WorldWideScience

Sample records for biological products

  1. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  2. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  3. Biological hydrogen production from phytomass

    Energy Technology Data Exchange (ETDEWEB)

    Bartacek, J.; Zabranska, J. [Inst. of Chemical Technology, Prague (Czech Republic). Dept. of Water Technology and Environmental Engineering

    2004-07-01

    Renewable sources of energy have received wide attention lately. One candidate is hydrogen which has the added advantage of involving no greenhouse gases. Biological hydrogen production from wastewater or biowastes is a very attractive production technique. So far, most studies have concentrated on the use of photosynthetic bacteria. However, dark fermentation has recently become a popular topic of research as it has the advantage of not requiring light energy input, something that limits the performance of the photosynthetic method. While pure cultures have been used in most of the investigations to date, in industrial situations mixed cultures will probably be the norm because of unavoidable contamination. In this investigation the phytomass of amaranth (Amaranthus cruentus L) was used to produce hydrogen. Specific organic loading, organic loading, and pH were varied to study the effect on hydrogen production. 18 refs., 1 tab., 6 figs.

  4. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  5. Synthetic Biology Guides Biofuel Production

    OpenAIRE

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improve...

  6. 9 CFR 114.6 - Mixing biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mixing biological products. 114.6... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.6 Mixing biological products. Each biological product, when in liquid form,...

  7. Biological production of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianping; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael

    2016-04-12

    Strains of cyanobacteria that produce high levels of alpha ketoglutarate (AKG) and pyruvate are disclosed herein. Methods of culturing these cyanobacteria to produce AKG or pyruvate and recover AKG or pyruvate from the culture are also described herein. Nucleic acid sequences encoding polypeptides that function as ethylene-forming enzymes and their use in the production of ethylene are further disclosed herein. These nucleic acids may be expressed in hosts such as cyanobacteria, which in turn may be cultured to produce ethylene.

  8. Standardization for natural product synthetic biology.

    Science.gov (United States)

    Zhao, Huimin; Medema, Marnix H

    2016-08-27

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering. PMID:27313083

  9. Standardization for natural product synthetic biology

    OpenAIRE

    Zhao, Huimin; Medema, Marnix H.

    2016-01-01

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering.

  10. Standardization for natural product synthetic biology

    NARCIS (Netherlands)

    Zhao, Huimin; Medema, Marnix H.

    2016-01-01

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synt

  11. 9 CFR 114.17 - Rebottling of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rebottling of biological products. 114... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.17 Rebottling of biological products. The Administrator...

  12. 9 CFR 114.18 - Reprocessing of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Reprocessing of biological products..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.18 Reprocessing of biological products. The Administrator...

  13. 9 CFR 114.4 - Identification of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Identification of biological products... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.4 Identification of biological products. Suitable tags or labels...

  14. 9 CFR 106.1 - Biological products; exemption.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Biological products; exemption....

  15. 9 CFR 112.6 - Packaging biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Packaging biological products. 112.6... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.6 Packaging biological products. (a) Each multiple-dose final container of a biological...

  16. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  17. Biological production of ethanol from coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  18. 9 CFR 103.1 - Preparation of experimental biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Preparation of experimental biological..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL PRODUCTS PRIOR TO LICENSING § 103.1 Preparation...

  19. 9 CFR 103.3 - Shipment of experimental biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Shipment of experimental biological..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL PRODUCTS PRIOR TO LICENSING § 103.3 Shipment...

  20. Biological treatment of shrimp production wastewater.

    Science.gov (United States)

    Boopathy, Raj

    2009-07-01

    Over the last few decades, there has been an increase in consumer demand for shrimp, which has resulted in its worldwide aquaculture production. In the United States, the stringent enforcement of environmental regulations encourages shrimp farmers to develop new technologies, such as recirculating raceway systems. This is a zero-water exchange system capable of producing high-density shrimp yields. The system also produces wastewater characterized by high levels of ammonia, nitrate, nitrite, and organic carbon, which make waste management costs prohibitive. Shrimp farmers have a great need for a waste management method that is effective and economical. One such method is the sequencing batch reactor (SBR). A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same reactor to take the place of multiple reactors in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor system. This is achieved through reactor operation in sequences, which includes fill, react, settle, decant, and idle. A laboratory scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentrations of carbon and nitrogen. By operating the reactors sequentially, namely, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon. Ammonia in the waste was nitrified within 4 days. The denitrification of nitrate was achieved by the anoxic process, and 100% removal of nitrate was observed within 15 days of reactor operation. PMID:19396482

  1. Biological hydrogen production using a membrane bioreactor.

    Science.gov (United States)

    Oh, Sang-Eun; Iyer, Prabha; Bruns, Mary Ann; Logan, Bruce E

    2004-07-01

    A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all conditions. When operated in chemostat mode (no flow through the membrane) at a hydraulic retention time (HRT) of 3.3 h, 90% of the glucose was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids retention time (SRT) was increased to SRT = 12 h producing a solids concentration in the reactor of 5800 mg/L. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 mL/h), and the conversion efficiency of glucose-to-hydrogen from 22% (no MBR) to 25% (based on a maximum of 4 mol-H(2)/mol-glucose). When the SRT was increased from 5 h to 48 h, glucose utilization (99%) and biomass concentrations (8,800 +/- 600 mg/L) both increased. However, the biogas production decreased (310 +/- 40 mL/h) and the glucose-to-hydrogen conversion efficiency decreased from 37 +/- 4% to 18 +/- 3%. Sustained permeate flows through the membrane were in the range of 57 to 60 L/m(2) h for three different membrane pore sizes (0.3, 0.5, and 0.8 microm). Most (93.7% to 99.3%) of the membrane resistance was due to internal fouling and the reversible cake resistance, and not the membrane itself. Regular backpulsing was essential for maintaining permeate flux through the membrane. Analysis of DNA sequences using ribosomal intergenic spacer analysis indicated bacteria were most closely related to members of Clostridiaceae and Flexibacteraceae, including Clostridium acidisoli CAC237756 (97%), Linmingia china AF481148 (97%), and Cytophaga sp. MDA2507 AF238333 (99%). No PCR amplification of 16s rRNA genes was obtained when archaea-specific primers were used.

  2. Biological control and sustainable food production

    NARCIS (Netherlands)

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control). Augmentati

  3. 9 CFR 115.2 - Inspections of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspections of biological products. 115.2 Section 115.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS...

  4. Cholesterol oxidation products and their biological importance.

    Science.gov (United States)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr; Rog, Tomasz; Vattulainen, Ilpo

    2016-09-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have a substantial effect on membrane properties. In this spirit, this review describes the biological importance and the roles of oxysterols in the human body. We focus primarily on the effect of oxysterols on lipid membranes, but we also consider other issues such as enzymatic and nonenzymatic synthesis processes of oxysterols as well as pathological conditions induced by oxysterols. PMID:26956952

  5. COTTAGE CHEESE PRODUCTS ENRICHED BIOLOGICALLY ACTIVE ADDITIVES

    OpenAIRE

    Салкинбаева Г. Т.; Байбалинова Г. М.; Смаилова М. Н.

    2015-01-01

    This article deals with a reliable means of improving the structure of supply and optimum balance of the diet of the population, is the use of biologically active additives in a daily diet of the people to food dietary supplements. Supplements such advantages as an expression of food oriented, high nutritional density, homogeneity, easy preparation and forms of transport, good taste allow us to use them successfully in catering.

  6. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    OpenAIRE

    A. S. Kayshev; N. S. Kaysheva

    2014-01-01

    A content of biologically active compounds (BAC) with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical ...

  7. Production and consumption of biological particles in temperate tidal estuaries

    NARCIS (Netherlands)

    Heip, C.H.R.; Goosen, N.K.; Herman, P.M.J.; Kromkamp, J.C.; Middelburg, J.J.; Soetaert, K.E.R.

    1995-01-01

    The question is reviewed whether a balance exists between production and consumption of biological particles in temperate tidal estuaries and what the relationships are between the magnitude of production and consumption processes and system carbon metabolism. The production terms considered are pri

  8. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  9. Recent Developments in Biological Hydrogen Production Processes

    Directory of Open Access Journals (Sweden)

    DEBABRATA DAS

    2008-07-01

    Full Text Available Biohydrogen production technology can utilize renewable energy sources like biomass for the generation of hydrogen, the cleanest form of energy for the use of mankind. However, major constraints to the commercialization of these processes include lower hydrogen yields and rates of hydrogen production. To overcome these bottlenecks intensive research work has already been carried out on the advancement of these processes such as the development of genetically modified microorganisms, the improvement of the bioreactor design, molecular engineering of the key enzyme hydrogenases, the development of two stage processes, etc. The present paper explores the recent advancements that have been made till date and also presents the state of the art in molecular strategies to improve the hydrogen production.

  10. Electricity-mediated biological hydrogen production

    NARCIS (Netherlands)

    Geelhoed, J.S.; Hamelers, H.V.M.; Stams, A.J.M.

    2010-01-01

    Anaerobic bacteria have the ability to produce electricity from the oxidation of organic substrates. They also may use electricity to support chemical reactions that are energetically unfavorable. In the fermentation of sugars, hydrogen can be formed as one of the main products. However, a yield of

  11. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  12. Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care

    Science.gov (United States)

    Perez-Pinera, Pablo; Han, Ningren; Cleto, Sara; Cao, Jicong; Purcell, Oliver; Shah, Kartik A.; Lee, Kevin; Ram, Rajeev; Lu, Timothy K.

    2016-01-01

    Current biopharmaceutical manufacturing systems are not compatible with portable or distributed production of biologics, as they typically require the development of single biologic-producing cell lines followed by their cultivation at very large scales. Therefore, it remains challenging to treat patients in short time frames, especially in remote locations with limited infrastructure. To overcome these barriers, we developed a platform using genetically engineered Pichia pastoris strains designed to secrete multiple proteins on programmable cues in an integrated, benchtop, millilitre-scale microfluidic device. We use this platform for rapid and switchable production of two biologics from a single yeast strain as specified by the operator. Our results demonstrate selectable and near-single-dose production of these biologics in system with analytical, purification and polishing technologies could lead to a small-scale, portable and fully integrated personal biomanufacturing platform that could advance disease treatment at point-of-care. PMID:27470089

  13. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2014-01-01

    Full Text Available A content of biologically active compounds (BAC with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical and chemical characteristics of distillers grains' liquid base were identified. Elementary composition of distillers grains is signified by active accumulation of biogenic elements (phosphorus, potassium, magnesium, calcium, sodium, iron and low content of heavy metals. The solid phase of distillers grains accumulates carbon, hydrogen and nitrogen in high concentration. The liquid phase of distillers grains contains: proteins and amino acids (20-46%, reducing sugars (5,6%-17,5%, galacturonides (0,8-1,4%, ascorbic acid (6,2-11,4 mg%. The solid base of distillers grains contains: galacturonides (3,4-5,3%, fatty oil (8,4-11,1% with predomination of essential fatty acids, proteins and amino acids (2,1-2,5%, flavonoids (0,4-0,9%, tocopherols (3,4-7,7 mg%. A method of complex processing of distillers grains based on application of membrane filtering of liquid phase and liquid extraction by inorganic and organic solvents of solid phase, which allows almost full extraction of the sum of biologically active compounds (BAC from liquid phase (Biobardin BM and solid phase (Biobardin UL. Biobardin BM comprises the following elements: proteins and amino acids (41-69%, reducing sugars (3,5-15,6%, fatty oil (0,2-0,3%, flavonoids (0,2-0,7%, ascorbic acid (17-37 mg%. Biobardin UL includes: oligouronids (16,4-19,5%, proteins and amino acids (11-21%, fatty oil (3,2-4,9% which includes essential acids; flavonoids (0,6-1,5%, tocopherols (6,6-10,2 mg%, carotinoids (0,13-0,21 mg

  14. MILK KEFIR: COMPOSITION, MICROBIAL CULTURES, BIOLOGICAL ACTIVITIES AND RELATED PRODUCTS

    Directory of Open Access Journals (Sweden)

    Maria Rosa Prado

    2015-10-01

    Full Text Available In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance.

  15. Ionizing radiation for sterilization of medical products and biological tissues

    International Nuclear Information System (INIS)

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products. (S.K.K.)

  16. Assessment of biological Hydrogen production processes: A review

    Science.gov (United States)

    Najafpour, G. D.; Shahavi, M. H.; Neshat, S. A.

    2016-06-01

    Energy crisis created a special attention on renewable energy sources. Among these sources; hydrogen through biological processes is well-known as the most suitable and renewable energy sources. In terms of process yield, hydrogen production from various sources was evaluated. A summary of microorganisms as potential hydrogen producers discussed along with advantages and disadvantages of several bioprocesses. The pathway of photo-synthetic and dark fermentative organisms was discussed. In fact, the active enzymes involved in performance of biological processes for hydrogen generation were identified and their special functionalities were discussed. The influential factors affecting on hydrogen production were known as enzymes assisting liberation specific enzymes such as nitrogenase, hydrogenase and uptake hydrogenase. These enzymes were quite effective in reduction of proton and form active molecular hydrogen. Several types of photosynthetic systems were evaluated with intension of maximum hydrogen productivities. In addition dark fermentative and light intensities on hydrogen productions were evaluated. The hydrogen productivities of efficient hydrogen producing strains were evaluated.

  17. Natural product synthesis at the interface of chemistry and biology.

    Science.gov (United States)

    Hong, Jiyong

    2014-08-11

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences.

  18. Technical suitability mapping of feedstocks for biological hydrogen production

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Karaoglanoglou, L.S.; Koullas, D.P.; Bakker, R.R.; Claassen, P.A.M.; Koukios, E.G.

    2015-01-01

    The objective of this work was to map and compare the technical suitability of different raw materials for biological hydrogen production. Our model was based on hydrogen yield potential, sugar mobilization efficiency, fermentability and coproduct yield and value. The suitability of the studied r

  19. Irradiation of advanced health care products – Tissues and biologics

    International Nuclear Information System (INIS)

    Radiation sterilization of tissues and biologics has become more common in recent years. As a result it has become critical to understand how to adapt the typical test methods and validation approaches to a tissue or biological product scenario. Also data evaluation sometimes becomes more critical than with traditional medical devices because for many tissues and biologics a low radiation dose is required. It is the intent behind this paper to provide information on adapting bioburden tests used in radiation validations such that the data can be most effectively used on tissues and biologics. In addition challenges with data evaluation are discussed, particularly the use of less-than values for bioburden results in radiation validation studies. - Highlights: • MPN testing can provide good bioburden results for tissue/biologics. • There are appropriate situations to pool products for bioburden testing. • Options on dealing with bioburden results of “less-than” the limit of detection. • Underestimation and overestimation of bioburden and the dangers of both

  20. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    Science.gov (United States)

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.

  1. 9 CFR 102.5 - U.S. Veterinary Biological Product License.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false U.S. Veterinary Biological Product..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS LICENSES FOR BIOLOGICAL PRODUCTS § 102.5 U.S. Veterinary Biological Product License. (a) Authorization to produce...

  2. Systems Biology Approaches to Understand Natural Products Biosynthesis

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Cruz-Morales, Pablo; Manteca, Angel; Barona-Gomez, Francisco; Nielsen, Lars K.; Marcellin, Esteban

    2015-01-01

    Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed toward a shift in the exploitation of actinomycete’s biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation, and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets. PMID:26697425

  3. Systems biology approaches to understand natural products biosynthesis

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc eLicona-Cassani

    2015-12-01

    Full Text Available Actinomycetes populate soils and aquatic sediments which impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams and terpenes are well known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed towards a shift in the exploitation of actinomycetes biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets.

  4. Systems Biology Approaches to Understand Natural Products Biosynthesis

    OpenAIRE

    Licona-Cassani, Cuauhtemoc; Cruz-Morales, Pablo; Manteca, Angel; Barona-Gomez, Francisco; Nielsen, Lars K; Marcellin, Esteban

    2015-01-01

    Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regul...

  5. Systems biology approaches to understand natural products biosynthesis

    OpenAIRE

    Cuauhtemoc eLicona-Cassani; Pablo Cruz Morales; Angel eManteca; Francisco eBarona-Gomez; Lars Keld Nielsen; Esteban eMarcellin

    2015-01-01

    Actinomycetes populate soils and aquatic sediments which impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams and terpenes are well known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regul...

  6. Polycyclic Xanthone Natural Products: Structure, Biological Activity and Chemical Synthesis

    OpenAIRE

    Winter, Dana K.; Sloman, David L.; Porco, John A.

    2013-01-01

    Polycyclic xanthone natural products are a family of polyketides which are characterized by highly oxygenated, angular hexacyclic frameworks. In the last decade, this novel class of molecules has attracted noticeable attention from the synthetic and biological communities due to emerging reports of their potential use as antitumour agents. The aim of this article is to highlight the most recent developments of this subset of the xanthone family by detailing the innate challenges of the constr...

  7. Reproductive biology traits affecting productivity of sour cherry

    Directory of Open Access Journals (Sweden)

    Milica Fotiric Aksic

    2013-01-01

    Full Text Available The objective of this work was to evaluate variability in reproductive biology traits and the correlation between them in genotypes of 'Oblačinska' sour cherry (Prunus cerasus. High genetic diversity was found in the 41 evaluated genotypes, and significant differences were observed among them for all studied traits: flowering time, pollen germination, number of fruiting branches, production of flower and fruit, number of flowers per bud, fruit set, and limb yield efficiency. The number of fruiting branches significantly influenced the number of flower and fruit, fruit set, and yield efficiency. In addition to number of fruiting branches, yield efficiency was positively correlated with fruit set and production of flower and fruit. Results from principal component analysis suggested a reduction of the reproductive biology factors affecting yield to four main characters: number and structure of fruiting branches, flowering time, and pollen germination. Knowledge of the reproductive biology of the 'Oblačinska' genotypes can be used to select the appropriate ones to be grown or used as parents in breeding programs. In this sense, genotypes II/2, III/9, III/13, and III/14 have very good flower production and satisfactory pollen germination.

  8. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  9. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  10. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  11. Assessment of nitrogen and sulphur cycle bacteria and shrimp production in ponds treated with biological products

    Institute of Scientific and Technical Information of China (English)

    Thangapalam Jawahar Abraham; Shubhadeep Ghosh; Debasis Sasmal

    2015-01-01

    Objective:To study the influence of biological products on the levels of nitrogen and sulphur cycle bacteria in shrimp culture systems of West Bengal, India. Methods: The pond water and sediment samples were analyzed for physico-chemical parameters as per standard methods. The bacteria involved in ammonification, nitrification, denitrification, sulphate reduction and sulphur oxidation were enumerated by most probable number technique. Results:The semi-intensive and modified extensive shrimp farms used a variety of biological products during various stages of production. No biological products were used in traditional farms. The water and sediment samples of modified extensive system recorded significantly higher mean heterotrophic bacterial counts. The counts of ammonia, nitrite and sulphur oxidizers, and nitrate and sulphate reducers varied among the systems. The cycling of nitrogen and sulphur appeared to be affected with the intensification of culture practices. Conclusions:The application of biological products in certain systems helped to maintain the bacteria involved in nitrogen and sulphur cycles and safe levels of ammonia, nitrite and nitrate. An assessment of these metabolically active bacteria in shrimp culture ponds and the application of right kind microbial products would help ameliorate the organic pollution in shrimp aquaculture.

  12. Biological hydrogen production from biomass by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T. [Wageningen UR, Agrotechnology and Food Sciences Group (AFSG), Business Unit Biobased Products, P.O. Box 17, 6700 AA Wageningen, (Netherlands); van Niel, E.W.J. [Lund University, Applied microbiology, P.O. Box 124, 221 000 Lund, (Sweden)

    2006-07-01

    To meet the reduction of the emission of CO{sub 2} imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  13. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    To meet the reduction of the emission of CO2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient requirements

  14. Current studies on physiological functions and biological production of lactosucrose.

    Science.gov (United States)

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes.

  15. Current studies on physiological functions and biological production of lactosucrose.

    Science.gov (United States)

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes. PMID:23828605

  16. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.

    Science.gov (United States)

    Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. PMID:26838891

  17. Biological productivity and carbon cycling in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Primary production, bacterial production, particulate organic carbon fluxes and organic carbon burial rates were quantified during the summer period of 1999 in the Arctic Ocean via 14C uptake, 3H uptake, 234Th/238U disequilibrium and 210Pbex dating, respectively. The integrated primary production in the water column was as high as 197 mmolC/(m2@d) in the Chukchi shelf and was 3.8 mmolC/(m2@d) in the Canada Basin. These rates are higher than those reported previously. The ratios of bacterial production to primary production in the study region were higher than 0.5, indicating that microbial activity is not depressed but important in cold Arctic waters. 234Th/238U disequilibria were evident at the station in the Canada Basin. The presence of significant 234Th deficiency suggested that scavenging and removal processes are also important to biogeochemical cycles of trace elements in the Arctic Ocean. Particulate organic carbon export flux was estimated to be 1.0 mmolC/(m2@d). Measurements of sediment excess 210Pb profile in the Chukchi shelf allowed us to estimate the amount of organic carbon buried in the bottom sediment, which ranged from 25 to 35 mmolC/(m2@d) and represented about 59%-82% of the mean primary production in the euphotic zone. Overall, our results indicated that the Arctic Ocean has active carbon cycling and is not a biological desert as previously believed. Therefore, the Arctic Ocean may play an important role in the global carbon cycle and climate change.

  18. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  19. Biological production of ethanol from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  20. Systems biology of recombinant protein production using Bacillus megaterium.

    Science.gov (United States)

    Biedendieck, Rebekka; Borgmeier, Claudia; Bunk, Boyke; Stammen, Simon; Scherling, Christian; Meinhardt, Friedhelm; Wittmann, Christoph; Jahn, Dieter

    2011-01-01

    The Gram-negative bacterium Escherichia coli is the most widely used production host for recombinant proteins in both academia and industry. The Gram-positive bacterium Bacillus megaterium represents an increasingly used alternative for high yield intra- and extracellular protein synthesis. During the past two decades, multiple tools including gene expression plasmids and production strains have been developed. Introduction of free replicating and integrative plasmids into B. megaterium is possible via protoplasts transformation or transconjugation. Using His(6)- and StrepII affinity tags, the intra- or extracellular produced proteins can easily be purified in one-step procedures. Different gene expression systems based on the xylose controlled promoter P(xylA) and various phage RNA polymerase (T7, SP6, K1E) driven systems enable B. megaterium to produce up to 1.25g of recombinant protein per liter. Biomass concentrations of up to 80g/l can be achieved by high cell density cultivations in bioreactors. Gene knockouts and gene replacements in B. megaterium are possible via an optimized gene disruption system. For a safe application in industry, sporulation and protease-deficient as well as UV-sensitive mutants are available. With the help of the recently published B. megaterium genome sequence, it is possible to characterize bottle necks in the protein production process via systems biology approaches based on transcriptome, proteome, metabolome, and fluxome data. The bioinformatical platform (Megabac, http://www.megabac.tu-bs.de) integrates obtained theoretical and experimental data. PMID:21943898

  1. Enhanced saccharification of biologically pretreated wheat straw for ethanol production.

    Science.gov (United States)

    López-Abelairas, M; Lu-Chau, T A; Lema, J M

    2013-02-01

    The biological pretreatment of lignocellulosic biomass with white-rot fungi for the production of bioethanol is an alternative to the most used physico-chemical processes. After biological treatment, a solid composed of cellulose, hemicellulose, and lignin-this latter is with a composition lower than that found in the initial substrate-is obtained. On the contrary, after applying physico-chemical methods, most of the hemicellulose fraction is solubilized, while cellulose and lignin fractions remain in the solid. The optimization of the combination of cellulases and hemicellulases required to saccharify wheat straw pretreated with the white-rot fungus Irpex lacteus was carried out in this work. The application of the optimal dosage made possible the increase of the sugar yield from 33 to 54 %, and at the same time the reduction of the quantity of enzymatic mixture in 40 %, with respect to the initial dosage. The application of a pre-hydrolysis step with xylanases was also studied. PMID:23306886

  2. Production and biological activities of yellow pigments from Monascus fungi.

    Science.gov (United States)

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed. PMID:27357404

  3. Synthetic Biology in the FDA Realm: Toward Productive Oversight Assessment.

    Science.gov (United States)

    Fatehi, Leili; Hall, Ralph F

    2015-01-01

    Synthetic biology (SB) is expected to create tremendous opportunities in a wide range of areas, including in foods, therapeutics, and diagnostics subject to regulatory oversight by the United States Food and Drug Administration. At the same time, there is substantial basis for concern about the uncertainties of accurately assessing the human health and environmental risks of such SB products. As such, SB is the latest in a string of emerging technologies that is the subject of calls for new approaches to regulation and oversight that involve "thinking ahead" to anticipate governance challenges upstream of technological development and adopting oversight mechanisms that are both adaptive to new information about risks and reflexive to performance data and feedback on policy outcomes over time. These new approaches constitute a marked departure from the status quo, and their development and implementation will require considerable time, resources, and reallocation of responsibilities. Furthermore, in order to develop an appropriate oversight response, adaptive or otherwise, there is first a need to identify the specific types and natures of applications, uncertainties, and regulatory issues that are likely to pose oversight challenges. This article presents our vision for a Productive Oversight Assessment (POA) approach in which the abilities and deficits of an oversight system are evaluated with the aim of enabling productive decisions (i.e., timely, feasible, effective for achieving desired policy outcomes) about oversight while also building capacity to facilitate broader governance efforts. The value ofPOA is two-fold. First, it will advance the development of a generalizable approach for making productive planning and decision-making about the oversight of any given new technology that presents challenges and uncertainties for any given oversight system whose policy goals are implicated by that technology. Second, this effort can enhance the very processes

  4. 77 FR 3780 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-01-25

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Vaccines and Related Biological..., Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics...

  5. 75 FR 59935 - Investigational New Drug Safety Reporting Requirements for Human Drug and Biological Products and...

    Science.gov (United States)

    2010-09-29

    ... ``E2A Clinical Safety Data Management: Definitions and Standards for Expedited Reporting'' (60 FR 11284... 0910-AG13 Investigational New Drug Safety Reporting Requirements for Human Drug and Biological Products... safety reporting for human biological products: Laura Rich, Center for Biologics Evaluation and...

  6. Biological conversion of pyrolytic products to ethanol and lipids

    Science.gov (United States)

    Lian, Jieni

    Pyrolysis is a promising technology that can convert up to 75 % of lignocellulosic biomass into crude bio-oil. However, due to the complex chemical compositions of bio-oil, its further refining into fuels and high value chemicals faces great challenges. This dissertation research proposed new technologies for biological conversion of pyrolytic products derived from cellulose and hemicellulose, such as anhydrosugars and carbolic acids to fuels and chemicals. First, the pyrolytic anhydrosugars (chiefly levoglucosan (LG)) were hydrolysed into glucose followed by neutralization, detoxification and fermentation to produce ethanol by ethanogenetic yeast and lipids by oleaginous yeasts. Second, a novel process for the conversion of C1-C4 pyrolytic products to lipid with oleaginous yeasts was investigated. Third, oleaginous yeasts that can directly convert LG to lipids were studied and a recombined yeast with LG kinase was constructed for the direct convertion of LG into lipids. This allowed a reduction of existing process for LG fermentation from four steps into two steps and eliminated the need for acids and bases as well as the disposal of chemicals. The development of genetic modified organisms with LG kinase opens a promising avenue for the direct LG fermentation to produce a wide range of fuels and chemicals. The simplification of LG utilization process would enhance the economic viability of this technology.

  7. Competency development in antibody production in cancer cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Park, M.S.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The main objective of this project was to develop a rapid recombinant antibody production technology. To achieve the objective, the authors employed (1) production of recombinant antigens that are important for cell cycle regulation and DNA repair, (2) immunization and specific selection of antibody-producing lymphocytes using the flow cytometry and magnetic bead capturing procedure, (3) construction of single chain antibody library, (4) development of recombinant vectors that target, express, and regulate the expression of intracellular antibodies, and (5) specific inhibition of tumor cell growth in tissue culture. The authors have accomplished (1) optimization of a selection procedure to isolate antigen-specific lymphocytes, (2) optimization of the construction of a single-chain antibody library, and (3) development of a new antibody expression vector for intracellular immunization. The future direction of this research is to continue to test the potential use of the intracellular immunization procedure as a tool to study functions of biological molecules and as an immuno-cancer therapy procedure to inhibit the growth of cancer cells.

  8. Biological hydrogen production measured in batch anaerobic respirometers.

    Science.gov (United States)

    Logan, Bruce E; Oh, Sang-Eun; Kim, In S; Van Ginkel, Steven

    2002-06-01

    The biological production of hydrogen from the fermentation of different substrates was examined in batch tests using heat-shocked mixed cultures with two techniques: an intermittent pressure release method (Owen method) and a continuous gas release method using a bubble measurement device (respirometric method). Under otherwise identical conditions, the respirometric method resulted in the production of 43% more hydrogen gas from glucose than the Owen method. The lower conversion of glucose to hydrogen using the Owen protocol may have been produced by repression of hydrogenase activity from high partial pressures in the gastight bottles, but this could not be proven using a thermodynamic/rate inhibition analysis. In the respirometric method, total pressure in the headspace never exceeded ambient pressure, and hydrogen typically composed as much as 62% of the headspace gas. High conversion efficiencies were consistently obtained with heat-shocked soils taken at different times and those stored for up to a month. Hydrogen gas composition was consistently in the range of 60-64% for glucose-grown cultures during logarithmic growth but declined in stationary cultures. Overall, hydrogen conversion efficiencies for glucose cultures were 23% based on the assumption of a maximum of 4 mol of hydrogen/ mol of glucose. Hydrogen conversion efficiencies were similar for sucrose (23%) and somewhat lower for molasses (15%) but were much lower for lactate (0.50%) and cellulose (0.075%).

  9. 9 CFR 105.3 - Notices re: worthless, contaminated, dangerous, or harmful biological products.

    Science.gov (United States)

    2010-01-01

    ..., dangerous, or harmful biological products. 105.3 Section 105.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS SUSPENSION, REVOCATION, OR TERMINATION OF BIOLOGICAL LICENSES OR PERMITS §...

  10. Integrated anaerobic/aerobic biological treatment for intensive swine production.

    Science.gov (United States)

    Bortone, Giuseppe

    2009-11-01

    Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment. PMID:19135363

  11. Biological evaluation of recombinant human erythropoietin in pharmaceutical products

    Directory of Open Access Journals (Sweden)

    Ramos A.S.

    2003-01-01

    Full Text Available The potencies of mammalian cell-derived recombinant human erythropoietin pharmaceutical preparations, from a total of five manufacturers, were assessed by in vivo bioassay using standardized protocols. Eight-week-old normocythemic mice received a single subcutaneous injection followed by blood sampling 96 h later or multiple daily injections with blood sampling 24 h after the last injection. Reticulocyte counting by microscopic examination was employed as the end-point using the brilliant cresyl blue or selective hemolysis methods, together with automated flow cytometry. Different injection schedules were investigated and dose-response curves for the European Pharmacopoeia Biological Reference Preparation of erythropoietin were compared. Manual and automated methods of reticulocyte counting were correlated with respect to assay validity and precision. Using 8 mice per treatment group, intra-assay precision determined for all of the assays in the study showed coefficients of variation of 12.1-28.4% for the brilliant cresyl blue method, 14.1-30.8% for the selective hemolysis method and 8.5-19.7% for the flow cytometry method. Applying the single injection protocol, a combination of at least two independent assays was required to achieve the precision potency and confidence limits indicated by the manufacturers, while the multiple daily injection protocol yielded the same acceptable results within a single assay. Although the latter protocol using flow cytometry for reticulocyte counting gave more precise and reproducible results (intra-assay coefficients of variation: 5.9-14.2%, the well-characterized manual methods provide equally valid alternatives for the quality control of recombinant human erythropoietin therapeutic products.

  12. 9 CFR 103.2 - Disposition of animals administered experimental biological products or live organisms.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disposition of animals administered experimental biological products or live organisms. 103.2 Section 103.2 Animals and Animal Products ANIMAL AND... PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF...

  13. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  14. Natural product synthesis at the interface of chemistry and biology

    OpenAIRE

    Hong, Jiyong

    2014-01-01

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in ...

  15. Hydrological structure and biological productivity of the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, U.D.; Muraleedharan, P.M.

    Hydrological structure analyses of regions in the tropical Atlantic Ocean have consistently revealed the existence of a typical tropical structure characterized by a nitrate-depleted mixed layer above the thermocline. The important biological...

  16. 78 FR 20663 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-05

    ... DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Vaccines and Related...

  17. 75 FR 17929 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-08

    ... will review and discuss available data regarding the unexpected finding of DNA originating from porcine... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory...

  18. 76 FR 3639 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-20

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... selection of strains to be included in the influenza virus vaccine for the 2011-2012 influenza season....

  19. 75 FR 2876 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-01-19

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... selection of strains to be included in the influenza virus vaccine for the 2010 - 2011 influenza season....

  20. 78 FR 5465 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-01-25

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... strains to be included in the influenza virus vaccine for the 2013- 2014 influenza season. FDA intends...

  1. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological...... control of stored-product pests and has considered a number of existing and potential fields for application of biological control. Three situations were identified where biological control would be a valuable component of integrated pest management: (1) Empty room treatment against stored-product mites......, beetles and moths; (2) Preventative treatment of bulk commodities against weevils (Sitophilus spp.) and storage mites; (3) Preventative application of egg-parasitoids against moths in packaged products. Development of methods for biological control and of mass production of natural enemies...

  2. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup;

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  3. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.

    Science.gov (United States)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup; Weber, Tilmann

    2016-08-27

    Covering: 2012 to 2016Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites. The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production. PMID:27072921

  4. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  5. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. PMID:26479184

  6. 9 CFR 101.3 - Biological products and related terms.

    Science.gov (United States)

    2010-01-01

    ... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS..., the harvest date shall be the date blood or tissues are collected for production or the date cultures..., representing a whole culture or a concentrate thereof, with or without the unevaluated growth products,...

  7. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    OpenAIRE

    Forough Nazarpour; Dzulkefly Kuang Abdullah; Norhafizah Abdullah; Nazila Motedayen; Reza Zamiri

    2013-01-01

    Rubberwood (Hevea brasiliensis), a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm) and pretreatment time on the biological pretreatmen...

  8. Sex Roles: A Product of Socialization or a Biological Heritage.

    Science.gov (United States)

    Shaha, Steven H.

    This paper reviews selected studies of aggression in males and females and concludes that physiological, emotional and behavioral differences exist between the sexes. Primate studies, conducted by Harlow, are employed as evidence that sex differences in aggression are primarily biological and not primarily cultural phenomena. It is further…

  9. Kinetic study of biological hydrogen production by anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, R. [Annamalai Univ., Chidambaram (India). Dept. of Chemical Engineering; Karunanithi, T. [Annamalai Univ., Tamilnadu (India). Dept. of Chemical Engineering

    2009-07-01

    This study examined the kinetics of batch biohydrogen production from glucose. Clostridium pasteurianum was used to produce biohydrogen by dark anaerobic fermentation. The initial substrate concentration, initial pH and temperature were optimized for biohydrogen production. The maximum production of hydrogen under optimum conditions was found to be 5.376 l/l. The kinetic parameters were determined for the optimized medium and conditions in the batch reactor. The by product was expressed as total acidic equivalent. This presentation discussed the logistic equation that was used to model the growth of the organism and described how the kinetic parameters were calculated. The Leudeking piret kinetic model was used to express the hydrogen production and substrate use because it combines both growth associated and non associated contributions. It was concluded the production of biohydrogen can be predicted well using the logistic model for cell growth kinetics and the logistic incorporated Leudeking Piret model for product and substrate utilization kinetics.

  10. Importance of systems biology in engineering microbes for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  11. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions.

    Science.gov (United States)

    Rodríguez Couto, Susana

    2008-07-01

    Biological wastes contain several reusable substances of high value such as soluble sugars and fibre. Direct disposal of such wastes to soil or landfill causes serious environmental problems. Thus, the development of potential value-added processes for these wastes is highly attractive. These biological wastes can be used as support-substrates in solid-state fermentation (SSF) to produce industrially relevant metabolites with great economical advantage. In addition, it is an environmentally friendly method of waste management. This paper reviews the reutilization of biological wastes for the production of value-added products using the SSF technique. PMID:18543242

  12. Biology Needs a Modern Assessment System for Professional Productivity

    Science.gov (United States)

    McDade, Lucinda A.; Maddison, David R.; Guralnick, Robert; Piwowar, Heather A.; Jameson, Mary Liz; Helgen, Kristofer M.; Herendeen, Patrick S.; Hill, Andrew; Vis, Morgan L.

    2011-01-01

    Stimulated in large part by the advent of the Internet, research productivity in many academic disciplines has changed dramatically over the last two decades. However, the assessment system that governs professional success has not kept pace, creating a mismatch between modes of scholarly productivity and academic assessment criteria. In this…

  13. 9 CFR 113.29 - Determination of moisture content in desiccated biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Determination of moisture content in desiccated biological products. 113.29 Section 113.29 Animals and Animal Products ANIMAL AND PLANT HEALTH... VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.29 Determination of moisture content in...

  14. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Strucko, Tomas; Eriksen, Jens Christian; Nielsen, J.;

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo...... biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of vanillin produced in this S. cerevisiae strain is insufficient for commercial production and improvements...... need to be done. We have introduced the genes necessary for vanillin production in an identical manner in two different yeast strains S288c and CEN.PK,where comprehensive – omics datasets are available, hence, allowing vanillin production in the two strain backgrounds to be evaluated and compared...

  15. Hydrodynamics-Biology Coupling for Algae Culture and Biofuel Production

    OpenAIRE

    Bernard, Olivier; Sainte-Marie, Jacques; Sialve, Bruno; Steyer, Jean-Philippe

    2013-01-01

    Biofuel production from microalgae represents an acute optimization problem for industry. There is a wide range of parameters that must be taken into account in the development of this technology. Here, mathematical modelling has a vital role to play. The potential of microalgae as a source of biofuel and as a technological solution for CO2 fixation is the subject of intense academic and industrial research. Large-scale production of microalgae has potential for biofuel applications owing to ...

  16. Strategies for optimizing algal biology for enhanced biomass production

    Directory of Open Access Journals (Sweden)

    Amanda N. Barry

    2015-02-01

    Full Text Available One of the more environmentally sustainable ways to produce high energy density (oils feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source and subsequent carbon capture and sequestration (BECCS has also been proposed in the Intergovernmental Panel on Climate Change Report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass. To increase aerial carbon capture rates and biomass productivity it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to two-fold increases in biomass productivity.

  17. Some aspects of biological production and fishery resources of the EEZ of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhargava, R.M.S.

    Region and season-wise biological production in the Exclusive Economic Zone (EEZ) of India has been computed from the data of more than twenty years available at the Indian National Oceanographic Data Centre of the National Institute of Oceanography...

  18. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄. PMID:26838340

  19. Biological pretreatment and ethanol production from olive cake

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Baroi, George Nabin;

    2010-01-01

    Olive oil is one of the major Mediterranean products, whose nutritional and economic importance is well-known. However the extraction of olive oil yields a highly contaminating residue that causes serious environmental concerns in the olive oil producing countries. The olive cake (OC) coming out...... of the three-phase olive oil production process could be used as low price feedstock for lignocellulosic ethanol production due to its high concentration in carbohydrates. However, the binding of the carbohydrates with lignin may significantly hinder the necessary enzymatic hydrolysis of the polymeric sugars...... before ethanol fermentation. Treatment with three white rot fungi, Phaneroachaete chrysosporium, Ceriporiopsis subvermispora and Ceriolopsis polyzona has been applied on olive cake in order to investigate the potential for performing delignification and thus enhancing the efficiency of the subsequent...

  20. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  1. Recent advances in biological production of sugar alcohols.

    Science.gov (United States)

    Park, Yong-Cheol; Oh, Eun Joong; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2016-02-01

    Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. In contrast to early studies that aimed to produce sugar alcohols with microorganisms capable of producing sugar alcohols naturally, recent studies have focused on rational engineering of metabolic pathways to improve yield and productivity as well as to use inexpensive and abundant substrates. Metabolic engineering strategies to utilize inexpensive substrates, alleviate catabolite repression, reduce byproduct formation, and manipulate redox balances led to enhanced production of sugar alcohols.

  2. Recent advances in biological production of sugar alcohols.

    Science.gov (United States)

    Park, Yong-Cheol; Oh, Eun Joong; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2016-02-01

    Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. In contrast to early studies that aimed to produce sugar alcohols with microorganisms capable of producing sugar alcohols naturally, recent studies have focused on rational engineering of metabolic pathways to improve yield and productivity as well as to use inexpensive and abundant substrates. Metabolic engineering strategies to utilize inexpensive substrates, alleviate catabolite repression, reduce byproduct formation, and manipulate redox balances led to enhanced production of sugar alcohols. PMID:26723007

  3. Xenicane Natural Products: Biological Activity and Total Synthesis.

    Science.gov (United States)

    Betschart, Leo; Altmann, Karl-Heinz

    2015-01-01

    The xenicanes are a large class of mostly bicyclic marine diterpenoids featuring a cyclononane ring as a common structural denominator. After a brief introduction into the characteristic structural features of xenicanes and some biogenetic considerations, the major focus of this review will be on the various biological activities that have been reported for xenicanes and on efforts towards the total synthesis of these structures. Several xenicanes have been shown to be potent antiproliferative agents in vitro, but activities have also been reported in relation to inflammatory processes. However, so far, data on the possible in vivo activity of xenicanes are lacking. The major challenge in the total synthesis of xenicanes is the construction of the nine-membered ring. Different strategies have been pursued to establish this crucial substructure, including Grob fragmentation, ring-closing olefin metathesis, or Suzuki cross coupling as the enabling transformations. PMID:26429717

  4. 9 CFR 113.3 - Sampling of biological products.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS... bacterial vaccines; (iii) Two samples of Coccidiosis Vaccine; (iv) Eighteen samples of Rabies Vaccine... as follows: (1) Ten samples of Bacterial Master Seeds. (2) Thirteen samples of viral Master Seeds...

  5. Regeneration of nutrients and biological productivity in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Somasundar, K.; Qasim, S.Z.

    contribute to the biomass production, reforming of plate ice during late summer (towards the end of February) may result in a shift of zooplanktonic organisms towards the north. Other oceanic regions north of 61° S Fig. 9 shows the distribution of chlorophyll...

  6. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    International Nuclear Information System (INIS)

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  7. Biological production of monoethanolamine by engineered Pseudomonas putida S12

    NARCIS (Netherlands)

    Foti, M.J.; Médici, R.; Ruijssenaars, H.J.

    2013-01-01

    Pseudomonas putida S12 was engineered for the production of monoethanolamine (MEA) from glucose via the decarboxylation of the central metabolite l-serine, which is catalyzed by the enzyme l-serine decarboxylase (SDC).The host was first evaluated for its tolerance towards MEA as well as its endogeno

  8. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-07-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  9. BIOLOGICAL FEATURES AND PRODUCTIVITY OF BLACK-AND-WHITE CATTLE

    Directory of Open Access Journals (Sweden)

    Kochueva Y. V.

    2015-02-01

    Full Text Available The behavior, interior and milk yield of the mature Black-and-White cows with various productivity levels, as well as etology of the replacement heifers are researched. The superiority of the high milk yielding cows for the lying duration and eating feed and water is revealed. Reduced variability of vital behavioral actions of animals is found. In addition, high yielding cows has been lower variability in all feeding acts. It was noted that high yielding animals exceeded equal age cows by the level of most interior factors. The differences were significant on the content of hemoglobin, vitamin E, and especially on the content of iron. Positive correlations between some interior design indicators is found. The analysis of lifetime productivity during our research found that high milk yielding cows had highest yields on the first lactation and kept the same level in the next lactations with insignificant variations. The lower productivity animals reached maximal yields on the third lactation with the followed downward trend. Differences between groups in lifetime productivity during research amounted to 16 992 kg. The significant superiority of the heifers with high grown intensity above equal age animals for the duration of feed and water eating, physiological functions and lying. The analysis of variation coefficient is confirmed the observed regularities.

  10. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  11. Production of biological reagents for radioimmunoassay second antibody

    International Nuclear Information System (INIS)

    The experimental production of second antibody to be used in hormonal assays, in which the first antibody is raised in rabbits, is described. Four sheep were immunized with the rabbit immunoglobulin prepared at IPEN-CNEN laboratory. Their antisera were evaluated by the human thyrotropin radioimmunoassay employing materials provided by the National Hormone and Pituitary Program (USA), in comparison with a reference antiserum of known quality, produced in goat by the Radioassay Systems Laboratories - RSL (USA). From the fourth booster injection the animals developed antiserum with titer similar to that exhibited by the commercial product, even presenting higher values. These antisera are now being examinated for the optimal conditions of precipitation before be packed for future use and distribution. (author)

  12. Biological Impact of Bioactive Glasses and Their Dissolution Products.

    Science.gov (United States)

    Hoppe, Alexander; Boccaccini, Aldo R

    2015-01-01

    For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. PMID:26201273

  13. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    OpenAIRE

    Strucko, Tomas; Eriksen, Carsten; Nielsen, J.; Mortensen, Uffe Hasbro

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of...

  14. Strategies for optimizing algal biology for enhanced biomass production

    OpenAIRE

    Barry, Amanda N.; Starkenburg, Shawn R.; Richard eSayre

    2015-01-01

    One of the more environmentally sustainable ways to produce high energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration (BECCS) has also been proposed in the Intergovernmental Panel on Climate Change Report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosyn...

  15. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    OpenAIRE

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic c...

  16. Selection for milk production from a lactation biology viewpoint.

    Science.gov (United States)

    Akers, R M

    2000-05-01

    The success of selection for increased milk production in dairy cows is apparent. Certainly, many herds now have average production levels that would have only been associated with the best producers in the herd 30 yr ago. There are, of course, many reasons for this success. Among these are improvements in genetic selection methods and associated use of artificial insemination, better fulfillment of nutritional needs and diet formulation, and careful attention to mastitis control and milking management. Development of new management tools (i.e., bovine somatotropin, improved crops, estrus detection devices, estrus synchronization, monitoring of individual animal performance, and disease prevention) should not be forgotten. Although many aspects of a dairy operation determine overall performance and profitability, the focus of this paper is the udder. Information indicates that both the structure and function of the bovine mammary gland have been directly impacted by long-term selection for increased milk production but improved functionality may have been more important. This review also considered studies that attempt to develop techniques and measurements for possible selection of genetically superior animals including measurement of circulating hormones and direct assay of mammary tissue function. PMID:10821592

  17. BIOLOGICAL AND PRODUCTIVE RESOURCES OF LACTATING COWS AT DENITRIFICATION

    Directory of Open Access Journals (Sweden)

    Kokaeva M. G.

    2015-09-01

    Full Text Available The article presents the results obtained in the process of two scientific-practical experiments carried jut on two milk cows (Shvitskay breed aimed at the antioxidants detoxication properties and mould inhibitor revealing. This factor is actual in the Republic of North Ossetia-Alania as the intensive technologies of the fodder crops cultivation using the nitrate fertilizers are widely applied in the region leading to the excess nitrates and nitrite penetration into the animals’ organism. During the first experiment, the antioxidants of epophen and vitamin C were added into the ration of the lactating cows with the subtoxic dosage of nitrates both separately and in complex. The complex feeding proved to increase the milk productivity, the fat mass and protein mass in milk while reducing the fodder expenditure per product unit. Beside, the lactating cows revealed the digestive and intermediate exchange betterment and the reduction of nitrates and nitrites level in blood. The second experiment helped to study Khadoks antioxidant and mould inhibitor called Mold-Zap efficiency use for the nitrates and aflotoxicin B1 detoxication. The researches showed that the complex admixtures of the said preparations introduction into the rations of the animals increased the milk productivity, fat and protein content and reduced aflatoxineM1 content. The cows activated the digestive and intermediate exchange, accompanied with the nitrates and nitrites level reduction in the organism

  18. Biological fouling of ethylene production water recycling system

    Energy Technology Data Exchange (ETDEWEB)

    Kurdish, I.K.; Khenkina, L.M.; Pavlenko, N.I.

    A study was made of biotic factors determining the intensity of biological overgrowth of ethylene as well as the distribution of sulfate-reducing bacteria in the system. The total quantity of microorganisms was determined by counting on membrane filters. The content of heterotrophic aerobic and anaerobic microorganisms was determined by inoculating specimens on meat-peptone agar and wort agar. The resistance of the microflora in the water supply system to high temperatures was studied by exposure of the specimens to various temperatures for one hour. The results indicated presence of large quantities of a number of biogenous substances in the water, including compounds of phosphorus and carbon. Large numbers of both aerobic and anaerobic microorganisms were present, consuming the oxygen absorbed by the water in the cooling tower, creating favorable conditions for development of both aerobic and anaerobic microorganisms. The sulfate-reducing bacteria present caused accumulation of hydrogen sulfide in the system, increasing corrosion. One possible means of controlling the fouling organisms might be to heat the water. Heating to 60C for sixty minutes significantly reduces the microorganism population, while 70C results in almost total elimination. 8 references, 4 figures.

  19. Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules

    Science.gov (United States)

    Hu, Bo; Chen, Shulin

    In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active

  20. Production, Secretion and Biological Activity of Bacillus cereus Enterotoxins

    Directory of Open Access Journals (Sweden)

    Sonia Senesi

    2010-06-01

    Full Text Available Bacillus cereus behaves as an opportunistic pathogen frequently causing gastrointestinal diseases, and it is increasingly recognized to be responsible for severe local or systemic infections. Pathogenicity of B. cereus mainly relies on the secretion of a wide array of toxins and enzymes and also on the ability to undergo swarming differentiation in response to surface-sensing. In this report, the pathogenicity exerted by B. cereus toxins is described with particular attention to the regulatory mechanisms of production and secretion of HBL, Nhe and CytK enterotoxins.

  1. Application of Olefin Cross-Metathesis to the Synthesis of Biologically Active Natural Products

    OpenAIRE

    Prunet, Joëlle

    2005-01-01

    An overview of the use of olefin cross-metathesis in the synthesis of biologically active natural products is presented. The diverse examples are organized according to the outcome of the olefin constructed by the cross-metathesis reaction: this olefin can be either present in the final product, reduced, engaged in other transformations, or involved in tandem processes.

  2. 78 FR 65904 - Permanent Discontinuance or Interruption in Manufacturing of Certain Drug or Biological Products

    Science.gov (United States)

    2013-11-04

    ...(D) Immune Globulin and Hepatitis B Immune Globulin; Coagulation Factor VIIa (Recombinant); and..., or mitigate shortages of these products. b. Vaccines. We are proposing to apply section 506C of the FD&C Act to all biological products, including vaccines. Under section 506C(i)(3)(B) of the FD&C...

  3. Natural product diversity and its role in chemical biology and drug discovery

    OpenAIRE

    Hong, Jiyong

    2011-01-01

    Through the natural selection process, natural products possess a unique and vast chemical diversity and have been evolved for optimal interactions with biological macromolecules. Owing to their diversity, target affinity, and specificity, natural products have demonstrated enormous potential as modulators of biomolecular function, been an essential source for drug discovery, and provided design principles for combinatorial library development.

  4. 9 CFR 113.51 - Requirements for primary cells used for production of biologics.

    Science.gov (United States)

    2010-01-01

    ... of the final pool of harvested material or samples of each subculture of cells used to prepare the... completed product or samples of the final pool of harvested material or samples of each subculture of cells... cells or each subculture of primary cells used to prepare a biological product shall be shown free...

  5. Development of biological functional material and product from Nelumbo nucifera

    International Nuclear Information System (INIS)

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient

  6. Development of biological functional material and product from Nelumbo nucifera

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-15

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient.

  7. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  8. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  9. Phototrophic pigment production with microalgae: biological constraints and opportunities.

    Science.gov (United States)

    Mulders, Kim J M; Lamers, Packo P; Martens, Dirk E; Wijffels, René H

    2014-04-01

    There is increasing interest in naturally produced colorants, and microalgae represent a bio-technologically interesting source due to their wide range of colored pigments, including chlorophylls (green), carotenoids (red, orange and yellow), and phycobiliproteins (red and blue). However, the concentration of these pigments, under optimal growth conditions, is often too low to make microalgal-based pigment production economically feasible. In some Chlorophyta (green algae), specific process conditions such as oversaturating light intensities or a high salt concentration induce the overproduction of secondary carotenoids (β-carotene in Dunaliella salina (Dunal) Teodoresco and astaxanthin in Haematococcus pluvialis (Flotow)). Overproduction of all other pigments (including lutein, fucoxanthin, and phycocyanin) requires modification in gene expression or enzyme activity, most likely combined with the creation of storage space outside of the photosystems. The success of such modification strategies depends on an adequate understanding of the metabolic pathways and the functional roles of all the pigments involved. In this review, the distribution of commercially interesting pigments across the most common microalgal groups, the roles of these pigments in vivo and their biosynthesis routes are reviewed, and constraints and opportunities for overproduction of both primary and secondary pigments are presented.

  10. Models of risk assessments for biologicals or related products in the European Union.

    Science.gov (United States)

    Moos, M

    1995-12-01

    In the context of veterinary biologicals, environmental risk assessment means the evaluation of the risk to human health and the environment (which includes plants and animals) connected with the release of such products. The following categories or types of veterinary biologicals can be distinguished: non-genetically modified organisms (non-GMOs) (inactivated/live) GMOs (inactivated/live) carrier products related products (e.g. non-specific "inducers'). Suitable models used in risk assessment for these products should aim to identify all possible adverse effects. A good working model should lead, at least, to a qualitative judgement on the environmental risk of the biological product (e.g. negligible, low, medium, severe, unacceptable). Quantifiable outcomes are rare; therefore, the producer of a biological product and the European control authorities should accept only models which are based on testable points and which are relevant to the type of product and its instructions for use. In view of animal welfare aspects, models working without animals should be preferred. In recent years, some of these methods have been integrated into safety tests described in European Union Directives and in monographs of the European Pharmacopoeia. By reviewing vaccine/registration problems (e.g. Aujeszky's disease live vaccine for pigs, and vaccinia-vectored rabies vaccine), several models used in risk assessment are demonstrated and discussed. PMID:8639943

  11. Organic Production Systems: What the Biological Cell Can Teach Us About Manufacturing

    OpenAIRE

    Lieven Demeester; Knut Eichler; Christoph H. Loch

    2004-01-01

    Biological cells run complicated and sophisticated production systems. The study of the cell's production technology provides us with insights that are potentially useful in industrial manufacturing. When comparing cell metabolism with manufacturing techniques in industry, we find some striking commonalities, but also some important differences. Like today's well-run factories, the cell operates a very lean production system, assures quality at the source, and uses component commonality to si...

  12. Occurrence, pathways and implications of biological production of reactive oxygen species in natural waters

    Science.gov (United States)

    Zhang, T.; Hansel, C. M.; Voelker, B. M.; Lamborg, C. H.

    2014-12-01

    Reactive oxygen species (ROS), such as superoxide (O2-) and hydrogen peroxide (H2O2) play a critical role in the redox cycling of both toxic (e.g., Hg) and nutrient (e.g., Fe) metals. Despite the discovery of extracellular ROS production in various microbial cultures, including fungi, algae and bacteria, photo-dependent processes are generally considered as the predominant source of ROS in natural waters. Here we show that biological production of ROS is ubiquitous and occurs at a significant rate in freshwater and brackish water environments. Water samples were collected from three freshwater and one brackish water ponds in Cape Cod, Massachusetts, USA, periodically from 2012 to 2014. Production of O2- and H2O2 were measured in dark incubations of natural water using a chemiluminescent and a colorimetric probe, respectively. Rates of biological ROS production were obtained by comparing unfiltered with 0.2-μm filtered samples. The role of biological activity in ROS production was confirmed by the cessation of ROS production upon addition of formaldehyde. In surface water, production rates of O2- ranged from undetectable to 96.0 ± 30.0 nmol L-1 h-1, and production rates of H2O2 varied between 9.9 ± 1.3 nmol L-1 h-1 and 145.6 ± 11.2 nmol L-1 h-1. The maximum production rates of both ROS were observed in mid-summer 2013, which coincides with peak biological activity. ROS production in the water from aphotic zone was greater than in the water from photic zone. Thus, non-light dependent biological processes are likely the major contributors to ROS production in this system. Moreover, O2- production appeared to be enhanced by NADH and inhibited by proteinase-K, suggesting the possible involvement of NADH oxidoreductases in this process. The potential role of different microbial communities in ROS production, and the implications of biological ROS production for mercury speciation will also be discussed.

  13. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  14. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe......-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic...

  15. Recent progress in synthetic biology for microbial production of C3-C10 alcohols

    Directory of Open Access Journals (Sweden)

    Edna N. Lamsen

    2012-06-01

    Full Text Available The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.

  16. Studies on production and biological potential of prodigiosin by Serratia marcescens.

    Science.gov (United States)

    Suryawanshi, Rahul K; Patil, Chandrashekhar D; Borase, Hemant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-07-01

    Efficacy of Serratia marcescens for pigment production and biological activity was investigated. Natural substrates like sweet potato, mahua flower extract (Madhuca latifolia L.), and sesam at different concentrations were taken. As a carbon source microorganism favored potato powder was followed by sesam and mannitol, and as nitrogen source casein hydrolysate was followed by yeast and malt extract. The effect of inorganic salts on pigment production was also studied. At final optimized composition of suitable carbon, nitrogen source, and trace materials and at suitable physiological conditions, prodigiosin production was 4.8 g L(-1). The isolated pigment showed antimicrobial activity against different pathogenic bacteria and fungi. Extracted pigment was characterized by spectroscopy, Fourier transform infrared (FTIR), and thin layer chromatography (TLC) which confirm production of biological compound prodigiosin. This study suggests that use of sweet potato powder and casein can be a potential alternative bioresource for commercial production of pigment prodigiosin. PMID:24781979

  17. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal?

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Nuncio, M.; Kumar, A.; Sardessai, S.; DeSouza, S.N.; Gauns, M.; Ramaiah, N.; Madhupratap, M.

    -1 Are eddies nature?s trigger to enhance biological productivity in the Bay of Bengal? S. Prasanna Kumar, M. Nuncio, Jayu Narvekar, Ajoy Kumar1, S. Sardesai, S.N. de Souza, Mangesh Gauns, N. Ramaiah and M. Madhupratap National Institute of Oceanography... of nutrient supply to the oligotrophic upper ocean waters such as wind- driven mixing, upwelling etc. cannot account for this. In this paper we explore the role of eddies in enhancing the biological productivity in the Bay of Bengal. 2. Data and Analysis...

  18. Bioinformatics for the synthetic biology of natural products: integrating across the Design-Build-Test cycle.

    Science.gov (United States)

    Carbonell, Pablo; Currin, Andrew; Jervis, Adrian J; Rattray, Nicholas J W; Swainston, Neil; Yan, Cunyu; Takano, Eriko; Breitling, Rainer

    2016-08-27

    Covering: 2000 to 2016Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted. PMID:27185383

  19. Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle

    Science.gov (United States)

    Currin, Andrew; Jervis, Adrian J.; Rattray, Nicholas J. W.; Swainston, Neil; Yan, Cunyu; Breitling, Rainer

    2016-01-01

    Covering: 2000 to 2016 Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted. PMID:27185383

  20. New approaches to estimation of peat deposits for production of biologically active compounds

    Science.gov (United States)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  1. Compound Activity Mapping: Integrating Chemical and Biological Profiling for the Functional Annotation of Natural Product Libraries

    OpenAIRE

    Kurita, Kenji Long

    2015-01-01

    Natural products research has had a significant impact on human-health and our understanding of the natural world as a pillar of pharmacognosy, organic chemistry, ecology, and chemical biology. But while this science has yielded countless discoveries such as penicillin, taxol, and artimesinin and will continue to improve quality of life around the world, the idea that natural products is a panacea of chemical diversity has been challenged by problems including the endless rediscovery of known...

  2. What controls biological productivity in coastal upwelling systems? Insights from a comparative modeling study

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2011-01-01

    The magnitude of the biological productivity in Eastern Boundary Upwelling Systems (EBUS) is traditionally viewed as directly reflecting the upwelling intensity. Yet, different EBUS show different sensitivities of productivity to upwelling-favorable winds (Carr and Kearns, 2003). Here, using a comparative modeling study of the California Current System (California CS) and Canary Current System (Canary CS), we show how physical and environmental factors, such as light, temperature and c...

  3. REGULATION OF PRODUCTION PERFORMANCE OF CHICORY PLANTS BY FOLIAR APPLICATION OF BIOLOGICALLY ACTIVE SUBSTANCES

    OpenAIRE

    MAREK KOVÁR; IVAN ČERNÝ

    2012-01-01

    In this study were evaluated both the growth and yield potentials of three chicory (Cichorium intybus var. sativum) varieties ('Fredonia Nova', 'Oesia' a 'Maurane') growing in natural agro-ecological conditions from 2006 to 2008. Regulation of the crop productivity by foliar application of biologically active substances (Atonik, Polybor 150, and Biafit Gold) was also studied. Evaluation of growth-production performance of chicory was realized as: leaf area index (LAI), photosynthetic potentia...

  4. 78 FR 58311 - Complex Issues in Developing Drug and Biological Products for Rare Diseases; Public Workshop...

    Science.gov (United States)

    2013-09-23

    ... for Rare Diseases; Public Workshop; Request for Comments AGENCY: Food and Drug Administration, HHS... for Rare Diseases.'' The purpose of the public workshop is twofold: To discuss complex issues in clinical trials for developing drug and biological products (``drugs'') for rare diseases,...

  5. Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Nuncio, M.; Ramaiah, N.; Sardesai, S.; Narvekar, J.; Fernandes, V.; Paul, J.T.

    but also enhanced the nutrient concentrations. This in turn increased the biological productivity of the Bay to 1½-2 times. In addition, the subsurface chlorophyll maximum (SCM), which is generally located between 40 and 70 m in fall and 60 and 90 m...

  6. Process for the continuous biological production of lipids, hydrocarbons or mixtures thereof

    NARCIS (Netherlands)

    Van der Wielen, L.A.M.; Heijnen, J.J.

    2010-01-01

    The present invention is directed to a process for the continuous biological production of lipids, hydrocarbons, hydrocarbon like material or mixtures thereof by conversion of a suitable substrate using micro-organisms, in which process the said substrate is continuously, anaerobically fermented to

  7. Do biological medicinal products pose a risk to the environment?: a current view on ecopharmacovigilance.

    Science.gov (United States)

    Kühler, Thomas C; Andersson, Mikael; Carlin, Gunnar; Johnsson, Ann; Akerblom, Lennart

    2009-01-01

    The occurrence of active pharmaceutical substances in the environment is of growing concern. The vast majority of the compounds in question are of low molecular weight, intended for oral use and designed to tolerate, for example, the digestive enzymes in the upper alimentary tract, the harsh milieus found in the acidic stomach, or the microbe rich intestine. Accordingly, these xenobiotic compounds may, due to their inherent biological activity, constitute a risk to the environment. Biological medicinal products, for example recombinant human insulin or monoclonal antibodies, however, are different. They are primarily made up of oligomers or polymers of amino acids, sugars or nucleotides and are thus readily metabolized. They are therefore generally not considered to pose any risk to the environment. Certain classes of biological medicinal products, however, are associated with specific safety issues. Genetically modified organisms as vectors in vaccines or in gene therapy products have attracted much attention in this regard. Issues include the degree of attenuation of the live recombinant vaccine, replication restrictions of the vaccine vector, alteration of the host and tissue tropism of the vector, the possibility of reversion to virulence, and risk to the ecosystem. In this review we discuss the fate and the potential environmental impact of biological medicinal products following clinical use from an ecopharmacovigilance point of view, and review relevant policy documents and regulatory statements. PMID:19810773

  8. 9 CFR 113.52 - Requirements for cell lines used for production of biologics.

    Science.gov (United States)

    2010-01-01

    ... of origin of the MCS may be used if approved by APHIS. (c) The MCS and either each subculture of... sources of cells in the batch. (d) The MCS and either each subculture used to prepare a biological product... not be used. If bacteria or fungi are found in a subculture, the subculture shall not be used. (e)...

  9. Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2012-01-01

    The main objective of this study was to use the fermentability test to investigate the feasibility of applying various dilute acids in the pretreatment of barley straw for biological hydrogen production. At a fixed acid loading of 1% (w/w dry matter) 28-32% of barley straw was converted to soluble m

  10. 21 CFR 310.4 - Biologics; products subject to license control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Biologics; products subject to license control. 310.4 Section 310.4 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... to license control. (a) If a drug has an approved license under section 351 of the Public...

  11. [Special considerations for the regulation of biological medicinal products in individualised medicine. More than stratified medicine].

    Science.gov (United States)

    Müller-Berghaus, J; Volkers, P; Scherer, J; Cichutek, K

    2013-11-01

    The term individualised medicine, also called personalised medicine, is commonly used as an equivalent to stratified medicine. However, this is erroneous since quite often it is forgotten that especially biological medicinal products have other aspects of individualization that go beyond mere stratification. The principles of stratified medicine have been applied for biological medicinal products for many years. A historical example is diphtheria antitoxin made from horse serum, while current examples are transfusion of red blood cells and the administration of factor VIII in haemophilia A. The stratifying aspects of these medicinal products are given by the following considerations: diphtheria antitoxin is only administered after a diagnosis of diphtheria and not in other forms of tonsillitis, red blood cells should only be transfused once blood group compatibility as been established and factor VIII replacement is only administered in haemophilia A as opposed to other acquired or hereditary disease of the coagulation system. The peculiarities of biological medicinal products, in particular the inherent variability of the drug, are especially important for autologous cellular medicinal products. In addition to the expected variability of the biological source material there is interindividual variability of patients as cell donors, which make definition of specifications and determination of criteria for pharmaceutical quality and potency tests difficult. Therapy with modified autologous cells, a common and important application of advanced therapy medicinal products, is exemplary for the special considerations that must be made when evaluating pharmaceutical quality, mode of action and toxicological properties of the biological medicine. The clinical investigation of advanced therapy medicinal products with the intent of demonstrating safety and efficacy is particularly challenging because of the complexity of therapy, which often involves invasive interventions

  12. [Special considerations for the regulation of biological medicinal products in individualised medicine. More than stratified medicine].

    Science.gov (United States)

    Müller-Berghaus, J; Volkers, P; Scherer, J; Cichutek, K

    2013-11-01

    The term individualised medicine, also called personalised medicine, is commonly used as an equivalent to stratified medicine. However, this is erroneous since quite often it is forgotten that especially biological medicinal products have other aspects of individualization that go beyond mere stratification. The principles of stratified medicine have been applied for biological medicinal products for many years. A historical example is diphtheria antitoxin made from horse serum, while current examples are transfusion of red blood cells and the administration of factor VIII in haemophilia A. The stratifying aspects of these medicinal products are given by the following considerations: diphtheria antitoxin is only administered after a diagnosis of diphtheria and not in other forms of tonsillitis, red blood cells should only be transfused once blood group compatibility as been established and factor VIII replacement is only administered in haemophilia A as opposed to other acquired or hereditary disease of the coagulation system. The peculiarities of biological medicinal products, in particular the inherent variability of the drug, are especially important for autologous cellular medicinal products. In addition to the expected variability of the biological source material there is interindividual variability of patients as cell donors, which make definition of specifications and determination of criteria for pharmaceutical quality and potency tests difficult. Therapy with modified autologous cells, a common and important application of advanced therapy medicinal products, is exemplary for the special considerations that must be made when evaluating pharmaceutical quality, mode of action and toxicological properties of the biological medicine. The clinical investigation of advanced therapy medicinal products with the intent of demonstrating safety and efficacy is particularly challenging because of the complexity of therapy, which often involves invasive interventions

  13. Statistical and regulatory considerations in assessments of interchangeability of biological drug products.

    Science.gov (United States)

    Tóthfalusi, Lászlo; Endrényi, László; Chow, Shein-Chung

    2014-05-01

    When the patent of a brand-name, marketed drug expires, new, generic products are usually offered. Small-molecule generic and originator drug products are expected to be chemically identical. Their pharmaceutical similarity can be typically assessed by simple regulatory criteria such as the expectation that the 90% confidence interval for the ratio of geometric means of some pharmacokinetic parameters be between 0.80 and 1.25. When such criteria are satisfied, the drug products are generally considered to exhibit therapeutic equivalence. They are then usually interchanged freely within individual patients. Biological drugs are complex proteins, for instance, because of their large size, intricate structure, sensitivity to environmental conditions, difficult manufacturing procedures, and the possibility of immunogenicity. Generic and brand-name biologic products can be expected to show only similarity but not identity in their various features and clinical effects. Consequently, the determination of biosimilarity is also a complicated process which involves assessment of the totality of the evidence for the close similarity of the two products. Moreover, even when biosimilarity has been established, it may not be assumed that the two biosimilar products can be automatically substituted by pharmacists. This generally requires additional, careful considerations. Without declaring interchangeability, a new product could be prescribed, i.e. it is prescribable. However, two products can be automatically substituted only if they are interchangeable. Interchangeability is a statistical term and it means that products can be used in any order in the same patient without considering the treatment history. The concepts of interchangeability and prescribability have been widely discussed in the past but only in relation to small molecule generics. In this paper we apply these concepts to biosimilars and we discuss: definitions of prescribability and interchangeability and

  14. Immobilized Biofilm in Thermophilic Biohydrogen Production using Synthetic versus Biological Materials

    Directory of Open Access Journals (Sweden)

    Jaruwan Wongthanate

    2015-02-01

    Full Text Available Biohydrogen production was studied from the vermicelli processing wastewater using synthetic and biological materials as immobilizing substrate employing a mixed culture in a batch reactor operated at the initial pH 6.0 and thermophilic condition (55 ± 1ºC. Maximum cumulative hydrogen production (1,210 mL H2/L wastewater was observed at 5% (v/v addition of ring-shaped synthetic material, which was the ring-shaped hydrophobic acrylic. Regarding 5% (v/v addition of synthetic and biological materials, the maximum cumulative hydrogen production using immobilizing synthetic material of ball-shaped hydrophobic polyethylene (HBPE (1,256.5 mL H2/L wastewater was a two-fold increase of cumulative hydrogen production when compared to its production using immobilizing biological material of rope-shaped hydrophilic ramie (609.8 mL H2/L wastewater. SEM observation of immobilized biofilm on a ball-shaped HBPE or a rope-shaped hydrophilic ramie was the rod shape and gathered into group.

  15. Apple biological and physiological disorders in the orchard and in postharvest according to production system

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Martins

    2013-03-01

    Full Text Available The study aimed to evaluate the incidence of biological and physiological disorders in the field and postharvested apples cvs. Gala, Fuji and Catarina grown in four production systems: conventional, organic transition, integrated and organic. Apples were evaluated for damages related to biological and physiological disorders in the orchard and after harvest. The greatest damages were attributed to pests, especially Anastrepha fraterculus in the organic system and Grapholita molesta in the organic transition. Apples produced in organic orchards had higher damage levels caused by postharvest physiological disorders than those grown in other production systems. For apples becoming from organic orchards most of the damage was due to lenticels breakdown and degeneration ('Gala', and bitter pit ('Fuji' and 'Catarina'. The incidence of postharvest rot was not influenced by apple production system.

  16. What controls biological productivity in coastal upwelling systems? Insights from a comparative modeling study

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-06-01

    Full Text Available The magnitude of the biological productivity in Eastern Boundary Upwelling Systems (EBUS is traditionally viewed as directly reflecting the upwelling intensity. Yet, different EBUS show different sensitivities of productivity to upwelling-favorable winds (Carr and Kearns, 2003. Here, using a comparative modeling study of the California Current System (California CS and Canary Current System (Canary CS, we show how physical and environmental factors, such as light, temperature and cross-shore circulation modulate the response of biological productivity to upwelling strength. To this end, we made a series of eddy-resolving simulations of the California CS and Canary CS using the Regional Ocean Modeling System (ROMS, coupled to a nitrogen based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD ecosystem model. We find the nutrient content of the euphotic zone to be 20 % smaller in the Canary CS relative to the California CS. Yet, the biological productivity is 50 % smaller in the latter. This is due to: (1 a faster nutrient-replete growth in the Canary CS relative to the California CS, related to a more favorable light and temperature conditions in the Canary CS, and (2 the longer nearshore water residence times in the Canary CS which lead to larger buildup of biomass in the upwelling zone, thereby enhancing the productivity. The longer residence times in the Canary CS appear to be associated with the wider continental shelves and the lower eddy activity characterizing this upwelling system. This results in a weaker offshore export of nutrients and organic matter, thereby increasing local nutrient recycling and enhancing the coupling between new and export production in the Northwest African system. Our results suggest that climate change induced perturbations such as upwelling favorable wind intensification might lead to contrasting biological responses in the California CS and the Canary CS, with major implications for the biogeochemical cycles

  17. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  18. Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects

    Directory of Open Access Journals (Sweden)

    Bartłomiej Dziuba

    2014-03-01

    Full Text Available Proteins are one of the primary components of the food, both in terms of nutrition and function. They are main source of amino acids, essential for synthesis of proteins, and also source of energy. Additionally, many proteins exhibit specifi c biological activities, which may have effect on functional or pro-health properties of food products. These proteins and their hydrolysis products, peptides, may infl uence the properties of food and human organism. The number of commercially available food products containing bioactive peptides is very low, apart from that milk proteins are their rich source. It could be supposed that number of available products with declared activity will rise in near future because of observed strong uptrend on interest in such products. Molecular and biological properties of milk proteins, as precursors of bioactive peptides was characterised in the work. Therefore, the strategy of research and obtaining of such peptides both in laboratory and industrial scale, as well as the range of their commercial application, was presented. Several examples of research efforts presenting high potential to develop new products containing bioactive peptides from milk proteins and predetermined as nutraceuticals was described.

  19. Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects.

    Science.gov (United States)

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    Proteins are one of the primary components of the food, both in terms of nutrition and function. They are main source of amino acids, essential for synthesis of proteins, and also source of energy. Additionally, many proteins exhibit specific biological activities, which may have effect on functional or pro-health properties of food products. These proteins and their hydrolysis products, peptides, may influence the properties of food and human organism. The number of commercially available food products containing bioactive peptides is very low, apart from that milk proteins are their rich source. It could be supposed that number of available products with declared activity will rise in near future because of observed strong uptrend on interest in such products. Molecular and biological properties of milk proteins, as precursors of bioactive peptides was characterised in the work. Therefore, the strategy of research and obtaining of such peptides both in laboratory and industrial scale, as well as the range of their commercial application, was presented. Several examples of research efforts presenting high potential to develop new products containing bioactive peptides from milk proteins and predetermined as nutraceuticals was described.

  20. High-latitude controls of thermocline nutrients and low latitude biological productivity.

    Science.gov (United States)

    Sarmiento, J L; Gruber, N; Brzezinski, M A; Dunne, J P

    2004-01-01

    The ocean's biological pump strips nutrients out of the surface waters and exports them into the thermocline and deep waters. If there were no return path of nutrients from deep waters, the biological pump would eventually deplete the surface waters and thermocline of nutrients; surface biological productivity would plummet. Here we make use of the combined distributions of silicic acid and nitrate to trace the main nutrient return path from deep waters by upwelling in the Southern Ocean and subsequent entrainment into subantarctic mode water. We show that the subantarctic mode water, which spreads throughout the entire Southern Hemisphere and North Atlantic Ocean, is the main source of nutrients for the thermocline. We also find that an additional return path exists in the northwest corner of the Pacific Ocean, where enhanced vertical mixing, perhaps driven by tides, brings abyssal nutrients to the surface and supplies them to the thermocline of the North Pacific. Our analysis has important implications for our understanding of large-scale controls on the nature and magnitude of low-latitude biological productivity and its sensitivity to climate change.

  1. Solid recovered fuel production through the mechanical-biological treatment of wastes

    OpenAIRE

    Velis, C.A.

    2010-01-01

    This thesis is concerned with the production of solid recovered fuel (SRF) from municipal solid waste using mechanical biological treatment (MBT) plants. It describes the first in-depth analysis of a UK MBT plant and addresses the fundamental research question: are MBT plants and their unit operations optimised to produce high quality SRF in the UK? A critical review of the process science and engineering of MBT provides timely insights into the quality management and standa...

  2. The potential of plants as a system for the development and production of human biologics

    OpenAIRE

    Qiang Chen; Davis, Keith R.

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics...

  3. [Biologic age as a criterion for work evaluation (exemplified by titanium alloys production)].

    Science.gov (United States)

    Afanas'eva, R F; Prokopenko, L V

    2009-01-01

    The article deals with results of studies concerning biologic age of workers (males) under occupational hazards of titanium alloys (jeopardy classes 3.3, 3.4.4) in Verkhne-Saldinsky metallurgic production association. Based on mathematic statistic analysis, the authors worked out an equation of multiple regression for ageing pace to forecast the ageing with consideration of age, length of service, occupation. The authors determined occupational groups characterized by premature ageing and increased risk of health disorders.

  4. The potential of plants as a system for the development and production of human biologics.

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology. PMID:27274814

  5. Mapping the patent landscape of synthetic biology for fine chemical production pathways.

    Science.gov (United States)

    Carbonell, Pablo; Gök, Abdullah; Shapira, Philip; Faulon, Jean-Loup

    2016-09-01

    A goal of synthetic biology bio-foundries is to innovate through an iterative design/build/test/learn pipeline. In assessing the value of new chemical production routes, the intellectual property (IP) novelty of the pathway is important. Exploratory studies can be carried using knowledge of the patent/IP landscape for synthetic biology and metabolic engineering. In this paper, we perform an assessment of pathways as potential targets for chemical production across the full catalogue of reachable chemicals in the extended metabolic space of chassis organisms, as computed by the retrosynthesis-based algorithm RetroPath. Our database for reactions processed by sequences in heterologous pathways was screened against the PatSeq database, a comprehensive collection of more than 150M sequences present in patent grants and applications. We also examine related patent families using Derwent Innovations. This large-scale computational study provides useful insights into the IP landscape of synthetic biology for fine and specialty chemicals production. PMID:27489206

  6. The potential of plants as a system for the development and production of human biologics

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R.

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology. PMID:27274814

  7. The potential of plants as a system for the development and production of human biologics.

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology.

  8. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  9. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  10. Potential of chicken by-products as sources of useful biological resources

    International Nuclear Information System (INIS)

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications

  11. Technical Key Figures for Photo-biological Hydrogen Production by Micro-algae

    International Nuclear Information System (INIS)

    One regenerative path to produce hydrogen is the photo-biological hydrogen production by the green micro-alga Chlamydomonas reinhardtii. This process can be divided into three phases: a growth phase, a phase in which the algae adapt from oxygen production and CO2-fixation to fermentative H2 production, and a phase in which H2 is produced. In a research project carried out at Ruhr-Universitat Bochum, a new developed flat panel bioreactor was investigated. A system analysis was conducted and energetic and environmental key figures were determined. The intention of this assessment on a very early technological stage was to collect first technical data in order to classify the current technological status of the photo-biological H2 production to identify future potentials and to uncover weaknesses. For this reason the key figures were evaluated for the status quo and for two scenarios which allow an outlook on the mid and the long term. The results were compared with other ways of regenerative H2 production. (authors)

  12. Potential of chicken by-products as sources of useful biological resources

    Energy Technology Data Exchange (ETDEWEB)

    Lasekan, Adeseye [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abu Bakar, Fatimah, E-mail: fatim@putra.upm.edu.my [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hashim, Dzulkifly [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2013-03-15

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.

  13. Current good manufacturing practice in plant automation of biological production processes.

    Science.gov (United States)

    Dorresteijn, R C; Wieten, G; van Santen, P T; Philippi, M C; de Gooijer, C D; Tramper, J; Beuvery, E C

    1997-01-01

    The production of biologicals is subject to strict governmental regulations. These are drawn up in current good manufacturing practices (cGMP), a.o. by the U.S. Food and Drug Administration. To implement cGMP in a production facility, plant automation becomes an essential tool. For this purpose Manufacturing Execution Systems (MES) have been developed that control all operations inside a production facility. The introduction of these recipe-driven control systems that follow ISA S88 standards for batch processes has made it possible to implement cGMP regulations in the control strategy of biological production processes. Next to this, an MES offers additional features such as stock management, planning and routing tools, process-dependent control, implementation of software sensors and predictive models, application of historical data and on-line statistical techniques for trend analysis and detection of instrumentation failures. This paper focuses on the development of new production strategies in which cGMP guidelines are an essential part.

  14. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.

  15. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian;

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  16. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    Science.gov (United States)

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids. PMID:24922334

  17. Techno-economic evaluation of a two-step biological process for hydrogen production.

    Science.gov (United States)

    Ljunggren, Mattias; Zacchi, Guido

    2010-01-01

    An integrated biological process for the production of hydrogen based on thermophilic and photo-heterotrophic fermentation was evaluated from a technical and economic standpoint. Besides the two fermentation steps the process also includes pretreatment of the raw material (potato steam peels) and purification of hydrogen using amine absorption. The study aimed neither at determining the absolute cost of biohydrogen nor at an economic optimization of the production process, but rather at studying the effects of different parameters on the production costs of biohydrogen as a guideline for future improvements. The effect of the key parameters, hydrogen productivity and yield and substrate concentration in the two fermentations on the cost of the hydrogen produced was studied. The selection of the process conditions was based mainly on laboratory data. The process was simulated by use of the software Aspen Plus and the capital costs were estimated using the program Aspen Icarus Process Evaluator. The study shows that the photo-fermentation is the main contributor to the hydrogen production cost mainly because of the cost of plastic tubing, for the photo-fermentors, which represents 40.5% of the hydrogen production cost. The costs of the capital investment and chemicals were also notable contributors to the hydrogen production cost. Major economic improvements could be achieved by increasing the productivity of the two fermentation steps on a medium-term to long-term scale. PMID:20039381

  18. A synthetic biology approach to self-regulatory recombinant protein production in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Dragosits Martin

    2012-03-01

    Full Text Available Abstract Background Recombinant protein production is a process of great industrial interest, with products that range from pharmaceuticals to biofuels. Since high level production of recombinant protein imposes significant stress in the host organism, several methods have been developed over the years to optimize protein production. So far, these trial-and-error techniques have proved laborious and sensitive to process parameters, while there has been no attempt to address the problem by applying Synthetic Biology principles and methods, such as integration of standardized parts in novel synthetic circuits. Results We present a novel self-regulatory protein production system that couples the control of recombinant protein production with a stress-induced, negative feedback mechanism. The synthetic circuit allows the down-regulation of recombinant protein expression through a stress-induced promoter. We used E. coli as the host organism, since it is widely used in recombinant processes. Our results show that the introduction of the self-regulatory circuit increases the soluble/insoluble ratio of recombinant protein at the expense of total protein yield. To further elucidate the dynamics of the system, we developed a computational model that is in agreement with the observed experimental data, and provides insight on the interplay between protein solubility and yield. Conclusion Our work introduces the idea of a self-regulatory circuit for recombinant protein products, and paves the way for processes with reduced external control or monitoring needs. It demonstrates that the library of standard biological parts serves as a valuable resource for initial synthetic blocks that needs to be further refined to be successfully applied in practical problems of biotechnological significance. Finally, the development of a predictive model in conjunction with experimental validation facilitates a better understanding of the underlying dynamics and can be

  19. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Forough Nazarpour

    2013-01-01

    Full Text Available Rubberwood (Hevea brasiliensis, a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%. The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.

  20. Biological production of hydrogen by dark fermentation of OFMSW and co-fermentation with slaughterhouse wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moran, A.; Gomez, X.; Cuestos, M. J.

    2005-07-01

    Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature (Lin and Lay, 2003). There are different methods for the production of hydrogen, the traditional ones, are the production from fossil fuels. Aiming to reach a development based on sustainable principles the production of hydrogen from renewable sources is a desirable goal. Among the environmental friendly alternatives for the production of hydrogen are the biological means. Dark fermentation as it is known the process when light is not used; it is a preferable option thanks to the knowledge already collected from its homologous process, the anaerobic digestion for the production of methane. There are several studies intended to the evaluation of the production of hydrogen, many are dedicated to the use of pure cultures or the utilization of basic substrates as glucose or sucrose (Lin and Lay, 2003; Chang et al., 2002, Kim et al., 2005). This study is performed to evaluate the fermentation of a mixture of wastes for the production of hydrogen. It is used as substrate the organic fraction of municipal solid wastes (OFMSW) and a mixture of this residue with slaughterhouse waste. (Author)

  1. The Effect of Peat and Vermicompost Cavitation Products on the Soil Biological Activity

    Directory of Open Access Journals (Sweden)

    Steinberga Vilhelmine

    2014-12-01

    Full Text Available Commercial products with humic substances have often been recommended for plant growth stimulation and yield improvement. The aim of this study was to clarify the effects of two products, containing cavited peat and vermicompost respectively on the soil biological activity. Vegetation experiments with garden cress and cucumbers were arranged in pots with a peat substratum in the greenhouses of the Latvia University of Agriculture. The plants were treated with the preparations once a month. The first treatment was done at sowing. Dose of 20, 2, 0.2 mL per m2 during each treatment time were used. A control variant was without peat or vermicompost preparation. Field experiments with onions were carried out in the organic farming experimental field of the Latvia State Institute of Cereal Breeding. Plant growth and soil (substratum biological activity (respiration and enzymatic activity were tested. Plant growth and response to the different preparations depended on the plant species and its development stage. The effect of preparations decreases during plant development. The impact of peat or vermicompost preparation on soil biological activity depended not only on the concentration of preparation, but was influenced by the soil or growth media type. The decrease of onion yield in field conditions as a result of preparations was observed.

  2. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    Science.gov (United States)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  3. Berry productivity estimation of biological(botanical) reservations 'Milevichsky' and 'Zalyuchitsky'

    International Nuclear Information System (INIS)

    The necessity of creation of local status biological (botanical) reservations in Zhitkovichi district is scientifically substantiated on he basis of performed investigations and analysis of location nature conditions of declared reservations, their nature potential and on the estimation of productivity of wild berr plantation and radiation situation. Forest districts of these reservations have high productivity of wild bilberries and great bilberry and natural background radiation. The specific radiation activity of bilverries collected in the foregoing districts of Milevichi and Zalyutichi forestry does not exceed 60 Bk/kg, that is less than 30% of the permissible rate. Main recommendations were developed for protection and utilization of reservations, for conservation of the conditions required for growing forests with optimum characteristics, which promote vegetation and high productivity of wild berry reservations

  4. Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis.

    Science.gov (United States)

    Seifert, A H; Rittmann, S; Bernacchi, S; Herwig, C

    2013-05-01

    This contribution presents a method for quantification of the impact of emission gasses on the methane production with hydrogenotrophic methanogenic archaea. The developed method allows a robust quantification of the influence of real gasses on the volumetric productivity of methanogenic cultures by uncoupling physiological and mass transfer effects. This is achieved over reference experiments with pure H2 and CO2, simulating the mass transfer influence of the non-convertible side components by addition of N2 to the reactant stream. Furthermore, this method was used to examine the performance of Methanothermobacter marburgensis on different emission gasses. None of the present side components had a negative effect on the volumetric methane production rate. The presented method showed to be ready to use as a generic tool for feasibility studies and quantification of the physiological impact regarding the use of exhaust gasses as reactant gas for the biological methanogenesis. PMID:23582218

  5. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    Science.gov (United States)

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies.

  6. The prospects of synthetic biology for the production of fuel from biomass

    International Nuclear Information System (INIS)

    When applied to engineering the metabolism of microorganisms, synthetic biology produces a broad spectrum of biomolecules from carbohydrates and, in the near future, from the biomass in general. The markets for biofuels and for chemicals are thus hooked up through a common technological core. Synthetic biology also opens new possibilities for switching from different types of biomass to different products, thus allowing for more flexibility in development strategies and eventually in industrial operations. This opening is welcomed even though the economic and societal environments hardly favors biofuels. A few more years of research and development are needed to bring these new possibilities to industrial maturity. Advanced biofuels will pass the threshold at which they become profitable and will no longer need subsidies. (author)

  7. The reduction of biological production induced by mesoscale mixing: a modelling study in the Benguela upwelling

    CERN Document Server

    Hernández-Carrasco, Ismael; Hernández-García, Emilio; Garçon, Veronique; López, Cristóbal

    2013-01-01

    Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal mixing in upwelling systems. In order to better understand this phenomenon, we have considered a system of oceanic flow in the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We computed horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela, there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection seems to be the dominant process involved. In the northern area, other factors not taken into account in our simulation are influencing the ecosyst...

  8. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  9. Removal of disinfection by-product formation potentials by biologically assisted GAC treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The object of this paper is to evaluate the removal of disinfection by-products formation potential by artificially intensified biological activated carbon(BAC) process which is developed on the basis of traditional ozone granular activated carbon (GAC). The results show that 23.1% of trihalomethane formation potential (THMFP) and 68% of haloacetic acid formation potential (HAAFP) can be removed by BAC,respectively. Under the same conditions, the removal rates of the same substances were 12.2% and 13-25 % respectively only by GAC process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. BAC process has some advantages such as long backwashing cycle time, low backwashing intensity and prolonged activated carbon lifetime, etc.

  10. The future coastal ocean: the impact of increased stratification on biological production and carbon cycling

    Science.gov (United States)

    Lachkar, Z.; Gruber, N.

    2012-04-01

    Eastern boundary upwelling systems (EBUS) are regions of intense biogeochemical cycling and air-sea CO2 exchange. EBUS are particularly sensitive to changes in vertical stratification induced by upper ocean warming. However, neither the biological response to such physical perturbation nor the extent to which air-sea CO2 exchange might be altered under increased stratification are well understood. Here, we investigate the vulnerability of EBUS to such changes by conducting eddy-resolving simulations with the Regional Oceanic Modeling System (ROMS) coupled to a state-of-the art ecosystem model for the California and the Canary Current Systems. We examine how potential changes in stratification might affect the productivity in both upwelling systems and explore related changes in air-sea CO2 fluxes and biological pump efficiency. A particular focus of our analyses is on the role of local vs large scale changes in stratification. Overall, our initial results show for both EBUS a substantial increase of the CO2 outgassing with only a relatively modest change in productivity. We also found that identical changes in the vertical stratification lead to contrasting biological responses within and between these two EBUS characterized with only modestly different physical and environmental conditions. This is essentially due to varying initial temperature and nutrient conditions in addition to factors associated with the nearshore-offshore exchange timescales such as the shelf topography and the level of mesoscale eddy activity which differ substantially between the two EBUS. Finally, our results show that the depth of the maximum warming as well as the vertical penetration of the warm temperature anomaly play a key role in controlling the magnitude of the biological response in each EBUS.

  11. A regulatory perspective of clinical trial applications for biological products with particular emphasis on Advanced Therapy Medicinal Products (ATMPs).

    Science.gov (United States)

    Jones, David R; McBlane, James W; McNaughton, Graham; Rajakumaraswamy, Nishanthan; Wydenbach, Kirsty

    2013-08-01

    The safety of trial subjects is the tenet that guides the regulatory assessment of a Clinical Trial Authorization application and applies equally to trials involving small molecules and those with biological/biotechnological products, including Advanced Therapy Medicinal Products. The objective of a regulator is to ensure that the potential risk faced by a trial subject is outweighed by the potential benefit to them from taking part in the trial. The focus of the application review is to assess whether risks have been identified and appropriate steps taken to alleviate these as much as possible. Other factors are also taken into account during a review, such as regulatory requirements, and emerging non-clinical and clinical data from other trials on the same or similar products. This paper examines the regulatory review process of a Clinical Trial Authorization application from the perspectives of Quality, Non-Clinical and Clinical Regulatory Assessors at the Medicines and Healthcare products Regulatory Agency. It should be noted that each perspective has highlighted specific issues from their individual competence and that these can be different between the disciplines.

  12. A cell-free expression and purification process for rapid production of protein biologics.

    Science.gov (United States)

    Sullivan, Challise J; Pendleton, Erik D; Sasmor, Henri H; Hicks, William L; Farnum, John B; Muto, Machiko; Amendt, Eric M; Schoborg, Jennifer A; Martin, Rey W; Clark, Lauren G; Anderson, Mark J; Choudhury, Alaksh; Fior, Raffaella; Lo, Yu-Hwa; Griffey, Richard H; Chappell, Stephen A; Jewett, Michael C; Mauro, Vincent P; Dresios, John

    2016-02-01

    Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value. PMID:26427345

  13. A cell-free expression and purification process for rapid production of protein biologics.

    Science.gov (United States)

    Sullivan, Challise J; Pendleton, Erik D; Sasmor, Henri H; Hicks, William L; Farnum, John B; Muto, Machiko; Amendt, Eric M; Schoborg, Jennifer A; Martin, Rey W; Clark, Lauren G; Anderson, Mark J; Choudhury, Alaksh; Fior, Raffaella; Lo, Yu-Hwa; Griffey, Richard H; Chappell, Stephen A; Jewett, Michael C; Mauro, Vincent P; Dresios, John

    2016-02-01

    Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value.

  14. Biologically active amines in fermented and non-fermented commercial soybean products from the Spanish market.

    Science.gov (United States)

    Toro-Funes, N; Bosch-Fuste, J; Latorre-Moratalla, M L; Veciana-Nogués, M T; Vidal-Carou, M C

    2015-04-15

    Biologically active amines were determined in commercial soybean products. The antioxidant polyamines were found in both non-fermented and fermented soybean products. Natto and tempeh showed the highest content of polyamines (75-124 and 11-24 mg/kg of spermidine and spermine, respectively). On the other hand, the bacterial-related biogenic amines, tyramine, histamine, tryptamine and β-phenylethylamine, were detected in practically all fermented products with a high variability. The highest contents were found in sufu, tamari and soybean paste. Extremely high tyramine and histamine contents, 1700 and 700 mg/kg, respectively, found in some sufu samples could be unhealthy. However, biogenic amines observed in the other soybean products should not be a risk for healthy consumers. However, individuals who take monoamine and diamine oxidase inhibitors drugs should be strongly recommended to avoid this kind of products in order to suffer no adverse health effects. These biogenic amines were not detected in non-fermented soybean products.

  15. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant

    OpenAIRE

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Łukasz

    2011-01-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l−1 nitrate, 4.8 mg l−1 nitroglycerin, 1.9 mg l−1 nitroglycol and 1,200 mg l−1 chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic...

  16. Biological and productive characteristics of apple cultivars resistant or tolerant to scab [Venturia inaequalis (Cooke) Wint.

    OpenAIRE

    Đorđević Boban S.; Vulić Todor B.; Đurović Dejan B.; Milatović Dragan P.; Zec Gordan N.; Radović Aleksandar R.

    2013-01-01

    Biological and productive characteristics of 11 scab-resistant apple cultivars were studied in the period 2011-2012 on the estate of the monastery Žiča in Central Serbia. Control cultivar for comparison was ‘Idared’, as the most spread apple cultivar in Serbia. The earliest blooming was found in cultivar ‘Topaz’, and the latest in cultivar ‘Rewena’. Based on the time of fruit maturation, three cultivars belong to the summer and autumn group, and five cultiv...

  17. Informed consent should be obtained from patients to use products (skin substitutes) and dressings containing biological material

    OpenAIRE

    Enoch, S; Shaaban, H; Dunn, K.

    2005-01-01

    Background: Biological products (tissue engineered skin, allograft and xenograft, and biological dressings) are widely used in the treatment of burns, chronic wounds, and other forms of acute injury. However, the religious and ethical issues, including consent, arising from their use have never been addressed in the medical literature.

  18. [The pharmaceutical company Choay: an history linked to research and commercialization of biological products].

    Science.gov (United States)

    Bonnemain, Bruno

    2015-12-01

    Eugène Choay, when he created his own company in 1911, had already a large experience in pharmaceutical industry obtained with Maison Frère where he discovered the famous Dentol, well known thank to Poulbot's publicity drawings for this product. But, convinced of the future of biological products and Opotherapy, he decided to invest himself in this area with a totally new process for cold desiccation of organs. The success will be there and several pharmacists from Choay family will take care of the company and bring it to the top of its specialty in Opotherapy. At the beginning of the 1970's, Choay in in full development and has the products, the sites and the human resources for the future. In 1975, 4 therapeutic areas are covered by Choay's products: coagulation, inflammation, dermatology and hepatology. After more than 65 years of independence, Choay group will be finally bought partially and then totally by Sanofi. With the support of Sanofi, Choay created, in 1981, their US subsidiary called Choay Laboratories Inc;, after the NDA approval of sub-cutaneous Calciparine by the FDA. In 1985 Fraxiparine, a low molecular weight heparin discovered by Jean Choay's team, is lauched on the market. All these developments represent an outstanding record a longevity which indicates how perceptive was Eugène Choay and his successors when choosing to invest totally in the therapeutic use of hormones and products acting on coagulation factors.

  19. Suppressing and enhancing effects of mesoscale dynamics on biological production in the Mozambique Channel

    Science.gov (United States)

    José, Y. S.; Penven, P.; Aumont, O.; Machu, E.; Moloney, C. L.; Shillington, F.; Maury, O.

    2016-06-01

    We used a coupled physical-biogeochemical model to investigate how the strong eddy activity typical of the Mozambique Channel affects biological production. A numerical experiment was carried out, in which mesoscale dynamics were suppressed by cancelling the nonlinear terms for horizontal momentum in the Naviers-Stokes equation. Mesoscale dynamics were found to be responsible for (1) increased offshore production in the Mozambique Channel as a result of net eddy-induced offshore transport of nutrient-rich coastal waters; (2) decreased shelf production along the central Mozambican and south-west Madagascar coast caused by a reduction in nutrient availability related to the net eddy-induced lateral transport of nutrients; (3) increased coastal production along the northern Mozambican coast caused by eddy-induced nutrient supply. The model results also showed an intensification and shallowing of the subsurface production, related to increased upper layer nutrient concentrations caused by eddy activity. In addition, by driving the detachment of the East Madagascar Current at the southern tip of the island, inertial processes intensify the southern Madagascar upwelling and causes offshore diffusion of the upwelled waters. These results emphasize the complex role played by eddy activity and, more generally, inertial processes on marine ecosystems in this region.

  20. Biological characteristics of marine bacterium S - 9801 strain and its culture conditions of pigment production

    Institute of Scientific and Technical Information of China (English)

    田黎; 何培青; 武洪庆; 温占波; 刘晨临; 李光友

    2002-01-01

    Strain of Flavobacterium sp. (S- 9801), was screened from 207 strains of marine bacteria isolated from the Bohai Sea continental shelf and the Zhujiang Estuary, for its red pigment production. The biological characteristics of strain S- 9801 and culture conditions of pigment production have been checked out in this study. The color of the bacterial colony on 2216E medium was from coccineus to rose bengal. Optimum culture conditions were sodium chloride concentration(g/dm3), 10~30; pH,3~8; temperature, 25~28℃; tryptone and yeast extract as nitrogen sources and gluccse as carbon source. Under optimum conditions, pigment accumulation started after 12 h, reaching a maximum rate of synthesis at 36 h.

  1. Studies of the Production of Fungal Polyketides in Aspergillus nidulans by Using Systems Biology Tools

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Andersen, Mikael Rørdam; Grotkjær, Thomas;

    2009-01-01

    -methylsalicylic acid (6-MSA) synthase gene and one expressing the 6-MSA synthase gene and overexpressing the native xylulose-5-phosphate phosphoketolase gene (xpkA) for increasing the pool of polyketide precursor levels. The physiology of the recombinant strains and that of a reference wild-type strain were...... characterized on glucose, xylose, glycerol, and ethanol media in controlled bioreactors. Glucose was found to be the preferred carbon source for 6-MSA production, and 6-MSA concentrations up to 455 mg/liter were obtained for the recombinant strain harboring the 6-MSA gene. Our findings indicate...... that overexpression of xpkA does not directly improve 6-MSA production on glucose, but it is possible, if the metabolic flux through the lower part of glycolysis is reduced, to obtain quite high yields for conversion of sugar to 6-MSA. Systems biology tools were employed for in-depth analysis of the metabolic...

  2. Effects of milk yield on biological efficiency and profit of beef production from birth to slaughter.

    Science.gov (United States)

    Miller, S P; Wilton, J W; Pfeiffer, W C

    1999-02-01

    Effect of milk yield (MY) on biological efficiency and gross margin as an indicator of profit potential of beef production from birth to slaughter was determined. Data included 9 yr of spring-born single male calves. Biological efficiency was calculated as carcass weight/total feed energy intake, including nonlactating and lactating intakes of cow and creep and feedlot intakes of calf. Slaughter end point was finish constant at 9 mm of fat thickness. Gross margin was determined as returns minus feed costs. Three breeding systems were analyzed: purebred Hereford (HE), large rotational (LR), and small rotational (SR). Analyses were performed separately by breeding system when differences in the effect of MY among breeding systems were significant. Increased MY was associated with increased preweaning gain (P .10) effect of MY on age at slaughter or on carcass weight per day of age at slaughter was found. Increased MY was associated with increased cow lactating energy intake (P gross margin from birth to slaughter (P profit potential of beef production from birth to slaughter. PMID:10100661

  3. The Pig PeptideAtlas: A resource for systems biology in animal production and biomedicine.

    Science.gov (United States)

    Hesselager, Marianne O; Codrea, Marius C; Sun, Zhi; Deutsch, Eric W; Bennike, Tue B; Stensballe, Allan; Bundgaard, Louise; Moritz, Robert L; Bendixen, Emøke

    2016-02-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within the veterinary proteomics domain, and this article demonstrates how the expression of isoform-unique peptides can be observed across distinct tissues and body fluids. The Pig PeptideAtlas is a unique resource for use in animal proteome research, particularly biomarker discovery and for preliminary design of SRM assays, which are equally important for progress in research that supports farm animal production and veterinary health, as for developing pig models with relevance to human health research. PMID:26699206

  4. Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?

    Science.gov (United States)

    O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Cristina Facchini, Maria; Marullo, Salvatore; Santoleri, Rosalia; Dell'Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto

    2015-10-01

    Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray’s water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts.

  5. Biological effects of activation products and other chemicals released from fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of /sup 26/Al, /sup 49/V, /sup 51/Cr, /sup 54/Mn, /sup 55/Fe, /sup 58/Co, /sup 60/Co, /sup 93/Nb, and /sup 94/Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs.

  6. Use of biologically reclaimed minerals for continuous hydroponic potato production in a CELSS.

    Science.gov (United States)

    Mackowiak, C L; Wheeler, R M; Stutte, G W; Yorio, N C; Sager, J C

    1997-01-01

    Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions. PMID:11542555

  7. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    Directory of Open Access Journals (Sweden)

    Celio I. Chagas

    2014-10-01

    Full Text Available Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in depressions along the tributary network from these lands devoted to cattle production. The aims of this work were: (i to gather a reliable set of data from different monitoring periods and scales, (ii to search for simple and sensible variables to be used as indicators for surface water quality advising purposes and (iii to corroborate previous biological contamination conceptual models for this region. Concentration of pollution indicators in these ponds was related to mean stocking rates from nearby fields and proved to depend significantly on the accumulated water and sediments. Viable mesophiles and total coliforms were found mainly attached to large sediments rather than in the runoff water phase. Seasonal sampling showed that the time period between the last significant runoff event and each sampling date regarding enterococci proved to be a sensible variable for predicting contamination. Enterococci concentration tended to increase gradually until the next extraordinary runoff event washed away contaminants. The mentioned relationship may be useful for designing early warning surface water contamination programs regarding enterococci dynamics and other related microbial pollutants as well.

  8. Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production.

    Directory of Open Access Journals (Sweden)

    Lennart Balk

    Full Text Available BACKGROUND: Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills. METHODS AND PRINCIPAL FINDINGS: Samples from natural populations of haddock (Melanogrammus aeglefinus and Atlantic cod (Gadus morhua in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea. CONCLUSION: It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production.

  9. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26Al, 49V, 51Cr, 54Mn, 55Fe, 58Co, 60Co, 93Nb, and 94Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  10. A retrosynthetic biology approach to metabolic pathway design for therapeutic production

    Directory of Open Access Journals (Sweden)

    Faulon Jean-Loup

    2011-08-01

    Full Text Available Abstract Background Synthetic biology is used to develop cell factories for production of chemicals by constructively importing heterologous pathways into industrial microorganisms. In this work we present a retrosynthetic approach to the production of therapeutics with the goal of developing an in situ drug delivery device in host cells. Retrosynthesis, a concept originally proposed for synthetic chemistry, iteratively applies reversed chemical transformations (reversed enzyme-catalyzed reactions in the metabolic space starting from a target product to reach precursors that are endogenous to the chassis. So far, a wider adoption of retrosynthesis into the manufacturing pipeline has been hindered by the complexity of enumerating all feasible biosynthetic pathways for a given compound. Results In our method, we efficiently address the complexity problem by coding substrates, products and reactions into molecular signatures. Metabolic maps are represented using hypergraphs and the complexity is controlled by varying the specificity of the molecular signature. Furthermore, our method enables candidate pathways to be ranked to determine which ones are best to engineer. The proposed ranking function can integrate data from different sources such as host compatibility for inserted genes, the estimation of steady-state fluxes from the genome-wide reconstruction of the organism's metabolism, or the estimation of metabolite toxicity from experimental assays. We use several machine-learning tools in order to estimate enzyme activity and reaction efficiency at each step of the identified pathways. Examples of production in bacteria and yeast for two antibiotics and for one antitumor agent, as well as for several essential metabolites are outlined. Conclusions We present here a unified framework that integrates diverse techniques involved in the design of heterologous biosynthetic pathways through a retrosynthetic approach in the reaction signature space

  11. Linking Physical Dynamics and Biological Productivity in a Coastal Mesoscale Eddy

    Science.gov (United States)

    Simons, R. D.; Nishimoto, M. M.; Washburn, L.; Brown, K. S.; Siegel, D. A.

    2014-12-01

    The Santa Barbara Channel (SBC) eddy is a cyclonic mesoscale eddy located off the coast of Southern California, USA. In the summer of 1998 and 1999, the SBC eddy was surveyed for juvenile fishes. In 1998, very high numbers of juvenile fishes were observed within the eddy, but not in 1999. The ocean conditions that contributed to the differences in fish abundances inside the eddy were investigated with three-dimensional numerical modeling. The physical dynamics of the SBC eddy, which included eddy size, three-dimensional rotational structure, and isopycnal uplift, were evaluated using a three-dimensional Regional Ocean Modeling System (ROMS). The retention ability of the eddy was quantified using a three-dimensional particle tracking model driven by the ROMS. The physical dynamics and particle retention of the SBC eddy were found to differ significantly in 1998 and 1999. In 1998, when the SBC eddy was rotating at a steady rate spatially and temporally and cycling consistently in and out of solid-body rotation, the particle retention was high and the isopycnal uplift sustained. However in 1999, when the SBC eddy was rotating unsteadily in space and time and did not have periods of solid-body rotation, the particle retention was low and the isopycnal uplift unstable. We theorize that the steady symmetric rotation of the eddy in 1998 had two important impacts on the biological productivity inside the eddy. First, it provided a prolonged period of cold nutrient rich water uplifting into the euphotic zone, which stimulated productivity and consequently attracted zooplankton. Second, it allowed the zooplankton, prey for the juvenile fish, to be retained inside the eddy, which attracted the juvenile fish. We conclude that biological productivity inside mesoscale eddies may be linked to the stability of its three-dimensional rotational structure and consequently its ability to retain particles.

  12. Determination of production biology of cladocera in a reservoir receiving hyperthermal effluents from a nuclear production reactor. [Par Pond

    Energy Technology Data Exchange (ETDEWEB)

    Vigerstad, T J

    1980-01-01

    The effects on zooplankton of residence in a cooling reservoir receiving hyperthermal effluents directly from a nuclear-production-reactor were studied. Rates of cladoceran population production were compared at two stations in the winter and summer of 1976 on Par Pond located on the Savannah River Plant, Aiken, SC. One station was located in an area of the reservoir directly receiving hyperthermal effluent (Station MAS) and the second was located about 4 km away in an area where surface temperatures were normal for reservoirs in the general geographical region (Station CAS). A non-parametric comparison between stations of standing stock and fecundity data for Bosmina longirostris, taken for the egg ratio model, was used to observe potential hyperthermal effluent effects. There was a statistically higher incidence of deformed eggs in the Bosmina population at Station MAS in the summer. Bosmina standing stock underwent two large oscillations in the winter and three large oscillations in the summer at Station MAS compared with two in the winter and one in the summer at Station CAS. These results are consistent with almost all other Par Pond studies which have found the two stations to be essentially similar in spectra composition but with some statistically significant differences in various aspects of the biology of the species.

  13. Biological re-cultivation of industrial technological waste banks after steel production

    Science.gov (United States)

    Sokolovska, Maria; Zhiyanski, Miglena; Bech, Jaume

    2010-05-01

    The problem of re-cultivation of disturbed lands, after the creation of waste banks, is very important and of great scientific interest. The studies on the effectiveness of biological re-cultivation are focused mainly on activities and techniques for the acceleration of soil formation processes as. The relationship between substrate and plants is also studied, in order to create modern biotechnologies and contributes to the remediation of the re-cultivated lands within the territorial system. In this work we have studied three parts of an industrial waste bank named "The 7th of September" located in the green system of Sofia - Pernik agglomeration in Bulgaria. It consists of technological wastes produced by the steel industry. Its area of 20 dca is of special local importance. The aim of this study was to propose an appropriate technology for the biological re-cultivation, which could take place after all production activities had ceased. To achieve this aim a detailed study on the characteristics of climatic elements was carried out focusing on precipitation - limiting factor for future afforestation of waste banks. Analyses on hydro-physical and chemical parameters of substrates were undertaken in order to elaborate recommendations for their improvement and utility in biological re-cultivation. Here we present the characteristics of the vegetation which existed before the production activities and the approaches for choice of tree species in afforestation with different schemes and methods applied. On the basis of this study we were able to establish that the hydrological properties of substrates are quite similar to those of natural soils in the region. The variations obtained for some soil substrate layers were not significant. In relation to this we also outlined the quantity of organic matter and nutrient elements in waste banks as determining parameters for further biological re-cultivation. The studied site is located in the lower forest zone of the country

  14. Use of chemicals and biological products in Asian aquacultire and their potential environmental risks: a critical review

    NARCIS (Netherlands)

    Rico, A.; Satapornvanit, K.; Haque, M.M.; Min, J.; Nguyen, P.T.; Telfer, T.; Brink, van den P.J.

    2012-01-01

    Over the past few decades, Asian aquaculture production has intensified rapidly through the adoption of technological advances, and the use of a wide array of chemical and biological products to control sediment and water quality and to treat and prevent disease outbreaks. The use of chemicals in aq

  15. When do tissues and cells become products? Regulatory oversight of emerging biological therapies.

    Science.gov (United States)

    Farrugia, Albert

    2006-01-01

    Although therapeutics derived from biological sources have been subjected to regulatory oversight for some time, the products used in transplantation procedures have historically been exempt from this oversight. These products have been viewed as being part of medical practice rather than as the result of mainstream pharmaceutical manufacture. Furthermore, their unique source makes them difficult to assess in traditional regulatory systems based on the tenets of pharmaceutical quality control. With the increasing use of transplantation therapies to both replace dysfunctional organs and to influence genetic and metabolic processes, public health concerns on these therapies have increased. In addition, it is recognized that therapeutic claims for some of these interventions need to be properly assessed. These considerations have led the established regulatory agencies of the developed world to develop new regulatory paradigms for the products of transplantation practice. While a number of concerns have driven these developments, the minimization of infectious disease risk remains the paramount driver for introducing these regulatory systems. More than the regulation of medicines and medical devices manufactured in traditional pharmaceutical modes, the regulation of cell and tissue products is intimately linked to areas of public health policy and funding. This places regulators in a challenging position as they attempt to reconcile their roles as independent assessors with the needs of the overall public health framework. This is particularly difficult when considering measures which may affect access to life saving therapies. Regulators have recognized the need to assess these therapies through systems which incorporate consideration of risk-benefit ratios and include mechanisms for transparent and accountable release of products when full compliance to traditional concepts of manufacturing practice is not possible.

  16. Biological and Energy Productivity of Natural Spruce Forests in the Ukrainian Carpathians

    Directory of Open Access Journals (Sweden)

    R. D. Vasilishyn

    2014-10-01

    Full Text Available The modern practice of forestry production in Ukraine, which is in the process of implementing the conceptual changes in forest management and harmonization of its basic approaches to the basics of sustainable development, requires a significant expansion of the current regulatory and informational tools used to assess the ecological functions of forests. For this purpose, during the 2012–2014, as part of an international project GESAPU, models and tables of bioproductivity for forest tree species in Ukraine were completed. The article presents the results of modeling the dynamics of the conversion coefficients for the main components of phytomass of modal natural spruce forests of the Carpathian region of Ukraine based on information from 32 plots in the database of «Forest Phytomass of Ukraine». According to the state forest accounting of Ukraine as of January 1, 2011, the spruce forests in the Ukrainian Carpathians cover an area of 426.2 thousand ha, 45 % of which are spruce of natural origin. To evaluate the productivity of modal dynamics of pure and mixed spruce stands, the study developed models of the stock and overall productivity, derived by Bertalanffy growth function. On the basis of these models, normative reference tables of biological productivity of natural modal spruce forests of the Ukrainian Carpathians were developed. To successfully meet the challenges of evaluating the energy possibilities of forestry of Ukraine, the study used tables of energetic productivity of investigated stands. Built on the basis of the tables of bioproductivity, they reflect the dynamic processes of energy storage in the phytomass components and can be used in forest management to predict volumes of energetic woods.

  17. A model of the ocean iron cycle and its influence on biological production

    Science.gov (United States)

    Dutkiewicz, S.; Parekh, P.; Follows, M.

    2003-04-01

    Biological productivity in large regions of the ocean, specifically high nutrient, low chlorophyll regions, is limited by the deficit in iron relative to other nutrients. We have developed a parameterization of the iron cycle of the world's oceans which attempts to explicitly represent the processes by which this deficit in iron occurs. We have implemented this parameterization in the context of the MIT three dimensional global ocean model and examined the consequences for nutrient distributions, new production and primary production. The iron model parameterizes the mechanisms of scavenging of iron onto sinking particles and complexation with an organic ligand and is driven by specified aeolian flux patterns. First, using an idealized representation of export production, limited by light, phosphate and iron, the model reproduces the broad features of the observed ocean phosphate and iron distributions. We replace the simplified export parameterization with an explicit, but highly idealized, ecosystem model. The model represents a simplified food web with two phytoplankton size classes and a single grazer. The base currency for this model is phosphorus, but the larger phytoplankton class (i.e. diatoms) is also limited by silica. Both classes are limited by the availability of iron. The results of this model are also generally consistent with the observed patterns of phosphate and iron. In addition, the model captures the broad features of the distributions and cycles of silica, chlorophyll and primary production. We will also explore the sensitivities of this model to the forcing fields (e.g. aeolian iron flux) and parameter choices of the ecosystem model. This model represents a step towards the explicit representation of the ocean iron cycle, and its biogeochemical influences, in global biogeochemical models.

  18. Applying complex models to poultry production in the future--economics and biology.

    Science.gov (United States)

    Talpaz, H; Cohen, M; Fancher, B; Halley, J

    2013-09-01

    The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions.

  19. Applying complex models to poultry production in the future--economics and biology.

    Science.gov (United States)

    Talpaz, H; Cohen, M; Fancher, B; Halley, J

    2013-09-01

    The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions. PMID:23960140

  20. Characterization of soluble microbial products in a drinking water biological aerated filter.

    Science.gov (United States)

    Kang, Jia; Ma, Teng-Fei; Zhang, Peng; Gao, Xu; Chen, You-Peng

    2016-05-01

    Utilization-associated products (UAPs) and biomass-associated products (BAPs) were quantified separately in this study to characterize soluble microbial products (SMPs) in a drinking water lab-scale biological aerated filter (BAF), and their basic characteristics were explored using gel filtration chromatography and three-dimensional excitation-emission matrix (3D-EEM) spectrophotometry with fluorescence regional integration analysis and parallel factor model. UAPs were observed increased with the increase of filter media depth and accumulated after BAF treatment, whereas BAPs were basically constant. 3D-EEM spectroscopy analysis result showed that tryptophan and protein-like compounds were the main components of UAPs and BAPs, and fulvic-acid-like substance was a major component of BAPs, rather than UAPs. In terms of molecular weight (MW) distribution, UAP MW presented a bimodal distribution in the range of 1-5 and >10 kDa, while BAP MW exhibited unimodal distribution with MW >20 kDa fraction accounting for more than 90 %. The macromolecules of UAPs accumulated after BAF treatment. This study provides theoretical support for in-depth study of SMP characteristics. PMID:26801929

  1. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    Science.gov (United States)

    Lachkar, Z.; Gruber, N.

    2012-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The NPP drivers are identified with the aid of an artificial neural network analysis based on self-organizing-maps (SOM). Our results suggest that in addition to the expected NPP enhancing effect of stronger equatorward alongshore wind, three factors have an inhibiting effect: (1) strong eddy activity, (2) narrow continental shelf, and (3) deep mixed layer. The co-variability of these 4 drivers defines in the context of the SOM a continuum of 100 patterns of NPP regimes in EBUS. These are grouped into 4 distinct classes using a Hierarchical Agglomerative Clustering (HAC) method. Our objective classification of EBUS reveals important variations of NPP regimes within each of the four EBUS, particularly in the Canary and Benguela Current systems. Our results show that the Atlantic EBUS are generally more productive and more sensitive to upwelling favorable winds because of weaker factors inhibiting NPP. Perturbations of alongshore winds associated with climate change may therefore lead to contrasting biological responses in the Atlantic and the Pacific EBUS.

  2. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-10-01

    Full Text Available Eastern Boundary Upwelling Systems (EBUS are highly productive ocean regions. Yet, substantial differences in net primary production (NPP exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The identification of NPP drivers is done with the aid of an artificial neural network analysis based on self-organizing-maps (SOMs. We show that in addition to the expected NPP enhancing effect of stronger alongshore wind, three factors have an inhibiting effect: (1 strong eddy activity, (2 narrow continental shelf, and (3 deep mixed layer. The co-variability of these 4 drivers defines in the context of the SOM a continuum of 100 patterns of NPP regimes in EBUS. These are grouped into 4 distinct classes using a Hierarchical Agglomerative Clustering (HAC method. Our objective classification of EBUS reveals important variations of NPP regimes within each of the four EBUS, particularly in the Canary and Benguela Current systems. Our results show that the Atlantic EBUS are generally more productive and more sensitive to upwelling favorable winds because of a weaker factors inhibiting NPP. Perturbations of alongshore winds associated with climate change may therefore lead to contrasting biological responses in the Atlantic and the Pacific EBUS.

  3. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Science.gov (United States)

    Montesinos, Laura; Bundó, Mireia; Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation. PMID:26760761

  4. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Directory of Open Access Journals (Sweden)

    Laura Montesinos

    Full Text Available Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  5. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production.

    Science.gov (United States)

    López-Abelairas, M; Álvarez Pallín, M; Salvachúa, D; Lú-Chau, T; Martínez, M J; Lema, J M

    2013-09-01

    The biological pretreatment of lignocellulosic biomass for the production of bioethanol is an environmentally friendly alternative to the most frequently used process, steam explosion (SE). However, this pretreatment can still not be industrially implemented due to long incubation times. The main objective of this work was to test the viability of and optimise the biological pretreatment of lignocellulosic biomass, which uses ligninolytic fungi (Pleurotus eryngii and Irpex lacteus) in a solid-state fermentation of sterilised wheat straw complemented with a mild alkali treatment. In this study, the most important parameters of the mechanical and thermal substrate conditioning processes and the most important parameters of the fungal fermentation process were optimised to improve sugar recovery. The largest digestibilities were achieved with fermentation with I. lacteus under optimised conditions, under which cellulose and hemicellulose digestibility increased after 21 days of pretreatment from 16 to 100 % and 12 to 87 %, respectively. The maximum glucose yield (84 %) of cellulose available in raw material was obtained after only 14 days of pretreatment with an overall ethanol yield of 74 % of the theoretical value, which is similar to that reached with SE.

  6. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L. PMID:24520716

  7. Removal of disinfection by-products formation potential by biologically intensified process

    Institute of Scientific and Technical Information of China (English)

    AN Dong; LI Wei-guang; CUI Fu-yi; HE Xin; ZHANG Jin-song

    2005-01-01

    The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation ( R2 = 0.9562 and R2 = 0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R2 = 0.9782. In addition certain linear correlations between THMFP, HAAFP and UV254 ( R2 = 0.855 and R2 = 0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.

  8. Production of Some Biologically Active Secondary Metabolites From Marine-derived Fungus Varicosporina ramulosa

    Directory of Open Access Journals (Sweden)

    Atalla, M. M.

    2008-01-01

    Full Text Available In a screening of fungal isolates associated with marine algae collected from Abou-keer, Alexanderia during the four seasons of 2004, to obtain new biologically active compounds. Varicosporina ramulosa isolate was identified and selected as a producer of 13 compounds. Out of 13 pure compounds produced, compounds 3 and 10 were considered as antibacterial and antifungal compounds, respectively as they were active against gram positive, gram negative bacteria and a fungus. Optimization of conditions (fermentation media, incubation period, temperature, initial pH, aeration levels which activate compounds 3 and 10 production were studied. Also the spectral properties (UV, MS, GC/MS, IR and 1H-NMR of the purified compounds were determined. Compound 3 suggested to be dibutyl phthalate and compound 10 may be ergosterol or one of its isomers. Biological evaluation of the two compounds towards 6 different types of tumor cell lines showed weak effect of compound 3 at different concentrations on the viable cell count of the different tumor cell lines. While compound 10 showed different activities against the viable cell count of the 6 different tumor cell lines. It kills 50% of the viable infected liver and lung cells at concentrations equal to 99.7 µg/mL, 74.9µg/mL, respectively. Compound 10 can be recommended as new anticancer compounds.

  9. Back to the Roots: Prediction of Biologically Active Natural Products from Ayurveda Traditional Medicine

    DEFF Research Database (Denmark)

    Polur, Honey; Joshi, Tejal; Workman, Christopher;

    2011-01-01

    . We hereby present a number of examples where the traditional medicinal use of the plant matches with the medicinal use of the drug that is structurally similar to a plant component. With this approach, we have brought to light a number of obscure compounds of natural origin (e.g. kanugin......Ayurveda, the traditional Indian medicine is one of the most ancient, yet living medicinal traditions. In the present work, we developed an in silico library of natural products from Ayurveda medicine, coupled with structural information, plant origin and traditional therapeutic use. Following this......, we compared their structures with those of drugs from DrugBank and we constructed a structural similarity network. Information on the traditional therapeutic use of the plants was integrated in the network in order to provide further evidence for the predicted biologically active natural compounds...

  10. Production and Analysis of Biological Properties of Recombinant Human Apolipoprotein A-I.

    Science.gov (United States)

    Ryabchenko, A V; Kotova, M V; Tverdohleb, N V; Knyazev, R A; Polyakov, L M

    2015-11-01

    Production of recombinant human apolipoprotein A-I (apoA-I) in E. coli cells is described and its biological properties are compared with those of natural protein. Recombinant apoA-I was isolated as a chimeric polypeptide and then processed to a mature form apoA-I (rapo-I). We studied the ability of the resulting protein to penetrate into hepatocyte nuclei and regulate the rate of DNA biosynthesis in complex with estriol. Penetration of rapoA-I conjugated with FITC into hepatocyte nuclei was demonstrated. rapoA-I-estriol and apoA-I-estriol complexes induced similar increase in DNA biosynthesis rate in isolated hepatocytes, which confi rms functional similarity of the obtained recombinant mature protein (rapoA-I) and native human apoA-I. PMID:26612626

  11. Postmarketing safety reports for human drug and biological products; electronic submission requirements. Final rule.

    Science.gov (United States)

    2014-06-10

    The Food and Drug Administration (FDA or we) is amending its postmarketing safety reporting regulations for human drug and biological products to require that persons subject to mandatory reporting requirements submit safety reports in an electronic format that FDA can process, review, and archive. FDA is taking this action to improve the Agency's systems for collecting and analyzing postmarketing safety reports. The change will help the Agency to more rapidly review postmarketing safety reports, identify emerging safety problems, and disseminate safety information in support of FDA's public health mission. In addition, the amendments will be a key element in harmonizing FDA's postmarketing safety reporting regulations with international standards for the electronic submission of safety information.

  12. Simulated influence of postweaning production system on performance of different biological types of cattle: III. Biological efficiency.

    Science.gov (United States)

    Williams, C B; Bennett, G L; Keele, J W

    1995-03-01

    Methods were developed and incorporated into a previously published computer model to predict ME intake and calculate biological efficiencies in terms of grams of empty BW (EBW) and fat-free matter (FFM) gained/megacalorie of ME consumed from weaning to slaughter. Efficiencies were calculated for steers from F1 crosses of 16 sire breeds (Hereford, Angus, Jersey, South Devon, Limousin, Simmental, Charolais, Red Poll, Brown Swiss, Gelbvieh, Maine Anjou, Chianina, Brahman, Sahiwal, Pinzgauer, and Tarentaise) mated to Hereford and Angus dams, grown under nine backgrounding systems, finished at either a low (1.0 kg) or high (1.36 kg) ADG, and slaughtered at 300 kg carcass weight, small or greater degree of marbling, and 28% carcass fat. Backgrounding systems were high ADG (.9 kg) for 111, 167, or 222 d, medium ADG (.5 kg) for 200, 300, or 400 d, and low ADG (.25 kg) for 300 or 400 d, and 0 d backgrounding. The high ADG finishing system was more biologically efficient than the low ADG finishing system, and generally backgrounding systems were less biologically efficient than direct finishing after weaning (0 d backgrounding). Large-framed breeds were more efficient at the constant carcass weight and carcass fatness end point, and breeds that achieved the marbling end point at low levels of carcass fatness were more efficient at this end point. Some small-framed breeds gained EBW more efficiently but gained FFM less efficiently than some of the large-framed breeds. Variation in efficiency between genotypes was greatest with 0 d backgrounding and decreased in the other backgrounding systems. PMID:7608001

  13. Simulated influence of postweaning production system on performance of different biological types of cattle: III. Biological efficiency.

    Science.gov (United States)

    Williams, C B; Bennett, G L; Keele, J W

    1995-03-01

    Methods were developed and incorporated into a previously published computer model to predict ME intake and calculate biological efficiencies in terms of grams of empty BW (EBW) and fat-free matter (FFM) gained/megacalorie of ME consumed from weaning to slaughter. Efficiencies were calculated for steers from F1 crosses of 16 sire breeds (Hereford, Angus, Jersey, South Devon, Limousin, Simmental, Charolais, Red Poll, Brown Swiss, Gelbvieh, Maine Anjou, Chianina, Brahman, Sahiwal, Pinzgauer, and Tarentaise) mated to Hereford and Angus dams, grown under nine backgrounding systems, finished at either a low (1.0 kg) or high (1.36 kg) ADG, and slaughtered at 300 kg carcass weight, small or greater degree of marbling, and 28% carcass fat. Backgrounding systems were high ADG (.9 kg) for 111, 167, or 222 d, medium ADG (.5 kg) for 200, 300, or 400 d, and low ADG (.25 kg) for 300 or 400 d, and 0 d backgrounding. The high ADG finishing system was more biologically efficient than the low ADG finishing system, and generally backgrounding systems were less biologically efficient than direct finishing after weaning (0 d backgrounding). Large-framed breeds were more efficient at the constant carcass weight and carcass fatness end point, and breeds that achieved the marbling end point at low levels of carcass fatness were more efficient at this end point. Some small-framed breeds gained EBW more efficiently but gained FFM less efficiently than some of the large-framed breeds. Variation in efficiency between genotypes was greatest with 0 d backgrounding and decreased in the other backgrounding systems.

  14. Biological hydrogen production by Anabaena sp. – Yield, energy and CO2 analysis including fermentative biomass recovery

    OpenAIRE

    Ferreira, Ana F.; Marques, Ana C.; Batista, Ana Paula; Marques, Paula Alexandra; de Gouveia, L.; Carla M. Silva

    2012-01-01

    This paper presents laboratory results of biological production of hydrogen by photoautrotophic cyanobacterium Anabaena sp. Additional hydrogen production from residual Cyanobacteria fermentation was achieved by Enterobacter aerogenes bacteria. The authors evaluated the yield of H2 production, the energy consumption and CO2 emissions and the technological bottlenecks and possible improvements of the whole energy and CO2 emission chain. The authors did not attempt to extrapolate the results to...

  15. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2012-12-01

    Full Text Available In Poland the cultivation of the fibrous form of flax (Linum usitatissimum L. is dying out, but the acreage of its oilseed form, linseed, which provides seed (Semen lini used in therapy and being a source of -linolenic acid, is expanding. Nowadays, linseed is grown in 64 countries of the world, but yield levels in these countries vary greatly. Under European conditions, seed yield of linseed shows high variation, which is evidence of little knowledge of the biology of this plant and the lack of precise cultivation solutions in agricultural technologies used. A major reason is the difficulty in obtaining optimal crop density. A sparse crop results in low above-ground biomass yield, which is translated into insufficient crop yields. The selection of highly productive domestic and foreign varieties can partially increase linseed yield; apart from some domestic varieties, the Canadian cultivar 'Flanders' and the Hungarian cultivar 'Barbara' are positive examples in this respect. There is a possibility of effective selection at early stages of linseed breeding, which bodes well for the prospect of obtaining highly productive varieties with normal or very low -linolenic acid content.

  16. Human chorionic gonadotropin: Different glycoforms and biological activity depending on its source of production.

    Science.gov (United States)

    Fournier, Thierry

    2016-06-01

    Human chorionic gonadotropin (hCG) is the first hormonal message from the placenta to the mother. It is detectable in maternal blood two days after implantation and behaves like a super LH agonist stimulating progesterone secretion by the corpus luteum. In addition to maintaining the production of progesterone until the placenta itself produces it, hCG also has a role in myometrial quiescence and local immune tolerance. Specific to humans, hCG is a complex glycoprotein composed of two highly glycosylated subunits. The α-subunit is identical to the pituitary gonadotropin hormones (LH, FSH, TSH), contains two N-glycosylation sites, and is encoded by a single gene (CGA). By contrast, the β-subunits are distinct for each hormones and confer both receptor and biological specificity, although LH and hCG bind to the same receptor (LH/CG-R). The hCG ß-subunit is encoded by a cluster of genes (CGB) and contains two sites of N-glycosylation and four sites of O-glycosylation. The hCG glycosylation state varies with the stage of pregnancy, its source of production and in the pathology. It is well established that hCG is mainly secreted into maternal blood, where it peaks at 8-10weeks of gestation (WG), by the syncytiotrophoblast (ST), which represents the endocrine tissue of the human placenta. The invasive extravillous trophoblast (iEVT) also secretes hCG, and in particular hyperglycosylated forms of hCG (hCG-H) also produced by choriocarcinoma cells. In maternal blood, hCG-H is elevated during early first trimester corresponding to the trophoblastic cell invasion process and then decreases. In addition to its endocrine role, hCG has autocrine and paracrine roles. It promotes formation of the ST and angiogenesis through LH/CG-R but has no effect on trophoblast invasion in vitro. By contrast, hCG-H stimulates trophoblast invasion and angiogenesis by interacting with the TGFß receptor in a LH/CG-R independent signalling pathway. hCG is largely used in antenatal screening

  17. Biological material (DNA and RNA) bank of nuclear production workers and residents of nearby territories

    International Nuclear Information System (INIS)

    Seversk Biophysical Research Centre (SBRC) has been engaged in creating DNA and biological material bank of workers of nuclear production (Siberian Group of Chemical Enterprises - SGCE) and residents of nearby areas (the town of Seversk) since 2002. Following the developed methodology, for each person this bank includes three units of storage: DNA sample extracted by standard method using proteinase K (the main sample), DNA sample isolated by means of 'quick' extraction method (work sample), and 1.5 ml blood sample (spare sample). For each DNA donor there have been obtained cytogenetic agents to estimate frequency and spectrum of chromosome aberrations. There has been completed DNA bank of SGCE workers (healthy individuals, cancer patients and those who survived acute myocardial infarction) as well as Seversk children aged 9-11 examined within SBRC special screening programme to diagnose thyroid diseases. At present, this DNA and biological material bank includes 5,988 units of storage (DNA samples extracted by means of standard method, DNA work samples isolated by quick extraction method, and spare blood samples). For every donor there has been obtained an informed consent. Storage conditions comply with technical regulations and provide for long-term (for decades) safety of the material. Personal information on DNA donors (age, internal and external doses, length of service, occupational data and case history) is contained in the Regional Medicodosimetric Register. Currently work is underway to create RNA bank identical to the existing DNA bank. For each person this bank contains two units of storage: the main high quality RNA sample isolated by hot phenol extraction; a work sample - of single stranded cDNA, extracted on RNA matrix through reverse transcription reaction. RNA bank will allow complex study of radiation effects in low dose range on the transcript of nuclear production workers and people living nearby. Thus, SBNC DNA and biological material bank

  18. Removal of Review and Reclassification Procedures for Biological Products Licensed Prior to July 1, 1972. Final rule.

    Science.gov (United States)

    2016-02-12

    The Food and Drug Administration (FDA, the Agency, or we) is removing two regulations that prescribe procedures for FDA's review and classification of biological products licensed before July 1, 1972. FDA is taking this action because the two regulations are obsolete and no longer necessary in light of other statutory and regulatory authorities established since 1972, which allow FDA to evaluate and monitor the safety and effectiveness of all biological products. In addition, other statutory and regulatory authorities authorize FDA to revoke a license for biological products because they are not safe and effective, or are misbranded. FDA is taking this action as part of its retrospective review of its regulations to promote improvement and innovation. PMID:26878738

  19. Biological Production of Methane from Lunar Mission Solid Waste: An Initial Feasibility Assessment

    Science.gov (United States)

    Strayer, Richard; Garland, Jay; Janine, Captain

    A preliminary assessment was made of the potential for biological production of methane from solid waste generated during an early planetary base mission to the moon. This analysis includes: 1) estimation of the amount of biodegradable solid waste generated, 2) background on the potential biodegradability of plastics given their significance in solid wastes, and 3) calculation of potential methane production from the estimate of biodegradable waste. The completed analysis will also include the feasibility of biological methane production costs associated with the biological processing of the solid waste. NASA workshops and Advanced Life Support documentation have estimated the projected amount of solid wastes generated for specific space missions. From one workshop, waste estimates were made for a 180 day transit mission to Mars. The amount of plastic packaging material was not specified, but our visual examination of trash returned from stocktickerSTS missions indicated a large percentage would be plastic film. This plastic, which is not biodegradable, would amount to 1.526 kgdw crew-1 d-1 or 6.10 kgdw d-1 for a crew of 4. Over a mission of 10 days this would amount to 61 kgdw of plastics and for an 180 day lunar surface habitation it would be nearly 1100 kgdw . Approx. 24 % of this waste estimate would be biodegradable (human fecal waste, food waste, and paper), but if plastic packaging was replaced with biodegradable plastic, then 91% would be biodegradable. Plastics are man-made long chain polymeric molecules, and can be divided into two main groups; thermoplastics and thermoset plastics. Thermoplastics comprise over 90% of total plastic use in the placecountry-regionUnited States and are derived from polymerization of olefins via breakage of the double bond and subsequent formation of additional carbon to carbon bonds. The resulting sole-carbon chain polymers are highly resistant to biodegradation and hydrolytic cleavage. Common thermoplastics include low

  20. Nutrient availability affects pigment production but not growth in lichens of biological soil crusts

    Science.gov (United States)

    Bowker, M.A.; Koch, G.W.; Belnap, J.; Johnson, N.C.

    2008-01-01

    Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily P, K, and Zn) had a suppressive effect on gross photosynthesis (P = 0.05). We also monitored the growth and physiological status of our microcosms and found that other nutrients increased the production of scytonemin, an important sunscreen pigment, but only when not added with Mn (P = 0.01). A structural equation model indicated that this effect was independent of any photosynthesis-related variable. We propose two alternative hypotheses to account for this pattern: (1) Mn suppresses processes needed to produce scytonemin; and (2) Mn is required to suppress scytonemin production at low light, when it is an unnecessary photosynthate sink. Although Mn fertilization does not appear likely to increase photosynthesis or growth of Collema, it could have a role in survivorship during environmentally stressful periods due to modification of scytonemin production. Thus, Mn enrichment should be studied further for its potential to facilitate BSC rehabilitation. ?? 2008 Elsevier Ltd.

  1. REDUCING OF EXCESS SLUDGE PRODUCTION IN WASTEWATER TREATMENT USING COMBINED ANAEROBIC/AEROBIC SUBMERGED BIOLOGICAL FILTERS

    Directory of Open Access Journals (Sweden)

    M. A. Baghapour

    2011-09-01

    Full Text Available In this research, possibility of reducing excess sludge production in wastewater treatment was investigated using a combined anaerobic and aerobic submerged biological filter in a pilot scale. The physical model designed, erected and operated consisted of two pipes of PVC type with 147mm and 237mm diameter used as aerobic and anaerobic filters, respectively. The effective height of porous media in these filters was 70cm. Two filters were connected to eachother in a series form and the resulted system was loaded using synthetic wastewater based on sucrose in the range of 1.91 to 30.61 kg/m3 for anaerobic filter and 1.133 to 53.017 kg/m3 for aerobic filter. For similar loadings, the aerobic filter showed efficiency of 1.8 times that of anaerobic filter in removal of soluble COD. Return of 100% flow from the aerobic filter to the anaerobic filter for 30kg/m3.d of organic loading increased the efficiencies of the anaerobic filter, the aerobic filter and the combined system as 17%, 14% and 15%, respectively and the effect of the return of the flow was more pronounced in smaller hydraulic retention times and larger loadings. 100% return of the flow reduced the yield coefficient for the whole system to 0.037 for 53 kg/m3 loading which is a suitable value with regard to the scheme and no use of chemical materials such as chlorine and ozone. This coefficient reached a value as small as 0.007 in common loadings (7.5kg/m3 for 100% return of the flow which is very close to zero. So, this method could be considered as a complete biological treatment with low excess sludge and could be assessed in full scale.

  2. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties.

    Science.gov (United States)

    Osińska-Jaroszuk, Monika; Jarosz-Wilkołazka, Anna; Jaroszuk-Ściseł, Jolanta; Szałapata, Katarzyna; Nowak, Artur; Jaszek, Magdalena; Ozimek, Ewa; Majewska, Małgorzata

    2015-12-01

    Fungal polysaccharides (PSs) are the subject of research in many fields of science and industry. Many properties of PSs have already been confirmed and the list of postulated functions continues to grow. Fungal PSs are classified into different groups according to systematic affinity, structure (linear and branched), sugar composition (homo- and heteropolysaccharides), type of bonds between the monomers (β-(1 → 3), β-(1 → 6), and α-(1 → 3)) and their location in the cell (cell wall PSs, exoPSs, and endoPSs). Exopolysaccharides (EPSs) are most frequently studied fungal PSs but their definition, classification, and origin are still not clear and should be explained. Ascomycota and Basidiomycota fungi producing EPS have different ecological positions (saprotrophic and endophytic, pathogenic or symbiotic-mycorrhizae fungi); therefore, EPSs play different biological functions, for example in the protection against environmental stress factors and in interactions with other organisms. EPSs obtained from Ascomycota and Basidiomycota fungal cultures are known for their antioxidant, immunostimulating, antitumor, and antimicrobial properties. The major objective of the presented review article was to provide a detailed description of the state-of-the-art knowledge of the effectiveness of EPS production by filamentous and yeast Ascomycota and Basidiomycota fungi and techniques of derivation of EPSs, their biochemical characteristics, and biological properties allowing comprehensive analysis as well as indication of similarities and differences between these fungal groups. Understanding the role of EPSs in a variety of processes and their application in food or pharmaceutical industries requires improvement of the techniques of their derivation, purification, and characterization. The detailed analyses of data concerning the derivation and application of Ascomycota and Basidiomycota EPSs can facilitate development and trace the direction of application of these EPSs

  3. Removal of anaerobic soluble microbial products in a biological activated carbon reactor

    Institute of Scientific and Technical Information of China (English)

    Xiaojing Dong; Weili Zhou; Shengbing He

    2013-01-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable.Focusing on the biodegradation of anaerobic SMP,the biological activated carbon (BAC) was introduced into the anaerobic system.The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors.The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2,i.e.,BAC) functioned as a polishing step to remove SMP produced in UASB1.The results showed that 90% of the SMP could be removed before granular activated carbon was saturated.After the saturation,the SMP removal decreased to 60% on the average.Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation.A strain of SMP-degrading bacteria,which was found highly similar to Klebsiella sp.,was isolated,enriched and inoculated back to the BAC reactor.When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3·day),the effluent from the BAC reactor could meet the discharge standard without further treatment.Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective,cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  4. Regulatory and information support for evaluation of biological productivity of Ukrainian forests and climate change

    Science.gov (United States)

    Lakyda, Petro; Vasylyshyn, Roman; Lakyda, Ivan

    2013-04-01

    Stabilization and preservation of the planet's climate system today is regarded as one of the most important global political-economic, environmental and social problems of mankind. Rising concentration of carbon dioxide in the planet's atmosphere due to anthropogenic impact is the main reason leading to global climate change. Due to the above mentioned, social demands on forests are changing their biosphere role and function of natural sink of greenhouse gases becomes top priority. It is known that one of the most essential components of biological productivity of forests is their live biomass. Absorption, long-term sequestration of carbon and generation of oxygen are secured by its components. System research of its parametric structure and development of regulatory and reference information for assessment of aboveground live biomass components of trees and stands of the main forest-forming tree species in Ukraine began over twenty-five years ago at the department of forest mensuration and forest inventory of National University of Life and Environmental Sciences of Ukraine, involving staff from other research institutions. Today, regulatory and reference materials for evaluation of parametric structure of live biomass are developed for trees of the following major forest-forming tree species of Ukraine: Scots pine of natural and artificial origin, Crimean pine, Norway spruce, silver fir, pedunculate oak, European beech, hornbeam, ash, common birch, aspen and black alder (P.I. Lakyda et al., 2011). An ongoing process on development of similar regulatory and reference materials for forest stands of the abovementioned forest-forming tree species of Ukraine is secured by scientists of departments of forest management, and forest mensuration and forest inventory. The total experimental research base is 609 temporary sample plots, where 4880 model trees were processed, including 3195 model trees with estimates of live biomass components. Laboratory studies conducted

  5. Wine as a biological fluid: history, production, and role in disease prevention.

    Science.gov (United States)

    Soleas, G J; Diamandis, E P; Goldberg, D M

    1997-01-01

    Wine has been part of human culture for 6,000 years, serving dietary and socio-religious functions. Its production takes place on every continent, and its chemical composition is profoundly influenced by enological techniques, the grape cultivar from which it originates, and climatic factors. In addition to ethanol, which in moderate consumption can reduce mortality from coronary heart disease by increasing high-density lipoprotein cholesterol and inhibiting platelet aggregation, wine (especially red wine) contains a range of polyphenols that have desirable biological properties. These include the phenolic acids (p-coumaric, cinnamic, caffeic, gentisic, ferulic, and vanillic acids), trihydroxy stilbenes (resveratrol and polydatin), and flavonoids (catechin, epicatechin, and quercetin). They are synthesized by a common pathway from phenylalanine involving polyketide condensation reactions. Metabolic regulation is provided by competition between resveratrol synthase and chalcone synthase for a common precursor pool of acyl-CoA derivatives. Polymeric aggregation gives rise, in turn to the viniferins (potent antifungal agents) and procyanidins (strong antioxidants that also inhibit platelet aggregation). The antioxidant effects of red wine and of its major polyphenols have been demonstrated in many experimental systems spanning the range from in vitro studies (human low-density lipoprotein, liposomes, macrophages, cultured cells) to investigations in healthy human subjects. Several of these compounds (notably catechin, quercetin, and resveratrol) promote nitric oxide production by vascular endothelium; inhibit the synthesis of thromboxane in platelets and leukotriene in neutrophils, modulate the synthesis and secretion of lipoproteins in whole animals and human cell lines, and arrest tumour growth as well as inhibit carcinogenesis in different experimental models. Target mechanisms to account for these effects include inhibition of phospholipase A2 and cyclo

  6. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant.

    Science.gov (United States)

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Lukasz

    2012-05-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l(-1) nitrate, 4.8 mg l(-1) nitroglycerin, 1.9 mg l(-1) nitroglycol and 1,200 mg l(-1) chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic conditions was used. Complete removal of nitrates with simultaneous elimination of nitroglycerin and ethylene glycol dinitrate (nitroglycol) was achieved as a result of the conducted research. Specific nitrate reduction rate was estimated at 12.3 mg N g(-1) VSS h(-1). Toxicity of wastewater samples during the denitrification process was studied by measuring the activity of dehydrogenases in the activated sludge. Mutagenicity was determined by employing the Ames test. The maximum mutagenic activity did not exceed 0.5. The obtained results suggest that the studied wastewater samples did not exhibit mutagenic properties. PMID:22593607

  7. A biological/chemical process for reduced waste and energy consumption: caprolactam production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable to metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.

  8. The classification of gene products in the molecular biology domain: Realism, objectivity, and the limitations of the Gene Ontology

    OpenAIRE

    Mayor, Charlie

    2012-01-01

    Background: Controlled vocabularies in the molecular biology domain exist to facilitate data integration across database resources. One such tool is the Gene Ontology (GO), a classification designed to act as a universal index for gene products from any species. The Gene Ontology is used extensively in annotating gene products and analysing gene expression data, yet very little research exists from a library and information science perspective exploring the design principles, philosophy and s...

  9. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  10. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Science.gov (United States)

    2010-07-01

    ... Human Services that applicant did not act with due diligence; (iii) One-half the number of days... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human...

  11. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    OpenAIRE

    Birkhofer, Klaus; Bezemer, TM; . Bloem, J.; Bonkowski, M.; Christensen, S; Dubois, David; Ekelund , F; Fließbach, Andreas; Gunst, Lucie; K. Hedlund; Mäder, Paul; Mikola, J.; Robin, C.; Setälä, Heikki; Tatin-Froux , F

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences ...

  12. Long-term organic farming fosters below- and aboveground biota: Implications for soil quality, biological control and productivity

    OpenAIRE

    Birkhofer, K.; Bezemer, TM; . Bloem, J.; Bonkowski, M.; Christensen, S; Dubois, D; Ekelund , F; Fließbach, A.; Gunst , L; K. Hedlund; Mäder, P.; Mikola, J.; Robin, C.; Setälä , H; Tatin-Froux , F

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differenc...

  13. Long-term organic farming fosters below- and aboveground biota: Implications for soil quality, biological control, and productivity

    OpenAIRE

    Birkhofer, Klaus; Bezemer, T. Martijn; Bloem, Jaap; Bonkowski, Michael; Christensen, Søren; Dubois, David; Ekelund, Fleming; Fließbach, Andreas; Gunst, Lucie; Hedlund, Katarina; Mäder, Paul; Mikola, Juha; Robin, Christophe; Setälä, Heikki; Tatin-Froux, Fabienne

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences ...

  14. Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide

    NARCIS (Netherlands)

    Jourdin, Ludovic; Lu, Yang; Flexer, Victoria; Keller, Jurg; Freguia, Stefano

    2016-01-01

    Electron-transfer pathways occurring in biocathodes are still unknown. We demonstrate here that high rates of acetate production by microbial electrosynthesis are mainly driven by an electron flux from the electrode to carbon dioxide, occurring via biologically induced hydrogen, with (99±1)% elec

  15. Doing Gener in Brazilian Biology: Obstacles and Prejudices on Knowledge Production within the FAFESP Genome Proyect

    Directory of Open Access Journals (Sweden)

    Conceição da Costa, Maria

    2008-10-01

    Full Text Available This article aims to analyse the participation of women scientist in knowledge production within the Genome Project sponsored by FAPESP (The State of São Paulo Research Foundation. Between 1997 and 2003, FAPESP invested approximately 33 million euros to develop the FAPESP Genome Project (PGF, generating major changes in Molecular Biology in Brazil: institutions devoted to fostering science and technology have been investing large sum of money; bioinformatics became one of the fields with great demand for professionals, and the results of the Xylella Genome Project, first organism sequenced in Brazil, were published in several international scientific journals including Nature, and Brazil became the first country to develop genome projects outside USA, Europe and Japan. As a consequence of this process, women scientists were loosing space as “spokespersons of this new science”, playing secondary roles at the project.Este artículo tiene como objetivo analizar la participación de las mujeres en la producción de conocimiento del proyecto genoma financiado por la FAPESP (Fundación de Apoyo a la Investigación del Estado de São Paulo. Entre 1997 y 2003, FAPESP invirtió aproximadamente 33 millones de euros en el desarrollo del Proyecto Genoma Fapesp (PGF, provocando importantes cambios en la Biología Molecular brasileña: las instituciones de fomento a la investigación comenzaron a promoverla con grandes financiaciones; la bioinformática se tornó uno de los campos con mayor demanda de profesionales y, por fin, los resultados del Proyecto Genoma de la Xylella Fastidiosa, primer organismo vivo secuenciado en Brasil, se publicaron en revistas científicas internacionales, como Nature. Con ello se convierte en el primer país fuera de la tríada EUA-Europa-Japón en desarrollar proyectos genoma. Como consecuencia del proceso, las mujeres están perdiendo espacio como “portavoces de esta nueva ciencia”, ocupando papeles secundarios en el

  16. Predictive Analyses of Biological Effects of Natural Products: From Plant Extracts to Biomolecular Laboratory and Computer Modeling

    Directory of Open Access Journals (Sweden)

    Roberto Gambari

    2011-01-01

    Full Text Available Year by year, the characterization of the biological activity of natural products is becoming more competitive and complex, with the involvement in this research area of experts belonging to different scientific fields, including chemistry, biochemistry, molecular biology, immunology and bioinformatics. These fields are becoming of great interest for several high-impact scientific journals, including eCAM. The available literature in general, and a survey of reviews and original articles recently published, establishes that natural products, including extracts from medicinal plants and essential oils, retain interesting therapeutic activities, including antitumor, antiviral, anti-inflammatory, pro-apoptotic and differentiating properties. In this commentary, we focus attention on interest in networks based on complementary activation and comparative evaluation of different experimental strategies applied to the discovery and characterization of bioactive natural products. A representative flow chart is shown in the paper.

  17. Changes in biological productivity along the northwest African margin over the past 20,000 years

    Science.gov (United States)

    Bradtmiller, Louisa I.; McGee, David; Awalt, Mitchell; Evers, Joseph; Yerxa, Haley; Kinsley, Christopher W.; deMenocal, Peter B.

    2016-01-01

    The intertropical convergence zone and the African monsoon system are highly sensitive to climate forcing at orbital and millennial timescales. Both systems influence the strength and direction of the trade winds along northwest Africa and thus directly impact coastal upwelling. Sediment cores from the northwest African margin record upwelling-related changes in biological productivity connected to changes in regional and hemispheric climate. We present records of 230Th-normalized biogenic opal and Corg fluxes using a meridional transect of four cores from 19°N-31°N along the northwest African margin to examine changes in paleoproductivity since the last glacial maximum. We find large changes in biogenic fluxes synchronous with changes in eolian fluxes calculated using end-member modeling, suggesting that paleoproductivity and dust fluxes were strongly coupled, likely linked by changes in wind strength. Opal and Corg fluxes increase at all sites during Heinrich Stadial 1 and the Younger Dryas, consistent with an overall intensification of the trade winds, and changes in the meridional flux gradient indicate a southward wind shift at these times. Biogenic fluxes were lowest, and the meridional flux gradients were weakest during the African Humid Period when the monsoon was invigorated due to precessional changes, with greater rainfall and weaker trade winds over northwest Africa. These results expand the spatial coverage of previous paleoproxy studies showing similar changes, and they provide support for modeling studies showing changes in wind strength and direction consistent with increased upwelling during abrupt coolings and decreased upwelling during the African Humid Period.

  18. Photolytic transformation products and biological stability of the hydrological tracer Uranine.

    Science.gov (United States)

    Gutowski, Lukasz; Olsson, Oliver; Lange, Jens; Kümmerer, Klaus

    2015-11-15

    Among many fluorescence tracers, Uranine (sodium fluorescein, UR) has most widely been used in hydrological research. Extensive use of UR for tracing experiments or commercial use might cause a potential risk of long-term environmental contamination. As any organic substance released to the environment, also UR is subjected to chemical and physical reactions that can be chemical, biological and photolysis processes. These processes transform the parent compound (PC) and have not been extensively investigated for UR. This study applies two OECDs (301 D and 301 F) tests and a screening water sediment test (WST) to investigate the biodegradability of the PC. Photolysis in water was explored by Xe lamp irradiation. Subsequently, the biodegradability of the photolysis mixtures was examined. The primary elimination of UR was monitored and structures of its transformation products (TPs) were elucidated by HPLC-FLD-MS/MS. UR was found not readily biodegradable, although small degradation rates could be observed in the OECD 301 D and WST. HPLC-FLD analysis showed high primary elimination of the tracer during photolysis. However, the low degree of mineralization found indicates that the UR was not fully degraded, instead transformed to TPs. A total of 5 photo-TPs were identified. According to MS/MS data, chemical structures could be proposed for all identified photo-TPs. Likewise the parent compound it was demonstrated that photo-TPs were largely recalcitrant to microbial degradation. Although we did not find indications for toxicity, target-oriented studies on the environmental impact of these photo-TPs are warranted. Results obtained in this study show that deeper investigations are necessary to fully understand fate and risk connected to the use of UR. PMID:26179782

  19. What controls biological production in coastal upwelling systems? Insights from a comparative modeling study

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-10-01

    Full Text Available The magnitude of net primary production (NPP in Eastern Boundary Upwelling Systems (EBUS is traditionally viewed as directly reflecting the wind-driven upwelling intensity. Yet, different EBUS show different sensitivities of NPP to upwelling-favorable winds (Carr and Kearns, 2003. Here, using a comparative modeling study of the California Current System (California CS and Canary Current System (Canary CS, we show how physical and environmental factors, such as light, temperature and cross-shore circulation modulate the response of NPP to upwelling strength. To this end, we made a series of eddy-resolving simulations of the two upwelling systems using the Regional Oceanic Modeling System (ROMS, coupled to a nitrogen-based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD ecosystem model. Using identical ecological/biogeochemical parameters, our coupled model simulates a level of NPP in the California CS that is 50 % smaller than that in the Canary CS, in agreement with observationally based estimates. We find this much lower NPP in the California CS despite phytoplankton in this system having nearly 20 % higher nutrient concentrations available to fuel their growth. This conundrum can be explained by: (1 phytoplankton having a faster nutrient-replete growth in the Canary CS relative to the California CS; a consequence of more favorable light and temperature conditions in the Canary CS, and (2 the longer nearshore water residence times in the Canary CS, which permit a larger buildup of biomass in the upwelling zone, thereby enhancing NPP. The longer residence times in the Canary CS appear to be a result of the wider continental shelves and the lower mesoscale activity characterizing this upwelling system. This results in a weaker offshore export of nutrients and organic matter, thereby increasing local nutrient recycling and reducing the spatial decoupling between new and export production in the Canary CS. Our results suggest that climate change

  20. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    DEFF Research Database (Denmark)

    Birkhofer, K.; Bezemer, TM; Bloem, J;

    2008-01-01

     Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological...... promoting negative environmental impacts of agriculture by reducing internal biological cycles and pest control. On the contrary, organic farming fosters microbial and faunal decomposers and this propagates into the aboveground system via generalist predators thereby increasing conservation biological...... of aboveground herbivore pests (aphids) in these systems. Long-term organic farming and the application of farmyard manure promoted soil quality, microbial biomass and fostered natural enemies and ecosystem engineers, suggesting enhanced nutrient cycling and pest control. Mineral fertilizers and herbicide...

  1. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    Science.gov (United States)

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype. PMID:25796071

  2. High-throughput assay for optimising microbial biological control agent production and delivery

    Science.gov (United States)

    Lack of technologies to produce and deliver effective biological control agents (BCAs) is a major barrier to their commercialization. A myriad of variables associated with BCA cultivation, formulation, drying, storage, and reconstitution processes complicates agent quality maximization. An efficie...

  3. Exploratory research on bioactive natural products with a focus on biological phenomena

    OpenAIRE

    Uemura, Daisuke

    2010-01-01

    The discovery of new basic compounds holds the key for advancing material sciences. We have focused on the identification and characterization of natural key compounds that control biologically and physiologically intriguing phenomena. The discovery of new bioactive molecules, facilitated by a deeper understanding of nature, should advance our knowledge of biological processes and lead to new strategies to treat disease. The structure and function of natural compounds are sometimes unexpected...

  4. Distributions of inorganic nitrogen and biological production in the equatorial Pacific: a basin-scale model sensitivity study of nitrification

    Science.gov (United States)

    Wang, Xiujun; Murtugudde, Raghu

    2015-12-01

    Recent evidence indicates that there is stronger nitrification in the euphotic zone than previously thought. We employ a physical-biogeochemical model to study the implications of nitrification for basin-scale distributions of nitrate, ammonium, and biological production in the equatorial Pacific. The model can faithfully reproduce observed features in nitrate distribution, with or without photoinhibition of nitrification in the euphotic zone. In addition, new production, net community production and export production are not very sensitive to the parameterization of nitrification in this model. However, simulated ammonium distribution, nitrate uptake and ammonium uptake are sensitive to this parameterization. High nitrification results in low ammonium concentration, low ammonium uptake rate, and high nitrate uptake rate in the euphotic zone. This study suggests that nitrification may be responsible for up to 40% of nitrate uptake in the equatorial Pacific. This modeling study also demonstrates large differences (in terms of the magnitude and spatial distribution) between nitrate uptake, new production and export production, reflecting decoupling of upward nutrient supply, biological uptake and downward export.

  5. Parameterizing ice-edge biological productivity in a changing Arctic: Growth factors associated with specific ice provenances

    Science.gov (United States)

    Sambrotto, R.

    2015-12-01

    Sea ice plays a significant role in the ecology of polar seas and a significant portion of the biological production in the Arctic occurs at ice edges. These environments are inherently variable in space and time and subject to climate variation as the summer ice extent changes. Recent field results from the northern Bering Sea suggest that the parameterization of ice edge production in coupled physical-biological models that ignore processes specific to the ice-melt environment will be insufficient to describe the variability and intensity of Arctic production. In addition to the stabilizing the surface layer, ice may contribute phytoplankton growth factors such as trace metals that have been derived from the regions of ice formation as well as aeolian deposition. Results of an analysis of sea ice formation, flow and melt suggests regions that are likely to receive trace metals from ice and has been validated with regions of known ice edge productivity in the Bering Sea. A similar analysis for the Chukchi Sea compared the likely ice-edge productivity regions between pre-2000 ice conditions and those in the more recent period of reduced summer ice cover. Changes are predicted in both the timing and distribution of these regions in proportion to the variations in the dominant ice flow patterns. Ways in which the non-local processes important to elevated ice edge productivity can be incorporated into couple arctic models will be discussed.

  6. Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Papoutsakis, Elefterios [Univ. of Delaware, Newark, DE (United States)

    2015-04-30

    This is the final project report for project "Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production" for the funding period of 9/1/12 to 2/28/2015 (three years with a 6-month no-cost extension) OVERVIEW AND PROJECT GOALS The bottleneck of achieving higher rates and titers of toxic metabolites (such as solvents and carboxylic acids that can used as biofuels or biofuel precursors) can be overcome by engineering the stress response system. Thus, understanding and modeling the response of cells to toxic metabolites is a problem of great fundamental and practical significance. In this project, our goal is to dissect at the molecular systems level and build models (conceptual and quantitative) for the stress response of C. acetobutylicum (Cac) to its two toxic metabolites: butanol (BuOH) and butyrate (BA). Transcriptional (RNAseq and microarray based), proteomic and fluxomic data and their analysis are key requirements for this goal. Transcriptional data from mid-exponential cultures of Cac under 4 different levels of BuOH and BA stress was obtained using both microarrays (Papoutsakis group) and deep sequencing (RNAseq; Meyers and Papoutsakis groups). These two sets of data do not only serve to validate each other, but are also used for identification of stress-induced changes in transcript levels, small regulatory RNAs, & in transcriptional start sites. Quantitative proteomic data (Lee group), collected using the iTRAQ technology, are essential for understanding of protein levels and turnover under stress and the various protein-protein interactions that orchestrate the stress response. Metabolic flux changes (Antoniewicz group) of core pathways, which provide important information on the re-allocation of energy and carbon resources under metabolite stress, were examined using 13C-labelled chemicals. Omics data are integrated at different levels and scales. At the metabolic-pathway level, omics data are integrated into a 2nd generation genome

  7. Photolytic transformation products and biological stability of the hydrological tracer Uranine

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, Lukasz, E-mail: gutowski@leuphana.de; Olsson, Oliver, E-mail: oliver.olsson@leuphana.de; Lange, Jens, E-mail: jens.lange@hydrology.uni-freiburg.de; Kümmerer, Klaus, E-mail: Klaus.Kuemmerer@uni.leuphana.de

    2015-11-15

    Among many fluorescence tracers, Uranine (sodium fluorescein, UR) has most widely been used in hydrological research. Extensive use of UR for tracing experiments or commercial use might cause a potential risk of long-term environmental contamination. As any organic substance released to the environment, also UR is subjected to chemical and physical reactions that can be chemical, biological and photolysis processes. These processes transform the parent compound (PC) and have not been extensively investigated for UR. This study applies two OECDs (301 D and 301 F) tests and a screening water sediment test (WST) to investigate the biodegradability of the PC. Photolysis in water was explored by Xe lamp irradiation. Subsequently, the biodegradability of the photolysis mixtures was examined. The primary elimination of UR was monitored and structures of its transformation products (TPs) were elucidated by HPLC–FLD–MS/MS. UR was found not readily biodegradable, although small degradation rates could be observed in the OECD 301 D and WST. HPLC–FLD analysis showed high primary elimination of the tracer during photolysis. However, the low degree of mineralization found indicates that the UR was not fully degraded, instead transformed to TPs. A total of 5 photo-TPs were identified. According to MS/MS data, chemical structures could be proposed for all identified photo-TPs. Likewise the parent compound it was demonstrated that photo-TPs were largely recalcitrant to microbial degradation. Although we did not find indications for toxicity, target-oriented studies on the environmental impact of these photo-TPs are warranted. Results obtained in this study show that deeper investigations are necessary to fully understand fate and risk connected to the use of UR. - Highlights: • Uranine (UR) was not biodegraded in water and water-sediment system (WST). • Only small degradation rate occurred in OECD 301 D and WST. • Photolysis leads to incomplete mineralization of UR.

  8. [Comparative biological value of the proteins comprising the products for the tube and regular feeding of patients with mandibular fractures].

    Science.gov (United States)

    Kholodov, S V; Vitollo, A S; Kalamkarova, O M; Rud'ko, V F; Vysotskiĭ, V G

    1988-01-01

    A comparative clinical evaluation was made of the biological effectiveness of protein components in the composition of three types of diet for patients with fractures of the mandible who had received "Ensure" (USA), a product for complete tube feeding; an experimental sample developed at the Institute of Nutrition, Academy of Medical Sciences of the USSR; and a routine clinical diet. The biological effectiveness of the proteins was estimated by some anthropometric and biochemical parameters as well as on the basis of nitrogenous metabolism in the patients. It has been established that the protein content in the routine clinical diets does not meet the high requirements in amino acids of patients with fracture of the mandible. In this respect the products for tube and dietotherapy have proved to be effective and completely provide the need of such patients in essential amino acids that has been evidenced by the results of the investigations conducted. PMID:3146160

  9. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus

    OpenAIRE

    Neale, P.J.; A. L. Pritchard; R. Ihnacik

    2014-01-01

    A model that predicts UV effects on marine primary productivity using a biological weighting function (BWF) coupled to the photosynthesis–irradiance response (BWF/P-E model) has been implemented for two strains of the picoplanktonic cyanobacteria Synechococcus, WH7803 and WH8102, which were grown at two irradiances (77 and 174 μmol m−2 s−1 photosynthetically available radiation (PAR)) and two temperatures (20 and 26 °C). The model was fit using photosynthesis measured in a ...

  10. High performance liquid chromatography-tandem mass spectrometry of pharmaceuticals and personal care products in environmental and biological matrices

    OpenAIRE

    Purcell, Martha

    2009-01-01

    Pharmaceuticals and personal care products (PPCPs) have emerged in recent years as a new class of chemical and biological pollutants in our environment. In the search for suitably sensitive and specific techniques for detection of these compounds at very low concentrations, liquid chromatography-tandem mass spectrometry (LCMS/ MS) has emerged as the new technique of choice. This work describes methods for screening and quantification of various pharmaceutical and illicit drug residues i...

  11. Mass-energy balance analysis for estimation of light energy conversion in an integrated system of biological H2 production

    OpenAIRE

    A.I. Gavrisheva; B.F. Belokopytov; V.I. Semina; E.S. Shastik; T.V. Laurinavichene; A.A. Tsygankov

    2015-01-01

    The present study investigated an integrated system of biological H2 production, which includes the accumulation of biomass of autotrophic microalgae, dark fermentation of biomass, and photofermentation of the dark fermentation effluent. Particular emphasis was placed on the estimation of the conversion efficiency of light into hydrogen energy at each stage of this system. For this purpose, the mass and energy balance regularities were applied. The efficiency of the energy transformation from...

  12. 77 FR 47397 - Request for Nominations of Specific Drug/Biologic Product(s) That Could Be Brought Before the...

    Science.gov (United States)

    2012-08-08

    ... pediatric oncology product development. DATES: Nominations must be received by September 4, 2012, to receive....gov , and please include the subject line ``Suggested Product for 2012 Pediatric Oncology Subcommittee...) That Could Be Brought Before the Food and Drug Administration's Pediatric Subcommittee of the...

  13. The potential of plants as a system for the development and production of human biologics [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2016-05-01

    Full Text Available The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology.

  14. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles;

    2011-01-01

    Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...... the four denitrification steps, the last one (N2O reduction to N2) seems to be inhibited first when O2 is present. Overall, N2O production can account for 0.1–25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we...

  15. Is the biological productivity in the Bay of Bengal light limited?

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Narvekar, J.; Nuncio, M.; Kumar, A.; Ramaiah, N.; Sardessai, S.; Gauns, M.; Fernandes, V.; Paul, J.

    Recent measurements of chlorophyll, primary productivity (PP) and nutrients along the central Bay of Bengal (BOB) during summer, fall and spring intermonsoons showed that the northern bay becomes less productive compared to the south in summer...

  16. 76 FR 36019 - Amendments to Sterility Test Requirements for Biological Products

    Science.gov (United States)

    2011-06-21

    ... or other material (e.g., bulk material or active pharmaceutical ingredient (API), in-process material... November 20, 1973 (38 FR 32048), we reorganized and republished the biologics regulations, which included... requirements. On March 11, 1976 (41 FR 10427) and March 2, 1979 (44 FR 11754), we updated Sec. 610.12...

  17. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...

  18. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt; Nielsen, Peter Borch; Boe-Hansen, Rasmus;

    2016-01-01

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzy...

  19. 76 FR 13646 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-03-14

    ... personal privacy (5 U.S.C. 552b(c)(6)). The committee will discuss the report of the intramural research... the Agency on FDA's regulatory issues. Date and Time: The meeting will be held on April 6, 2011... Person: Donald W. Jehn or Denise Royster, Center for Biologics Evaluation and Research (HFM-71), Food...

  20. Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Bovenberg, Roel; Takano, Eriko

    2011-01-01

    One of the most promising applications of synthetic biology is the biosynthesis of new drugs from secondary metabolites. Here, we survey a wide range of strategies that control the activity of biosynthetic modules in the cell in space and time, and illustrate how these strategies can be used to desi

  1. Correlation of Arsenic Levels in Smokeless Tobacco Products and Biological Samples of Oral Cancer Patients and Control Consumers.

    Science.gov (United States)

    Arain, Sadaf S; Kazi, Tasneem G; Afridi, Hassan I; Talpur, Farah N; Kazi, Atif G; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Kamboh, Muhammad A

    2015-12-01

    It has been extensively reported that chewing of smokeless tobacco (SLT) can lead to cancers of oral cavity. In present study, the relationship between arsenic (As) exposure via chewing/inhaling different SLT products in oral cancer patients have or/not consumed SLT products was studied. The As in different types of SLT products (gutkha, mainpuri, and snuff) and biological (scalp hair and blood) samples of different types of oral cancer patients and controls were analyzed. Both controls and oral cancer patients have same age group (ranged 30-60 years), socio-economic status, localities, and dietary habits. The concentrations of As in SLT products and biological samples were measured by electrothermal atomic absorption spectrophotometer after microwave-assisted acid digestion. The validity and accuracy of the methodology were checked by certified reference materials. The resulted data of present study indicates that the concentration of As was significantly higher in scalp hair and blood samples of oral cancer patients than those of controls (p0.01). The intake of As via consuming different SLT may have synergistic effects, in addition to other risk factors associated with oral cancer.

  2. Correlation of Arsenic Levels in Smokeless Tobacco Products and Biological Samples of Oral Cancer Patients and Control Consumers.

    Science.gov (United States)

    Arain, Sadaf S; Kazi, Tasneem G; Afridi, Hassan I; Talpur, Farah N; Kazi, Atif G; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Kamboh, Muhammad A

    2015-12-01

    It has been extensively reported that chewing of smokeless tobacco (SLT) can lead to cancers of oral cavity. In present study, the relationship between arsenic (As) exposure via chewing/inhaling different SLT products in oral cancer patients have or/not consumed SLT products was studied. The As in different types of SLT products (gutkha, mainpuri, and snuff) and biological (scalp hair and blood) samples of different types of oral cancer patients and controls were analyzed. Both controls and oral cancer patients have same age group (ranged 30-60 years), socio-economic status, localities, and dietary habits. The concentrations of As in SLT products and biological samples were measured by electrothermal atomic absorption spectrophotometer after microwave-assisted acid digestion. The validity and accuracy of the methodology were checked by certified reference materials. The resulted data of present study indicates that the concentration of As was significantly higher in scalp hair and blood samples of oral cancer patients than those of controls (p0.01). The intake of As via consuming different SLT may have synergistic effects, in addition to other risk factors associated with oral cancer. PMID:25975948

  3. The Potential Role of Nuclear Techniques in Support of the Production of Biological Control Agents of Insect Pests

    International Nuclear Information System (INIS)

    While nuclear techniques could play a vital role in enabling cost-effective mass production of beneficial insects for use in augmentative biological control, surprisingly little use has been made of these techniques or ionizing radiation produced by other means (e.g., x-rays or electron beams from linear accelerators) for mass rearing beneficial insects. This technology has been available for quite some time, having been used to reproductively sterilize screwworm flies as early as 1951 (Bushland and Hopkins). Similarly, gamma radiation has been accepted internationally for human food preservation and disinfestation for many years (Anon., 1995). Quite a number of gamma radiation sources exist at or near USDA ARS and APHIS facilities throughout the U.S., as well as in many universities. Still, relatively little use has been made of this approach to assist in mass rearing of beneficial insects for use in augmentative biological control. As pointed out by Benbrook (1996), pest management is at a crossroads, and there still is a great need for new, biointensive pest management strategies. Nuclear techniques should play an increasing role in the future, as the overall thrust of biological control moves more and more toward augmentative releases (Knipling, 1992). It is the intent of this presentation to review some of the existing and potential uses that can be made of nuclear techniques and other sources of ionizing radiation in support of the biological control of insect pests. (author)

  4. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    OpenAIRE

    Celio I Chagas; Filipe B. Kraemer; Oscar J. Santanatoglia; Marta Paz; Juan Moretton

    2014-01-01

    Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in ...

  5. Time-Course Global Expression Profiles of Chlamydomonas reinhardtii during Photo-Biological H2 Production

    OpenAIRE

    Anh Vu Nguyen; Joerg Toepel; Steven Burgess; Andreas Uhmeyer; Olga Blifernez; Anja Doebbe; Ben Hankamer; Peter Nixon; Lutz Wobbe; Olaf Kruse

    2011-01-01

    We used a microarray study in order to compare the time course expression profiles of two Chlamydomonas reinhardtii strains, namely the high H₂ producing mutant stm6glc4 and its parental WT strain during H₂ production induced by sulfur starvation. Major cellular reorganizations in photosynthetic apparatus, sulfur and carbon metabolism upon H₂ production were confirmed as common to both strains. More importantly, our results pointed out factors which lead to the higher H₂ production in the mut...

  6. MODIS vegetation products as proxies of photosynthetic potential: a look across meteorological and biologic driven ecosystem productivity

    Science.gov (United States)

    Restrepo-Coupe, N.; Huete, A.; Davies, K.; Cleverly, J.; Beringer, J.; Eamus, D.; van Gorsel, E.; Hutley, L. B.; Meyer, W. S.

    2015-12-01

    A direct relationship between gross ecosystem productivity (GEP) measured by the eddy covariance (EC) method and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices (VIs) has been observed in many temperate and tropical ecosystems. However, in Australian evergreen forests, and particularly sclerophyll woodlands, MODIS VIs do not capture seasonality of GEP. In this study, we re-evaluate the connection between satellite and flux tower data at four contrasting Australian ecosystems, through comparisons of ecosystem photosynthetic activity (GEP) and potential (e.g. ecosystem light use efficiency and quantum yield) with MODIS vegetation satellite products, including VIs, gross primary productivity (GPPMOD), leaf area index (LAIMOD), and fraction of photosynthetic active radiation (fPARMOD). We found that satellite derived greenness products constitute a measurement of ecosystem structure (e.g. leaf area index - quantity of leaves) and function (e.g. leaf level photosynthetic assimilation capacity - quality of leaves), rather than productivity. Our results show that in primarily meteorological-driven (e.g. photosynthetic active radiation, air temperature and/or precipitation) and relatively aseasonal vegetation photosynthetic potential ecosystems (e.g. evergreen wet sclerophyll forests), there were no statistically significant relationships between GEP and satellite derived measures of greenness. In contrast, for phenology-driven ecosystems (e.g. tropical savannas), changes in the vegetation status drove GEP, and tower-based measurements of photosynthetic activity were best represented by VIs. We observed the highest correlations between MODIS products and GEP in locations where key meteorological variables and vegetation phenology were synchronous (e.g. semi-arid Acacia woodlands) and low correlation at locations where they were asynchronous (e.g. Mediterranean ecosystems). Eddy covariance data offer much more than validation and/or calibration of

  7. Biological sand filters: low-cost bioremediation technique for production of clean drinking water.

    Science.gov (United States)

    Lea, Michael

    2014-05-01

    Approximately 1.1 billion people in rural and peri-urban communities of developing countries do not have access to safe drinking water. The mortality from diarrheal-related diseases amounts to ∼2.2 million people each year from the consumption of unsafe water. Most of them are children under 5 years of age--250 deaths an hour from microbiologically contaminated water. There is conclusive evidence that one low-cost household bioremediation intervention, use of biological sand filters, is capable of dramatically improving the microbiological quality of drinking water. This unit will describe this relatively new and proven bioremediation technology's ability to empower at-risk populations to use naturally occurring biological principles and readily available materials as a sustainable way to achieve the health benefits of safe drinking water.

  8. Synthesis and biological evaluation of fatty hydrazides of by-products of oil processing industry

    Directory of Open Access Journals (Sweden)

    Toliwal S

    2009-01-01

    Full Text Available Some new 2-alkyl-5-mercapto-1,3,4-Oxadiazoles and 3-alkyl-5-mercapto-1,2,3-4H triazoles were synthesized from hydrazides of acid oil and oil recovered from spent bleaching earth. These newly synthesized compounds were characterized on the basis of elemental analysis and evaluated for biological properties. Certain derivatives exhibited fairly high antibacterial and antifungal activities when compared with streptomycin and immidil used as standard antibacterial and antifungal agents respectively.

  9. Mass-energy balance analysis for estimation of light energy conversion in an integrated system of biological H2 production

    Directory of Open Access Journals (Sweden)

    A.I. Gavrisheva

    2015-12-01

    Full Text Available The present study investigated an integrated system of biological H2 production, which includes the accumulation of biomass of autotrophic microalgae, dark fermentation of biomass, and photofermentation of the dark fermentation effluent. Particular emphasis was placed on the estimation of the conversion efficiency of light into hydrogen energy at each stage of this system. For this purpose, the mass and energy balance regularities were applied. The efficiency of the energy transformation from light into the microalgal biomass did not exceed 5%. The efficiency of the energy transformation from biomass to biological H2 during the dark fermentation stage stood at about 0.3%. The photofermentation stage using the model fermentation effluent could improve this estimation to 11%, resulting in an overall efficiency 0.55%. Evidently, this scheme is counterproductive for light energy bioconversion due to numerous intermediate steps even if the best published data would be taken into account.

  10. Data-driven, data-intensive computing for modelling and analysis of biological networks: application to bioethanol production

    Science.gov (United States)

    Park, Byung-Hoon; Samatova, Nagiza F.; Karpinets, Tatiana; Jallouk, Andrew; Molony, Scott; Horton, Scott; Arcangeli, Steven

    2007-07-01

    Modelling biological networks is inherently data-driven and data-intensive. The combinatorial nature of this type of modelling, however, requires new methods capable of dealing with the enormous size and irregularity of the search. Searching via 'backtracking' is one possible solution that avoids exhaustive searches by constraining the search space to the subspace of feasible solutions. Despite its wide use in many combinatorial optimization problems, there are currently few parallel implementations of backtracking capable of effectively dealing with the memory-intensive nature of the process and the extremely unbalanced loads present. In this paper, a parallel, scalable, and memory-efficient backtracking algorithm within the context of maximal clique enumeration is presented, and its applicability to large-scale biological networks aimed at studying the mechanisms for efficient bioethanol production is discussed.

  11. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  12. The importance of extremophile cyanobacteria in the production of biologically active compounds

    Directory of Open Access Journals (Sweden)

    Drobac-Čik Aleksandra V.

    2007-01-01

    Full Text Available Due to their ability to endure extreme conditions, terrestrial cyanobacteria belong to a group of organisms known as "extremophiles". Research so far has shown that these organisms posses a great capacity for producing biologically active compounds (BAC. The antibacterial and antifungal activities of methanol extracts of 21 cyanobacterial strains belonging to Anabaena and Nostoc genera, previously isolated from different soil types and water resources in Serbia, were evaluated. In general, larger number of cyanobacterial strains showed antifungal activity. In contrast to Nostoc, Anabaena strains showed greater diversity of antibacterial activity (mean value of percentages of sensitive targeted bacterial strains 3% and 25.9% respectively. Larger number of targeted fungi was sensitive to cultural liquid extract (CL, while crude cell extract (CE affected more bacterial strains. According to this investigation, the higher biological activity of terrestrial strains as representatives of extremophiles may present them as significant BAC producers. This kind of investigation creates very general view of cyanobacterial possibility to produce biologically active compounds but it points out the necessity of exploring terrestrial cyanobacterial extremophiles as potentially excellent sources of these substances and reveals the most prospective strains for further investigations.

  13. The application of residual oats flour in bread production in order to improve its quality and biological value of protein

    Directory of Open Access Journals (Sweden)

    Halina Gambuś

    2011-09-01

    Full Text Available   Background. High nutritional value of residual oat flour, which is a by-product in the production β-D-glucan concentration BETAVEN, was the reason to make a trial to apply it in the production of wheat and wheat-rye bread. The aim of the study was to establish a formulation for wheat and wheat-rye bread, in which part of wheat flour would be replaced by residual oat flour (at the level 20% of wheat flour, and to check the influence of this additive on sensory and nutritional properties of the products, with special consideration to content and biological value of the proteins. Material and methods. The material consisted of wheat flour, rye flour and residual oat flour, as well as loaves, baked with these flours. The quality of the obtained loaves was analysed taking into account: organoleptic assessment, loaf mass and volume, moisture content crumb and texture profile of the crumb. In the studied raw materials and bread, the following components were determined according to AOAC methods: protein content, fat, fiber and ash. In addition, composition of amino acids was assessed. Basing on the amino acid composition, Chemical Score (CS and Exogenic Amino Acid Index (EAAI were calculated, applying WHO/FAO protein standard (1991. Results. Bread with the share of residual oats flour received high consumer acceptance (37 points, comparable to control bread (38 points despite of lower volume. The applied amounts of oats flour did not influence moisture content and texture profile during storage. Wheat and wheat-rye loaves with the share of residual oats flour were characterised by a significantly higher level of dietary fiber, fat and protein, in comparison to control bread. It was found that biological activity of protein in wheat-rye bread was significantly higher (CS = 53.5, EAAI = 91.5 in comparison to wheat bread (CS = 47.9, EAAI = 89.9. The share of oats flour caused an increase in biological value of all bread types – wheat-oats (CS = 52

  14. Biological productivity and potential resources of the exclusive economic zone (EEZ) of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    degree square was calculated from the production data. The potential fishery resources including demersal fishery of the entire EEZ of India worked out to be 3.45 million tones yr sup(-1). Since the annual fishery production is around 2.7 million tones...

  15. Energy balance of biofuel production from biological conversion of crude glycerol.

    Science.gov (United States)

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar D; Surampalli, Rao Y; Valéro, Jose R

    2016-04-01

    Crude glycerol, a by-product of biodiesel production, has gained significant attention as a carbon source for biofuel production. This study evaluated the energy balance of biodiesel, hydrogen, biogas, and ethanol production from 3.48 million L of crude glycerol (80% w/v). The conversion efficiency (energy output divided by energy invested) was 1.16, 0.22, 0.27, and 0.40 for the production of biodiesel, hydrogen, biogas, and ethanol respectively. It was found that the use of crude glycerol for biodiesel production was an energy gain process, with a positive energy balance and conversion efficiency of greater than 1. The energy balance revealed a net energy gain of 5226 GJ per 1 million kg biodiesel produced. Production of hydrogen, biogas and ethanol from crude glycerol were energy loss processes. Therefore, the conversion of crude glycerol to lipids and subsequently to biodiesel is suggested to be a better option compared to hydrogen, biogas, or ethanol production with respect to energy balance.

  16. Form for reporting serious adverse events and product problems with human drug and biological products and devices; availability--FDA. Notice.

    Science.gov (United States)

    1993-06-01

    The Food and Drug Administration (FDA) is announcing the availability of a new form for reporting adverse events and product problems with human drug products, biologic products, medical devices (including in-vitro diagnostics), special nutritional products (dietary supplements, medical foods, infant formulas), and other products regulated by FDA. There are two versions of the form. One version of the form (FDA Form 3500) is available for use by health professionals for voluntary reporting; the other version of the form (FDA Form 3500A) is to be used by user facilities, distributors, and manufacturers for reporting that is required by statute or FDA regulations. The new form will simplify and consolidate the reporting of adverse events and product problems and will enhance agency-wide consistency in the collection of postmarketing data. This notice also responds to written comments the agency received on proposed versions of this form. Copies of both versions of the new form appear at the end of this document. PMID:10171452

  17. Biologic Activities of Honeybee Products Obtained From Different Phytogeographical Regions of Turkey

    Directory of Open Access Journals (Sweden)

    Hamide Doğan

    2014-06-01

    Full Text Available Honeybee products are rich in phenolic compounds, which effect as natural antioxidants. These compounds may be attached as indicators in studies into the floral and geographical origin of the natural bee products. In this study, we aimed to determine average total antioxidant capacity, average total oxidant capacity and average oxidative stress index of natural bee products obtained from different regions of Turkey. Collected honeybee samples were kept at +4o C until extracted. Natural bee products were extracted with specific methods and antioxidant capacities were defined with in vitro analyses and data were compared. As a result, the highest average total antioxidant capacities were observed in propolis and pollen samples. Total antioxidant capacities of honeybee products collected from various regions demonstrated differences (P<0.05 because of different phytogeographical characteristics of regions of Turkey.

  18. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Michael J.; Leak, David J.; Spanu, Pietro D.; Murphy, Richard J. [Division of Biology, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ (United Kingdom); Porter Alliance, Imperial College London, London SW7 2AZ (United Kingdom)

    2010-08-15

    A current barrier to the large-scale production of lignocellulosic biofuels is the cost associated with the energy and chemical inputs required for feedstock pretreatment and hydrolysis. The use of controlled partial biological degradation to replace elements of the current pretreatment technologies would offer tangible energy and cost benefits to the whole biofuel process. It has been known for some time from studies of wood decay that, in the early stages of growth in wood, brown rot fungi utilise a mechanism that causes rapid and extensive depolymerisation of the carbohydrate polymers of the wood cell wall. The brown rot hyphae act as delivery vectors to the plant cell wall for what is thought to be a combination of a localised acid pretreatment and a hydroxyl radical based depolymerisation of the cell wall carbohydrate polymers. It is this quality that we have exploited in the present work to enhance the saccharification potential of softwood forest residues for biofuel production. Here we show that after restricted exposure of pine sapwood to brown rot fungi, glucose yields following enzymatic saccharification are significantly increased. Our results demonstrate the potential of using brown rot fungi as a biological pretreatment for biofuel production. (author)

  19. The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    Directory of Open Access Journals (Sweden)

    Susan M. Rundell

    2015-12-01

    Full Text Available Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sought to determine whether Ecuador’s fungal endophytes are hyperdiverse, and whether that biological diversity is reflected in the endophytes’ chemical diversity. To assess this chemical diversity, we analyzed a subset of isolates for their production of volatile organic compounds (VOCs, a representative class of natural products. This study yielded a total of 1526 fungal ITS sequences comprising some 315 operational taxonomic units (OTUs, resulting in a non-asymptotic OTU accumulation curve and characterized by a Fisher’s α of 120 and a Shannon Diversity score of 7.56. These figures suggest that the Ecuadorian endophytes are hyperdiverse. Furthermore, the 113 isolates screened for VOCs produced more than 140 unique compounds. These results present a mere snapshot of the remarkable biological and chemical diversity of stem-inhabiting endophytic fungi from a single neotropical country.

  20. Heat treatment of curdlan enhances the enzymatic production of biologically active β-(1,3)-glucan oligosaccharides.

    Science.gov (United States)

    Kumagai, Yuya; Okuyama, Masayuki; Kimura, Atsuo

    2016-08-01

    Biologically active β-(1,3)-glucan oligosaccharides were prepared from curdlan using GH64 enzyme (KfGH64). KfGH64 showed low activity toward native curdlan; thereby pretreatment conditions of curdlan were evaluated. KfGH64 showed the highest activity toward curdlan with heat treatment. The most efficient pretreatment (90°C for 0.5h) converted approximately 60% of curdlan into soluble saccharides under the optimized enzyme reaction conditions (pH 5.5, 37°C, 100rpm mixing speed, 24h, and 10μg of KfGH64/1g of curdlan). The resulting products were predominantly laminaripentaose and a small amount of β-(1,3)-glucans with an average degree of polymerization (DP) of 13 and 130. The products did not contain small oligosaccharides (DPhydrolysis of heat-treated curdlan by KfGH64 is a suitable method for the production of biologically active β-(1,3)-glucan oligosaccharides. PMID:27112889

  1. Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures.

    Science.gov (United States)

    Zheng, Xian-Jun; Yu, Han-Qing

    2005-01-01

    In this study batch experiments were conducted to investigate the inhibitory effects of butyrate addition on hydrogen production from glucose by using anaerobic mixed cultures. Experimental results showed that addition of butyrate at 4.18 and 6.27 g/l only slightly inhibited hydrogen production, and addition of butyrate at 8.36-12.54 g/l imposed a moderate inhibitory effect on hydrogen production. At addition of 25.08 g/l, butyrate had a strong inhibitory influence on substrate degradation and hydrogen production. The distribution of the volatile fatty acids produced from the acidogeneisis of glucose was significantly influenced by the addition of butyrate. The inhibition of butyrate addition on hydrogen production was described well by a non-competitive and non-linear inhibition model, with the maximum hydrogen production rate of 59.3 ml/g-SS/h, critical added butyrate concentration of 25.08 g/l, and inhibition degree of 0.323, respectively. The C(I,50) values (the butyrate concentration at which bioactivity is reduced by 50%) for hydrogen production rate and yield were estimated as 19.39 and 20.78 g/l of added butyrate, respectively.

  2. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O2 concentration in the biomass free air space (FAS) was kept optimal (O2 > 140 ml l-1, v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R2 = 0.991; R2CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  3. THE USE OF BIOLOGICAL PRODUCTS IN ABDOMINAL SURGERY AND LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    N. I. Gabrielyan

    2013-01-01

    Full Text Available This article provides an overview of new approaches to the prevention of infectious complications of bacterial nature after the high-technology operations in the abdominal surgery, first of all, after liver transplantation. At- tention is drawn to the first positive results of randomized studies on the use of biological preparations - probi- otics, prebiotics and synbiotics in patients after liver transplantation. The authors prove the prospects of further development of this subject based on successful model experiments on animals and various operational interven- tions in abdominal surgery. 

  4. Laser-assisted production of tricalcium phosphate nanoparticles from biological and synthetic hydroxyapatite in aqueous medium

    Science.gov (United States)

    Boutinguiza, M.; Pou, J.; Lusquiños, F.; Comesaña, R.; Riveiro, A.

    2011-04-01

    Pulsed laser ablation technique has attracted great attention as a method for preparing nanoparticles. In this work, calcined fish bones and synthetic hydroxyapatite, have been used as target to be ablated in de-ionized water with a pulsed CO 2 laser to produce calcium phosphate nanoparticles. The obtained nanoparticles were amorphous and spherical in shape with a mean diameter of about 25 nm. The microanalyses revealed that nanoparticles obtained from the synthetic HA undergo transformation to tricalcium phosphate. While nanoparticles obtained from the biological hydroxyapatite mostly preserve the composition of precursor material.

  5. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.)

    OpenAIRE

    Tadeusz Zając; Andrzej Oleksy; Agnieszka Klimek-Kopyra; Bogdan Kulig

    2012-01-01

    In Poland the cultivation of the fibrous form of flax (Linum usitatissimum L.) is dying out, but the acreage of its oilseed form, linseed, which provides seed (Semen lini) used in therapy and being a source of -linolenic acid, is expanding. Nowadays, linseed is grown in 64 countries of the world, but yield levels in these countries vary greatly. Under European conditions, seed yield of linseed shows high variation, which is evidence of little knowledge of the biology of this plant and the lac...

  6. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  7. Physical forcing of biological productivity in the northern Arabian Sea during the northeast monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Ramaiah, N.; Gauns, M.; Sarma, V.V.S.S.; Muraleedharan, P.M.; Raghukumar, S.; DileepKumar, M.; Madhupratap, M.

    to the inference that even a 1 degree C decrease in SST could lead to significantly higher primary productivity. Satellite data on sea surface temperature (advanced very high-resolution radiometer, AVHRR) and TOPEX/POSEIDON altimeter data suggest...

  8. Biological production of organic solvents from cellulosic wastes. Six-month progress report, June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Forro, J.R.; Nolan, E.J.

    1977-01-01

    Progress is reported in the following studies: production of cellulose by culturing Thermoactinomyces YX and derived mutants; the development of mutation techniques; cellulose mutant screening techniques; quantification of cellulose mutants; and alternate enhancement techniques. (JGB)

  9. Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.

    Directory of Open Access Journals (Sweden)

    Anh Vu Nguyen

    Full Text Available We used a microarray study in order to compare the time course expression profiles of two Chlamydomonas reinhardtii strains, namely the high H₂ producing mutant stm6glc4 and its parental WT strain during H₂ production induced by sulfur starvation. Major cellular reorganizations in photosynthetic apparatus, sulfur and carbon metabolism upon H₂ production were confirmed as common to both strains. More importantly, our results pointed out factors which lead to the higher H₂ production in the mutant including a higher starch accumulation in the aerobic phase and a lower competition between the H₂ase pathway and alternative electron sinks within the H₂ production phase. Key candidate genes of interest with differential expression pattern include LHCSR3, essential for efficient energy quenching (qE. The reduced LHCSR3 protein expression in mutant stm6glc4 could be closely related to the high-light sensitive phenotype. H₂ measurements carried out with the LHCSR3 knock-out mutant npq4 however clearly demonstrated that a complete loss of this protein has almost no impact on H₂ yields under moderate light conditions. The nuclear gene disrupted in the high H₂ producing mutant stm6glc4 encodes for the mitochondrial transcription termination factor (mTERF MOC1, whose expression strongly increases during -S-induced H₂ production in WT strains. Studies under phototrophic high-light conditions demonstrated that the presence of functional MOC1 is a prerequisite for proper LHCSR3 expression. Furthermore knock-down of MOC1 in a WT strain was shown to improve the total H₂ yield significantly suggesting that this strategy could be applied to further enhance H₂ production in other strains already displaying a high H₂ production capacity. By combining our array data with previously published metabolomics data we can now explain some of the phenotypic characteristics which lead to an elevated H₂ production in stm6glc4.

  10. Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry wastes

    OpenAIRE

    Costa, J.C.; Barbosa, S. G.; Alves, M. M.; Sousa, D.Z.

    2011-01-01

    Poultry industry wastes, namely feathers and poultry litter, are an interesting source of substrate for biogas production. The aim of this work was to assess the biomethane potential of raw poultry wastes, as well as the possibility of enhancing this potential by favouring the hydrolysis of cellulolytic and proteinaceous material in the wastes by using bioaugmentation and thermochemical pre-treatments. Biomethane production from poultry litter and chicken feathers was assessed in batch ass...

  11. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2012-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The NPP drivers are identified with the aid of an artifici...

  12. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2011-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The identification of NPP drivers is done with the aid of an artificial neur...

  13. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    OpenAIRE

    Laura Montesinos; Mireia Bundó; Esther Izquierdo; Sonia Campo; Esther Badosa; Michel Rossignol; Emilio Montesinos; Blanca San Segundo; María Coca

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice ...

  14. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  15. The impact of the United Nations Convention on Biological Diversity on natural products research.

    Science.gov (United States)

    Cragg, Gordon M; Katz, Flora; Newman, David J; Rosenthal, Joshua

    2012-12-01

    The discovery and development of novel, biologically active agents from natural sources, whether they be drugs, agrochemicals or other bioactive entities, involve a high level of interdisciplinary as well as international collaboration. Such collaboration, particularly at the international level, requires the careful negotiation of collaborative agreements protecting the rights of all parties, with special attention being paid to the rights of host (source) country governments, communities and scientific organizations. While many biodiversity-rich source countries currently might not have the necessary resources for in-country drug discovery and advanced development, they provide valuable opportunities for collaboration in this endeavor with research organizations from more high-income nations. This chapter discusses the experiences of the US National Cancer Institute and the US government-sponsored International Cooperative Biodiversity Groups program in the establishment of international agreements in the context of the Convention of Biological Diversity's objectives of promoting fair and equitable collaboration with multiple parties in many countries, and includes some specific lessons of value in developing such collaborations.

  16. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum.

    Science.gov (United States)

    Shkoporov, A N; Khokhlova, E V; Savochkin, K A; Kafarskaia, L I; Efimov, B A

    2015-06-01

    Bifidobacteria constitute a significant part of healthy intestinal microbiota in adults and infants and present a promising platform for construction of genetically modified probiotic agents for treatment of gastrointestinal disorders. In this study, three strains of Bifidobacterium longum were constructed that express and secrete biologically active single-chain antibodies against human TNF-α and Clostridium difficile exotoxin A. Anti-TNF-α scFv antibody D2E7 was produced at the level of 25 μg L(-1) in broth culture and was mostly retained in the cytoplasm, while VHH-type antibodies A20.1 and A26.8 against C. difficile exotoxin A were produced at the levels of 0.3-1 mg L(-1) and secreted very efficiently. The biological activity of both antibody types was demonstrated in the mammalian cell-based assays. Expression of A20.1 and A26.8 was also observed in vivo after intragastric administration of transformed B. longum strains to (C57/BL6 × DBA/2)F1 mice. The obtained B. longum strains may serve as prototypes for construction of novel probiotic medications against inflammatory bowel disease and C. difficile-associated disease. PMID:25994292

  17. Reproductive biology and nectar production of the Mexican endemic Psittacanthus auriculatus (Loranthaceae), a hummingbird-pollinated mistletoe.

    Science.gov (United States)

    Pérez-Crespo, M J; Ornelas, J F; Martén-Rodríguez, S; González-Rodríguez, A; Lara, C

    2016-01-01

    Many mistletoe species produce 'bird'-pollinated flowers; however, the reproductive biology of the majority of these species has not been studied. Psittacanthus auriculatus is a Mexican endemic mistletoe, most common in open, dry mesquite grassland. Knowledge of the reproductive biology of P. auriculatus is essential for understanding species formation and diversification of Psittacanthus mistletoes, but it is currently poorly understood. Thus, we studied floral biology and phenology, nectar production and breeding system and pollination of this species. The hermaphroditic red-pink flowers open from the middle to the tip and petals are curly, but remain partially fused forming a floral tube of ca. 20-mm long. Flowers are partially protandrous, produce large amounts of nectar, last 2 days, and stigma receptivity is highest during the second day. We recorded hummingbirds (Cynanthus latirostris, Hylocharis leucotis, Amazilia beryllina, A. violiceps, Calothorax lucifer, Archilochus colubris) and less commonly butterflies (Agraulis vanillae, Anteos clorinde, Papilio multicaudatus, Phocides urania, Phoebis sennae) as floral visitors. P. auriculatus flowers are self-compatible. However, this mistletoe is an obligate animal-pollinated species, as the sensitive stigma avoids self-pollination. Under natural conditions, reproductive success was higher than in manually selfed or cross-pollinated flowers, likely due to the traplining foraging behaviour of hummingbirds. We suggest that the apparent efficient foraging behaviour of hummingbirds maintains gene flow among P. auriculatus, promoting outcrossing. PMID:26154599

  18. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Xu, Xue [Rice Research Institute, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei 230031 (China); Wu, Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China)

    2013-08-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N{sup +} and Ar{sup +} ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models.

  19. Reproductive biology and nectar production of the Mexican endemic Psittacanthus auriculatus (Loranthaceae), a hummingbird-pollinated mistletoe.

    Science.gov (United States)

    Pérez-Crespo, M J; Ornelas, J F; Martén-Rodríguez, S; González-Rodríguez, A; Lara, C

    2016-01-01

    Many mistletoe species produce 'bird'-pollinated flowers; however, the reproductive biology of the majority of these species has not been studied. Psittacanthus auriculatus is a Mexican endemic mistletoe, most common in open, dry mesquite grassland. Knowledge of the reproductive biology of P. auriculatus is essential for understanding species formation and diversification of Psittacanthus mistletoes, but it is currently poorly understood. Thus, we studied floral biology and phenology, nectar production and breeding system and pollination of this species. The hermaphroditic red-pink flowers open from the middle to the tip and petals are curly, but remain partially fused forming a floral tube of ca. 20-mm long. Flowers are partially protandrous, produce large amounts of nectar, last 2 days, and stigma receptivity is highest during the second day. We recorded hummingbirds (Cynanthus latirostris, Hylocharis leucotis, Amazilia beryllina, A. violiceps, Calothorax lucifer, Archilochus colubris) and less commonly butterflies (Agraulis vanillae, Anteos clorinde, Papilio multicaudatus, Phocides urania, Phoebis sennae) as floral visitors. P. auriculatus flowers are self-compatible. However, this mistletoe is an obligate animal-pollinated species, as the sensitive stigma avoids self-pollination. Under natural conditions, reproductive success was higher than in manually selfed or cross-pollinated flowers, likely due to the traplining foraging behaviour of hummingbirds. We suggest that the apparent efficient foraging behaviour of hummingbirds maintains gene flow among P. auriculatus, promoting outcrossing.

  20. Biological hydrogen production: Simultaneous saccharification and fermentation with nitrogen and phosphorus removal from wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Steve; Dixon, Melissa [U.S. Army Edgewood Chemical Biological Center, 5183 Blackhawk Road Building E3160, Aberdeen Proving Ground, MD 21010-5424 (United States)

    2010-09-15

    A simple anaerobic biodegradation process using wastewater treatment plant (WWTP) effluent, shredded paper, and a purge of nitrogen gas was used to produce hydrogen and simultaneously capture nitrogen and phosphorus. Two reactor configurations, a sequencing batch reactor (SBR) and a classic batch reactor (CBR) were tested as simultaneous saccharification and fermentation reactors (enzymatic hydrolysis and fermentation in one tank). The CBR demonstrated greater stability of hydrogen production and simplicity of operation, while the SBR provided better nitrogen and phosphorus removal efficiencies. Nuclear magnetic resonance analyses showed acetic acid to be the main product from both reactors. Optimal CBR conditions were found to be pH 5, 4 g/L loading, 0.45 ml/g Accellerase 1500, and 38 C. Experiments with an argon purge in place of nitrogen and with ammonium chloride spiking suggested that hydrogenase and nitrogenase enzymes contributed similarly to hydrogen production in the cultures. Analysis of a single fermentation showed that hydrogen production occurred relatively early in the course of TOC removal, and that follow-on treatments might extract more energy from the products. (author)

  1. RESEARCHES REGARDING THE EFFECT OF SOME BIOLOGICALLY ACTIVE PRODUCTS UPON THE GERMINATION CAPACITIES OF SMOOTH BROME SEEDS

    Directory of Open Access Journals (Sweden)

    I. PET

    2013-12-01

    Full Text Available The carrying out of uniform forage crops represents an important technological loop for all agricultural species. The uniformity of these crops is caused especially by seed germination capacity, respectively by plant emergence capacity, depending upon the climatic and technological conditions. With regards to the researches carried out in this direction, we present here the influence exerted by some biologically-active products, used through extra-root application during plant vegetation period, upon seeds submitted to germination. The observations performed on smooth brome seeds have led to the conclusion that the per cent of germinated seeds ranges from 82%, in the untreated control variant, to 87.67% in the variant treated with the product Stimupro.

  2. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production.

    Science.gov (United States)

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2016-05-15

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium removal compared to a control without addition. Subsequently, another water works was investigated in full-scale, where copper influent concentrations were below 0.05 μg Cu L(-1) and nitrification was incomplete. Copper dosing of less than 5 μg Cu L(-1) to a full-scale filter stimulated ammonium removal within one day, and doubled the filter's removal from 0.22 to 0.46 g NH4-N m(-3) filter material h(-1) within 20 days. The location of ammonium and nitrite oxidation shifted upwards in the filter, with an almost 14-fold increase in ammonium removal rate in the filter's top 10 cm, within 57 days of dosing. To study the persistence of the stimulation, copper was dosed to another filter at the water works for 42 days. After dosing was stopped, nitrification remained complete for at least 238 days. Filter effluent concentrations of up to 1.3 μg Cu L(-1) confirmed that copper fully penetrated the filters, and determination of copper content on filter media revealed a buildup of copper during dosing. The amount of copper stored on filter material gradually decreased after dosing stopped; however at a slower rate than it accumulated. Continuous detection of copper in the filter effluent confirmed a release of copper to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent

  3. Biological production of ethanol from coal. Task 4 report, Continuous reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle was particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.

  4. On the possibility of biologically active carbonhydrate substances forming during irradiation of vegetable products

    International Nuclear Information System (INIS)

    The purpose of this study was to find out whether desoxy-derivative sugars can form in fruits subjected to radurization. Tomato and apple fruits and natural apple juices were employed as test-objects, using gamma radiation from Co60 at the dose rate of 260 rad/s. Doses of 200-300 Krad and 1 Mrad were used to irradiate fruits and juices respectively. The data obtained on model systems cannot be used to draw conclusions regarding the appearance or otherwise of cytotoxic products in irradiated test plants. No desoxy sugars were found t form in fruits irradiated with 300 Krad. Tests aimed to detect certain products of carbohydrate radiolysis revealed the presence of these products in quantities which have no cytotoxic effect on the living organism. (E.T.)

  5. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500072, Andhra Pradesh (India); Anjaneyulu, Y. [TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2009-03-15

    Biohydrogen production from probiotic wastewater using mixed anaerobic consortia is reported in this paper. Batch tests are carried out in a 5.0 L batch reactor under constant mesophillic temperature (37 C). The maximum hydrogen yield 1.8 mol-hydrogen/mol-carbohydrate is obtained at an optimum pH of 5.5 and substrate concentration 5 g/L. The maximum hydrogen production rate is 168 ml/h. The hydrogen content in the biogas is more than 65% and no significant methane is observed throughout the study. In addition to hydrogen, acetate, propionate, butyrate and ethanol are found to be the main by-products in the metabolism of hydrogen fermentation. (author)

  6. Effects of different culture conditions on biological potential and metabolites production in three Penicillium isolates.

    Science.gov (United States)

    Reis, Filipa S; Ćirić, Ana; Stojković, Dejan; Barros, Lillian; Ljaljević-Grbić, Milica; Soković, Marina; Ferreira, Isabel C F R

    2015-02-01

    The genus Penicillium is well known for its importance in drug and food production. Certain species are produced on an industrial scale for the production of antibiotics (e.g. penicillin) or for insertion in food (e.g. cheese). In the present work, three Penicillium species, part of the natural mycobiota growing on various food products were selected - P. ochrochloron, P. funiculosum and P. verrucosum var. cyclopium. The objective of our study was to value these species from the point of view of production of bioactive metabolites. The species were obtained after inoculation and growth in Czapek and Malt media. Both mycelia and culture media were analyzed to monitor the production of different metabolites by each fungus and their release to the culture medium. The concentrations of sugars, organic acids, phenolic acids and tocopherols were determined. Antioxidant activity of the phenolic extracts was evaluated, as also the antimicrobial activity of phenolic acids, organic acids and tocopherols extracts. Rhamnose, xylose, fructose and trehalose were found in all the mycelia and culture media; the prevailing organic acids were oxalic and fumaric acids, and protocatechuic and p-hydroxybenzoic acids were the most common phenolic acids; γ-tocopherol was the most abundant vitamin E isoform. Generally, the phenolic extracts corresponding to the mycelia samples revealed higher antioxidant activity. Concerning the antimicrobial activity there were some fluctuations, however all the studied species revealed activity against the tested strains. Therefore, the in-vitro bioprocesses can be an alternative for the production of bioactive metabolites that can be used by pharmaceutical industry.

  7. Carbon, oxygen and biological productivity in the Southern Ocean in and out the Kerguelen plume: CARIOCA drifter results

    Directory of Open Access Journals (Sweden)

    L. Merlivat

    2014-12-01

    Full Text Available The Kerguelen Plateau region in the Indian sector of the Southern Ocean supports annually a large-scale phytoplankton bloom which is naturally fertilized with iron. As part of the second Kerguelen Ocean and Plateau compared Study expedition (KEOPS2 in austral spring (October–November 2011, one Carioca buoy was deployed east of the Kerguelen plateau. It drifted eastward downstream in the Kerguelen plume. Hourly surface measurements of pCO2, O2 and ancillary observations were collected between 1 November 2011 to 12 February 2012 with the aim of characterizing the spatial and temporal variability of the biological Net Community Production (NCP downstream the Kerguelen plateau, assess the impact of iron-induced productivity on the biological carbon consumption and consequently on the CO2 flux exchanged at the air–sea interface. The trajectory of the buoy until mid-December was within the longitude range, 72–83° E, close to the polar front and then in the polar frontal zone, PFZ, until 97° E. From 17 November to 16 December, the buoy drifted within the Kerguelen plume following a filament carrying dissolved iron, DFe, for a total distance of 700 km. In the first part of the trajectory, the ocean surface waters are a sink for CO2 and a source for CO2, with fluxes of respective mean values equal to −8 and +38 mmol CO2 m−2 d−1. Eastward, as the buoy escapes the iron enriched filament, the fluxes are in opposite direction, with respective mean values of +5 and −48 mmol O2 m−2 d−1. These numbers clearly indicate the strong impact of biological processes on the biogeochemistry in the surface waters within the Kerguelen plume in November-mid-December, while it is undetectable eastward in the PFZ from mid-December to mid-February. While the buoy follows the Fe enriched filament, simultaneous observations of dissolved inorganic carbon, DIC, and dissolved oxygen, O2, highlight biological events lasting from 2 to 4 days. Stoichiometric

  8. Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa)

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Maheswaran, P.A.; Jyothibabu, R.; Sunil, V.; Revichandran, C.; Balasubramanian, T.; Gopalakrishnan, T.C.; Nair, K.K.C.

    ? 3 in the coastal, offsh ore and open ocean r e s - pectively, and the corresponding column va l ues were 11.4 ? 24.4, 19.6 ? 20.5 and 13.9 ? 19.2 mg m ? 2 respectively. Primary production was two to three folds higher du r- ing the post...C m ? 2 d ? 1 (inshore) and 300 mgC m ? 2 d ? 1 (of f- shore) during December 1991 along the east coast of India 26 , the present average primary production val ues in November are very high (coastal, 734 mgC m ? 2 d ? 1 , of f...

  9. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  10. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    Science.gov (United States)

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated.

  11. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    Science.gov (United States)

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated. PMID:27225780

  12. The Jordan Romero Case; A Biological Super Athlete or a Product of the Sport Industry

    Directory of Open Access Journals (Sweden)

    George Kipreos

    2012-08-01

    Full Text Available Many questions have arisen in regards to Jordan Romero’s climbing actions, in terms of ethics and legality. Although, he has already successfully climbed most of the highest summits, his last expedition to climb mountain Everest, has found strong opposition and criticism. Jordan’s decision to climb Everest, at the age of 13, comes into contradiction with the convention on Human Rights, the International Public Law, the climbing rules and regulations of Nepal, and the Law of U.S.A. What should also be put into reference is the fact that Romero’s pursuit violates the Article No. 1 in the Declaration of Tyrol 2002 (Mountaineering, which defines individual responsibility for the activities of the climber. This paper outlines the legal and ethical aspects of Jordan’s venture, taking into account the biological hazards.

  13. BIOFILM FORMATION ON THE SURFACE OF MATERIALS AND MEDICAL PRODUCTS BY NOSOCOMIAL STRAINS ISOLATED FROM THE BIOLOGICAL SUBSTRATES OF PATIENTS

    Directory of Open Access Journals (Sweden)

    E. A. Nemets

    2013-01-01

    Full Text Available Aim. To study the ability of hospital-associated strains isolated from the biological substrates of patients oper- ated on under extracorporeal circulation, to form biofilms on the surface of medical materials and products. Materials and methods. The formation of biofilms of strains of Staphylococcus aureus, Serratia liquefaciens, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. isolated from the biological substrates of patients operated on under extracorporeal circulation, on different surfaces (politetraftorotilen, medical poly- ethylene, Polyoxybutirate-to-valerate, silicone, polyvinyl chloride, was studied by a modified method for the surface of the medical materials and products. Results. The influence of the material nature, as well as hydrophi- lization of the surface, on the ability of hospital-associated strains, isolated from the biological substrates of pa- tients operated on under extracorporeal circulation, to form biofilms is studied. It is shown that that certain strains exhibit an increased tendency to biofilm formation on more hydrophobic surfaces, e. g., Acinetobacter spp. At the same time the activity of Staphylococcus aureus on silicon surface (hydrophobic surface is minimal. Other strains almost equally form biofilms on hydrophilic and hydrophobic surfaces e.g. Serratia liquefaciens. It was also shown that the surface hydrophilization of PEG to 50% for all the studied strains leads to dramatic reduc- tion of biofilm formation. Conclusion. The tendency to form biofilms of a particular hospital-associated strain is individual and depends on the nature of the medical material and physical-chemical characteristics of its surface. Hydrophilization of the surface of the medical material is accompanied by a lowered risk of biofilm formation. 

  14. 77 FR 26162 - Amendments to Sterility Test Requirements for Biological Products

    Science.gov (United States)

    2012-05-03

    ... active pharmaceutical ingredient (API), in-process material, stock concentrate material), as appropriate... Federal Register of June 21, 2011 (76 FR 36019), FDA published a proposed rule that proposed revisions to... proposed rule (76 FR 36019 at 36019 to 36020), any product that purports to be sterile should be free...

  15. Application of cyclic phosphonamide reagents in the total synthesis of natural products and biologically active molecules

    OpenAIRE

    Thilo Focken; Stephen Hanessian

    2014-01-01

    A review of the synthesis of natural products and bioactive compounds adopting phosphonamide anion technology is presented highlighting the utility of phosphonamide reagents in stereocontrolled bond-forming reactions. Methodologies utilizing phosphonamide anions in asymmetric alkylations, Michael additions, olefinations, and cyclopropanations will be summarized, as well as an overview of the synthesis of the employed phosphonamide reagents.

  16. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Vrije, de G.J.; Urbaniec, K.; Koukios, E.G.; Claassen, P.A.M.

    2010-01-01

    Hydrogen can be produced through dark anaerobic fermentation using carbohydrate-rich biomass, and through photofermentation using the organic acids produced from dark fermentation. Sugar beet is an ideal energy crop for fermentative production of hydrogen in the EU due to its environmental profile a

  17. Biological Production in Lakes. Physical Processes in Terrestrial and Aquatic Ecosystems, Ecological Processes.

    Science.gov (United States)

    Walters, R. A.; Carey, G. F.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Primary production in aquatic ecosystems is carried out by phytoplankton, microscopic plants…

  18. Biological productivity regime and associated N cycling in the vicinity of Kerguelen Island area, Southern Ocean

    Science.gov (United States)

    Cavagna, A. J.; Fripiat, F.; Elskens, M.; Dehairs, F.; Mangion, P.; Chirurgien, L.; Closset, I.; Lasbleiz, M.; Flores-Leiva, L.; Cardinal, D.; Leblanc, K.; Fernandez, C.; Lefèvre, D.; Oriol, L.; Blain, S.; Quéguiner, B.

    2014-12-01

    Although the Southern Ocean is considered a High Nutrient Low Chlorophyll area (HNLC), massive and recurrent blooms are observed over and downstream the Kerguelen Plateau. This mosaic of blooms is triggered by a higher iron supply resulting from the interaction between the Antarctic Circumpolar Current and the local bathymetry. Net primary production, N-uptake (NO3- and NH4+), and nitrification rates were measured at 8 stations in austral spring 2011 (October-November) during the KEOPS2 cruise in the Kerguelen area. Iron fertilization stimulates primary production, with integrated net primary production and growth rates much higher in the fertilized areas (up to 315 mmol C m-2 d-1 and up to 0.31 d-1, respectively) compared to the HNLC reference site (12 mmol C m-2 d-1 and 0.06 d-1, respectively). Primary production is mainly sustained by nitrate uptake, with f ratio (corresponding to NO3- uptake/(NO3- uptake + NH4+ uptake)) lying in the upper end of the observations for the Southern Ocean (up to 0.9). Unexpectedly, we report unprecedented rates of nitrification (up to ~3 mmol C m-2 d-1, with ~90% of them organic matter, and (iii) an efficient food web, allowing the reprocessing of organic N and the retention of nitrogen into the dissolved phase through ammonium, the substrate for nitrification.

  19. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Plugge, C.M.; Buisman, C.J.N.

    2011-01-01

    This research introduces an alternative mixed culture fermentation technology for anaerobic digestion to recover valuable products from low grade biomass. In this mixed culture fermentation, organic waste streams are converted to caproate and caprylate as precursors for biodiesel or chemicals. It wa

  20. 21 CFR 610.53 - Dating periods for licensed biological products.

    Science.gov (United States)

    2010-04-01

    ... Vaccine Adsorbed ......do ......do Do. Plague Vaccine ......do ......do Do. Plasma products: 1. Fresh Frozen Plasma Not applicable ......do 1 year from date of collection of source blood (−18 °C or colder). 2. Liquid Plasma ......do ......do (a) 26 days from date of collection of source blood (between...

  1. Training mechanical engineering students to utilize biological inspiration during product development.

    Science.gov (United States)

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  2. [Our investigation on the chemistry of biologically active natural products. With the object of exploitation for structure determination methods, and elucidation of vital function].

    Science.gov (United States)

    Komori, T

    1993-03-01

    Our investigation on the chemistry of biologically active natural products during the last 40 years since 1953 are reviewed in this paper. The following subjects are discussed: I. photochemical relationship between rhodopsin and compounds related to areca alkaloid, II. furanoid diterpenoid constituents from dioscoreaceae plants and colombo root, III. field desorption and fast atom bombardment mass spectrometry of biologically active natural glycosides and glycosphingolipids, IV. investigation of biologically active marine natural products, 1) constituents of steroid glycoside sulfates from Asteroidea, 2) spine toxins from Acanthaster planci, 3) constituents of triterpenoid glycoside sulfates from Holothuroidea, 4) constituents of isoprenoids from Opisthobranchia and Octocorallia, 5) constituents of glycosphingolipids from Asteroidea. PMID:8509990

  3. Changes in Biological Production and Lake Chemistry in Lake Tanganyika over the Past 400 Years

    Science.gov (United States)

    Hartwell, A. M.; Montanye, B.; Cohen, A.; McKay, J. L.; Severmann, S.; McManus, J.

    2015-12-01

    We present biogenic silica (BSi) data as a proxy for primary productivity in three cores from the Luiche Platform region of Lake Tanganyika. We also present complementary sedimentary records of the nitrogen and organic carbon isotopes. Preliminary analysis of the BSi data suggests that in two cores located at approximately 100 meters, productivity began to decline at approximately 1700 CE with an initial plateau at roughly 1800 CE. Since approximately 1800 CE, the sedimentary biogenic silica contents vary, but are generally lower than in the earlier portions of the record. These observations are consistent with prior work; however, our results suggest that the decline in primary production may have occurred earlier at these shallower sites than previously inferred for a deeper core (Tierney et al., 2010). This different response between the shallower sites and deeper off shore sites may be driven by differences in nutrient supply, spatial variability, or some other factor. Sedimentary nitrogen isotope data generally show an inverse relationship to the BSi data in the shallower cores. One possible interpretation of this inverse relationship is that there is a shift in the source of the primary nitrogen being utilized within the photic zone, with a larger contribution of nitrogen fixation occurring during times of lower productivity and a larger contribution of upwelled nitrogen occurring during times of higher productivity. Tierney, J.E., M.M. Mayes, N. Meyer, C. Johnson, P. Swarzenski, A.S. Cohen, and J.M. Russell (2010) The Unprecedented Warming of Lake Tanganyika. Nature Geoscience, 3, 422-425, DOI: 10.1038/NGEO865

  4. Sustainable production of cultivations, using biological and conservationists techniques; an applicable model to the Colombian warm tropic

    International Nuclear Information System (INIS)

    The hot Colombian tropics represent nearly 82% of the national territory. The intensive and wrongly use of the soil has been subjected for years in agricultural areas of the inter-Andean valleys, Caribbean region, the eastern plains and others sectors of the commercial agriculture in the hot climate it is promoting a progressive physical, chemical and biological degradation of the soil. The physical losses of soil and organic matter due to erosion, excessive mechanization, flooding rice as single crop, burning of crop residues, unsuitable systems of irrigation and drainage, alkalinization an compaction in cropping areas, and the problems with more incidence in the deployment of land productivity in the areas. The methods to overcome these limitations agree with the application of modem and sustainable technologies focusing production systems. The management of production systems, selecting tillage systems according to the physical development of the soil, planting species in continuous rotation cycles, planting and incorporation of green manure, between two agricultural semesters, the appropriate management of water in non-irrigated crops an modem irrigation and the utilization of crop residues, to return to the soil, part of the nutrients extracted constitute some of the factors management dependent that could affect favorably the land productivity, for the benefit of future generations. Based on these concepts, it is presented in this article some of the experimental results obtained by national of Agriculture Colombian Institute (ICA) in the Regional Soil Program Center of Agricultural Research (Nataima), located in El Espinal, Tolima State, Colombia

  5. Biological and Histological Studies of Purified Product from Streptomyces janthinus M7 Metabolites

    Directory of Open Access Journals (Sweden)

    Tawfik Zahira S.

    2015-02-01

    Full Text Available Fifteen clinical samples were taken out from patients suffering cancer, these patients being under the treatment with radio- and/or chemotherapy. The samples were used for the isolation of bacterial cells surrounding tumor; the samples were collected from Center of Cancer Therapy, Ain Shams University, Cairo, Egypt. The clinical bacterial isolates were purified and identified according to Bergey's manual of determinative bacteriology ninth edition (1994. The bacterial isolates were found to be Klebsiella oxytoca m1; Enterobacter cancerogenus m2; P. aeruginosa m3; Citrobacter diversus m4; Enterobacter agglomerans m5; Klebsiella oxytoca m6; Enterobacter dissolvens m7; Serratia fonticola m8; Escherichia coli m9; Citrobacter freundii m10; Staphylococcus aureus m11; Escherichia coli m12; P. aeruginosa m13; Staphylococcus aureus m14; and Bacillus cereus m15. In the present study both primary and secondary screening methods were used to screen the antibacterial activity of St. janthinus M7 against fifteen clinical bacterial isolates. The St. janthinus M7 showed an increase in antibacterial activity against all the tested human bacterial pathogens. In this study Gamma irradiation at dose levels (0.5 and 1.5 kGy was used for the enhancement of the antibacterial activity of Streptomyces strain against the clinical isolates. Several commercial antibiotic discs (Doxorubicin, Augmentin, Norfloxacin, Ofloxacin, Oxacillin, and Cefazolin were used for comparing their antimicrobial activity with purified product. The results declared a significant increase in the antibacterial activity in most cases. The physiochemical properties of the purified product were carried out for determination of Rf, empirical formula, M.W, and chemical structure of product and then analyzed by thin layer chromatography, elemental analysis, UV, Mass, and NMR. The result exhibited brown color, one spot, Rf (0.76, M.W (473, while it recorded 270 nm in UV region and the calculated

  6. Genetic and Biological Changes of Newcastle Disease Virus Due to The Development of Chicken Production System

    Directory of Open Access Journals (Sweden)

    Sudarisman

    2009-09-01

    Full Text Available In many countries, Newcastle Disease (ND is one of the most important diseases of poultry. It causes serious economic losses in poultry industry. Newcastle Disease or pseudo-fowl pest is a highly infectious viral disease that causes very high mortality (up to 100% in severe epidemics in poultry and wild birds around the world. Newcastle Disease remains endemic in many regions and continues to severely limit poultry production in some developing countries. The disease is currently being controlled by routine vaccinations in many countries. However, it was reported that outbreaks of ND in vaccinated flocks often occur on the field may not only be due to differences in the antigenicity of the NDV wild field strains and vaccine strains, but could also be as a result of differences in pathogenicity and virulence between different strains used as vaccine seed in NDV vaccine production.

  7. Biological hydrogen production from corn-syrup waste using a novel system

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, H.; Nakhla, G.; El Naggar, H. [Civil and Environmental Engineering Department, University of Western Ontario, London, Ontario (Canada)

    2009-07-01

    The reported patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. The biohydrogenator was operated for 100 days at 37 {sup o}C, hydraulic retention time 8 h and solids retention time ranging from 2.2-2.5 days. The feed was a corn-syrup waste generated as a byproduct from an industrial facility for bioethanol production located in southwestern Ontario, Canada. The system was initially started up with a synthetic feed containing glucose at concentration of 8 g/L and other essential inorganics. Anaerobically-digested sludge from the St. Mary's wastewater treatment plant (St. Mary, Ontario, Canada) was used as the seed, and was heat treated at 70 {sup o}C for 30 min to inhibit methanogenesis. After 10 days, when the hydrogen production was steady, the corn-syrup waste was introduced to the system. Glucose was the main constituent in the corn-syrup; its concentration was varied over a period of 90 days from 8 to 25 g/L. The change in glucose concentration was used to study the impact of variable organic loading on the stability of hydrogen production in the biohydrogenator. Hydrogen production rate increased from 10 L H{sub 2}/L{center_dot}d to 34 L H{sub 2}/L{center_dot}d with the increase of organic loading rate (OLR) from 26 to 81 gCOD/L{center_dot}d, while a maximum hydrogen yield of 430 mL H{sub 2}/gCOD was achieved in the system with an overall average of 385 mL H{sub 2}/gCOD. (author)

  8. Biological treatment of solid wastes from the tobacco industry for enzyme production

    OpenAIRE

    Oliveira, Ana Iolanda; Curbelo, C.; Alvarez, G. M.; A.A. Vicente; Teixeira, J. A.

    2008-01-01

    Aiming at the production of enzymes using solid wastes from the tobacco industry, the solid fermentation kinetics of Aspergillus niger and Aspergillus terreus using waste of dark tobacco and Virginia tobacco as substrate were characterized. The efficiency of the fermentation process was evaluated by determining the enzymatic activity of the three enzymes that constitute the cellulose enzymatic system (CMCase, PFase and Xylanase). The results obtained led to the establishment of...

  9. What controls biological production in coastal upwelling systems? Insights from a comparative modeling study

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2011-01-01

    The magnitude of net primary production (NPP) in Eastern Boundary Upwelling Systems (EBUS) is traditionally viewed as directly reflecting the wind-driven upwelling intensity. Yet, different EBUS show different sensitivities of NPP to upwelling-favorable winds (Carr and Kearns, 2003). Here, using a comparative modeling study of the California Current System (California CS) and Canary Current System (Canary CS), we show how physical and environmental factors, such as light,...

  10. Development of molecular biology techniques for the detection of genetically modified organisms in maize food products

    OpenAIRE

    Sousa, S.C.; Mafra, I; Silva, C.S. Ferreira da; Amaral, J S; Oliveira, M.B.P.P.

    2008-01-01

    In the last years, the increase in the cultivated area of genetically modified (GM) maize has become a reality. GA21, MON810 and MON 863 maize crops are some of the authorized maize events for food and feed under the European Union (EU) regulations. These crops of transgenic maize bring profit towards the conventional ones, as they confer resistence to some plagues and/or herbices. Concerning the raise of production and consumption of foodstuffs derived from genetically modified organisms (GM...

  11. Aquatic productivity: isotopic tracer aided studies of chemical-biological interactions

    International Nuclear Information System (INIS)

    Inland waters subject to the accumulation and effects of trace contaminants are discussed and a review of international research projects on this subject is given. The following aspects are specially discussed: aquatic nitrogen and agriculture; aquatic ecosystems in arid zones of developing countries; micronutrients in aquatic ecosystems; microbiological activity (''primary production''); enzymic methods in water quality determinations. Recommendations of the Joint FAO/IAEA Advisory Group for measures to be taken in order to protect water quality are also given

  12. Biological Hydrogen Production from Corn-Syrup Waste Using a Novel System

    Directory of Open Access Journals (Sweden)

    George Nakhla

    2009-06-01

    Full Text Available The reported patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. The biohydrogenator was operated for 100 days at 37 °C, hydraulic retention time 8 h and solids retention time ranging from 2.2–2.5 days. The feed was a corn-syrup waste generated as a byproduct from an industrial facility for bioethanol production located in southwestern Ontario, Canada. The system was initially started up with a synthetic feed containing glucose at concentration of 8 g/L and other essential inorganics. Anaerobicaly-digested sludge from the St. Mary’s wastewater treatment plant (St. Mary, Ontario, Canada was used as the seed, and was heat treated at 70 °C for 30 min to inhibit methanogens. After 10 days, when the hydrogen production was steady, the corn-syrup waste was introduced to the system. Glucose was the main constituent in the corn-syrup; its concentration was varied over a period of 90 days from 8 to 25 g/L. The change in glucose concentration was used to study the impact of variable organic loading on the stability of hydrogen production in the biohydrogenator. Hydrogen production rate increased from 10 L H2/L·d to 34 L H2/L·d with the increase of organic loading rate (OLR from 26 to 81 gCOD/L·d, while a maximum hydrogen yield of 430 mL H2/gCOD was achieved in the system with an overall average of 385 mL H2/gCOD.

  13. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    OpenAIRE

    Catlett, Jennie L.; Ortiz, Alicia M.; Buan, Nicole R.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron trans...

  14. Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Cao, Guang-Li; Guo, Wan-Qian; Wang, Ai-Jie; Zhu, Yu-Hong; Liu, Bing-feng; Xu, Ji-Fei [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, 2nd Campus of HIT box 2614, Harbin, Hei Longjiang 150090 (China)

    2010-04-15

    This study addressed the utilization of an agro-waste, corn stover, as a renewable lignocellulosic feedstock for the fermentative H{sub 2} production by the moderate thermophile Thermoanaerobacterium thermosaccharolyticum W16. The corn stover was first hydrolyzed by cellulase with supplementation of xylanase after delignification with 2% NaOH. It produced reducing sugar at a yield of 11.2 g L{sup -1} glucose, 3.4 g L{sup -1} xylose and 0.5 g L{sup -1} arabinose under the optimum condition of cellulase dosage 25 U g{sup -1} substrate with supplement xylanase 30 U g{sup -1} substrate. The hydrolyzed corn stover was sequentially introduced to fermentation by strain W16, where, the cell density and the maximum H{sub 2} production rate was comparable to that on simulated medium, which has the same concentration of reducing sugars with hydrolysate. The present results suggest a promising combined hydrogen production process from corn stover with enzymatic hydrolysis stage and fermentation stage using W16. (author)

  15. Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa.

    Science.gov (United States)

    Penterman, Jon; Singh, Pradeep K; Walker, Graham C

    2014-09-01

    LexA and two structurally related regulators, PrtR and PA0906, coordinate the Pseudomonas aeruginosa SOS response. RecA-mediated autocleavage of LexA induces the expression of a protective set of genes that increase DNA damage repair and tolerance. In contrast, RecA-mediated autocleavage of PrtR induces antimicrobial pyocin production and a program that lyses cells to release the newly synthesized pyocin. Recently, PrtR-regulated genes were shown to sensitize P. aeruginosa to quinolones, antibiotics that elicit a strong SOS response. Here, we investigated the mechanisms by which PrtR-regulated genes determine antimicrobial resistance and genotoxic stress survival. We found that induction of PrtR-regulated genes lowers resistance to clinically important antibiotics and impairs the survival of bacteria exposed to one of several genotoxic agents. Two distinct mechanisms mediated these effects. Cell lysis genes that are induced following PrtR autocleavage reduced resistance to bactericidal levels of ciprofloxacin, and production of extracellular R2 pyocin was lethal to cells that initially survived UV light treatment. Although typically resistant to R2 pyocin, P. aeruginosa becomes transiently sensitive to R2 pyocin following UV light treatment, likely because of the strong downregulation of lipopolysaccharide synthesis genes that are required for resistance to R2 pyocin. Our results demonstrate that pyocin production during the P. aeruginosa SOS response carries both expected and unexpected costs.

  16. Scope for biological sensing technologies in meat production and export in northern Pakistan

    Science.gov (United States)

    Qureshi, M. S.; Qureshi, I. H.

    2013-12-01

    The Khyber Pakhtunkhwa province of Pakistan is rich in livestock resources, including 14.84 million sheep and goats (valued at US1.60 billion) and a 27% share of the national poultry sector (having an investment of US2.00 billion), and produces 834 billion kg meat. These huge assets have the potential to support the provincial economy through income generation, self employment and production of certified high-quality food items for the domestic and international Halal Food Market. A model has been developed for analyzing the gaps in the status of health, productivity, nutrition, fertility and management aspects of local farming. Improved practices would be introduced to combat the losses. The model will comprise a farming network linked to farmers' welfare centre, a central lab and an expert group. A strong sensing technology network would be introduced for data transfer and quality control of the inputs and products. The farmers will e-tag their animals for the purpose of traceability, online history and biodata. The data will be maintained in remote and central servers. A communication system would be developed utilizing mobile phones for the prices, demands and availability status of inputs and produce at local and international markets. A mobile money transfer system will be introduced to exchange, save and borrow small amounts of capital as well as take out short-term insurance policies.

  17. Robustness of nanofiltration for increasing the viral safety margin of biological products.

    Science.gov (United States)

    Caballero, Santiago; Diez, José M; Belda, Francisco J; Otegui, Magdalena; Herring, Steven; Roth, Nathan J; Lee, Douglas; Gajardo, Rodrigo; Jorquera, Juan I

    2014-03-01

    In this study, the virus-removal capacity of nanofiltration was assessed using validated laboratory scale models on a wide range of viruses (pseudorabies virus; human immunodeficiency virus; bovine viral diarrhea virus; West Nile virus; hepatitis A virus; murine encephalomyocarditis virus; and porcine parvovirus) with sizes from 18 nm to 200 nm and applying the different process conditions existing in a number of Grifols' plasma-derived manufacturing processes (thrombin, α1-proteinase inhibitor, Factor IX, antithrombin, plasmin, intravenous immunoglobulin, and fibrinogen). Spiking experiments (n = 133) were performed in process intermediate products, and removal was subsequently determined by infectivity titration. Reduction Factor (RF) was calculated by comparing the virus load before and after nanofiltration under each product purification condition. In all experiments, the RFs were close to or greater than 4 log10 (>99.99% of virus elimination). RF values were not significantly affected by the process conditions within the limits assayed (pH, ionic strength, temperature, filtration ratio, and protein concentration). The virus-removal capacity of nanofiltration correlated only with the size of the removed agent. In conclusion, nanofiltration, as used in the manufacturing of several Grifols' products, is consistent, robust, and not significantly affected by process conditions.

  18. Biologic treatment of wastewater from cassava flour production using vertical anaerobic baffled reactor (VABR

    Directory of Open Access Journals (Sweden)

    Gleyce T Correia

    2008-08-01

    Full Text Available The estimate cassava production in Brazil in 2007 was of 25 million tons (= 15% of the world production and most of it is used in the production of flour. During its processing, waste that can cause environmental inequality is generated, if discharged inappropriately. One of the liquid waste generated, manipueira, is characterized by its high level of organic matter. The anaerobic treatment that uses a vertical anaerobic baffled reactor (VABR inoculated with granulated sludge, is one of the ways of treating this effluent. The anaerobic biodigestion phases are separated in this kind of reactor, allowing greater stability and resistance to load shocks. The VABR was built with a width/height rate of 1:2. The pH, acidity, alkalinity, turbidity and COD removal were analyzed in 6 different regions of the reactor, which was operated with an increasing feeding from ? 2000 to ? 10000 mg COD L?¹ and HRT between 6.0 and 2.5 days. The VABR showed decreasing acidity and turbidity, an increase in alkalinity and pH, and 96% efficiency in COD removal with 3-day HRT and feeding of 3800 mg COD L?¹.

  19. Degeneration of penicillin production in ethanol-limited chemostat cultivations of Penicillium chrysogenum: A systems biology approach

    Directory of Open Access Journals (Sweden)

    Daran Jean-Marc

    2011-08-01

    Full Text Available Abstract Background In microbial production of non-catabolic products such as antibiotics a loss of production capacity upon long-term cultivation (for example chemostat, a phenomenon called strain degeneration, is often observed. In this study a systems biology approach, monitoring changes from gene to produced flux, was used to study degeneration of penicillin production in a high producing Penicillium chrysogenum strain during prolonged ethanol-limited chemostat cultivations. Results During these cultivations, the biomass specific penicillin production rate decreased more than 10-fold in less than 22 generations. No evidence was obtained for a decrease of the copy number of the penicillin gene cluster, nor a significant down regulation of the expression of the penicillin biosynthesis genes. However, a strong down regulation of the biosynthesis pathway of cysteine, one of the precursors of penicillin, was observed. Furthermore the protein levels of the penicillin pathway enzymes L-α-(δ-aminoadipyl-L-α-cystenyl-D-α-valine synthetase (ACVS and isopenicillin-N synthase (IPNS, decreased significantly. Re-cultivation of fully degenerated cells in unlimited batch culture and subsequent C-limited chemostats did only result in a slight recovery of penicillin production. Conclusions Our findings indicate that the observed degeneration is attributed to a significant decrease of the levels of the first two enzymes of the penicillin biosynthesis pathway, ACVS and IPNS. This decrease is not caused by genetic instability of the penicillin amplicon, neither by down regulation of the penicillin biosynthesis pathway. Furthermore no indications were obtained for degradation of these enzymes as a result of autophagy. Possible causes for the decreased enzyme levels could be a decrease of the translation efficiency of ACVS and IPNS during degeneration, or the presence of a culture variant impaired in the biosynthesis of functional proteins of these enzymes

  20. Production of feline leukemia inhibitory factor with biological activity in Escherichia coli.

    Science.gov (United States)

    Kanegi, R; Hatoya, S; Tsujimoto, Y; Takenaka, S; Nishimura, T; Wijewardana, V; Sugiura, K; Takahashi, M; Kawate, N; Tamada, H; Inaba, T

    2016-07-15

    Leukemia inhibitory factor (LIF) is a cytokine which is essential for oocyte and embryo development, embryonic stem cell, and induced pluripotent stem cell maintenance. Leukemia inhibitory factor improves the maturation of oocytes in the human and the mouse. However, feline LIF (fLIF) cloning and effects on oocytes during IVM have not been reported. Thus, we cloned complete cDNA of fLIF and examined its biological activity and effects on oocytes during IVM in the domestic cat. The aminoacid sequence of fLIF revealed a homology of 81% or 92% with that of mouse or human. The fLIF produced by pCold TF DNA in Escherichia coli was readily soluble and after purification showed bioactivity in maintaining the undifferentiated state of mouse embryonic stem cells and enhancing the proliferation of human erythrocyte leukemia cells. Furthermore, 10- and 100-ng/mL fLIF induced cumulus expansion with or without FSH and EGF (P reproduction and stem cell research in the feline family. PMID:27020881

  1. Fermentation of biologically pretreated wheat straw for ethanol production: comparison of fermentative microorganisms and process configurations.

    Science.gov (United States)

    López-Abelairas, María; Lu-Chau, Thelmo Alejandro; Lema, Juan Manuel

    2013-08-01

    The pretreatment of lignocellulosic biomass with white-rot fungi to produce bioethanol is an environmentally friendly alternative to the commonly used physico-chemical processes. After biological pretreatment, a solid substrate composed of cellulose, hemicellulose and lignin, the two latter with a composition lower than that of the initial substrate, is obtained. In this study, six microorganisms and four process configurations were utilised to ferment a hydrolysate obtained from wheat straw pretreated with the white-rot fungus Irpex lacteus. To enhance total sugars utilisation, five of these microorganisms are able to metabolise, in addition to glucose, most of the pentoses obtained after the hydrolysis of wheat straw by the application of a mixture of hemicellulolytic and cellulolytic enzymes. The highest overall ethanol yield was obtained with the yeast Pachysolen tannophilus. Its application in combination with the best process configuration yielded 163 mg ethanol per gram of raw wheat straw, which was between 23 and 35 % greater than the yields typically obtained with a conventional bioethanol process, in which wheat straw is pretreated using steam explosion and fermented with the yeast Saccharomyces cerevisiae.

  2. Application of biological marker technology to bioremediation of refinery by-products

    Energy Technology Data Exchange (ETDEWEB)

    Moldowan, J.M.; Dahl, J.; McCaffrey, M.A.; Smith, W.J.; Fetzer, J.C. [Chevron Petroleum Technology Co., Richmond, CA (United States)

    1995-01-01

    The progress of bioremediation of waste petroleum sludge at Chevron`s Perth Amboy, New Jersey, refinery landfarm was evaluated using a ranking scale based on refractory biological marker hydrocarbons that are indigenous to, and ubiquitous in, crude oils. Of the four samples analyzed from different locations in the landfarm, two were virtually identical and showed an absence of the n-alkanes expected to be found in the sludge (light biodegradation ranking). Another showed additional partial degradation of acyclic isoprenoids, e.g., pristane and phytane (moderate ranking). The fourth sample showed complete n-paraffin and isoprenoid loss, partial alteration of hopanes, and losses of C{sub 27} steranes, C{sub 27} diasteranes, C{sub 27} monoaromatic steroids, and C{sub 26} triaromatic steroids relative to the higher steroid homologs in each of these series (heavy ranking). These results suggest a concomitant preferential loss of steroid hydrocarbons that have the cholestane side chain and a possible new steroid biodegradation mechanism that is essentially blind to the structure of the steroid nucleus. The latter sample also showed levels of most polynuclear aromatic hydrocarbons (PAH), suggesting a building up of these compounds as others were removed. However, some of the smaller PAH (acenaphylene, fluorene, fluoranthene) appear to have decreased. These results suggest that a protocol based on such a biodegradation ranking scale could be used to monitor the progress of bioremediation of oil based refinery wastes. 35 refs., 7 figs., 1 tab.

  3. Clinical trials with allergen products: in search of biological markers of efficacy.

    Science.gov (United States)

    Moingeon, Philippe

    2006-01-01

    I discuss herein our efforts to identify biological markers of efficacy in support of the development of sublingual allergy vaccines. Biomarkers are of major interest to facilitate clinical development, for example by predicting safety and efficacy of candidate vaccines or their components (e.g. adjuvants and formulations) on the basis of immunogenicity evaluated in humans. They will be mandatory in the future to evaluate customized recombinant allergy vaccines designed upon component-resolved diagnosis. In this regard, they must ideally be both qualitative and quantitative. Such markers would also be useful to confirm foreseen mechanisms of action potentially associated with successful immunotherapy (e.g. the Treg hypothesis). The recent availability of sophisticated technologies (referred here as the technology push) to assess in details both humoral and cellular arms of the immune system provides new opportunities to identify such markers. In this regard, documenting natural immune responses, most particularly allergen-specific T cell responses in healthy persons, is critical to identify immunological correlates of protection, and thus to design optimal allergy vaccines.

  4. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology

    Directory of Open Access Journals (Sweden)

    Zhigang Xie

    2014-01-01

    Full Text Available In order to improve adsorption of macromolecular contaminants and promote the growth of microorganisms, active carbon for biological wastewater treatment or follow-up processing requires abundant mesopore and good biophile ability. In this experiment, biophile mesopore active carbon is produced in one-step activation with orange peel as raw material, and zinc chloride as activator, and the adsorption characteristics of orange peel active carbon is studied by static adsorption method. BET specific surface area and pore volume reached 1477 m2/g and 2.090 m3/g, respectively. The surface functional groups were examined by Fourier transform infrared spectroscopy (FT-IR. The surface of the as-prepared activated carbon contained hydroxyl group, carbonyl group, and methoxy group. The analysis based on X-ray diffraction spectrogram (XRD and three-dimensional fluorescence spectrum indicated that the as-prepared activated carbon, with smaller microcrystalline diameter and microcrystalline thickness and enhanced reactivity, exhibited enhanced adsorption performance. This research has a deep influence in effectively controlling water pollution, improving area water quality, easing orange peel waste pollution, and promoting coordinated development among society, economy, and environment.

  5. Bionics and Structural Biology: A Novel Approach for Bio-energy Production

    Institute of Scientific and Technical Information of China (English)

    C. Karthikeyan; R. Krishnan; S. Adline Princy

    2008-01-01

    Cellular metabolism is a very complex process. The biochemical pathways are fundamental structures of biology. These pathways possess a number of regeneration steps which facilitate energy shuttling on a massive scale. This facilitates the biochemical pathways to sustain the energy currency of the cells. This concept has been mimicked using electronic circuit components and it has been used to increase the efficiency of bio-energy generation. Six of the carbohydrate biochemical pathways have been chosen in which glycolysis is the principle pathway. All the six pathways are interrelated and coordinated in a complex manner. Mimic circuits have been designed for all the six biochemical pathways. The components of the metabolic pathways such as enzymes, cofactors etc., are substituted by appropriate electronic circuit components. Enzymes arc related to the gain of transistors by the bond dissociation energies of enzyme-substrate molecules under consideration. Cofactors and coen-zymes are represented by switches and capacitors respectively. Resistors are used for proper orientation of the circuits. The energy obtained from the current methods employed for the decomposition of organic matter is used to trigger the mimic circuits. A similar energy shuttle is observed in the mimic circuits and the percentage rise for each cycle of circuit functioning is found to be 78.90. The theoretical calculations have been made using a sample of domestic waste weighing 1.182 kg. The calculations arrived at finally speak of the efficiency of the novel methodology employed.

  6. Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications - A review.

    Science.gov (United States)

    Shahid-Ul-Islam; Rather, Luqman J; Mohammad, Faqeer

    2016-05-01

    Bixa orellana commonly known as annatto is one of the oldest known natural dye yielding plants native to Central and South America. Various parts of annatto have been widely used in the traditional medical system for prevention and treatment of a wide number of health disorders. The plethora of traditional uses has encouraged researchers to identify and isolate phytochemicals from all parts of this plant. Carotenoids, apocarotenoids, terpenes, terpenoids, sterols, and aliphatic compounds are main compounds found in all parts of this plant and are reported to exhibit a wide range of pharmacological activities. In recent years annatto has received tremendous scientific interest mainly due to the isolation of yellow-orange natural dye from its seeds which exhibits high biodegradability, low toxicity, and compatibility with the environment. Considerable research work has already been done and is currently underway for its applications in food, textile, leather, cosmetic, solar cells, and other industries. The present review provides up-to-date systematic and organized information on the traditional usage, phytochemistry and pharmacology of annatto. It also highlights its non-food industrial applications in order to bring more interest on this dye plant, identifies the existing gaps and provides potential for future studies. Studies reported in this review have demonstrated that annatto holds a great potential for being exploited as source of drugs and a potential natural dye. However, further efforts are required to identify extract biomolecules and their action mechanisms in exhibiting certain biological activities in order to understand the full phytochemical profile and the complex pharmacological effects of this plant. PMID:27222755

  7. Biological nitrogen fixation in sugar cane: A key to energetically viable biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Boddey, R.M. [Centro Nacional de Pesquisa de Agrobiologia, Rio de Janeiro (Brazil)

    1995-05-01

    The advantages of producing biofuels to replace fossil energy sources are derived from the fact that the energy accumulated in the biomass in captured directly from photosynthesis and is thus renewable, and that the cycle of carbon dioxide fixation by the crop, followed by burning of the fuel makes no overall contribution to atmospheric CO{sub 2} or, consequently, to global warming. However, these advantages are negated if large quantities of fossil fuels need to be used to grow or process the biofuel crop. In this regard, the Brazilian bioethanol program, based on the fermentation/distillation of sugar cane juice, is particularly favorable, not only because the crop is principally hand harvested, but also because of the low nitrogen fertilizer use on sugar cane in Brazil. Recent {sup 15}N and N balance studies have shown that in some Brazilian cane varieties, high yields are possible without N fertilization because the plants are able to obtain large contributions of nitrogen from plant-associated biological N{sub 2} fixation (BNF). The N{sub 2}-fixing acid-tolerant bacterium Acetobacter diazotrophicus was first found to occur within roots, stems, and leaves of sugar cane. Subsequently, two species of Herbaspirillum also have been found to occur within the interior of all sugar cane tissues. The discovery of these, and other N{sub 2}-fixing bacteria that survive poorly in soil but thrive within plant tissue (endophytic bacteria), may account for the high BNF contributions observed in sugar cane. Further study of this system should allow the gradual elimination of N fertilizer use on sugar cane, at least in Brazil, and opens up the possibility of the extension of this efficient N{sub 2}-fixing system to cereal and other crops with consequent immense potential benefits to tropical agriculture. 44 refs., 9 figs., 4 tabs.

  8. Biology of flowering and nectar production in the flowers of the beauty bush (Kolkwitzia amabilis Graebn.

    Directory of Open Access Journals (Sweden)

    Marta Dmitruk

    2012-12-01

    Full Text Available Nectar production and the morphology of the nectary and pollen grains of Kolwitzia amabilis Graebn. were studied during the period 2008–2009 and in 2011. The blooming of beauty bush flowers started in the third decade of May and ended in the middle of June; flowering lasted 22–23 days. The flower life span was 4–5 days. Nectar production began at the bud break stage. The tube of the corolla in beauty bush flowers forms a spur inside which the nectary is located. The secretory surface of the nectary consists of two layers of glandular epidermal outgrowths: unicellular trichomes, with their length ranging 54.6 μm – 70.2 μm, and papillae with a length of 13.0 μm – 20.6 μm. The mean weight of nectar per 10 flowers, determined for the three years of the study, was 8.6 mg, with a sugar concentration of 50.8%. The weight of nectar sugar was on average 4.4 mg. In terms of the size, beauty bush pollen grains are classified as medium-sized. These are tricolporate grains.

  9. Biological hydrogen and methane production from bagasse bioethanol fermentation residues using a two-stage bioprocess.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Chung, Man-Chien; Chan, Kun-Chi

    2016-06-01

    This study investigated the recovery of H2 and CH4 from bagasse bioethanol fermentation residues (bagasse BEFR) using a two-stage bioprocess. In the hydrogen fermentation bioreactor (HFB), carbohydrate removal efficiency was maintained at 82-93% and the highest hydrogen yield was 8.24mL/gCOD at volumetric loading rate (VLR) of 80kgCOD/m(3)/day. The results indicated a positive correlation between hydrogen yield and butyrate-to-acetate ratio, which might be due to the mechanisms of lactate/acetate utilization for hydrogen production and acetogenesis occurring in the HFB. Remaining volatile fatty acids and alcohols in the HFB effluent were further utilized for methane production in methane fermentation bioreactor (MFB), in which the highest methane yield of 345.2mL/gCOD was attained at VLR of 2.5kgCOD/m(3)/day. Overall, the two-stage bioprocess achieved a maximum COD removal of 81% from bagasse BEFR, and converted 0.3% and 72.8% of COD in the forms of H2 and CH4, respectively. PMID:26774443

  10. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.

    Science.gov (United States)

    Catlett, Jennie L; Ortiz, Alicia M; Buan, Nicole R

    2015-10-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  11. Biological production of organic solvents from cellulosic wastes. Progress report, September 15, 1976--September 14, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Pye, E.K.; Humphrey, A.E.; Forro, J.R.

    1977-06-01

    The objectives of this project are to optimize a modular process to convert cellulosic wastes to butanol and other oil-sparing chemicals. Research to date has focused on developing analytical methods, establishing a good data base and improving cellulase yields. Reliable assay methods for the Thermoactinomyces cellulase complex have been developed, measuring glucose and reducing sugar from filter paper and Avicel for total cellulase activity, viscosity change with carboxymethyl cellulose for the endoglucanase activity, and fluorescence change with methylumbelliferyl-..beta..-D-glucopyranoside for ..beta..-glucosidase activity. Isoelectric focusing within the range pH 3.5 to 6.0 has proved to be a quick and useful means of determining effective cellulase complex composition. About 10 different proteins are present in the fermentation broth. Detailed procedures for uv and near uv plus 8-methoxy-psoralen mutagenesis have been developed, and four mutants having 50% greater activity than the parent YX strain have been isolated. Cellulase production by Thermoactinomyces is growth related and is maximum when growth stops at 12 to 16 hours with 1 to 5% Avicel at pH 7.0 to 7.2 and 55/sup 0/C. A multistage fermenter has been assembled for optimization of butanol versus acetone production by Cl. acetobutylicum. A preliminary economic assessment, currently indicating butanol at just above 30 cents/lb, is being continuously updated.

  12. Utilization of fodder yeast and agro-industrial by-products in production of spores and biologically - active endotoxins from Bacillus thuringiensis.

    Science.gov (United States)

    Salama, H S; Foda, M S; Selim, M H; El-Sharaby, A

    1983-01-01

    A number of newly-devised fermentation media were evaluated with respect to their ability to support sporulation and biosynthesis of endotoxins by strains of Bacillus thuringiensis that are biologically active against Spodoptera littoralis, Heliothis armigera, and Spodoptera exigua. Fodder yeast from dried cells of Saccharomyces cerevisiae could be used as a complete mono-component medium for production of highly active spore-delta-endotoxin complexes from B. thur., vars. entomocidus, kurstaki and galleriae. Highest sporulation titers were obtained at 2% fodder yeast concentration with endotoxin yields ranging between 7 to 9 grams per liter of medium. Ground horse beans and kidney bean seeds could also be used successfully as complete media for sporulation and endotoxin production. Extracts of potato tubers and sweet potato roots were efficient media for active endotoxin production from B. thur. var. kurstaki, although the obtained yields were much lower than those produced in fodder yeast media. The utilization of fish meal, cotton seed meal, and residues of chicken from the slaughter-house as media for the production of endotoxins active against Spodoptera littoralis, was not successful. On the other hand, minced citrus peels, ground seeds of dates, and wheat bran could be successfully used in combination with fodder yeast as media for production of endotoxins, active against Heliothis armigera and Spodoptera exigua. Re-utilization of culture supernatants in a second fermentation cycle after supplementation with some nutrients gave promising results with some of the strains tested. The data obtained are discussed in view of their feasibility of application. PMID:6666415

  13. The effect of exposure misclassification in spontaneous ADR reports on the time to detection of product-specific risks for biologicals : A simulation study

    NARCIS (Netherlands)

    Vermeer, Niels S.; Ebbers, Hans C.; Straus, Sabine M J M; Leufkens, Hubert G M; Egberts, Toine C G; De Bruin, Marie L.

    2016-01-01

    Background and Objective: The availability of accurate product-specific exposure information is essential in the pharmacovigilance of biologicals, because differences in the safety profile may emerge between products containing the same active substance. In spontaneous adverse drug reaction (ADR) re

  14. Effects of Fe2+, Co2+and Ni2+Ions on Biological Methane Production from Residual Heavy Oil

    Institute of Scientific and Technical Information of China (English)

    Liu Chunshuang; Ma Wenjuan; Zhao Dongfeng; Jia Kuili; Zhao Chaocheng

    2015-01-01

    On the basis of single factor tests, the effect of trace elements—Fe2+, Co2+and Ni2+ions—on biological methane production from heavy oil was investigated by the response surface method. A three-level Box-Behnken design was em-ployed to study the relationship between the independent variables and the dependent variable by applying initial Fe2+, Co2+and Ni2+concentration as the independent variables (factors) and using the methane production after 270 days of cultivation as the dependent variable (response). A prediction model of quadramatic polynomial regression equation was obtained. The results showed that the methane production could be as high as 240.69 µmol after optimization compared with 235.74 µmol obtained under un-optimized condition. Furthermore, the microbial communities before and after biodegradation were ana-lyzed by PCR-DGGE method. The dominant bands were recovered and sequenced. Three strains were obtained;the strain T1 has 97%similarity with Bacillus thermoamylovorans, the strain H3 has 97%similarity with Bacillus thermoamylovorans and the strain H4 has 99%similarity with Bacillus vietnamensis.

  15. Biological role of pigment production for the bacterial phytopathogen Pantoea stewartii subsp. stewartii.

    Science.gov (United States)

    Mohammadi, Mojtaba; Burbank, Lindsey; Roper, M Caroline

    2012-10-01

    Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to the crtB gene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contributes to the complete antioxidant pathway of P. stewartii. Moreover, production of this pigment is regulated by the EsaI/EsaR quorum-sensing system and significantly contributes to the virulence of the pathogen in planta. PMID:22820327

  16. Essential oils nanoformulations for stored-product pest control - characterization and biological properties.

    Science.gov (United States)

    Werdin González, Jorge Omar; Gutiérrez, María Mercedes; Ferrero, Adriana Alicia; Fernández Band, Beatriz

    2014-04-01

    The lethal and sublethal activity of poly(ethylene glycol) (PEG) nanoparticles containing essential oils (EO), also the physicochemical characterization, were determined against Tribolium castaneum and Rhizopertha dominica. The 10% ratio EO-PEG nanoparticles showed an average diameter75%; after 6 month of storage their size did not change significantly and the amount of the EOs decreased 25%, approximately. Furthermore, during this period, no chemical derivates were observed. The EOs nanoparticles produced a notable increase of the residual contact toxicity apparently due to the slow and persistent release of the active terpenes. In addition, the nanoformulation enhanced the EO contact toxicity and altered the nutritional physiology of both stored product pest. The results indicated that these novel systems could be used in integrated pest management program for T. castaneum and R. dominica control.

  17. Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride.

    Science.gov (United States)

    Mutschlechner, Mira; Illmer, Paul; Wagner, Andreas Otto

    2015-09-01

    With regard to renewable sources of energy, bioconversion of lignocellulosic biomass has long been recognized as a desirable endeavor. However, the highly heterogeneous structure of lignocellulose restricts the exploitation of its promising potential in biogas plants. Hence, effective pre-treatment methods are decisive prerequisites to overcome these challenges in order to improve the utilization ratio of (ligno) cellulosic substrates during fermentation. In the present study, the application of Trichoderma viride in an aerobic upstream process prior to anaerobic digestion led up to a threefold increase in the yield of methane and total gas in a lab-scale investigation. Due to its highly efficient cellulolytic activities, T. viride seemed to be responsible for an improved nutrient availability that positively influenced the anaerobic microbiocenosis. Aerobic pre-treatment of organic matter with T. viride is therefore a promising solution to achieve higher methane yields and degradation performances without any additional energy demand, nor undesired by-product inhibition. PMID:26013693

  18. A Combined System for Biological Removal of Nitrogen and Carbon from Nylon-6 Production Wastewater

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; LIU Guo-hua; TIAN Qing; ZHANG Man; CHEN Ji-hua

    2007-01-01

    A combined system consisting of hydrolysisacidification, denitrification and nitrification reactors wasused to remove carbon and nitrogen from the nylon - 6production wastewater, which was characterized by goodbiodegradability and high nitrogen concentration. Theinfluences of Chemical Oxygen Demand(COD) in theinfluent, recirculation ratio, Hydraulic Residence Time(HRT) and Dissolved Oxygen(DO) concentration on thesystem performances were investigated. From results itcould be seen that good performances have been achievedduring the overall experiments periods, and COD, TotalNitrogen(TN), NH+-N and Suspended Solids(SS) in theeffluent were 53, 16, 2 and 24 mg·L-1, respectively,which has satisfied the first standard of wastewaterdischarge established by Environmental Protection Agency(EPA) of China. Furthermore, results showed thatoperation factors, viz. COD in the influent, recirculationratio, HRT and DO concentration, all had importantinfluences on the system performances.

  19. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  20. Proof of concept for a banding scheme to support risk assessments related to multi-product biologics manufacturing.

    Science.gov (United States)

    Card, Jeffrey W; Fikree, Hana; Haighton, Lois A; Blackwell, James; Felice, Brian; Wright, Teresa L

    2015-11-01

    A banding scheme theory has been proposed to assess the potency/toxicity of biologics and assist with decisions regarding the introduction of new biologic products into existing manufacturing facilities. The current work was conducted to provide a practical example of how this scheme could be applied. Information was identified for representatives from the following four proposed bands: Band A (lethal toxins); Band B (toxins and apoptosis signals); Band C (cytokines and growth factors); and Band D (antibodies, antibody fragments, scaffold molecules, and insulins). The potency/toxicity of the representative substances was confirmed as follows: Band A, low nanogram quantities exert lethal effects; Band B, repeated administration of microgram quantities is tolerated in humans; Band C, endogenous substances and recombinant versions administered to patients in low (interferons), intermediate (growth factors), and high (interleukins) microgram doses, often on a chronic basis; and Band D, endogenous substances present or produced in the body in milligram quantities per day (insulin, collagen) or protein therapeutics administered in milligram quantities per dose (mAbs). This work confirms that substances in Bands A, B, C, and D represent very high, high, medium, and low concern with regard to risk of cross-contamination in manufacturing facilities, thus supporting the proposed banding scheme.

  1. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    Directory of Open Access Journals (Sweden)

    Heather A Hager

    Full Text Available In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  2. [Investigation of variation of the production of biological and chemical compounds of Hyssopus officinalis L].

    Science.gov (United States)

    Varga, E; Hajdú, Z; Veres, K; Máthé, I; Németh, E; Pluhár, Z; Bernáth, J

    1998-05-01

    Hyssopus officinalis L. (Lamiaceae family) has been cultivated in Central Europe for a long time. This essential oil containing species serves not only as spice but in many countries including Hungary, it is used as a folk medicine against certain respiratory diseases. Despite this fact, little is known about the variation of its productivity under Central European climatic conditions. The cultivated populations of hyssop can be characterised by a significant heterogenity. In the course of its breeding the uniformity of flower colour (e.g. blue form), and increase in the oil content are the main achievable purposes. The purpose of this work was to investigate both the variability of strains of different crigin and the time-dependent variations of its production parameters. The optimum of phytomass was obtained at the beginning of July. The essential oil content as well as compounds of the non volatile fractions were also investigated. The non volatile fractions for rosmarinic, caffeic acids were analysed mainly by TLC and densitometry. Both compounds were present in all samples and they are suitable for the characterisation of the plant. The essential oils were gained with Water Steam Distillation (WSD) and Supercritical Fluid Extraction (SFE) with CO2. The oils were analysed by GC, GC-MS techniques. In the essential oil composition of the populations studied significant heterogenity could be observed. In the case of applying SFE extraction the oil composition is more uniform, similarly to the obtained by WSD adding hexane. The heterogenity can be experienced in the offsprings, too. If only the main four components (beta-pinene, limonene, pinocamphone, isopinocamphone) are regarded, among the offsprings clear and mixed lines alike can be found. Results of these experiments justify the necessity and usefulness of selection which is going on. PMID:9703705

  3. Production of phycocyanin--a pigment with applications in biology, biotechnology, foods and medicine.

    Science.gov (United States)

    Eriksen, Niels T

    2008-08-01

    C-phycocyanin (C-PC) is a blue pigment in cyanobacteria, rhodophytes and cryptophytes with fluorescent and antioxidative properties. C-PC is presently extracted from open pond cultures of the cyanobacterium Arthrospira platensis although these cultures are not very productive and open for contaminating organisms. C-PC is considered a healthy ingredient in cyanobacterial-based foods and health foods while its colouring, fluorescent or antioxidant properties are utilised only to a minor extent. However, recent research and developments in C-PC synthesis and functionality have expanded the potential applications of C-PC in biotechnology, diagnostics, foods and medicine: The productivity of C-PC has been increased in heterotrophic, high cell density cultures of the rhodophyte Galdieria sulphuraria that are grown under well-controlled and axenic conditions. C-PC purification protocols based on various chromatographic principles or novel two-phase aqueous extraction methods have expanded in numbers and improved in performance. The functionality of C-PC as a fluorescent dye has been improved by chemical stabilisation of C-PC complexes, while protein engineering has also introduced increased stability and novel biospecific binding sites into C-PC fusion proteins. Finally, our understanding of the physiological functions of C-PC in humans has been improved by a mechanistic hypothesis that links the chemical properties of the phycocyanobilin chromophores of C-PC to the natural antioxidant, bilirubin, and may explain the observed health benefits of C-PC intake. This review outlines how C-PC is produced and utilised and discusses the novel C-PC synthesis procedures and applications. PMID:18563408

  4. Production of phycocyanin--a pigment with applications in biology, biotechnology, foods and medicine.

    Science.gov (United States)

    Eriksen, Niels T

    2008-08-01

    C-phycocyanin (C-PC) is a blue pigment in cyanobacteria, rhodophytes and cryptophytes with fluorescent and antioxidative properties. C-PC is presently extracted from open pond cultures of the cyanobacterium Arthrospira platensis although these cultures are not very productive and open for contaminating organisms. C-PC is considered a healthy ingredient in cyanobacterial-based foods and health foods while its colouring, fluorescent or antioxidant properties are utilised only to a minor extent. However, recent research and developments in C-PC synthesis and functionality have expanded the potential applications of C-PC in biotechnology, diagnostics, foods and medicine: The productivity of C-PC has been increased in heterotrophic, high cell density cultures of the rhodophyte Galdieria sulphuraria that are grown under well-controlled and axenic conditions. C-PC purification protocols based on various chromatographic principles or novel two-phase aqueous extraction methods have expanded in numbers and improved in performance. The functionality of C-PC as a fluorescent dye has been improved by chemical stabilisation of C-PC complexes, while protein engineering has also introduced increased stability and novel biospecific binding sites into C-PC fusion proteins. Finally, our understanding of the physiological functions of C-PC in humans has been improved by a mechanistic hypothesis that links the chemical properties of the phycocyanobilin chromophores of C-PC to the natural antioxidant, bilirubin, and may explain the observed health benefits of C-PC intake. This review outlines how C-PC is produced and utilised and discusses the novel C-PC synthesis procedures and applications.

  5. Towards rice bran protein utilization: In silico insight on the role of oryzacystatins in biologically-active peptide production.

    Science.gov (United States)

    Udenigwe, Chibuike C

    2016-01-15

    Rice bran proteins (RBP) have been demonstrated to harbour biologically active peptides, which can be released by proteases and applied in human health promotion. In this study, the roles of rice bran cysteine protease inhibitors, oryzacystatins, were considered for efficient production of bioactive peptides from RBP. In silico evidence demonstrates that aspartate protease (pepsin at pH>2) and metalloproteinase (thermolysin) have strong prospects for use in simultaneously cleaving the QXVXGX motif of oryzacystatins, which can lead to their inactivation, and in releasing bioactive sequences from the protease inhibitors. The cleaved bioactive peptides are known to possess activities that can be applied in the management of hypertension, oxidative stress, type 2 diabetes mellitus and other aberrant cellular processes. Moreover, several potentially bioactive di- and tripeptides were identified in oryzacystatin peptide pools. This study provides an important consideration and a direction that can lead to efficient release of bioactive peptides from rice bran proteins for functional food applications. PMID:26258712

  6. Biological removal of pharmaceutical compounds using white-rot fungi with concomitant FAME production of the residual biomass.

    Science.gov (United States)

    Vasiliadou, I A; Sánchez-Vázquez, R; Molina, R; Martínez, F; Melero, J A; Bautista, L F; Iglesias, J; Morales, G

    2016-09-15

    The efficiency of two white-rot fungi (WRF), Trametes versicolor and Ganoderma lucidum, to eliminate thirteen pharmaceutical pollutants with concomitant biodiesel production from the accumulating lipid content after treatment, was examined. The removal efficiency was studied using both individual and combined strains. The results of individual and combined strains showed a total removal (100%) of diclofenac (DCF), gemfibrozil (GFZ), ibuprofen (IBP), progesterone (PGT) and ranitidine (RNT). Lower removals were achieved for 4-acetamidoantipyrin (AAA), clofibric acid (ACF), atenolol (ATN), caffeine (CFN), carbamazepine (CZP), hydrochlorothiazide (HCT), sulfamethoxazole (SMX) and sulpiride (SPD), although the combination of both strains enhanced the system's efficiency, with removals ranging from 15 to 41%. This increase of the removal efficiency when combining both strains was attributed to the interactions developed between them (i.e., competition). Results from enzymatic and cytochrome P450 examination suggested that both extracellular (laccase, MnP, LiP) and intracellular oxidation mechanisms participate in the biological removal of pharmaceuticals. On the other hand, the "green" potential of the fungal sludge generated during the biological removal process was assessed for biodiesel production by means of one-step direct (in-situ) transformation. This process consists of the simultaneous extraction and conversion of lipids contained in the sludge by catalytic esterification/transesterification using a robust acid heterogeneous Zr-SBA-15 catalyst. This catalytic system provided conversions close to 80% of the saponifiable fraction (including free fatty acids and glycerides) in the presence of high amount of impurities. The overall weight FAME yield, based on the initial dried mass, was close to 30% for both strains. PMID:27233048

  7. Biological effects of radiation

    International Nuclear Information System (INIS)

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  8. Production and immobilization of alpha amylase using biotechnology techniques for use in biological and medical applications

    International Nuclear Information System (INIS)

    The immobilized enzymes on polymeric supports are prepared for purpose of repeated use and the possibilities of continuous reaction system. One of the most important properties is the stability of proteins when they are used in some medical and industrial applications. The immobilization of the enzymes improves this property as well as many other properties.In this study, alpha amylase was purified and immobilized onto two different polymers. α- amylase was used in this study for its biological and industrial applications. It is used in paper textile, pharmaceutical applications, food, and detergent industries. α- amylase was found in plants, animals, and microorganisms. Purification of α-amylase from microorganisms is the main source of α-amylase because it was excreted from many bacteria and fungi. In this study, α-amylase was purified from Aspergillus niger. Fractional precipitation of the α- amylase produced by A. niger with 80% ammonium sulphate saturation. The crude enzyme was applied on column chromatography packed with Sephadex G 100 for purification. The active eluents containing partially purified enzyme were collected for further investigation. The specific activity of α-amylase was (34.9 U/mg) which was corresponding to 2.09 fold purification for the tested organism. The purified α-amylase was immobilized by entrapment method into two types of polymers. One of them was natural consist of chitosan and alginate. The other polymer was synthetic consist of N- isopropyl acrylamide and alginate. The temperature optimum and thermal inactivation showed a severe loss in the activity of the free enzymes, while the temperature profile of the immobilized enzymes was much broader at higher temperatures demonstrating the effectiveness of the polymer protecting the enzymes. Also, the immobilized enzymes (natural polymer and synthetic polymer) showed higher thermal stability. Optimum ph and stability showed that immobilization of enzymes resulted in more

  9. Production and packaging of a biological arsenal: evolution of centipede venoms under morphological constraint.

    Science.gov (United States)

    Undheim, Eivind A B; Hamilton, Brett R; Kurniawan, Nyoman D; Bowlay, Greg; Cribb, Bronwen W; Merritt, David J; Fry, Bryan G; King, Glenn F; Venter, Deon J

    2015-03-31

    Venom represents one of the most extreme manifestations of a chemical arms race. Venoms are complex biochemical arsenals, often containing hundreds to thousands of unique protein toxins. Despite their utility for prey capture, venoms are energetically expensive commodities, and consequently it is hypothesized that venom complexity is inversely related to the capacity of a venomous animal to physically subdue prey. Centipedes, one of the oldest yet least-studied venomous lineages, appear to defy this rule. Although scutigeromorph centipedes produce less complex venom than those secreted by scolopendrid centipedes, they appear to rely heavily on venom for prey capture. We show that the venom glands are large and well developed in both scutigerid and scolopendrid species, but that scutigerid forcipules lack the adaptations that allow scolopendrids to inflict physical damage on prey and predators. Moreover, we reveal that scolopendrid venom glands have evolved to accommodate a much larger number of secretory cells and, by using imaging mass spectrometry, we demonstrate that toxin production is heterogeneous across these secretory units. We propose that the differences in venom complexity between centipede orders are largely a result of morphological restrictions of the venom gland, and consequently there is a strong correlation between the morphological and biochemical complexity of this unique venom system. The current data add to the growing body of evidence that toxins are not expressed in a spatially homogenous manner within venom glands, and they suggest that the link between ecology and toxin evolution is more complex than previously thought. PMID:25775536

  10. Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties

    Directory of Open Access Journals (Sweden)

    Houssam M. Atta

    2015-01-01

    Full Text Available Tunicamycin is a nucleotide antibiotic which was isolated from the fermentation broth of a Streptomyces strain No. T-4. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain T-4 was identified as Streptomyces torulosus. It is active in vitro against some microbial pathogenic viz: Staphylococcus aureus, NCTC 7447; Micrococcus lutea, ATCC 9341; Bacillus subtilis, NCTC 10400; B. pumilus, NCTC; Klebsiella pneumonia, NCIMB 9111; Escherichia coli, NCTC 10416; Pseudomonas aeruginosa, ATCC 10145; Saccharomyces cerevisiae ATCC 9763; Candida albicans, IMRU 3669; Aspergillus flavus, IMI 111023; Aspergillus niger IMI 31276; Aspergillus fumigatus ATCC 16424; Fusarium oxysporum; Rhizoctonia solani; Alternaria alternata; Botrytis fabae and Penicillium chrysogenium. The production media were optimized for maximum yield of secondary metabolites. The metabolites were extracted using n-butanol (1:1, v/v at pH 7.0. The chemical structural analysis with UV, IR, and MS spectral analyses confirmed that the compound produced by Streptomyces torulosus, T-4 is tunicamycin antibiotic.

  11. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    International Nuclear Information System (INIS)

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, α, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  12. Experimental workflow for developing a feed forward strategy to control biomass growth and exploit maximum specific methane productivity of Methanothermobacter marburgensis in a biological methane production process (BMPP

    Directory of Open Access Journals (Sweden)

    Alexander Krajete

    2016-08-01

    Full Text Available Recently, interests for new biofuel generations allowing conversion of gaseous substrate(s to gaseous product(s arose for power to gas and waste to value applications. An example is biological methane production process (BMPP with Methanothermobacter marburgensis. The latter, can convert carbon dioxide (CO2 and hydrogen (H2, having different origins and purities, to methane (CH4, water and biomass. However, these gas converting bioprocesses are tendentiously gas limited processes and the specific methane productivity per biomass amount (qCH4 tends to be low. Therefore, this contribution proposes a workflow for the development of a feed forward strategy to control biomass, growth (rx and qCH4 in a continuous gas limited BMPP. The proposed workflow starts with a design of experiment (DoE to optimize media composition and search for a liquid based limitation to control selectively growth. From the DoE it came out that controlling biomass growth was possible independently of the dilution and gassing rate applied while not affecting methane evolution rates (MERs. This was done by shifting the process from a natural gas limited state to a controlled liquid limited growth. The latter allowed exploiting the maximum biocatalytic activity for methane formation of Methanothermobacter marburgensis. An increase of qCH4 from 42 to 129 mmolCH4 g−1 h−1 was achieved by applying a liquid limitation compare with the reference state. Finally, a verification experiment was done to verify the feeding strategy transferability to a different process configuration. This evidenced the ratio of the fed KH2PO4 to rx (R(FKH2PO4/rx has an appropriate parameter for scaling feeds in a continuous gas limited BMPP. In the verification experiment CH4 was produced in a single bioreactor step at a methane evolution rate (MER of   132 mmolCH4*L−1*h−1 at a CH4 purity of 93 [Vol.%].

  13. The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5.

    Science.gov (United States)

    Sarniguet, A; Kraus, J; Henkels, M D; Muehlchen, A M; Loper, J E

    1995-12-19

    Pseudomonas fluorescens Pf-5, a rhizosphere-inhabiting bacterium that suppresses several soilborne pathogens of plants, produces the antibiotics pyrrolnitrin, pyoluteorin, and 2,4-diacetylphloroglucinol. A gene necessary for pyrrolnitrin production by Pf-5 was identified as rpoS, which encodes the stationary-phase sigma factor sigma s. Several pleiotropic effects of an rpoS mutation in Escherichia coli also were observed in an RpoS- mutant of Pf-5. These included sensitivities of stationary-phase cells to stresses imposed by hydrogen peroxide or high salt concentration. A plasmid containing the cloned wild-type rpoS gene restored pyrrolnitrin production and stress tolerance to the RpoS- mutant of Pf-5. The RpoS- mutant overproduced pyoluteorin and 2,4-diacetyl-phloroglucinol, two antibiotics that inhibit growth of the phytopathogenic fungus Pythium ultimum, and was superior to the wild type in suppression of seedling damping-off of cucumber caused by Pythium ultimum. When inoculated onto cucumber seed at high cell densities, the RpoS- mutant did not survive as well as the wild-type strain on surfaces of developing seedlings. Other stationary-phase-specific phenotypes of Pf-5, such as the production of cyanide and extracellular protease(s) were expressed by the RpoS- mutant, suggesting that sigma s is only one of the sigma factors required for the transcription of genes in stationary-phase cells of P. fluorescens. These results indicate that a sigma factor encoded by rpoS influences antibiotic production, biological control activity, and survival of P. fluorescens on plant surfaces. PMID:8618880

  14. Population biology and secondary production of the stout razor clam Tagelus plebeius (Bivalvia, Solecurtidae on a sandflat in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Jolnnye R. Abrahão

    2010-02-01

    Full Text Available The population biology and production of the stout razor clam Tagelus plebeius Lightfoot, 1786 were investigated on an intertidal sandflat on the southeast coast of Brazil (Enseada Beach, São Sebastião, state of São Paulo between April 1997 and April 1998. Two rectangular sites of 50 X 10 m parallel to the waterline were established, site A (upper intertidal level and site B (middle intertidal level, where the samples were taken in an 0.5 x 0.5 m quadrat. High abundances were recorded in winter and spring, with no significant differences between the sites. The high bivalve abundances were related to the presence of very fine homogeneous sediment with low salinities. Tagelus plebeius had negative allometric growth, characteristic of deep burrowers for the relationships DM/SL and AFDM/SL. Parameters of the modified von Bertalanffy growth function were: L∞ = 67.01 mm, K = 1.73 year-1, t0 = -0.11 year, C = 0.43, WP = 0.96. The instantaneous mortality (Z was 3.12 year-1, relatively high in comparison to other tropical bivalve populations. Secondary production was 1.53 g AFDM m-2 year-1, with a P/B ratio reaching 1.37 year-1. This high turnover ratio (P/B was related to a rapid population replacement, connected with the short life span and high mortality of the species.

  15. The Role of Chitinase Production by Stenotrophomonas maltophilia Strain C3 in Biological Control of Bipolaris sorokiniana.

    Science.gov (United States)

    Zhang, Z; Yuen, G Y

    2000-04-01

    ABSTRACT The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of leaf spot on tall fescue (Festuca arundinacea), caused by Bipolaris sorokiniana, was investigated in vitro and in vivo. The filtrate of a broth culture of C3, with chitin as the carbon source, was separated into fractions. A high molecular-weight fraction (>8 kDa) was chitinolytic and more inhibitory than a low-molecular-weight, nonchitinolytic fraction to conidial germination and hyphal growth by B. sorokiniana and to leaf spot development. A protein fraction derived by ammonium sulfate precipitation and a chitinase fraction purified by chitin affinity chromatography also were chitinolytic and highly antifungal. The chitinolytic fractions caused swelling and vacuolation of conidia and discoloration, malformation, and degradation of germ tubes. When boiled, the chitinolytic fractions lost chitinase activity along with most of the antifungal properties. Two chitinase-deficient and two chitinase-reduced mutants of C3 were compared with the wild-type strain for inhibition of germination of B. sorokiniana conidia on tall fescue leaves and for suppression of leaf spot development in vivo. The mutants exhibited reduced antifungal activity and biocontrol efficacy, but did not lose all biocontrol activity. An aqueous extract of leaves colonized by wild-type C3 had higher chitinase activity than that of noncolonized leaves and was inhibitory to conidial germination. The addition of chitin to leaves along with the wild-type strain increased both chitinase and antifungal activity. The chitinase activity level of extracts from leaves colonized by a chitinase-deficient mutant of C3, with and without added chitin, was no higher than the background, and the extracts lacked antifungal activity. Chitinolysis appears to be one mechanism of biological control by strain C3, and it functions in concert with other mechanisms.

  16. Creating biological nanomaterials using synthetic biology

    OpenAIRE

    MaryJoe K Rice; Ruder, Warren C.

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic bi...

  17. Experimental methods for screening parameters influencing the growth to product yield (Y(x/CH4 of a biological methane production (BMP process performed with Methanothermobacter marburgensis

    Directory of Open Access Journals (Sweden)

    Sébastien Bernacchi

    2014-12-01

    Full Text Available 1. Specht M, Brellochs J, Frick V, et al. (2010 Storage of renewable energy in the natural gas grid. Erdoel, Erdgas, Kohle 126: 342-345.2. Thauer RK, Kaster AK, Goenrich M, et al. (2010 Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79: 507-536.3. Liu Y, Whitman WB (2008 Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125: 171-189.4. Kaster AK, Goenrich M, Seedorf H, et al. (2011 More than 200 genes required for methane formation from H2 and CO2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea ID 973848: 1-23.5. Seifert AH, Rittmann S, Herwig C (2014 Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis Appl Energ 132: 155-162.6. Bernacchi S, Weissgram M, Wukovits W, et al. (2014 Process efficiency simulation for key process parameters in biological methanogenesis. AIMS bioengineering 1: 53-71.7. Thauer RK, Kaster AK, Seedorf H, et al. (2008 Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6: 579-591.8. Schill N, van Gulik WM, Voisard D, et al. (1996 Continuous cultures limited by a gaseous substrate: development of a simple, unstructure mathematical model and experimental verification with Methanobacterium thermoautotrophicum. Biotechnol Bioeng 51: 645-658.9. Jud G, Schneider K, Bachofen R (1997 The role of hydrogen mass transfer for the growth kinetics of Methanobacterium thermoautotrophicum in batch and chemostat cultures. J Ind Microbiol Biotechnol 19: 246-251.10. Tsao JH, Kaneshiro SM, Yu SS, et al. (1994 Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen. Biotechnol Bioeng 43: 258-261.11. Schill N, van Gulik WM, Voisard D, et al. (1996 Continuous cultures limited by a gaseous substrate: development of a

  18. Biological Oceanography

    Science.gov (United States)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  19. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  20. Creating biological nanomaterials using synthetic biology

    Directory of Open Access Journals (Sweden)

    MaryJoe K Rice

    2014-01-01

    Full Text Available Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  1. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus

    Science.gov (United States)

    Neale, P. J.; Pritchard, A. L.; Ihnacik, R.

    2014-05-01

    A model that predicts UV effects on marine primary productivity using a biological weighting function (BWF) coupled to the photosynthesis-irradiance response (BWF/P-E model) has been implemented for two strains of the picoplanktonic cyanobacteria Synechococcus, WH7803 and WH8102, which were grown at two irradiances (77 and 174 μmol m-2 s-1 photosynthetically available radiation (PAR)) and two temperatures (20 and 26 °C). The model was fit using photosynthesis measured in a polychromatic incubator with 12 long-pass filter configurations with 50% wavelength cutoffs ranging from 291 to 408 nm, giving an effective wavelength range of 280-400 nm. Examination of photosynthetic response vs. weighted exposure revealed that repair rate progressively increases at low exposure but reaches a maximum rate above a threshold exposure ("Emax"). Adding Emax as a parameter to the BWF/P-E model provided a significantly better fit to Synechococcus data than the existing "E" or "T" models. Sensitivity to UV inhibition varied with growth conditions for both strains, but this was mediated mainly by variations in Emax for WH8102 while both the BWF and Emax changed for WH7803. Higher growth temperature was associated with a considerable reduction in sensitivity, consistent with an important role of repair in regulating sensitivity to UV. Based on nominal water column conditions (noon, solstice, 23° latitude, "blue" water), the BWFEmax/P-E model estimates that UV + PAR exposure inhibits Synechococcus photosynthesis from 78 to 91% at 1 m, and integrated productivity to 150 m 17-29% relative to predicted rates in the absence of inhibition.

  2. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus

    Science.gov (United States)

    Neale, P. J.; Pritchard, A. L.; Ihnacik, R.

    2013-12-01

    A model that predicts UV effects on marine primary productivity using a biological weighting function (BWF) coupled to the photosynthesis-irradiance response (BWF/P-E model) has been implemented for two strains of the picoplanktonic cyanobacteria, Synechococcus, WH7803 and WH8102, which were grown at two irradiances (77 and 174 μmol m-2 s-1 PAR) and two temperatures (20 °C and 26 °C). The model was fit using photosynthesis measured in a polychromatic incubator with 12 long-pass filter configurations with 50% wavelength cutoffs ranging from 291 to 408 nm, giving an effective wavelength range of 280-400 nm. Examination of photosynthetic response vs weighted exposure revealed that repair rate progressively increases at low exposure but reaches a maximum rate above a threshold exposure ("Emax"). Adding Emax as a parameter to the BWF/P-E model provided a significantly better fit to Synechococcus data than the existing "E" or "T" models. Sensitivity to UV inhibition varied with growth conditions for both strains, but this was mediated mainly by variations in Emax for WH8102 while both the BWF and Emax changed for WH7803. Higher growth temperature was associated with a considerable reduction in sensitivity, consistent with an important role of repair in regulating sensitivity to UV. Based on nominal water column conditions (noon, solstice, 23° latitude, "blue" water), the BWFEmax/P-E model estimates that UV + PAR exposure inhibits Synechococcus photosynthesis from 77-91% at 1 m, and integrated productivity to 150 m 15-27% relative to predicted rates in the absence of inhibition.

  3. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  4. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Deng, Yang; Templeton, Michael R

    2012-03-01

    Pilot-scale tests were performed to reduce the formation of several nitrogenous and carbonaceous disinfection by-products (DBPs) with an integrated ozone and biological activated carbon (O(3)-BAC) treatment process following conventional water treatment processes (coagulation-sedimentation-filtration). Relative to the conventional processes alone, O(3)-BAC significantly improved the removal of turbidity, dissolved organic carbon, UV(254), NH(4)(+) and dissolved organic nitrogen from 98-99%, 58-72%, 31-53%, 16-93% and 35-74%, respectively, and enhanced the removal efficiency of the precursors for the measured DBPs. The conventional process was almost ineffective in removing the precursors of trichloronitromethane (TCNM) and dichloroacetamide (DCAcAm). Ozonation could not substantially reduce the formation of DCAcAm, and actually increased the formation potential of TCNM; it chemically altered the molecular structures of the precursors and increased the biodegradability of N-containing organic compounds. Consequently, the subsequent BAC filtration substantially reduced the formation of the both TCNM and DCAcAm, thus highlighting a synergistic effect of O(3) and BAC. Additionally, O(3)-BAC was effective at controlling the formation of the total organic halogen, which can be considered as an indicator of the formation of unidentified DBPs.

  5. Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production

    Directory of Open Access Journals (Sweden)

    V. Bocci

    1998-01-01

    Full Text Available Ozone (O3 is a controversial gas because, owing to its potent oxidant properties, it exerts damaging effects on the respiratory tract and yet it has been used for four decades as a therapy. While the disinfectant activity of O3 is understandable, it is less clear how other biological effects can be elicited in human blood with practically no toxicity. On the other hand plasma and cells are endowed with a powerful antioxidant system so that a fairly wide range of O3 concentrations between 40 and 80μ g/ml per gram of blood (˜0.83-1.66 mM are effective but not deleterious. After blood ozonation total antioxidant status (TAS and plasma protein thiol groups (PTG decrease by 20% and 25%, respectively, while thiobarbituric acid reactive substances (TBARS increases up to fivefold. The increase of haemolysis is negligible suggesting that the erythrocyte membrane is spared at the expense of other sacrificial substrates. While there is a clear relationship between the ozone dose and IL-8 levels, we have noticed that high TAS and PTG values inhibit the cytokine production. This is in line with the current idea that hydrogen peroxide, as a byproduct of O3 decomposition, acts as a messenger for the cytokine induction.

  6. Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production - Biological and economic potential

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, I. [Department of Crop Production Ecology, Swedish University of Agricultural Sciences, P.O. Box 7043, SE 750 07 Uppsala (Sweden); Rosenqvist, H. [Department of Agriculture-Farming Systems, Technology and Product Quality, Swedish University of Agricultural Sciences, P.O. Box 17, SE-261 21 Billeberga (Sweden)

    2011-02-15

    Application of municipal residues, e.g. wastewater or sewage sludge, to Short Rotation Coppice (SRC) is among the most attractive methods for attaining environmental and energy goals set for Europe. At current woodchip prices in Sweden, the gross margin for SRC cultivation is positive only if biomass production is >9 t DM/ha yr. The gross profit margin increases (by 39 and 199 EUR/GJ, respectively) if sewage sludge and wastewater are applied to SRC. Application of residues to SRC has proved to be an acceptable alternative treatment method, and the farmer's profit can be markedly increased if compensation is paid for waste treatment. If all available sludge and wastewater were applied to SRC plantations, they could be grown on large agricultural areas in Europe, and c. 6000 PJ of renewable energy could be produced annually. However, a more economical landuse strategy, e.g. the use of more P-rich residues, appears more rational, and is biologically justifiable. (author)

  7. Prioritizing Unknown Transformation Products from Biologically-Treated Wastewater Using High-Resolution Mass Spectrometry, Multivariate Statistics, and Metabolic Logic.

    Science.gov (United States)

    Schollée, Jennifer E; Schymanski, Emma L; Avak, Sven E; Loos, Martin; Hollender, Juliane

    2015-12-15

    Incomplete micropollutant elimination in wastewater treatment plants (WWTPs) results in transformation products (TPs) that are released into the environment. Improvements in analytical technologies have allowed researchers to identify several TPs from specific micropollutants but an overall picture of nontarget TPs is missing. In this study, we addressed this challenge by applying multivariate statistics to data collected with liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) and subsequent tandem HRMS (MS/MS) in order to characterize peaks detected in the influent and effluent of a WWTP. Known biotransformation reactions were used to link potential parent compounds and TPs, while the structural similarity of these pairs hypothesized by MS/MS similarity was used for further prioritization. The methodology was validated with a set of spiked compounds, which included 25 parent/TP pairs for which analytical standards were available. This procedure was then applied to nontarget data, and 20 potential parent and TP pairs were selected for identification. In summary, primarily a surfactant homologue series, with associated TPs, was detected. Some obstacles still remain, including spectral interferences from coeluting compounds and identification of TPs, whose structures are less likely to be present in compound databases. The workflow was developed using openly accessible tools and, after parameter adjustment, could be applied to any data set with before and after information about various biological or chemical processes. PMID:26575699

  8. Safeguarding production agriculture and natural ecosystems against biological terrorism. A U.S. Department of Agriculture emergency response framework.

    Science.gov (United States)

    Sequeira, R

    1999-01-01

    Foreign pest introductions and outbreaks represent threats to agricultural productivity and ecosystems, and, thus, to the health and national security of the United States. It is advisable to identify relevant techniques and bring all appropriate strategies to bear on the problem of controlling accidentally and intentionally introduced pest outbreaks. Recent political shifts indicate that the U.S. may be at increased risk for biological terrorism. The existing emergency-response strategies of the Animal and Plant Health Inspection Services (APHIS) will evolve to expand activities in coordination with other emergency management agencies. APHIS will evolve its information superstructure to include extensive application of simulation models for forecasting, meteorological databases and analysis, systems analysis, geographic information systems, satellite image analysis, remote sensing, and the training of specialized cadres within the emergency-response framework capable of managing the necessary information processing and analysis. Finally, the threat of key pests ranked according to perceived risk will be assessed with mathematical models and "what-if" scenarios analyzed to determine impact and mitigation practices. An infrastructure will be maintained that periodically surveys ports and inland regions for the presence of exotic pest threats and will identify trend abnormalities. This survey and monitoring effort will include cooperation from industry groups, federal and state organizations, and academic institutions. PMID:10681969

  9. Design and construction of a first-generation high-throughput integrated molecular biology platform for production of optimized synthetic genes and improved industrial strains

    Science.gov (United States)

    The molecular biological techniques for plasmid-based assembly and cloning of synthetic assembled gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-bas...

  10. Identification of transformation products of antiviral drugs formed during biological wastewater treatment and their occurrence in the urban water cycle.

    Science.gov (United States)

    Funke, Jan; Prasse, Carsten; Ternes, Thomas A

    2016-07-01

    The fate of five antiviral drugs (abacavir, emtricitabine, ganciclovir, lamivudine and zidovudine) was investigated in biological wastewater treatment. Investigations of degradation kinetics were accompanied by the elucidation of formed transformation products (TPs) using activated sludge lab experiments and subsequent LC-HRMS analysis. Degradation rate constants ranged between 0.46 L d(-1) gSS(-1) (zidovudine) and 55.8 L d(-1) gSS(-1) (abacavir). Despite these differences of the degradation kinetics, the same main biotransformation reaction was observed for all five compounds: oxidation of the terminal hydroxyl-moiety to the corresponding carboxylic acid (formation of carboxy-TPs). In addition, the oxidation of thioether moieties to sulfoxides was observed for emtricitabine and lamivudine. Antiviral drugs were detected in influents of municipal wastewater treatment plants (WWTPs) with concentrations up to 980 ng L(-1) (emtricitabine), while in WWTP effluents mainly the TPs were found with concentration levels up to 1320 ng L(-1) (carboxy-abacavir). Except of zidovudine none of the original antiviral drugs were detected in German rivers and streams, whereas the concentrations of the TPs ranged from 16 ng L(-1) for carboxy-lamivudine up to 750 ng L(-1) for carboxy-acyclovir. These concentrations indicate an appreciable portion from WWTP effluents present in rivers and streams, as well as the high environmental persistence of the carboxy-TPs. As a result three of the carboxylic TPs were detected in finished drinking water. PMID:27082694

  11. Establishing the "Biological Relevance" of Dipentyl Phthalate Reductions in Fetal Rat Testosterone Production and Plasma and Testis Testosterone Levels.

    Science.gov (United States)

    Gray, Leon Earl; Furr, Johnathan; Tatum-Gibbs, Katoria R; Lambright, Christy; Sampson, Hunter; Hannas, Bethany R; Wilson, Vickie S; Hotchkiss, Andrew; Foster, Paul M D

    2016-01-01

    Phthalate esters (PEs) constitute a large class of compounds that are used for many consumer product applications. Many of the C2-C7 di-ortho PEs reduce fetal testicular hormone and gene expression levels in rats resulting in adverse effects seen later in life but it appears that relatively large reductions in fetal testosterone (T) levels and testis gene expression may be required to adversely affect reproductive development (Hannas, B. R., Lambright, C. S., Furr, J., Evans, N., Foster, P. M., Gray, E. L., and Wilson, V. S. (2012). Genomic biomarkers of phthalate-induced male reproductive developmental toxicity: a targeted RT-PCR array approach for defining relative potency. Toxicol. Sci. 125, 544-557). The objectives of this study were (1) to model the relationships between changes in fetal male rat plasma testosterone (PT), T levels in the testis (TT), T production (PROD), and testis gene expression with the reproductive malformation rates, and (2) to quantify the "biologically relevant reductions" (BRRs) in fetal T necessary to induce adverse effects in the offspring. In the fetal experiment, Harlan Sprague-Dawley rats were dosed with dipentyl phthalate (DPeP) at 0, 11, 33, 100, and 300 mg/kg/day from gestational days (GD) 14-18 and fetal testicular T, PT levels, and T Prod and gene expression were assessed on GD 18. In the postnatal experiment, rats were dosed with DPeP from GD 8-18 and reproductive development was monitored through adulthood. The dose-response curves for TT levels (ED(50) = 53 mg/kg) and T PROD (ED(50) = 45 mg/kg) were similar, whereas PT was reduced at ED50 = 19 mg/kg. When the reductions in TPROD and Insl3 mRNA were compared with the postnatal effects of in utero DPeP, dose-related reproductive alterations were noted when T PROD and Insl3 mRNA were reduced by >45% and 42%, respectively. The determination of BRR levels may enable risk assessors to utilize fetal endocrine data to help establish points of departure for

  12. On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru

    Directory of Open Access Journals (Sweden)

    L. Stramma

    2013-06-01

    Full Text Available Mesoscale eddies seem to play an important role for both the hydrography and biogeochemistry of the eastern tropical Pacific Ocean (ETSP off Peru. However, detailed surveys of these eddies are not available, which has so far hampered an in depth understanding of their implications for nutrient distribution and biological productivity. In this study three eddies along a section at 16°45' S have been surveyed intensively during R/V Meteor cruise M90 in November 2012. A coastal mode water eddy, an open ocean mode water eddy and an open ocean cyclonic eddy have been identified and sampled in order to determine both their hydrographic properties and their influence on the biogeochemical setting of the ETSP. In the thermocline the temperature of the coastal anticyclonic eddy was up to 2 °C warmer, 0.2 more saline and the swirl velocity was up to 35 cm s–1. The observed temperature and salinity anomalies, as well as swirl velocities of both types of eddies were about twice as large as had been described for the mean eddies in the ETSP and the observed heat and salt anomalies (AHA, ASA show a much larger variability than the mean AHA and ASA. We found that the eddies contributed significantly to productivity by maintaining pronounced subsurface maxima of chlorophyll. Based on a comparison of the coastal (young mode water eddy and the open ocean (old mode water eddy we conclude that the aging of eddies when they detach from the coast and move westward to the open ocean considerably influences the eddies' properties: chlorophyll maxima are weaker and nutrients are subducted. The coastal mode water eddy was found to be a hotspot of nitrogen loss in the OMZ, whereas, the open ocean cyclonic eddy was of negligible importance for nitrogen loss. Our results show that the important role the eddies play in the ETSP can only be fully deciphered and understood through dedicated high spatial and temporal resolution oceanographic/biogeochemical surveys.

  13. Codling Moth, Cydia pomonella (Lepidoptera: Tortricidae – Major Pest in Apple Production: an Overview of its Biology, Resistance, Genetic Structure and Control Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Pajač

    2011-06-01

    Full Text Available The codling moth Cydia pomonella (CM (Linnaeus is a key pest in pome fruit production with a preference for apple. The pest is very adaptable to different climatic conditions and is known for developing resistance to several chemical groups of insecticides. Because of these reasons, the populations of codling moth are differentiated in many ecotypes of various biological and physiological development requirements. The article provides a bibliographic review of investigation about: morphology, biology, dispersal, damages, resistance to insecticides, population genetic structure and genetic control of this pest.

  14. Systems Toxicology Assessment of the Biological Impact of a Candidate Modified Risk Tobacco Product on Human Organotypic Oral Epithelial Cultures.

    Science.gov (United States)

    Zanetti, Filippo; Sewer, Alain; Mathis, Carole; Iskandar, Anita R; Kostadinova, Radina; Schlage, Walter K; Leroy, Patrice; Majeed, Shoaib; Guedj, Emmanuel; Trivedi, Keyur; Martin, Florian; Elamin, Ashraf; Merg, Céline; Ivanov, Nikolai V; Frentzel, Stefan; Peitsch, Manuel C; Hoeng, Julia

    2016-08-15

    Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher concentration (1.09 mg/L) of THS2.2. A systems toxicology approach was employed combining cellular assays (i.e., cytotoxicity and cytochrome P450 activity assays), comprehensive molecular investigations of the buccal epithelial transcriptome (mRNA and miRNA) by means of computational network biology, measurements of secreted proinflammatory markers, and histopathological analysis. We observed that the impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators. Analysis of the transcriptomic changes in the exposed oral cultures revealed significant perturbations in various network models such as apoptosis, necroptosis, senescence, xenobiotic metabolism, oxidative stress, and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) signaling. The stress responses following THS2.2 aerosol exposure were markedly decreased, and the exposed cultures recovered more completely compared

  15. Energy production from mechanical biological treatment and Composting plants exploiting solid anaerobic digestion batch: An Italian case study

    International Nuclear Information System (INIS)

    Highlights: ► This work quantifies the Italian Composting and MBT facilities upgradable by SADB. ► The bioCH4 from SADB of source and mechanical selected OFMSW is of 220–360 Nl/kg VS. ► The upgrading investment cost is 30% higher for Composting than for MBT. ► Electricity costs are 0.11–0.28 €/kW h, not influenced by differentiate collection. ► Electrical energy costs are constant for SADB treating more than 30 ktons/year. - Abstract: The energetic potential of the organic fraction of municipal solid waste processed in both existing Composting plants and Mechanical Biological Treatment (MBT) plants, can be successfully exploited by retrofitting these plants with the solid anaerobic digestion batch process. On the basis of the analysis performed in this study, about 50 MBT plants and 35 Composting plants were found to be suitable for retrofitting with Solid Anaerobic Digestion Batch (SADB) facilities. Currently the organic fraction of Municipal Solid Waste (OFMSW) arising from the MBT facilities is about 1,100,000 tons/year, whereas that arising from differentiated collection and treated in Composting plants is about 850,000 tons/year. The SADB performances were analyzed by the aid of an experimental apparatus and the main results, in agreement with literature data, show that the biogas yield ranged from 400 to 650 Nl/kg of Volatile Solids (VS), with a methane content ranging from 55% to 60% v/v. This can lead to the production of about 500 GW h of renewable energy per year, giving a CO2 reduction of about 270,000 tons/year. From the economic point of view, the analysis shows that the mean cost of a kW h of electrical energy produced by upgrading MBT and Composting facilities with the SADB, ranges from 0.11 and 0.28 €/kW h, depending on the plant size and the amount of waste treated.

  16. Total Synthesis and Biological Evaluation of a Series of Macrocyclic Hybrids and Analogues of the Antimitotic Natural Products Dictyostatin, Discodermolide and Taxol

    OpenAIRE

    Paterson, Ian; Naylor, Guy J.; Gardner, Nicola M.; Guzmán, Ester; Wright, Amy E.

    2010-01-01

    The design, synthesis and biological evaluation of a series of hybrids and analogues of the microtubule-stabilising anticancer agents dictyostatin, discodermolide and taxol is described. A 22-membered macrolide scaffold was prepared by adapting earlier synthetic routes directed towards dictyostatin and discodermolide, taking advantage of the distinctive structural and stereochemical similarities between these two polyketide-derived marine natural products. Initial endeavours towards accessing...

  17. High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains—selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG

    OpenAIRE

    Blanchard, Véronique; Gadkari, R.P; George, A.V.E.; Roy, R; Gerwig, G J; Leeflang, B.R.; Dighe, R R; Boelens, R.; Kamerling, J P

    2008-01-01

    The methylotrophic yeast Pichia pastoris is widely used for the production of recombinant glycoproteins. With the aim to generate biologically active 15N-labeled glycohormones for conformational studies focused on the unravelling of the NMR structures in solution, the P. pastoris strains GS115 and X-33 were explored for the expression of human chorionic gonadotropin (phCG) and human follicle-stimulating hormone (phFSH). In agreement with recent investigations on the N-glycosylation of phCG, p...

  18. The influence of bacterial-humus preparations on the biological activity of soils polluted with oil products and heavy metals

    Science.gov (United States)

    Kozlova, E. N.; Stepanov, A. L.; Lysak, L. V.

    2015-04-01

    The influence of bacterial-humus preparations based on Gumigel ( Agrosintez Company) on the biological activity of soddy-podzolic soil polluted with Pb(CH3COO)2 and gasoline was studied in a model experiment. Some indicators of biological activity are shown to depend on soil pollution to different extents. The process of nitrogen fixation and the activity of dehydrogenase and phosphatase were mostly inhibited by Pb(CH3COO)2 and gasoline. Gasoline compared to Pb(CH3COO)2 inhibited the soil biological activity to a greater extent. The bacterial-humus preparations exerted a significant positive effect on the biological activity of the polluted soils manifested in the increase of the total number of bacteria and of the enzyme activity (1.5-5.0 times), in the intensification of nitrogen fixation and denitrification (3-8 times), as well as in the increase in the biomass of the plants grown (1.5-2.0 times). The application of bacterial suspensions of pure cultures or the microbial complex without the preparations of humic acids did not always give a positive effect.

  19. Treatment of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran production effluent by combination of biological treatments and Fenton's oxidation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High strength refractory organic stream is produced during the production of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran(One Dye Black 2, abbr. ODB 2), a novel heat-sensitive material with a promising market. In this study, a combination of acidificationprecipitation, primary biological treatment, Fenton's oxidation and another biological treatment was successfully used for the removal of COD from 18000-25000 mg/L to below 200 mg/L from the ODB 2 production wastewater in a pilot experiment. A COD removal of 70%-80% was achieved by acidification-precipitation under a pH of 2.5-3.0. The first step biodegradation permitted an average COD removal of 70% under an hydraulic residence time (HRT) of 30 h. By batch tests, the optimum conditions of Fenton's oxidation were acquired as: Fe2+ dose 6.0 mmol/L; H2O2 dose 3000 mg/L; and reaction time 6 h. The second step biological treatment could ensure an effluent COD below 200 mg/L under an HRT of 10 h following the Fenton's treatment.

  20. Management options for food production systems affected by a nuclear accident. Task 7: biological treatment of contaminated milk

    International Nuclear Information System (INIS)

    In the event of a nuclear accident affecting the UK, regulation of contamination in the foodchain would involve both the Food Standards Agency (FSA) and the Environment Agency (EA). Restrictions would be based on intervention levels imposed by the Council of the European Communities (often referred to as Council Food Intervention Levels, CFILs). FSA would be responsible for preventing commercial foodstuffs with concentrations of radionuclides above the CFILs from entering the foodchain, while EA would regulate the storage and disposal of the waste food. Milk is particularly important in this respect because it is produced continually in large quantities in many parts of the UK. An evaluation of various options for the management of waste foodstuffs has been carried out by NRPB, with support from FSA and its predecessor, the Ministry of Agriculture, Fisheries and Food, and EA. This report describes an evaluation of the practicability of one of those options, namely the biological treatment of contaminated milk. Whole milk has a high content of organic matter and in consequence a high biochemical oxygen demand (BOD) and chemical oxygen demand (COD). If not disposed of properly, releases of whole milk into the environment can have a substantial detrimental effect because of the high BOD. Biological treatments are therefore potentially an attractive management option because the fermentation by bacteria reduces the BOD in the resultant liquid effluent. The objectives of this study were as follows: a. To compile information about the options available for the biological treatment of milk; b. To establish the legal position; c. To assess practicability in terms of technical feasibility, capacity, cost, environmental and radiological impacts and acceptability; d. To assess the radiation doses that might be received by process operators, contractors, farmers and the general public from the biological treatment of contaminated milk. The radionuclides of interest were 131II

  1. Utilization of fluorescent probes for the quantification and identification of subcellular proteomes and biological processes regulated by lipid peroxidation products

    OpenAIRE

    Cummins, Timothy D.; Higdon, Ashlee N; Kramer, Philip A.; Chacko, Balu K; Riggs, Daniel W.; Salabei, Joshua K.; Dell’Italia, Louis J.; Zhang, Jianhua; Darley-Usmar, Victor M.; Hill, Bradford G.

    2012-01-01

    Oxidative modifications to cellular proteins are critical in mediating redox-sensitive processes such as autophagy, the antioxidant response, and apoptosis. The proteins that become modified by reactive species are often compartmentalized to specific organelles or regions of the cell. Here, we detail protocols for identifying the subcellular protein targets of lipid oxidation and for linking protein modifications with biological responses such as autophagy. Fluorophores such as BODIPY-labeled...

  2. Production and quality assurance of solid recovered fuels using Mechanical- Biological Treatment (MBT) of waste: a comprehensive assessment

    OpenAIRE

    Velis, C.A.; Longhurst, Philip J.; Drew, Gillian H; Smith, Richard; Pollard, Simon J. T.

    2010-01-01

    The move from disposal-led waste management to resource management demands an ability to map flows of the properties of waste. Here, we provide a comprehensive review of how mechanical-biological treatment (MBT) plants, and the unit processes that comprise them, perform in relation to management of material flows, while transforming inputs into output fractions. Focus is placed on the properties relating to the quality of MBT-derived fuels. Quality management initiatives for...

  3. Negative Cross-Communication among Wheat Rhizosphere Bacteria: Effect on Antibiotic Production by the Biological Control Bacterium Pseudomonas aureofaciens 30-84

    OpenAIRE

    Morello, J. E.; Pierson, E.A.; Pierson, L S

    2004-01-01

    Phenazine antibiotic production in the biological control bacterium Pseudomonas aureofaciens 30-84 is regulated in part via the PhzR/PhzI N-acyl homoserine lactone (AHL) system. Previous work showed that a subpopulation of the wheat rhizosphere community positively affected phenazine gene expression in strain 30-84 via AHL signals (E. A. Pierson, D. W. Wood, J. A. Cannon, F. M. Blachere, and L. S. Pierson III, Mol. Plant-Microbe Interact. 11:1078-1084, 1998). In the present work, a second sub...

  4. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  5. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface.

    Science.gov (United States)

    Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-06-25

    An enzyme complex for biological conversion of CO to CO2 was anchored on the cell surface of the CO2-utilizing Ralstonia eutropha and successfully resulted in a 3.3-fold increase in conversion efficiency. These results suggest that this complexed system may be a promising strategy for CO2 utilization as a biological tool for the production of bioplastics. PMID:26017299

  6. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface.

    Science.gov (United States)

    Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-06-25

    An enzyme complex for biological conversion of CO to CO2 was anchored on the cell surface of the CO2-utilizing Ralstonia eutropha and successfully resulted in a 3.3-fold increase in conversion efficiency. These results suggest that this complexed system may be a promising strategy for CO2 utilization as a biological tool for the production of bioplastics.

  7. Total synthesis and biological evaluation of a series of macrocyclic hybrids and analogues of the antimitotic natural products dictyostatin, discodermolide, and taxol.

    Science.gov (United States)

    Paterson, Ian; Naylor, Guy J; Gardner, Nicola M; Guzmán, Esther; Wright, Amy E

    2011-02-01

    The design, synthesis, and biological evaluation of a series of hybrids and analogues of the microtubule-stabilizing anticancer agents dictyostatin, discodermolide, and taxol is described. A 22-membered macrolide scaffold was prepared by adapting earlier synthetic routes directed towards dictyostatin and discodermolide, taking advantage of the distinctive structural and stereochemical similarities between these two polyketide-derived marine natural products. Initial endeavors towards accessing novel discodermolide/dictyostatin hybrids led to the adoption of a late-stage diversification strategy and the construction of a small library of methyl-ether derivatives, along with the first triple hybrids bearing the side-chain of taxol or taxotere attached through an ester linkage. Biological assays of the anti-proliferative activity of these compounds in a series of human cancer cell lines, including the taxol-resistant NCI/ADR-Res cell line, allowed the proposal of various structure-activity relationships. This led to the identification of a potent macrocyclic discodermolide/dictyostatin hybrid 12 and its C9 methoxy derivative 38, accessible by an efficient total synthesis and with a similar biological profile to dictyostatin.

  8. Outlet of products of biological treatment- what will be the future problems and opportunities?; Avsaettning av energiprodukter fraan biologisk behandling - vilka fraagestaellningar kommer att bli aktuella?

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, Hanna

    2010-01-15

    Biological treatment and related products is a topical subject, which increases year after year, not only in Sweden but all over the world. In this phase of expansion, it is interesting to find out what subjects could become relevant for products from this treatment method in the future. The following products are incorporated in the concept 'energy products' from biological treatment: sludge from sewage treatment plants, digestate from waste digestion plants, biogas, ethanol, and products from biorefinery. Questions regarding the process of these products are not included in this project. The purpose is to bring forward a catalogue of ideas of current and future topics in the field of biological treatment. The goal is to identify development projects which could be of interest for upcoming programs at Waste Refinery. Issues and project proposals for each product have been identified by the writer's network, and in discussions tabled at a workshop arranged by Waste Refinery in the autumn of 2009. At the present time, almost all digestate is sold, but there are problems. Though the plants have found an outlet for their products, they do not receive adequate return on them. Moreover, a lot of water is being transported. Many stakeholders within Waste Refinery, as well as external stakeholders, have requested a project on refining of digestate. Other topical issues regarding digestate are how new, non-food substrates and additives affect the quality of the digestate. Sewage treatment plants have to pay large amounts of money for the disposal of sludge. If Waste Refinery can include sewage sludge in their range of work, there will be several synergies between sludge and digestate. Matters, that need to be solved in the near future, are how to best achieve hygienisation of sewage sludge in order to guarantee salmonella-free sludge. As for biogas, the demand will be determined by factors such as the access of raw material, whether it becomes a vehicle fuel

  9. Behavioral externalities in natural resource production possibility frontiers: integrating biology and economics to model human-wildlife interactions.

    Science.gov (United States)

    McCoy, N H

    2003-09-01

    Production possibility modeling has been applied to a variety of wildlife management issues. Although it has seen only limited employment in modeling human-wildlife output decisions, it can be expected that the theory's use in this area will increase as human interactions with and impacts on wildlife become more frequent. At present, most models applying production possibility theory to wildlife production can be characterized in that wildlife output quantities are determined by physically quantifiable functions representing rivalrous resources. When the theory is applied to human-wildlife interactions, it may not be sufficient to model the production tradeoffs using only physical constraints. As wildlife are known to respond to human presence, it could be expected that human activity may appear in wildlife production functions as an externality. Behavioral externalities are revealed by an output's response to the presence of another output and can result in a loss of concavity of the production possibilities frontier. Ignoring the potential of a behavioral externality can result in an unexpected and inefficient output allocation that may compromise a wildlife population's well-being. Behavioral externalities can be included in PPF models in a number of ways, including the use of data or cumulative effects modeling. While identifying that behavioral externalities exist and incorporating them into a model is important, correctly interpreting their implications will be critical to improve the efficiency of natural resource management. Behavioral externalities may cause a loss of concavity anywhere along a PPF that may compel managerial decisions that are inconsistent with multiple use doctrines. Convex PPFs may result when wildlife species are extremely sensitive to any level of human activity. It may be possible to improve the PPF's concavity by reducing the strength of the behavioral effect. Any change in the PPF that increases the convexity of the production set

  10. Biological hydrolysis and acidification of sludge under anaerobic conditions: The effect of sludge type and origin on the production and composition of olatile fatty acids

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    2008-01-01

    New wastewater treatment processes resulting in considerably reduced sludge production and more effective treatment are needed. This is due to the more stringent legislations controlling discharges of wastewater treatment plants (WWTPs) and existing problems such as high sludge production....... In this study, the feasibility of implementing biological hydrolysis and acidification process on different types of municipal sludge was investigated by batch and semi-continuous experiments. The municipal sludge originated from six major treatment plants located in Denmark were used. The results showed...... that fermentation of primary sludge produced the highest amount of volatile fatty acids (VFAs) and generated significantly higher COD- and VFA-yields compared to the other sludge types regardless of which WWTP the sludge originated from. Fermentation of activated and primary sludge resulted in 1.9–5.6% and 8...

  11. Essential veterinary education in the cultural, political and biological complexities of international trade in animals and animal products.

    Science.gov (United States)

    Brown, C C

    2009-08-01

    Globalisation has changed the veterinary profession in many ways and academic institutes may need to re-tool to help future professionals deal with the changes in a successful and productive way. The remarkably expanded and expanding volume of trade and traffic in animals and animal products means that to be effective veterinarians must grasp some of the complexities inherent in this trade. Being able to engage productively in cross-cultural dialogue will be important in negotiations over livestock shipments and also within the context of the delivery of medical services to companion animals in societies that are becoming increasingly diverse. Understanding the political landscapes that influence trade decisions will help to expedite agreements and facilitate the transfer of goods and materials that involve animal health. Disease emergence will continue to occur, and an awareness of the factors responsible and the response measures to undertake will help to contain any damage. PMID:20128459

  12. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process.

    Science.gov (United States)

    Jo, Ji Hye; Lee, Dae Sung; Park, Donghee; Park, Jong Moon

    2008-09-01

    A fermentative hydrogen-producing bacterium, Clostridium tyrobutyricum JM1, was isolated from a food waste treating process using 16S rRNA gene sequencing and amplified ribosomal DNA restriction analysis (ARDRA). A fixed-bed bioreactor packed with polyurethane foam as support matrix for the growth of the isolate was operated at different hydraulic retention time (HRT) to evaluate its performance for hydrogen production. The reactor achieved the maximal hydrogen production rate of 7.2 l H(2)l(-1)d(-1) at 2h HRT, where hydrogen content in biogas was 50.0%, and substrate conversion efficiency was 97.4%. The maximum hydrogen yield was 223 ml (g-hexose)(-1) with an influent glucose concentration of 5 g l(-1). Therefore, the immobilized reactor using C. tyrobutyricum JM1 was an effective and stable system for continuous hydrogen production.

  13. Biological processes in the North Sea: comparison of Calanus helgolandicus and Calanus finmarchicus vertical distribution and production

    DEFF Research Database (Denmark)

    Jonasdottir, Sigrun; Koski, Marja

    2011-01-01

    Comparison of abundance, vertical distribution and reproduction of the cousin species, the boreal Calanus finmarchicus and temperate Calanus helgolandicus was carried out on four cruises in July and August north of the Dogger Bank, North Sea. During this period, the water column was highly...... not statistically different between the species, and the population egg production depended primarily on female abundance and was generally higher for C. finmarchicus. EPRs of the Calanus spp. were best explained by the abundance of autotrophic and heterotrophic dinoflagellates, flagellates and ciliates. Hatching...... success remained over 90% at all times but the estimated naupliar survival (N1–N6) was only 9%. The chlorophyll maximum supported highest faecal pellet production and egg production at the stations close to the bank. This study shows that C. finmarchicus can remain reproductively active in the North Sea...

  14. THE EFFECT OF THE FERTILIZATION WITH VINASSA ROMPAK PRODUCT ON THE BIOLOGICAL ACTIVITY OF THE CULTIVATED SOILS

    Directory of Open Access Journals (Sweden)

    E ULEA

    2006-12-01

    Full Text Available The product Vinassa Rompak, resulted in the yeast obtaining technology process, can be a good fertilizer for agricultural crops and a factor for maintaining the balance between the microorganisms populations from the soil. The experiment regarding the infl uence of fertilization by using the Vinassa Rompak product was made on two permanent growing; a permanent pasturelands and fodder beet. The results presents the infl uence of the fertilization process emphasize a variation of the total number of microorganisms, of the report between the main groups (bacteria and fungi, and of the micromycetes spectrum determined in each variant of experiment.

  15. Effect of Vermicompost on Chemical and Biological Properties of an Alkaline Soil with High Lime Content during Celery (Apium graveolens L. var. dulce Mill. Production

    Directory of Open Access Journals (Sweden)

    Ilker UZ

    2016-06-01

    Full Text Available The aim of this study was to investigate impact of vermicompost on chemical and biological properties of an alkaline soil with high lime content in the presence of plant under the open field conditions in semiarid Mediterranean region of Turkey. The study also included farmyard manure and chemical fertilizers for comparison and was conducted in two consecutive growth seasons in the same plots to observe any cumulative effect. Plots were amended with fertilizers in different rates and celery (Apium graveolens L. var. dulce Mill. was grown as the test plant. In general, vermicompost appeared to be more effective to increase organic matter, N, P, and Ca compared to farmyard manure. Soil alkaline phosphatase and β-glucosidase activities, especially in the second growth season, were significantly elevated by the vermicompost application. Urease activity, however, appeared not to be influenced by the type of organic fertilizer. A slight but statistically significant difference was detected between organic amendments in terms of number of aerobic mesophilic bacteria with vermicompost giving the lower values. Results showed that, in general, vermicompost significantly alters chemical and biological properties of the alkaline soil with high lime content during celery production under field conditions compared to farmyard manure and that it has a high potential to be used as an alternative to conventional organic fertilizers in agricultural production in the Mediterranean region of Turkey.

  16. Changes in biological productivity associated with Ningaloo Niño/Niña events in the southern subtropical Indian Oceanin recent decades

    Science.gov (United States)

    Narayanasetti, Sandeep; Swapna, P.; Ashok, K.; Jadhav, Jyoti; Krishnan, R.

    2016-06-01

    Using observations and long term simulations of an ocean-biogeochemical coupled model, we investigate the biological response in the southern subtropical Indian Ocean (SIO) associated with Ningaloo Niño and Niña events. Ningaloo events have large impact on sea surface temperature (SST) with positive SST anomalies (SSTA) seen off the west coast of Australia in southern SIO during Ningaloo Niño and negative anomalies during Niña events. Our results indicate that during the developing period of Ningaloo Niño, low chlorophyll anomaly appears near the southwest Australian coast concurrently with high SSTA and vice-versa during Niña, which alter the seasonal cycle of biological productivity. The difference in the spatiotemporal response of chlorophyll is due to the southward advection of Leeuwin current during these events. Increased frequency of Ningaloo Niño events associated with cold phase of Pacific Decadal Oscillation (PDO) resulted in anomalous decrease in productivity during Austral summer in the SIO in the recent decades.

  17. Simulated influence of postweaning production system on performance of different biological types of cattle: II. Carcass composition, retail product, and quality.

    Science.gov (United States)

    Williams, C B; Bennett, G L; Keele, J W

    1995-03-01

    A computer simulation model was used to characterize the response in carcass composition, retail product, and quality of steers from F1 crosses of 16 sire breeds (Hereford, Angus, Jersey, South Devon, Limousin, Simmental, Charolais, Red Poll, Brown Swiss, Gelbvieh, Maine Anjou, Chianina, Brahman, Sahiwal, Pinzgauer, and Tarentaise) mated to Hereford and Angus dams, grown under nine backgrounding systems, and finished at either a low (1.0 kg) or high (1.36 kg) ADG. The backgrounding systems were a high ADG (.9 kg) for 111, 167, or 222 d, a medium ADG (.5 kg) for 200, 300, or 400 d, a low ADG (.25 kg) for 300 or 400 d and 0 d backgrounding. For specific genotype x production system combinations, results showed that carcasses of compensating steers may be either leaner, not different in fatness, or fatter than carcasses of steers put on a finishing diet directly after weaning. Systems in which steers gained a greater proportion of the final slaughter weight over long durations of growth restriction resulted in leaner carcasses. There were 12 common production systems in which 13 of the genotypes produced a carcass with a maximum of 28% fat or with a marbling score of 11 or greater. These results suggest sire breeds used to produce these steers can be used over a wide range of nutritional and management environments, and that a mixed group of steers can be fed and managed similarly from weaning to slaughter to produce a carcass with a specified composition, retail product, or quality.

  18. A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture

    Directory of Open Access Journals (Sweden)

    Bahl Hubert

    2011-01-01

    Full Text Available Abstract Background Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. Results We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7 acids are the dominant product while at low pH (pH 4.5 this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. Conclusions Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required.

  19. Estimation of lead in biological samples of oral cancer patients chewing smokeless tobacco products by ionic liquid-based microextraction in a single syringe system.

    Science.gov (United States)

    Arain, Sadaf S; Kazi, Tasneem G; Arain, Asma J; Afridi, Hassan I; Arain, Muhammad B; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Arain, Mariam S

    2015-08-01

    Several studies have reported that the chewing habit of smokeless tobacco (SLT) has been associated with oral cancer. The aim of the present study was to evaluate the trace levels of lead (Pb) in biological samples (blood, scalp hair) of oral cancer patients and referents of the same age group (range 30-60 years). As the concentrations of Pb are very low in biological samples, so a simple and efficient ionic liquid-based microextraction in a single syringe system has been developed, as a prior step to determination by flame atomic absorption spectrometry. In this procedure, the hydrophobic chelates of Pb with ammonium pyrrolidinedithiocarbamate (APDC) were extracted into fine droplets of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] within a syringe while using Triton X-114 as a dispersant. Factors influencing the microextraction efficiency and determination, such as pH of the sample, volume of [C4MIM][PF6] and Triton X-114, ligand concentration, and incubation time, were studied. To validate the proposed method, certified reference materials were analyzed and the results of Pb(2+) were in good agreement with certified values. At optimum experimental values of significant variables, detection limit and enhancement factor were found to be 0.412 μg/L and 80, respectively. The coexisting ions showed no obvious negative outcome on Pb preconcentration. The proposed method was applied satisfactorily for the preconcentration of Pb(2+) in acid-digested SLT and biological samples of the study population. It was observed that oral cancer patients who consumed different SLT products have 2-3-fold higher levels of Pb in scalp hair and blood samples as compared to healthy referents (p < 0.001). While 31.4-50.8% higher levels of Pb were observed in referents chewing different SLT products as compared to nonconsumers (p < 0.01).

  20. Evaluating Southern Ocean biological production in two ocean biogeochemical models on daily to seasonal time-scales using satellite surface chlorophyll and O2/Ar observations

    Directory of Open Access Journals (Sweden)

    B. F. Jonsson

    2014-06-01

    Full Text Available We assess the ability of ocean biogeochemical models to represent seasonal structures in biomass and net community production (NCP in the Southern Ocean. Two models are compared to observations on daily to seasonal time scales in four different sections of the region. We use daily satellite fields of Chlorophyll (Chl as a proxy for biomass, and in-situ observations of O2 and Ar supersaturation (ΔO2Ar to estimate NCP. ΔO2Ar is converted to the flux of biologically generated O2 from sea to air ("O2 bioflux". All data are aggregated to a climatological year with a daily resolution. To account for potential regional differences within the Southern Ocean, we conduct separate analyses of sections south of South Africa, around the Drake Passage, south of Australia, and south of New Zealand. We find that the models simulate the upper range of Chl concentrations well, underestimate spring levels significantly, and show differences in skill between early and late parts of the growing season. While there is a great deal of scatter in the bioflux observations in general, the four sectors each have distinct patterns that the models pick up. Neither model exhibit a significant distinction between the Australian and New Zealand sectors, and between the Drake Passage and African sectors. South of 60° S, the models fail to predict the observed extent of biological O2 undersaturation. We suggest that this shortcoming may be due either to problems with the ecosystem dynamics or problems with the vertical transport of oxygen. Overall, the bioflux observations are in general agreement with the seasonal structures in satellite chlorophyll, suggesting that this seasonality represent changes in carbon biomass and not Chl : C ratios. This agreement is shared in the models and allows us to interpret the seasonal structure of satellite chlorophyll as qualitatively reflecting the integral of biological production over time for the purposes of model assessment.

  1. Estimation of lead in biological samples of oral cancer patients chewing smokeless tobacco products by ionic liquid-based microextraction in a single syringe system.

    Science.gov (United States)

    Arain, Sadaf S; Kazi, Tasneem G; Arain, Asma J; Afridi, Hassan I; Arain, Muhammad B; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Arain, Mariam S

    2015-08-01

    Several studies have reported that the chewing habit of smokeless tobacco (SLT) has been associated with oral cancer. The aim of the present study was to evaluate the trace levels of lead (Pb) in biological samples (blood, scalp hair) of oral cancer patients and referents of the same age group (range 30-60 years). As the concentrations of Pb are very low in biological samples, so a simple and efficient ionic liquid-based microextraction in a single syringe system has been developed, as a prior step to determination by flame atomic absorption spectrometry. In this procedure, the hydrophobic chelates of Pb with ammonium pyrrolidinedithiocarbamate (APDC) were extracted into fine droplets of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] within a syringe while using Triton X-114 as a dispersant. Factors influencing the microextraction efficiency and determination, such as pH of the sample, volume of [C4MIM][PF6] and Triton X-114, ligand concentration, and incubation time, were studied. To validate the proposed method, certified reference materials were analyzed and the results of Pb(2+) were in good agreement with certified values. At optimum experimental values of significant variables, detection limit and enhancement factor were found to be 0.412 μg/L and 80, respectively. The coexisting ions showed no obvious negative outcome on Pb preconcentration. The proposed method was applied satisfactorily for the preconcentration of Pb(2+) in acid-digested SLT and biological samples of the study population. It was observed that oral cancer patients who consumed different SLT products have 2-3-fold higher levels of Pb in scalp hair and blood samples as compared to healthy referents (p < 0.001). While 31.4-50.8% higher levels of Pb were observed in referents chewing different SLT products as compared to nonconsumers (p < 0.01). PMID:25903188

  2. Equatorial Pacific peak in biological production regulated by nutrient and upwelling during the late Pliocene/early Pleistocene cooling

    Directory of Open Access Journals (Sweden)

    J. Etourneau

    2013-08-01

    Full Text Available The largest increase in export production in the eastern Pacific of the last 5.3 Myr (million years occurred between 2.2 and 1.6 Myr, a time of major climatic and oceanographic reorganization in the region. Here, we investigate the causes of this event using reconstructions of export production, nutrient supply and oceanic conditions across the Pliocene–Pleistocene in the eastern equatorial Pacific (EEP for the last 3.2 Myr. Our results indicate that the export production peak corresponds to a cold interval marked by high nutrient supply relative to consumption, as revealed by the low bulk sedimentary 15N/14N (δ15N and alkenone-derived sea surface temperature (SST values. This ∼0.6 million year long episode of enhanced delivery of nutrients to the surface of the EEP was predominantly initiated through the upwelling of nutrient-enriched water sourced in high latitudes. In addition, this phenomenon was likely promoted by the regional intensification of upwelling in response to the development of intense Walker and Hadley atmospheric circulations. Increased nutrient consumption in the polar oceans and enhanced denitrification in the equatorial regions restrained nutrient supply and availability and terminated the high export production event.

  3. Seasonal variability in biological carbon biomass standing stocks and production in the surface layers of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Fernandes, V.; Paul, J.T.; Jyothibabu, R.; Gauns, M.; Jayraj, E.A.

    ) and northeast monsoon (NEM, Dec 2005-January 2006). Chl a carbon during SuM, FIM, SpIM and NEM averaged 688, 767, 1212 and 1057 mg C m sup(-2) in the western Bay 9WB) 518, 904, 789 and 1023 mg C m sup(-2) in the central Bay. Primary productivity (PP) averaged...

  4. Marine biology

    International Nuclear Information System (INIS)

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  5. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  6. 关于生物制品残余DNA质量控制问题%Issues on quality control of residual DNA in biological products

    Institute of Scientific and Technical Information of China (English)

    王兰; 王军志

    2011-01-01

    More and more mammalian cells, especially continuous cell lines (CCLs), were used to produce vaccines and therapeutic biological products with the rapid development of biomedical technologies. The doses of recombinant protein products has increased from microgram to milligram or even gram for the demand of clinical treatment, and more biological products needed long-term and repeated administration. Meanwhile, the users of vaccines were healthy people and many vaccines have been used for infants and youth, therefore, more attention should be paid from drug regulatory authorities to the safety of biological products, among which people mainly focused on the quality control of residual DNA all the time. This article systematically reviewed the opinions of residual DNA at home and abroad on different periods, quality control standards and the detecting methods of residual DNA, as well as the effort should be made on residual DNA issues in the future.%随着生物医药技术的飞速发展,越来越多的哺乳动物细胞,尤其是连续传代细胞系用于生产疫苗和治疗性生物制品.重组蛋白制品的用量随着临床治疗效果的需求越来越大,由微克级上升到了毫克甚至克级,需要长期反复用药的生物制品也越来越多.同时疫苗的使用者为健康人群,而且很多疫苗使用人群也扩大到婴幼儿,这使得药品监管部门不得不更加重视疫苗等生物制品的安全性,其中细胞残余DNA的质量控制一直是人们关注的热点.本文就不同时期国内外对于DNA残留问题的看法、DNA残留量质控标准的制定、DNA残留量检测方法等研究进展作一综述,并提出残余DNA问题未来需要进一步开展的工作.

  7. Exploitation of biological wastes for the production of value-added hydrolases by Streptomyces sp. MSWC1 isolated from municipal solid waste compost.

    Science.gov (United States)

    Mokni-Tlili, Sonia; Ben Abdelmalek, Imen; Jedidi, Naceur; Belghith, Hafedh; Gargouri, Ali; Abdennaceur, Hassen; Marzouki, Mohamed Nejib

    2010-09-01

    Actinomycetes with the ability to degrade natural polysaccharides were isolated during a screening programme from soil, farmyard manure and municipal solid waste compost. One of the most potent isolates was identified as Streptomyces sp. MSWC1 using morphological and biochemical properties along with 16S rDNA partial sequence analysis. The highest enzyme production by Streptomyces was observed for the xylanase and chitinase activity on different carbon sources with an optimum of 12,100 IU ml(-1) and 110 IU ml(-1) at 3 days' culture on 1% of xylan and chitin, respectively. To meet the demand of industry, low-cost medium is required for the production of hydrolases by Streptomyces sp. Strain MSWC1 grown on manure, compost, and a natural carbon source was used to evaluate the re-utilisation of biological wastes for the production of value-added products. Despite the presence of a high amount of toxic heavy metals in the compost, Streptomyces produced interesting enzymes that have been biochemically characterized. PMID:20022900

  8. Biological production of hydrogen from agricultural raw materials and residues with a subsequent methanisation step; Biologische Wasserstoffproduktion aus landwirtschaftlichen Roh- und Reststoffen mit nachfolgender Methanstufe

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.; Stegmann, R. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer AbfallRessourcenWirtschaft

    2007-07-01

    In order to examine the thermophile fermentative production from biohydrogen, discontinuous attempts were accomplished at a temperature of 60 C. As an inoculum, heat-treated sewage sludge was used. Glucose was used as a substrate. The fermenting residues of the hydrogen attempts were used as a substrate in a methane reactor in order to examine a two-stage system. The hydrogen attempts in the anaerobic test system were operated with a hydraulic retention time by 3.3 days and were performed during a period of 300 days. The optimal space load amounts to 5 g (l*d). The production rate at hydrogen amounts to 1.2 Nl/(l{sub R}*d). The yields amount to between 200 and 250 Nml/g oTS. In the case of an overloading of the system with substrate, the hydrogen production decreases drastically due to poor yields. Biological hydrogen production by fermentation possesses the potential to become a component for a lasting emission-free power supply. The thermophile approach ensures a simultaneous hygienization. As a fermenting remainder treatment a downstream methanation stage is possible.

  9. Simulated influence of postweaning production system on performance of different biological types of cattle: II. Carcass composition, retail product, and quality.

    Science.gov (United States)

    Williams, C B; Bennett, G L; Keele, J W

    1995-03-01

    A computer simulation model was used to characterize the response in carcass composition, retail product, and quality of steers from F1 crosses of 16 sire breeds (Hereford, Angus, Jersey, South Devon, Limousin, Simmental, Charolais, Red Poll, Brown Swiss, Gelbvieh, Maine Anjou, Chianina, Brahman, Sahiwal, Pinzgauer, and Tarentaise) mated to Hereford and Angus dams, grown under nine backgrounding systems, and finished at either a low (1.0 kg) or high (1.36 kg) ADG. The backgrounding systems were a high ADG (.9 kg) for 111, 167, or 222 d, a medium ADG (.5 kg) for 200, 300, or 400 d, a low ADG (.25 kg) for 300 or 400 d and 0 d backgrounding. For specific genotype x production system combinations, results showed that carcasses of compensating steers may be either leaner, not different in fatness, or fatter than carcasses of steers put on a finishing diet directly after weaning. Systems in which steers gained a greater proportion of the final slaughter weight over long durations of growth restriction resulted in leaner carcasses. There were 12 common production systems in which 13 of the genotypes produced a carcass with a maximum of 28% fat or with a marbling score of 11 or greater. These results suggest sire breeds used to produce these steers can be used over a wide range of nutritional and management environments, and that a mixed group of steers can be fed and managed similarly from weaning to slaughter to produce a carcass with a specified composition, retail product, or quality. PMID:7608000

  10. Comparative study of biological hydrogen production by pure strains and consortia of facultative and strict anaerobic bacteria.

    Science.gov (United States)

    Hiligsmann, Serge; Masset, Julien; Hamilton, Christopher; Beckers, Laurent; Thonart, Philippe

    2011-02-01

    In this paper, a simple and rapid method was developed in order to assess in comparative tests the production of binary biogas mixtures containing CO(2) and another gaseous compound such as hydrogen or methane. This method was validated and experimented for the characterisation of the biochemical hydrogen potential of different pure strains and mixed cultures of hydrogen-producing bacteria (HPB) growing on glucose. The experimental results compared the hydrogen production yield of 19 different pure strains and sludges: facultative and strict anaerobic HPB strains along with anaerobic digester sludges thermally pre-treated or not. Significant yields variations were recorded even between different strains of the same species by i.e. about 20% for three Clostridium butyricum strains. The pure Clostridium butyricum and pasteurianum strains achieved the highest yields i.e. up to 1.36 mol H(2)/mol glucose compared to the yields achieved by the sludges and the tested Escherichia and Citrobacter strains.

  11. Purification of the inlB Gene Product of Listeria monocytogenes and Demonstration of Its Biological Activity

    OpenAIRE

    Müller, Simone; Hain, Torsten; Pashalidis, Philippos; Lingnau, Andreas; Domann, Eugen; Chakraborty, Trinad; Wehland, Jürgen

    1998-01-01

    Entry of Listeria monocytogenes into nonphagocytic cells requires the inlAB gene products. InlA and InlB are bacterial cell wall-associated polypeptides that can be released by sodium dodecyl sulfate treatment. By applying more gentle extraction methods, we have purified InlB in its native form. Treatment of bacteria with various nondenaturating agents including mutanolysin, thiol reagents, sodium chloride, and detergents like Triton X-100 or 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanes...

  12. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys.

    Science.gov (United States)

    Olins, H C; Rogers, D R; Frank, K L; Vidoudez, C; Girguis, P R

    2013-05-01

    Chemosynthetic primary production supports hydrothermal vent ecosystems, but the extent of that productivity and its governing factors have not been well constrained. To better understand anaerobic primary production within massive vent deposits, we conducted a series of incubations at 4, 25, 50 and 90 °C using aggregates recovered from hydrothermal vent structures. We documented in situ geochemistry, measured autochthonous organic carbon stable isotope ratios and assessed microbial community composition and functional gene abundances in three hydrothermal vent chimney structures from Middle Valley on the Juan de Fuca Ridge. Carbon fixation rates were greatest at lower temperatures and were comparable among chimneys. Stable isotope ratios of autochthonous organic carbon were consistent with the Calvin-Benson-Bassham cycle being the predominant mode of carbon fixation for all three chimneys. Chimneys exhibited marked differences in vent fluid geochemistry and microbial community composition, with structures being differentially dominated by gamma (γ) or epsilon (ε) proteobacteria. Similarly, qPCR analyses of functional genes representing different carbon fixation pathways showed striking differences in gene abundance among chimney structures. Carbon fixation rates showed no obvious correlation with observed in situ vent fluid geochemistry, community composition or functional gene abundance. Together, these data reveal that (i) net anaerobic carbon fixation rates among these chimneys are elevated at lower temperatures, (ii) clear differences in community composition and gene abundance exist among chimney structures, and (iii) tremendous spatial heterogeneity within these environments likely confounds efforts to relate the observed rates to in situ microbial and geochemical factors. We also posit that microbes typically thought to be mesophiles are likely active and growing at cooler temperatures, and that their activity at these temperatures comprises the

  13. The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    OpenAIRE

    Susan M. Rundell; Spakowicz, Daniel J.; Alexandra Narváez-Trujillo; Strobel, Scott A.

    2015-01-01

    Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sough...

  14. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys.

    Science.gov (United States)

    Olins, H C; Rogers, D R; Frank, K L; Vidoudez, C; Girguis, P R

    2013-05-01

    Chemosynthetic primary production supports hydrothermal vent ecosystems, but the extent of that productivity and its governing factors have not been well constrained. To better understand anaerobic primary production within massive vent deposits, we conducted a series of incubations at 4, 25, 50 and 90 °C using aggregates recovered from hydrothermal vent structures. We documented in situ geochemistry, measured autochthonous organic carbon stable isotope ratios and assessed microbial community composition and functional gene abundances in three hydrothermal vent chimney structures from Middle Valley on the Juan de Fuca Ridge. Carbon fixation rates were greatest at lower temperatures and were comparable among chimneys. Stable isotope ratios of autochthonous organic carbon were consistent with the Calvin-Benson-Bassham cycle being the predominant mode of carbon fixation for all three chimneys. Chimneys exhibited marked differences in vent fluid geochemistry and microbial community composition, with structures being differentially dominated by gamma (γ) or epsilon (ε) proteobacteria. Similarly, qPCR analyses of functional genes representing different carbon fixation pathways showed striking differences in gene abundance among chimney structures. Carbon fixation rates showed no obvious correlation with observed in situ vent fluid geochemistry, community composition or functional gene abundance. Together, these data reveal that (i) net anaerobic carbon fixation rates among these chimneys are elevated at lower temperatures, (ii) clear differences in community composition and gene abundance exist among chimney structures, and (iii) tremendous spatial heterogeneity within these environments likely confounds efforts to relate the observed rates to in situ microbial and geochemical factors. We also posit that microbes typically thought to be mesophiles are likely active and growing at cooler temperatures, and that their activity at these temperatures comprises the

  15. The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5.

    OpenAIRE

    Sarniguet, A.; Kraus, J.; Henkels, M D; Muehlchen, A M; Loper, J E

    1995-01-01

    Pseudomonas fluorescens Pf-5, a rhizosphere-inhabiting bacterium that suppresses several soilborne pathogens of plants, produces the antibiotics pyrrolnitrin, pyoluteorin, and 2,4-diacetylphloroglucinol. A gene necessary for pyrrolnitrin production by Pf-5 was identified as rpoS, which encodes the stationary-phase sigma factor sigma s. Several pleiotropic effects of an rpoS mutation in Escherichia coli also were observed in an RpoS- mutant of Pf-5. These included sensitivities of stationary-p...

  16. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation

    International Nuclear Information System (INIS)

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO42- ratio. This work relates the feed COD/SO42- ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470 ± 7 mg S/L was obtained at a feed COD/SO42- ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145 ± 10 mg S/L) was observed with a feed COD/SO42- ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO42- ratio of 1.5. It was found that the feed COD/SO42- ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead

  17. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  18. [JSPS Asia and Africa scientific platform program development for the medicinal chemistry based on biologically active natural products in the subtropical zone].

    Science.gov (United States)

    Saito, Naoki; Morita, Takashi

    2009-04-01

    In 2005, the independent administrative institution the "Japan Society for the Promotion of Sciences (JSPS)" initiated the "Asia and Africa Science Platform Program", which is a new project aimed to create high potential research hubs in selected fields within the Asian and African region, while fostering the next generation of leading researchers. Another goal is to establish sustainable collaborative relationships among universities and research institutes in Japan and other Asian and African countries. In this project, we consider natural sources existing in partner countries to be the most important factor in the production of medicine. We will search for target compounds and analyze their structures by screening biologically active natural products. Additionally, we will design functional molecules and create process for retrieving a large supply of target compounds based on a bioprospecting strategy. Thailand, Indonesia, and India share the vision of enhancing collaborative efforts. By conducting this researche, we will focus on academic research that is necessary for the development of the pharmaceutical and medical products industry in partner countries. There are four selected research topics as followeds: 1) Development of New Antitumor Agents based on Marine Natural Products; 2) Development of New Anticoagulants and Anti-VEGF; 3) Molecular Epidemiological Investigation of Emerging Infectious Diseases and Development of Novel Diagnosis and Therapeutic Agents; and 4) Medicinal Chemistry on Biologically Active Natural Products from the Traditional Condiments and Medicines. The exchanges might take the form of joint research seminars. The first Medicinal Chemistry Seminar of the AA Scientific Platform Program was co-organized with the 23th Annual Research Conference on Pharmaceutical Sciences, Thailand at Chulalongkorn University, Bangkok, on December 14-15, 2006. The 2nd JSPS seminar was co-organized with the 1st Bioactive Natural Products from Marine

  19. Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor

    International Nuclear Information System (INIS)

    The few reuse and large stockpile of iron ore tailings (IOT) led to a series of social and environmental problems. This study investigated the possibility of using the IOT as one of starting materials to prepare lightweight ceramisite (LWC) by a high temperature sintering process. Coal fly ash (CFA) and municipal sewage sludge (SS) were introduced as additives. The LWC was used to serve as a biomedium in a biological aerated filter (BAF) reactor for municipal wastewater treatment, and its purification performance was examined. The effects of sintering parameters on physical properties of the LWC, and leaching concentrations of heavy metals from the LWC were also determined. The microstructure and the phase composition of the LWC were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results revealed that: (1) IOT could be used to produce the LWC under the optimal sintering parameters; (2) the leaching concentrations of heavy metals from the LWC were well below their respective regulatory levels in the China Environmental Quality Standards for Surface Water (CEQS); and (3) the BAF reactor with the LWC serving as the biomedium achieved high removal efficiencies for CODCr (>92%), NH4+-N (>62%) and total phosphate (T-P) (>63%). Therefore, the LWC produced from the IOT was suitable to serve as the biomedium in the municipal wastewater treatment.

  20. Simulated influence of postweaning production system on performance of different biological types of cattle: I. Estimation of model parameters.

    Science.gov (United States)

    Williams, C B; Bennett, G L; Keele, J W

    1995-03-01

    Breed parameters for a computer model that simulated differences in the composition of empty-body gain of beef cattle, resulting from differences in postweaning level of nutrition that are not associated with empty BW, were estimated for 17 biological types of cattle (steers from F1 crosses of 16 sire breeds [Hereford, Angus, Jersey, South Devon, Limousin, Simmental, Charolais, Red Poll, Brown Swiss, Gelbvieh, Maine Anjou, Chianina, Brahman, Sahiwal, Pinzgauer, and Tarentaise] mated to Hereford and Angus dams). One value for the maximum fractional growth rate of fat-free matter (KMAX) was estimated and used across all breed types. Mature fat-free matter (FFMmat) was estimated from data on mature cows for each of the 17 breed types. Breed type values for a fattening parameter (THETA) were estimated from growth and composition data at slaughter on steers of the 17 breed types, using the previously estimated constant KMAX and breed values for FFMmat. For each breed type, THETA values were unique for given values of KMAX, FFMmat, and composition at slaughter. The results showed that THETA was most sensitive to KMAX and had similar sensitivity to FFMmat and composition at slaughter. Values for THETA were most sensitive for breed types with large THETA values (Chianina, Charolais, and Limousin crossbred steers) and least sensitive for breed types with small THETA values (purebred Angus, crossbred Jersey, and Red Poll steers).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7607999

  1. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits

    Science.gov (United States)

    Karlström, Amanda; Calle, Fernando; Salazar, Sandra; Morante, Nelson; Dufour, Dominique; Ceballos, Hernán

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develop commercial cassava varieties with amylose-free starch. However, little information is available regarding the biological and agronomic implications of starch mutations in cassava, nor in other root and tuber crops. In this study, siblings from eight full-sib families, segregating for the waxy trait, were used to determine if the mutation has implications for yield, dry matter content (DMC) and harvest index in cassava. A total of 87 waxy and 87 wild-type starch genotypes from the eight families were used in the study. The only significant effect of starch type was on DMC (p cassava varieties will have competitive FRYs but special efforts will be required to attain adequate DMCs. This study contributes to the limited knowledge available of the impact of starch mutations on the agronomic performance of root and tuber crops. PMID:27242813

  2. Crystal Structure of Escherichia coli L-Arabinose Isomerase (ECAI), The Putative Target of Biological Tagatose Production

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Chance, M.

    2006-01-01

    Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 Angstroms resolution. The subunit structure of ECAI is organized into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.

  3. Plans for production of undulator X-rays on AR and its applications to material and biological sciences

    International Nuclear Information System (INIS)

    This report carries 19 studies. The first two describe 'Hope for Andulator X-Rays' and 'A Plan for Application of AR Synchrotron Radiation Beam'. Three studies on undulator X-rays are presented, which are entitled 'Development of X-Ray Undulator', 'AR-BL-NE Triple Beamline' and 'Fluctuations of Synchrotron Radiation Beam Position and Development of a Beam Position Feedback System for a Beamline of the TRISTAN Accumulation Ring'. Two studies on application to Moessbauer X-rays are contained, which are entitled 'Nuclear Resonant Scattering of Synchrotron Radiation X-Rays' and 'Biological Action of Moessbauer Effect -- Feasibility of Application to Treatment of Cancer'. Two studies on application to research on surface and interface are addressed, which are entitled 'Application to Research on Surface and Interface; Research by Diffraction' and 'How Can Compton Scattering Serve for Study on Surface Layer?'. Five studies on the application to research on submicron crystal structure' are presented, which are entitled Application to Research on Submicron Crystal Structure; Inorganic and Mineral Substances', 'Comments on Application to Research on Submicron Crystal Structure', etc. The report also contains two studies on abnormal scattering and three studies on microbeam X-rays. (N.K.)

  4. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, Antonio [Direccion General del Centro Nacional de Investigacion y Capacitacion Ambiental-Instituto Nacional de Ecologia, Av. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico)], E-mail: jvelasco@ine.gob.mx; Ramirez, Martha [Direccion General del Centro Nacional de Investigacion y Capacitacion Ambiental-Instituto Nacional de Ecologia, Av. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Volke-Sepulveda, Tania [Departamento de Biotecnologia, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Gonzalez-Sanchez, Armando [Departamento de Ingenieria de Procesos, Universidad Autonoma Metropolitana-Iztapalapa, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Revah, Sergio [Departamento de Procesos y Tecnologia, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico)

    2008-03-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO{sub 4}{sup 2-} ratio. This work relates the feed COD/SO{sub 4}{sup 2-} ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470 {+-} 7 mg S/L was obtained at a feed COD/SO{sub 4}{sup 2-} ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145 {+-} 10 mg S/L) was observed with a feed COD/SO{sub 4}{sup 2-} ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO{sub 4}{sup 2-} ratio of 1.5. It was found that the feed COD/SO{sub 4}{sup 2-} ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead.

  5. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor

    International Nuclear Information System (INIS)

    Highlights: ► Sorption functional media (SFM) were prepared using zeolite tailings. ► Two upflow BAFs were applied to treat municipal wastewater. ► SFM BAF brought a relative superiority to haydite reactor. ► SFM BAF has a stronger adaptability to low temperature (6–11°C) for NH3-N removal. ► The application provided a promising way in zeolite tailings utilization. -- Abstract: The few reuse and large stockpile of zeolite tailings led to a series of social and environmental problems. This study investigated the possibility of using the zeolite tailings as one of principal raw materials to prepare sorption functional media (SFM) by a high temperature sintering process. The SFM was used to serve as a biomedium in a biological aerated filter (BAF) reactor for domestic wastewater treatment, and its purification performance was examined. The physical, chemical and sorption properties of SFM were also determined. The microstructure of the SFM was analyzed by scanning electron microscopy (SEM). Results revealed that: (1) zeolite tailings could be used to produce the SFM under the optimal sintering parameters; (2) the sorption and desorption isotherm of ammonia nitrogen on SFM could be well described by the Langmuir formula; (3) in terms of removing organic matter, ammonia nitrogen, turbidity and colourity, the performance of the biofilter with SFM was superior to that with haydite; and (4) SFM BAF has a stronger adaptability to low temperature (6–11 °C) for NH3-N removal compared to haydite BAF. Therefore, the SFM produced from the zeolite tailings was suitable to serve as the biomedium in the domestic wastewater treatment

  6. Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications – A review

    Science.gov (United States)

    Shahid-ul-Islam; Rather, Luqman J.; Mohammad, Faqeer

    2015-01-01

    Bixa orellana commonly known as annatto is one of the oldest known natural dye yielding plants native to Central and South America. Various parts of annatto have been widely used in the traditional medical system for prevention and treatment of a wide number of health disorders. The plethora of traditional uses has encouraged researchers to identify and isolate phytochemicals from all parts of this plant. Carotenoids, apocarotenoids, terpenes, terpenoids, sterols, and aliphatic compounds are main compounds found in all parts of this plant and are reported to exhibit a wide range of pharmacological activities. In recent years annatto has received tremendous scientific interest mainly due to the isolation of yellow–orange natural dye from its seeds which exhibits high biodegradability, low toxicity, and compatibility with the environment. Considerable research work has already been done and is currently underway for its applications in food, textile, leather, cosmetic, solar cells, and other industries. The present review provides up-to-date systematic and organized information on the traditional usage, phytochemistry and pharmacology of annatto. It also highlights its non-food industrial applications in order to bring more interest on this dye plant, identifies the existing gaps and provides potential for future studies. Studies reported in this review have demonstrated that annatto holds a great potential for being exploited as source of drugs and a potential natural dye. However, further efforts are required to identify extract biomolecules and their action mechanisms in exhibiting certain biological activities in order to understand the full phytochemical profile and the complex pharmacological effects of this plant. PMID:27222755

  7. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits.

    Science.gov (United States)

    Karlström, Amanda; Calle, Fernando; Salazar, Sandra; Morante, Nelson; Dufour, Dominique; Ceballos, Hernán

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develop commercial cassava varieties with amylose-free starch. However, little information is available regarding the biological and agronomic implications of starch mutations in cassava, nor in other root and tuber crops. In this study, siblings from eight full-sib families, segregating for the waxy trait, were used to determine if the mutation has implications for yield, dry matter content (DMC) and harvest index in cassava. A total of 87 waxy and 87 wild-type starch genotypes from the eight families were used in the study. The only significant effect of starch type was on DMC (p < 0.01), with waxy clones having a 0.8% lower content than their wild type counterparts. There was no effect of starch type on fresh root yield (FRY), adjusted FRY and harvest index. It is not clear if lower DMC is a pleiotropic effect of the waxy starch mutation or else the result of linked genes introgressed along with the mutation. It is expected that commercial waxy cassava varieties will have competitive FRYs but special efforts will be required to attain adequate DMCs. This study contributes to the limited knowledge available of the impact of starch mutations on the agronomic performance of root and tuber crops. PMID:27242813

  8. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yan [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Civil Engineering and Architecture, University of Jinan, Jinan 250022 (China); Qi, Jingyao, E-mail: qjy_hit@yahoo.cn [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Chi, Liying [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang, Dong [School of Civil Engineering and Architecture, University of Jinan, Jinan 250022 (China); Wang, Zhaoyang; Li, Ke; Li, Xin [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2013-02-15

    Highlights: ► Sorption functional media (SFM) were prepared using zeolite tailings. ► Two upflow BAFs were applied to treat municipal wastewater. ► SFM BAF brought a relative superiority to haydite reactor. ► SFM BAF has a stronger adaptability to low temperature (6–11°C) for NH{sub 3}-N removal. ► The application provided a promising way in zeolite tailings utilization. -- Abstract: The few reuse and large stockpile of zeolite tailings led to a series of social and environmental problems. This study investigated the possibility of using the zeolite tailings as one of principal raw materials to prepare sorption functional media (SFM) by a high temperature sintering process. The SFM was used to serve as a biomedium in a biological aerated filter (BAF) reactor for domestic wastewater treatment, and its purification performance was examined. The physical, chemical and sorption properties of SFM were also determined. The microstructure of the SFM was analyzed by scanning electron microscopy (SEM). Results revealed that: (1) zeolite tailings could be used to produce the SFM under the optimal sintering parameters; (2) the sorption and desorption isotherm of ammonia nitrogen on SFM could be well described by the Langmuir formula; (3) in terms of removing organic matter, ammonia nitrogen, turbidity and colourity, the performance of the biofilter with SFM was superior to that with haydite; and (4) SFM BAF has a stronger adaptability to low temperature (6–11 °C) for NH{sub 3}-N removal compared to haydite BAF. Therefore, the SFM produced from the zeolite tailings was suitable to serve as the biomedium in the domestic wastewater treatment.

  9. Biological activity of two new pyrrole derivatives against stored-product species: influence of temperature and relative humidity.

    Science.gov (United States)

    Boukouvala, M C; Kavallieratos, N G; Athanassiou, C G; Hadjiarapoglou, L P

    2016-08-01

    Members of the pyrrole group are likely to have interesting properties that merit additional investigation as insecticides at the post-harvest stages of agricultural commodities. In the present work, the insecticidal effect of two new pyrrole derivatives, ethyl 3-(benzylthio)-4,6-dioxo-5-phenyl-2,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-carboxylate (3i) and isopropyl 3-(benzylthio)-4,6-dioxo-5-phenyl-2,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-carboxylate (3k) were studied as stored-wheat protectants against two major stored-product insect species, the confused flour beetle, Tribolium confusum Jaquelin du Val adults and larvae and the Mediterranean flour moth, Ephestia kuehniella Zeller larvae at different doses (0.1, 1 and 10 ppm), exposure intervals (7, 14 and 21 days), temperatures (20, 25 and 30°C) and relative humidity (55 and 75%) levels. For T. confusum adults, in the case of the pyrrole derivative 3i, mortality was low and it did not exceed 32.2% in wheat treated with 10 ppm 3i at 30°C and 55% relative humidity. Progeny production was very low (insecticidal effect, but this effect is moderated by the exposure, the target species, the temperature and the relative humidity. PMID:27087458

  10. 水产品生物保鲜技术研究进展%Review of biological preservation technology in aquatic product

    Institute of Scientific and Technical Information of China (English)

    刘尊英; 曾名湧

    2014-01-01

    食品的保鲜与防腐一直是人们普遍关注的问题。传统的化学防腐剂如苯甲酸钠、亚硝酸钠等具有一定的毒性。因此,寻找安全无毒的生物保鲜剂取代化学防腐剂已成为人们关注的热点。生物保鲜剂来源于生物体自身组成成分或其代谢产物,安全无毒、可被生物降解、不会造成二次污染。本文综述了常见生物保鲜剂壳聚糖、有机酸、茶多酚、乳酸链球菌素、生物酶等生物保鲜剂单独或联合使用时对水产品生理生化特性、细菌总数及货架期的影响,比较分析了上述生物保鲜剂在不同水产品应用过程中所呈现的保鲜效果的差异,阐述了生物保鲜剂在水产品保鲜过程中的可能机制,提出了我国水产品生物保鲜剂依然存在提取分离困难、纯化工艺复杂、生物保鲜技术成本高、应用范围窄等问题。针对我国生物保鲜技术存在的主要问题,提出了一些对策。%Food storage and preservation has been the focus of attention of the people. The traditional chemical preservatives such as sodium benzoate and sodium nitrite have certain toxicity. Therefore, researches for safe non-toxic bio-preservative to replace chemical preservative had become the focus of attention. Biological preservative compositions derived from organism itself or its metabolites, which possessescharacteristic of tasteless, non-toxic, safe, biodegradable and no secondary pollution, is causing widespread concern. In this paper, effects of chitosan, organic acids, polyphenols, nisin, and biological enzymes on physiological and biochemical characteristics, the total number of bacteria and shelf of aquatic products were reviewed. A comparative analysis of the difference in the biological preservative fresh-keeping effect of application in different aquatic product process was presented. The main problems including separation and purification of biological preservatives, high cost and

  11. Medicamentos Biotecnológicos: Requisitos Exigidos para el Desarrollo y Aprobación de Biosimilares Biological Medicinal Products: Requirements for the Development and Approval of Biosimilars

    Directory of Open Access Journals (Sweden)

    Begoña Calvo

    2010-01-01

    Full Text Available En este artículo se revisan las directrices europeas de comparabilidad que establecen la metodología para la determinación de biosimilitud entre los medicamentos biosimilares (follow-on biologics en USA y el medicamento biológico de referencia. Los biosimilares son medicamentos biológicos parecidos pero no idénticos al medicamento original y pueden ser fabricados por cualquier fabricante al finalizar el periodo de patente de los medicamentos biotecnológicos. En el articulo se detallan las directrices de la Agencia Europea del Medicamento (EMA y de la Conferencia Internacional de Armonización (ICH a tener en cuenta en el desarrollo y aprobación de estos medicamentos. Se demuestra que los medicamentos biosimilares no pueden considerarse medicamentos genéricos, siendo necesario realizar una serie de ensayos adicionales previos a la obtención de la autorización de comercialización.This article reviews the European guidelines on drugs comparability that establish the methodology for verifying biosimilarity between the so-called biosimilar drugs and the reference biological medicinal product. Biosimilars are biological medicines similar but not identical to the original drugs and can be manufactured by any laboratory after the expiration of biotech drugs patent. The guidelines of the European Medicines Agency (EMA and the International Conference on Harmonization (ICH that must be considered in the development and approval of these drugs also are reviewed. It is shown that biosimilars cannot be considered as generic drugs, being necessary to conduct additional assays prior to obtain marketing authorization.

  12. 生物法制备低过敏乳的研究进展%Progress review on production of hypoallergenic milk by biological methods

    Institute of Scientific and Technical Information of China (English)

    叶笑艳; 钱方; 孙洋; 牟光庆; 姜淑娟

    2013-01-01

    Most of milk proteins in milk have potential allergens, which led to allergy of a few people with allergic constitution when ingesting milk. The methods of reducing milk allergy mainly include physical methods, chemical methods and biological methods, which could destroy protein allergy epitopes. Compared with physical methods and chemical methods, biological methods can not only be more effective to reduce milk allergy, but also led to more typical flavor. The composition of al-lergenic proteins, their epitopes in milk was mainly introduced in this paper. Two kinds of biological methods (protease hydrolysis, Lactic acid bacteria fermentation) to produce hypoallergenic milk and their progress review were elaborated, which provides reference basis for hypoaller- genie milk products.%牛乳中的乳蛋白绝大多数潜在过敏原,致使部分过敏体质的人群在摄入牛乳时发生过敏现象.降低牛乳蛋白过敏性的方法主要是通过物理法、化学法和生物法破坏蛋白质的过敏表位.与物理法、化学法比较,生物法不仅能更有效降低牛乳的过敏性,还可以赋予食品更多典型风味.文章主要介绍牛乳中过敏蛋白的组成及过敏表位,重点阐述两种制备低过敏乳的生物法(酶法水解和乳酸菌发酵法)及其研究进展,为制备低过敏乳制品提供参考依据.

  13. Feedbacks between element availability, (diel) cycling and assimilatory uptake in a biologically productive spring-fed river

    Science.gov (United States)

    Kurz, Marie J.; Cohen, Matthew J.; Martin, Jonathan B.; Nifong, Rachel L.

    2016-04-01

    The metabolism of submerged aquatic vegetation directly and indirectly controls the cycling of solutes in streams at diel (24-hour) frequencies. Photosynthesis and respiration induce diel variation in dissolved oxygen (DO) concentrations and pH which, in turn, mediate elemental concentrations via a host of geochemical reactions. Plant metabolism also directly exerts control on water composition via assimilatory uptake, creating diel variation in major nutrients. Trace elements can be essential micronutrients, suggesting their assimilatory uptake could also contribute to diel variation in element concentrations in streams. If diel element variation is indicative of metabolic processing, assessing the magnitude and timing of this diel variation relative to other inorganic controls could be used to estimate the ecosystem demand for those elements, infer ecosystem function, and predict how stream ecosystems may respond to changes in environmental element availability. We evaluated the relationship between the elemental requirements of submerged vegetation and the availability and cycling of elements in streams by comparing spatial and diel variation in stream chemistry with measurements of tissue stoichiometry from submerged vascular plants and algae in the Ichetucknee River (Q = 8 m3/s) , a highly productive spring-fed system in north-central Florida. Diel variations were observed in the concentrations of soluble reactive phosphorus (SRP), Ca, Mg, K, Mn, Fe, V, Cr, Co, Cu, Sr, Ba, and U. Autotrophic assimilation, estimated using the measured stoichiometry and calculations of primary production from diel DO variation, accounted for a significant portion of the in-stream diel variation of some elements, including approximately 100% for K and >30% for Fe and Mn. However, the exact timing of assimilation of these elements remains uncertain relative to the other inorganic controls. Correcting the observed SRP diel signal for the effect of calcite co-precipitation revealed

  14. Chemical composition and biological value of spray dried porcine blood by-products and bone protein hydrolysate for young chickens.

    Science.gov (United States)

    Jamroz, D; Wiliczkiewicz, A; Orda, J; Skorupińska, J; Słupczyńska, M; Kuryszko, J

    2011-10-01

    The chemical composition of spray dried porcine blood by-products is characterised by wide variation in crude protein contents. In spray dried porcine blood plasma (SDBP) it varied between 670-780 g/kg, in spray dried blood cells (SDBC) between 830-930 g/kg, and in bone protein hydrolysate (BPH) in a range of 740-780 g/kg. Compared with fish meal, these feeds are poor in Met and Lys. Moreover, in BPH deep deficits of Met, Cys, Thr and other amino acids were found. The experiment comprised 7 dietary treatments: SDBP, SDBC, and BPH, each at an inclusion rate of 20 or 40 g/kg diet, plus a control. The addition of 20 or 40 g/kg of the analysed meals into feeds for very young chickens (1-28 d post hatch) significantly decreased the body weight (BW) of birds. Only the treatments with 40 g/kg of SDBP and SDBC showed no significant difference in BW as compared with the control. There were no significant differences between treatments and type of meal for feed intake, haematocrit and haemoglobin concentrations in blood. Addition of bone protein and blood cell meals to feed decreased the IgG concentration in blood and caused shortening of the femur and tibia bones. However, changes in the mineral composition of bones were not significantly affected by the type of meal used. The blood by-products, which are rich in microelements, improved retention of Ca and Cu only. In comparison to control chickens, significantly better accretion of these minerals was found in treatments containing 20 g/kg of SDBP or 40 g/kg of SDBC. Great variability in apparent ileal amino acid digestibility in chickens was determined. In this respect, some significant differences related to the type of meal fed were confirmed for Asp, Pro, Val, Tyr and His. In general, the apparent ileal digestibility of amino acids was about 2-3 percentage units better in chickens fed on diets containing the animal by products than in control birds. PMID:22029787

  15. The results of the lipids peroxidation products on the DNA bases as biological markers of the oxidative stress

    International Nuclear Information System (INIS)

    Different ways of DNA damages have been studied, among these ones the direct way of DNA damages formation by the reactive oxygen species (R.O.S.). This way leads to the formation of oxidative DNA damages. In 1990, works have suggested an indirect way of DNA damages formation, the lipids peroxidation. Instead of oxidizing directly DNA, the R.O.S. oxide the lipids present in the cells and their membranes; The products coming from this degradation are able to provoke DNA damages. This way has not been studied very much. The work of this thesis is axed on this DNA theme and lipids peroxidation. In the first chapter, we begin by presenting DNA and the direct way of oxidative damages formation by the R.O.S.Then, we speak about the cell lipids suffering oxidation reactions and the different ways of lipids oxidation. Then, we present how the lipid peroxidation is a source of damages for DNA. (N.C.)

  16. Advanced treatment of oilfield production wastewater by an integration of coagulation/flotation, catalytic ozonation and biological processes.

    Science.gov (United States)

    Chen, Ke-Yong; Zhang, Xiao-Bing; Li, Jun

    2016-10-01

    In this study, advanced treatment of heavily polluted oilfield production wastewater (OPW) was investigated employing the combination of coagulation/dissolved air flotation, heterogeneous catalytic ozonation and sequencing batch reactor (SBR) processes. Two SBR reactors were separately set up before and after the ozonation unit. The results show that microbubble flotation was more efficient than macrobubble flotation in pollutant removal. Catalytic ozonation with the prepared Fe/activated carbon catalyst significantly enhanced pollutant removal in the second SBR by improving wastewater biodegradability and reducing wastewater microtoxicity. The treatment technique decreased oil, chemical oxygen demand and NH3-N by about 97%, 88% and 91%, respectively, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real OPW. PMID:26936286

  17. A biological/chemical process for reduced waste and energy consumption, Caprolactam production: Phase 1, Select microorganisms and demonstrate feasibility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    St.Martin, E.J.

    1995-08-01

    A novel biological/chemical process for converting cyclohexane into caprolactam was investigated. Microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. The proposed bioprocess would be more energy efficient and reduce byproducts and wastes that are generated by the current chemical process. We have been successful in isolating from natural soil and water samples two microorganisms that can utilize cyclohexane as a sole source of carbon and energy for growth. These microorganisms were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants are being developed. These blocked-mutants will be used to convert cyclohexane into caprolactone but, because of the block, be unable to metabolize the caprolactone further and excrete it as a final end product.

  18. Research advances in xylitol production by biological fermentation%生物法发酵生产木糖醇研究进展

    Institute of Scientific and Technical Information of China (English)

    倪子富; 王乐

    2014-01-01

    木糖醇作为食品,医药,化工等领域的重要合成原料,具有极高的应用价值。利用微生物法发酵生产木糖醇具有原料来源广泛,发酵条件温和,产物分离纯化简单等优势,一直被认为是绿色经济的木糖醇生产工艺路线。本文通过对生物法生产木糖醇的热点问题:发酵菌种的分类和发酵性能、基因工程菌的改造策略、以半纤维素水解液为发酵底物的制取、脱毒处理和发酵条件优化以及在固定化技术中所应用到的载体和固定化方法等几个方面进行梳理和归纳,系统阐述了生物法发酵生产木糖醇的最新研究进展,并对其前景进行了展望。%Xylitol, as the important synthetic materials in food, medicine, chemical industry and other fields, has a high application value. The microbial methods of xylitol production have some obvious advantages, such as the wide raw material sources, moderate fermentation condition, simple and convenient way to separation. Therefore, it has been regarded as a green economy route of xylitol production. This paper aimed to summarize some aspects of biological fermentation in xylitol production. It included the classification and performance of fermentation strains, the transformation strategy of genetic engineering bacteria, the preparation and detoxification of hemicellulose hydrolysate, the optimization of fermentation from hydrolysate, and the carrier and methods of immobilization technology. The advanced researches of biological methods for xylitol production were elaborated. Afterwards, its prospect was outlooked.

  19. Challenges of climate change: omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production.

    Science.gov (United States)

    Husaini, Amjad M

    2014-01-01

    Kashmir Valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as "Karewas"), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas, faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a 'niche crop' and is a recognized "geographical indication," growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues.

  20. The synergistic effects of dissolved oxygen and pH on N2O production in biological domestic wastewater treatment under nitrifying conditions.

    Science.gov (United States)

    Li, Pengzhang; Wang, Shuying; Peng, Yongzhen; Liu, Yue; He, Janzhong

    2015-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas, which is produced during nitrifying and denitrifying processes. Some factors and mechanisms affecting N2O emission have been reported in previous literature, but wastewater biological nitrification is accompanied by a dynamic process of dissolved oxygen (DO) consumption and pH reduction, it is more meaningful to study the synergistic effects between DO and pH on N2O production. In this study, the synergistic effects between DO and pH on N2O production were investigated with real domestic wastewater. The results showed that high DO levels and a high pH could improve the oxidation ratio of NH4+-N and the production ratio of NO2--N, while effectively reducing the accumulation ratio of N2O. The NH4+-N was a prerequisite for nitrifier denitrification; when NH4+-N was oxidized completely, there would be no N2O production and an even higher concentration of NO2- The pH factor is shown to directly affect N2O emission, although free ammonia and free nitrous acid which changed with pH had no correlation with N2O emission. There were two reasons: (1) pH can influence the flow direction of electrons afforded by NH2OH oxidation; at high pH, electrons were mainly used for combining H+ and O2 (O2+4H++4e-=2H2O), the accumulation of NO2- cannot be a result of denitrification, and a higher DO can get more electrons to prefer NO2- and (2) NH4+ was the prerequisite for NH2OH oxidation, since NH2OH oxidation process was the way to provide electrons for nitrifier denitrification. PMID:25619120

  1. Testing biological hypotheses with embodied robots: adaptations, accidents, and by-products in the evolution of vertebrates

    Directory of Open Access Journals (Sweden)

    Sonia F Roberts

    2014-11-01

    Full Text Available Evolutionary robotics allows biologists to test hypotheses about extinct animals. We modeled some of the first vertebrates, jawless fishes, in order to study the evolution of the trait after which vertebrates are named: vertebrae. We tested the hypothesis that vertebrae are an adaptation for enhanced feeding and fleeing performance. We created a population of autonomous embodied robots, Preyro, in which the number of vertebrae, N, were free to evolve. In addition, two other traits, the span of the caudal fin, b, and the predator detection threshold, ζ, a proxy for the lateral line sensory system, were also allowed to evolve. These three traits were chosen because they evolved early in vertebrates, are all potentially important in feeding and fleeing, and vary in form among species. Preyro took on individual identities in a given generation as defined by the population’s six diploid genotypes, Gi. Each Gi was a 3-tuple, with each element an integer specifying N, b, and, ζ. The small size of the population allowed for genetic drift to operate in concert with random mutation and mating; the presence of these mechanisms of chance provided an opportunity for N to evolve by accident. The presence of three evolvable traits provided an opportunity for direct selection on b and/or ζ to evolve N as a by-product linked trait correlation. In selection trials, different Gi embodied in Preyro attempted to feed at a light source and then flee to avoid a predator robot in pursuit. The fitness of each Gi was calculated from five different types of performance: speed, acceleration, distance to the light, distance to the predator, and the number of predator escapes initiated. In each generation, we measured the selection differential, the selection gradient, the strength of chance, and the indirect correlation selection gradient. These metrics allowed us to understand the relative contributions of the three mechanisms: direct selection, chance, and indirect

  2. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  3. Problems in stability test of biological products%生物制品稳定性研究相关问题的考虑

    Institute of Scientific and Technical Information of China (English)

    韦薇

    2013-01-01

    稳定性研究是贯穿于整个药物研究阶段和支持药物上市及上市后研究的重要试验依据,是产品贮藏条件、有效期的确定和生产工艺、产品制剂处方、包装材料选择的合理性及产品质量标准制定的研究基础.因此,如何设计、开展稳定性研究是研发需要重视的内容.本文拟以生物制品为例,提出有关稳定性研究的探讨意见.%Stability test always goes through the whole process of drug research and development, also it is the important data to support drug on marketing and after marketing. Data from the stability test should lay the foundation for determination of drug storage condition, expiry date, production process, formulation, packaging and quality standard. Therefore, how to design and carry out the stability test is the focus. Here reviewer's comments regarding to stability test of biological products was presented.

  4. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production.

    Science.gov (United States)

    Zheng, Weifa; Miao, Kangjie; Liu, Yubing; Zhao, Yanxia; Zhang, Meimei; Pan, Shenyuan; Dai, Yucheng

    2010-07-01

    Inonotus obliquus (Fr.) Pilat is a white rot fungus belonging to the family Hymenochaetaceae in the Basidiomycota. In nature, this fungus rarely forms a fruiting body but usually an irregular shape of sclerotial conk called 'Chaga'. Characteristically, I. obliquus produces massive melanins released to the surface of Chaga. As early as in the sixteenth century, Chaga was used as an effective folk medicine in Russia and Northern Europe to treat several human malicious tumors and other diseases in the absence of any unacceptable toxic side effects. Chemical investigations show that I. obliquus produces a diverse range of secondary metabolites including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are the active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Geographically, however, this fungus is restricted to very cold habitats and grows very slowly, suggesting that Chaga is not a reliable source of these bioactive compounds. Attempts for culturing this fungus axenically all resulted in a reduced production of bioactive metabolites. This review examines the current progress in the discovery of chemical diversity of Chaga and their biological activities and the strategies to modulate the expression of desired pathways to diversify and up-regulate the production of bioactive metabolites by the fungus grown in submerged cultures for possible drug discovery. PMID:20532760

  5. Reduction of COD and Turbidity of Effluent in the Swine Productions Unit Employing Anaerobic Baffled Reactor (ABR Followed by Biological Filters and Sand Filter

    Directory of Open Access Journals (Sweden)

    Euzebio Beli

    2010-04-01

    Full Text Available The growing swine production is constantly in conflict with the environment due to the lack of environmental management directed to the cycle of animal production and the industrial sector, mainly due to the mishandling of slurry produced. In association with large concentrations of confined animals appear huge dumps of organic matter, inorganic nutrients and gaseous emissions, which require special care for its disposal to the environment. The aim of this study was to evaluate the use of an anaerobic baffled reactor (ABR in series with two downflow biological filters, followed by a sand filter as a polishing treatment. It were analyzed the reduction of COD and turbidity, and the behavior of pH in all phases of treatment. The removal of COD in the conjugated system, which occurred during treatment ranged from 74.55% to 94.41% with an average removal of 84.24%. In turn, the removal of turbidity from the period ranged from 53.07% to 96.11% with an average removal of 85.49%. In the studied period the pH changed from 5,6 to 8,4. This system was efficient in the removal of COD and turbidity of swine wastewater.

  6. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Science.gov (United States)

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  7. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Science.gov (United States)

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  8. Reproductive biology traits affecting productivity of sour cherry Características da biologia reprodutiva que afetam a produtividade de cereja ácida

    Directory of Open Access Journals (Sweden)

    Milica Fotiric Aksic

    2013-01-01

    Full Text Available The objective of this work was to evaluate variability in reproductive biology traits and the correlation between them in genotypes of 'Oblačinska' sour cherry (Prunus cerasus. High genetic diversity was found in the 41 evaluated genotypes, and significant differences were observed among them for all studied traits: flowering time, pollen germination, number of fruiting branches, production of flower and fruit, number of flowers per bud, fruit set, and limb yield efficiency. The number of fruiting branches significantly influenced the number of flower and fruit, fruit set, and yield efficiency. In addition to number of fruiting branches, yield efficiency was positively correlated with fruit set and production of flower and fruit. Results from principal component analysis suggested a reduction of the reproductive biology factors affecting yield to four main characters: number and structure of fruiting branches, flowering time, and pollen germination. Knowledge of the reproductive biology of the 'Oblačinska' genotypes can be used to select the appropriate ones to be grown or used as parents in breeding programs. In this sense, genotypes II/2, III/9, III/13, and III/14 have very good flower production and satisfactory pollen germination.O objetivo deste trabalho foi avaliar a variabilidade de características da biologia reprodutiva e a correlação entre elas, em genótipos da cereja ácida (Prunus cerasus 'Oblačinska'. Verificou-se alta diversidade genética nos 41 genótipos avaliados, e foram observadas diferenças significativas entre eles, para todas as características estudadas: época de florescimento, germinação de pólen, número de ramos frutíferos, produção de flores e frutos, número de flores por botão, formação de frutos e eficiência de produção dos ramos. O número de ramos frutíferos influenciou significativamente o número de flores e frutos, a formação de frutos e a eficiência produtiva. Além do número de

  9. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  10. Glycosides from Marine Sponges (Porifera, Demospongiae: Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    Directory of Open Access Journals (Sweden)

    Valentin A. Stonik

    2012-08-01

    Full Text Available Literature data about glycosides from sponges (Porifera, Demospongiae are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.

  11. Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    OpenAIRE

    Stonik, Valentin A.; Makarieva, Tatyana N.; Kalinin, Vladimir I.; Krasokhin, Vladimir B.; Natalia V. Ivanchina

    2012-01-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.

  12. Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean) - A high-resolution biomarker study

    Science.gov (United States)

    Hörner, T.; Stein, R.; Fahl, K.; Birgel, D.

    2016-07-01

    Multi-proxy biomarker measurements were applied on two sediment cores (PS51/154, PS51/159) to reconstruct sea ice cover (IP25), biological production (brassicasterol, dinosterol) and river run-off (campesterol, β-sitosterol) in the western Laptev Sea over the last ∼17 ka with unprecedented temporal resolution. The absence of IP25 from 17.2 to 15.5 ka, in combination with minimum concentration of phytoplankton biomarkers, suggests that the western Laptev Sea shelf was mostly covered with permanent sea ice. Very minor river run-off and restricted biological production occurred during this cold interval. From ∼16 ka until 7.5 ka, a long-term decrease of terrigenous (riverine) organic matter and a coeval increase of marine organic matter reflect the gradual establishment of fully marine conditions in the western Laptev Sea, caused by the onset of the post-glacial transgression. Intensified river run-off and reduced sea ice cover characterized the time interval between 15.2 and 12.9 ka, including the Bølling/Allerød warm period (14.7-12.9 ka). Prominent peaks of the DIP25 Index coinciding with maximum abundances of subpolar foraminifers, are interpreted as pulses of Atlantic water inflow on the western Laptev Sea shelf. After the warm period, a sudden return to severe sea ice conditions with strongest ice-coverage between 11.9 and 11 ka coincided with the Younger Dryas (12.9-11.6 ka). At the onset of the Younger Dryas, a distinct alteration of the ecosystem (reflected in a distinct drop in terrigenous and phytoplankton biomarkers) was detected. During the last 7 ka, the sea ice proxies reflect a cooling of the Laptev Sea spring/summer season. This cooling trend was superimposed by a short-term variability in sea ice coverage, probably representing Bond cycles (1500 ± 500 ka) that are related to solar activity changes. Hence, atmospheric circulation changes were apparently able to affect the sea ice conditions on the Laptev Sea shelf under modern sea level

  13. / production

    Indian Academy of Sciences (India)

    François Arleo; Pol-Bernard Gossiaux; Thierry Gousset; Jörg Aichelin

    2003-04-01

    For more than 25 years /Ψ production has helped to sharpen our understanding of QCD. In proton induced reaction some observations are rather well understood while others are still unclear. The current status of the theory of /Ψ production will be sketched, paying special attention to the issues of formation time and /Ψ re-interaction in a nuclear medium.

  14. FDA 101: Regulating Biological Products

    Science.gov (United States)

    ... and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health A to Z ... public health needs enforces regulations to prevent the introduction or spread of communicable diseases within the country ...

  15. High-resolution measurement of nitrous oxide in the Elbe estuary under hypoxia: Hot-spots of biological N2O production

    Science.gov (United States)

    Brase, Lisa; Lendt, Ralf; Sanders, Tina; Dähnke, Kirstin

    2016-04-01

    Nitrous oxide (N2O) is one of the most important greenhouse gases. Its global warming potential exceeds that of CO2 by a factor of ˜300. Estuaries, being sites of intense biological N-turnover, are one of the major natural sources of N2O emissions. On two ship cruises in April and June 2015, concentrations of N2O were measured in the surface water using equilibrator laser based on-line measurements. Based on these high-resolution N2O profiles along the Elbe estuary, N2O saturation and N2O-fluxes between surface water and air were calculated. Additionally, DIN concentrations and dual stable isotopes of nitrate (δ15N and δ18O) were analyzed. Concentration and water-to-air fluxes of N2O were highest in the Hamburg port region and dropped quickly further downstream. Highest water-to-air fluxes were up to 800μM/m2/d and 1600μM/m2/d in April and in June, respectively. Downstream of the port region, an N2O oversaturation of 150-200% was estimated over the entire estuary, with saturation approaching equilibrium (96-100%) only in the North Sea region. N2O production was much higher in June than in April 2015, likely coupled to lower oxygen saturation in the water column in June. Based on these measurements, the port of Hamburg region was identified as a hot-spot of N2O production. High N2O concentration and depleted values of nitrate isotopes suggest that nitrification is a significant source of N2O in the estuary, especially at low oxygen concentration. In the Elbe estuary, hypoxia obviously drastically increased the emissions of the greenhouse gas N2O.

  16. Wetland Biomass Production: emergent aquatic management options and evaluations. A final subcontract report. [Includes a bibliography containing 686 references on Typha from biological abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, D.C.; Dubbe, D.R.; Garver, E.G.; Linton, P.J.

    1984-07-01

    The high yield potential and attractive chemical composition of Typha make it a particularly viable energy crop. The Minnesota research effort has demonstrated that total annual biomass yields equivalent to 30 dry tonnes/ha (13 tons/acre) are possible in planted stands. This compares with yields of total plant material between 9 and 16 dry tonnes/ha (4 to 7 tons/acre) in a typical Minnesota corn field. At least 50% of the Typha plant is comprised of a belowground rhizome system containing 40% starch and sugar. This high level of easily fermentable carbohydrate makes rhizomes an attractive feedstock for alcohol production. The aboveground portion of the plant is largely cellulose, and although it is not easily fermentable, it can be gasified or burned. This report is organized in a manner that focuses on the evaluation of the management options task. Results from stand management research performed at the University of Minnesota during 1982 and 1983 are integrated with findings from an extensive survey of relevant emergent aquatic plant research and utilization. These results and findings are then arranged in sections dealing with key steps and issues that need to be dealt with in the development of a managed emergent aquatic bio-energy system. A brief section evaluating the current status of rhizome harvesting is also included along with an indexed bibliography of the biology, ecology, and utilization of Typha which was completed with support from this SERI subcontract. 686 references, 11 figures, 17 tables.

  17. Occurrence and fate of tetracycline and degradation products in municipal biological wastewater treatment plant and transport of them in surface water.

    Science.gov (United States)

    Topal, Murat; Arslan Topal, E Işıl

    2015-12-01

    The aims of this study are to investigate the fate of tetracycline (TC) and degradation products (DPs) in municipal biological wastewater treatment plant (MBWWTP) located in Elazığ City (Turkey) and to determine the occurrence and transport of TC and DPs in surface water (SW) (Kehli Stream) which the effluents of the plant discharged. The aqueous phase removal of TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), and anhydrotetracycline (ATC) in the studied treatment plant was 39.4 ± 1.9, 31.8 ± 1.5, 15.1 ± 0.7, and 16.9 ± 0.8%, respectively. According to the analyses' results of SW samples taken from downstream at every 500-m distance, TC and DPs decreased by the increase in the distance. In downstream, at 2000 m, TC, ETC, EATC, and ATC were 4.12 ± 0.20, 6.70 ± 0.33, 8.31 ± 0.41, and 3.57 ± 0.17 μg/L, respectively. As a result, antibiotic pollution in the SW that takes the effluent of MBWWTP exists.

  18. Production of biologically active recombinant bovine interferon-gamma by two different baculovirus gene expression systems using insect cells and silkworm larvae.

    Science.gov (United States)

    Murakami, K; Uchiyama, A; Kokuho, T; Mori, Y; Sentsui, H; Yada, T; Tanigawa, M; Kuwano, A; Nagaya, H; Ishiyama, S; Kaki, H; Yokomizo, Y; Inumaru, S

    2001-01-01

    The full-length bovine interferon-gamma (bIFN-gamma) cDNA, including the secretion signal peptide coding region was recloned into baculovirus transfer vectors pAcYM1 and pBm050. These vectors were co-transfected with Autographa californica nuclear polyhedrosis virus (AcNPV) or Bombyx mori nuclear polyhedrosis virus (BmNPV) DNA into Spodoptera frugiperda cells (SF21AE) and Bombyx mori cells (BmN), respectively. The recombinant viruses, named AcBIFN-gamma and BmBIFN-gamma, were then recovered. Recombinant bIFN-gamma (rbIFN-gamma) was accumulated in the culture fluid of AcBIFN-gamma-infected Trichoplusia ni cells and BmBIFN-gamma-infected silkworm larvae. These rbIFN-gamma forms were shown to be glycosylated 20 and 22 kDa proteins as confirmed by SDS-PAGE and tunicamycin treatment. These products were sensitive to cystein proteinase. Both rbIFN-gamma proteins, showed high-level biological activities by plaque reduction assay using vesicular stomatitis virus, and MHC class II antigen induction on bovine macrophage cells. PMID:11145838

  19. Effects of biological insecticides NeemAzal T/S and Pyrethrum FS EC and their interaction with organic products in treatments of pea aphid Acyrthosiphon pisum (Harris (Hemiptera: Aphididae on Pisum sativum (L.

    Directory of Open Access Journals (Sweden)

    Ivelina Nikolova

    2014-09-01

    Full Text Available The efficacy and effects of two biological insecticides, NeemAzal T/S® and Pyrethrum FS EC, applied individually and in combination with Polyversum (a biological growth regulator and fungicide and Biofa (an organic foliar fertilizer, in controlling Acyrthosyphon pisum population density were studied. Nurelle D (a synthetic insecticide, applied alone and in combination with Flordimex 420 (a synthetic growth regulator, was used as a standard. The products were applied once (at budding stage or twice (at budding and flowering stages. Twenty-four variants were studied. The interaction of Pyrethrum with Biofa was the most efficient variant of the biological products, causing a reduction in aphid density that reached 48.2% after double treatment, while Pyrethrum+Polyversum (42.5% was the second most successful treatment. The combination of Pyrethrum with Biofa achieved the highest efficacy and synergism and their efficacy approached that of the synthetic insecticide.

  20. Propuesta de un modelo para el análisis de criticidad en plantas de productos biológicos // Procedure the critical model análisis in a production process of biological products plans

    Directory of Open Access Journals (Sweden)

    Armando Díaz‐Concepción

    2012-01-01

    Full Text Available En este trabajo se propone un procedimiento para verificar la factibilidad de aplicación de unametodología para realizar el análisis de criticidad y complejidad y así priorizar una atención especial a lagama de activos que intervienen en el proceso productivo de las plantas de bioproductos y mejorar laconfiabilidad de estos activos, acorde a las nuevas tendencias en el mantenimiento. Para ello se defineuna instalación típica, se determinan los indicadores propios de estas plantas a tener en cuenta para elcálculo de criticidad y complejidad. El resultado que se obtiene en el estudio es una lista jerarquizada delos equipos a partir de la comparación, a través de una matriz, entre los criterios que intervienen en elíndice de criticidad y el de complejidad de cada activo, dados los valores de ponderaciones obtenidos,mediante la realización de encuestas a ingenieros y especialistas de vasta experiencia en el tema. Elmodelo fue validado utilizando el método de consulta a especialistas obteniéndose resultadossatisfactorios.Palabras claves: productos biológicos, índice de criticidad, modelos de criticidad, jerarquización de activos,mantenimiento de activos._________________________________________________________________AbstractA procedure to verify the possibility for the implementation of a methodology for the analysis of criticismand complexity is proposed in this paper. It could be possible to give priority to the factors that take placein a production process of biological products plants, according to the new tendency in maintenance. Atypical installation is described and also the factors, of such plants, that have to be considered. All theseresults must be compared by using a matrix, taking into account all the factors that interfere in the criticismand complexity of the installation. That was done by well experience engineers and experts. The modelwas validated using expert methods obtaining satisfactory results.Key words