reactions

    OpenAIRE

    Kolb, Jakob J.; Angioletti-Uberti, Stefano; Dzubiella, Joachim

    2016-01-01

    We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system exhibits a new resonant reaction behavior with rate enhancement if an appropriately defined fluctuation decay length is of the order of the system size. Importantly, we find that in the proximity of resonance the standard reciprocal additivity law for diffusion and surface reaction rates is viola...

  12. Biointrusion test plan for the Permanent Isolation Surface Barrier Prototype

    International Nuclear Information System (INIS)

    This document provides a testing and monitoring plan for the biological component of the prototype barrier slated for construction at the Hanford Site. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system. It is designed to permanently isolate waste from the biosphere. The features of the barrier include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, covered with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype barrier over the next several years to evaluate barrier performance under extreme climatic conditions. Plants and animals will play a significant role in the hydrologic and water and wind erosion characteristics of the prototype barrier. Studies on the biological component of the prototype barrier will include work on the initial revegetation of the surface, continued monitoring of the developing plant community, rooting depth and dispersion in the context of biointrusion potential, the role of plants in the hydrology of the surface and toe regions of the barrier, the role of plants in stabilizing the surface against water and wind erosion, and the role of burrowing animals in the hydrology and water and wind erosion of the barrier

  13. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

  14. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP)

  15. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information...... from risk analysis with operational safety management....

  16. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information...... from risk analysis with operational safety management....

  17. Safety- barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2008-01-01

    Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....

  18. Development of Several New Reactions and Their Application to the Total Synthesis of Biologically Active Natural Products :Synthesis of Linderol A and Determination of Its Absolute Configuration

    Institute of Scientific and Technical Information of China (English)

    Shunsaku Ohta

    2005-01-01

    @@ 1Introduction Linderol A (1), a monoterpene-polyketide, was isolated in 1995 from the fresh bark of Lindera umbellata (Lauraceae), and its absolute structure was not determined[1]. It was also reported potent inhibitory activity of 1 on the melanin biosynthesis of the cultured B-16 melanoma cells[1]. See Fig. 1. On the other hand,we reported in 1995 an interesting multi-tandem reaction of coumarin derivatives (2; W = electron withdrawing group) by treatment with CH2 = S(O)Me2 to yield stereoselectively a tricyclic 2-substituted cyclopenta [ b ] benzofuran-3-ol derivative (4) via a cyclopropane intermediate (3) (Scheme 1)[2].

  19. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  20. Parametrization of fusion barriers based on empirical data

    International Nuclear Information System (INIS)

    Using the empirical/experimental fusion barrier heights and positions, we perform a systematic study for large number of reactions having projectile/target masses 6≤A≤238 and present new parameterized form for fusion barrier heights and positions. A comparison with other well known parameterized forms is also made

  1. Fission barrier heights in the A ∼ 200 mass region

    Indian Academy of Sciences (India)

    K Mahata

    2015-08-01

    Statistical model analysis is carried out for - and -induced fission reactions using a consistent description for fission barrier and level density in A ∼ 200 mass region. A continuous damping of shell correction with excitation energy is considered. Extracted fission barriers agree well with the recent microscopic–macroscopic model. The shell corrections at the saddle point were found to be insignificant.

  2. A sensitive inhibition chemiluminescence method for the determination of 6-mercaptopurine in tablet and biological fluid using the reaction of luminol-Ag(III) complex in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hanwen, E-mail: hanwen@hbu.edu.cn [College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002 (China); Wang, Ting; Liu, Xuyang; Chen, Peiyun [College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002 (China)

    2013-02-15

    A sensitive inhibition chemiluminescence (CL) method for the determination of 6-mercaptopurine (6-MP) is developed. The mechanism of the CL reaction between Ag(III) complex {l_brace}[Ag(HIO{sub 6}){sub 2}]{sup 5-}{r_brace} and luminol in alkaline solution was proposed, along with the inhibition mechanism of 6-MP on the CL emission. The inhibition degree of CL emission was proportional to the logarithm of 6-MP concentration. The effects of the reaction conditions on CL emission and inhibition were examined. Under the optimized conditions, the detection limit (s/n=3) was 3.7 Multiplication-Sign 10{sup -10} g ml{sup -1}. The recoveries of 6-MP were in the range of 97.7-105% with the RSD of 2.1-3.4% (n=5) for tablet samples, 103-106% with the RSDs of 1.1-2.1% for spiked serum sample, and 97.2-101% with the RSD of 2.0-4.5% for spiked urine sample. The accuracy of this method for the tablet analysis was examined by comparing with the pharmacopoeia method. The proposed method was used for the determination of 6-MP at clinically relevant concentrations in real urine and serum samples with satisfactory results. - Highlights: Black-Right-Pointing-Pointer A sensitive inhibition chemiluminescence (CL) method for the determination of 6-MP is developed. Black-Right-Pointing-Pointer The inhibition mechanism of 6-MP on the CL emission was proposed. Black-Right-Pointing-Pointer The detection limit was 3.7 Multiplication-Sign 10{sup -10} g ml{sup -1}. Black-Right-Pointing-Pointer The accuracy was examined by comparing with the pharmacopoeia method.

  3. A sensitive inhibition chemiluminescence method for the determination of 6-mercaptopurine in tablet and biological fluid using the reaction of luminol–Ag(III) complex in alkaline medium

    International Nuclear Information System (INIS)

    A sensitive inhibition chemiluminescence (CL) method for the determination of 6-mercaptopurine (6-MP) is developed. The mechanism of the CL reaction between Ag(III) complex {[Ag(HIO6)2]5−} and luminol in alkaline solution was proposed, along with the inhibition mechanism of 6-MP on the CL emission. The inhibition degree of CL emission was proportional to the logarithm of 6-MP concentration. The effects of the reaction conditions on CL emission and inhibition were examined. Under the optimized conditions, the detection limit (s/n=3) was 3.7×10−10 g ml−1. The recoveries of 6-MP were in the range of 97.7–105% with the RSD of 2.1–3.4% (n=5) for tablet samples, 103–106% with the RSDs of 1.1–2.1% for spiked serum sample, and 97.2–101% with the RSD of 2.0–4.5% for spiked urine sample. The accuracy of this method for the tablet analysis was examined by comparing with the pharmacopoeia method. The proposed method was used for the determination of 6-MP at clinically relevant concentrations in real urine and serum samples with satisfactory results. - Highlights: ► A sensitive inhibition chemiluminescence (CL) method for the determination of 6-MP is developed. ► The inhibition mechanism of 6-MP on the CL emission was proposed. ► The detection limit was 3.7×10−10 g ml−1. ► The accuracy was examined by comparing with the pharmacopoeia method.

  4. Study on hydrogen permeation barrier of zirconium hydride

    International Nuclear Information System (INIS)

    By using gas-solid reaction method, the hydrogen permeation barrier with 5-20 μm thickness was prepared on the surface of zirconium and zirconium hydride. The examinations of the morphology and structure of the barrier were accomplished by optical microscope and SEM. The compositions of the barrier were determined by EDS. The phases in the barrier were also analyzed by XRD. The results indicate that the barrier is well distributed and compact, moreover it combines firmly with the matrix. There are Zr, O, C, P and H etc. elements in the barrier. Otherwise the oxygen diffuses in matrix apparently. The main phases of the barrier are the ZrO2 and ZrP. There exists the ZrC phase or other phases. (authors)

  5. Multilayer moisture barrier

    Energy Technology Data Exchange (ETDEWEB)

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  6. Developing a Biologically-Inspired Molecular Solar Energy Conversion Device: Reaction of Solution and Protein-Bound Cobalamins with Carbon Dioxide and Halo-Organic Compounds

    Science.gov (United States)

    Robertson, Wesley D.; Ennist, Nathan M.; Warncke, Kurt

    2009-11-01

    Our aim is to design and construct protein-based artificial photosynthetic systems that reduce carbon dioxide (CO2) and toxic halo-organic compounds within the robust and adaptable (βα)8 TIM-barrel protein structure. The EutB subunit of the adenosylcobalamin-dependent enzyme, ethanolamine ammonia-lyase (EAL), from Salmonella typhimurium, was selected as the protein template. The Co^I forms of the native cobalamin (Cbl) cofactor and a derivative, cobinamide (Cbi), possess relatively low redox potentials that are commensurate with reduction of CO2 and halo-organic compounds. Titanium^III citrate and pulsed laser-excited 5'-deazariboflavin (5'-DRF) were used to reduce Cbl or Cbi. UV/visible absorption spectroscopy was used to monitor the reaction kinetics of reduced Cbl and Cbi with CO2 and halo-organics, and 13C-NMR was used for product analysis. The results provide fundamental information for development of an organocobalt-based protein-catalytic device for stable fuels generation and toxic chemical remediation.

  7. Resonance Reaction in Diffusion-Influenced Bimolecular Reactions

    CERN Document Server

    Kolb, Jakob J; Dzubiella, Joachim

    2016-01-01

    We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system exhibits a new resonant reaction behavior with rate enhancement if an appropriately defined fluctuation decay length is of the order of the system size. Importantly, we find that in the proximity of resonance the standard reciprocal additivity law for diffusion and surface reaction rates is violated due to the dynamical coupling of multiple kinetic processes. Together, these findings may have important repercussions on the correct interpretation of various kinetic reaction problems in complex systems, as, e.g., in biomolecular association or catalysis.

  8. Communication: Resonance reaction in diffusion-influenced bimolecular reactions

    Science.gov (United States)

    Kolb, Jakob J.; Angioletti-Uberti, Stefano; Dzubiella, Joachim

    2016-02-01

    We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system exhibits a new "resonant reaction" behavior with rate enhancement if an appropriately defined fluctuation decay length is of the order of the system size. Importantly, we find that in the proximity of resonance, the standard reciprocal additivity law for diffusion and surface reaction rates is violated due to the dynamical coupling of multiple kinetic processes. Together, these findings may have important repercussions on the correct interpretation of various kinetic reaction problems in complex systems, as, e.g., in biomolecular association or catalysis.

  9. Polymerase chain reaction

    OpenAIRE

    Gaurav Solanki

    2015-01-01

    The polymerase chain reaction (PCR) is a technique in molecular biology to amplify a single or a few copies of a piece of DNA across several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence. PCR is now a common and often indispensable technique used in medical and biological research labs for a variety of applications. There are three major steps involved in the PCR technique: denaturation, annealing and extension. PCR is useful in the investigation...

  10. The power-law reaction rate coefficient for barrierless reactions

    International Nuclear Information System (INIS)

    We study the power-law reaction rate coefficient for barrierless reactions, when the reactions take place in systems with power-law distributions, and derive a generalized rate formula for the barrierless reactions in the Gorin model. We show that, unlike those for bimolecular and unimolcular reactions, due to the lack of barriers, the power-law rate coefficient for barrierless reactions does not have a power-law function, and thus is not very strongly dependent on the ν-parameter. Four barrierless reactions are taken as application examples to calculate the new rate coefficients, which with larger fitting ν-parameters can be exactly in agreement with measurements in the experimental studies. (paper)

  11. Liquid metal hydrogen barriers

    International Nuclear Information System (INIS)

    Hydrogen barriers are disclosed which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures. 2 claims, 3 figures

  12. Developments in permeable and low permeability barriers

    International Nuclear Information System (INIS)

    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  13. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  14. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  15. Nuclear dynamics around the barrier: from fusion to evaporation

    International Nuclear Information System (INIS)

    This work is devoted to aspects of nuclear dynamics around the barrier. It is shown that for fusion reactions, the Coulomb field couples relative motion of nuclei to rotation of a deformed projectile independently of the energy and the charge of the nuclei. An experimental study of the reaction 6He + 190Os via gamma spectroscopy of product nuclei has shown that the break up of the 6He is coupled to the relative motion too, a strong hindrance resulting in the fusion around and above the fusion barrier. The path to fusion after overcoming the barrier, especially the charge equilibration, have been studied in the framework of the TDHF theory via the preequilibrium GDR excited in N/Z asymmetric reactions. An application to formation of the super-heavy elements has been proposed. Finally, couplings between protons and neutrons have been shown up in mean field calculations. Their main expected effect is an emission of protons under the Coulomb barrier. (author)

  16. Sub-barrier capture with quantum diffusion approach

    Directory of Open Access Journals (Sweden)

    Scheid W.

    2011-10-01

    Full Text Available With the quantum diffusion approach the behavior of capture cross sections and mean-square angular momenta of captured systems are revealed in the reactions with deformed and spherical nuclei at sub-barrier energies. With decreasing bombarding energy under the barrier the external turning point of the nucleus-nucleus potential leaves the region of short-range nuclear interaction and action of friction. Because of this change of the regime of interaction, an unexpected enhancement of the capture cross section is found at bombarding energies far below the Coulomb barrier. This effect is shown its worth in the dependence of mean-square angular momentum on the bombarding energy. From the comparison of calculated capture cross sections and experimental capture or fusion cross sections the importance of quasifission near the entrance channel is demonstrated for the actinidebased reactions and reactions with medium-heavy nuclei at extreme sub-barrier energies.

  17. Multinucleon transfer reactions

    International Nuclear Information System (INIS)

    Nuclear reactions induced by complex nuclei are studied. The description of the single neutron transfer is used to show some aspect of the theoretical treatment of transfer reactions and rules concerning the dependence of cross sections on quantum numbers of the initial and final channels are deduced. Strongly excited states of 20Ne, 19F, sup(16,17)0, 15N were studied experimentally by using different projectile-target combinations in the four-particle, eight-particle and ten-particle transfer reactions, leading to the some final nuclei. Obtained results are discussed. In addition, studies of the projectile break-up phenomenon were performed. The dissociation of 6Li and 7Li projectiles was investigated in reactions on Pb, Sn and Ni nuclei. These nuclei were chosen to allow measurements at one incident energy below, above and at the Coulomb barrier. The observed spectra indicate that the process proceeds primarily via the resonance level but the shape deviates from the shape which was calculated assuming isotropic decay of the excited 6Li in its center of mass system. The investigations of the elastic scattering turned out to be more fruitful and allowed to define better the Coulomb barrier for the 6Li-target system. (S.B.)

  18. NMR studies on 15N-labeled creatine (CR), creatinine (CRN), phosphocreatine (PCR), and phosphocreatinine (PCRN), and on barriers to rotation in creatine kinase-bound creatine in the enzymatic reaction

    International Nuclear Information System (INIS)

    Recently, the authors have synthesized 15N-2-Cr, 15N-3-Crn, 15N-2-Crn, 15N-3-PCrn, 15N-3-PCr, and 15N-2-PCr. 1H, 15N, 31P NMR data show that Crn protonates exclusively at the non-methylated ring nitrogen, confirm that PCrn is phosphorylated at the exocyclic nitrogen, and demonstrate that the 31P-15N one-bond coupling constant in 15N-3-PCr is 18 Hz, not 3 Hz as previously reported by Brindle, K.M., Porteous, R. and Radda, G.K.. The authors have found that creatine kinase is capable of catalyzing the 14N/15N positional isotope exchange of 3-15N-PCr in the presence of MgADP, but not in its absence. Further, the exchange does not take place when labeled PCr is resynthesized exclusively from the ternary complex E X Cr X MgATP as opposed to either E X Cr or free Cr. This suggests that the enzyme both imparts an additional rotational barrier to creatine in the complex and catalyzes the transfer of phosphoryl group with essentially complete regiospecificity

  19. Free energy barriers for escape of water molecules from protein hydration layer.

    Science.gov (United States)

    Roy, Susmita; Bagchi, Biman

    2012-03-01

    Free energy barriers separating interfacial water molecules from the hydration layer at the surface of a protein to the bulk are obtained by using the umbrella sampling method of free energy calculation. We consider hydration layer of chicken villin head piece (HP-36) which has been studied extensively by molecular dynamics simulations. The free energy calculations reveal a strong sensitivity to the secondary structure. In particular, we find a region near the junction of first and second helix that contains a cluster of water molecules which are slow in motion, characterized by long residence times (of the order of 100 ps or more) and separated by a large free energy barrier from the bulk water. However, these "slow" water molecules constitute only about 5-10% of the total number of hydration layer water molecules. Nevertheless, they play an important role in stabilizing the protein conformation. Water molecules near the third helix (which is the important helix for biological function) are enthalpically least stable and exhibit the fastest dynamics. Interestingly, barrier height distributions of interfacial water are quite broad for water surrounding all the three helices (and the three coils), with the smallest barriers found for those near the helix-3. For the quasi-bound water molecules near the first and second helices, we use well-known Kramers' theory to estimate the residence time from the free energy surface, by estimating the friction along the reaction coordinate from the diffusion coefficient by using Einstein relation. The agreement found is satisfactory. We discuss the possible biological function of these slow, quasi-bound (but transient) water molecules on the surface. PMID:22288939

  20. Complementary barrier infrared detector (CBIRD)

    Science.gov (United States)

    Ting, David Z. (Inventor); Bandara, Sumith V. (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2013-01-01

    An infrared detector having a hole barrier region adjacent to one side of an absorber region, an electron barrier region adjacent to the other side of the absorber region, and a semiconductor adjacent to the electron barrier.

  1. Integrated Biological Control

    International Nuclear Information System (INIS)

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  2. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work by...

  3. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  4. Recycler barrier RF buckets

    CERN Document Server

    Bhat, C M

    2012-01-01

    The Recycler Ring at Fermilab uses a barrier rf system for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf systems, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  5. Sub-barrier Fusion Cross Sections with Energy Density Formalism

    OpenAIRE

    Zamrun, F. Muhammad; Hagino, K.; Takigawa, N.

    2006-01-01

    We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep ...

  6. Protective barrier development: Overview

    International Nuclear Information System (INIS)

    Protective barrier and warning marker systems are being developed to isolate wastes disposed of near the earth's surface at the Hanford Site. The barrier is designed to function in an arid to semiarid climate, to limit infiltration and percolation of water through the waste zone to near-zero, to be maintenance free, and to last up to 10,000 yr. Natural materials (e.g., fine soil, sand, gravel, riprap, clay, asphalt) have been selected to optimize barrier performance and longevity and to create an integrated structure with redundant features. These materials isolate wastes by limiting water drainage; reducing the likelihood of plant, animal, and human intrusion; controlling emission of noxious gases; and minimizing erosion. Westinghouse Hanford Company and Pacific Northwest Laboratory efforts to assess the performance of various barrier and marker designs will be discussed

  7. Information barriers and authentication

    International Nuclear Information System (INIS)

    Acceptance of nuclear materials into a monitoring regime is complicated if the materials are in classified shapes or have classified composition. An attribute measurement system with an information barrier can be emplo,yed to generate an unclassified display from classified measurements. This information barrier must meet two criteria: (1) classified information cannot be released to the monitoring party, and (2) the monitoring party must be convinced that the unclassified output accurately represents the classified input. Criterion 1 is critical to the host country to protect the classified information. Criterion 2 is critical to the monitoring party and is often termed the 'authentication problem.' Thus, the necessity for authentication of a measurement system with an information barrier stems directly from the description of a useful information barrier. Authentication issues must be continually addressed during the entire development lifecycle of the measurement system as opposed to being applied only after the system is built.

  8. Hemicellulose as barrier material

    OpenAIRE

    Jonas, Hartman

    2006-01-01

    Polysaccharides constitute an important source of raw materials for the packaging industry today. Polysaccharides have good natural barrier properties which are necessary for packaging films. Cellulose is the forerunner among renewable polymers for such applications. Hemicelluloses represent a new interesting breed of barrier materials. We have chosen to work with the hemicellulose O-acetyl-galactoglucomannan (AcGGM). The high water solubility of this particular hemicellulose extracted from p...

  9. Barriers to SCM implementing

    OpenAIRE

    M.E. Rosli; B. Md Dero; A.R. Ismail; M.N. Ab Rahman

    2008-01-01

    Purpose: This paper explores the barriers faced by Malaysian manufacturing companies in successfullyimplementing the Supply Chain Management (SCM). The study has highlighted some pertinent factorsperforming the barriers that are most frequently reported by the studied companies. Sixteen companies, fromservice and manufacturing companies were studied over a period of two years to assess their SCM practicesthrough survey and interview processes.Design/methodology/approach: This part discusses t...

  10. A new technique to determine fusion barrier heights using proximity potentials

    Directory of Open Access Journals (Sweden)

    Kumari Raj

    2015-01-01

    Full Text Available We develop a new technique to calculate fusion barrier heights of any fixed target reaction series. We calculate the barrier heights for the fusion reactions of 119Sn and 197Au targets using this technique. This technique is simple and very useful for estimating the fusion barrier heights for those reactions for which empirical values are not available. A formula is derived by performing theoretical calculations using different versions of proximity potential. Using this formula, we can predict the barrier height for the fusion reaction of any projectile with 119Sn or 197Au target using the empirical barrier height for the fusion reaction of same projectile with 62Ni target. In order to check the accuracy of this technique, the fusion parameters calculated by this new technique are compared with the fusion parameters calculated by using parameterized formulae presented in a systematic study conducted by using double folding model.

  11. Study of the dynamical potential barriers in heavy ion collisions

    Science.gov (United States)

    Zhu, Long; Su, Jun; Xie, Wen-Jie; Zhang, Feng-Shou

    2013-10-01

    The nucleus-nucleus interaction potentials for the fusion reactions 16O + 208Pb, 64Ni + 64Ni, 58Ni + 58Ni and 16O + 154Sm are extracted from the improved isospin-dependent quantum molecular dynamics model. The shell correction effects are discussed. The negative shell correction energies lower potential barriers of a certain reaction. The incident energy dependence of the potential barrier is investigated for each system. A complex phenomenon of energy dependence is observed. It is also found that incident energy dependence of the barrier radius and barrier height shows opposite behaviors. The Coulomb potential shows weak energy dependence when distance of two colliding nuclei is lower than the touching distance. The isospin effects of the potential barrier are investigated. The orientation effects of the potential barrier is also discussed for the system 16O + 154Sm. The fusion cross sections that correspond to the equatorial orientation of 154Sm are very low in sub-barrier region because of the high fusion barriers and the shallow potential pockets.

  12. Study of the dynamical potential barriers in heavy ion collisions

    International Nuclear Information System (INIS)

    The nucleus–nucleus interaction potentials for the fusion reactions 16O + 208Pb, 64Ni + 64Ni, 58Ni + 58Ni and 16O + 154Sm are extracted from the improved isospin-dependent quantum molecular dynamics model. The shell correction effects are discussed. The negative shell correction energies lower potential barriers of a certain reaction. The incident energy dependence of the potential barrier is investigated for each system. A complex phenomenon of energy dependence is observed. It is also found that incident energy dependence of the barrier radius and barrier height shows opposite behaviors. The Coulomb potential shows weak energy dependence when distance of two colliding nuclei is lower than the touching distance. The isospin effects of the potential barrier are investigated. The orientation effects of the potential barrier is also discussed for the system 16O + 154Sm. The fusion cross sections that correspond to the equatorial orientation of 154Sm are very low in sub-barrier region because of the high fusion barriers and the shallow potential pockets

  13. Enhanced Densification of SDC Barrier Layers

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, John S.; Templeton, Jared W.; Lu, Zigui; Stevenson, Jeffry W.

    2011-09-12

    This technical report explores the Enhanced Densification of SCD Barrier Layers A samaria-doped ceria (SDC) barrier layer separates the lanthanum strontium cobalt ferrite (LSCF) cathode from the yttria-stabilized zirconia (YSZ) electrolyte in a solid oxide fuel cell (SOFC) to prevent the formation of electrically resistive interfacial SrZrO{sub 3} layers that arise from the reaction of Sr from the LSCF with Zr from the YSZ. However, the sintering temperature of this SDC layer must be limited to {approx}1200 C to avoid extensive interdiffusion between SDC and YSZ to form a resistive CeO{sub 2}-ZrO{sub 2} solid solution. Therefore, the conventional SDC layer is often porous and therefore not as impervious to Sr-diffusion as would be desired. In the pursuit of improved SOFC performance, efforts have been directed toward increasing the density of the SDC barrier layer without increasing the sintering temperature. The density of the SDC barrier layer can be greatly increased through small amounts of Cu-doping of the SDC powder together with increased solids loading and use of an appropriate binder system in the screen print ink. However, the resulting performance of cells with these barrier layers did not exhibit the expected increase in accordance with that achieved with the prototypical PLD SDC layer. It was determined by XRD that increased sinterability of the SDC also results in increased interdiffusivity between the SDC and YSZ, resulting in formation of a highly resistive solid solution.

  14. Mapping the kinetic barriers of a Large RNA molecule's folding landscape.

    Directory of Open Access Journals (Sweden)

    Jörg C Schlatterer

    Full Text Available The folding of linear polymers into discrete three-dimensional structures is often required for biological function. The formation of long-lived intermediates is a hallmark of the folding of large RNA molecules due to the ruggedness of their energy landscapes. The precise thermodynamic nature of the barriers (whether enthalpic or entropic that leads to intermediate formation is still poorly characterized in large structured RNA molecules. A classic approach to analyzing kinetic barriers are temperature dependent studies analyzed with Eyring's transition state theory. We applied Eyring's theory to time-resolved hydroxyl radical (•OH footprinting kinetics progress curves collected at eight temperature from 21.5 °C to 51 °C to characterize the thermodynamic nature of folding intermediate formation for the Mg(2+-mediated folding of the Tetrahymena thermophila group I ribozyme. A common kinetic model configuration describes this RNA folding reaction over the entire temperature range studied consisting of primary (fast transitions to misfolded intermediates followed by much slower secondary transitions, consistent with previous studies. Eyring analysis reveals that the primary transitions are moderate in magnitude and primarily enthalpic in nature. In contrast, the secondary transitions are daunting in magnitude and entropic in nature. The entropic character of the secondary transitions is consistent with structural rearrangement of the intermediate species to the final folded form. This segregation of kinetic control reveals distinctly different molecular mechanisms during the two stages of RNA folding and documents the importance of entropic barriers to defining rugged RNA folding landscapes.

  15. Application of stable isotope ratio analysis explaining the bioformation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone in plants by a biological Maillard reaction

    International Nuclear Information System (INIS)

    [1-13C]-D-Fructose and [U-13C6]-D-fructose were applied to detached ripening strawberry fruits, and the incorporation into 2,5-dimethyl-4-hydroxy-3(2H)-furanone 1, 2,5-dimethyl-4-methoxy-3(2H)-furanone 2, 2,5-dimethyl-4-acetoxy-3(2H)-furanone 3, 2,5-dimethyl-4-hydroxy-3(2H)-furanone beta-D-glucopyranoside 4, and 2,5-dimethyl-4-hydroxy-3(2H)-furanone 6'-O-malonyl beta-D-glucopyranoside 5 was determined by HRGC-MS and HPLC-ESI MS-MS. The data clearly showed the direct conversion of D-fructose to the furanones without cleavage of the carbohydrate prior to the formation of 1-5, as expected for a biological Maillard reaction. Both, the furanone and the D-glucose moiety of 4 and 5 contained the labels. However, the label was primarily incorporated into the furanone moiety, indicating that D-fructose is a more efficient precursor of the furanones than D-glucose

  16. Enhanced reaction kinetics in biological cells

    OpenAIRE

    Loverdo, C.; Benichou, O.; Moreau, M.; Voituriez, R.

    2008-01-01

    The cell cytoskeleton is a striking example of "active" medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytosk...

  17. Submerged Barriers in the Ni(+) Assisted Decomposition of Propionaldehyde.

    Science.gov (United States)

    Mansell, A; Theis, Z; Gutierrez, M G; Faza, O Nieto; Lopez, C Silva; Bellert, D J

    2016-04-21

    The reaction dynamics of the Ni(+) mediated decarbonylation of propionaldehyde was assessed using the single photon initiated decomposition rearrangement reaction (SPIDRR) technique. The exothermic production of Ni(+)CO was temporally monitored and the associated rate constants, k(E), were extracted as a function of activating photon energy. In addition, the reaction potential energy surface was calculated at the UCCSD(T)/def2-TZVP//PBEPBE/cc-pVDZ level of theory to provide an atomistic description of the reaction profile. The decarbonylation of propionaldehyde can be understood as proceeding through parallel competitive reaction pathways that are initiated by Ni(+) insertion into either the C-C or C-H bond of the propionaldehyde carbonyl carbon. Both paths lead to the elimination of neutral ethane and are governed by submerged barriers. The lower energy sequence is a consecutive C-C/C-H addition process with a submerged barrier of 14 350 ± 600 cm(-1). The higher energy sequence is a consecutive C-H/C-C addition process with a submerged barrier of 15 400 ± 600 cm(-1). Both barriers were determined using RRKM calculations fit to the experimentally determined k(E) values. The measured energy difference between the two barriers agrees with the DFT computed difference in rate limiting transition-state energies, 18 413 and 19 495 cm(-1). PMID:27054589

  18. Liquid drop effects in subbarrier transfer reactions

    International Nuclear Information System (INIS)

    Reaction products from a multitude of binary channels are observed to emerge at large c.m. angles at subbarrier energies for the 50Ti + 93Nb system. The energy spectra of these products and the distance where they first emerge indicate that these reaction products result from the neck which is formed outside the Coulomb barrier. 9 refs., 5 figs

  19. Heavy ion transfer reactions: Status and perspectives

    Indian Academy of Sciences (India)

    L Corradi

    2010-07-01

    With the large solid angle magnetic spectrometer (PRISMA) coupled to the -array (CLARA), extensive investigations of nuclear structure and reaction dynamics have been carried out. In the present paper aspects of these studies will be presented, focussing more closely on the reaction mechanism, in particular on the properties of quasielastic and deep inelastic processes and on measurements at energies far below the Coulomb barrier.

  20. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  1. Method of installing subsurface barrier

    Science.gov (United States)

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-10-09

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  2. Trimolecular reactions of uranium hexafluoride with water.

    Science.gov (United States)

    Lind, Maria C; Garrison, Stephen L; Becnel, James M

    2010-04-01

    The hydrolysis reaction of uranium hexafluoride (UF(6)) is a key step in the synthesis of uranium dioxide (UO(2)) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF(6) molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizable barrier of 78.2 kJ x mol(-1), indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO(2) product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF(6) molecules and one water molecule, and (2) the reaction of two water molecules with a single UF(6) molecule. The predicted reaction of two UF(6) molecules with one water molecule displays an interesting "fluorine-shuttle" mechanism, a significant energy barrier of 69.0 kJ x mol(-1) to the formation of UF(5)OH, and an enthalpy of reaction (DeltaH(298)) of +17.9 kJ x mol(-1). The reaction of a single UF(6) molecule with two water molecules displays a "proton-shuttle" mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ x mol(-1) and an exothermic enthalpy of reaction (DeltaH(298)) of -13.9 kJ x mol(-1). The exothermic nature of the overall UF(6) + 2H(2)O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging. PMID:20210345

  3. Barriers and post-closure monitoring (AL121125)

    International Nuclear Information System (INIS)

    This project focuses on the rapid implementation of near-surface barriers, biotreatment, and post-closure monitoring technology. It uses water-permeable and biologic barriers that chemically capture and/or degrade contaminants without significantly altering the natural water flow regime. Barrier approaches are being tested for two different applications. The first is the use of barriers for confinement of chemical contaminants for in-trench treatments with leach systems or an in-place bioreactor. The second is an enhancement of the current practice of emplacing grout or clay slurry walls into direct horizontal surface and subsurface water flows around a contaminated area by integrating permeable reactive barriers and petroleum reservoir gel/foam/polymer technology

  4. Skin barrier in rosacea.

    Science.gov (United States)

    Addor, Flavia Alvim Sant'Anna

    2016-01-01

    Recent studies about the cutaneous barrier demonstrated consistent evidence that the stratum corneum is a metabolically active structure and also has adaptive functions, may play a regulatory role in the inflammatory response with activation of keratinocytes, angiogenesis and fibroplasia, whose intensity depends primarily on the intensity the stimulus. There are few studies investigating the abnormalities of the skin barrier in rosacea, but the existing data already show that there are changes resulting from inflammation, which can generate a vicious circle caused a prolongation of flare-ups and worsening of symptoms. This article aims to gather the most relevant literature data about the characteristics and effects of the state of the skin barrier in rosacea. PMID:26982780

  5. INHIBITION OF CANDIDA ALBICANS GROWTH ON SURFACES TREATED BY DIELECTRIC BARRIER DISCHARGE WITH VARIOUS BARRIERS

    OpenAIRE

    Jan Sláma; Vítezslav Kríha

    2014-01-01

    Discharges generating low temperature plasma at atmospheric pressure have the potential to treat surfaces biologically contaminated by organic matter in a non-destructive manner. We have been studying ways of inhibiting the growth of microorganisms with the use of dielectric barrier discharge (DBD) plasma. The effect of the choice of a barrier material and its thickness on thegermicide properties of the DBD is described. We used Saboraud agar inoculated by 105 cfu/cm2 of Candida albicans yeas...

  6. Reaction mechanisms in heavy ion fusion

    Directory of Open Access Journals (Sweden)

    Lubian J.

    2011-10-01

    Full Text Available We discuss the reaction mechanisms involved in heavy ion fusion. We begin with collisions of tightly bound systems, considering three energy regimes: energies above the Coulomb barrier, energies just below the barrier and deep sub-barrier energies. We show that channel coupling effects may influence the fusion process at above-barrier energies, increasing or reducing the cross section predicted by single barrier penetration model. Below the Coulomb barrier, it enhances the cross section, and this effect increases with the system’s size. It is argued that this behavior can be traced back to the increasing importance of Coulomb coupling with the charge of the collision partners. The sharp drop of the fusion cross section observed at deep sub-barrier energies is addressed and the theoretical approaches to this phenomenon are discussed. We then consider the reaction mechanisms involved in fusion reactions of weakly bound systems, paying particular attention to the calculations of complete and incomplete fusion available in the literature.

  7. Barriers in Quantum Gravity

    OpenAIRE

    Ambjorn, Jan

    1994-01-01

    I discuss recent progress in our understanding of two barriers in quantum gravity: $c > 1$ in the case of 2d quantum gravity and $D > 2$ in the case of Euclidean Einstein-Hilbert gravity formulated in space-time dimensions $D >2$.

  8. Breaking Down Barriers.

    Science.gov (United States)

    Watkins, Beverly T.

    1994-01-01

    Faculty at 11 higher education institutions in California, New Mexico, Texas, and northern Mexico have been experimenting with computer conferencing on the BESTNET (Bilingual English-Spanish Telecommunications Network). The growing system is credited with creating an international student-faculty community that crosses cultural barriers for…

  9. Reaction pathways of propene pyrolysis.

    Science.gov (United States)

    Qu, Yena; Su, Kehe; Wang, Xin; Liu, Yan; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2010-05-01

    The gas-phase reaction pathways in preparing pyrolytic carbon with propene pyrolysis have been investigated in detail with a total number of 110 transition states and 50 intermediates. The structure of the species was determined with density functional theory at B3PW91/6-311G(d,p) level. The transition states and their linked intermediates were confirmed with frequency and the intrinsic reaction coordinates analyses. The elementary reactions were explored in the pathways of both direct and the radical attacking decompositions. The energy barriers and the reaction energies were determined with accurate model chemistry method at G3(MP2) level after an examination of the nondynamic electronic correlations. The heat capacities and entropies were obtained with statistical thermodynamics. The Gibbs free energies at 298.15 K for all the reaction steps were reported. Those at any temperature can be developed with classical thermodynamics by using the fitted (as a function of temperature) heat capacities. It was found that the most favorable paths are mainly in the radical attacking chain reactions. The chain was proposed with 26 reaction steps including two steps of the initialization of the chain to produce H and CH(3) radicals. For a typical temperature (1200 K) adopted in the experiments, the highest energy barriers were found in the production of C(3) to be 203.4 and 193.7 kJ/mol. The highest energy barriers for the production of C(2) and C were found 174.1 and 181.4 kJ/mol, respectively. These results are comparable with the most recent experimental observation of the apparent activation energy 201.9 +/- 0.6 or 137 +/- 25 kJ/mol. PMID:20082392

  10. Nuclear Reactions

    OpenAIRE

    Bertulani, C. A.

    2009-01-01

    Nuclear reactions generate energy in nuclear reactors, in stars, and are responsible for the existence of all elements heavier than hydrogen in the universe. Nuclear reactions denote reactions between nuclei, and between nuclei and other fundamental particles, such as electrons and photons. A short description of the conservation laws and the definition of basic physical quantities is presented, followed by a more detailed account of specific cases: (a) formation and decay of compound nuclei;...

  11. Barrier Data Base user's guide

    International Nuclear Information System (INIS)

    A special purpose data base for physical security barriers has been developed. In addition to barriers, the entities accommodated by the Barrier Data Base (BDB) include threats and references. A threat is established as a configuration of people and equipment which has been employed to penetrate (or attempt to penetrate) a barrier. References are used to cite publications pertinent to the barriers and threats in the data base. Utilization and maintenance of the Barrier Data Base is achieved with LIST, QUERY, ENTER, DELETE, and CHANGE commands which are used to manipulate the data base entities

  12. Electromagnetic effects on explosive reaction and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Douglas G [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Mace, Jonathan L [Los Alamos National Laboratory; Pemberton, Steven J [Los Alamos National Laboratory; Sandoval, Thomas D [Los Alamos National Laboratory; Lee, Richard J [INDIAN HEAD DIVISION

    2010-01-01

    A number of studies have reported that electric fields can have quantifiable effects on the initiation and growth of detonation, yet the mechanisms of these effects are not clear. Candidates include Joule heating of the reaction zone, perturbations to the activation energy for chemical reaction, reduction of the Peierls energy barrier that facilitates dislocation motion, and acceleration of plasma projected from the reaction zone. In this study the possible role of plasma in the initiation and growth of explosive reaction is investigated. The effects of magnetic and electric field effects on reaction growth will be reviewed and recent experiments reported.

  13. Barriers to SCM implementing

    Directory of Open Access Journals (Sweden)

    M.E. Rosli

    2008-12-01

    Full Text Available Purpose: This paper explores the barriers faced by Malaysian manufacturing companies in successfullyimplementing the Supply Chain Management (SCM. The study has highlighted some pertinent factorsperforming the barriers that are most frequently reported by the studied companies. Sixteen companies, fromservice and manufacturing companies were studied over a period of two years to assess their SCM practicesthrough survey and interview processes.Design/methodology/approach: This part discusses the research design and methodological issues upon whichthe research is based. The explanation includes two types of research methods, short survey and follow-upinterviews that were identified as being suitable to achieve the aims of this study, which is to identify the currentproblem of SCM practices within the Malaysian SMEs. Research design is a framework or plan for researchused as a guide in collecting and analysing data.Findings: The results showed that the barriers are depending on the types or group of companies business; suchas either it is an SME or a big company. The barriers inhibiting the practice of SCM can be summarized inthe following factors: partnership with suppliers, limited expertise, management commitment, understanding ofSCM, supported technologies and customer satisfaction. The findings are also compared with the results of asimilar study on SCM in other country.Practical implications: Some suggestions are also offered, which is believed to be a good strategy to the companiesto manage the SCM that will lead to sustainable competitive advantage and hence improve their market share.Originality/value: There are interesting barriers between the companies in Malaysia and other country in therespect of SCM implementation. These findings can be used by both Malaysian and other companies to worktogether or review the SCM strategies that will lead to sustainable competitive advantage and hence improvetheir business performance.

  14. Simulation of sub-barrier fusion process including dynamical deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hata, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-05-01

    Four reactions ({sup 40}Ca+{sup 40}Ca, {sup 58}Ni+{sup 58}Ni, {sup 64}Ni+{sup 64}Ni and {sup 74}Ge+{sup 74}Ge) were simulated as examples of spherical nuclei, {sup 40}Ca and {sup 58}Ni and dynamical deformation, {sup 64}Ni and {sup 74}Ge. The experimental excited functions of sub-barrier fusion reaction were reproduced with high accuracy without free parameters. The sub-barrier fusion process had supposed to pass one-dimensional fusion process estimated by the principle of least action on the potential surface with a freedom of nuclear deformation. (S.Y.)

  15. Fusion around the barrier for 7Li + 12C

    Indian Academy of Sciences (India)

    A Mukherjee; M Dasgupta; D J Hinde; C R Morton; A C Berriman; R D Butt; J O Newton; H Timmers

    2001-07-01

    Fusion cross-sections for the 7Li + 12C reaction have been measured at energies above the Coulomb barrier by the direct detection of evaporation residues. The heavy evaporation residues with energies below 3 MeV could not be separated out from the -particles in the spectrum and hence their contribution was estimated using statistical model calculations. The present work indicates that suppression of fusion cross-sections due to the breakup of 7Li may not be significant for 7Li + 12C reaction at energies around the barrier.

  16. Deep inelastic scattering near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, J.; Back, B.; Chan, K. [and others

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  17. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  18. Minutes of Fish Barrier Workshop

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Minutes of Fish Barrier Workshop held 27 May 2009 at DOC Waikato Area Office. Lists attendees and highlights topics to be covered in Fish Barrier Workshop.

  19. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper covers the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier

  20. Multilayer thermal barrier coating systems

    Science.gov (United States)

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  1. Modeling biological systems with Answer Set Programming

    OpenAIRE

    Thiele, Sven

    2012-01-01

    Biology has made great progress in identifying and measuring the building blocks of life. The availability of high-throughput methods in molecular biology has dramatically accelerated the growth of biological knowledge for various organisms. The advancements in genomic, proteomic and metabolomic technologies allow for constructing complex models of biological systems. An increasing number of biological repositories is available on the web, incorporating thousands of biochemical reactions and ...

  2. Thermal barrier coating materials

    OpenAIRE

    Clarke, David R.; Simon R. Phillpot

    2005-01-01

    Improved thermal barrier coatings (TBCs) will enable future gas turbines to operate at higher gas temperatures. Considerable effort is being invested, therefore, in identifying new materials with even better performance than the current industry standard, yttria-stabilized zirconia (YSZ). We review recent progress and suggest that an integrated strategy of experiment, intuitive arguments based on crystallography, and simulation may lead most rapidly to the development of new TBC materials.

  3. PHARMACOVIGILANCE: BARRIERS AND CHALLENGES

    OpenAIRE

    Varma, S. K.; RAPELLIWAR A; S. Sutradhar; THAWARE P; Misra, A. K.

    2013-01-01

    Pharmacovigilance is a new discipline which deals with adverse drug or any drug related problems. Pharmacovigilance programme was not bed of roses but its path is laid with challenges and barriers. It is facing obstacles from deficiency from professional health personal to web-based sale of drugs, counterfeit drug to self-medication, etc. It is an integral part of the health sector and identification and reporting of adverse drug effects will have a positive impact on the public health. Impro...

  4. Sonic Crystal Noise Barriers

    OpenAIRE

    Chong, Yung

    2012-01-01

    An alternative road traffic noise barrier using an array of periodically arranged vertical cylinders known as a Sonic Crystal (SC) is investigated. As a result of multiple (Bragg) scattering, SCs exhibit a selective sound attenuation in frequency bands called band gaps or stop bands related to the spacing and size of the cylinders. Theoretical studies using Plane Wave Expansion (PWE), Multiple Scattering Theory (MST) and Finite Element Method (FEM) have enabled study of the performance of SC ...

  5. Barrier infrared detector

    Science.gov (United States)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  6. Vision 2020. Reaction Engineering Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Klipstein, David H. [Reaction Design, San Diego, CA (United States); Robinson, Sharon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2001-01-01

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  7. Chemistry of heavy ion reactions

    International Nuclear Information System (INIS)

    The use of heavy ions to induce nuclear reactions was reported as early as 1950. Since that time it has been one of the most active areas of nuclear research. Intense beams of ions as heavy as uranium with energies high enough to overcome the Coulomb barriers of even the heaviest elements are available. The wide variety of possible reactions gives rise to a multitude of products which have been studied by many ingenious chemical and physical techniques. Chemical techniques have been of special value for the separation and unequivocal identification of low yield species from the plethora of other nuclides present. Heavy ion reactions have been essential for the production of the trans-Md elements and a host of new isotopes. The systematics of compound nucleus reactions, transfer reactions, and deeply inelastic reactions have been elucidated using chemical techniques. A review of the variety of chemical procedures and techniques which have been developed for the study of heavy ion reactions and their products is given. Determination of the chemical properties of the trans-Md elements, which are very short-lived and can only be produced an ''atom-at-a-time'' via heavy ion reactions, is discussed. 53 refs., 19 figs

  8. Interaction of Botulinum Toxin with the Epithelial Barrier

    Directory of Open Access Journals (Sweden)

    Yukako Fujinaga

    2010-01-01

    Full Text Available Botulinum neurotoxin (BoNT is a protein toxin (~150 kDa, which possesses a metalloprotease activity. Food-borne botulism is manifested when BoNT is absorbed from the digestive tract to the blood stream and enters the peripheral nerves, where the toxin cleaves core proteins of the neuroexocytosis apparatus and elicits the inhibition of neurotransmitter release. The initial obstacle to orally ingested BoNT entering the body is the epithelial barrier of the digestive tract. Recent cell biology and molecular biology studies are beginning to elucidate the mechanism by which this large protein toxin crosses the epithelial barrier. In this review, we provide an overview of the structural features of botulinum toxins (BoNT and BoNT complex and the interaction of these toxins with the epithelial barrier.

  9. Computational Fluid Dynamic Approach for Biological System Modeling

    OpenAIRE

    Huang, Weidong; Wu, Chundu; Xiao, Bingjia; Xia, Weidong

    2005-01-01

    Various biological system models have been proposed in systems biology, which are based on the complex biological reactions kinetic of various components. These models are not practical because we lack of kinetic information. In this paper, it is found that the enzymatic reaction and multi-order reaction rate is often controlled by the transport of the reactants in biological systems. A Computational Fluid Dynamic (CFD) approach, which is based on transport of the components and kinetics of b...

  10. TRIMOLECULAR REACTIONS OF URANIUM HEXAFLUORIDE WITH WATER

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, M.; Becnel, J.; Garrison, S.

    2010-02-25

    The hydrolysis reaction of uranium hexafluoride (UF{sub 6}) is a key step in the synthesis of uranium dioxide (UO{sub 2}) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF{sub 6} molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizeable barrier of 78.2 kJ {center_dot} mol{sup -1}, indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO{sub 2} product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF{sub 6} molecules and one water molecule, and (2) the reaction of two water molecules with a single UF{sub 6} molecule. The predicted reaction of two UF{sub 6} molecules with one water molecule displays an interesting 'fluorine-shuttle' mechanism, a significant energy barrier of 69.0 kJ {center_dot} mol{sup -1} to the formation of UF{sub 5}OH, and an enthalpy of reaction ({Delta}H{sub 298}) of +17.9 kJ {center_dot} mol{sup -1}. The reaction of a single UF{sub 6} molecule with two water molecules displays a 'proton-shuttle' mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ {center_dot} mol{sup -1} and an exothermic enthalpy of reaction ({Delta}H{sub 298}) of -13.9 kJ {center_dot} mol{sup -1}. The exothermic nature of the overall UF{sub 6} + 2 {center_dot} H{sub 2}O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging; however, the sizable energy barrier indicates further study of the UF{sub 6} hydrolysis reaction

  11. Heavy ion fusion and fission reactions

    International Nuclear Information System (INIS)

    Various methods of probing the partial wave distribution are reviewed and new results using fission fragment angular distributions are discussed. Evidence that existing models of fusion reactions near-barrier and sub-barrier energies underestimate the mean-square spin values are presented. The dynamics of fusion reactions at higher energies are also discussed. The controversy over the interpretation of fission fragment and angular distributions are reviewed. Both statistical scission models and dynamical models with incomplete K mixing are discussed. New developments related to the effective moment of inertia of the saddlepoint shape are presented

  12. Effects of nuclear breakup channel on fusion of 6Li+64Zn system around barrier energies

    International Nuclear Information System (INIS)

    We have studied the effects of breakup, occurring due to the nuclear interaction between weakly bound 6Li and tightly bound 64Zn isotopes, on the fusion reaction at near barrier energies within the framework of dynamic polarization potential (DPP) approach. When the nuclear induced dynamic polarization potential is taken into account sub barrier enhancement and above barrier suppression have been found which improves the matching between the fusion excitation function data and predictions for 6Li+64Zn system significantly. (author)

  13. Sub-barrier fusion at L.N.L

    International Nuclear Information System (INIS)

    Heavy ion fusion reactions at energies below the Coulomb barrier are studied. It is shown how this process can be understood quantum mechanically. The experimental results for the different beams and targets (systems of sulfur and nickel isotopes) are summarized. 11 refs., 9 figs. (M.F.W.)

  14. Spatial model of autocatalytic reactions

    OpenAIRE

    De Anna, Pietro; Di Patti, Francesca; Fanelli, Duccio; McKane, Alan J.; Dauxois, Thierry

    2010-01-01

    Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles - membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for pre-biotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The ...

  15. Oxidation-reduction reactions of metal ions.

    OpenAIRE

    Carter, D E

    1995-01-01

    Several metal or metalloid ions exist in multiple oxidation states and can undergo electron transfer reactions that are important in biological and environmental systems. There are endogenous metal ions such as iron, copper, and cobalt that participate in oxidation-reduction reactions with species of oxygen like molecular dioxygen, superoxide, and hydrogen peroxide. These reactions may be modulated by endogenous reducing agents such as glutathione, ascorbate, and tocopherol. The reactions can...

  16. Biology task group

    International Nuclear Information System (INIS)

    The accomplishments of the task group studies over the past year are reviewed. The purposes of biological investigations, in the context of subseabed disposal, are: an evaluation of the dose to man; an estimation of effects on the ecosystem; and an estimation of the influence of organisms on and as barriers to radionuclide migration. To accomplish these ends, the task group adopted the following research goals: (1) acquire more data on biological accumulation of specific radionuclides, such as those of Tc, Np, Ra, and Sr; (2) acquire more data on transfer coefficients from sediment to organism; (3) Calculate mass transfer rates, construct simple models using them, and estimate collective dose commitment; (4) Identify specific pathways or transfer routes, determine the rates of transfer, and make dose limit calculations with simple models; (5) Calculate dose rates to and estimate irradiation effects on the biota as a result of waste emplacement, by reference to background irradiation calculations. (6) Examine the effect of the biota on altering sediment/water radionuclide exchange; (7) Consider the biological data required to address different accident scenarios; (8) Continue to provide the basic biological information for all of the above, and ensure that the system analysis model is based on the most realistic and up-to-date concepts of marine biologists; and (9) Ensure by way of free exchange of information that the data used in any model are the best currently available

  17. Tearing Down Disciplinary Barriers

    Science.gov (United States)

    Roederer, Juan G.

    1988-05-01

    Profesor Hannes Alfvén's life-long battle against scientific narrow-mindedness and parochial approaches to the solution of scientific problems is well known and deeply appreciated by this author. In this article the new interdisciplinary trends in science are critically examined and the psychological impacts of crumbling disciplinary barriers on the participating scientists are analyzed. Several examples of interdisciplinary research programs are discussed and some thoughts on the structural reform of scientific organizations, agencies, and universities needed to face these trends are given.

  18. Role of Projectile Degrees of Freedom in Sub-Barrier Fusion Dynamics

    Science.gov (United States)

    Gautam, Manjeet Singh

    2016-04-01

    This work theoretically investigates the role of the projectile degrees of freedom on the fusion dynamics of various heavy-ion fusion reactions. The impact of the projectile breakup channel is studied for the fusion mechanism of the 4 9 Be + 39 89 Y, 6 12 C + 39 89 Y, and 16 32,34 S + 39 89 Y reactions within the view of the coupled channel approach and the energy-dependent Woods-Saxon potential model (EDWSP model). The above-barrier fusion cross-section data of the 4 9 Be + 39 89 Y reaction is suppressed by about 20 % with respect to the theoretical predictions of the coupled channel approach and the single barrier penetration model while this suppression factor is reduced to 10 % within the context of the EDWSP model calculations. Such fusion hindrance at above-barrier energies can be understood in terms of the projectile breakup effects that arise due to its low breakup threshold. However, the observed fusion enhancement of the 6 12 C + 39 89 Y and 16 32,34 S + 39 89 Y reactions, wherein the colliding pairs are stable against breakup, is adequately explained by the EDWSP model and the coupled channel approach in the whole range of energy around the Coulomb barrier. This reveals that the energy dependence in the nucleus-nucleus potential governs barrier modification effects (barrier height, barrier position, barrier curvature) in closely similar way as reflected from the coupled channel formulation.

  19. Barriers to entry : abolishing the barriers to understanding

    OpenAIRE

    Keppler, Jan Horst

    2009-01-01

    BARRIERS TO ENTRY: ABOLISHING THE BARRIERS TO UNDERSTANDING by Jan-Horst Keppler Professor of economics Université Paris – Dauphine, LEDa, and Université Paris I Panthéon-Sorbonne, PHARE Port.: (+33 6) 77 81 37 46; Email: . Abstract The concept of a barrier to entry has been discussed least since Bain (1956) with important contributions by Spence (1977), Dixit (1980) or Milgrom and Roberts (1982). The more recent discussion is synth...

  20. Optimum Barrier Height for SiC Schottky Barrier Diode

    OpenAIRE

    Mohamed Abd El-Latif; Alaa El-Din Sayed Hafez

    2013-01-01

    The study of barrier height control and optimization for Schottky barrier diode (SBD) from its physical parameters have been introduced using particle swarm optimization (PSO) algorithm. SBD is the rectifying barrier for electrical conduction across the metal semiconductor (MS) junction and, therefore, is of vital importance to the successful operation of any semiconductor device. 4H-SiC is used as a semiconductor material for its good electrical characteristics with high-power semiconductor ...

  1. BIOLOGICAL APPLICATIONS OF ATMOSPHERIC PRESSURE DIELECTRIC BARRIER DISCHARGES

    OpenAIRE

    Dodet, Bénédicte; Odic, Emmanuel; Salamitou, Sylvie; Goldman, Alice; Goldman, Max

    2006-01-01

    A reduction of more than 4 orders of magnitude of survivors was obtained by exposing a Bacillus Stearothermophilus spores - contaminated surface to an atmospheric pressure DBD post-discharge for 20 minutes. Decontamination mechanisms are investigated assuming that (i) inactivation is obtained when the bacteria DNA is fragmented, (ii) the protein coats are the main protection of the cell core DNA in the case of bacteria spores. The degradation of DNA (plasmid) and protein (RNAse A) samples sub...

  2. Piezonuclear Reactions

    CERN Document Server

    Cardone, Fabio; Petrucci, Andrea

    2010-01-01

    In this paper, we deal with the subject of piezonuclear reactions, namely nuclear reactions (of new type) triggered by pressure waves. We discuss the experimental evidences obtained in the last two decades, which can be summarized essentially as follows: experiments in cavitation of liquids, where transmutation of elements, creation of elements and emission of neutrons have been observed; emission of neutrons in brittle failure of solids subjected to mechanical pressure; alteration of the lifetime of un unstable element (thorium) subjected to cavitation. A theoretical model to explain these facts is proposed. Future perspectives of these experimental and theoretical investigations are also underlined.

  3. Reaction mechanisms

    International Nuclear Information System (INIS)

    The 1988 progress report of the Reaction Mechanisms laboratory (Polytechnic School, France), is presented. The research topics are: the valence bond methods, the radical chemistry, the modelling of the transition states by applying geometric constraints, the long range interactions (ion - molecule) in gaseous phase, the reaction sites in gaseous phase and the mass spectroscopy applications. The points of convergence between the investigations of the mass spectroscopy and the theoretical chemistry teams, as well as the purposes guiding the research programs, are discussed. The published papers, the conferences, the congress communications and the thesis, are also reported

  4. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  5. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  6. Lipidomics Investigations in Cell Biology

    OpenAIRE

    YU, Yang

    2014-01-01

    Cell membrane is the biological barrier serving as both territorial defense and the communication hinge for the interior of cell from its surroundings. As building blocks of cellular membranes and also precursor for second messengers, a variety of lipids play essential roles in cellular membrane dynamics as well as important functions such as cell proliferation, apoptosis, signal transduction and membrane trafficking modulation. Lipidomics, representing the systematic and integrative studies ...

  7. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  8. Surface barrier for tritium permeation

    International Nuclear Information System (INIS)

    To apply the surface barrier to reduce hydrogen permeation, the influence of the surface barrier on both the permeation and retention has been investigated considering physical and chemical stability of the barrier in fusion environment. Since energetic hydrogen from the plasma not only impinges directly into subsurface but also removes the front surface barrier, only the back surface barrier works reliably. Oxides, carbide and nitride are candidates as the barrier but their mechanical as well as chemical stability is an important concern, because very large thermal gradient and thermal cycling in fusion environment could enhance the crack initiation and exfoliation of the barrier. Therefore an appropriate barrier which is stable under a particular operating condition must be developed. The most reliable way to reduce the permeation is to use a metallic layer, but it must be rather thick. It should be noted that the back surface barrier to suppress the permeation inevitably increases the retention. Therefore an optimization between the permeation decrease and retention increase is necessary. An alternative way to reduce the plasma or ion driven permeation is to decrease the recombination coefficient at the back surface. However, large uncertainty in the observed recombination coefficients does not allow us to rely on the recombination limited process and further work is needed. 20 refs., 6 figs

  9. Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Gaurav Solanki

    2012-10-01

    Full Text Available The polymerase chain reaction (PCR is a technique in molecular biology to amplify a single or a few copies of a piece of DNA across several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence. PCR is now a common and often indispensable technique used in medical and biological research labs for a variety of applications. There are three major steps involved in the PCR technique: denaturation, annealing and extension. PCR is useful in the investigation and diagnosis of a growing number of diseases. PCR is also used in forensics laboratories. PCR can identify genes that have been implicated in the development of cancer. The present paper is an attempt to review basics of PCR in relation to its methods, application and use.

  10. Performance of Ca1-xSrxTiO3 as barriers in dielectric barrier discharges with different Sr content

    International Nuclear Information System (INIS)

    Plasma assisted catalytic technology, which uses synergetic technologies between the catalyst and plasma, has attracted much attention over the past several years. Theoretically, permittivity of a dielectric barrier influences the transferred charge of a microdischarge; thus high permittivity can improve the plasma reaction in a dielectric barrier discharge (DBD) plasma reactor. Despite the increased interest in the chemical processes, very little has been reported concerning the influence of materials of a dielectric barrier on DBD plasma reactions, since a high permittivity barrier generally exhibits low fracture strength and low dielectric strength making it break down under strong current pulses. In the present study, Ca1-xSrxTiO3 (0.1 ≤ x ≤ 0.4) which possesses a high permittivity and a high fracture strength was prepared by liquid phase sintering and was used as a dielectric barrier for the destruction of carbon dioxide by a DBD plasma reaction. The permittivity of Ca1-xSrxTiO3 (0.1 ≤ x ≤ 0.4) increased with increasing SrTiO3 content; however, the observed CO2 conversion became greatest using Ca0.8Sr0.2TiO3 and then decreased with increasing SrTiO3 content. These results imply that the reactivity of CO2 destruction does not monotonously increase with increased permittivity of the Ca1-xSrxTiO3 barriers. Both amplitude and density of the current pulses ignited by Ca0.8Sr0.2TiO3 were much greater than that of Ca0.6Sr0.4TiO3. Further, it was confirmed that a plasma reaction uniformly proceeded using the Ca0.8Sr0.2TiO3 barrier, but proceeded non-uniformly using the Ca0.6Sr0.4TiO3 barrier by observing the carbon deposition profiles on the surfaces of the barriers

  11. Photooxidative reactions of psoralens

    International Nuclear Information System (INIS)

    The mechanism and biological significance of photooxidative reactions of psoralens are reviewed. Skin-photosensitizing activities of bifunctional and monofunctional psoralens are compared. Antioxidants tocopherols and butilated hydroxytoluene inhibit photochemical reactions of psoralens responsible for induction of erythema. The same antioxidants do not inhibit PUVA-therapy of psriasis. Though psoralens can generate singlet oxygen under UVA-irradiation (315 - 400 nm), nevertheless singlet oxygen does not play significant role in 8-methoxypsoralen (8-MOP) sensitized photooxidation of tocopherol or dihydroxyphenylalanine (DOPA). SH-compounds enhance the rate of 8-MOP sensitized photooxidation of DOPA by a factor of four, simultaneously the rate of oxidation of SH-groups is enhanced many fold in the presence of DOPA. Under UVA-irradiation in organic solvents psoralens are photooxidized. Dimeric photooxidized psoralens are easily destructed in water medium, their destruction induce oxidation of unsaturated lipids and DOPA. (author)

  12. Enzymatic reactions in confined environments

    Science.gov (United States)

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-01

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  13. Racial Trade Barriers?

    DEFF Research Database (Denmark)

    Bjerre, Jacob Halvas

    Aryanization is associated with Nazi Germany's policies to exclude Jews in the Germany from the economy in the pre-war years, but I will show it was a global policy from 1937. The utopian goal of international Aryanization was the total removal of Jews who traded with Germany anywhere in the world....... This paper analyzes the racial policies pursued in the foreign trade and argues that we need to recognize Aryanization as a world-wide policy in order to fully understand its character and possible consequences. I focus on the pre-war period and analyze the case of Denmark from three different perspectives......: perpetrators, victims and bystanders. The analysis will show that race, economy and foreign trade were combined in an attempt to raise racial trade barriers. This forced the question of German racial policies on the Danish government, Danish-Jewish businesses, and German companies involved in foreign trade...

  14. PHARMACOVIGILANCE: BARRIERS AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    VARMA S. K

    2013-01-01

    Full Text Available Pharmacovigilance is a new discipline which deals with adverse drug or any drug related problems. Pharmacovigilance programme was not bed of roses but its path is laid with challenges and barriers. It is facing obstacles from deficiency from professional health personal to web-based sale of drugs, counterfeit drug to self-medication, etc. It is an integral part of the health sector and identification and reporting of adverse drug effects will have a positive impact on the public health. Improvement in knowledge in pharmacovigilance and communication from the top level to the grass-root level in the health sector will help in proper implementation of the programme. Patient should be educated to report any adverse effects after taking drug and stop relaying on acquiring information related to drugs in web. Proper detection, reporting and analysis would help to implement the programme for the betterment of society.

  15. Countermeasures and barriers

    International Nuclear Information System (INIS)

    In 1973 Haddon proposed ten strategies for reducing and avoiding damages based on a model of potential harmful energy transfer (Haddon, 1973). The strategies apply to a large variety of unwanted phenomena. Haddon's pioneering work on countermeasures has had a major influence on later thinking about safety. Considering its impact it is remarkable that the literature offers almost no discussions related to the theoretical foundations of Haddon's countermeasure strategies. The present report addresses a number of theoretical issues related to Haddon's countermeasure strategies, which are: 1) A reformulation and formalization of Haddon's countermeasure strategies. 2) An identification and description of some of the problems associated with the term 'barrier'. 3) Suggestions for a more precise terminology based on the causal structure of countermeasures. 4) Extending the scope of countermeasures to include sign-based countermeasures. (au)

  16. Countermeasures and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Johannes [Oersted - DTU, Automation, Kgs. Lyngby (Denmark)

    2005-10-01

    In 1973 Haddon proposed ten strategies for reducing and avoiding damages based on a model of potential harmful energy transfer (Haddon, 1973). The strategies apply to a large variety of unwanted phenomena. Haddon's pioneering work on countermeasures has had a major influence on later thinking about safety. Considering its impact it is remarkable that the literature offers almost no discussions related to the theoretical foundations of Haddon's countermeasure strategies. The present report addresses a number of theoretical issues related to Haddon's countermeasure strategies, which are: 1) A reformulation and formalization of Haddon's countermeasure strategies. 2) An identification and description of some of the problems associated with the term 'barrier'. 3) Suggestions for a more precise terminology based on the causal structure of countermeasures. 4) Extending the scope of countermeasures to include sign-based countermeasures. (au)

  17. Evolution of conformational changes in the dynamics of small biological molecules: a hybrid MD/RRK approach.

    Science.gov (United States)

    Segev, Elad; Grumbach, Mikael; Gerber, Robert Benny

    2006-11-14

    The dynamics of long timescale evolution of conformational changes in small biological molecules is described by a hybrid molecular dynamics/RRK algorithm. The approach employs classical trajectories for transitions between adjacent structures separated by a low barrier, and the classical statistical RRK approximation when the barrier involved is high. In determining the long-time dynamics from an initial structure to a final structure of interest, an algorithm is introduced for determining the most efficient pathways (sequence of the intermediate conformers). This method uses the Dijkstra algorithm for finding optimal paths on networks. Three applications of the method using an AMBER force field are presented: a detailed study of conformational transitions in a blocked valine dipeptide; a multiple reaction path study of the blocked valine tripeptide; and the evolution in time from the beta hairpin to alpha helix structure of a blocked alanine hexapeptide. Advantages and limitations of the method are discussed in light of the results. PMID:17066182

  18. Biological fuel cells and their applications

    OpenAIRE

    Shukla, AK; Suresh, P; Berchmans, S; Rajendran, A.

    2004-01-01

    One type of genuine fuel cell that does hold promise in the long-term is the biological fuel cell. Unlike conventional fuel cells, which employ hydrogen, ethanol and methanol as fuel, biological fuel cells use organic products produced by metabolic processes or use organic electron donors utilized in the growth processes as fuels for current generation. A distinctive feature of biological fuel cells is that the electrode reactions are controlled by biocatalysts, i.e. the biological redox-reac...

  19. Study of fusion-fission dynamics in 19F+238U reaction

    Science.gov (United States)

    Dubey, R.; Sugathan, P.; Jhingan, A.; Kaur, Gurpreet; Mukul, Ish; Siwal, Davinder; Saneesh, N.; Banerjee, Tathagata; Yadav, Abhishek; Thakur, Meenu; Mahajan, Ruchi; Chaterjee, M. B.

    2016-05-01

    Mass angle distribution measurements for 19F+238U reaction were carried out around the sub barrier energies. Mass angle correlation has not been observed at above and below the fusion barrier in present reaction. This infer the minimal presence of non compound like events at these bombarding energies range.

  20. Exploring the multi-humped fission barrier of 238U via sub-barrier photofission

    CERN Document Server

    Csige, L; Glodariu, T; Gulyás, J; Günther, M M; Habs, D; Karwowski, H J; Krasznahorkay, A; Rich, G C; Sin, M; Stroe, L; Tesileanu, O; Thirolf, P G

    2013-01-01

    The photofission cross-section of 238U was measured at sub-barrier energies as a function of the gamma-ray energy using, for the first time, a monochromatic, high-brilliance, Compton-backscattered gamma-ray beam. The experiment was performed at the High Intensity gamma-ray Source (HIgS) facility at beam energies between E=4.7 MeV and 6.0 MeV and with ~3% energy resolution. Indications of transmission resonances have been observed at gamma-ray beam energies of E=5.1 MeV and 5.6 MeV with moderate amplitudes. The triple-humped fission barrier parameters of 238U have been determined by fitting EMPIRE-3.1 nuclear reaction code calculations to the experimental photofission cross section.

  1. Exploring the multihumped fission barrier of 238U via sub-barrier photofission

    Science.gov (United States)

    Csige, L.; Filipescu, D. M.; Glodariu, T.; Gulyás, J.; Günther, M. M.; Habs, D.; Karwowski, H. J.; Krasznahorkay, A.; Rich, G. C.; Sin, M.; Stroe, L.; Tesileanu, O.; Thirolf, P. G.

    2013-04-01

    The photofission cross section of 238U was measured at sub-barrier energies as a function of the γ-ray energy using a monochromatic, high-brilliance, Compton-backscattered γ-ray beam. The experiment was performed at the High Intensity γ-ray Source (HIγS) facility at beam energies between Eγ=4.7 MeV and 6.0 MeV and with ˜3% energy resolution. Indications of transmission resonances have been observed at γ-ray beam energies of Eγ=5.1 MeV and 5.6 MeV with moderate amplitudes. The triple-humped fission barrier parameters of 238U have been determined by fitting empire-3.1 nuclear reaction code calculations to the experimental photofission cross section.

  2. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  3. Reactions to extreme events: moving threshold model

    CERN Document Server

    Altmann, E G; Kantz, H

    2006-01-01

    In spite of precautions to avoid the harmful effects of extreme events, we experience recurrently phenomena that overcome the preventive barriers. These barriers usually increase drastically right after the occurrence of such extreme events, but steadily decay in their absence. In this paper we consider a simple model that mimics the evolution of the protection barriers to study the efficiency of the system's reaction to extreme events and how it changes our perception of the sequence of extreme events itself. We obtain that the usual method of fighting extreme events introduces a periodicity in their occurrence and is generally less efficient than the use of a constant barrier. On the other hand, it shows a good adaptation to the presence of slow non-stationarities.

  4. Skin Barrier Function and Allergens

    DEFF Research Database (Denmark)

    Engebretsen, Kristiane Aasen; Thyssen, Jacob Pontoppidan

    2016-01-01

    The skin is an important barrier protecting us from mechanical insults, microorganisms, chemicals and allergens, but, importantly, also reducing water loss. A common hallmark for many dermatoses is a compromised skin barrier function, and one could suspect an elevated risk of contact sensitization...

  5. Modelling with uncertainties: The role of the fission barrier

    Directory of Open Access Journals (Sweden)

    Lü Hongliang

    2013-12-01

    Full Text Available Fission is the dominant decay channel of super-heavy elements formed in heavy ions collisions. The probability of synthesizing heavy or super-heavy nuclei in fusion-evaporation reactions is then very sensitive to the height of their fission barriers. This contribution will firstly address the influence of theoretical uncertainty on excitation functions. Our second aim is to investigate the inverse problem, i.e., what information about the fission barriers can be extracted from excitation functions? For this purpose, Bayesian methods have been used with a simplified toy model.

  6. Near barrier scattering of 8He from heavy targets

    OpenAIRE

    Marquínez Durán, Gloria

    2016-01-01

    The objective of this thesis is the study of the elastic scattering of 8He from 208Pb at energies around the Coulomb barrier. This work is an extension of the investigations performed by the collaboration, in which the Grupo de Estructura de la Materia of the University of Huelva takes part, on 6He reactions at near-barrier energies. The direct comparison of the experimental data from the 6He+208Pb and 8He+208Pb experiments will allow for studying the subtle differences in the dynamics of hal...

  7. Neutron pair transfer in sub-barrier capture process

    CERN Document Server

    Sargsyan, V V; Adamian, G G; Antonenko, N V; Lacroix, D

    2013-01-01

    The sub-barrier capture reactions following the neutron pair transfer are proposed to be used for the indirect study of neutron-neutron correlation in the surface region of nucleus. The strong effect of the dineutron-like clusters transfer stemming from the surface of magic and non-magic nuclei $^{18}$O, $^{48}$Ca, $^{64}$Ni, $^{94,96}$Mo, $^{100,102,104}$Ru, $^{104,106,108}$Pd, and $^{112,114,116,118,120,124,132}$Sn is demonstrated. The dominance of two-neutron transfer channel at the vicinity of the Coulomb barrier is further supported by time-dependent mean-field approaches.

  8. Long term performance of the Waterloo denitrification barrier

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, W.D.; Cherry, J.A. [Univ. of Waterloo, Ontario (Canada)

    1997-12-31

    Beginning in 1991 a series of laboratory tests and small scale field trials were initiated to test the performance of an innovative permeable reactive barrier for treatment of nitrate from septic systems. The barrier promotes denitrification by providing an energy source in the form of solid organic carbon mixed into the porous media material. Advantages of the system for nitrate treatment are that the reaction is passive and in situ and it is possible to incorporate sufficient carbon mass in conveniently sized barriers to potentially provide treatment for long periods (decades) without the necessity for maintenance. However, longevity can only be demonstrated by careful long term monitoring of field installations. This paper documents four years of operating history at three small scale field trials; two where the denitrification barrier is installed as a horizontal layer positioned in the unsaturated zone below conventional septic system infiltration beds and one where the barrier is installed as a vertical wall intercepting a septic system plume at a downgradient location. The barriers have successfully attenuated 50-100% of NO{sup -}{sub 3}-N levels of up to 170 mg/L and treatment has remained consistent over the four year period in each case, thus considerable longevity is indicated. Other field trials have demonstrated this technology to be equally effective in treating nitrogen contamination from other sources such as landfill leachate and farm field runoff.

  9. Long term performance of the Waterloo denitrification barrier

    International Nuclear Information System (INIS)

    Beginning in 1991 a series of laboratory tests and small scale field trials were initiated to test the performance of an innovative permeable reactive barrier for treatment of nitrate from septic systems. The barrier promotes denitrification by providing an energy source in the form of solid organic carbon mixed into the porous media material. Advantages of the system for nitrate treatment are that the reaction is passive and in situ and it is possible to incorporate sufficient carbon mass in conveniently sized barriers to potentially provide treatment for long periods (decades) without the necessity for maintenance. However, longevity can only be demonstrated by careful long term monitoring of field installations. This paper documents four years of operating history at three small scale field trials; two where the denitrification barrier is installed as a horizontal layer positioned in the unsaturated zone below conventional septic system infiltration beds and one where the barrier is installed as a vertical wall intercepting a septic system plume at a downgradient location. The barriers have successfully attenuated 50-100% of NO-3-N levels of up to 170 mg/L and treatment has remained consistent over the four year period in each case, thus considerable longevity is indicated. Other field trials have demonstrated this technology to be equally effective in treating nitrogen contamination from other sources such as landfill leachate and farm field runoff

  10. Performance of engineered barriers for low-level waste

    International Nuclear Information System (INIS)

    Geotechnical Resources Ltd., in association with Komex Consultants Ltd., was retained to collect, synthesize and evaluate the available information on the long term performance of engineered barriers for low-level radioactive wastes disposed in Canada. Literature was researched from Canadian, United States and European sources. A variety of barrier materials were assessed in the study and included natural clays, concrete and cement, metals, bentonite-sand admixes, bitumen and bituminous admixes, soil cement and polymeric membranes. The generalized geological and geotechnical conditions encountered within the soil and rock host media currently under consideration for disposal sites in southern Ontario were also summarized. Both internal barriers, or buffers, to immobilize the waste material and reduce radionuclide mobility, as well as external barriers to limit the migration of contaminants were examined. Microbial activities within the waste forms were analyzed, including cellulose degradation, methanogenesis and bicarbonate and organic reactions. Microbial interactions with the various engineered barrier materials under consideration were also assessed. Finally, the anticipated long term performances of the respective barrier materials under consideration were evaluated, along with the general suitability of the geological host media being proposed for disposal sites

  11. Quantum Biology

    CERN Document Server

    Sergi, Alessandro

    2009-01-01

    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledge...

  12. Selected aspects of fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D

    2003-01-01

    In this lecture, we present selected aspects of nuclear fusion. The importance of the initial geometry of the reaction and its relation to fusion barrier are first discussed. The effect of deformation leading to the notion of barrier distribution is then illustrated. After a brief overview of the advantages of macroscopic theories, the dynamics of nuclear system under large amplitude motion is reviewed. The di-nuclear concept is presented to understand the competition between fusion and quasi-fission. This concept is then generalized to account for the dissipative dynamics in multidimensional collective space. The last part of this lecture is devoted to new aspects encountered with radioactive beams specific properties of very extended neutron rich system, influence of pygmy or soft dipole resonances and charge exchange far from stability are discussed. (author)

  13. Selected aspects of fusion reactions

    International Nuclear Information System (INIS)

    In this lecture, we present selected aspects of nuclear fusion. The importance of the initial geometry of the reaction and its relation to fusion barrier are first discussed. The effect of deformation leading to the notion of barrier distribution is then illustrated. After a brief overview of the advantages of macroscopic theories, the dynamics of nuclear system under large amplitude motion is reviewed. The di-nuclear concept is presented to understand the competition between fusion and quasi-fission. This concept is then generalized to account for the dissipative dynamics in multidimensional collective space. The last part of this lecture is devoted to new aspects encountered with radioactive beams specific properties of very extended neutron rich system, influence of pygmy or soft dipole resonances and charge exchange far from stability are discussed. (author)

  14. Reaction Coordinates and Mechanistic Hypothesis Tests.

    Science.gov (United States)

    Peters, Baron

    2016-05-27

    Reaction coordinates are integral to several classic rate theories that can (a) predict kinetic trends across conditions and homologous reactions, (b) extract activation parameters with a clear physical interpretation from experimental rates, and (c) enable efficient calculations of free energy barriers and rates. New trajectory-based rare events methods can provide rates directly from dynamical trajectories without a reaction coordinate. Trajectory-based frameworks can also generate ideal (but abstract) reaction coordinates such as committors and eigenfunctions of the master equation. However, rates and mechanistic insights obtained from trajectory-based methods and abstract coordinates are not readily generalized across simulation conditions or reaction families. We discuss methods for identifying physically meaningful reaction coordinates, including committor analysis, variational transition state theory, Kramers-Langer-Berezhkovskii-Szabo theory, and statistical inference methods that can use path sampling data to screen, mix, and optimize thousands of trial coordinates. Special focus is given to likelihood maximization and inertial likelihood maximization approaches. PMID:27090846

  15. Hanford Protective Barriers Program asphalt barrier studies -- FY 1988

    International Nuclear Information System (INIS)

    The Hanford Protective Barrier (HPB) Program is evaluating alternative barriers to provide a means of meeting stringent water infiltration requirements. One type of alternative barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick, which has been shown to be very effective as a barrier for radon gas and, hence, should be equally effective as a barrier for the larger molecules of water. Fiscal Year 1988 studies focused on the selection and formulation of the most promising asphalt materials for further testing in small-tube lysimeters. Results of laboratory-scale formulation and hydraulic conductivity tests led to the selection of a rubberized asphalt material and an admixture of 24 wt% asphalt emulsion and concrete sand as the two barriers for lysimeter testing. Eight lysimeters, four each containing the two asphalt treatments, were installed in the Small Tube Lysimeter Facility on the Hanford Site. The lysimeter tests allow the performance of these barrier formulations to be evaluated under more natural environmental conditions

  16. Artificial reaction coordinate "tunneling" in free-energy calculations: the catalytic reaction of RNase H.

    Science.gov (United States)

    Rosta, Edina; Woodcock, H Lee; Brooks, Bernard R; Hummer, Gerhard

    2009-08-01

    We describe a method for the systematic improvement of reaction coordinates in quantum mechanical/molecular mechanical (QM/MM) calculations of reaction free-energy profiles. In umbrella-sampling free-energy calculations, a biasing potential acting on a chosen reaction coordinate is used to sample the system in reactant, product, and transition states. Sharp, nearly discontinuous changes along the resulting reaction path are used to identify coordinates that are relevant for the reaction but not properly sampled. These degrees of freedom are then included in an extended reaction coordinate. The general formalism is illustrated for the catalytic cleavage of the RNA backbone of an RNA/DNA hybrid duplex by the RNase H enzyme of Bacillus halodurans. We find that in the initial attack of the phosphate diester by water, the oxygen-phosphorus distances alone are not sufficient as reaction coordinates, resulting in substantial hysteresis in the proton degrees of freedom and a barrier that is too low (approximately 10 kcal/mol). If the proton degrees of freedom are included in an extended reaction coordinate, we obtain a barrier of 21.6 kcal/mol consistent with the experimental rates. As the barrier is approached, the attacking water molecule transfers one of its protons to the O1P oxygen of the phosphate group. At the barrier top, the resulting hydroxide ion forms a penta-coordinated phosphate intermediate. The method used to identify important degrees of freedom, and the procedure to optimize the reaction coordinate are general and should be useful both in classical and in QM/MM free-energy calculations. PMID:19462398

  17. Artificial reaction coordinate “tunneling” in free energy calculations: the catalytic reaction of RNase H

    Science.gov (United States)

    Rosta, Edina; Woodcock, H. Lee; Brooks, Bernard R.; Hummer, Gerhard

    2011-01-01

    We describe a method for the systematic improvement of reaction coordinates in quantum mechanical / molecular mechanical (QM/MM) calculations of reaction free energy profiles. In umbrella-sampling free energy calculations, a biasing potential acting on a chosen reaction coordinate is used to sample the system in reactant, product, and transition states. Sharp, nearly discontinuous changes along the resulting reaction path are used to identify coordinates that are relevant for the reaction but not properly sampled. These degrees of freedom are then included in an extended reaction coordinate. The general formalism is illustrated for the catalytic cleavage of the RNA backbone of an RNA/DNA hybrid duplex by the RNase H enzyme of bacillus halodurans. We find that in the initial attack of the phosphate diester by water, the oxygen-phosphorus distances alone are not sufficient as reaction coordinates, resulting in substantial hysteresis in the proton degrees of freedom and a barrier that is too low (~10 kcal/mol). If the proton degrees of freedom are included in an extended reaction coordinate, we obtain a barrier of 21.6 kcal/mol consistent with the experimental rates. As the barrier is approached, the attacking water molecule transfers one of its protons to the O1P oxygen of the phosphate group. At the barrier top, the resulting hydroxide ion forms a penta-coordinated phosphate intermediate. The method used to identify important degrees of freedom, and the procedure to optimize the reaction coordinate are general and should be useful both in classical and in QM/MM free energy calculations. PMID:19462398

  18. XVIII Mendeleev congress on general and applied chemistry. Summaries of reports in five volumes. Volume 5. IV Russian-French symposium Supramolecular systems in chemistry and biology. II Russian-Indian symposium on organic chemistry. International symposium on present-day radiochemistry Radiochemistry: progress and prospects. International symposium Green chemistry, stable evolution and social responsibility of chemists. Symposium Nucleophilic hydrogen substitution in aromatic systems and related reactions

    International Nuclear Information System (INIS)

    The 5 volume of the XVIII Mendeleev congress on general and applied chemistry includes summaries of reports on the subjects of sypramolecular systems in chemistry and biology, organic chemistry, modern radiochemistry, green chemistry - development and social responsibility of chemists, nucleophilic hydrogen substitution in aromatic systems and related chemical reactions

  19. Classical simulations of heavy-ion fusion reactions and weakly-bound projectile breakup reactions

    Indian Academy of Sciences (India)

    S S Godre

    2014-05-01

    Heavy-ion collision simulations in various classical models are discussed. Heavy-ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters depend not only on the initial orientations of the deformed nucleus, but also on the collision energy and the moment of inertia of the deformed nucleus. Maximum reorientation effect occurs at near- and below-barrier energies for light deformed nuclei. Calculated fusion crosssections for 24Mg + 208Pb reaction are compared with a static-barrier-penetration model (SBPM) calculation to see the effect of reorientation. Heavy-ion reactions are also simulated in a 3-stage classical molecular dynamics (3S-CMD) model in which the rigid-body constraints are relaxed when the two nuclei are close to the barrier thus, taking into account all the rotational and vibrational degrees of freedom in the same calculation. This model is extended to simulate heavy-ion reactions such as 6Li + 209Bi involving the weakly-bound projectile considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, simulating a 3-body system in 3S-CMD model. All the essential features of breakup reactions, such as complete fusion, incomplete fusion, no-capture breakup and scattering are demonstrated.

  20. Development of engineered barrier

    International Nuclear Information System (INIS)

    Engineered barrier development was carried out into the three research fields : waste form, disposal container, and buffer. The waste form field dealt with long-term leaching tests with borosilicate waste glasses surrounded by compacted bentonite. The leach rate decreased with increasing time, and was higher for the waste specimen rich in U and Na. In the container field, preliminary concepts of disposal containers were recommended by conducting structural analysis, thermal analysis, and shielding analysis, and major properties of stainless steel, copper, and titanium as a container material were surveyed. The sensitization degrees of SUS 316 and 316L were lower than those of SUS 304 and 304L, respectively. The crevice corrosion of sensitized stainless steel was sensitive to the content of salt. Researches into the buffer included establishment of its performance criteria followed by investigating major properties of buffer using potential material in Korea. Experiments were made for measuring hydraulic conductivities, swelling properties, mechanical properties, thermal conductivities, pore-water chemistry properties, and adsorption properties was also investigated. (author)

  1. Development of engineered barrier

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwan Sik; Cho, Won Jin; Lee, Jae Owan; Kim, Seung Soo; Kang, Mu Ja

    1999-03-01

    Engineered barrier development was carried out into the three research fields : waste form, disposal container, and buffer. The waste form field dealt with long-term leaching tests with borosilicate waste glasses surrounded by compacted bentonite. The leach rate decreased with increasing time, and was higher for the waste specimen rich in U and Na. In the container field, preliminary concepts of disposal containers were recommended by conducting structural analysis, thermal analysis, and shielding analysis, and major properties of stainless steel, copper, and titanium as a container material were surveyed. The sensitization degrees of SUS 316 and316L were lower than those of SUS 304 and 304L, respectively. The crevice corrosion of sensitized stainless steel was sensitive to the content of salt. Researches into the buffer included establishment of its performance criteria followed by investigating major properties of buffer using potential material in Korea. Experiments were made for measuring hydraulic conductivities, swelling properties, mechanical properties, thermal conductivities, pore-water chemistry properties, and adsorption properties was also investigated. (author)

  2. Novel hybrid polymeric materials for barrier coatings

    Science.gov (United States)

    Pavlacky, Erin Christine

    Polymer-clay nanocomposites, described as the inclusion of nanometer-sized layered silicates into polymeric materials, have been widely researched due to significant enhancements in material properties with the incorporation of small levels of filler (1--5 wt.%) compared to conventional micro- and macro-composites (20--30 wt.%). One of the most promising applications for polymer-clay nanocomposites is in the field of barrier coatings. The development of UV-curable polymer-clay nanocomposite barrier coatings was explored by employing a novel in situ preparation technique. Unsaturated polyesters were synthesized in the presence of organomodified clays by in situ intercalative polymerization to create highly dispersed clays in a precursor resin. The resulting clay-containing polyesters were crosslinked via UV-irradiation using donor-acceptor chemistry to create polymer-clay nanocomposites which exhibited significantly enhanced barrier properties compared to alternative clay dispersion techniques. The impact of the quaternary alkylammonium organic modifiers, used to increase compatibility between the inorganic clay and organic polymer, was studied to explore influence of the organic modifier structure on the nanocomposite material properties. By incorporating just the organic modifiers, no layered silicates, into the polyester resins, reductions in film mechanical and thermal properties were observed, a strong indicator of film plasticization. An alternative in situ preparation method was explored to further increase the dispersion of organomodified clay within the precursor polyester resins. In stark contrast to traditional in situ polymerization methods, a novel "reverse" in situ preparation method was developed, where unmodified montmorillonite clay was added during polyesterification to a reaction mixture containing the alkylammonium organic modifier. The resulting nanocomposite films exhibited reduced water vapor permeability and increased mechanical properties

  3. Platelets in Lung Biology

    Science.gov (United States)

    Weyrich, Andrew S.; Zimmerman, Guy A.

    2013-01-01

    Platelets and the lungs have an intimate relationship. Platelets are anucleate mammalian blood cells that continuously circulate through pulmonary vessels and that have major effector activities in hemostasis and inflammation. The lungs are reservoirs for megakaryocytes, the requisite precursor cell in thrombopoiesis, which is the intricate process by which platelets are generated. Platelets contribute to basal barrier integrity of the alveolar capillaries, which selectively restricts the transfer of water, proteins, and red blood cells out of the vessels. Platelets also contribute to pulmonary vascular repair. Although platelets bolster hemostatic and inflammatory defense of the healthy lung, experimental evidence and clinical evidence indicate that these blood cells are effectors of injury in a variety of pulmonary disorders and syndromes. Newly discovered biological capacities of platelets are being explored in the context of lung defense, disease, and remodeling. PMID:23043249

  4. Effects of Gross Saponins of Tribulus terrestris L. on Inflammatory Reaction and Permeability of Blood-brain Barrier in Rats Following Cerebral Ischemic Injury%蒺藜皂苷对局灶性脑缺血大鼠炎症反应和血脑屏障通透性的影响∗

    Institute of Scientific and Technical Information of China (English)

    翟凤国; 周福波; 李厚忠; 郭素芬; 林峰; 关利新

    2015-01-01

    目的:探讨蒺藜皂苷对大鼠脑缺血-再灌注损伤炎症反应和血脑屏障通透性的作用及其机制。方法斯泼累格•多雷(SD)大鼠60只,随机分为假手术组、模型对照组、蒺藜皂苷小剂量组(10 mg•kg-1)、蒺藜皂苷大剂量组(30 mg•kg-1),每组15只,采用线栓法制备脑缺血-再灌注损伤模型。缺血2 h 再灌注24 h 后分别检测大鼠神经功能损伤评分、缺血脑组织髓过氧化物酶(MPO)的活性和伊文思蓝(EB)的含量;采用酶联免疫吸附测定(ELISA)法检测脑组织肿瘤坏死因子-α(TNF-α)的含量,免疫印记法检测基质金属蛋白酶-9(MMP-9)的表达变化。结果与模型对照组比较,蒺藜皂苷小、大剂量组大鼠神经功能损伤减轻(P<0.05),缺血脑组织 MPO 活性和 EB 含量均明显降低(P<0.05或 P<0.01),TNF-α含量明显降低[分别为(0.760±0.110),(0.670±0.073) mg•g-1,模型对照组为(0.920±0.128) mg•g-1,P<0.05或 P<0.01)],MMP-9的表达水平均明显降低[分别为(1.770±0.181)%,(1.480±0.146)%,模型对照组为(2.200±0.186)%,P<0.01]。结论蒺藜皂苷对大鼠脑缺血-再灌注损伤的脑组织具有神经保护作用,其机制可能与降低 TNF-α含量和下调 MMP-9表达,从而降低炎症反应和血脑屏障通透性有关。%Objective To explore the effects of gross saponins of Tribulus terrestris L.on inflammatory reaction and permeability of blood-brain barrier in rats following cerebral ischemia-reperfusion injury and their potential mechanisms. Methods Sixty SD rats were divided into sham operation group,model control group,gross saponins of Tribulus terrestris L.at low-dose (10 mg•kg-1 )and high-dose groups(30 mg•kg-1 ).Cerebral ischemia -reperfusion model was established with suture emboli method in middle cerebral artery of rats.Neural injury scores,the contents of Evans blue ( EB) and myeloperoxidase( MPO) activities in rat brain were measured 24 hours after the cerebral reperfusion

  5. Mapping from quasi-elastic scattering to fusion reactions

    Directory of Open Access Journals (Sweden)

    Hagino K.

    2015-01-01

    Full Text Available The fusion barrier distribution has provided a nice representation for the channel coupling effects on heavy-ion fusion reactions at energies around the Coulomb barrier. Here we discuss how one can extract the same representation using the so called sum-of-differences (SOD method with quasi-elastic scattering cross sections. In contrast to the conventional quasi-elastic barrier distribution, the SOD barrier distribution has an advantage in that it can be applied both to non-symmetric and symmetric systems. It is also the case that the correspondence to the fusion barrier distribution is much better than the quasi-elastic barrier distribution. We demonstrate its usefulness by studying 16O+144Sm, 58Ni+58Ni, and 12C+12C systems.

  6. Mapping from quasi-elastic scattering to fusion reactions

    CERN Document Server

    Hagino, K

    2014-01-01

    The fusion barrier distribution has provided a nice representation for the channel coupling effects on heavy-ion fusion reactions at energies around the Coulomb barrier. Here we discuss how one can extract the same representation using the so called sum-of-differences (SOD) method with quasi-elastic scattering cross sections. In contrast to the conventional quasi-elastic barrier distribution, the SOD barrier distribution has an advantage in that it can be applied both to non-symmetric and symmetric systems. It is also the case that the correspondence to the fusion barrier distribution is much better than the quasi-elastic barrier distribution. We demonstrate its usefulness by studying $^{16}$O+$^{144}$Sm, $^{58}$Ni+$^{58}$Ni, and $^{12}$C+$^{12}$C systems.

  7. Tritium/hydrogen barrier development

    International Nuclear Information System (INIS)

    A review of the hydrogen permeation barriers which can be applied to the structural metals used in fusion power plants is presented. Both implanted and chemically available hydrogen isotopes must be controlled in fusion plants. The need for permeation barriers appears strongest in Pb-17Li blanket designs, although barriers are also necessary for other blanket and coolant systems. Barriers which provide greater than a 1000- fold reduction in the permeation of structural metals are desired. In laboratory experiments, aluminide and titanium ceramic coatings provide permeation reduction factors (PRFs) of 1000 to over 100000 with a wide range of scatter. The rate-controlling mechanism for hydrogen permeation through these barriers may be related to the number and type of defects in the barriers. Although these barriers appear robust and resistant to liquid metal corrosion, irradiation tests which simulate blanket environments result in very low PRFs in comparison with laboratory experiments, i.e. less than 150. It is anticipated from fundamental research activities that the radiation- and electric-field-induced enhancement of hydrogen diffusion in oxides may contribute to the lower PRFs during in-reactor experiments. (orig.)

  8. Tritium/hydrogen barrier development

    International Nuclear Information System (INIS)

    A review of hydrogen permeation barriers that can be applied to structural metals used in fusion power plants is presented. Both implanted and chemically available hydrogen isotopes must be controlled in fusion plants. The need for permeation barriers appears strongest in Li17-Pb blanket designs, although barriers also appear necessary for other blanket and coolant systems. Barriers that provide greater than a 1000 fold reduction in the permeation of structural metals are desired. In laboratory experiments, aluminide and titanium ceramic coatings provide permeation reduction factors, PRFS, from 1000 to over 100,000 with a wide range of scatter. The rate-controlling mechanism for hydrogen permeation through these barriers may be related to the number and type of defects in the barriers. Although these barriers appear robust and resistant to liquid metal corrosion, irradiation tests which simulate blanket environments result in very low PRFs in comparison to laboratory experiments, i.e., <150. It is anticipated from fundamental research activities that the REID enhancement of hydrogen diffusion in oxides may contribute to the lower permeation reduction factors during in-reactor experiments

  9. Nuclear reactions

    International Nuclear Information System (INIS)

    Nuclear reactions' marks a new development in the study of television as an agency of public policy debate. During the Eighties, nuclear energy became a major international issue. The disasters at Three-mile Island and Chernobyl created a global anxiety about its risks and a new sensitivity to it among politicians and journalists. This book is a case-study into documentary depictions of nuclear energy in television and video programmes and into the interpretations and responses of viewers drawn from many different occupational groupings. How are the complex and specialist arguments about benefit, risk and proof conveyed through the different conventions of commentary, interview and film sequence? What symbolic associations does the visual language of television bring to portrayals of the issue? And how do viewers make sense of various and conflicting accounts, connecting what they see and hear on the screen with their pre-existing knowledge, experience and 'civic' expectations. The authors examine some of the contrasting forms and themes which have been used by programme makers to explain and persuade, and then give a sustained analysis of the nature and sources of viewers' own accounts. 'Nuclear Reactions' inquires into the public meanings surrounding energy and the environment, spelling out in its conclusion some of the implications for future media treatments of this issue. It is also a key contribution to the international literature on 'television knowledge' and the processes of active viewing. (author)

  10. Claudins, dietary milk proteins, and intestinal barrier regulation.

    Science.gov (United States)

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. PMID:23282252

  11. Potential and barriers for biogas production in Denmark at widely expanded organic farming with focus on the soil carbon content; Potentiale og barrierer for biogasproduktion i Danmark ved omfattende oekologisk jordbrug med fokus paa dyrkningsjordens kulstofforhold

    Energy Technology Data Exchange (ETDEWEB)

    Buch Salomonsen, K.

    2000-06-01

    The Ph.D. thesis describes the influence from continued expansion of organic farming systems to the potential for energy production from biogas in Denmark. The project analyses the consequence from three categories of barriers: 1) Practical barriers, 2) The attitude of organic farmers, and 3) Agricultural biological problems. Economic and political barriers are not examined. When the barriers can be quantified, they are included in the calculation of the maximum biogas potential. When not, the implications of barriers are expressed qualitatively. It has been a particular goal to provide new information on whether agricultural biological problems are a barrier to biogas production in organic farming systems. One important question in this connection is whether biogas production has a negative influence on the soil carbon content compared to composting. This question is investigated by an experiment. The project is based on technical and natural science disciplines, with an interdisciplinary basis ranging over energy planning, agricultural science, microbiology, and crop, and animal operation. (au)

  12. Vehicle barrier with access delay

    Science.gov (United States)

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  13. A LOOK AT CULTURAL BARRIERS

    Directory of Open Access Journals (Sweden)

    Carmen A. VRÂNCEANU

    2015-06-01

    Full Text Available Nowadays the global market allows each individual to work in foreign countries. This fact is a great opportunity for business development, but also puts into light the problem of cultural barriers. Ineffective cross-cultural communication and collaboration can harm employees, customers, and other stakeholders. A company with employees from different cultures must acknowledge and understand these barriers in order to overcome them and to obtain the desired performance. The present study aims to expose the cultural barriers encountered by foreigners in a multinational company from Romania.

  14. Weber's Law in Autocatalytic Reaction Networks

    OpenAIRE

    Inoue, Masayo; Kaneko, Kunihiko

    2011-01-01

    Biological responses often obey Weber's law, according to which the magnitude of the response depends only on the fold change in the external input. In this study, we demonstrate that a system involving a simple autocatalytic reaction shows such response when a chemical is slowly synthesized by the reaction from a faster influx process. We also show that an autocatalytic reaction process occurring in series or in parallel can obey Weber's law with an oscillatory adaptive response. Considering...

  15. Heterogeneous processes at the intersection of chemistry and biology: A computational approach

    International Nuclear Information System (INIS)

    Heterogeneous processes hold the key to understanding many problems in biology and atmospheric science. In particular, recent experiments have shown that heterogeneous chemistry at the surface of sea-salt aerosols plays a large role in important atmospheric processes with far reaching implications towards understanding of the fate and transport of aerosolized chemical weapons (i.e. organophosphates such as sarin and VX). Unfortunately, the precise mechanistic details of the simplest surface enhanced chemical reactions remain unknown. Understanding heterogeneous processes also has implications in the biological sciences. Traditionally, it is accepted that enzymes catalyze reactions by stabilizing the transition state, thereby lowering the free energy barrier. However, recent findings have shown that a multitude of phenomena likely contribute to the efficiency of enzymes, such as coupled protein motion, quantum mechanical tunneling, or strong electrostatic binding. The objective of this project was to develop and validate a single computational framework based on first principles simulations using tera-scale computational resources to answer fundamental scientific questions about heterogeneous chemical processes relevant to atmospheric chemistry and biological sciences

  16. Reactive Membrane Barriers for Containment of Subsurface Contamination

    Energy Technology Data Exchange (ETDEWEB)

    William A. Arnold; Edward L. Cussler

    2007-02-26

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a

  17. Reactive Membrane Barriers for Containment of Subsurface Contamination

    International Nuclear Information System (INIS)

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe0) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe0 and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu2+) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe0 barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when

  18. Biological Oceanography

    Science.gov (United States)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  19. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  20. Reaction mechanism of the reverse water-gas shift reaction using first-row middle transition metal catalysts L'M (M = Fe, Mn, Co): a computational study.

    Science.gov (United States)

    Liu, Cong; Cundari, Thomas R; Wilson, Angela K

    2011-09-19

    The mechanism of the reverse water-gas shift reaction (CO(2) + H(2) → CO + H(2)O) was investigated using the 3d transition metal complexes L'M (M = Fe, Mn, and Co, L' = parent β-diketiminate). The thermodynamics and reaction barriers of the elementary reaction pathways were studied with the B3LYP density functional and two different basis sets: 6-311+G(d) and aug-cc-pVTZ. Plausible reactants, intermediates, transition states, and products were modeled, with different conformers and multiplicities for each identified. Different reaction pathways and side reactions were also considered. Reaction Gibbs free energies and activation energies for all steps were determined for each transition metal. Calculations indicate that the most desirable mechanism involves mostly monometallic complexes. Among the three catalysts modeled, the Mn complex shows the most favorable catalytic properties. Considering the individual reaction barriers, the Fe complex shows the lowest barrier for activation of CO(2). PMID:21838224

  1. Power and Biological Potential

    Science.gov (United States)

    Hoehler, T. M.; Som, S. M.; Kempes, C.; Jørgensen, B. B.

    2014-12-01

    Habitability, biomass abundance, growth rates, and rates of evolution are constrained by the availability of biologically accessible energy through time -- power. It is well understood that life requires energy not only to grow, but also to support standing biomass without new growth. Quantifying this "maintenance energy" requirement is critical for understanding the biological potential of low energy systems, including many systems of astrobiological interest, but field- and culture-based estimates differ by as much as three orders of magnitude. Here, we evaluate and compare these estimates to environmental energy supply in two examples: methanogenic metabolism in serpentinizing systems and a hypothetical "thermotrophic" metabolism. In both cases, evaluation of the power budget introduces constraint and resolution beyond that provided by evaluation of Gibbs energy change for metabolic reactions.

  2. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  3. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J.M.; Chavanne, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E. [Hasylab at Desy, Hamburg (Germany)] [and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  4. Biologically inspired intelligent robots

    Science.gov (United States)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  5. Biological intrusion of low-level-waste trench covers

    International Nuclear Information System (INIS)

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. Past research on low-level waste shallow land burial methods has emphasized physical (i.e., water infiltration, soil erosion) and chemical (radionuclide leaching) processes that can cause waste site failure and subsequent radionuclide transport. The purpose of this paper is to demonstrate the need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatments. Plants and animals not only can transport radionuclides to the ground surface via root systems and soil excavated from the cover profile by animal burrowing activities, but they modify physical and chemical processes within the cover profile by changing the water infiltration rates, soil erosion rates and chemical composition of the soil. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and soil overburden depth. The rate of biological intrusion through the various barrier materials is being evaluated through the use of activatable stable tracers

  6. [Blood-nerve barrier: structure and function].

    Science.gov (United States)

    Kanda, Takashi

    2011-06-01

    The blood-nerve barrier (BNB) is a dynamic interface between the endoneurial microenvironment and surrounding extracellular space or blood contents, and is localized the innermost layer of multilayered ensheathing perineurium and endoneurial microvessels. Since the BNB is a key structure controlling the internal milieu of the peripheral nerve parenchyma, adequate understanding of the BNB is crucial for developing treatment strategies for human peripheral nervous system disorders, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, and diabetic and various metabolic/toxic neuropathies. However, fewer studies have been conducted on the BNB, if we compare against the number of studies on the blood-brain barrier. This is because of the lack of adequate human cell lines originating from the BNB. In our laboratory, human immortal cell lines from the BNB, namely, the endothelial cell line and pericyte cell line, have recently been established and vigorous investigations of their biological and physiological properties are now underway. Pericytes constituting the BNB were found to possess robust ability of controlling BNB integrity via secretion of various cytokines and growth factors including bFGF, VEGF, GDNF, BDNF, and angiopoietin-1. Unknown soluble factors secreted by pericytes also contribute to the upregulation of claudin-5 in endothelial cells in the BNB and thus, strengthen the barrier function of the BNB. In diabetic neuropathy, pericytes were shown to regulate the vascular basement membrane, while AGEs were shown to induce basement membrane hypertrophy and disrupt the BNB by increasing the autocrine secretion of VEGF and TGF-beta from pericytes. In this review article, we discuss the macroscopic and microscopic anatomy of the human BNB as well as the molecular mechanisms of mononuclear cell infiltration across the BNB. PMID:21613659

  7. Barriers for recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Tjørnhøj-Thomsen, Tine; Schipperijn, Jasper;

    2014-01-01

    ) with in total 111 children (53 boys) from fourth grade, with a mean age of 10.4 years. The focus groups included an open group discussion, go-along group interviews, and a gender segregated post-it note activity. A content analysis of the post-it notes was used to rank the children's perceived barriers......BACKGROUND: Many children, in particular girls, do not reach the recommended amount of daily physical activity. School recess provides an opportunity for both boys and girls to be physically active, but barriers to recess physical activity are not well understood. This study explores gender...... differences in children's perceptions of barriers to recess physical activity. Based on the socio-ecological model four types of environmental barriers were distinguished: natural, social, physical and organizational environment. METHODS: Data were collected through 17 focus groups (at 17 different schools...

  8. Barriers that do not fall

    OpenAIRE

    Velasco Arroyo, Juan Carlos

    2014-01-01

    * Full title: "Barriers that do not fall. Access to citizenship and the right to vote in a comparative perspective: Germany / Spain". * Presentation in Conference "Border Transgressions" - Bonn Universität (Germany) - 8-9th May 2014

  9. Engineered barriers: current status 1989

    International Nuclear Information System (INIS)

    This report summarises the current state of research relevant to assessing the performance of engineered barriers made of steel and concrete in radioactive waste repositories. The objective of these barriers is to contain substantially the radionuclides within them by providing both physical and chemical impediment to their release. The physical barriers are of most value for highly soluble isotopes with relatively short half-lives (eg 137Cs), since they can provide a measure of containment until a large fraction of the activity has decayed. In addition they can facilitate retrievability for some period after disposal. The chemical barriers operate by beneficial conditioning of the near field groundwater and providing sites for sorption of radionuclides. Both of these reduce the aqueous concentration of radionuclides in the near field. (author)

  10. Coastal Structures and Barriers 2012

    Data.gov (United States)

    California Department of Resources — This dataset is a compilation of the UCSC Sand Retention Structures, MC Barriers, and USACE Coastal Structures. UCSC Sand Retention Structures originate from a...

  11. Translating barriers into potential improvements

    DEFF Research Database (Denmark)

    Altintzoglou, Themistoklis; Hansen, Karina Birch; Valsdottir, Thora;

    2010-01-01

    Purpose: The aim of this study is to explore potential barriers to seafood consumption by The aim of this study is to explore potential barriers to seafood consumption by young adults and the parents of young children. Knowledge of these barriers will be used to assist the development of new....... Practical implications: Inputs for NPD related to convenience, attractiveness, quality, Inputs for NPD related to convenience, attractiveness, quality, trustworthiness, knowledge and requirements about seafood preparation are discussed. Originality/value: The present study combines qualitative methods to...... lead to practical input The present study combines qualitative methods to lead to practical input for NPD focusing on overcoming the barriers that keep consumers from choosing existing healthy seafood products. The importance of the consumers' confidence in their ability to successfully prepare a...

  12. Organometallic copper I, II or III species in an intramolecular dechlorination reaction

    KAUST Repository

    Poater, Albert

    2013-03-15

    The present paper gives insight into an intramolecular dechlorination reaction involving Copper (I) and an ArCH2Cl moiety. The discussion of the presence of a CuIII organometallic intermediate becomes a challenge, and because of the lack of clear experimental detection of this proposed intermediate, and due to the computational evidence that it is less stable than other isomeric species, it can be ruled out for the complex studied here. Our calculations are completely consistent with the key hypothesis of Karlin et al. that TMPA-CuI is the substrate of intramolecular dechlorination reactions as well as the source to generate organometallic species. However the organometallic character of some intermediates has been refused because computationally these species are less stable than other isomers. Thus this study constitutes an additional piece towards the full understanding of a class of reaction of biological relevance. Further, the lack of high energy barriers and deep energy wells along the reaction pathway explains the experimental difficulties to trap other intermediates. © Springer-Verlag Berlin Heidelberg 2013.

  13. Influence of temperature inhomogeneity on product profile of reactions occurring within zeolites

    Indian Academy of Sciences (India)

    A V Anil Kumar; S Yashonath; G Ananthakrishna

    2003-10-01

    In zeolites, diffusion is often accompanied by a reaction or sorption which in turn can induce temperature inhomogeneities. Monte Carlo simulations of Lennard-Jones atoms in zeolite NaCaA are reported for the presence of a hot zone presumed to be created by a reaction or chemi- or physi-sorption site. These simulations show that the presence of localized hot regions can alter both kinetic and transport properties such as diffusion. Further, we show that enhancement of diffusion constant is greater for systems with larger barrier height, a surprising result that may be of considerable significance in many chemical and biological processes. We find an unanticipated coupling between reaction and diffusion due to the presence of a hot zone in addition to that which normally exists via concentration. Implications of this coupling for the product profile of a reaction are discussed. We also propose a mechanism by which mobility of ions or diffusion of molecular species within biomembranes may take place.

  14. Barriers to Effective Strategic Planning

    OpenAIRE

    Bilal Latif

    2012-01-01

    Despite the best intentions and a lot of hard work, strategic planning most predictably fails. It’s not that strategic planning is a bad idea but there are some barriers which involve in its failure. This paper explores how and where strategic planning goes awry and what executives can do about it. The study finds some of the most common barriers in effective strategic planning like, strict time limits, identical procedures, lack of accountability, power and influence which organizations freq...

  15. Barriers in diabetes self management

    OpenAIRE

    Rising, Carl Johan; Lauwersen, Asbjørn Flyger; Stoustrup, Sune Wiingaard

    2013-01-01

    This project seeks to expand on the question: What barriers may occur in diabetes patients' self-care, and how can doctors and patients communicate across professionalism? This project deals with the barrier that may arise between the transfer of highly professional knowledge and patient. The project seeks to create an understanding on how diabetes patients, which is the target audience, understands and experience their illness, and thereby mapping key elements for further focus, to better th...

  16. Superheavy nuclei and fission barriers

    Science.gov (United States)

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    In this chapter, we will present relativistic mean field (RMF) description of heavy and superheavy nuclei (SHN). We will discuss the shell structure and magic numbers in the mass region of SHN, binding energies and α decay Q values, shapes of ground states and potential energy surfaces and fission barriers. We particularly focus on the multidimensionally-constrained covariant density functional theories (CDFT) and the applications of CDFT to the study of exotic nuclear shapes and fission barriers.

  17. The nuclear fusion reaction rate based on relativistic equilibrium velocity distribution

    OpenAIRE

    Liu, Jian-Miin

    2002-01-01

    The Coulomb barrier is in general much higher than thermal energy. Nuclear fusion reactions occur only among few protons and nuclei with higher relative energies than Coulomb barrier. It is the equilibrium velocity distribution of these high-energy protons and nuclei that participates in determining the rate of nuclear fusion reactions. In the circumstance it is inappropriate to use the Maxwellian velocity distribution for calculating the nuclear fusion reaction rate. We use the relativistic ...

  18. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  19. Biology Notes.

    Science.gov (United States)

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including water relation exercise on auxin-treated artichoke tuber tissue; aerobic respiration in yeast; an improved potometer; use of mobiles in biological classification, and experiments on powdery mildews and banana polyphenol oxidase. Includes reading lists…

  20. Temperature-Dependent Fission Barriers of Superheavy Nuclei

    CERN Document Server

    Pei, J C; Sheikh-Javid, A; Kerman, A K

    2009-01-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. We study the temperature-dependent fission barriers by means of the self-consistent nuclear density functional theory. The equivalence of isothermal and isentropic descriptions is demonstrated. The effect of the particle gas is found to be negligible in the range of temperatures studied. Calculations have been carried out for $^{264}$Fm, $^{272}$Ds, $^{278}$112, $^{292}$114, and $^{312}$124. For nuclei around $^{278}$112 produced in "cold fusion" reactions, we predict a more rapid decrease of fission barriers with temperature as compared to the nuclei around $^{292}$114 synthesized in "hot fusion" experiments. This is explained in terms of the difference between the ground-state and fission-barrier temperatures. Our calculations are consistent with the long survival probabilities of the superheavy elements produced in Dubna with th...

  1. Interdiffusion between Zr Diffusion Barrier and U-Mo Alloy

    International Nuclear Information System (INIS)

    U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) program. Significant reactions have been observed between U-Mo fuels and Al or Al alloy matrix. Refractory metal Zr has been proposed as barrier material to reduce the interactions. In order to investigate the compatibility and barrier effects between U-Mo alloy and Zr, solid-to-solid U-10wt.%Mo vs. Zr diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 deg C for various times. The microstructures and concentration profiles due to interdiffusion and reactions were examined via scanning electron microscopy and electron probe microanalysis, respectively. Intermetallic phase Mo2Zr was found at the interface and its population increased when annealing temperature decreased. Diffusion paths were also plotted on the U-Mo-Zr ternary phase diagrams with good consistency. The growth rate of interdiffusion zone between U-10wt.%Mo and Zr was also calculated under the assumption of parabolic diffusion, and was determined to be about 103 times lower than the growth rate of diffusional interaction layer found in diffusion couples U-10wt.%Mo vs. Al or Al-Si alloy. Other desirable physical properties of Zr as barrier material, such as neutron adsorption rate, melting point and thermal conductivity are presented as supplementary information to demonstrate the great potential of Zr as the diffusion barrier for U-Mo fuel systems in RERTR.

  2. Economic alternatives for containment barriers

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, P.J.; Jasperse, B.H.; Fisher, M.J. [Geo-Con, Inc., Monroeville, PA (United States)

    1997-12-31

    Fixation, barriers, and containment of existing landfills and other disposal areas are often performed by insitu auger type soil mixing and jet grouting. Cement or other chemical reagents are mixed with soil to form both vertical and horizontal barriers. Immobilization of contaminants can be economically achieved by mixing soil and the contaminants with reagents that solidify or stabilize the contaminated area. Developed in Japan, and relatively new to the United States, the first large scale application was for a vertical barrier at the Jackson Lake Dam project in 1986. This technology has grown in both the civil and environmental field since. The paper describes current United States practice for Deep Soil Mixing (over 12 meters in depth), and Shallow Soil Mixing for vertical barriers and stabilization/solidification, and Jet Grouting for horizontal and vertical barriers. Creating very low permeability barriers at depth with minimal surface return often makes these techniques economical when compared to slurry trenches. The paper will discuss equipment, materials, soil and strength parameters, and quality control.

  3. Global interrupt and barrier networks

    Science.gov (United States)

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E; Heidelberger, Philip; Kopcsay, Gerard V.; Steinmacher-Burow, Burkhard D.; Takken, Todd E.

    2008-10-28

    A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms. In one embodiment, the global interrupt and barrier network is implemented in a scalable, massively parallel supercomputing device structure comprising a plurality of processing nodes interconnected by multiple independent networks, with each node including one or more processing elements for performing computation or communication activity as required when performing parallel algorithm operations. One multiple independent network includes a global tree network for enabling high-speed global tree communications among global tree network nodes or sub-trees thereof. The global interrupt and barrier network may operate in parallel with the global tree network for providing global asynchronous sideband signals.

  4. Near-barrier Fusion of 32S+94Zr

    Institute of Scientific and Technical Information of China (English)

    JIA; Hui-ming; LIN; Cheng-jian; ZHANG; Huan-qiao; LIU; Zu-hua; YANG; Feng; XU; Xin-xing; YANG; Lei; BAO; Peng-fei; SUN; Li-jie; MA; Nan-ru

    2013-01-01

    Coupled-channels(CC)effect is a general phenomenon in nature and plays a crucial role in near-barrier heavy-ion nuclear reactions.The first CC effect,due to static deformation,was discovered in16O+ASm by Stokstad et al.by a direct comparison of the experimental fusion excitation functions.Later,a correlation between the overall transfer strength and the fusion enhancement was noticed by Heinning et

  5. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    International Nuclear Information System (INIS)

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  6. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  7. Tantalum-based diffusion barriers for copper metallization

    OpenAIRE

    Laurila, Tomi

    2001-01-01

    Interfacial reactions between Cu and Si with different Ta-based diffusion barriers are investigated by means of the combined thermodynamic-kinetic and microstructural analysis. The reaction mechanisms and the related microstructures in the Si/Ta/Cu, Si/TaC/Cu and Si/Ta2N/Cu metallization systems are studied experimentally and theoretically by utilizing the ternary Si-Ta-Cu, Si-Ta-C, Si-Ta-N, Ta-C-Cu, and Ta-N-Cu phase diagrams as well as the activity diagrams calculated at different temperatu...

  8. Aging and Phase Stability of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tammy S. Edgecumble Summers

    2001-08-23

    This Analysis Model Report (AMR) was prepared in accordance with the Work Direction and Planning Document, ''Aging and Phase Stability of Waste Package Outer Barrier'' (CRWMS M&O 1999a). ICN 01 of this AMR was developed following guidelines provided in TWP-MGR-MD-000004 REV 01, ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001, Addendum B). It takes into consideration the Enhanced Design Alternative II (EDA II), which has been selected as the preferred design for the Engineered Barrier System (EBS) by the License Application Design Selection (LADS) program team (CRWMS M&O 1999b). The salient features of the EDA II design for this model are a waste package (WP) consisting of an outer barrier of Alloy 22 and an inner barrier of Type 316L stainless steel. This report provides information on the phase stability of Alloy 22l, the current waste-package-outer-barrier (WPOB) material. These phase stability studies are currently divided into three general areas: (1) Long-range order reactions; (2) Intermetallic and carbide precipitation in the base metal; and (3) Intermetallic and carbide precipitation in welded samples.

  9. Theoretical Study on the Addition Reactions of Benzaldoximes with Propene

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Michael addition reactions of Z and E benzaldoximes with propene were investigated theoretically by DFT method at B3LYP/6-31G* level. The calculation results show that both addition reactions are concerted processes accompanied by the migration of hydrogen from the atom oxygen to carbon. Both products Z and E nitrones have dipolar charge distributions and activities. Z isomer is more favorable in the reaction due to the barrier is lower.

  10. Theoretical insights into thermal cyclophanediene to dihydropyrene electrocyclic reactions; a comparative study of Woodward Hoffmann allowed and forbidden reactions.

    Science.gov (United States)

    Saima, Bibi; Khan, Afsar; Nisa, Riffat Un; Mahmood, Tariq; Ayub, Khurshid

    2016-04-01

    The thermally allowed electrocyclic reaction syn-cyclophanediene (CPD) to dihydropyrene (DHP) was compared with the disallowed thermal electrocyclic reaction in anti CPD through density functional theory (DFT) calculations at the B3LYP/6-31 + G(d) level. Moreover, the results were also compared with the electrocyclization of 1,3,5 hexatriene to 1,3-cyclohexadiene . The Woodward-Hoffmann (W-H) allowed thermal reaction in syn CPD 11 has a calculated activation barrier of 6.23 kcal mol(-1), compared with 29 kcal mol(-1) for the electrocyclization of 1,3,5 hexatriene to 1,3-cyclohexadiene. The enhanced acceleration of electrocyclization is believed to arise from geometrically enforced spatially aligned termini of the hexatriene. Substituents at the electrocyclic terminus of cyclophanediene significantly affected (up to three fold) the activation barriers. Mono-substitution of CPD has substituent dependent acceleration or deceleration whereas di-substitution always increased the activation barrier. The activation barrier for electrocyclization in 33 is 4.44 kcal mol(-1), which is the lowest activation barrier for any thermal electrocyclic reaction. Cyclophanedienes (CPDs) substituted with electron-rich substituents cyclized with high activation barriers and vice versa, a phenomenon significantly different from electrocyclic reaction of 1,3,5-hexatriene where no such trend is traceable. Comparison of W-H allowed and forbidden electrocyclization in syn and anti CPDs, respectively, revealed quite similar electronic demand, although the transition states are different in nature. The transition state for a W-H forbidden reaction is biradicaloid, with most of the spin density at the electrocyclic termini; however, the transition state for a W-H allowed reaction has no such contribution. We also believe that this is the first study of its type, where W-H allowed and forbidden reactions are compared on a similar set of molecules, and compared for electronic effect

  11. Chain reaction

    International Nuclear Information System (INIS)

    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  12. 11Li Breakup on 208Pb at Energies Around the Coulomb Barrier

    DEFF Research Database (Denmark)

    Fernández-García, J.P.; Cubero, M.; Rodríguez-Gallardo, M.;

    2013-01-01

    The inclusive breakup for the 11Li+208Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of 9Li following the 11Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbatio...

  13. Mesoscopic biology

    Indian Academy of Sciences (India)

    G V Shivashankar

    2002-02-01

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological systems. In recent years advances in technology have led to the study of some of the design principles of these machines; in particular at the level of an individual molecule. For example, the forces that operate in molecular interactions, the stochasticity involved in these interactions and their spatio-temporal dynamics are beginning to be explored. Understanding such design principles is opening new possibilities in mesoscopic physics with potential applications.

  14. Diabetes and diet: Managing dietary barriers.

    NARCIS (Netherlands)

    Friele, R.D.

    1989-01-01

    This thesis reports on the barriers diabetic patients experience with their diet, and the ways they cope with these barriers. A dietary barrier is a hinderance to a person's well-being, induced by being advised a diet. First inventories were made of possible dietary barriers and ways of coping with

  15. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  16. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  17. Biological programming

    OpenAIRE

    Ramsden, Jeremy J.; Bándi, Gergely

    2010-01-01

    Biology offers a tremendous set of concepts that are potentially very powerfully usable for the software engineer, but they have been barely exploited hitherto. In this position paper we propose a fresh attempt to create the building blocks of a programming technology that could be as successful as life. A key guiding principle is to develop and make use of unambiguous definitions of the essential features of life.

  18. Biological radioprotector

    International Nuclear Information System (INIS)

    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  19. Molecular biology: Self-sustaining chemistry

    OpenAIRE

    Wrede Paul

    2007-01-01

    Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are qu...

  20. Marine biology

    International Nuclear Information System (INIS)

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  1. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  2. Engineered Barriers and Geological Disposal

    International Nuclear Information System (INIS)

    A geological disposal system comprises a system of multiple barriers, both natural and man-made, to provide long-term isolation and containment of radioactive waste. Various geological formations are stable and potentially suitable for geological disposal. Engineered barriers are designed to work in an integrated fashion together with the host geological formation. Much research has been carried out to develop engineered barrier systems suitable for use in different host rocks and with different waste types. These studies continue both nationally and within the framework of multilateral international projects, in facilities such as underground research laboratories. Geological disposal is the preferred method for long term management of radioactive waste. In each repository the long-term isolation and containment of the waste is achieved by the host geological formation and the system of engineered barriers. Any engineered barrier system (EBS) is made of several components, each taking different safety roles that are relied upon at different times in the lifetime of the repository. Research, demonstration and development of EBS materials, as well as of their manufacturing and emplacement technologies are important endeavours in national waste management programmes and the subject of international cooperation. These studies and demonstrations have considerably enhanced confidence in the production of the EBS components and in their performance under repository conditions

  3. Cytokines and the Skin Barrier

    Directory of Open Access Journals (Sweden)

    Jens Malte Baron

    2013-03-01

    Full Text Available The skin is the largest organ of the human body and builds a barrier to protect us from the harmful environment and also from unregulated loss of water. Keratinocytes form the skin barrier by undergoing a highly complex differentiation process that involves changing their morphology and structural integrity, a process referred to as cornification. Alterations in the epidermal cornification process affect the formation of the skin barrier. Typically, this results in a disturbed barrier, which allows the entry of substances into the skin that are immunologically reactive. This contributes to and promotes inflammatory processes in the skin but also affects other organs. In many common skin diseases, including atopic dermatitis and psoriasis, a defect in the formation of the skin barrier is observed. In these diseases the cytokine composition within the skin is different compared to normal human skin. This is the result of resident skin cells that produce cytokines, but also because additional immune cells are recruited. Many of the cytokines found in defective skin are able to influence various processes of differentiation and cornification. Here we summarize the current knowledge on cytokines and their functions in healthy skin and their contributions to inflammatory skin diseases.

  4. Penetration through the Skin Barrier.

    Science.gov (United States)

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates. During recent decades, the latter has received increased attention as a route for intentionally delivering drugs to patients. This has stimulated research in methods for sampling, measuring and predicting percutaneous penetration. Previous chapters have described how different endogenous, genetic and exogenous factors may affect barrier characteristics. The present chapter introduces the theory for barrier penetration (Fick's law), and describes and discusses different methods for measuring the kinetics of percutaneous penetration of chemicals, including in vitro methods (static and flow-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous penetration. Finally, a short discussion of the advantages and challenges of each method is provided, which will hopefully allow the reader to improve decision making and treatment planning, as well as the evaluation of experimental studies of percutaneous penetration of chemicals. PMID:26844902

  5. Transport barriers in helical systems

    International Nuclear Information System (INIS)

    There are some publications with indications that the formation of transport barriers in toroidal devices could take place in the vicinity of low order rational surfaces (RS). It is necessary to note that the environs of RS have very important peculiarities. In particular, a stochastic layer of magnetic field lines forms instead of separaterix which must separate the island surfaces from the adjacent to them non-island surfaces in stellarator magnetic configurations. The attempt to realize the formation of transport barriers near RS and to study their influence on the RF discharge plasma confinement was undertaken in presented experiments on the U-3M torsatron. The presupposition was made that the radial electric field profile would have sharp change on the width of stochastic layer near RS in the case of collisionless longitudinal motion of electrons in this layer. Experimental data obtained on the U-3M torsatron during the formation of interior and edge transport barriers are in a good agreement with this presupposition. The results of experiments on the U-3M torsatron are discussed in comparison with data of other helical systems. It is shown that the number of dependences (the threshold power and density, the time of barrier formation, the localization of radial electric field shear layer) are in a good agreement for all these systems. In conclusion, the common features of formation of transport barriers in non- axisymmetric and non-axisymmetric systems are discussed. (author)

  6. Aplicação de princípios de bioenergética no cálculo da estequiometria de reações biológicas em processos de tratamento de águas residuárias Application of bioenergetic principles to the stoichiometry of biological reactions in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Antônio D Benetti

    2010-09-01

    Full Text Available O tratamento biológico de águas residuárias é realizado por microrganismos que utilizam determinado substrato para obtenção de energia e crescimento celular através de reações de oxidação-redução e fermentação. Esses mecanismos podem ser expressos por meio de reações estequiométricas desenvolvidas a partir de princípios da termodinâmica. As reações são dependentes dos compostos doadores e aceptores de elétrons. As equações balanceadas resultantes permitem estimar as necessidades de nutrientes, a variação de pH/alcalinidade, a produção de biomassa e gases e o coeficiente de produção celular associados aos sistemas biológicos de tratamento. Esta nota técnica descreveu a metodologia para cálculo estequiométrico de reações bioquímicas usando princípios de bioenergética, apresentando exemplos para diferentes substratos e aceptores de elétrons.Biological wastewater treatment is performed by microorganisms by means of oxidation-reduction and fermentation reactions that release energy for growth and maintenance. These processes can be represented by stoichiometric reactions developed based on thermodynamic principles. Reactions are dependent on the compounds used as electron donor and acceptor. The overall stoichiometric reactions allow estimations of nutrient requirements, alkalinity/pH changes, biomass and gas production, and yield coefficient. This article described a methodology for stoichiometry calculations using bioenergetic principles, presenting examples with different substrates and electron acceptors.

  7. Programmer's description of the Barrier Data Base

    International Nuclear Information System (INIS)

    The Barrier Data Base is a body of information concerning different kinds of barriers that are used in safeguarding nuclear materials and installations. The two programs written for creating, updating, and manipulating the Barrier Data Base are discussed. The BARRIER program is used to add, delete, modify, display, or search for specific data in the data base. A utility program named NUMBER is used to compress and renumber the barrier and threat tables

  8. On reaction mechanisms involved in the deuteron–induced surrogate reactions

    International Nuclear Information System (INIS)

    An extended analysis of the nuclear reaction mechanisms involved within deuteron interaction with nuclei, namely the breakup, stripping, pick-up, pre-equilibrium emission, and evaporation from fully equilibrated compound nucleus, is presented in order to highlight the importance of the direct mechanisms still neglected in the analysis of deuteron-induced surrogate reactions. Particularly, the dominance of the breakup mechanism at low energies around the Coulomb barrier should be considered in the case of (d,x) surrogate reactions on actinide target nuclei

  9. On reaction mechanisms involved in the deuteron–induced surrogate reactions

    Energy Technology Data Exchange (ETDEWEB)

    Avrigeanu, M.; Avrigeanu, V.; Mănăilescu, C. [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Bucharest-Magurele (Romania)

    2015-02-24

    An extended analysis of the nuclear reaction mechanisms involved within deuteron interaction with nuclei, namely the breakup, stripping, pick-up, pre-equilibrium emission, and evaporation from fully equilibrated compound nucleus, is presented in order to highlight the importance of the direct mechanisms still neglected in the analysis of deuteron-induced surrogate reactions. Particularly, the dominance of the breakup mechanism at low energies around the Coulomb barrier should be considered in the case of (d,x) surrogate reactions on actinide target nuclei.

  10. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions.

    Science.gov (United States)

    Kuechler, Erich R; Giese, Timothy J; York, Darrin M

    2016-04-28

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state. PMID:27131539

  11. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions

    Science.gov (United States)

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2016-04-01

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.

  12. Strategies for structuring interdisciplinary education in Systems Biology

    DEFF Research Database (Denmark)

    Cvijovic, Marija; Höfer, Thomas; Aćimović, Jure;

    2016-01-01

    function by employing experimental data, mathematical models and computational simulations. As Systems Biology is inherently multidisciplinary, education within this field meets numerous hurdles including departmental barriers, availability of all required expertise locally, appropriate teaching material...... active performers of Systems Biology education suggest here (i) a definition of the skills that students should acquire within a Master’s programme in Systems Biology, (ii) a possible basic educational curriculum with flexibility to adjust to different application areas and local research strengths, (iii...

  13. PROMOTION, SWITCHING BARRIERS, AND LOYALTY

    Directory of Open Access Journals (Sweden)

    Gu-Shin Tung

    2011-06-01

    Full Text Available This paper investigates the causal relationships among promotion effects, switching barriers, and loyalty in the department stores. The relationship between switching barriers and loyalty reveals partially the same results as the switching barriers theory of Jones et al. (2000. The reasons arise from “too often” and “too similar” sales promotion programs of competitive department stores in Taiwan, leading the promotion effects to not contribute to the attractiveness of competitors. The promotion effects have a positive and significant influence on loyalty, which is consistent with the prior literature. Promotion effects are also the most important weight to loyalty in our tested model but it reveals a seeming loyalty, because the loyalty depends on the reward of promotion. The negative relationship between promotion effects and attractiveness of alternative supports the promotion effects, which can lower the attractiveness of competitors, but these similar promotion plans are not attributed to interpersonal relationships.

  14. Barriers to Effective Strategic Planning

    Directory of Open Access Journals (Sweden)

    Bilal Latif

    2012-12-01

    Full Text Available Despite the best intentions and a lot of hard work, strategic planning most predictably fails. It’s not that strategic planning is a bad idea but there are some barriers which involve in its failure. This paper explores how and where strategic planning goes awry and what executives can do about it. The study finds some of the most common barriers in effective strategic planning like, strict time limits, identical procedures, lack of accountability, power and influence which organizations frequently face in strategy formulation and implementation. It is concluded that, in order to achieve the goal of effective strategic planning, effective change management and leadership are indispensable. On the one hand, it is mandatory for the leadership to involve employees in decision making process, along with the explicit description of their roles within the organization, and on the other hand, full mechanism of employees’ accountability and regular checks are required to remove these barriers.

  15. Dynamical Effects on Sub-barrier Fusion of 40,48Ca+90,96Zr

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huan-Qiao; WANG Ning; LIU Zu-Huan; YANG Feng; LIN Cheng-Jian; RUAN Ming; WU Yue-Wei; LI Zhu-Xia; WU Xi-Zhen; ZHAO Kai

    2005-01-01

    @@ We have measured the fusion cross sections for 48Ca+90,96Zr around the Coulomb barrier and presented them along with the experimental data of 40Ca+90,96Zr. The experimental results are compared with the improved quantum molecular dynamics model calculations. It is shown in comparison that the dynamical effects play an important role in the sub-barrier fusion reactions.

  16. The impact of language barriers on trust formation in multinational teams

    OpenAIRE

    Tenzer, Helene; Pudelko, Markus; Harzing, Anne-Wil

    2014-01-01

    This study systematically investigates how language barriers influence trust formation in multinational teams (MNTs). On the basis of 90 interviews with team members, team leaders and senior managers in 15 MNTs in 3 German automotive corporations, the authors show how MNT members’ cognitive and emotional reactions to language barriers influence their perceived trustworthiness and intention to trust, which in turn affect trust formation. The authors contribute to diversity research by distingu...

  17. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    International Nuclear Information System (INIS)

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed

  18. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

  19. No-capture breakup and incomplete fusion reactions induced by stable weakly bound nucleus 9Be

    Science.gov (United States)

    Seyyedi, S. A.

    2016-06-01

    The reactions including the stable weakly bound nucleus 9Be have been studied using the classical trajectory model accompanied with the experimental breakup function and the Aage-Winther interaction potential (AW95). In these calculations, the no-capture breakup and the incomplete fusion cross-sections as well as their competition at around the Coulomb barrier have been investigated. Our calculations showed that at a given far-Coulomb-barrier energy the incomplete fusion reaction in different distributions of angular momentum and energies can dominate the no-capture breakup reaction. This dominating process is reversed at the near-barrier energies.

  20. Spatial model of autocatalytic reactions

    Science.gov (United States)

    de Anna, Pietro; di Patti, Francesca; Fanelli, Duccio; McKane, Alan J.; Dauxois, Thierry

    2010-05-01

    Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles—membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for prebiotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The discreteness of the constituents of the autocatalytic reactions gives rise to large sustained oscillations even when the number of constituents is quite large. These oscillations are spatiotemporal in nature, unlike those found in previous studies, which consisted only of temporal oscillations. We speculate that these oscillations may have a role in seeding membrane instabilities which lead to vesicle division. In this way synchronization could be achieved between protocell growth and the reproduction rate of the constituents (the protogenetic material) in simple protocells.

  1. Computation of transmission probabilities for thin potential barriers with transmitted quantum trajectories

    International Nuclear Information System (INIS)

    A computational method is presented for the evaluation of transmission probabilities for thin potential barriers by evolving an ensemble of transmitted quantum trajectories. A single row of second-order trajectories computed using the derivative propagation method is propagated to determine the initial conditions for transmitted quantum trajectories. As time evolves, trajectories reflected from the potential barrier are deleted from the ensemble. This method is applied to a two-dimensional system involving either a thin Eckart or Gaussian barrier along the reaction coordinate coupled to a harmonic oscillator. Transmission probabilities are in good agreement with the exact results. - Highlights: • Transmission probabilities for thin potential barriers are computed. • Transmission probabilities are obtained using transmitted quantum trajectories. • Reflected trajectories are removed during the trajectory ensemble evolution. • Two systems involving a thin barrier coupled to a harmonic oscillator are studied

  2. Flexible barrier film, method of forming same, and organic electronic device including same

    Energy Technology Data Exchange (ETDEWEB)

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  3. Biological Databases

    Directory of Open Access Journals (Sweden)

    Kaviena Baskaran

    2013-12-01

    Full Text Available Biology has entered a new era in distributing information based on database and this collection of database become primary in publishing information. This data publishing is done through Internet Gopher where information resources easy and affordable offered by powerful research tools. The more important thing now is the development of high quality and professionally operated electronic data publishing sites. To enhance the service and appropriate editorial and policies for electronic data publishing has been established and editors of article shoulder the responsibility.

  4. The Solution to Green Barrier

    Institute of Scientific and Technical Information of China (English)

    Cui Yan

    2009-01-01

    @@ The recovery process of world economy is rough and full of twists and turns.Especially the trade protectionism,having reemerged under the mask of"green barrier",is making a great impact on the slowly recovering world economy and trade.Then,what are the characteristics of trade barriers in the post-crisis era?Where is the outlet of Chinese manufacturing industry?With these questions,ourreporter interviewed Professor Zhou Shijian,Standing Director to China Association of International Trade and Senior Researcher to SINO-US Relationship Research Centre of Tsinghua University.

  5. Measurement of excitation functions in 16O + 93Nb at energies above the Coulomb barrier

    International Nuclear Information System (INIS)

    From past few decades it has become the topic of great interest to study heavy ion (HI) induced reaction at intermediate energy range. It has been observed that at energies just above the Coulomb barrier both the complete fusion (CF) and incomplete fusion (ICF) reaction may dominant. In CF processes whole projectile fuses with the target while in ICF processes only a part of projectile fuses with the target and remaining part passes with almost beam energy. Some studies show that ICF competes with CF just above the Coulomb barrier. Several theoretical models have been presented to explain the ICF reaction dynamics, such as Exciton model, Breakup fusion model, Promptly emitted particles model, Multistep direct reaction theory and Hot spot model etc. In the present work an effort has been made to investigate the mechanism involve in HI reaction with measurement of excitation functions for thirteen evaporation residues (ERs) identified in the interaction of 16O+93Nb system.

  6. Inverse problems in systems biology

    International Nuclear Information System (INIS)

    Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)

  7. Systems study on engineered barriers: barrier performance analysis

    International Nuclear Information System (INIS)

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed

  8. Systems study on engineered barriers: barrier performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed.

  9. The chemical biology of sirtuins.

    Science.gov (United States)

    Chen, Bing; Zang, Wenwen; Wang, Juan; Huang, Yajun; He, Yanhua; Yan, Lingling; Liu, Jiajia; Zheng, Weiping

    2015-08-01

    The sirtuin family of enzymes are able to catalyze the N(ε)-acyl-lysine deacylation reaction on histone and non-histone protein substrates. Over the past years since the discovery of its founding member (i.e. the yeast silent information regulator 2 (sir2) protein) in 2000, the sirtuin-catalyzed deacylation reaction has been demonstrated to play an important regulatory role in multiple crucial cellular processes such as transcription, DNA damage repair, and metabolism. This reaction has also been regarded as a current therapeutic target for human diseases such as cancer, and metabolic and neurodegenerative diseases. The unique β-nicotinamide adenine dinucleotide (β-NAD(+) or NAD(+))-dependent nature of the sirtuin-catalyzed deacylation reaction has also engendered extensive mechanistic studies, resulting in a mechanistic view of the enzyme chemistry supported by several lines of experimental evidence. On the journey toward these knowledge advances, chemical biological means have constituted an important functional arsenal; technically, a variety of chemical probes and modulators (inhibitors and activators) have been developed and some of them have been employed toward an enhanced mechanistic and functional (pharmacological) understanding of the sirtuin-catalyzed deacylation reaction. On the other hand, an enhanced mechanistic understanding has also facilitated the development of a variety of chemical probes and modulators. This article will review the tremendous accomplishments achieved during the past few years in the field of sirtuin chemical biology. It is hoped that this would also help to set a stage for how outstanding mechanistic and functional questions for the sirtuin-catalyzed deacylation reaction could be addressed in the future from the chemical biology perspective. PMID:25955411

  10. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  11. Angular momentum distributions in subbarrier fusion reactions

    International Nuclear Information System (INIS)

    Interest in subbarrier heavy-ion fusion was stimulated by the realization that subbarrier fusion cross sections were enhanced by many orders of magnitude over what would be expected from quantum mechanical one-dimensional barrier penetration. This review focuses on the angular momentum (spin) distributions in heavy-ion fusion reactions. Experimental probes, theoretical considerations, and a comparison of experimental results with model calculations are given. 86 refs., 10 figs

  12. An electrostatic deflector for a fusion reaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huan-Qiao; LIN Cheng-Jian; YANG Feng; JIA Hui-Ming; ZHOU Ping; AN Guang-Peng; ZHANG Chun-Lei; XU Xin-Xing

    2010-01-01

    An electrostatic deflector for separating the fusion evaporation residues from the beam-like products in heavy ion reactions was installed.The evaporation residue separation and identification with the electrostatic deflector setup was tested with the reaction 32S+96Zr at several energies.The fusion evaporation residues and the beam-like particles were well separated after the electrical separation and the experimental fusion cross section obtained from the angular distribution is in good agreement with the calculated value well above the Coulomb barrier.This confirms the reliability of the setup.

  13. Architectural Barriers Removal: Resource Guide.

    Science.gov (United States)

    Office of Human Development (DHEW), Washington, DC. Office for Handicapped Individuals.

    The guide presents information on resources for eliminating architectural barriers for handicapped persons. Entries are grouped according to information resources, funding sources, and publications available from the federal government. Seven organizations are described in terms of agency goals, publications, and materials. Federal programs…

  14. Injectable barriers for waste isolation

    International Nuclear Information System (INIS)

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture the formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification

  15. Injectable barriers for waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Persoff, P.; Finsterle, S.; Moridis, G.J.; Apps, J.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.; Muller, S.J. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-03-01

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture the formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.

  16. Overcoming Barriers: Women in Superintendency

    Science.gov (United States)

    Miller, Claire M.

    2009-01-01

    Women currently represent the largest number of teachers in the United States but remain underrepresented in the superintendent position. This suggests that the superintendency has been influenced by patriarchy. If women are to break through the barriers that prevent them from attaining a superintendency, we will need to understand the social…

  17. Communities Address Barriers to Connectivity.

    Science.gov (United States)

    Byers, Anne

    1996-01-01

    Rural areas lag behind urban areas in access to information technologies. Public institutions play a critical role in extending the benefits of information technologies to those who would not otherwise have access. The most successful rural telecommunications plans address barriers to use, such as unawareness of the benefits, technophobia, the…

  18. The blood-brain barrier.

    Science.gov (United States)

    Obermeier, Birgit; Verma, Ajay; Ransohoff, Richard M

    2016-01-01

    In autoimmune neurologic disorders, the blood-brain barrier (BBB) plays a central role in immunopathogenesis, since this vascular interface is an entry path for cells and effector molecules of the peripheral immune system to reach the target organ, the central nervous system (CNS). The BBB's unique anatomic structure and the tightly regulated interplay of its cellular and acellular components allow for maintenance of brain homeostasis, regulation of influx and efflux, and protection from harm; these ensure an optimal environment for the neuronal network to function properly. In both health and disease, the BBB acts as mediator between the periphery and the CNS. For example, immune cell trafficking through the cerebral vasculature is essential to clear microbes or cell debris from neural tissues, while poorly regulated cellular transmigration can underlie or worsen CNS pathology. In this chapter, we focus on the specialized multicellular structure and function of the BBB/neurovascular unit and discuss how BBB breakdown can precede or be a consequence of neuroinflammation. We introduce the blood-cerebrospinal fluid barrier and include a brief aside about evolutionary aspects of barrier formation and refinements. Lastly, since restoration of barrier function is considered key to ameliorate neurologic disease, we speculate about new therapeutic avenues to repair a damaged BBB. PMID:27112670

  19. Heavy-ion-induced fission reactions

    International Nuclear Information System (INIS)

    Fission-cross-section excitation functions were measured from near threshold to approx. 10 MeV/nucleon using heavy-ion beams from the Brookhaven National Laboratory three-stage Tandem Accelerator Facility. The systems studied included 210Po formed in 12C and 18O induced reactions, 186Os formed in 9Be, 12C, 16O, and 26Mg reactions, 158Er formed in 16O, 24Mg, 32S, and 64Ni reactions. In addition the composite systems 204206, 208Po formed with 16O and 18O projectiles were studied. The measured fission excitation functions along with previous data from 4He and 11B bombardments for the 186Os and 210Po systems and recent data on the 200Pb system are compared to predictions from a statistical model using recent fission-barrier calculations from A. Sierk. Comparisons of calculated and measured fission excitation functions show good overall agreement between data and calculations and between calculations with two different level-density functions. It is concluded that the barriers from Sierk give a good description of both the mass and angular momentum dependence of fission barriers in this region

  20. Sub-barrier fusion of 1632S + 4094Zr system and energy dependent Woods-Saxon potential

    International Nuclear Information System (INIS)

    Heavy ion fusion reactions have received extensive attention during past few decades as they explore the nuclear structure of participating nuclei besides providing decent description of nuclear interactions. In fusion process, two colliding nuclei come close together to form a compound nucleus either by overcoming or by quantum tunneling through the potential barrier. Theoretically, the simplest way to describe the fusion mechanism is the barrier penetration model (BPM), wherein the collision partners are assumed to penetrate through the fusion barrier and form a composite nucleus. However, an anomalously large enhancement in the fusion cross-section over the predictions of one dimensional barrier penetration model at sub-barrier energies has been observed during last two decades. In general, this fusion enhancement is found to have link with the coupling of relative motion to internal structure of the fusing nuclei such as nuclear shape deformation, inelastic surface vibration of nuclear surface, rotation of nuclei during collision, neck formation, nucleon transfer reactions etc.

  1. Biological effects

    International Nuclear Information System (INIS)

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH)

  2. Safety Evaluation of CNS Administered Biologics-Study Design, Data Interpretation, and Translation to the Clinic.

    Science.gov (United States)

    Vuillemenot, Brian R; Korte, Sven; Wright, Teresa L; Adams, Eric L; Boyd, Robert B; Butt, Mark T

    2016-07-01

    Many central nervous system (CNS) diseases are inadequately treated by systemically administered therapies due to the blood brain barrier (BBB), which prevents achieving adequate drug concentrations at sites of action. Due to the increasing prevalence of neurodegenerative diseases and the inability of most systemically administered therapies to cross the BBB, direct CNS delivery will likely play an increasing role in treatment. Administration of large molecules, cells, viral vectors, oligonucleotides, and other novel therapies directly to the CNS via the subarachnoid space, ventricular system, or parenchyma overcomes this obstacle. Clinical experience with direct CNS administration of small molecule therapies suggests that this approach may be efficacious for the treatment of neurodegenerative disorders using biological therapies. Risks of administration into the brain tissue or cerebrospinal fluid include local damage from implantation of the delivery system and/or administration of the therapeutic and reactions affecting the CNS. Preclinical safety studies on CNS administered compounds must differentiate between the effects of the test article, the delivery device, and/or the vehicle, and assess exacerbations of reactions due to combinations of effects. Animal models characterized for safety assessment of CNS administered therapeutics have enabled human trials, but interpretation can be challenging. This manuscript outlines the challenges of preclinical intrathecal/intracerebroventricular/intraparenchymal studies, evaluation of results, considerations for special endpoints, and translation of preclinical findings to enable first-in-human trials. Recommendations will be made based on the authors' collective experience with conducting these studies to enable clinical development of CNS-administered biologics. PMID:27354708

  3. Improved HEPA Filter Technology for Flexible and Rigid Containment Barriers

    Energy Technology Data Exchange (ETDEWEB)

    P. A. Pinson

    1998-07-01

    Safety and reliability in glovebox operations can be significantly improved and waste packaging efficiencies can be increased by inserting flexible, lightweight, high capacity HEPA filters into the walls of plastic sheet barriers. This HEPA filter/barrier technology can be adapted to a wide variety of applications: disposable waste bags, protective environmental barriers for electronic equipment, single or multiple use glovebag assemblies, flexible glovebox wall elements, and room partitions. These reliable and inexpensive filtered barriers have many uses in fields such as radioactive waste processing, HVAC filter changeout, vapor or grit blasting, asbestos cleanup, pharmaceutical, medical, biological, and electronic equipment containment. The applications can result in significant cost savings, improved operational reliability and safety, and total waste volume reduction. This technology was developed at the Argonne National Laboratory-West (ANL-W) in 1993 and has been used at ANL-W since then at the TRU Waste Characterization Chamber Gloveboxes. Another 1998 AGS Conference paper titled "TRU Waste Characterization Gloveboxes", presented by Mr. David Duncan of ANL-W, describes these boxes.

  4. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  5. Creating biological nanomaterials using synthetic biology

    Directory of Open Access Journals (Sweden)

    MaryJoe K Rice

    2014-01-01

    Full Text Available Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  6. On the pH dependence of electrochemical proton transfer barriers

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Chan, Karen; Skulason, Egill;

    2016-01-01

    The pH dependence of rate of the hydrogen evolution/oxidation reaction HER/HOR is investigated. Based on thermodynamic considerations, a possible explanation to the low exchange current for hydrogen reactions in alkaline is put forward. We propose this effect to be a consequence of the change in...... configurational entropy of the proton as it approaches the surface. As a proton crosses the outer Helmholtz plane, it will lose a fraction of its entropy before it can interact with the electrode surface, which gives rise to an entropic barrier. The size of this barrier will depend on the electrostatic...

  7. Fusion at near-barrier energies within quantum diffusion approach

    CERN Document Server

    Sargsyan, V V; Antonenko, N V; Scheid, W; Zhang, H Q

    2013-01-01

    The nuclear deformation and neutron-transfer process have been identified as playing a major role in the magnitude of the sub-barrier fusion (capture) cross sections. There are a several experimental evidences which confirm the importance of nuclear deformation on the fusion. The influence of nuclear deformation is straightforward. If the target nucleus is prolate in the ground state, the Coulomb field on its tips is lower than on its sides, that then increases the capture or fusion probability at energies below the barrier corresponding to the spherical nuclei. The role of neutron transfer reactions is less clear. The importance of neutron transfer with positive Q-values on nuclear fusion (capture) originates from the fact that neutrons are insensitive to the Coulomb barrier and therefore they can start being transferred at larger separations before the projectile is captured by target-nucleus. Therefore, it is generally thought that the sub-barrier fusion cross section will increase because of the neutron t...

  8. Barriers to Physical Activity Among Gay Men.

    Science.gov (United States)

    Cary, Miranda A; Brittain, Danielle R; Dinger, Mary K; Ford, Melissa L; Cain, Meagan; Sharp, Teresa A

    2016-09-01

    Gay men may not be physically active at recommended levels to achieve health benefits. Thus, a need exists to identify general (i.e., common across populations) and population-specific barriers that hinder or stop gay men from participating in physical activity (PA). Salient barriers may be identified through the extent each barrier limits PA (i.e., barrier limitation) and the level of one's confidence to overcome barriers and engage in PA (i.e., self-regulatory efficacy). The purposes of this study were to (1) provide a description of general and population-specific barriers to PA among sufficiently and insufficiently active gay men, (2) identify barrier limitation and self-regulatory efficacy for the reported barriers, and (3) examine the associations between meeting the current PA recommendation, barrier limitation, and self-regulatory efficacy. Participants were 108 self-identified gay males aged 21 to 64 years who completed a web-based survey. A total of 35 general barriers and no population-specific barriers were identified by the sufficiently and insufficiently active groups. The sufficiently active group reported higher self-regulatory efficacy and lower barrier limitation for nearly all reported barriers. A binary logistic regression used to examine the associations between PA, barrier limitation, and self-regulatory efficacy was statistically significant, χ(2)(2, N = 108) = 19.26, p < .0001, R(2) = .16. Only barrier limitation significantly contributed to the model. Future research should continue to examine barriers to PA among gay men to determine whether an intervention needs to be designed specifically for gay men or whether a one-size-fits-all intervention would be effective in helping all men overcome common barriers to engaging in PA. PMID:25643585

  9. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  10. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  11. Modeling of fluctuating reaction networks

    International Nuclear Information System (INIS)

    Full Text:Various dynamical systems are organized as reaction networks, where the population size of one component affects the populations of all its neighbors. Such networks can be found in interstellar surface chemistry, cell biology, thin film growth and other systems. I cases where the populations of reactive species are large, the network can be modeled by rate equations which provide all reaction rates within mean field approximation. However, in small systems that are partitioned into sub-micron size, these populations strongly fluctuate. Under these conditions rate equations fail and the master equation is needed for modeling these reactions. However, the number of equations in the master equation grows exponentially with the number of reactive species, severely limiting its feasibility for complex networks. Here we present a method which dramatically reduces the number of equations, thus enabling the incorporation of the master equation in complex reaction networks. The method is examplified in the context of reaction network on dust grains. Its applicability for genetic networks will be discussed. 1. Efficient simulations of gas-grain chemistry in interstellar clouds. Azi Lipshtat and Ofer Biham, Phys. Rev. Lett. 93 (2004), 170601. 2. Modeling of negative autoregulated genetic networks in single cells. Azi Lipshtat, Hagai B. Perets, Nathalie Q. Balaban and Ofer Biham, Gene: evolutionary genomics (2004), In press

  12. Intracellular electric fields produced by dielectric barrier discharge treatment of skin

    International Nuclear Information System (INIS)

    The application of atmospheric pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. These effects are attributed to both production of beneficial radicals which intersect with biological reaction chains and to the surface and intracellular generation of electric fields. In this paper, we report on computational studies of the intersection of plasma streamers in atmospheric pressure dielectric barrier discharges (DBDs) sustained in air with human skin tissue, with emphasis on the intracellular generation of electric fields. Intracellular structures and their electrical properties were incorporated into the computational mesh in order to self-consistently couple gas phase plasma transport with the charging of the surface of the skin and the intracellular production of electrical currents. The short duration of a single plasma filament in DBDs and its intersection with skin enables the intracellular penetration of electric fields. The magnitude of these electric fields can reach 100 kV cm-1 which may exceed the threshold for electroporation.

  13. Intracellular electric fields produced by dielectric barrier discharge treatment of skin

    Science.gov (United States)

    Babaeva, Natalia Yu; Kushner, Mark J.

    2010-05-01

    The application of atmospheric pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. These effects are attributed to both production of beneficial radicals which intersect with biological reaction chains and to the surface and intracellular generation of electric fields. In this paper, we report on computational studies of the intersection of plasma streamers in atmospheric pressure dielectric barrier discharges (DBDs) sustained in air with human skin tissue, with emphasis on the intracellular generation of electric fields. Intracellular structures and their electrical properties were incorporated into the computational mesh in order to self-consistently couple gas phase plasma transport with the charging of the surface of the skin and the intracellular production of electrical currents. The short duration of a single plasma filament in DBDs and its intersection with skin enables the intracellular penetration of electric fields. The magnitude of these electric fields can reach 100 kV cm-1 which may exceed the threshold for electroporation.

  14. Intracellular electric fields produced by dielectric barrier discharge treatment of skin

    Energy Technology Data Exchange (ETDEWEB)

    Babaeva, Natalia Yu; Kushner, Mark J, E-mail: nbabaeva@umich.ed, E-mail: mjkush@umich.ed [University of Michigan, Department of Electrical Engineering and Computer Science, 1301 Beal Ave., Ann Arbor, MI 48109 (United States)

    2010-05-12

    The application of atmospheric pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. These effects are attributed to both production of beneficial radicals which intersect with biological reaction chains and to the surface and intracellular generation of electric fields. In this paper, we report on computational studies of the intersection of plasma streamers in atmospheric pressure dielectric barrier discharges (DBDs) sustained in air with human skin tissue, with emphasis on the intracellular generation of electric fields. Intracellular structures and their electrical properties were incorporated into the computational mesh in order to self-consistently couple gas phase plasma transport with the charging of the surface of the skin and the intracellular production of electrical currents. The short duration of a single plasma filament in DBDs and its intersection with skin enables the intracellular penetration of electric fields. The magnitude of these electric fields can reach 100 kV cm{sup -1} which may exceed the threshold for electroporation.

  15. Structural Biology Fact Sheet

    Science.gov (United States)

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  16. Informatization barriers of logistics process management in production company

    Directory of Open Access Journals (Sweden)

    Joanna WALASEK

    2015-09-01

    Full Text Available This article is an attempt to characterize informatization barriers of logistics processes management in a production company which provides automotive parts. Threats of successful implementation of Enterprise Resource Planning Systems include: community barriers; organizational barriers; communication barriers; formal barriers; legal barriers; not prepared implementation team barrier; substantive barrier. Proper identification of barriers and solving them are the right way to implement Enterprise Resource Planning Systems in a company.

  17. Simulating Biological and Non-Biological Motion

    Science.gov (United States)

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  18. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  19. Ultrasonic wave transducer for high temperature barrier

    International Nuclear Information System (INIS)

    This transducer is made by a metallic body pivoting on a support fixed to the barrier and an internal vitroceramic waveguide in contact on the barrier and on the other end on a piezoelectric ceramic element

  20. Prototype Hanford Surface Barrier: Design basis document

    International Nuclear Information System (INIS)

    The Hanford Site Surface Barrier Development Program (BDP) was organized in 1985 to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site and other arid sites. This document provides the basis of the prototype barrier. Engineers and scientists have momentarily frozen evolving barrier designs and incorporated the latest findings from BDP tasks. The design and construction of the prototype barrier has required that all of the various components of the barrier be brought together into an integrated system. This integration is particularly important because some of the components of the protective barreir have been developed independently of other barreir components. This document serves as the baseline by which future modifications or other barrier designs can be compared. Also, this document contains the minutes of meeting convened during the definitive design process in which critical decisions affecting the prototype barrier's design were made and the construction drawings