WorldWideScience

Sample records for biological product lot

  1. The economic production lot size model with several production rates

    DEFF Research Database (Denmark)

    Larsen, Christian

    should be chosen in the interval between the demand rate and the production rate, which minimize unit production costs, and should be used in an increasing order. Then, given the production rates, we derive closed form solutions for the optimal runtimes as well as the minimum average cost. Finally we......We study an extension of the economic production lot size model, where more than one production rate can be used during a cycle. The production rates and their corresponding runtimes are decision variables. We decompose the problem into two subproblems. First, we show that all production rates...

  2. Lot-sizing for inventory systems with product recovery

    NARCIS (Netherlands)

    R.H. Teunter (Ruud)

    2003-01-01

    textabstractWe study inventory systems with product recovery. Recovered items are as-good-as-new and satisfy the same demands as new items. The demand rate and return fraction are deterministic. The relevant costs are those for ordering recovery lots, for ordering production lots, for holding recove

  3. Integrated Lot Sizing in Serial Supply Chains with Production Capacities

    OpenAIRE

    Romero-Morales, Dolores; Wagelmans, Albert; Romeijn, H. Edwin; Hoesel, Stan van

    2005-01-01

    We consider a model for a serial supply chain in which production, inventory, and transportation decisions are integrated in the presence of production capacities and concave cost functions. The model we study generalizes the uncapacitated serial single-item multilevel economic lot-sizing model by adding stationary production capacities at the manufacturer level. We present algorithms with a running time that is polynomial in the planning horizon when all cost functions are concave. In additi...

  4. Group technology. [Increasing batch-lot production efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rome, C.P.

    1976-01-01

    Group Technology has been conceptually applied to the manufacture of batch-lots of 554 machined electromechanical parts which now require 79 different types of metal-removal tools. The products have been grouped into 7 distinct families which require from 8 to 22 machines in each machine-cell. Throughput time can be significantly reduced and savings can be realized from tooling, direct-labor, and indirect-labor costs.

  5. The economic production lot size model extended to include more than one production rate

    DEFF Research Database (Denmark)

    Larsen, Christian

    2001-01-01

    btween the demand rate and the production rate which minimizes unit production costs, and should be used in an increasing order. Then, given the production rates, we derive closed-form expressions for all optimal runtimes as well as the minimum average cost. This analysis reveals that it is the size......We study an extension of the economic production lot size model, where more than one production rate can be used during a cycle. Moreover, the production rates, as well as their corresponding runtimes are decision variables. First, we show that all production rates should be choosen in the interval...... of the setup cost that determines the need for being able to use several production rates. Finally, we show how to derive a near-optimal solution of the general problem....

  6. The economic production lot size model extended to include more than one production rate

    DEFF Research Database (Denmark)

    Larsen, Christian

    2005-01-01

    production rates should be chosen in the interval between the demand rate and the production rate which minimizes unit production costs, and should be used in an increasing order. Then, given the production rates, we derive closed-form expressions for all optimal runtimes as well as the minimum average cost......We study an extension of the economic production lot size model, where more than one production rate can be used during a cycle. Moreover, the production rates, as well as their corresponding runtimes are decision variables. We decompose the problem into two subproblems. First, we show that all....... This analysis reveals that it is the size of the setup cost that determines the need for being able to use several production rates. We also show how to derive a near-optimal solution of the general problem....

  7. Lot-to-lot consistency of live attenuated SA 14-14-2 Japanese encephalitis vaccine manufactured in a good manufacturing practice facility and non-inferiority with respect to an earlier product.

    Science.gov (United States)

    Zaman, K; Naser, Abu Mohd; Power, Maureen; Yaich, Mansour; Zhang, Lei; Ginsburg, Amy Sarah; Luby, Stephen P; Rahman, Mahmudur; Hills, Susan; Bhardwaj, Mukesh; Flores, Jorge

    2014-10-21

    We conducted a four-arm, double-blind, randomized controlled trial among 818 Bangladeshi infants between 10 and 12 months of age to establish equivalence among three lots of live attenuated SA 14-14-2 JE vaccine manufactured by the China National Biotec Group's Chengdu Institute of Biological Products (CDIBP) in a new Good Manufacturing Practice (GMP) facility and to evaluate non-inferiority of the product with a lot of the same vaccine manufactured in CDIBP's original facility. The study took place in two sites in Bangladesh, rural Matlab and Mirpur in urban Dhaka. We collected pre-vaccination (Day 0) and post-vaccination Day 28 (-4 to +14 days) blood samples to assess neutralizing anti-JE virus antibody titers in serum by plaque reduction neutralization tests (PRNT). Seroprotection following vaccination was defined as a PRNT titer ≥1:10 at Day 28 in participants non-immune at baseline. Follow-up for reactogenicity and safety was conducted through home visits at Day 7 and monitoring for serious adverse events through Day 28. Seroprotection rates ranged from 80.2% to 86.3% for all four lots of vaccine. Equivalence of the seroprotection rates between pairs of vaccine lots produced in the new GMP facility was satisfied at the pre-specified 10% margin of the 95% confidence interval (CI) for two of the three pairwise comparisons, but not for the third (-4.3% observed difference with 95% CI of -11.9 to 3.3%). Nevertheless, the aggregate seroprotection rate for all three vaccine lots manufactured in the GMP facility was calculated and found to be within the non-inferiority margin (within 10%) to the vaccine lot produced in the original facility. All four lots of vaccine were safe and well tolerated. These study results should facilitate the use of SA 14-14-2 JE vaccine as a routine component of immunization programs in Asian countries.

  8. Determination of optimal lot size and production rate for multi-production channels with limited capacity

    Science.gov (United States)

    Huang, Yeu-Shiang; Wang, Ruei-Pei; Ho, Jyh-Wen

    2015-07-01

    Due to the constantly changing business environment, producers often have to deal with customers by adopting different procurement policies. That is, manufacturers confront not only predictable and regular orders, but also unpredictable and irregular orders. In this study, from the perspective of upstream manufacturers, both regular and irregular orders are considered in coping with the situation in which an uncertain demand is faced by the manufacturer, and a capacity confirming mechanism is used to examine such demand. If the demand is less than or equal to the capacity of the ordinary production channel, the general supply channel is utilised to fully account for the manufacturing process, but if the demand is greater than the capacity of the ordinary production channel, the contingency production channel would be activated along with the ordinary channel to satisfy the upcoming high demand. Besides, the reproductive property of the probability distribution is employed to represent the order quantity of the two types of demand. Accordingly, the optimal production rates and lot sizes for both channels are derived to provide managers with insights for further production planning.

  9. Effects of Imperfect Quality and Defective Items on Economic Production Lot Size

    Institute of Scientific and Technical Information of China (English)

    Raafat; N; Ibrahim; Paul; Lochert

    2002-01-01

    The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unrealistic assumption in using EPQ is that all units produced are of good quali ty. The classical EPQ model shows that the optimal lot size will generate minimum ma nufacturing cost, thus producing minimum setup cost and inventory cost. However, this is only true if all products manufactured...

  10. A joint lot-sizing and marketing model with reworks, scraps and imperfect products

    Directory of Open Access Journals (Sweden)

    Mohsen Fathollah Bayati

    2011-04-01

    Full Text Available In this paper, we establish an economic production quantity (EPQ based inventory model by considering various types of non-perfect products .We classify products in four groups of perfect, imperfect, defective but reworkable and non-reworkable defective items. The demand is a power function of price and marketing expenditure and production unit cost is considered to be a function of lot size. The objective of this paper is to determine lot size, marketing expenditure, selling price, set up cost and inventory holding cost, simultaneously. The problem is modeled as a nonlinear posynomial geometric programming and an optimal solution is derived. The implementation of the proposed method is demonstrated using a numerical example and the sensitivity analysis is also performed to study the behavior of the model.

  11. A software development for establishing optimal production lots and its application in academic and business environments

    Directory of Open Access Journals (Sweden)

    Javier Valencia Mendez

    2014-11-01

    Full Text Available The recent global economic downturn has increased an already perceived need in organizations for cost savings. To cope with such need, companies can opt for different strategies. This paper focuses on optimizing processes and, more specifically, determining the optimal lot production. To determine the optimal lot of a specific production process, a new software was developed that not only incorporates various productive and logistical elements in its calculations but also affords users a practical way to manage the large number of input parameters required to determine the optimal batch. The developed software has not only been validated by several companies, both Spanish and Mexican, who achieved significant savings, but also used as a teaching tool in universities with highly satisfactory results from the point of view of student learning. A special contribution of this work is that the developed tool can be sent to the interested reader free of charge upon request.

  12. Lot Sizing at the Operational Planning and Shop Floor Scheduling Levels of the Decision Hierarchy of Various Production Systems

    OpenAIRE

    Chen, Ming

    2007-01-01

    The research work presented in this dissertation relates to lot sizing and its applications in the areas of operational planning and shop floor scheduling and control. Lot sizing enables a proper loading of requisite number of jobs on the machines in order to optimize the performance of an underlying production system. We address lot sizing problems that are encountered at the order entry level as well as those that are faced at the time of distributing the jobs from one machine to another an...

  13. Vacant Lots: Productive Sites for Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Mérida City, México

    Science.gov (United States)

    BAAK-BAAK, CARLOS M.; ARANA-GUARDIA, ROGER; CIGARROA-TOLEDO, NOHEMI; LOROÑO-PINO, MARÍA ALBA; REYES-SOLIS, GUADALUPE; MACHAIN-WILLIAMS, CARLOS; BEATY, BARRY J.; EISEN, LARS; GARCÍA-REJÓN, JULIÁN E.

    2014-01-01

    We assessed the potential for vacant lots and other non-residential settings to serve as source environments for Aedes (Stegomyia) aegypti (L.) in Mérida City, México. Mosquito immatures were collected, during November 2011 – June 2013, from residential premises (n = 156 site visits) and non-residential settings represented by vacant lots (50), parking lots (18), and streets/sidewalks (28). Collections totaled 46,025 mosquito immatures of 13 species. Ae. aegypti was the most commonly encountered species accounting for 81.0% of total immatures, followed by Culex quinquefasciatus Say (12.1%). Site visits to vacant lots (74.0%) were more likely to result in collection of Ae. aegypti immatures that residential premises (35.9%). Tires accounted for 75.5% of Ae. aegypti immatures collected from vacant lots. Our data suggest that vacant lots should be considered for inclusion in mosquito surveillance and control efforts in Mérida City, as they often are located near homes, commonly have abundant vegetation, and frequently harbor accumulations of small and large discarded water-holding containers that we now have demonstrated to serve as development sites for immature mosquitoes. Additionally, we present data for associations of immature production with various container characteristics, such as storage capacity, water quality and physical location in the environment. PMID:24724299

  14. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  15. Optimal production lot sizing model in a supply chain with periodically fixed demand considering learning effect

    Institute of Scientific and Technical Information of China (English)

    熊中楷; SHEN; Tiesong

    2002-01-01

    This paper presents an optimal production model for manufacturer in a supply chain with a fixed demand at a fixed interval with respect to the learning effect on production capacity.An algorithm is employed to find theoptimal dela time for production and production time sequentially.It is found that the optimal delay time for production and the production time are not static,but dynamic and variant with time.It is important for a manufacturer to schedule the production so as to prevent facilities and workers from idling.

  16. Green Lot-Sizing

    NARCIS (Netherlands)

    M. Retel Helmrich (Mathijn Jan)

    2013-01-01

    textabstractThe lot-sizing problem concerns a manufacturer that needs to solve a production planning problem. The producer must decide at which points in time to set up a production process, and when he/she does, how much to produce. There is a trade-off between inventory costs and costs associated

  17. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  18. Biological hydrogen production from phytomass

    Energy Technology Data Exchange (ETDEWEB)

    Bartacek, J.; Zabranska, J. [Inst. of Chemical Technology, Prague (Czech Republic). Dept. of Water Technology and Environmental Engineering

    2004-07-01

    Renewable sources of energy have received wide attention lately. One candidate is hydrogen which has the added advantage of involving no greenhouse gases. Biological hydrogen production from wastewater or biowastes is a very attractive production technique. So far, most studies have concentrated on the use of photosynthetic bacteria. However, dark fermentation has recently become a popular topic of research as it has the advantage of not requiring light energy input, something that limits the performance of the photosynthetic method. While pure cultures have been used in most of the investigations to date, in industrial situations mixed cultures will probably be the norm because of unavoidable contamination. In this investigation the phytomass of amaranth (Amaranthus cruentus L) was used to produce hydrogen. Specific organic loading, organic loading, and pH were varied to study the effect on hydrogen production. 18 refs., 1 tab., 6 figs.

  19. Optimal production lot size and reorder point of a two-stage supply chain while random demand is sensitive with sales teams' initiatives

    Science.gov (United States)

    Sankar Sana, Shib

    2016-01-01

    The paper develops a production-inventory model of a two-stage supply chain consisting of one manufacturer and one retailer to study production lot size/order quantity, reorder point sales teams' initiatives where demand of the end customers is dependent on random variable and sales teams' initiatives simultaneously. The manufacturer produces the order quantity of the retailer at one lot in which the procurement cost per unit quantity follows a realistic convex function of production lot size. In the chain, the cost of sales team's initiatives/promotion efforts and wholesale price of the manufacturer are negotiated at the points such that their optimum profits reached nearer to their target profits. This study suggests to the management of firms to determine the optimal order quantity/production quantity, reorder point and sales teams' initiatives/promotional effort in order to achieve their maximum profits. An analytical method is applied to determine the optimal values of the decision variables. Finally, numerical examples with its graphical presentation and sensitivity analysis of the key parameters are presented to illustrate more insights of the model.

  20. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  1. The Emerging Role of Eicosapentaenoic Acid as an Important Psychoactive Natural Product: Some Answers but a Lot more Questions

    Directory of Open Access Journals (Sweden)

    Brian M. Ross

    2008-01-01

    Full Text Available Omega-3 polyunsaturated fatty acids play important roles in both the structure and communication processes of cells. Dietary deficiences of these fatty acids have been implicated in cardiac dysfunction, cancer and mood disorders. In the latter, clinical trials have strongly suggested that not all types of omega-3 PUFA are equally efficacious. In particular eicosapentaenoic acid (EPA appears to be the most useful in ameliorating the symptoms of major depressive disorder. The mechanism by which omega-3 PUFA have these effects, and why EPA is apparently more effective in this role than the much more abundant brain lipid docosahexaenoic acid, is unclear. The available data do suggest various biologically plausible mechanisms all of which are amenable to study using straightforward experimental approaches. To progress further, a better understanding of how EPA and other omega-3 PUFA effect neurophysiological and neurosignalling processes is required.

  2. Synthetic Biology Guides Biofuel Production

    OpenAIRE

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improve...

  3. 9 CFR 114.6 - Mixing biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mixing biological products. 114.6... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.6 Mixing biological products. Each biological product, when in liquid form,...

  4. Biological production of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianping; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael

    2016-04-12

    Strains of cyanobacteria that produce high levels of alpha ketoglutarate (AKG) and pyruvate are disclosed herein. Methods of culturing these cyanobacteria to produce AKG or pyruvate and recover AKG or pyruvate from the culture are also described herein. Nucleic acid sequences encoding polypeptides that function as ethylene-forming enzymes and their use in the production of ethylene are further disclosed herein. These nucleic acids may be expressed in hosts such as cyanobacteria, which in turn may be cultured to produce ethylene.

  5. Lots of Enthusiasm, Lots of Questions

    OpenAIRE

    Dalzell, Michael D.

    2011-01-01

    A healthcare system that rewards overuse of low-value services runs counter to the concept of getting your money’s worth. It also isn’t fair. Value-based benefit design could be the strategy that is needed for effective management of biologics and other high-cost interventions. Now, how can we get all stakeholders to start the value ball rolling?

  6. Standardization for natural product synthetic biology.

    Science.gov (United States)

    Zhao, Huimin; Medema, Marnix H

    2016-08-27

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering. PMID:27313083

  7. Standardization for natural product synthetic biology

    OpenAIRE

    Zhao, Huimin; Medema, Marnix H.

    2016-01-01

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering.

  8. Standardization for natural product synthetic biology

    NARCIS (Netherlands)

    Zhao, Huimin; Medema, Marnix H.

    2016-01-01

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synt

  9. 9 CFR 114.17 - Rebottling of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rebottling of biological products. 114... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.17 Rebottling of biological products. The Administrator...

  10. 9 CFR 114.18 - Reprocessing of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Reprocessing of biological products..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.18 Reprocessing of biological products. The Administrator...

  11. 9 CFR 114.4 - Identification of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Identification of biological products... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.4 Identification of biological products. Suitable tags or labels...

  12. 9 CFR 106.1 - Biological products; exemption.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Biological products; exemption....

  13. 9 CFR 112.6 - Packaging biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Packaging biological products. 112.6... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.6 Packaging biological products. (a) Each multiple-dose final container of a biological...

  14. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  15. Biological production of ethanol from coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  16. Rapid small lot manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Harrigan, R.W.

    1998-05-09

    The direct connection of information, captured in forms such as CAD databases, to the factory floor is enabling a revolution in manufacturing. Rapid response to very dynamic market conditions is becoming the norm rather than the exception. In order to provide economical rapid fabrication of small numbers of variable products, one must design with manufacturing constraints in mind. In addition, flexible manufacturing systems must be programmed automatically to reduce the time for product change over in the factory and eliminate human errors. Sensor based machine control is needed to adapt idealized, model based machine programs to uncontrolled variables such as the condition of raw materials and fabrication tolerances.

  17. 9 CFR 103.1 - Preparation of experimental biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Preparation of experimental biological..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL PRODUCTS PRIOR TO LICENSING § 103.1 Preparation...

  18. 9 CFR 103.3 - Shipment of experimental biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Shipment of experimental biological..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL PRODUCTS PRIOR TO LICENSING § 103.3 Shipment...

  19. Biological treatment of shrimp production wastewater.

    Science.gov (United States)

    Boopathy, Raj

    2009-07-01

    Over the last few decades, there has been an increase in consumer demand for shrimp, which has resulted in its worldwide aquaculture production. In the United States, the stringent enforcement of environmental regulations encourages shrimp farmers to develop new technologies, such as recirculating raceway systems. This is a zero-water exchange system capable of producing high-density shrimp yields. The system also produces wastewater characterized by high levels of ammonia, nitrate, nitrite, and organic carbon, which make waste management costs prohibitive. Shrimp farmers have a great need for a waste management method that is effective and economical. One such method is the sequencing batch reactor (SBR). A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same reactor to take the place of multiple reactors in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor system. This is achieved through reactor operation in sequences, which includes fill, react, settle, decant, and idle. A laboratory scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentrations of carbon and nitrogen. By operating the reactors sequentially, namely, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon. Ammonia in the waste was nitrified within 4 days. The denitrification of nitrate was achieved by the anoxic process, and 100% removal of nitrate was observed within 15 days of reactor operation. PMID:19396482

  20. Biological hydrogen production using a membrane bioreactor.

    Science.gov (United States)

    Oh, Sang-Eun; Iyer, Prabha; Bruns, Mary Ann; Logan, Bruce E

    2004-07-01

    A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all conditions. When operated in chemostat mode (no flow through the membrane) at a hydraulic retention time (HRT) of 3.3 h, 90% of the glucose was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids retention time (SRT) was increased to SRT = 12 h producing a solids concentration in the reactor of 5800 mg/L. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 mL/h), and the conversion efficiency of glucose-to-hydrogen from 22% (no MBR) to 25% (based on a maximum of 4 mol-H(2)/mol-glucose). When the SRT was increased from 5 h to 48 h, glucose utilization (99%) and biomass concentrations (8,800 +/- 600 mg/L) both increased. However, the biogas production decreased (310 +/- 40 mL/h) and the glucose-to-hydrogen conversion efficiency decreased from 37 +/- 4% to 18 +/- 3%. Sustained permeate flows through the membrane were in the range of 57 to 60 L/m(2) h for three different membrane pore sizes (0.3, 0.5, and 0.8 microm). Most (93.7% to 99.3%) of the membrane resistance was due to internal fouling and the reversible cake resistance, and not the membrane itself. Regular backpulsing was essential for maintaining permeate flux through the membrane. Analysis of DNA sequences using ribosomal intergenic spacer analysis indicated bacteria were most closely related to members of Clostridiaceae and Flexibacteraceae, including Clostridium acidisoli CAC237756 (97%), Linmingia china AF481148 (97%), and Cytophaga sp. MDA2507 AF238333 (99%). No PCR amplification of 16s rRNA genes was obtained when archaea-specific primers were used.

  1. Biological control and sustainable food production

    NARCIS (Netherlands)

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control). Augmentati

  2. Ford Whitman Harris's economical lot size model

    OpenAIRE

    Erlenkotter, D

    2014-01-01

    Here we celebrate the centennial of Ford Whitman Harris's model for determining economical lot sizes, which was published in the A.W. Shaw Company's magazine Factory, The Magazine of Management in February 1913. The square-root formula derived by Harris has become one of the most cited and applied results in production and operations management. We examine the circumstances under which this result was derived, and explore the probable causes for the later obscurity of Harris's paper, which wa...

  3. Remanufacturing lot sizing production planning considering product differentiation in multi-uncertain environment%多重不确定环境下考虑产品差异的再制造批量生产计划

    Institute of Scientific and Technical Information of China (English)

    景熠; 王旭; 李文川; 邓蕾

    2012-01-01

    To solve manufacturing and remanufacturing lot sizing planning problems under the situation of hybrid production in multi-uncertain environment, a mixed integer programming model with constraints of inventory and production capacity was established. In this model, the discrete scenario set of know probability was used to describe returned products quantity and product demand's uncertainty, to describe the uncertainty of remanufacturing cost based on interval analysis, and to describe the uncertainty of remanufacturing rate with stochastic chance constrained programming. Satisfying demand ratio, operation cost and remanufacturing product rate were used as oper ation objects. Meanwhile, product differentiation was considered, and the strategy of one-way substitution was proposed to improve the flexibility of production planning. Adaptive mechanism was introduced in double chromosomes genetic algorithm to design solution for simulation example. The results showed the effectiveness and validity of proposed model.%针对多重不确定环境下制造/再制造混合生产场景中的批量计划问题,建立了库存和生产能力受限的混合整数规划模型。该模型分别采用已知概率的离散情景集合描述收回品数量和产品需求的不确定性,区间分析描述再制造成本的不确定性,以及随机机会约束描述再制造率的不确定性,并以需求满足率、运作成本和再制造产品率为运作目标,同时考虑再制造产品的差异,以单向替代策略增强生产计划的柔性。最后,将自适应机制引入双倍体遗传算法,设计了相应的求解过程,并对仿真算例进行了求解。计算结果表明,该计划模型和求解算法具有一定的有效性和实用性。

  4. 9 CFR 115.2 - Inspections of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspections of biological products. 115.2 Section 115.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS...

  5. Cholesterol oxidation products and their biological importance.

    Science.gov (United States)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr; Rog, Tomasz; Vattulainen, Ilpo

    2016-09-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have a substantial effect on membrane properties. In this spirit, this review describes the biological importance and the roles of oxysterols in the human body. We focus primarily on the effect of oxysterols on lipid membranes, but we also consider other issues such as enzymatic and nonenzymatic synthesis processes of oxysterols as well as pathological conditions induced by oxysterols. PMID:26956952

  6. COTTAGE CHEESE PRODUCTS ENRICHED BIOLOGICALLY ACTIVE ADDITIVES

    OpenAIRE

    Салкинбаева Г. Т.; Байбалинова Г. М.; Смаилова М. Н.

    2015-01-01

    This article deals with a reliable means of improving the structure of supply and optimum balance of the diet of the population, is the use of biologically active additives in a daily diet of the people to food dietary supplements. Supplements such advantages as an expression of food oriented, high nutritional density, homogeneity, easy preparation and forms of transport, good taste allow us to use them successfully in catering.

  7. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    OpenAIRE

    A. S. Kayshev; N. S. Kaysheva

    2014-01-01

    A content of biologically active compounds (BAC) with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical ...

  8. Production and consumption of biological particles in temperate tidal estuaries

    NARCIS (Netherlands)

    Heip, C.H.R.; Goosen, N.K.; Herman, P.M.J.; Kromkamp, J.C.; Middelburg, J.J.; Soetaert, K.E.R.

    1995-01-01

    The question is reviewed whether a balance exists between production and consumption of biological particles in temperate tidal estuaries and what the relationships are between the magnitude of production and consumption processes and system carbon metabolism. The production terms considered are pri

  9. Studi Kasus Perbandingan antara Lot-for-Lot dan Economic Order Quantity Sebagai Metode Perencanaan Penyediaan Bahan Baku

    Directory of Open Access Journals (Sweden)

    Oegik Soegihardjo

    1999-01-01

    Full Text Available Production and material requirements planning are interrelated. The number of required material depends on the quantity of products for a certain period. The are some methods for material requirements planning. Two of them are lot-for-lot and economic order quantity. Those two methods will be apllied to impeller requirements planning for centrifugal pumps and evaluated to determine which one is more appropriate for the case being studied. Those methods are chosen because each of them has different characteristic in determination of lot's quantity. In lot-for-lot the determination of quantity of the impeller is based on the requirements for single period. In economic order quantity the determination of quantity of the impeller is based on expected requirements. Abstract in Bahasa Indonesia : Perencanaan produksi dan penyediaan bahan baku merupakan dua hal yang berkaitan. Berapa banyak bahan baku yang harus disediakan, ditentukan oleh berapa jumlah produk yang akan dibuat pada suatu periode tertentu. Metode perencanaan untuk penyediaan bahan baku ada beberapa macam. Dua di antara metode perencanaan penyiapan bahan baku adalah 'lot-for-lot' dan 'economic order quantity'. Dua metode tersebut akan dipakai untuk perencanaan penyediaan sudu pompa sentrifugal untuk dievaluasi mana yang lebih sesuai untuk kasus penyediaan sudu pompa sentrifugal tersebut. Dua metode ini dipilih karena kedua metode tersebut mempunyai karakter yang berbeda dalam penyediaan kebutuhan bahan baku (bahan baku dalam kasus ini adalah impeller pompa. Pada metode 'lot-for-lot' penentuan jumlah sediaan bahan baku ditetapkan sedemikian rupa untuk memenuhi kebutuhan bersih satu periode tunggal. Sedangkan pada metode 'economic order quantity' penentuan sediaan bahan baku ditetapkan berdasarkan kebutuhan yang diperkirakan (expected requirements. Kata kunci: kebutuhan bahan baku, kebutuhan bersih, 'lot-for-lot', 'economic order quantity'.

  10. Optimal pricing and lot-sizing policies for an economic production quantity model with non-instantaneous deteriorating items, permissible delay in payments, customer returns, and inflation

    DEFF Research Database (Denmark)

    Ghoreishi, Maryam; Mirzazadeh, Abolfazl; Nakhai Kamalabadi, Isa

    2014-01-01

    This article deals with an economic production quantity inventory model for non-instantaneous deteriorating items under inflationary conditions, permissible delay in payments, customer returns, and price- and time-dependent demand. The customer returns are assumed as a function of demand and price....... The effects of time value of money are studied using the Discounted Cash Flow approach. The main objective is to determine the optimal selling price, the optimal length of the production period, and the optimal length of inventory cycle simultaneously such that the present value of total profit is maximized...

  11. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  12. Recent Developments in Biological Hydrogen Production Processes

    Directory of Open Access Journals (Sweden)

    DEBABRATA DAS

    2008-07-01

    Full Text Available Biohydrogen production technology can utilize renewable energy sources like biomass for the generation of hydrogen, the cleanest form of energy for the use of mankind. However, major constraints to the commercialization of these processes include lower hydrogen yields and rates of hydrogen production. To overcome these bottlenecks intensive research work has already been carried out on the advancement of these processes such as the development of genetically modified microorganisms, the improvement of the bioreactor design, molecular engineering of the key enzyme hydrogenases, the development of two stage processes, etc. The present paper explores the recent advancements that have been made till date and also presents the state of the art in molecular strategies to improve the hydrogen production.

  13. Electricity-mediated biological hydrogen production

    NARCIS (Netherlands)

    Geelhoed, J.S.; Hamelers, H.V.M.; Stams, A.J.M.

    2010-01-01

    Anaerobic bacteria have the ability to produce electricity from the oxidation of organic substrates. They also may use electricity to support chemical reactions that are energetically unfavorable. In the fermentation of sugars, hydrogen can be formed as one of the main products. However, a yield of

  14. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  15. Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care

    Science.gov (United States)

    Perez-Pinera, Pablo; Han, Ningren; Cleto, Sara; Cao, Jicong; Purcell, Oliver; Shah, Kartik A.; Lee, Kevin; Ram, Rajeev; Lu, Timothy K.

    2016-01-01

    Current biopharmaceutical manufacturing systems are not compatible with portable or distributed production of biologics, as they typically require the development of single biologic-producing cell lines followed by their cultivation at very large scales. Therefore, it remains challenging to treat patients in short time frames, especially in remote locations with limited infrastructure. To overcome these barriers, we developed a platform using genetically engineered Pichia pastoris strains designed to secrete multiple proteins on programmable cues in an integrated, benchtop, millilitre-scale microfluidic device. We use this platform for rapid and switchable production of two biologics from a single yeast strain as specified by the operator. Our results demonstrate selectable and near-single-dose production of these biologics in system with analytical, purification and polishing technologies could lead to a small-scale, portable and fully integrated personal biomanufacturing platform that could advance disease treatment at point-of-care. PMID:27470089

  16. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2014-01-01

    Full Text Available A content of biologically active compounds (BAC with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical and chemical characteristics of distillers grains' liquid base were identified. Elementary composition of distillers grains is signified by active accumulation of biogenic elements (phosphorus, potassium, magnesium, calcium, sodium, iron and low content of heavy metals. The solid phase of distillers grains accumulates carbon, hydrogen and nitrogen in high concentration. The liquid phase of distillers grains contains: proteins and amino acids (20-46%, reducing sugars (5,6%-17,5%, galacturonides (0,8-1,4%, ascorbic acid (6,2-11,4 mg%. The solid base of distillers grains contains: galacturonides (3,4-5,3%, fatty oil (8,4-11,1% with predomination of essential fatty acids, proteins and amino acids (2,1-2,5%, flavonoids (0,4-0,9%, tocopherols (3,4-7,7 mg%. A method of complex processing of distillers grains based on application of membrane filtering of liquid phase and liquid extraction by inorganic and organic solvents of solid phase, which allows almost full extraction of the sum of biologically active compounds (BAC from liquid phase (Biobardin BM and solid phase (Biobardin UL. Biobardin BM comprises the following elements: proteins and amino acids (41-69%, reducing sugars (3,5-15,6%, fatty oil (0,2-0,3%, flavonoids (0,2-0,7%, ascorbic acid (17-37 mg%. Biobardin UL includes: oligouronids (16,4-19,5%, proteins and amino acids (11-21%, fatty oil (3,2-4,9% which includes essential acids; flavonoids (0,6-1,5%, tocopherols (6,6-10,2 mg%, carotinoids (0,13-0,21 mg

  17. Evaluation of the synthesis of six lots of HNS I

    Energy Technology Data Exchange (ETDEWEB)

    Stull, T.W.

    1978-09-01

    The analytical results of six lots of high purity 2,2',4,4',6,6'-hexanitrostilbene (HNS I) synthesized by the Development Division, Mason and Hanger, Pantex Plant are discussed. A total of approximately 130 kg was produced in lot sizes ranging from 5.2 to 46.4 kg. The results clearly indicate the excellent reproducibility of the process and high purity of the final product.

  18. 7 CFR 932.10 - Lot.

    Science.gov (United States)

    2010-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 932.10 Lot. Lot means the total net weight of natural condition olives of any one variety delivered to a handler at any one time....

  19. MILK KEFIR: COMPOSITION, MICROBIAL CULTURES, BIOLOGICAL ACTIVITIES AND RELATED PRODUCTS

    Directory of Open Access Journals (Sweden)

    Maria Rosa Prado

    2015-10-01

    Full Text Available In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance.

  20. Ionizing radiation for sterilization of medical products and biological tissues

    International Nuclear Information System (INIS)

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products. (S.K.K.)

  1. Assessment of biological Hydrogen production processes: A review

    Science.gov (United States)

    Najafpour, G. D.; Shahavi, M. H.; Neshat, S. A.

    2016-06-01

    Energy crisis created a special attention on renewable energy sources. Among these sources; hydrogen through biological processes is well-known as the most suitable and renewable energy sources. In terms of process yield, hydrogen production from various sources was evaluated. A summary of microorganisms as potential hydrogen producers discussed along with advantages and disadvantages of several bioprocesses. The pathway of photo-synthetic and dark fermentative organisms was discussed. In fact, the active enzymes involved in performance of biological processes for hydrogen generation were identified and their special functionalities were discussed. The influential factors affecting on hydrogen production were known as enzymes assisting liberation specific enzymes such as nitrogenase, hydrogenase and uptake hydrogenase. These enzymes were quite effective in reduction of proton and form active molecular hydrogen. Several types of photosynthetic systems were evaluated with intension of maximum hydrogen productivities. In addition dark fermentative and light intensities on hydrogen productions were evaluated. The hydrogen productivities of efficient hydrogen producing strains were evaluated.

  2. 7 CFR 987.102 - Lot number.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Lot number. 987.102 Section 987.102 Agriculture... RIVERSIDE COUNTY, CALIFORNIA Administrative Rules Definitions § 987.102 Lot number. Lot number is synonymous with code and means a combination of letters or numbers, or both, acceptable to the Committee,...

  3. 7 CFR 29.35 - Lot seal.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Lot seal. 29.35 Section 29.35 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Regulations Definitions § 29.35 Lot seal. A seal approved by the Director for sealing lots...

  4. Natural product synthesis at the interface of chemistry and biology.

    Science.gov (United States)

    Hong, Jiyong

    2014-08-11

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences.

  5. 7 CFR 52.1010 - Ascertaining the grade of a lot.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Ascertaining the grade of a lot. 52.1010 Section 52.1010 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards....1010 Ascertaining the grade of a lot. The grade of a lot of the processed product covered by...

  6. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    Science.gov (United States)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  7. Technical suitability mapping of feedstocks for biological hydrogen production

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Karaoglanoglou, L.S.; Koullas, D.P.; Bakker, R.R.; Claassen, P.A.M.; Koukios, E.G.

    2015-01-01

    The objective of this work was to map and compare the technical suitability of different raw materials for biological hydrogen production. Our model was based on hydrogen yield potential, sugar mobilization efficiency, fermentability and coproduct yield and value. The suitability of the studied r

  8. Irradiation of advanced health care products – Tissues and biologics

    International Nuclear Information System (INIS)

    Radiation sterilization of tissues and biologics has become more common in recent years. As a result it has become critical to understand how to adapt the typical test methods and validation approaches to a tissue or biological product scenario. Also data evaluation sometimes becomes more critical than with traditional medical devices because for many tissues and biologics a low radiation dose is required. It is the intent behind this paper to provide information on adapting bioburden tests used in radiation validations such that the data can be most effectively used on tissues and biologics. In addition challenges with data evaluation are discussed, particularly the use of less-than values for bioburden results in radiation validation studies. - Highlights: • MPN testing can provide good bioburden results for tissue/biologics. • There are appropriate situations to pool products for bioburden testing. • Options on dealing with bioburden results of “less-than” the limit of detection. • Underestimation and overestimation of bioburden and the dangers of both

  9. Dynamic Lot Sizing Problem of Production and Outsourcing under the Environment of Different Customer Classes%不同顾客环境下生产及外包的动态批量问题

    Institute of Scientific and Technical Information of China (English)

    徐娟; 汪小京; 刘志学

    2014-01-01

    This paper considers a dynamic lot sizing problem of production and outsourcing with different kinds of customer class (e.g.,high valuable and low valuable one) demand in a finite time horizon.The firm can produce in house or outsourcing from outside in order to satisfy different customer demand,and then five service policies are obtained.The optimal outsourcing policy does not necessarily satisfy the Zero-Inventory-Outsourcing rule,and the optimal production policy does not necessarily satisfy the Zero-Inventory-Production rule.However,the set of production periods for high valuable customer must include the set for low valuable one.Based on this lemma,a polynomial algorithm is proposed to search out the optimal production and outsourcing policy,with time complexity O(N3),and a numeric example is given to illustrate the five service policies.At last,when the number of customer classes is larger,two heuristics are designed according to the special production and outsourcing rule.%在有限计划期内,考虑不同顾客(例如:高端和低端顾客)具有不同的缺货等待成本,企业可以采用生产或者外包的方式满足不同顾客需求.在生产和外包两种策略下,企业有五种不同的服务方式,而最优外包期不一定满足“零库存外包”规则,最优生产期不一定满足“零库存生产”规则,但满足高端顾客需求的生产期必须包含满足低端顾客需求的生产期.基于此性质,提出了一个多项式算法得到最优的生产及外包策略,并为每类顾客制定相应的服务策略,计算复杂度为O(N3),并通过算例分析了五种不同的服务策略.最后,拓展到多类顾客的需求环境,根据特殊的生产法则和顾客分类方法,分别设计了一种启发式算法,得到企业的生产及外包策略.

  10. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    Science.gov (United States)

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.

  11. Phase III, randomized controlled trial to evaluate lot consistency of a trivalent subunit egg-based influenza vaccine in adults.

    Science.gov (United States)

    Rivera, Luis; Mazara, Sonia; Vargas, Maria; Fragapane, Elena; Casula, Daniela; Groth, Nicola

    2012-07-27

    Vaccination is the most effective preventive strategy to control influenza. The demonstration of lot-to-lot consistency to confirm the reliability of the manufacturing process has become a mandatory step in vaccine development. This phase III, observer-blind, controlled trial assessed lot-to-lot consistency, immunogenicity, and safety of a subunit trivalent influenza vaccine (Agrippal®, Novartis Vaccines and Diagnostics) in healthy adults aged 18-49 years. The immunogenicity and safety profile of Agrippal was compared with a control vaccine (Fluvirin®, Novartis Vaccines and Diagnostics). A total of 1507 subjects were randomized 2:2:2:1 to receive one vaccination of one of the three lots of influenza vaccine or control vaccine. Antibody levels were measured by hemagglutination inhibition assay on days 1 and 22. Adverse reactions were solicited via diary cards for 7 days after vaccination, and unsolicited adverse events were collected throughout the study period. Equivalence of day 22 immune responses to the three lots was shown for each of the three strains. Robust immunogenic responses after one dose were observed for all vaccine groups, and both Center for Biologics Evaluation and Research criteria for licensure of influenza vaccines were met for all three virus strains. Both vaccines exhibited a robust safety profile and were well tolerated, with no differences in local and systemic solicited reactions or in unsolicited adverse events. The demonstration of consistency between manufacturing lots confirms for purposes of clinical development the reliability of the production process. The robust immunogenic responses and favorable safety profiles further support the use of trivalent subunit influenza vaccines Agrippal and Fluvirin for active immunization against influenza. PMID:22659448

  12. 9 CFR 102.5 - U.S. Veterinary Biological Product License.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false U.S. Veterinary Biological Product..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS LICENSES FOR BIOLOGICAL PRODUCTS § 102.5 U.S. Veterinary Biological Product License. (a) Authorization to produce...

  13. Systems Biology Approaches to Understand Natural Products Biosynthesis

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Cruz-Morales, Pablo; Manteca, Angel; Barona-Gomez, Francisco; Nielsen, Lars K.; Marcellin, Esteban

    2015-01-01

    Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed toward a shift in the exploitation of actinomycete’s biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation, and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets. PMID:26697425

  14. Systems biology approaches to understand natural products biosynthesis

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc eLicona-Cassani

    2015-12-01

    Full Text Available Actinomycetes populate soils and aquatic sediments which impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams and terpenes are well known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed towards a shift in the exploitation of actinomycetes biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets.

  15. Systems Biology Approaches to Understand Natural Products Biosynthesis

    OpenAIRE

    Licona-Cassani, Cuauhtemoc; Cruz-Morales, Pablo; Manteca, Angel; Barona-Gomez, Francisco; Nielsen, Lars K; Marcellin, Esteban

    2015-01-01

    Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regul...

  16. Systems biology approaches to understand natural products biosynthesis

    OpenAIRE

    Cuauhtemoc eLicona-Cassani; Pablo Cruz Morales; Angel eManteca; Francisco eBarona-Gomez; Lars Keld Nielsen; Esteban eMarcellin

    2015-01-01

    Actinomycetes populate soils and aquatic sediments which impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams and terpenes are well known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regul...

  17. Polycyclic Xanthone Natural Products: Structure, Biological Activity and Chemical Synthesis

    OpenAIRE

    Winter, Dana K.; Sloman, David L.; Porco, John A.

    2013-01-01

    Polycyclic xanthone natural products are a family of polyketides which are characterized by highly oxygenated, angular hexacyclic frameworks. In the last decade, this novel class of molecules has attracted noticeable attention from the synthetic and biological communities due to emerging reports of their potential use as antitumour agents. The aim of this article is to highlight the most recent developments of this subset of the xanthone family by detailing the innate challenges of the constr...

  18. Reproductive biology traits affecting productivity of sour cherry

    Directory of Open Access Journals (Sweden)

    Milica Fotiric Aksic

    2013-01-01

    Full Text Available The objective of this work was to evaluate variability in reproductive biology traits and the correlation between them in genotypes of 'Oblačinska' sour cherry (Prunus cerasus. High genetic diversity was found in the 41 evaluated genotypes, and significant differences were observed among them for all studied traits: flowering time, pollen germination, number of fruiting branches, production of flower and fruit, number of flowers per bud, fruit set, and limb yield efficiency. The number of fruiting branches significantly influenced the number of flower and fruit, fruit set, and yield efficiency. In addition to number of fruiting branches, yield efficiency was positively correlated with fruit set and production of flower and fruit. Results from principal component analysis suggested a reduction of the reproductive biology factors affecting yield to four main characters: number and structure of fruiting branches, flowering time, and pollen germination. Knowledge of the reproductive biology of the 'Oblačinska' genotypes can be used to select the appropriate ones to be grown or used as parents in breeding programs. In this sense, genotypes II/2, III/9, III/13, and III/14 have very good flower production and satisfactory pollen germination.

  19. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  20. Optimal and heuristic solutions for the single and multiple batch flow shop lot streaming problems with equal sublots

    OpenAIRE

    Kalir, Adar A.

    1999-01-01

    This research is concerned with the development of efficient solutions to various problems that arise in the flow-shop environments which utilize lot-streaming. Lot streaming is a commonly used process of splitting production lots into sublots and, then, of scheduling the sublots in an overlapping fashion on the machines, so as to expedite the progress of orders in production and to improve the overall performance of the production system. The different lot-streaming problems that arise i...

  1. Capacitated Dynamic Lot Sizing with Capacity Acquisition

    DEFF Research Database (Denmark)

    Li, Hongyan; Meissner, Joern

    a model which combines the complexity of time-varying demand and cost functions and that of scale economies arising from dynamic lot-sizing costs with the purchase cost of capacity. We propose a heuristic algorithm that runs in polynomial time to determine a good capacity level and corresponding lot...

  2. 7 CFR 29.3530 - Lot.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Lot. 29.3530 Section 29.3530 Agriculture Regulations... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO... Type 95) § 29.3530 Lot. A pile, basket, bulk, or more than one bale, case, hogshead, tierce,...

  3. 7 CFR 29.3038 - Lot.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Lot. 29.3038 Section 29.3038 Agriculture Regulations... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO... Lot. A pile, basket, bulk, bale or bales, sheet, case hogshead, tierce, package, or other...

  4. 7 CFR 29.31 - Lot.

    Science.gov (United States)

    2010-01-01

    ... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO INSPECTION Regulations Definitions § 29.31 Lot. A pile, basket, bulk, package, or other definite unit. ... 7 Agriculture 2 2010-01-01 2010-01-01 false Lot. 29.31 Section 29.31 Agriculture Regulations...

  5. 7 CFR 29.2532 - Lot.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Lot. 29.2532 Section 29.2532 Agriculture Regulations... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2532 Lot. A pile, basket, bulk, or more...

  6. 7 CFR 29.6025 - Lot.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Lot. 29.6025 Section 29.6025 Agriculture Regulations... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6025 Lot. A pile, basket, bulk, package, or other definite unit....

  7. 7 CFR 29.1033 - Lot.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Lot. 29.1033 Section 29.1033 Agriculture Regulations... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO... Type 92) § 29.1033 Lot. A pile, basket, bulk, or more than one bale, case, hogshead, tierce,...

  8. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  9. Competition under capacitated dynamic lot-sizing with capacity acquisition

    DEFF Research Database (Denmark)

    Li, Hongyan; Meissner, Joern

    2011-01-01

    model combining the complexity of time-varying demand with cost functions and economies of scale arising from dynamic lot-sizing costs is developed. Each firm can replenish inventory at the beginning of each period in a finite planning horizon. Fixed as well as variable production costs incur for each...... with the total capacity demand of all the competing firms. We solve the competition model and establish the existence of a capacity equilibrium over the firms and the associated optimal dynamic lot-sizing plan for each firm under mild conditions....

  10. Mitigation of chromatography adsorbent lot performance variability through control of buffer solution design space.

    Science.gov (United States)

    Aono, Hiromasa; Iliescu, Ionela; Cecchini, Doug; Wood, Susanne; McCue, Justin T

    2013-11-29

    The separation of undesired product-related impurities often poses a challenge in the purification of protein therapeutic species. Product-related impurity species, which may consist of undesirable isoforms, aggregated, or misfolded variants of the desired monomeric form of the product, can be challenging to remove using preparatory scale chromatographic techniques. When using anion exchange chromatography to remove undesirable product-related impurities, the separation can be highly sensitive to relatively small changes in the chromatography operating conditions, including changes to buffer solution pH, buffer solution conductivity protein loading, and operating temperature. When performing difficult separations, slight changes to the chemical and physical properties of the anion exchange adsorbent lot may also impact the separation profile. Such lot-to-lot variability may not be readily measurable by the adsorbent manufacturer, since variability can be highly dependent on a specific protein separation. Consequently, manufacturers of chromatographic adsorbents may not be able to control adsorbent lot to lot variability tightly enough to prevent differences from occurring when performing difficult product-related separations at the preparatory scale. In such cases, it is desirable to design a chromatography step with a control strategy which accounts for adsorbent lot to lot variability in the separation performance. In order to avoid the undesired changes to process consistency and product quality, a proper adjustment of the column operating conditions can be implemented, based on the performance of each adsorbent lot or lot mixture. In this work, we describe how the adjustment of the column buffer solution composition can be used as a design space based-control strategy used to ensure consistent process performance and product quality are achieved for an anion exchange chromatography step susceptible to adsorbent lot to lot performance variability. In addition, a

  11. LOT, a meso scale mechanistic tool for Porous Asphalt mixture design; winter damage and LOT validation

    NARCIS (Netherlands)

    Huurman, M.; Mo, L.T.; Woldekidan, M.F.

    2010-01-01

    By assignment of the Centre for Transport and Navigation (DVS) of the Dutch Ministry of Transport, Public Works and Water Management the Delft University of Technology developed LOT. LOT is a Lifetime Optimisation Tool for Porous Asphalt, PA, based on meso scale structural modelling. LOT sees an asp

  12. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  13. Assessment of nitrogen and sulphur cycle bacteria and shrimp production in ponds treated with biological products

    Institute of Scientific and Technical Information of China (English)

    Thangapalam Jawahar Abraham; Shubhadeep Ghosh; Debasis Sasmal

    2015-01-01

    Objective:To study the influence of biological products on the levels of nitrogen and sulphur cycle bacteria in shrimp culture systems of West Bengal, India. Methods: The pond water and sediment samples were analyzed for physico-chemical parameters as per standard methods. The bacteria involved in ammonification, nitrification, denitrification, sulphate reduction and sulphur oxidation were enumerated by most probable number technique. Results:The semi-intensive and modified extensive shrimp farms used a variety of biological products during various stages of production. No biological products were used in traditional farms. The water and sediment samples of modified extensive system recorded significantly higher mean heterotrophic bacterial counts. The counts of ammonia, nitrite and sulphur oxidizers, and nitrate and sulphate reducers varied among the systems. The cycling of nitrogen and sulphur appeared to be affected with the intensification of culture practices. Conclusions:The application of biological products in certain systems helped to maintain the bacteria involved in nitrogen and sulphur cycles and safe levels of ammonia, nitrite and nitrate. An assessment of these metabolically active bacteria in shrimp culture ponds and the application of right kind microbial products would help ameliorate the organic pollution in shrimp aquaculture.

  14. A Basic Study on Cost Based Lot Sizing

    Science.gov (United States)

    Sashio, Kentaro; Kaihara, Toshiya; Fujii, Susumu; Inao, Shinya

    To deal with the diversification of consumers' needs and to survive in the severe competitive environment, a grate deal of effort has been paid by manufacturers. Respecting the background, importance of effective lot sizing has been focused. Although variety of lot sizing algorithms has been proposed, most of their objective functions are based on time and quantity criteria. However, it is difficult to select an appropriate criterion universally, because the most important criterion is changed dynamically in real manufacturing environment. Then product cost seems to be a universal criterion, since profit is generally quite important factor in manufacturing enterprises. On the other hand, a concept of Distributed Virtual Factory (DVF) has been proposed as a new simulation environment for evaluating the performance of whole manufacturing systems. By performing simulation with DVF, all the information required to product cost calculation can be obtained. In this study, we propose an effective lot sizing methodology which performs Activity Based Costing (ABC) and minimizes product cost directly. We clarify the validity of the proposed lot sizing method through simulation experiments with DVF.

  15. Biological hydrogen production from biomass by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T. [Wageningen UR, Agrotechnology and Food Sciences Group (AFSG), Business Unit Biobased Products, P.O. Box 17, 6700 AA Wageningen, (Netherlands); van Niel, E.W.J. [Lund University, Applied microbiology, P.O. Box 124, 221 000 Lund, (Sweden)

    2006-07-01

    To meet the reduction of the emission of CO{sub 2} imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  16. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    To meet the reduction of the emission of CO2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient requirements

  17. Current studies on physiological functions and biological production of lactosucrose.

    Science.gov (United States)

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes.

  18. Current studies on physiological functions and biological production of lactosucrose.

    Science.gov (United States)

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes. PMID:23828605

  19. 7 CFR 916.115 - Lot stamping.

    Science.gov (United States)

    2010-01-01

    ... and Regulations § 916.115 Lot stamping. Except when loaded directly into railway cars, exempted under... inspected in accordance with § 916.55: Provided, That pallets of returnable plastic containers shall...

  20. 7 CFR 917.150 - Lot stamping.

    Science.gov (United States)

    2010-01-01

    ... directly into railway cars, exempted under § 917.143, or for peaches mailed directly to consumers in... returnable plastic containers shall have the lot stamp numbers affixed to each pallet with a...

  1. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.

    Science.gov (United States)

    Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. PMID:26838891

  2. Biological productivity and carbon cycling in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Primary production, bacterial production, particulate organic carbon fluxes and organic carbon burial rates were quantified during the summer period of 1999 in the Arctic Ocean via 14C uptake, 3H uptake, 234Th/238U disequilibrium and 210Pbex dating, respectively. The integrated primary production in the water column was as high as 197 mmolC/(m2@d) in the Chukchi shelf and was 3.8 mmolC/(m2@d) in the Canada Basin. These rates are higher than those reported previously. The ratios of bacterial production to primary production in the study region were higher than 0.5, indicating that microbial activity is not depressed but important in cold Arctic waters. 234Th/238U disequilibria were evident at the station in the Canada Basin. The presence of significant 234Th deficiency suggested that scavenging and removal processes are also important to biogeochemical cycles of trace elements in the Arctic Ocean. Particulate organic carbon export flux was estimated to be 1.0 mmolC/(m2@d). Measurements of sediment excess 210Pb profile in the Chukchi shelf allowed us to estimate the amount of organic carbon buried in the bottom sediment, which ranged from 25 to 35 mmolC/(m2@d) and represented about 59%-82% of the mean primary production in the euphotic zone. Overall, our results indicated that the Arctic Ocean has active carbon cycling and is not a biological desert as previously believed. Therefore, the Arctic Ocean may play an important role in the global carbon cycle and climate change.

  3. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  4. MODEL PENENTUAN UKURAN LOT PRODUKSI DENGAN POLA PERMINTAAN BERFLUKTUASI

    Directory of Open Access Journals (Sweden)

    Docki Saraswati

    2009-01-01

    Full Text Available The purpose of this paper is to examine the impact of varying demand on the production lot size and the schedule of delivery in the integrated inventory system. This system is consisted of a single manufacturer as the supplier and a single buyer. Mostly, the problems on the economic lot size model are assumed that demand is continuous with time. Actually, demand occurs are varying in time rather than continuously over the planning time horizon. In this case, the buyer has decided the amount of order for each period is varied, because of the changing market environment. The integrated inventory system model between a supplier and a buyer are developed and implemented under the condition with varied demand. Forward dynamic programming is implemented for searching the solution. The objective is to minimize the total cost, associated with a single product for a deterministic varying demand. Two conditions are examined here, i.e., the integrated model with uncapacitated and capacitated production system. The difference between these two models is in the constraints formulation. The capacity constraints will give higher total cost, especially if the setup cost higher than the holding cost. A numerical example is presented to illustrate the implementation of the solution algorithm. Abstract in Bahasa Indonesia: Pada makalah ini diteliti pengaruh permintaan yang berfluktuasi terhadap penentuan ukuran lot produksi dan jadwal pengiriman pada sistem persediaan terintegrasi, dengan total ongkos persediaan melibatkan sistem persediaan pemanufaktur dan pembeli secara bersama. Sistem terdiri atas pemanufaktur tunggal dan pembeli tunggal untuk pemesanan satu jenis produk.Umumnya permasalahan penentuan ukuran lot produksi memiliki asumsi bahwa permintaan bersifat kontinu terhadap waktu. Penentuan ukuran lot pada model integrasi sistem persediaan antara pemanufaktur dan pembeli dengan kondisi permintaan berfluktuatif bertujuan meminimasi total ongkos. Pencarian

  5. Biological production of ethanol from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  6. Systems biology of recombinant protein production using Bacillus megaterium.

    Science.gov (United States)

    Biedendieck, Rebekka; Borgmeier, Claudia; Bunk, Boyke; Stammen, Simon; Scherling, Christian; Meinhardt, Friedhelm; Wittmann, Christoph; Jahn, Dieter

    2011-01-01

    The Gram-negative bacterium Escherichia coli is the most widely used production host for recombinant proteins in both academia and industry. The Gram-positive bacterium Bacillus megaterium represents an increasingly used alternative for high yield intra- and extracellular protein synthesis. During the past two decades, multiple tools including gene expression plasmids and production strains have been developed. Introduction of free replicating and integrative plasmids into B. megaterium is possible via protoplasts transformation or transconjugation. Using His(6)- and StrepII affinity tags, the intra- or extracellular produced proteins can easily be purified in one-step procedures. Different gene expression systems based on the xylose controlled promoter P(xylA) and various phage RNA polymerase (T7, SP6, K1E) driven systems enable B. megaterium to produce up to 1.25g of recombinant protein per liter. Biomass concentrations of up to 80g/l can be achieved by high cell density cultivations in bioreactors. Gene knockouts and gene replacements in B. megaterium are possible via an optimized gene disruption system. For a safe application in industry, sporulation and protease-deficient as well as UV-sensitive mutants are available. With the help of the recently published B. megaterium genome sequence, it is possible to characterize bottle necks in the protein production process via systems biology approaches based on transcriptome, proteome, metabolome, and fluxome data. The bioinformatical platform (Megabac, http://www.megabac.tu-bs.de) integrates obtained theoretical and experimental data. PMID:21943898

  7. Enhanced saccharification of biologically pretreated wheat straw for ethanol production.

    Science.gov (United States)

    López-Abelairas, M; Lu-Chau, T A; Lema, J M

    2013-02-01

    The biological pretreatment of lignocellulosic biomass with white-rot fungi for the production of bioethanol is an alternative to the most used physico-chemical processes. After biological treatment, a solid composed of cellulose, hemicellulose, and lignin-this latter is with a composition lower than that found in the initial substrate-is obtained. On the contrary, after applying physico-chemical methods, most of the hemicellulose fraction is solubilized, while cellulose and lignin fractions remain in the solid. The optimization of the combination of cellulases and hemicellulases required to saccharify wheat straw pretreated with the white-rot fungus Irpex lacteus was carried out in this work. The application of the optimal dosage made possible the increase of the sugar yield from 33 to 54 %, and at the same time the reduction of the quantity of enzymatic mixture in 40 %, with respect to the initial dosage. The application of a pre-hydrolysis step with xylanases was also studied. PMID:23306886

  8. Production and biological activities of yellow pigments from Monascus fungi.

    Science.gov (United States)

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed. PMID:27357404

  9. LOT SIZING WITH NON-ZERO SETUP TIMES FOR REWORK

    Institute of Scientific and Technical Information of China (English)

    Rasoul HAJI; Alireza HAJI; Mehdi SAJADIFAR; Saeed ZOLFAGHARI

    2008-01-01

    In this paper we consider a single machine multi-product lot scheduling problem in which defective items are produced in any production run of each product. In each cycle after the normal production of each product the machine is setup for the rework of the defectives of the same product and then the rework process starts. We assume that the setup time for the normal production process as well as the rework process is non-zero. Further we consider the waiting time cost of defectives for rework. This paper has two objectives. The first objective is to obtain the economic batch quantity (EBQ) for a single product. The second objective is to extend the result of the first objective to the multi-product case. Adopting the common cycle scheduling policy we obtain optimal batch sizes for each product such that the total cost of the system per unit time is minimized.

  10. Synthetic Biology in the FDA Realm: Toward Productive Oversight Assessment.

    Science.gov (United States)

    Fatehi, Leili; Hall, Ralph F

    2015-01-01

    Synthetic biology (SB) is expected to create tremendous opportunities in a wide range of areas, including in foods, therapeutics, and diagnostics subject to regulatory oversight by the United States Food and Drug Administration. At the same time, there is substantial basis for concern about the uncertainties of accurately assessing the human health and environmental risks of such SB products. As such, SB is the latest in a string of emerging technologies that is the subject of calls for new approaches to regulation and oversight that involve "thinking ahead" to anticipate governance challenges upstream of technological development and adopting oversight mechanisms that are both adaptive to new information about risks and reflexive to performance data and feedback on policy outcomes over time. These new approaches constitute a marked departure from the status quo, and their development and implementation will require considerable time, resources, and reallocation of responsibilities. Furthermore, in order to develop an appropriate oversight response, adaptive or otherwise, there is first a need to identify the specific types and natures of applications, uncertainties, and regulatory issues that are likely to pose oversight challenges. This article presents our vision for a Productive Oversight Assessment (POA) approach in which the abilities and deficits of an oversight system are evaluated with the aim of enabling productive decisions (i.e., timely, feasible, effective for achieving desired policy outcomes) about oversight while also building capacity to facilitate broader governance efforts. The value ofPOA is two-fold. First, it will advance the development of a generalizable approach for making productive planning and decision-making about the oversight of any given new technology that presents challenges and uncertainties for any given oversight system whose policy goals are implicated by that technology. Second, this effort can enhance the very processes

  11. 77 FR 3780 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-01-25

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Vaccines and Related Biological..., Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics...

  12. 75 FR 59935 - Investigational New Drug Safety Reporting Requirements for Human Drug and Biological Products and...

    Science.gov (United States)

    2010-09-29

    ... ``E2A Clinical Safety Data Management: Definitions and Standards for Expedited Reporting'' (60 FR 11284... 0910-AG13 Investigational New Drug Safety Reporting Requirements for Human Drug and Biological Products... safety reporting for human biological products: Laura Rich, Center for Biologics Evaluation and...

  13. Biological conversion of pyrolytic products to ethanol and lipids

    Science.gov (United States)

    Lian, Jieni

    Pyrolysis is a promising technology that can convert up to 75 % of lignocellulosic biomass into crude bio-oil. However, due to the complex chemical compositions of bio-oil, its further refining into fuels and high value chemicals faces great challenges. This dissertation research proposed new technologies for biological conversion of pyrolytic products derived from cellulose and hemicellulose, such as anhydrosugars and carbolic acids to fuels and chemicals. First, the pyrolytic anhydrosugars (chiefly levoglucosan (LG)) were hydrolysed into glucose followed by neutralization, detoxification and fermentation to produce ethanol by ethanogenetic yeast and lipids by oleaginous yeasts. Second, a novel process for the conversion of C1-C4 pyrolytic products to lipid with oleaginous yeasts was investigated. Third, oleaginous yeasts that can directly convert LG to lipids were studied and a recombined yeast with LG kinase was constructed for the direct convertion of LG into lipids. This allowed a reduction of existing process for LG fermentation from four steps into two steps and eliminated the need for acids and bases as well as the disposal of chemicals. The development of genetic modified organisms with LG kinase opens a promising avenue for the direct LG fermentation to produce a wide range of fuels and chemicals. The simplification of LG utilization process would enhance the economic viability of this technology.

  14. Competency development in antibody production in cancer cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Park, M.S.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The main objective of this project was to develop a rapid recombinant antibody production technology. To achieve the objective, the authors employed (1) production of recombinant antigens that are important for cell cycle regulation and DNA repair, (2) immunization and specific selection of antibody-producing lymphocytes using the flow cytometry and magnetic bead capturing procedure, (3) construction of single chain antibody library, (4) development of recombinant vectors that target, express, and regulate the expression of intracellular antibodies, and (5) specific inhibition of tumor cell growth in tissue culture. The authors have accomplished (1) optimization of a selection procedure to isolate antigen-specific lymphocytes, (2) optimization of the construction of a single-chain antibody library, and (3) development of a new antibody expression vector for intracellular immunization. The future direction of this research is to continue to test the potential use of the intracellular immunization procedure as a tool to study functions of biological molecules and as an immuno-cancer therapy procedure to inhibit the growth of cancer cells.

  15. Biological hydrogen production measured in batch anaerobic respirometers.

    Science.gov (United States)

    Logan, Bruce E; Oh, Sang-Eun; Kim, In S; Van Ginkel, Steven

    2002-06-01

    The biological production of hydrogen from the fermentation of different substrates was examined in batch tests using heat-shocked mixed cultures with two techniques: an intermittent pressure release method (Owen method) and a continuous gas release method using a bubble measurement device (respirometric method). Under otherwise identical conditions, the respirometric method resulted in the production of 43% more hydrogen gas from glucose than the Owen method. The lower conversion of glucose to hydrogen using the Owen protocol may have been produced by repression of hydrogenase activity from high partial pressures in the gastight bottles, but this could not be proven using a thermodynamic/rate inhibition analysis. In the respirometric method, total pressure in the headspace never exceeded ambient pressure, and hydrogen typically composed as much as 62% of the headspace gas. High conversion efficiencies were consistently obtained with heat-shocked soils taken at different times and those stored for up to a month. Hydrogen gas composition was consistently in the range of 60-64% for glucose-grown cultures during logarithmic growth but declined in stationary cultures. Overall, hydrogen conversion efficiencies for glucose cultures were 23% based on the assumption of a maximum of 4 mol of hydrogen/ mol of glucose. Hydrogen conversion efficiencies were similar for sucrose (23%) and somewhat lower for molasses (15%) but were much lower for lactate (0.50%) and cellulose (0.075%).

  16. A RELATIVE BENEFIT ALGORITHM FOR BASIC ECONOMIC LOT SIZE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    马辉民; 张子刚; 周少甫; 黄卫来

    2001-01-01

    The paper develops an algorithm that solves economic lot size problem in O(n2) time in the Wagner-Whitin case. The algorithm is based on the standard dynamic programming approach which requires the computation of the maximal relative benefit for some possible subplans of the production plan. In this algorithm the authors have studied the forward property and decomposition properties which can make computation easy. The proposed algorithm appears to perform quite reasonably for practical application.

  17. 7 CFR 56.37 - Lot marking of officially identified shell eggs.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Lot marking of officially identified shell eggs. 56.37... (CONTINUED) VOLUNTARY GRADING OF SHELL EGGS Grading of Shell Eggs Identifying and Marking Products § 56.37 Lot marking of officially identified shell eggs. Shell eggs identified with the grademarks shown...

  18. 40 CFR 52.128 - Rule for unpaved parking lots, unpaved roads and vacant lots.

    Science.gov (United States)

    2010-07-01

    ... appropriate conversion factor to obtain percent cover. For example, if vegetation was counted 20 times within... Rule 310 covering all unpaved parking lots, unpaved roads and vacant lots. This section does not apply... from piledrivers. (7) Lot—A parcel of land identified on a final or parcel map recorded in the...

  19. La vallée du Lot en Lot-et-Garonne : inventaire topographique

    Directory of Open Access Journals (Sweden)

    Hélène Mousset

    2012-04-01

    Full Text Available La remise en navigation du Lot est à l’origine du projet d’inventaire du patrimoine de la vallée dans sa partie lot-et-garonnaise1. L’ampleur du territoire - 12 cantons riverains2 - et de la perspective historique - du Moyen Age à nos jours - imposaient d’emblée rigueur et objectifs clairs : méthode raisonnée de l’inventaire topographique pour un bilan homogène du patrimoine, fondée sur une enquête systématique du paysage bâti et du mobilier public, sans a priori. Le premier résultat est un catalogue patrimonial sous forme de bases de données3. Mais ce corpus documentaire hétérogène et touffu n’est pas une addition de monographies : il peut et doit être interrogé et exploité comme un ensemble apportant une connaissance renouvelée du territoire. Sans prétendre réaliser une synthèse de la totalité des données pour l’ensemble de la vallée4, les exemples qui vont suivre illustreront la façon dont le travail d’inventaire apporte réponses et nouvelles interrogations, concernant notamment l’occupation du sol, les paysages et l’architecture de cette partie de l’Agenais. Recherche de l’empreinte d’une époque déterminée, examen de la permanence des paysages bâtis sur la longue durée et observation des traces de mutations et flexions historiques, sont un triple niveau d’analyse attendu dans le cadre d’un inventaire sur un vaste territoire rural.The plan to reintroduce navigation on the Lot in the part of the river that flows through the Lot-et-Garonne department was at the origins of a survey of the heritage along the course of the river. The geographical scope of the survey was large (12 cantons along the river and the period covered by the heritage extends from the Middle ages up to the present day. The variety of buildings to be covered required a rigorous approach and clear objectives. The method of the topographical inventory was tailored to the production of a homogenous heritage audit

  20. Lots of Red Meat, an Earlier Grave?

    Science.gov (United States)

    ... spokesman for the Academy of Nutrition and Dietetics. Plant proteins tend to be healthier, containing lots of fiber, antioxidants, B-vitamins, omega- ... percent plant protein. Study participants tended to get plant proteins ... in participants with a healthy lifestyle. And the study was not designed to ...

  1. Modeling Industrial Lot Sizing Problems: A Review

    NARCIS (Netherlands)

    R.F. Jans (Raf); Z. Degraeve (Zeger)

    2005-01-01

    textabstractIn this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing

  2. Capacitated dynamic lot sizing with capacity acquisition

    DEFF Research Database (Denmark)

    Li, Hongyan; Meissner, Joern

    2011-01-01

    . For this situation, we develop a model which combines the complexity of time-varying demand and cost functions and of scale economies arising from dynamic lot-sizing costs with the purchase cost of capacity. We propose a heuristic algorithm that runs in polynomial time to determine a good capacity level...

  3. 7 CFR 989.104 - Lot.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Lot. 989.104 Section 989.104 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... means: (1) For in-line inspection (i.e., where samples are drawn from a flow of raisins prior...

  4. 7 CFR 29.2280 - Lot.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Lot. 29.2280 Section 29.2280 Agriculture Regulations... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO... pile, basket, bulk, or more than one bale, case, hogshead, tierce, package, or other definite...

  5. 9 CFR 105.3 - Notices re: worthless, contaminated, dangerous, or harmful biological products.

    Science.gov (United States)

    2010-01-01

    ..., dangerous, or harmful biological products. 105.3 Section 105.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS SUSPENSION, REVOCATION, OR TERMINATION OF BIOLOGICAL LICENSES OR PERMITS §...

  6. Integrated anaerobic/aerobic biological treatment for intensive swine production.

    Science.gov (United States)

    Bortone, Giuseppe

    2009-11-01

    Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment. PMID:19135363

  7. Análise econômica da produção de carne de cordeiros sob dois sistemas de terminação: pastagem e confinamento Economical analysis of meat lamb production under two finishing systems: pasture and dry-lot

    Directory of Open Access Journals (Sweden)

    Francisco de Assis Fonseca de Macedo

    2000-08-01

    Full Text Available Foram analisados os custos de produção e o retorno econômico do quilograma de carcaça, de 13 cordeiros Corriedale (C, 14 Bergamácia x Corriedale (BC e 9 Hampshire Down x Corriedale (HC, em pastagem de Cynodon dactylon e 10 C, 11 BC e 8 HC em confinamento, recebendo ração completa, com 18% de proteína bruta e 72% de nutrientes digestíveis totais, idênticos ao da pastagem. A lotação utilizada foi de 20 cordeiros/ha. No confinamento, considerou-se 0,5m²/cordeiro. A despesa total para terminação dos cordeiros na pastagem foi R$2.382,40 e para terminação em confinamento foi R$2.918,40, com as respectivas receitas de R$3.686,90 e R$4.498,03. O custo de produção do kg de carcaça dos cordeiros confinados (R$2,30, em valor absoluto foi superior, porém, muito próximo dos terminados em pastagem (R$2,26. O retomo econômico para os cordeiros terminados em confinamento (R$1.579,63 foi superior ao dos terminados em pastagem (R$1.304,50, mostrando uma diferença em valores absolutos de R$275,13 a favor dos cordeiros confinados. A produção de carne de cordeiro em confinamento é economicamente viável.This experiment was carried out to study costs and economical return of carcass lamb (kg production in two finishing systems. The systems compared were, a grazing system based on "coast cross" pasture (Cynodon dactylon with the following genotypes: 13 Corriedale (C. 14 Bergamacia x Corriedale (BC, and 9 Hampshire Down x Corriedale {HC}, and a dry-lot system with the following crossbreeds : 10 C, 11 BC, and 8 HC. In the dry-lot system the lambs were fed with a total mix ration, containing the some leveis ofcrude protein and total digestible nutrients of the pasture. The stock rate in the pasture was 20 lambs/ha. In the dry-lot was used an área of 0.5m²/lamb and the lambs were housed in a suspenso and siated floor facitity. The total costs in the graang system was US$ 1985.33, and in the dry-lot system was US$ 2432.00. The total incarne for

  8. Biological evaluation of recombinant human erythropoietin in pharmaceutical products

    Directory of Open Access Journals (Sweden)

    Ramos A.S.

    2003-01-01

    Full Text Available The potencies of mammalian cell-derived recombinant human erythropoietin pharmaceutical preparations, from a total of five manufacturers, were assessed by in vivo bioassay using standardized protocols. Eight-week-old normocythemic mice received a single subcutaneous injection followed by blood sampling 96 h later or multiple daily injections with blood sampling 24 h after the last injection. Reticulocyte counting by microscopic examination was employed as the end-point using the brilliant cresyl blue or selective hemolysis methods, together with automated flow cytometry. Different injection schedules were investigated and dose-response curves for the European Pharmacopoeia Biological Reference Preparation of erythropoietin were compared. Manual and automated methods of reticulocyte counting were correlated with respect to assay validity and precision. Using 8 mice per treatment group, intra-assay precision determined for all of the assays in the study showed coefficients of variation of 12.1-28.4% for the brilliant cresyl blue method, 14.1-30.8% for the selective hemolysis method and 8.5-19.7% for the flow cytometry method. Applying the single injection protocol, a combination of at least two independent assays was required to achieve the precision potency and confidence limits indicated by the manufacturers, while the multiple daily injection protocol yielded the same acceptable results within a single assay. Although the latter protocol using flow cytometry for reticulocyte counting gave more precise and reproducible results (intra-assay coefficients of variation: 5.9-14.2%, the well-characterized manual methods provide equally valid alternatives for the quality control of recombinant human erythropoietin therapeutic products.

  9. 9 CFR 103.2 - Disposition of animals administered experimental biological products or live organisms.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disposition of animals administered experimental biological products or live organisms. 103.2 Section 103.2 Animals and Animal Products ANIMAL AND... PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF...

  10. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  11. [Radiotherapy Techniques and Radiation Pneumonitis: A Lot To A Little Or A Little To A Lot?].

    Science.gov (United States)

    Yu, Bingqi; Wang, Jin; Xu, Yujin; Su, Feng; Shan, Guoping; Chen, Ming

    2015-12-01

    Radiotherapy is one of the main treatment for patients with lung cancer. Three-dimensional conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) are widely used to deliver radiation. Here, we focus on the correlations between dose distribution in lung and radiation pneumonitis according to the analysis about radiotherapy for lung cancer: A lot to a little or a little to a lot, which is the main cause of radiation pneumonitis? PMID:26706952

  12. Natural product synthesis at the interface of chemistry and biology

    OpenAIRE

    Hong, Jiyong

    2014-01-01

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in ...

  13. Hydrological structure and biological productivity of the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, U.D.; Muraleedharan, P.M.

    Hydrological structure analyses of regions in the tropical Atlantic Ocean have consistently revealed the existence of a typical tropical structure characterized by a nitrate-depleted mixed layer above the thermocline. The important biological...

  14. 78 FR 20663 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-05

    ... DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Vaccines and Related...

  15. 75 FR 17929 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-08

    ... will review and discuss available data regarding the unexpected finding of DNA originating from porcine... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory...

  16. 76 FR 3639 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-20

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... selection of strains to be included in the influenza virus vaccine for the 2011-2012 influenza season....

  17. 75 FR 2876 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-01-19

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... selection of strains to be included in the influenza virus vaccine for the 2010 - 2011 influenza season....

  18. 78 FR 5465 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-01-25

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... strains to be included in the influenza virus vaccine for the 2013- 2014 influenza season. FDA intends...

  19. MODEL JOINT ECONOMIC LOT SIZE PADA KASUS PEMASOK-PEMBELI DENGAN PERMINTAAN PROBABILISTIK

    Directory of Open Access Journals (Sweden)

    Wakhid Ahmad Jauhari

    2009-01-01

    Full Text Available In this paper we consider single vendor single buyer integrated inventory model with probabilistic demand and equal delivery lot size. The model contributes to the current literature by relaxing the deterministic demand assumption which has been used for almost all integrated inventory models. The objective is to minimize expected total costs incurred by the vendor and the buyer. We develop effective iterative procedures for finding the optimal solution. Numerical examples are used to illustrate the benefit of integration. A sensitivity analysis is performed to explore the effect of key parameters on delivery lot size, safety factor, production lot size factor and the expected total cost. The results of the numerical examples indicate that our models can achieve a significant amount of savings. Finally, we compare the results of our proposed model with a simulation model. Abstract in Bahasa Indonesia: Pada penelitian ini akan dikembangkan model gabungan pemasok-pembeli dengan permintaan probabilistik dan ukuran pengiriman sama. Pada model setiap lot pemesanan akan dikirim dalam beberapa lot pengiriman dan pemasok akan memproduksi barang dalam ukuran batch produksi yang merupakan kelipatan integer dari lot pengiriman. Dikembangkan pula suatu algoritma untuk menyelesaikan model matematis yang telah dibuat. Selain itu, pengaruh perubahan parameter terhadap perilaku model diteliti dengan analisis sensitivitas terhadap beberapa parameter kunci, seperti ukuran lot, stok pengaman dan total biaya persediaan. Pada penelitian ini juga dibuat model simulasi untuk melihat performansi model matematis pada kondisi nyata. Kata kunci: model gabungan, permintaan probabilistik, lot pengiriman, supply chain

  20. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological...... control of stored-product pests and has considered a number of existing and potential fields for application of biological control. Three situations were identified where biological control would be a valuable component of integrated pest management: (1) Empty room treatment against stored-product mites......, beetles and moths; (2) Preventative treatment of bulk commodities against weevils (Sitophilus spp.) and storage mites; (3) Preventative application of egg-parasitoids against moths in packaged products. Development of methods for biological control and of mass production of natural enemies...

  1. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup;

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  2. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.

    Science.gov (United States)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup; Weber, Tilmann

    2016-08-27

    Covering: 2012 to 2016Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites. The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production. PMID:27072921

  3. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  4. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. PMID:26479184

  5. 9 CFR 101.3 - Biological products and related terms.

    Science.gov (United States)

    2010-01-01

    ... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS..., the harvest date shall be the date blood or tissues are collected for production or the date cultures..., representing a whole culture or a concentrate thereof, with or without the unevaluated growth products,...

  6. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    OpenAIRE

    Forough Nazarpour; Dzulkefly Kuang Abdullah; Norhafizah Abdullah; Nazila Motedayen; Reza Zamiri

    2013-01-01

    Rubberwood (Hevea brasiliensis), a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm) and pretreatment time on the biological pretreatmen...

  7. Sex Roles: A Product of Socialization or a Biological Heritage.

    Science.gov (United States)

    Shaha, Steven H.

    This paper reviews selected studies of aggression in males and females and concludes that physiological, emotional and behavioral differences exist between the sexes. Primate studies, conducted by Harlow, are employed as evidence that sex differences in aggression are primarily biological and not primarily cultural phenomena. It is further…

  8. Kinetic study of biological hydrogen production by anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, R. [Annamalai Univ., Chidambaram (India). Dept. of Chemical Engineering; Karunanithi, T. [Annamalai Univ., Tamilnadu (India). Dept. of Chemical Engineering

    2009-07-01

    This study examined the kinetics of batch biohydrogen production from glucose. Clostridium pasteurianum was used to produce biohydrogen by dark anaerobic fermentation. The initial substrate concentration, initial pH and temperature were optimized for biohydrogen production. The maximum production of hydrogen under optimum conditions was found to be 5.376 l/l. The kinetic parameters were determined for the optimized medium and conditions in the batch reactor. The by product was expressed as total acidic equivalent. This presentation discussed the logistic equation that was used to model the growth of the organism and described how the kinetic parameters were calculated. The Leudeking piret kinetic model was used to express the hydrogen production and substrate use because it combines both growth associated and non associated contributions. It was concluded the production of biohydrogen can be predicted well using the logistic model for cell growth kinetics and the logistic incorporated Leudeking Piret model for product and substrate utilization kinetics.

  9. Importance of systems biology in engineering microbes for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  10. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions.

    Science.gov (United States)

    Rodríguez Couto, Susana

    2008-07-01

    Biological wastes contain several reusable substances of high value such as soluble sugars and fibre. Direct disposal of such wastes to soil or landfill causes serious environmental problems. Thus, the development of potential value-added processes for these wastes is highly attractive. These biological wastes can be used as support-substrates in solid-state fermentation (SSF) to produce industrially relevant metabolites with great economical advantage. In addition, it is an environmentally friendly method of waste management. This paper reviews the reutilization of biological wastes for the production of value-added products using the SSF technique. PMID:18543242

  11. Biology Needs a Modern Assessment System for Professional Productivity

    Science.gov (United States)

    McDade, Lucinda A.; Maddison, David R.; Guralnick, Robert; Piwowar, Heather A.; Jameson, Mary Liz; Helgen, Kristofer M.; Herendeen, Patrick S.; Hill, Andrew; Vis, Morgan L.

    2011-01-01

    Stimulated in large part by the advent of the Internet, research productivity in many academic disciplines has changed dramatically over the last two decades. However, the assessment system that governs professional success has not kept pace, creating a mismatch between modes of scholarly productivity and academic assessment criteria. In this…

  12. A comprehensive mathematical model for hybrid flexible flowshop lot streaming problem

    Directory of Open Access Journals (Sweden)

    Fantahun M. Defersha

    2011-04-01

    Full Text Available Lot streaming is a technique of splitting production lots into smaller sublots in a multi-stage manufacturing systems so that operations of a given lot can be overlapped. This technique can reduce manufacturing makespan and is an effective tool for time-based manufacturing strategy. Several research articles appeared in literature to solve this problem and most of these studies are limited to pure flowshop environments where there is only a single machine in each stage. On the other hand, because of the applicability of hybrid flowshops in different manufacturing settings, the scheduling of these types of shops is also extensively studied by several authors. However, the issue of lot streaming in hybrid flowshop environment is not well studied. In this paper, we aim to initiate research in bridging the gap between the research efforts in flowshop lot streaming and hybrid flowshop scheduling. We present a comprehensive mathematical model for scheduling flexible hybrid flowshop with lot streaming. Numerical example demonstrated that lot streaming can result in larger makespan reduction in hybrid flowshop where there is a limited research than in pure flowshop where research is abundant.

  13. 9 CFR 113.29 - Determination of moisture content in desiccated biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Determination of moisture content in desiccated biological products. 113.29 Section 113.29 Animals and Animal Products ANIMAL AND PLANT HEALTH... VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.29 Determination of moisture content in...

  14. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Strucko, Tomas; Eriksen, Jens Christian; Nielsen, J.;

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo...... biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of vanillin produced in this S. cerevisiae strain is insufficient for commercial production and improvements...... need to be done. We have introduced the genes necessary for vanillin production in an identical manner in two different yeast strains S288c and CEN.PK,where comprehensive – omics datasets are available, hence, allowing vanillin production in the two strain backgrounds to be evaluated and compared...

  15. Hydrodynamics-Biology Coupling for Algae Culture and Biofuel Production

    OpenAIRE

    Bernard, Olivier; Sainte-Marie, Jacques; Sialve, Bruno; Steyer, Jean-Philippe

    2013-01-01

    Biofuel production from microalgae represents an acute optimization problem for industry. There is a wide range of parameters that must be taken into account in the development of this technology. Here, mathematical modelling has a vital role to play. The potential of microalgae as a source of biofuel and as a technological solution for CO2 fixation is the subject of intense academic and industrial research. Large-scale production of microalgae has potential for biofuel applications owing to ...

  16. Strategies for optimizing algal biology for enhanced biomass production

    Directory of Open Access Journals (Sweden)

    Amanda N. Barry

    2015-02-01

    Full Text Available One of the more environmentally sustainable ways to produce high energy density (oils feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source and subsequent carbon capture and sequestration (BECCS has also been proposed in the Intergovernmental Panel on Climate Change Report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass. To increase aerial carbon capture rates and biomass productivity it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to two-fold increases in biomass productivity.

  17. Some aspects of biological production and fishery resources of the EEZ of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhargava, R.M.S.

    Region and season-wise biological production in the Exclusive Economic Zone (EEZ) of India has been computed from the data of more than twenty years available at the Indian National Oceanographic Data Centre of the National Institute of Oceanography...

  18. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄. PMID:26838340

  19. Biological pretreatment and ethanol production from olive cake

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Baroi, George Nabin;

    2010-01-01

    Olive oil is one of the major Mediterranean products, whose nutritional and economic importance is well-known. However the extraction of olive oil yields a highly contaminating residue that causes serious environmental concerns in the olive oil producing countries. The olive cake (OC) coming out...... of the three-phase olive oil production process could be used as low price feedstock for lignocellulosic ethanol production due to its high concentration in carbohydrates. However, the binding of the carbohydrates with lignin may significantly hinder the necessary enzymatic hydrolysis of the polymeric sugars...... before ethanol fermentation. Treatment with three white rot fungi, Phaneroachaete chrysosporium, Ceriporiopsis subvermispora and Ceriolopsis polyzona has been applied on olive cake in order to investigate the potential for performing delignification and thus enhancing the efficiency of the subsequent...

  20. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  1. Recent advances in biological production of sugar alcohols.

    Science.gov (United States)

    Park, Yong-Cheol; Oh, Eun Joong; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2016-02-01

    Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. In contrast to early studies that aimed to produce sugar alcohols with microorganisms capable of producing sugar alcohols naturally, recent studies have focused on rational engineering of metabolic pathways to improve yield and productivity as well as to use inexpensive and abundant substrates. Metabolic engineering strategies to utilize inexpensive substrates, alleviate catabolite repression, reduce byproduct formation, and manipulate redox balances led to enhanced production of sugar alcohols.

  2. Recent advances in biological production of sugar alcohols.

    Science.gov (United States)

    Park, Yong-Cheol; Oh, Eun Joong; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2016-02-01

    Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. In contrast to early studies that aimed to produce sugar alcohols with microorganisms capable of producing sugar alcohols naturally, recent studies have focused on rational engineering of metabolic pathways to improve yield and productivity as well as to use inexpensive and abundant substrates. Metabolic engineering strategies to utilize inexpensive substrates, alleviate catabolite repression, reduce byproduct formation, and manipulate redox balances led to enhanced production of sugar alcohols. PMID:26723007

  3. Xenicane Natural Products: Biological Activity and Total Synthesis.

    Science.gov (United States)

    Betschart, Leo; Altmann, Karl-Heinz

    2015-01-01

    The xenicanes are a large class of mostly bicyclic marine diterpenoids featuring a cyclononane ring as a common structural denominator. After a brief introduction into the characteristic structural features of xenicanes and some biogenetic considerations, the major focus of this review will be on the various biological activities that have been reported for xenicanes and on efforts towards the total synthesis of these structures. Several xenicanes have been shown to be potent antiproliferative agents in vitro, but activities have also been reported in relation to inflammatory processes. However, so far, data on the possible in vivo activity of xenicanes are lacking. The major challenge in the total synthesis of xenicanes is the construction of the nine-membered ring. Different strategies have been pursued to establish this crucial substructure, including Grob fragmentation, ring-closing olefin metathesis, or Suzuki cross coupling as the enabling transformations. PMID:26429717

  4. 9 CFR 113.3 - Sampling of biological products.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS... bacterial vaccines; (iii) Two samples of Coccidiosis Vaccine; (iv) Eighteen samples of Rabies Vaccine... as follows: (1) Ten samples of Bacterial Master Seeds. (2) Thirteen samples of viral Master Seeds...

  5. Regeneration of nutrients and biological productivity in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Somasundar, K.; Qasim, S.Z.

    contribute to the biomass production, reforming of plate ice during late summer (towards the end of February) may result in a shift of zooplanktonic organisms towards the north. Other oceanic regions north of 61° S Fig. 9 shows the distribution of chlorophyll...

  6. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    International Nuclear Information System (INIS)

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  7. Biological production of monoethanolamine by engineered Pseudomonas putida S12

    NARCIS (Netherlands)

    Foti, M.J.; Médici, R.; Ruijssenaars, H.J.

    2013-01-01

    Pseudomonas putida S12 was engineered for the production of monoethanolamine (MEA) from glucose via the decarboxylation of the central metabolite l-serine, which is catalyzed by the enzyme l-serine decarboxylase (SDC).The host was first evaluated for its tolerance towards MEA as well as its endogeno

  8. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-07-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  9. BIOLOGICAL FEATURES AND PRODUCTIVITY OF BLACK-AND-WHITE CATTLE

    Directory of Open Access Journals (Sweden)

    Kochueva Y. V.

    2015-02-01

    Full Text Available The behavior, interior and milk yield of the mature Black-and-White cows with various productivity levels, as well as etology of the replacement heifers are researched. The superiority of the high milk yielding cows for the lying duration and eating feed and water is revealed. Reduced variability of vital behavioral actions of animals is found. In addition, high yielding cows has been lower variability in all feeding acts. It was noted that high yielding animals exceeded equal age cows by the level of most interior factors. The differences were significant on the content of hemoglobin, vitamin E, and especially on the content of iron. Positive correlations between some interior design indicators is found. The analysis of lifetime productivity during our research found that high milk yielding cows had highest yields on the first lactation and kept the same level in the next lactations with insignificant variations. The lower productivity animals reached maximal yields on the third lactation with the followed downward trend. Differences between groups in lifetime productivity during research amounted to 16 992 kg. The significant superiority of the heifers with high grown intensity above equal age animals for the duration of feed and water eating, physiological functions and lying. The analysis of variation coefficient is confirmed the observed regularities.

  10. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  11. Powder Lot Variations: A Case Study with Varget - Hodgdon Extreme

    CERN Document Server

    Courtney, Elya

    2015-01-01

    Small arms propellant distributor Hodgdon claims that rifle powders in its Extreme line have small velocity variations with both temperature changes and lot number. This paper reports on the variations in average velocity of four different lots of Hodgdon Extreme Varget tested in two .223 Remington loads. Compared to the lot with the slowest average velocity, the other three lots of powder had higher average velocities ranging from 23.4 ft/s faster up to 45.6 ft/s faster with a 69 grain Nosler Custom Competition bullet and from 7.9 ft/s faster to 15.3 ft/s with the 53 grain Hornady VMAX. The mean velocity differences between lots are slightly correlated between the two loads with a correlation coefficient of 0.54. This correlation suggests that factors other than lot to lot variations contribute significantly to the measured velocity variations. Unlike the much larger lot to lot variations that were reported previously for H4831, lot to lot variations in velocity for Varget seem consistent with Hodgdon's mark...

  12. A lot to look forward to

    CERN Multimedia

    2013-01-01

    CERN moves from momentous year to momentous year, and although 2013 will be very different for us than 2012, there is still a lot to look forward to. As I write, the proton-lead run is just getting under way, giving the LHC experiments a new kind of data to investigate. But the run will be short, and our main activity this year will be the start of the LHC’s first long shutdown.   This is the first year I can remember in which all of CERN’s accelerators will be off. The reason is that there is much to be done: the older machines need maintenance, and the LHC has to be prepared for higher energy running. That involves opening up the interconnections between each of the machine’s 1,695 main magnet cryostats, consolidating all of the 10,170 splices carrying current to the main dipole and quadrupole windings, and a range of other work to improve the machine. The CERN accelerator complex will start to come back to life in 2014, and it’s fair to say that when...

  13. Production of biological reagents for radioimmunoassay second antibody

    International Nuclear Information System (INIS)

    The experimental production of second antibody to be used in hormonal assays, in which the first antibody is raised in rabbits, is described. Four sheep were immunized with the rabbit immunoglobulin prepared at IPEN-CNEN laboratory. Their antisera were evaluated by the human thyrotropin radioimmunoassay employing materials provided by the National Hormone and Pituitary Program (USA), in comparison with a reference antiserum of known quality, produced in goat by the Radioassay Systems Laboratories - RSL (USA). From the fourth booster injection the animals developed antiserum with titer similar to that exhibited by the commercial product, even presenting higher values. These antisera are now being examinated for the optimal conditions of precipitation before be packed for future use and distribution. (author)

  14. Biological Impact of Bioactive Glasses and Their Dissolution Products.

    Science.gov (United States)

    Hoppe, Alexander; Boccaccini, Aldo R

    2015-01-01

    For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. PMID:26201273

  15. La vallée du Lot en Lot-et-Garonne : inventaire topographique

    OpenAIRE

    Hélène Mousset; Alain Beschi

    2012-01-01

    La remise en navigation du Lot est à l’origine du projet d’inventaire du patrimoine de la vallée dans sa partie lot-et-garonnaise1. L’ampleur du territoire - 12 cantons riverains2 - et de la perspective historique - du Moyen Age à nos jours - imposaient d’emblée rigueur et objectifs clairs : méthode raisonnée de l’inventaire topographique pour un bilan homogène du patrimoine, fondée sur une enquête systématique du paysage bâti et du mobilier public, sans a priori. Le premier résultat est un c...

  16. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    OpenAIRE

    Strucko, Tomas; Eriksen, Carsten; Nielsen, J.; Mortensen, Uffe Hasbro

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of...

  17. Strategies for optimizing algal biology for enhanced biomass production

    OpenAIRE

    Barry, Amanda N.; Starkenburg, Shawn R.; Richard eSayre

    2015-01-01

    One of the more environmentally sustainable ways to produce high energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration (BECCS) has also been proposed in the Intergovernmental Panel on Climate Change Report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosyn...

  18. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    OpenAIRE

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic c...

  19. Selection for milk production from a lactation biology viewpoint.

    Science.gov (United States)

    Akers, R M

    2000-05-01

    The success of selection for increased milk production in dairy cows is apparent. Certainly, many herds now have average production levels that would have only been associated with the best producers in the herd 30 yr ago. There are, of course, many reasons for this success. Among these are improvements in genetic selection methods and associated use of artificial insemination, better fulfillment of nutritional needs and diet formulation, and careful attention to mastitis control and milking management. Development of new management tools (i.e., bovine somatotropin, improved crops, estrus detection devices, estrus synchronization, monitoring of individual animal performance, and disease prevention) should not be forgotten. Although many aspects of a dairy operation determine overall performance and profitability, the focus of this paper is the udder. Information indicates that both the structure and function of the bovine mammary gland have been directly impacted by long-term selection for increased milk production but improved functionality may have been more important. This review also considered studies that attempt to develop techniques and measurements for possible selection of genetically superior animals including measurement of circulating hormones and direct assay of mammary tissue function. PMID:10821592

  20. BIOLOGICAL AND PRODUCTIVE RESOURCES OF LACTATING COWS AT DENITRIFICATION

    Directory of Open Access Journals (Sweden)

    Kokaeva M. G.

    2015-09-01

    Full Text Available The article presents the results obtained in the process of two scientific-practical experiments carried jut on two milk cows (Shvitskay breed aimed at the antioxidants detoxication properties and mould inhibitor revealing. This factor is actual in the Republic of North Ossetia-Alania as the intensive technologies of the fodder crops cultivation using the nitrate fertilizers are widely applied in the region leading to the excess nitrates and nitrite penetration into the animals’ organism. During the first experiment, the antioxidants of epophen and vitamin C were added into the ration of the lactating cows with the subtoxic dosage of nitrates both separately and in complex. The complex feeding proved to increase the milk productivity, the fat mass and protein mass in milk while reducing the fodder expenditure per product unit. Beside, the lactating cows revealed the digestive and intermediate exchange betterment and the reduction of nitrates and nitrites level in blood. The second experiment helped to study Khadoks antioxidant and mould inhibitor called Mold-Zap efficiency use for the nitrates and aflotoxicin B1 detoxication. The researches showed that the complex admixtures of the said preparations introduction into the rations of the animals increased the milk productivity, fat and protein content and reduced aflatoxineM1 content. The cows activated the digestive and intermediate exchange, accompanied with the nitrates and nitrites level reduction in the organism

  1. Biological fouling of ethylene production water recycling system

    Energy Technology Data Exchange (ETDEWEB)

    Kurdish, I.K.; Khenkina, L.M.; Pavlenko, N.I.

    A study was made of biotic factors determining the intensity of biological overgrowth of ethylene as well as the distribution of sulfate-reducing bacteria in the system. The total quantity of microorganisms was determined by counting on membrane filters. The content of heterotrophic aerobic and anaerobic microorganisms was determined by inoculating specimens on meat-peptone agar and wort agar. The resistance of the microflora in the water supply system to high temperatures was studied by exposure of the specimens to various temperatures for one hour. The results indicated presence of large quantities of a number of biogenous substances in the water, including compounds of phosphorus and carbon. Large numbers of both aerobic and anaerobic microorganisms were present, consuming the oxygen absorbed by the water in the cooling tower, creating favorable conditions for development of both aerobic and anaerobic microorganisms. The sulfate-reducing bacteria present caused accumulation of hydrogen sulfide in the system, increasing corrosion. One possible means of controlling the fouling organisms might be to heat the water. Heating to 60C for sixty minutes significantly reduces the microorganism population, while 70C results in almost total elimination. 8 references, 4 figures.

  2. Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules

    Science.gov (United States)

    Hu, Bo; Chen, Shulin

    In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active

  3. Production, Secretion and Biological Activity of Bacillus cereus Enterotoxins

    Directory of Open Access Journals (Sweden)

    Sonia Senesi

    2010-06-01

    Full Text Available Bacillus cereus behaves as an opportunistic pathogen frequently causing gastrointestinal diseases, and it is increasingly recognized to be responsible for severe local or systemic infections. Pathogenicity of B. cereus mainly relies on the secretion of a wide array of toxins and enzymes and also on the ability to undergo swarming differentiation in response to surface-sensing. In this report, the pathogenicity exerted by B. cereus toxins is described with particular attention to the regulatory mechanisms of production and secretion of HBL, Nhe and CytK enterotoxins.

  4. Multi-Level Lot Sizing Problem with Deterioration Inventory and Disposal Costs

    Directory of Open Access Journals (Sweden)

    Mahmood Vahdani

    2016-02-01

    Full Text Available Abstract In this paper, the multi-level lot sizing problem which is used to determine the production lot sizes in industrial environments, has been investigated. A new problem which we refer to it as “multi-level lot sizing problem with deterioration inventory and disposal costs” is introduced. The aim of multi-level lot sizing problem is to determine the production quantity of production periods for each product in each level, such the the total cost containing production costs, holding costs and setup costs to be minimized. In the proposed model, the deterioration property of the inventory is assumed. Furthermore, disposal costs that represents the costs for removing the perishable inventories from the storage environments, is combined with the generalized model in order to make the model closer to reality. The aim of the new problem, are determining the production quantity of production periods for each product in each level, and determining the periods in which the perishable inventory to be disposed. Therefore, the disposal costs is considered in the objective function of the problem. Two meta heuristic algorithms consist of genetic algorithm and simulated annealing algorithm is used to solve the proposed problem. In order to compare the performance of the proposed algorithms with existing methods in the literature, instance problems are created, and the results are analyzed.

  5. Application of Olefin Cross-Metathesis to the Synthesis of Biologically Active Natural Products

    OpenAIRE

    Prunet, Joëlle

    2005-01-01

    An overview of the use of olefin cross-metathesis in the synthesis of biologically active natural products is presented. The diverse examples are organized according to the outcome of the olefin constructed by the cross-metathesis reaction: this olefin can be either present in the final product, reduced, engaged in other transformations, or involved in tandem processes.

  6. 78 FR 65904 - Permanent Discontinuance or Interruption in Manufacturing of Certain Drug or Biological Products

    Science.gov (United States)

    2013-11-04

    ...(D) Immune Globulin and Hepatitis B Immune Globulin; Coagulation Factor VIIa (Recombinant); and..., or mitigate shortages of these products. b. Vaccines. We are proposing to apply section 506C of the FD&C Act to all biological products, including vaccines. Under section 506C(i)(3)(B) of the FD&C...

  7. Natural product diversity and its role in chemical biology and drug discovery

    OpenAIRE

    Hong, Jiyong

    2011-01-01

    Through the natural selection process, natural products possess a unique and vast chemical diversity and have been evolved for optimal interactions with biological macromolecules. Owing to their diversity, target affinity, and specificity, natural products have demonstrated enormous potential as modulators of biomolecular function, been an essential source for drug discovery, and provided design principles for combinatorial library development.

  8. 9 CFR 113.51 - Requirements for primary cells used for production of biologics.

    Science.gov (United States)

    2010-01-01

    ... of the final pool of harvested material or samples of each subculture of cells used to prepare the... completed product or samples of the final pool of harvested material or samples of each subculture of cells... cells or each subculture of primary cells used to prepare a biological product shall be shown free...

  9. Supplier selection and order lot sizing using dynamic programming

    Directory of Open Access Journals (Sweden)

    M. M. Moqri

    2011-04-01

    Full Text Available In this paper, we consider a multi-period integrated supplier selection and order lot sizing problem where a single buyer plans to purchase a single product in multiple periods from several qualified suppliers who are able to provide the required product with the needed quality in a timely manner. Product price and order cost differs among different suppliers. Buyer’s demand for the product is deterministic and varies for different time periods. The problem is to determine how much product from which supplier must be ordered in each period such that buyer’s demand is satisfied without violating some side constraints. We have developed a mathematical programming model to deal with this problem, and proposed a forward dynamic programming approach to obtain optimal solutions in reasonable amount of time even for large scale problems. Finally, a numerical example is conducted in which solutions obtained from the proposed dynamic programming algorithm is compared with solutions from the branch-and-bound algorithm. Through the numerical example we have shown the efficiency of our algorithm.

  10. Assessing gull abundance and food availability in urban parking lots

    Science.gov (United States)

    Clark, Daniel E.; Whitney, Jillian J.; MacKenzie, Kenneth G.; Koenen, Kiana K. G.; DeStefano, Stephen

    2015-01-01

    Feeding birds is a common activity throughout the world; yet, little is known about the extent of feeding gulls in urban areas. We monitored 8 parking lots in central Massachusetts, USA, during the fall and winter of 2011 to 2013 in 4 monitoring sessions to document the number of gulls present, the frequency of human–gull feeding interactions, and the effectiveness of signage and direct interaction in reducing human-provisioned food. Parking lots were divided between “education” and “no-education” lots. In education lots, we erected signs about problems caused when people feed birds and also asked people to stop feeding birds. We did not erect signs or ask people to stop feeding birds at no-education lots. We spent >1,200 hours in parking lots (range = 136 to 200 hours per parking lot), and gulls were counted every 20 minutes. We conducted >4,000 counts, and ring-billed gulls (Lorus delawarensis) accounted for 98% of all gulls. Our educational efforts were minimally effective. There were fewer feedings (P = 0.01) in education lots during one of the monitoring sessions but significantly more gulls (P = 0.008) in education lots during 2 monitoring sessions. While there was a marginal decrease (P = 0.055) in the number of feedings after no-education lots were transformed into education lots, there was no difference in gull numbers in these lots (P = 0.16). Education appears to have some influence in reducing the number of people feeding gulls, but our efforts were not able to reduce the number of human feeders or the amount of food enough to influence the number of gulls using parking lots.

  11. Development of biological functional material and product from Nelumbo nucifera

    International Nuclear Information System (INIS)

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient

  12. Development of biological functional material and product from Nelumbo nucifera

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-15

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient.

  13. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  14. Discrete artificial bee colony algorithm for lot-streaming flowshop with total flowtime minimization

    Science.gov (United States)

    Sang, Hongyan; Gao, Liang; Pan, Quanke

    2012-09-01

    Unlike a traditional flowshop problem where a job is assumed to be indivisible, in the lot-streaming flowshop problem, a job is allowed to overlap its operations between successive machines by splitting it into a number of smaller sub-lots and moving the completed portion of the sub-lots to downstream machine. In this way, the production is accelerated. This paper presents a discrete artificial bee colony (DABC) algorithm for a lot-streaming flowshop scheduling problem with total flowtime criterion. Unlike the basic ABC algorithm, the proposed DABC algorithm represents a solution as a discrete job permutation. An efficient initialization scheme based on the extended Nawaz-Enscore-Ham heuristic is utilized to produce an initial population with a certain level of quality and diversity. Employed and onlooker bees generate new solutions in their neighborhood, whereas scout bees generate new solutions by performing insert operator and swap operator to the best solution found so far. Moreover, a simple but effective local search is embedded in the algorithm to enhance local exploitation capability. A comparative experiment is carried out with the existing discrete particle swarm optimization, hybrid genetic algorithm, threshold accepting, simulated annealing and ant colony optimization algorithms based on a total of 160 randomly generated instances. The experimental results show that the proposed DABC algorithm is quite effective for the lot-streaming flowshop with total flowtime criterion in terms of searching quality, robustness and effectiveness. This research provides the references to the optimization research on lot-streaming flowshop.

  15. Pre-sowing treatment for breaking dormancy in Acer velutinum Boiss.seed lots

    Institute of Scientific and Technical Information of China (English)

    Mostafa Farhadi; Mulualem Tigabu; Alireza Ghasemi Arian; Mehdi Sharifani; Abolfazl Daneshvar; Per Christer Oden

    2013-01-01

    Acer velutinum Boiss is a valuable tree species native to Iran,and its seeds possess physiological dormancy that hampers seedling production in the nursery for large-scale reforestation efforts.The aim of this study was to determine the optimal dormancy breaking treatments for A.velutinum seeds.We conducted a factorial experiment involving six seed lots collected along an elevation gradient from 300 to 1800 m at 300 m interval and four cold-moist stratification periods (0,4,8 and 16 weeks) at 4℃ and 70% relative humidity.The result shows that the germination of cold-moist stratified seeds was significantly (p < 0.0001)higher than the control for all seed lots.The highest germination capacity was recorded after 16 weeks of cold-moist stratification for all seed lots (68%-88% depending on the seed lot) except those collected from mid altitude sites (600 and 900 m) that germinated equally well (≥ 75%) after 4-and 8-week of clod-moist stratification compared to the other seed lots.The mean germination time was significantly shorter (12 to 19 days,depending on the seed lot) for seeds stratified for 16 weeks than for untreated seeds.It can be concluded that:(1) cold-moist stratification for 16 weeks is the best pre-sowing treatment for breaking dormancy in A.velutinum seeds; and (2) seeds should be collected from mid altitude sites (600 and 900 m) to get more than 80% germination within 15 days,and these seed lots even required shorter cold-moist stratification period (eight weeks) than other seed lots.

  16. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  17. Phototrophic pigment production with microalgae: biological constraints and opportunities.

    Science.gov (United States)

    Mulders, Kim J M; Lamers, Packo P; Martens, Dirk E; Wijffels, René H

    2014-04-01

    There is increasing interest in naturally produced colorants, and microalgae represent a bio-technologically interesting source due to their wide range of colored pigments, including chlorophylls (green), carotenoids (red, orange and yellow), and phycobiliproteins (red and blue). However, the concentration of these pigments, under optimal growth conditions, is often too low to make microalgal-based pigment production economically feasible. In some Chlorophyta (green algae), specific process conditions such as oversaturating light intensities or a high salt concentration induce the overproduction of secondary carotenoids (β-carotene in Dunaliella salina (Dunal) Teodoresco and astaxanthin in Haematococcus pluvialis (Flotow)). Overproduction of all other pigments (including lutein, fucoxanthin, and phycocyanin) requires modification in gene expression or enzyme activity, most likely combined with the creation of storage space outside of the photosystems. The success of such modification strategies depends on an adequate understanding of the metabolic pathways and the functional roles of all the pigments involved. In this review, the distribution of commercially interesting pigments across the most common microalgal groups, the roles of these pigments in vivo and their biosynthesis routes are reviewed, and constraints and opportunities for overproduction of both primary and secondary pigments are presented.

  18. Models of risk assessments for biologicals or related products in the European Union.

    Science.gov (United States)

    Moos, M

    1995-12-01

    In the context of veterinary biologicals, environmental risk assessment means the evaluation of the risk to human health and the environment (which includes plants and animals) connected with the release of such products. The following categories or types of veterinary biologicals can be distinguished: non-genetically modified organisms (non-GMOs) (inactivated/live) GMOs (inactivated/live) carrier products related products (e.g. non-specific "inducers'). Suitable models used in risk assessment for these products should aim to identify all possible adverse effects. A good working model should lead, at least, to a qualitative judgement on the environmental risk of the biological product (e.g. negligible, low, medium, severe, unacceptable). Quantifiable outcomes are rare; therefore, the producer of a biological product and the European control authorities should accept only models which are based on testable points and which are relevant to the type of product and its instructions for use. In view of animal welfare aspects, models working without animals should be preferred. In recent years, some of these methods have been integrated into safety tests described in European Union Directives and in monographs of the European Pharmacopoeia. By reviewing vaccine/registration problems (e.g. Aujeszky's disease live vaccine for pigs, and vaccinia-vectored rabies vaccine), several models used in risk assessment are demonstrated and discussed. PMID:8639943

  19. Organic Production Systems: What the Biological Cell Can Teach Us About Manufacturing

    OpenAIRE

    Lieven Demeester; Knut Eichler; Christoph H. Loch

    2004-01-01

    Biological cells run complicated and sophisticated production systems. The study of the cell's production technology provides us with insights that are potentially useful in industrial manufacturing. When comparing cell metabolism with manufacturing techniques in industry, we find some striking commonalities, but also some important differences. Like today's well-run factories, the cell operates a very lean production system, assures quality at the source, and uses component commonality to si...

  20. The use of knowledge-based Genetic Algorithm for starting time optimisation in a lot-bucket MRP

    Science.gov (United States)

    Ridwan, Muhammad; Purnomo, Andi

    2016-01-01

    In production planning, Material Requirement Planning (MRP) is usually developed based on time-bucket system, a period in the MRP is representing the time and usually weekly. MRP has been successfully implemented in Make To Stock (MTS) manufacturing, where production activity must be started before customer demand is received. However, to be implemented successfully in Make To Order (MTO) manufacturing, a modification is required on the conventional MRP in order to make it in line with the real situation. In MTO manufacturing, delivery schedule to the customers is defined strictly and must be fulfilled in order to increase customer satisfaction. On the other hand, company prefers to keep constant number of workers, hence production lot size should be constant as well. Since a bucket in conventional MRP system is representing time and usually weekly, hence, strict delivery schedule could not be accommodated. Fortunately, there is a modified time-bucket MRP system, called as lot-bucket MRP system that proposed by Casimir in 1999. In the lot-bucket MRP system, a bucket is representing a lot, and the lot size is preferably constant. The time to finish every lot could be varying depends on due date of lot. Starting time of a lot must be determined so that every lot has reasonable production time. So far there is no formal method to determine optimum starting time in the lot-bucket MRP system. Trial and error process usually used for it but some time, it causes several lots have very short production time and the lot-bucket MRP would be infeasible to be executed. This paper presents the use of Genetic Algorithm (GA) for optimisation of starting time in a lot-bucket MRP system. Even though GA is well known as powerful searching algorithm, however, improvement is still required in order to increase possibility of GA in finding optimum solution in shorter time. A knowledge-based system has been embedded in the proposed GA as the improvement effort, and it is proven that the

  1. Manure and wastewater management systems for open lot dairy operations

    OpenAIRE

    Sweeten, J. M.; Wolfe, M L

    1994-01-01

    Dairy industry expansion using open lot designs has impacted water quality and groundwater usage in parts of Central Texas. Field research was conducted at commercial dairy farms in Erath County, Texas, to develop improved design criteria for storage, treatment, and land application systems for open lot dairies. Water use and wastewater from milking parlors were monitored along with runoff from open lots. Water use for milk sanitation and manure removal averaged 148 L per cow per day. Two-sta...

  2. Occurrence, pathways and implications of biological production of reactive oxygen species in natural waters

    Science.gov (United States)

    Zhang, T.; Hansel, C. M.; Voelker, B. M.; Lamborg, C. H.

    2014-12-01

    Reactive oxygen species (ROS), such as superoxide (O2-) and hydrogen peroxide (H2O2) play a critical role in the redox cycling of both toxic (e.g., Hg) and nutrient (e.g., Fe) metals. Despite the discovery of extracellular ROS production in various microbial cultures, including fungi, algae and bacteria, photo-dependent processes are generally considered as the predominant source of ROS in natural waters. Here we show that biological production of ROS is ubiquitous and occurs at a significant rate in freshwater and brackish water environments. Water samples were collected from three freshwater and one brackish water ponds in Cape Cod, Massachusetts, USA, periodically from 2012 to 2014. Production of O2- and H2O2 were measured in dark incubations of natural water using a chemiluminescent and a colorimetric probe, respectively. Rates of biological ROS production were obtained by comparing unfiltered with 0.2-μm filtered samples. The role of biological activity in ROS production was confirmed by the cessation of ROS production upon addition of formaldehyde. In surface water, production rates of O2- ranged from undetectable to 96.0 ± 30.0 nmol L-1 h-1, and production rates of H2O2 varied between 9.9 ± 1.3 nmol L-1 h-1 and 145.6 ± 11.2 nmol L-1 h-1. The maximum production rates of both ROS were observed in mid-summer 2013, which coincides with peak biological activity. ROS production in the water from aphotic zone was greater than in the water from photic zone. Thus, non-light dependent biological processes are likely the major contributors to ROS production in this system. Moreover, O2- production appeared to be enhanced by NADH and inhibited by proteinase-K, suggesting the possible involvement of NADH oxidoreductases in this process. The potential role of different microbial communities in ROS production, and the implications of biological ROS production for mercury speciation will also be discussed.

  3. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  4. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe......-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic...

  5. Recent progress in synthetic biology for microbial production of C3-C10 alcohols

    Directory of Open Access Journals (Sweden)

    Edna N. Lamsen

    2012-06-01

    Full Text Available The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.

  6. Studies on production and biological potential of prodigiosin by Serratia marcescens.

    Science.gov (United States)

    Suryawanshi, Rahul K; Patil, Chandrashekhar D; Borase, Hemant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-07-01

    Efficacy of Serratia marcescens for pigment production and biological activity was investigated. Natural substrates like sweet potato, mahua flower extract (Madhuca latifolia L.), and sesam at different concentrations were taken. As a carbon source microorganism favored potato powder was followed by sesam and mannitol, and as nitrogen source casein hydrolysate was followed by yeast and malt extract. The effect of inorganic salts on pigment production was also studied. At final optimized composition of suitable carbon, nitrogen source, and trace materials and at suitable physiological conditions, prodigiosin production was 4.8 g L(-1). The isolated pigment showed antimicrobial activity against different pathogenic bacteria and fungi. Extracted pigment was characterized by spectroscopy, Fourier transform infrared (FTIR), and thin layer chromatography (TLC) which confirm production of biological compound prodigiosin. This study suggests that use of sweet potato powder and casein can be a potential alternative bioresource for commercial production of pigment prodigiosin. PMID:24781979

  7. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal?

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Nuncio, M.; Kumar, A.; Sardessai, S.; DeSouza, S.N.; Gauns, M.; Ramaiah, N.; Madhupratap, M.

    -1 Are eddies nature?s trigger to enhance biological productivity in the Bay of Bengal? S. Prasanna Kumar, M. Nuncio, Jayu Narvekar, Ajoy Kumar1, S. Sardesai, S.N. de Souza, Mangesh Gauns, N. Ramaiah and M. Madhupratap National Institute of Oceanography... of nutrient supply to the oligotrophic upper ocean waters such as wind- driven mixing, upwelling etc. cannot account for this. In this paper we explore the role of eddies in enhancing the biological productivity in the Bay of Bengal. 2. Data and Analysis...

  8. Bioinformatics for the synthetic biology of natural products: integrating across the Design-Build-Test cycle.

    Science.gov (United States)

    Carbonell, Pablo; Currin, Andrew; Jervis, Adrian J; Rattray, Nicholas J W; Swainston, Neil; Yan, Cunyu; Takano, Eriko; Breitling, Rainer

    2016-08-27

    Covering: 2000 to 2016Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted. PMID:27185383

  9. Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle

    Science.gov (United States)

    Currin, Andrew; Jervis, Adrian J.; Rattray, Nicholas J. W.; Swainston, Neil; Yan, Cunyu; Breitling, Rainer

    2016-01-01

    Covering: 2000 to 2016 Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted. PMID:27185383

  10. Time bucket size and lot-splitting approach

    NARCIS (Netherlands)

    Riezebos, Jan

    2002-01-01

    We address the problem of lot splitting for various time bucket lengths in MRP systems. Two approaches for lot splitting can be applied: either use the same (equal) or a variable number of subbatches. Equal subbatching strategies have logistical and computational advantages. Literature states that v

  11. 7 CFR 800.98 - Weighing grain in combined lots.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Weighing grain in combined lots. 800.98 Section 800.98... Provisions and Procedures § 800.98 Weighing grain in combined lots. (a) General. The weighing of bulk or sacked grain loaded aboard, or being loaded aboard, or unloaded from two or more carriers as a...

  12. 7 CFR 33.7 - Less than carload lot.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Less than carload lot. 33.7 Section 33.7 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... ISSUED UNDER AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.7 Less than carload lot. Less...

  13. New approaches to estimation of peat deposits for production of biologically active compounds

    Science.gov (United States)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  14. Compound Activity Mapping: Integrating Chemical and Biological Profiling for the Functional Annotation of Natural Product Libraries

    OpenAIRE

    Kurita, Kenji Long

    2015-01-01

    Natural products research has had a significant impact on human-health and our understanding of the natural world as a pillar of pharmacognosy, organic chemistry, ecology, and chemical biology. But while this science has yielded countless discoveries such as penicillin, taxol, and artimesinin and will continue to improve quality of life around the world, the idea that natural products is a panacea of chemical diversity has been challenged by problems including the endless rediscovery of known...

  15. What controls biological productivity in coastal upwelling systems? Insights from a comparative modeling study

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2011-01-01

    The magnitude of the biological productivity in Eastern Boundary Upwelling Systems (EBUS) is traditionally viewed as directly reflecting the upwelling intensity. Yet, different EBUS show different sensitivities of productivity to upwelling-favorable winds (Carr and Kearns, 2003). Here, using a comparative modeling study of the California Current System (California CS) and Canary Current System (Canary CS), we show how physical and environmental factors, such as light, temperature and c...

  16. REGULATION OF PRODUCTION PERFORMANCE OF CHICORY PLANTS BY FOLIAR APPLICATION OF BIOLOGICALLY ACTIVE SUBSTANCES

    OpenAIRE

    MAREK KOVÁR; IVAN ČERNÝ

    2012-01-01

    In this study were evaluated both the growth and yield potentials of three chicory (Cichorium intybus var. sativum) varieties ('Fredonia Nova', 'Oesia' a 'Maurane') growing in natural agro-ecological conditions from 2006 to 2008. Regulation of the crop productivity by foliar application of biologically active substances (Atonik, Polybor 150, and Biafit Gold) was also studied. Evaluation of growth-production performance of chicory was realized as: leaf area index (LAI), photosynthetic potentia...

  17. 7 CFR 52.38 - Sampling plans and procedures for determining lot compliance.

    Science.gov (United States)

    2010-01-01

    ... MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS... sample size, the lot fails the requirement. (c) If in the conduct of on-line in-plant inspection of...

  18. Variation in quality of individual seeds within a seed lot of soybean (Glycine max (L.) Merrill).

    NARCIS (Netherlands)

    Illipronti, R.A.

    1997-01-01

    The research described in this thesis aimed at increasing insight into the sources of variation in quality attributes of individual seeds within a soybean seed lot, into the relations between physical attributes and performance of seeds in seed tests and in controlled seed production conditions, and

  19. 78 FR 58311 - Complex Issues in Developing Drug and Biological Products for Rare Diseases; Public Workshop...

    Science.gov (United States)

    2013-09-23

    ... for Rare Diseases; Public Workshop; Request for Comments AGENCY: Food and Drug Administration, HHS... for Rare Diseases.'' The purpose of the public workshop is twofold: To discuss complex issues in clinical trials for developing drug and biological products (``drugs'') for rare diseases,...

  20. Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Nuncio, M.; Ramaiah, N.; Sardesai, S.; Narvekar, J.; Fernandes, V.; Paul, J.T.

    but also enhanced the nutrient concentrations. This in turn increased the biological productivity of the Bay to 1½-2 times. In addition, the subsurface chlorophyll maximum (SCM), which is generally located between 40 and 70 m in fall and 60 and 90 m...

  1. Process for the continuous biological production of lipids, hydrocarbons or mixtures thereof

    NARCIS (Netherlands)

    Van der Wielen, L.A.M.; Heijnen, J.J.

    2010-01-01

    The present invention is directed to a process for the continuous biological production of lipids, hydrocarbons, hydrocarbon like material or mixtures thereof by conversion of a suitable substrate using micro-organisms, in which process the said substrate is continuously, anaerobically fermented to

  2. Do biological medicinal products pose a risk to the environment?: a current view on ecopharmacovigilance.

    Science.gov (United States)

    Kühler, Thomas C; Andersson, Mikael; Carlin, Gunnar; Johnsson, Ann; Akerblom, Lennart

    2009-01-01

    The occurrence of active pharmaceutical substances in the environment is of growing concern. The vast majority of the compounds in question are of low molecular weight, intended for oral use and designed to tolerate, for example, the digestive enzymes in the upper alimentary tract, the harsh milieus found in the acidic stomach, or the microbe rich intestine. Accordingly, these xenobiotic compounds may, due to their inherent biological activity, constitute a risk to the environment. Biological medicinal products, for example recombinant human insulin or monoclonal antibodies, however, are different. They are primarily made up of oligomers or polymers of amino acids, sugars or nucleotides and are thus readily metabolized. They are therefore generally not considered to pose any risk to the environment. Certain classes of biological medicinal products, however, are associated with specific safety issues. Genetically modified organisms as vectors in vaccines or in gene therapy products have attracted much attention in this regard. Issues include the degree of attenuation of the live recombinant vaccine, replication restrictions of the vaccine vector, alteration of the host and tissue tropism of the vector, the possibility of reversion to virulence, and risk to the ecosystem. In this review we discuss the fate and the potential environmental impact of biological medicinal products following clinical use from an ecopharmacovigilance point of view, and review relevant policy documents and regulatory statements. PMID:19810773

  3. 9 CFR 113.52 - Requirements for cell lines used for production of biologics.

    Science.gov (United States)

    2010-01-01

    ... of origin of the MCS may be used if approved by APHIS. (c) The MCS and either each subculture of... sources of cells in the batch. (d) The MCS and either each subculture used to prepare a biological product... not be used. If bacteria or fungi are found in a subculture, the subculture shall not be used. (e)...

  4. Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2012-01-01

    The main objective of this study was to use the fermentability test to investigate the feasibility of applying various dilute acids in the pretreatment of barley straw for biological hydrogen production. At a fixed acid loading of 1% (w/w dry matter) 28-32% of barley straw was converted to soluble m

  5. 21 CFR 310.4 - Biologics; products subject to license control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Biologics; products subject to license control. 310.4 Section 310.4 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... to license control. (a) If a drug has an approved license under section 351 of the Public...

  6. Heuristic procedures for a stochastic lot-sizing problem in make-to-order manufacturing

    OpenAIRE

    Dellaert, Nico; Melo, M. T.

    1995-01-01

    textabstractWe consider a single item, uncapacitated stochastic lot-sizing problem motivated by a Dutch make-to-order company producing steel pipes. Since no finished goods inventory is kept, a delivery date is fixed upon arrival of each order. The objective is to determine the optimal size of production lots so that delivery dates are met as closely as possible with a limited number of set-ups. Orders that are not satisfied on time are backordered and a penalty cost is incurred in those case...

  7. [Special considerations for the regulation of biological medicinal products in individualised medicine. More than stratified medicine].

    Science.gov (United States)

    Müller-Berghaus, J; Volkers, P; Scherer, J; Cichutek, K

    2013-11-01

    The term individualised medicine, also called personalised medicine, is commonly used as an equivalent to stratified medicine. However, this is erroneous since quite often it is forgotten that especially biological medicinal products have other aspects of individualization that go beyond mere stratification. The principles of stratified medicine have been applied for biological medicinal products for many years. A historical example is diphtheria antitoxin made from horse serum, while current examples are transfusion of red blood cells and the administration of factor VIII in haemophilia A. The stratifying aspects of these medicinal products are given by the following considerations: diphtheria antitoxin is only administered after a diagnosis of diphtheria and not in other forms of tonsillitis, red blood cells should only be transfused once blood group compatibility as been established and factor VIII replacement is only administered in haemophilia A as opposed to other acquired or hereditary disease of the coagulation system. The peculiarities of biological medicinal products, in particular the inherent variability of the drug, are especially important for autologous cellular medicinal products. In addition to the expected variability of the biological source material there is interindividual variability of patients as cell donors, which make definition of specifications and determination of criteria for pharmaceutical quality and potency tests difficult. Therapy with modified autologous cells, a common and important application of advanced therapy medicinal products, is exemplary for the special considerations that must be made when evaluating pharmaceutical quality, mode of action and toxicological properties of the biological medicine. The clinical investigation of advanced therapy medicinal products with the intent of demonstrating safety and efficacy is particularly challenging because of the complexity of therapy, which often involves invasive interventions

  8. [Special considerations for the regulation of biological medicinal products in individualised medicine. More than stratified medicine].

    Science.gov (United States)

    Müller-Berghaus, J; Volkers, P; Scherer, J; Cichutek, K

    2013-11-01

    The term individualised medicine, also called personalised medicine, is commonly used as an equivalent to stratified medicine. However, this is erroneous since quite often it is forgotten that especially biological medicinal products have other aspects of individualization that go beyond mere stratification. The principles of stratified medicine have been applied for biological medicinal products for many years. A historical example is diphtheria antitoxin made from horse serum, while current examples are transfusion of red blood cells and the administration of factor VIII in haemophilia A. The stratifying aspects of these medicinal products are given by the following considerations: diphtheria antitoxin is only administered after a diagnosis of diphtheria and not in other forms of tonsillitis, red blood cells should only be transfused once blood group compatibility as been established and factor VIII replacement is only administered in haemophilia A as opposed to other acquired or hereditary disease of the coagulation system. The peculiarities of biological medicinal products, in particular the inherent variability of the drug, are especially important for autologous cellular medicinal products. In addition to the expected variability of the biological source material there is interindividual variability of patients as cell donors, which make definition of specifications and determination of criteria for pharmaceutical quality and potency tests difficult. Therapy with modified autologous cells, a common and important application of advanced therapy medicinal products, is exemplary for the special considerations that must be made when evaluating pharmaceutical quality, mode of action and toxicological properties of the biological medicine. The clinical investigation of advanced therapy medicinal products with the intent of demonstrating safety and efficacy is particularly challenging because of the complexity of therapy, which often involves invasive interventions

  9. A Study of Joint Lot Size Model for Product Manufacturing and Material Ordering in the Supply Chain with Supply-Hub%嵌入Supply—hub的供应链联合生产与订货批量模型研究

    Institute of Scientific and Technical Information of China (English)

    桂华明

    2012-01-01

    Considering the supply pattern based on supply-hub under the Just-in-Time environment, the cost functions of manufacturer, supply-hub and supplier are established. Two supply chain lot size models for product manufacturing and material ordering are proposed under different decision modes: one is proposed under decentralized model based on Stackelberg model, the other is proposed under centralized model of the integrated supply chain. The results show that the manufacturer's production lot size changes disorderly under decentralized model, but it increases along with the increase of the distance between supplier and supply-hub under centralized model. Compared to decentralized model, the total cost of manufacturer increases but the total cost of both suppher and the whole supply chain decreases under centralized model. Through appropriately reducing material transfer price, the whole supply chain may achieve Pareto optimization since the manufacturer and supplier can obtain a win-win solution, and the farther distance between supplier and supply-hub, the more benefit the whole supply chain can get by coordination.%考虑JIT环境下基于Supply—hub的供货模式,建立了制造商、Supply—hub和供应商的平均成本函数.提出了供应链分散决策和集中决策情形下的制造商和供应商的生产与订货批量模型。结果表明,制造商的生产批量在供应链分散决策时变化无规律。而在供应链集中决策时随着供应商与Supply—hub之间距离的增加而增加:相比分散决策.供应链集中决策时制造商的成本增加而供应商的成本减少.而整个供应链的总成本减少,供应商可以通过转移支付让制造商和供应商均受益.从而实现整个供应链的帕累托优化.随着供应商与Supply—hub之间的距离增加,协调能够让供应链得到更多的收益。

  10. Optimal Method of Capacitated Lot-Sizing Planning in Manufacturing Systems

    Institute of Scientific and Technical Information of China (English)

    CHANG Jian-feng; ZHONG Yue-xian; HAN Zan-dong

    2006-01-01

    This paper analyzes the capacitated lot-sizing problem considering an individual machine's production capacity using a two-layer hierarchical method to minimize the sum of the dynamic inventory cost and the overtime penalty cost.The genetic algorithm,the parameter linear programming method,and a heuristic method were used in the developed methOd.The method uses the genetic operator to define the lot-sizing matrix(the first layer),linear prograrnming to determine each machine's schedule(the second layer)according to the lot-sizing matrix,and the heuristic method to verify the feasibility ofthe solutions by adiusting them to meet the constraint requirements.The scheduling of machines in a press shop demonstrates the effectiveness Of the algorithm.The result shows that the algorithm is convergent.

  11. Statistical and regulatory considerations in assessments of interchangeability of biological drug products.

    Science.gov (United States)

    Tóthfalusi, Lászlo; Endrényi, László; Chow, Shein-Chung

    2014-05-01

    When the patent of a brand-name, marketed drug expires, new, generic products are usually offered. Small-molecule generic and originator drug products are expected to be chemically identical. Their pharmaceutical similarity can be typically assessed by simple regulatory criteria such as the expectation that the 90% confidence interval for the ratio of geometric means of some pharmacokinetic parameters be between 0.80 and 1.25. When such criteria are satisfied, the drug products are generally considered to exhibit therapeutic equivalence. They are then usually interchanged freely within individual patients. Biological drugs are complex proteins, for instance, because of their large size, intricate structure, sensitivity to environmental conditions, difficult manufacturing procedures, and the possibility of immunogenicity. Generic and brand-name biologic products can be expected to show only similarity but not identity in their various features and clinical effects. Consequently, the determination of biosimilarity is also a complicated process which involves assessment of the totality of the evidence for the close similarity of the two products. Moreover, even when biosimilarity has been established, it may not be assumed that the two biosimilar products can be automatically substituted by pharmacists. This generally requires additional, careful considerations. Without declaring interchangeability, a new product could be prescribed, i.e. it is prescribable. However, two products can be automatically substituted only if they are interchangeable. Interchangeability is a statistical term and it means that products can be used in any order in the same patient without considering the treatment history. The concepts of interchangeability and prescribability have been widely discussed in the past but only in relation to small molecule generics. In this paper we apply these concepts to biosimilars and we discuss: definitions of prescribability and interchangeability and

  12. Immobilized Biofilm in Thermophilic Biohydrogen Production using Synthetic versus Biological Materials

    Directory of Open Access Journals (Sweden)

    Jaruwan Wongthanate

    2015-02-01

    Full Text Available Biohydrogen production was studied from the vermicelli processing wastewater using synthetic and biological materials as immobilizing substrate employing a mixed culture in a batch reactor operated at the initial pH 6.0 and thermophilic condition (55 ± 1ºC. Maximum cumulative hydrogen production (1,210 mL H2/L wastewater was observed at 5% (v/v addition of ring-shaped synthetic material, which was the ring-shaped hydrophobic acrylic. Regarding 5% (v/v addition of synthetic and biological materials, the maximum cumulative hydrogen production using immobilizing synthetic material of ball-shaped hydrophobic polyethylene (HBPE (1,256.5 mL H2/L wastewater was a two-fold increase of cumulative hydrogen production when compared to its production using immobilizing biological material of rope-shaped hydrophilic ramie (609.8 mL H2/L wastewater. SEM observation of immobilized biofilm on a ball-shaped HBPE or a rope-shaped hydrophilic ramie was the rod shape and gathered into group.

  13. Apple biological and physiological disorders in the orchard and in postharvest according to production system

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Martins

    2013-03-01

    Full Text Available The study aimed to evaluate the incidence of biological and physiological disorders in the field and postharvested apples cvs. Gala, Fuji and Catarina grown in four production systems: conventional, organic transition, integrated and organic. Apples were evaluated for damages related to biological and physiological disorders in the orchard and after harvest. The greatest damages were attributed to pests, especially Anastrepha fraterculus in the organic system and Grapholita molesta in the organic transition. Apples produced in organic orchards had higher damage levels caused by postharvest physiological disorders than those grown in other production systems. For apples becoming from organic orchards most of the damage was due to lenticels breakdown and degeneration ('Gala', and bitter pit ('Fuji' and 'Catarina'. The incidence of postharvest rot was not influenced by apple production system.

  14. What controls biological productivity in coastal upwelling systems? Insights from a comparative modeling study

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-06-01

    Full Text Available The magnitude of the biological productivity in Eastern Boundary Upwelling Systems (EBUS is traditionally viewed as directly reflecting the upwelling intensity. Yet, different EBUS show different sensitivities of productivity to upwelling-favorable winds (Carr and Kearns, 2003. Here, using a comparative modeling study of the California Current System (California CS and Canary Current System (Canary CS, we show how physical and environmental factors, such as light, temperature and cross-shore circulation modulate the response of biological productivity to upwelling strength. To this end, we made a series of eddy-resolving simulations of the California CS and Canary CS using the Regional Ocean Modeling System (ROMS, coupled to a nitrogen based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD ecosystem model. We find the nutrient content of the euphotic zone to be 20 % smaller in the Canary CS relative to the California CS. Yet, the biological productivity is 50 % smaller in the latter. This is due to: (1 a faster nutrient-replete growth in the Canary CS relative to the California CS, related to a more favorable light and temperature conditions in the Canary CS, and (2 the longer nearshore water residence times in the Canary CS which lead to larger buildup of biomass in the upwelling zone, thereby enhancing the productivity. The longer residence times in the Canary CS appear to be associated with the wider continental shelves and the lower eddy activity characterizing this upwelling system. This results in a weaker offshore export of nutrients and organic matter, thereby increasing local nutrient recycling and enhancing the coupling between new and export production in the Northwest African system. Our results suggest that climate change induced perturbations such as upwelling favorable wind intensification might lead to contrasting biological responses in the California CS and the Canary CS, with major implications for the biogeochemical cycles

  15. Quality Costs (IRR Impact on Lot Size Considering Work in Process Inventory

    Directory of Open Access Journals (Sweden)

    Misbah Ullaha

    2014-06-01

    Full Text Available Economic order quantity model and production quantity model assume that production processes are error free. However, variations exist in processes which result in imperfection particularly in high machining environments. Processes variations result in nonconformities that increase quality costs in the form of rework, rejects and quality control techniques implementations to ensure quality product delivery. This paper is an attempt towards development of inventory model which incorporate inspection, rework, and rejection (IRR quality costs in optimum lot size calculation focusing work in process inventory. Mathematical model is derived for optimum lot size based on minimum average cost function using analytical approach. This new developed model (GTOQIRR assume an imperfect production environment. Numerical examples are used to visualize the significant effect of quality cost in the proposed model in comparison to the previously developed models. The proposed model is highly recommendable for quality based high machining manufacturing environments considering work in process inventories.

  16. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  17. Parking Lots at Little Bighorn Battlefield National Monument, Montana

    Data.gov (United States)

    National Park Service, Department of the Interior — This is a vector polygon file showing the parking lots at Little Bighorn Battlefield National Monument (LIBI). The coordinates for this dataset were collected using...

  18. Antioxidant activity and nutritional value of Mentha spicata L.: a comparison between reserve and standard lots

    OpenAIRE

    Rita, Íngride; Heleno, Sandrina A.; Martins, Natália; Pereira, Carla; Barros, Lillian; Ferreira, Isabel C.F.R.

    2015-01-01

    Currently, the consumption of tea and herbal infiisions is increasing só much that its daily worldwide consumption is evaluated in more than three million cups. Therefore, in a competitive and sophisticated sector as the tea market, the innovation and development of new products is imperative (Hicks, 2009; Li et al., 2013). Nowadays, we have at our disposal a new range of emerging products, such as the designated "reserve lots" exclusively prepared by using the younger parts (a...

  19. Intelligent Simulation-based Lot Scheduling of Photolithography Toolsets in a Wafer Fabrication Facility

    OpenAIRE

    Arisha, Amr; Young, Paul

    2004-01-01

    Scheduling of a semiconductor manufacturing facility is one of the most complex tasks encountered. Confronted with a high technology product market, semiconductor manufacturing is increasingly more dynamic and competitive in the introduction of new products in shorter time intervals. Photolithography, being one of the processes repeated often, is a fabrication bottleneck. Lot scheduling within photolithography is a challenging activity where substantial improvements in factory performance can...

  20. Camp Pendleton Saves 91% in Parking Lot Lighting

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-01-01

    Case study describes how Camp Pendleton Marine Corps Base replaced high-pressure sodium (HPS) fixtures in one parking lot with high-efficiency induction fixtures for 91% savings in energy use and $5,700 in cost savings annually. This parking lot is estimated to have a simple payback of 2.9 years. Sitewide up-grades yielded annual savings of 1 million kWh.

  1. Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects

    Directory of Open Access Journals (Sweden)

    Bartłomiej Dziuba

    2014-03-01

    Full Text Available Proteins are one of the primary components of the food, both in terms of nutrition and function. They are main source of amino acids, essential for synthesis of proteins, and also source of energy. Additionally, many proteins exhibit specifi c biological activities, which may have effect on functional or pro-health properties of food products. These proteins and their hydrolysis products, peptides, may infl uence the properties of food and human organism. The number of commercially available food products containing bioactive peptides is very low, apart from that milk proteins are their rich source. It could be supposed that number of available products with declared activity will rise in near future because of observed strong uptrend on interest in such products. Molecular and biological properties of milk proteins, as precursors of bioactive peptides was characterised in the work. Therefore, the strategy of research and obtaining of such peptides both in laboratory and industrial scale, as well as the range of their commercial application, was presented. Several examples of research efforts presenting high potential to develop new products containing bioactive peptides from milk proteins and predetermined as nutraceuticals was described.

  2. Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects.

    Science.gov (United States)

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    Proteins are one of the primary components of the food, both in terms of nutrition and function. They are main source of amino acids, essential for synthesis of proteins, and also source of energy. Additionally, many proteins exhibit specific biological activities, which may have effect on functional or pro-health properties of food products. These proteins and their hydrolysis products, peptides, may influence the properties of food and human organism. The number of commercially available food products containing bioactive peptides is very low, apart from that milk proteins are their rich source. It could be supposed that number of available products with declared activity will rise in near future because of observed strong uptrend on interest in such products. Molecular and biological properties of milk proteins, as precursors of bioactive peptides was characterised in the work. Therefore, the strategy of research and obtaining of such peptides both in laboratory and industrial scale, as well as the range of their commercial application, was presented. Several examples of research efforts presenting high potential to develop new products containing bioactive peptides from milk proteins and predetermined as nutraceuticals was described.

  3. 基于改进蚁群算法的一类运输能力约束的生产-运输批量问题求解%An Improved Ant Colony Algorithm for Solving Production Transportation Lot-Sizing Problem

    Institute of Scientific and Technical Information of China (English)

    李英俊; 陈志祥

    2012-01-01

    针对生产与运输两个过程的联合决策,通过分析一类生产-运输批量优化问题,建立的混合0-1整数规划模型整合了多产品多阶段能力约束批量生产和产品运输.其中运输成本由运输工具使用数量决定,当企业内部运输能力不能满足运输需求时可将运输外包,但需支付更高的运输成本.根据此问题的特点,构造改进蚁群算法求解,令其信息素和启发信息都存在0和1两种状态下的不同取值,通过转移概率确定0-1生产准备矩阵,进一步得到生产矩阵和运输计划.仿真实验结果表明在生产批量决策的同时考虑运输,可以减少运输成本,令总费用最小,通过将实验结果与其他优化算法比较,所构造的蚁群算法寻优概率是100%,平均进化10代,平均耗时小于l s,稳定性和求解效率均高于其他算法,是求解这类问题一种有效与适用的算法.%Aiming at the implementation of joint decision of production and transportation, production-transportation lot-sizing problem is discussed, which is a multi-item-and-multi-period capacitated lot-sizing and transportation problem. This problem is then formulated as a 0-1 mixed integer programming problem. In this model, the transportation cost is decided by the numbers of containers. However, if demands ex-ceed the transportation capacity, it can be outsourced, but with higher freight rate. After analyzing the properties of the model, an improved ant colony algorithm (ANT) is proposed. By this algorithm, different value of pheromone and heuristic information is set as 0-state or 1 -state. Then, the 0-1 setup matrix, production matrix, and transportation plan can be obtained accordingly. A numerical example shows that integrated production and transportation can effectively reduce the procurement cost and further reduce the total cost. Comparison with other methods shows that the searching optimization probability of the proposed ANT is 100% , the average

  4. High-latitude controls of thermocline nutrients and low latitude biological productivity.

    Science.gov (United States)

    Sarmiento, J L; Gruber, N; Brzezinski, M A; Dunne, J P

    2004-01-01

    The ocean's biological pump strips nutrients out of the surface waters and exports them into the thermocline and deep waters. If there were no return path of nutrients from deep waters, the biological pump would eventually deplete the surface waters and thermocline of nutrients; surface biological productivity would plummet. Here we make use of the combined distributions of silicic acid and nitrate to trace the main nutrient return path from deep waters by upwelling in the Southern Ocean and subsequent entrainment into subantarctic mode water. We show that the subantarctic mode water, which spreads throughout the entire Southern Hemisphere and North Atlantic Ocean, is the main source of nutrients for the thermocline. We also find that an additional return path exists in the northwest corner of the Pacific Ocean, where enhanced vertical mixing, perhaps driven by tides, brings abyssal nutrients to the surface and supplies them to the thermocline of the North Pacific. Our analysis has important implications for our understanding of large-scale controls on the nature and magnitude of low-latitude biological productivity and its sensitivity to climate change.

  5. Solid recovered fuel production through the mechanical-biological treatment of wastes

    OpenAIRE

    Velis, C.A.

    2010-01-01

    This thesis is concerned with the production of solid recovered fuel (SRF) from municipal solid waste using mechanical biological treatment (MBT) plants. It describes the first in-depth analysis of a UK MBT plant and addresses the fundamental research question: are MBT plants and their unit operations optimised to produce high quality SRF in the UK? A critical review of the process science and engineering of MBT provides timely insights into the quality management and standa...

  6. The potential of plants as a system for the development and production of human biologics

    OpenAIRE

    Qiang Chen; Davis, Keith R.

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics...

  7. [Biologic age as a criterion for work evaluation (exemplified by titanium alloys production)].

    Science.gov (United States)

    Afanas'eva, R F; Prokopenko, L V

    2009-01-01

    The article deals with results of studies concerning biologic age of workers (males) under occupational hazards of titanium alloys (jeopardy classes 3.3, 3.4.4) in Verkhne-Saldinsky metallurgic production association. Based on mathematic statistic analysis, the authors worked out an equation of multiple regression for ageing pace to forecast the ageing with consideration of age, length of service, occupation. The authors determined occupational groups characterized by premature ageing and increased risk of health disorders.

  8. The potential of plants as a system for the development and production of human biologics.

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology. PMID:27274814

  9. Mapping the patent landscape of synthetic biology for fine chemical production pathways.

    Science.gov (United States)

    Carbonell, Pablo; Gök, Abdullah; Shapira, Philip; Faulon, Jean-Loup

    2016-09-01

    A goal of synthetic biology bio-foundries is to innovate through an iterative design/build/test/learn pipeline. In assessing the value of new chemical production routes, the intellectual property (IP) novelty of the pathway is important. Exploratory studies can be carried using knowledge of the patent/IP landscape for synthetic biology and metabolic engineering. In this paper, we perform an assessment of pathways as potential targets for chemical production across the full catalogue of reachable chemicals in the extended metabolic space of chassis organisms, as computed by the retrosynthesis-based algorithm RetroPath. Our database for reactions processed by sequences in heterologous pathways was screened against the PatSeq database, a comprehensive collection of more than 150M sequences present in patent grants and applications. We also examine related patent families using Derwent Innovations. This large-scale computational study provides useful insights into the IP landscape of synthetic biology for fine and specialty chemicals production. PMID:27489206

  10. The potential of plants as a system for the development and production of human biologics

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R.

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology. PMID:27274814

  11. The potential of plants as a system for the development and production of human biologics.

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology.

  12. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  13. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  14. Inventory Lot-Sizing Problem with Supplier Selection under Storage Space and Budget Constraints

    Directory of Open Access Journals (Sweden)

    Chirawat Woarawichai

    2011-03-01

    Full Text Available In this paper, we consider a multi-period inventory lot-sizing problem with supplier selection under storage space and budget constraints. The objective of this research is to calculate the optimal inventory lot-sizing for each supplier and minimize the total inventory cost which includes joint purchase cost of the products, transaction cost for the suppliers, and holding cost for remaining inventory. It is assumed that demand of multiple products is known over a planning horizon. The problem is formulated as a mixed integer linear programming and is solved with optimization package like LINGO12. Finally, numerical example is provided to illustrate the solution procedure. The results determine what products to order in what quantities with which suppliers in which periods, in order to satisfy overall demand.

  15. Radiotherapy Techniques and Radiation Pneumonitis: 
A Lot To A Little Or A Little To A Lot?

    Directory of Open Access Journals (Sweden)

    Bingqi YU

    2015-12-01

    Full Text Available Radiotherapy is one of the main treatment for patients with lung cancer. Three-dimensional conformal radiation therapy (3D-CRT and intensity modulated radiation therapy (IMRT are widely used to deliver radiation. Here, we focus on the correlations between dose distribution in lung and radiation pneumonitis according to the analysis about radiotherapy for lung cancer: A lot to a little or a little to a lot, which is the main cause of radiation pneumonitis?

  16. Potential of chicken by-products as sources of useful biological resources

    International Nuclear Information System (INIS)

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications

  17. Technical Key Figures for Photo-biological Hydrogen Production by Micro-algae

    International Nuclear Information System (INIS)

    One regenerative path to produce hydrogen is the photo-biological hydrogen production by the green micro-alga Chlamydomonas reinhardtii. This process can be divided into three phases: a growth phase, a phase in which the algae adapt from oxygen production and CO2-fixation to fermentative H2 production, and a phase in which H2 is produced. In a research project carried out at Ruhr-Universitat Bochum, a new developed flat panel bioreactor was investigated. A system analysis was conducted and energetic and environmental key figures were determined. The intention of this assessment on a very early technological stage was to collect first technical data in order to classify the current technological status of the photo-biological H2 production to identify future potentials and to uncover weaknesses. For this reason the key figures were evaluated for the status quo and for two scenarios which allow an outlook on the mid and the long term. The results were compared with other ways of regenerative H2 production. (authors)

  18. Potential of chicken by-products as sources of useful biological resources

    Energy Technology Data Exchange (ETDEWEB)

    Lasekan, Adeseye [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abu Bakar, Fatimah, E-mail: fatim@putra.upm.edu.my [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hashim, Dzulkifly [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2013-03-15

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.

  19. Current good manufacturing practice in plant automation of biological production processes.

    Science.gov (United States)

    Dorresteijn, R C; Wieten, G; van Santen, P T; Philippi, M C; de Gooijer, C D; Tramper, J; Beuvery, E C

    1997-01-01

    The production of biologicals is subject to strict governmental regulations. These are drawn up in current good manufacturing practices (cGMP), a.o. by the U.S. Food and Drug Administration. To implement cGMP in a production facility, plant automation becomes an essential tool. For this purpose Manufacturing Execution Systems (MES) have been developed that control all operations inside a production facility. The introduction of these recipe-driven control systems that follow ISA S88 standards for batch processes has made it possible to implement cGMP regulations in the control strategy of biological production processes. Next to this, an MES offers additional features such as stock management, planning and routing tools, process-dependent control, implementation of software sensors and predictive models, application of historical data and on-line statistical techniques for trend analysis and detection of instrumentation failures. This paper focuses on the development of new production strategies in which cGMP guidelines are an essential part.

  20. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.

  1. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian;

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  2. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    Science.gov (United States)

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids. PMID:24922334

  3. Techno-economic evaluation of a two-step biological process for hydrogen production.

    Science.gov (United States)

    Ljunggren, Mattias; Zacchi, Guido

    2010-01-01

    An integrated biological process for the production of hydrogen based on thermophilic and photo-heterotrophic fermentation was evaluated from a technical and economic standpoint. Besides the two fermentation steps the process also includes pretreatment of the raw material (potato steam peels) and purification of hydrogen using amine absorption. The study aimed neither at determining the absolute cost of biohydrogen nor at an economic optimization of the production process, but rather at studying the effects of different parameters on the production costs of biohydrogen as a guideline for future improvements. The effect of the key parameters, hydrogen productivity and yield and substrate concentration in the two fermentations on the cost of the hydrogen produced was studied. The selection of the process conditions was based mainly on laboratory data. The process was simulated by use of the software Aspen Plus and the capital costs were estimated using the program Aspen Icarus Process Evaluator. The study shows that the photo-fermentation is the main contributor to the hydrogen production cost mainly because of the cost of plastic tubing, for the photo-fermentors, which represents 40.5% of the hydrogen production cost. The costs of the capital investment and chemicals were also notable contributors to the hydrogen production cost. Major economic improvements could be achieved by increasing the productivity of the two fermentation steps on a medium-term to long-term scale. PMID:20039381

  4. A synthetic biology approach to self-regulatory recombinant protein production in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Dragosits Martin

    2012-03-01

    Full Text Available Abstract Background Recombinant protein production is a process of great industrial interest, with products that range from pharmaceuticals to biofuels. Since high level production of recombinant protein imposes significant stress in the host organism, several methods have been developed over the years to optimize protein production. So far, these trial-and-error techniques have proved laborious and sensitive to process parameters, while there has been no attempt to address the problem by applying Synthetic Biology principles and methods, such as integration of standardized parts in novel synthetic circuits. Results We present a novel self-regulatory protein production system that couples the control of recombinant protein production with a stress-induced, negative feedback mechanism. The synthetic circuit allows the down-regulation of recombinant protein expression through a stress-induced promoter. We used E. coli as the host organism, since it is widely used in recombinant processes. Our results show that the introduction of the self-regulatory circuit increases the soluble/insoluble ratio of recombinant protein at the expense of total protein yield. To further elucidate the dynamics of the system, we developed a computational model that is in agreement with the observed experimental data, and provides insight on the interplay between protein solubility and yield. Conclusion Our work introduces the idea of a self-regulatory circuit for recombinant protein products, and paves the way for processes with reduced external control or monitoring needs. It demonstrates that the library of standard biological parts serves as a valuable resource for initial synthetic blocks that needs to be further refined to be successfully applied in practical problems of biotechnological significance. Finally, the development of a predictive model in conjunction with experimental validation facilitates a better understanding of the underlying dynamics and can be

  5. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Forough Nazarpour

    2013-01-01

    Full Text Available Rubberwood (Hevea brasiliensis, a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%. The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.

  6. Biological production of hydrogen by dark fermentation of OFMSW and co-fermentation with slaughterhouse wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moran, A.; Gomez, X.; Cuestos, M. J.

    2005-07-01

    Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature (Lin and Lay, 2003). There are different methods for the production of hydrogen, the traditional ones, are the production from fossil fuels. Aiming to reach a development based on sustainable principles the production of hydrogen from renewable sources is a desirable goal. Among the environmental friendly alternatives for the production of hydrogen are the biological means. Dark fermentation as it is known the process when light is not used; it is a preferable option thanks to the knowledge already collected from its homologous process, the anaerobic digestion for the production of methane. There are several studies intended to the evaluation of the production of hydrogen, many are dedicated to the use of pure cultures or the utilization of basic substrates as glucose or sucrose (Lin and Lay, 2003; Chang et al., 2002, Kim et al., 2005). This study is performed to evaluate the fermentation of a mixture of wastes for the production of hydrogen. It is used as substrate the organic fraction of municipal solid wastes (OFMSW) and a mixture of this residue with slaughterhouse waste. (Author)

  7. The Effect of Peat and Vermicompost Cavitation Products on the Soil Biological Activity

    Directory of Open Access Journals (Sweden)

    Steinberga Vilhelmine

    2014-12-01

    Full Text Available Commercial products with humic substances have often been recommended for plant growth stimulation and yield improvement. The aim of this study was to clarify the effects of two products, containing cavited peat and vermicompost respectively on the soil biological activity. Vegetation experiments with garden cress and cucumbers were arranged in pots with a peat substratum in the greenhouses of the Latvia University of Agriculture. The plants were treated with the preparations once a month. The first treatment was done at sowing. Dose of 20, 2, 0.2 mL per m2 during each treatment time were used. A control variant was without peat or vermicompost preparation. Field experiments with onions were carried out in the organic farming experimental field of the Latvia State Institute of Cereal Breeding. Plant growth and soil (substratum biological activity (respiration and enzymatic activity were tested. Plant growth and response to the different preparations depended on the plant species and its development stage. The effect of preparations decreases during plant development. The impact of peat or vermicompost preparation on soil biological activity depended not only on the concentration of preparation, but was influenced by the soil or growth media type. The decrease of onion yield in field conditions as a result of preparations was observed.

  8. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    Science.gov (United States)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  9. Berry productivity estimation of biological(botanical) reservations 'Milevichsky' and 'Zalyuchitsky'

    International Nuclear Information System (INIS)

    The necessity of creation of local status biological (botanical) reservations in Zhitkovichi district is scientifically substantiated on he basis of performed investigations and analysis of location nature conditions of declared reservations, their nature potential and on the estimation of productivity of wild berr plantation and radiation situation. Forest districts of these reservations have high productivity of wild bilberries and great bilberry and natural background radiation. The specific radiation activity of bilverries collected in the foregoing districts of Milevichi and Zalyutichi forestry does not exceed 60 Bk/kg, that is less than 30% of the permissible rate. Main recommendations were developed for protection and utilization of reservations, for conservation of the conditions required for growing forests with optimum characteristics, which promote vegetation and high productivity of wild berry reservations

  10. Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis.

    Science.gov (United States)

    Seifert, A H; Rittmann, S; Bernacchi, S; Herwig, C

    2013-05-01

    This contribution presents a method for quantification of the impact of emission gasses on the methane production with hydrogenotrophic methanogenic archaea. The developed method allows a robust quantification of the influence of real gasses on the volumetric productivity of methanogenic cultures by uncoupling physiological and mass transfer effects. This is achieved over reference experiments with pure H2 and CO2, simulating the mass transfer influence of the non-convertible side components by addition of N2 to the reactant stream. Furthermore, this method was used to examine the performance of Methanothermobacter marburgensis on different emission gasses. None of the present side components had a negative effect on the volumetric methane production rate. The presented method showed to be ready to use as a generic tool for feasibility studies and quantification of the physiological impact regarding the use of exhaust gasses as reactant gas for the biological methanogenesis. PMID:23582218

  11. Two parameter-tuned metaheuristic algorithms for the multi-level lot sizing and scheduling problem

    Directory of Open Access Journals (Sweden)

    S.M.T. Fatemi Ghomi

    2012-10-01

    Full Text Available This paper addresses the problem of lot sizing and scheduling problem for n-products and m-machines in flow shop environment where setups among machines are sequence-dependent and can be carried over. Many products must be produced under capacity constraints and allowing backorders. Since lot sizing and scheduling problems are well-known strongly NP-hard, much attention has been given to heuristics and metaheuristics methods. This paper presents two metaheuristics algorithms namely, Genetic Algorithm (GA and Imperialist Competitive Algorithm (ICA. Moreover, Taguchi robust design methodology is employed to calibrate the parameters of the algorithms for different size problems. In addition, the parameter-tuned algorithms are compared against a presented lower bound on randomly generated problems. At the end, comprehensive numerical examples are presented to demonstrate the effectiveness of the proposed algorithms. The results showed that the performance of both GA and ICA are very promising and ICA outperforms GA statistically.

  12. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    Science.gov (United States)

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies.

  13. The prospects of synthetic biology for the production of fuel from biomass

    International Nuclear Information System (INIS)

    When applied to engineering the metabolism of microorganisms, synthetic biology produces a broad spectrum of biomolecules from carbohydrates and, in the near future, from the biomass in general. The markets for biofuels and for chemicals are thus hooked up through a common technological core. Synthetic biology also opens new possibilities for switching from different types of biomass to different products, thus allowing for more flexibility in development strategies and eventually in industrial operations. This opening is welcomed even though the economic and societal environments hardly favors biofuels. A few more years of research and development are needed to bring these new possibilities to industrial maturity. Advanced biofuels will pass the threshold at which they become profitable and will no longer need subsidies. (author)

  14. The reduction of biological production induced by mesoscale mixing: a modelling study in the Benguela upwelling

    CERN Document Server

    Hernández-Carrasco, Ismael; Hernández-García, Emilio; Garçon, Veronique; López, Cristóbal

    2013-01-01

    Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal mixing in upwelling systems. In order to better understand this phenomenon, we have considered a system of oceanic flow in the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We computed horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela, there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection seems to be the dominant process involved. In the northern area, other factors not taken into account in our simulation are influencing the ecosyst...

  15. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  16. Removal of disinfection by-product formation potentials by biologically assisted GAC treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The object of this paper is to evaluate the removal of disinfection by-products formation potential by artificially intensified biological activated carbon(BAC) process which is developed on the basis of traditional ozone granular activated carbon (GAC). The results show that 23.1% of trihalomethane formation potential (THMFP) and 68% of haloacetic acid formation potential (HAAFP) can be removed by BAC,respectively. Under the same conditions, the removal rates of the same substances were 12.2% and 13-25 % respectively only by GAC process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. BAC process has some advantages such as long backwashing cycle time, low backwashing intensity and prolonged activated carbon lifetime, etc.

  17. The future coastal ocean: the impact of increased stratification on biological production and carbon cycling

    Science.gov (United States)

    Lachkar, Z.; Gruber, N.

    2012-04-01

    Eastern boundary upwelling systems (EBUS) are regions of intense biogeochemical cycling and air-sea CO2 exchange. EBUS are particularly sensitive to changes in vertical stratification induced by upper ocean warming. However, neither the biological response to such physical perturbation nor the extent to which air-sea CO2 exchange might be altered under increased stratification are well understood. Here, we investigate the vulnerability of EBUS to such changes by conducting eddy-resolving simulations with the Regional Oceanic Modeling System (ROMS) coupled to a state-of-the art ecosystem model for the California and the Canary Current Systems. We examine how potential changes in stratification might affect the productivity in both upwelling systems and explore related changes in air-sea CO2 fluxes and biological pump efficiency. A particular focus of our analyses is on the role of local vs large scale changes in stratification. Overall, our initial results show for both EBUS a substantial increase of the CO2 outgassing with only a relatively modest change in productivity. We also found that identical changes in the vertical stratification lead to contrasting biological responses within and between these two EBUS characterized with only modestly different physical and environmental conditions. This is essentially due to varying initial temperature and nutrient conditions in addition to factors associated with the nearshore-offshore exchange timescales such as the shelf topography and the level of mesoscale eddy activity which differ substantially between the two EBUS. Finally, our results show that the depth of the maximum warming as well as the vertical penetration of the warm temperature anomaly play a key role in controlling the magnitude of the biological response in each EBUS.

  18. A regulatory perspective of clinical trial applications for biological products with particular emphasis on Advanced Therapy Medicinal Products (ATMPs).

    Science.gov (United States)

    Jones, David R; McBlane, James W; McNaughton, Graham; Rajakumaraswamy, Nishanthan; Wydenbach, Kirsty

    2013-08-01

    The safety of trial subjects is the tenet that guides the regulatory assessment of a Clinical Trial Authorization application and applies equally to trials involving small molecules and those with biological/biotechnological products, including Advanced Therapy Medicinal Products. The objective of a regulator is to ensure that the potential risk faced by a trial subject is outweighed by the potential benefit to them from taking part in the trial. The focus of the application review is to assess whether risks have been identified and appropriate steps taken to alleviate these as much as possible. Other factors are also taken into account during a review, such as regulatory requirements, and emerging non-clinical and clinical data from other trials on the same or similar products. This paper examines the regulatory review process of a Clinical Trial Authorization application from the perspectives of Quality, Non-Clinical and Clinical Regulatory Assessors at the Medicines and Healthcare products Regulatory Agency. It should be noted that each perspective has highlighted specific issues from their individual competence and that these can be different between the disciplines.

  19. Improving aggregate behavior in parking lots with appropriate local maneuvers

    KAUST Repository

    Rodriguez, Samuel

    2013-11-01

    In this paper we study the ingress and egress of pedestrians and vehicles in a parking lot. We show how local maneuvers executed by agents permit them to create trajectories in constrained environments, and to resolve the deadlocks between them in mixed-flow scenarios. We utilize a roadmap-based approach which allows us to map complex environments and generate heuristic local paths that are feasible for both pedestrians and vehicles. Finally, we examine the effect that some agent-behavioral parameters have on parking lot ingress and egress. © 2013 IEEE.

  20. Shelf life extension for the lot AAE nozzle severance LSCs

    Science.gov (United States)

    Cook, M.

    1990-01-01

    Shelf life extension tests for the remaining lot AAE linear shaped charges for redesigned solid rocket motor nozzle aft exit cone severance were completed in the small motor conditioning and firing bay, T-11. Five linear shaped charge test articles were thermally conditioned and detonated, demonstrating proper end-to-end charge propagation. Penetration depth requirements were exceeded. Results indicate that there was no degradation in performance due to aging or the linear shaped charge curving process. It is recommended that the shelf life of the lot AAE nozzle severance linear shaped charges be extended through January 1992.

  1. Lot-sizing algorithms with applications to engineering and economics

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ferreira, Jose S.

    1984-01-01

    of time-varying parameters. A comparison of the efficiency of the new solution procedures with well-known methods is developed. New applications of the techniques described within the fields of engineering (optimal design of a pump-pipe system) and economics (a model for import-planning) are referred to......The paper presents two new solution procedures for a deterministic lot size problem, a matrix algorithm and a heuristic matrix method. The algorithm is based on the dual of a linear programming model formulation of the lot size problem, and it provides optimal solutions even in the general case...

  2. Bioactive properties of Mentha spicata L. infusions: a comparison between standard and reserve lots

    OpenAIRE

    Rita, Íngride; Pereira, Carla; Heleno, Sandrina A.; Ferreira, Isabel C.F.R.

    2015-01-01

    Mentha spicata L., commonly known as spearmint and belonging to the Lamiaceae family, is widely used as infusion due to its exquisite and outstanding flavour [1]. This medicinal and aromatic plant is also known for its antioxidant properties due to naturally occurring active compounds, such as phenolic compounds including flavonoids. [2] Recently, with the increased consumption of herbal infusions, several novel products are emerging and different lots with distinct composition...

  3. A cell-free expression and purification process for rapid production of protein biologics.

    Science.gov (United States)

    Sullivan, Challise J; Pendleton, Erik D; Sasmor, Henri H; Hicks, William L; Farnum, John B; Muto, Machiko; Amendt, Eric M; Schoborg, Jennifer A; Martin, Rey W; Clark, Lauren G; Anderson, Mark J; Choudhury, Alaksh; Fior, Raffaella; Lo, Yu-Hwa; Griffey, Richard H; Chappell, Stephen A; Jewett, Michael C; Mauro, Vincent P; Dresios, John

    2016-02-01

    Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value. PMID:26427345

  4. A cell-free expression and purification process for rapid production of protein biologics.

    Science.gov (United States)

    Sullivan, Challise J; Pendleton, Erik D; Sasmor, Henri H; Hicks, William L; Farnum, John B; Muto, Machiko; Amendt, Eric M; Schoborg, Jennifer A; Martin, Rey W; Clark, Lauren G; Anderson, Mark J; Choudhury, Alaksh; Fior, Raffaella; Lo, Yu-Hwa; Griffey, Richard H; Chappell, Stephen A; Jewett, Michael C; Mauro, Vincent P; Dresios, John

    2016-02-01

    Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value.

  5. Biologically active amines in fermented and non-fermented commercial soybean products from the Spanish market.

    Science.gov (United States)

    Toro-Funes, N; Bosch-Fuste, J; Latorre-Moratalla, M L; Veciana-Nogués, M T; Vidal-Carou, M C

    2015-04-15

    Biologically active amines were determined in commercial soybean products. The antioxidant polyamines were found in both non-fermented and fermented soybean products. Natto and tempeh showed the highest content of polyamines (75-124 and 11-24 mg/kg of spermidine and spermine, respectively). On the other hand, the bacterial-related biogenic amines, tyramine, histamine, tryptamine and β-phenylethylamine, were detected in practically all fermented products with a high variability. The highest contents were found in sufu, tamari and soybean paste. Extremely high tyramine and histamine contents, 1700 and 700 mg/kg, respectively, found in some sufu samples could be unhealthy. However, biogenic amines observed in the other soybean products should not be a risk for healthy consumers. However, individuals who take monoamine and diamine oxidase inhibitors drugs should be strongly recommended to avoid this kind of products in order to suffer no adverse health effects. These biogenic amines were not detected in non-fermented soybean products.

  6. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant

    OpenAIRE

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Łukasz

    2011-01-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l−1 nitrate, 4.8 mg l−1 nitroglycerin, 1.9 mg l−1 nitroglycol and 1,200 mg l−1 chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic...

  7. Biological and productive characteristics of apple cultivars resistant or tolerant to scab [Venturia inaequalis (Cooke) Wint.

    OpenAIRE

    Đorđević Boban S.; Vulić Todor B.; Đurović Dejan B.; Milatović Dragan P.; Zec Gordan N.; Radović Aleksandar R.

    2013-01-01

    Biological and productive characteristics of 11 scab-resistant apple cultivars were studied in the period 2011-2012 on the estate of the monastery Žiča in Central Serbia. Control cultivar for comparison was ‘Idared’, as the most spread apple cultivar in Serbia. The earliest blooming was found in cultivar ‘Topaz’, and the latest in cultivar ‘Rewena’. Based on the time of fruit maturation, three cultivars belong to the summer and autumn group, and five cultiv...

  8. Informed consent should be obtained from patients to use products (skin substitutes) and dressings containing biological material

    OpenAIRE

    Enoch, S; Shaaban, H; Dunn, K.

    2005-01-01

    Background: Biological products (tissue engineered skin, allograft and xenograft, and biological dressings) are widely used in the treatment of burns, chronic wounds, and other forms of acute injury. However, the religious and ethical issues, including consent, arising from their use have never been addressed in the medical literature.

  9. Outlet of products of biological treatment- what will be the future problems and opportunities?; Avsaettning av energiprodukter fraan biologisk behandling - vilka fraagestaellningar kommer att bli aktuella?

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, Hanna

    2010-01-15

    Biological treatment and related products is a topical subject, which increases year after year, not only in Sweden but all over the world. In this phase of expansion, it is interesting to find out what subjects could become relevant for products from this treatment method in the future. The following products are incorporated in the concept 'energy products' from biological treatment: sludge from sewage treatment plants, digestate from waste digestion plants, biogas, ethanol, and products from biorefinery. Questions regarding the process of these products are not included in this project. The purpose is to bring forward a catalogue of ideas of current and future topics in the field of biological treatment. The goal is to identify development projects which could be of interest for upcoming programs at Waste Refinery. Issues and project proposals for each product have been identified by the writer's network, and in discussions tabled at a workshop arranged by Waste Refinery in the autumn of 2009. At the present time, almost all digestate is sold, but there are problems. Though the plants have found an outlet for their products, they do not receive adequate return on them. Moreover, a lot of water is being transported. Many stakeholders within Waste Refinery, as well as external stakeholders, have requested a project on refining of digestate. Other topical issues regarding digestate are how new, non-food substrates and additives affect the quality of the digestate. Sewage treatment plants have to pay large amounts of money for the disposal of sludge. If Waste Refinery can include sewage sludge in their range of work, there will be several synergies between sludge and digestate. Matters, that need to be solved in the near future, are how to best achieve hygienisation of sewage sludge in order to guarantee salmonella-free sludge. As for biogas, the demand will be determined by factors such as the access of raw material, whether it becomes a vehicle fuel

  10. The Lot Sizing and Scheduling of Sand Casting Operations

    NARCIS (Netherlands)

    Hans, Erwin; Velde, van de Steef

    2010-01-01

    We describe a real world case study that involves the monthly planning and scheduling of the sand-casting department in a metal foundry. The problem can be characterised as a single-level multi-item capacitated lot-sizing model with a variety of additional process-specific constraints. The main obje

  11. Full-Depth Asphalt Pavements for Parking Lots and Driveways.

    Science.gov (United States)

    Asphalt Inst., College Park, MD.

    The latest information for designing full-depth asphalt pavements for parking lots and driveways is covered in relationship to the continued increase in vehicle registration. It is based on The Asphalt Institute's Thickness Design Manual, Series No. 1 (MS-1), Seventh Edition, which covers all aspects of asphalt pavement thickness design in detail,…

  12. A dynamic lot-sizing model with demand time windows

    NARCIS (Netherlands)

    C.Y. Lee (Chung-Yee); S. Cetinkaya; A.P.M. Wagelmans (Albert)

    1999-01-01

    textabstractOne of the basic assumptions of the classical dynamic lot-sizing model is that the aggregate demand of a given period must be satisfied in that period. Under this assumption, if backlogging is not allowed then the demand of a given period cannot be delivered earlier or later than the pe

  13. Activity Recognition and Localization on a Truck Parking Lot

    NARCIS (Netherlands)

    Andersson, M.; Patino, L.; Burghouts, G.J.; Flizikowski, A.; Evans, M.; Gustafsson, D.; Petersson, H.; Schutte, K.; Ferryman, J.

    2013-01-01

    In this paper we present a set of activity recognition and localization algorithms that together assemble a large amount of information about activities on a parking lot. The aim is to detect and recognize events that may pose a threat to truck drivers and trucks. The algorithms perform zone-based a

  14. Automotive Parking Lot and Theft Detection through Image Processing

    Directory of Open Access Journals (Sweden)

    2013-10-01

    Full Text Available Automotive parking lot and theft detection through image processing is a smart parking lot which will save time for the owner to park his car in a more organized way and also prevent theft of the car. It is a technology to optimize the checkout process by analysing a database of images of number plates of cars. The heart of the project is based on image processing. The images of number plates will be detected by Matlab and a picture of the driver will be saved in a similar database. As soon as both the images are saved, the garage entrance pole will shift 90 degrees upward using a DC MOTOR and will remain in that position for 30 seconds to allow the car to enter. After 30 seconds it will return back to its previous position. When the car exits the earlier steps will be repeated and Matlab will match both the images that were taken during entering and leaving. Meanwhile the seven segment display will show that a car has left the parking lot, by decrementing a number from its display. The cars are controlled by a microcontroller which is also able to detect and display if a vacant parking space is available. If there is no vacancy a red LED lights up, where as a green LED is used to display presence of parking space along with how many parking spots are available. It is applicable to be used in super market car parking lots and also apartment garages.

  15. [The pharmaceutical company Choay: an history linked to research and commercialization of biological products].

    Science.gov (United States)

    Bonnemain, Bruno

    2015-12-01

    Eugène Choay, when he created his own company in 1911, had already a large experience in pharmaceutical industry obtained with Maison Frère where he discovered the famous Dentol, well known thank to Poulbot's publicity drawings for this product. But, convinced of the future of biological products and Opotherapy, he decided to invest himself in this area with a totally new process for cold desiccation of organs. The success will be there and several pharmacists from Choay family will take care of the company and bring it to the top of its specialty in Opotherapy. At the beginning of the 1970's, Choay in in full development and has the products, the sites and the human resources for the future. In 1975, 4 therapeutic areas are covered by Choay's products: coagulation, inflammation, dermatology and hepatology. After more than 65 years of independence, Choay group will be finally bought partially and then totally by Sanofi. With the support of Sanofi, Choay created, in 1981, their US subsidiary called Choay Laboratories Inc;, after the NDA approval of sub-cutaneous Calciparine by the FDA. In 1985 Fraxiparine, a low molecular weight heparin discovered by Jean Choay's team, is lauched on the market. All these developments represent an outstanding record a longevity which indicates how perceptive was Eugène Choay and his successors when choosing to invest totally in the therapeutic use of hormones and products acting on coagulation factors.

  16. Suppressing and enhancing effects of mesoscale dynamics on biological production in the Mozambique Channel

    Science.gov (United States)

    José, Y. S.; Penven, P.; Aumont, O.; Machu, E.; Moloney, C. L.; Shillington, F.; Maury, O.

    2016-06-01

    We used a coupled physical-biogeochemical model to investigate how the strong eddy activity typical of the Mozambique Channel affects biological production. A numerical experiment was carried out, in which mesoscale dynamics were suppressed by cancelling the nonlinear terms for horizontal momentum in the Naviers-Stokes equation. Mesoscale dynamics were found to be responsible for (1) increased offshore production in the Mozambique Channel as a result of net eddy-induced offshore transport of nutrient-rich coastal waters; (2) decreased shelf production along the central Mozambican and south-west Madagascar coast caused by a reduction in nutrient availability related to the net eddy-induced lateral transport of nutrients; (3) increased coastal production along the northern Mozambican coast caused by eddy-induced nutrient supply. The model results also showed an intensification and shallowing of the subsurface production, related to increased upper layer nutrient concentrations caused by eddy activity. In addition, by driving the detachment of the East Madagascar Current at the southern tip of the island, inertial processes intensify the southern Madagascar upwelling and causes offshore diffusion of the upwelled waters. These results emphasize the complex role played by eddy activity and, more generally, inertial processes on marine ecosystems in this region.

  17. Biological characteristics of marine bacterium S - 9801 strain and its culture conditions of pigment production

    Institute of Scientific and Technical Information of China (English)

    田黎; 何培青; 武洪庆; 温占波; 刘晨临; 李光友

    2002-01-01

    Strain of Flavobacterium sp. (S- 9801), was screened from 207 strains of marine bacteria isolated from the Bohai Sea continental shelf and the Zhujiang Estuary, for its red pigment production. The biological characteristics of strain S- 9801 and culture conditions of pigment production have been checked out in this study. The color of the bacterial colony on 2216E medium was from coccineus to rose bengal. Optimum culture conditions were sodium chloride concentration(g/dm3), 10~30; pH,3~8; temperature, 25~28℃; tryptone and yeast extract as nitrogen sources and gluccse as carbon source. Under optimum conditions, pigment accumulation started after 12 h, reaching a maximum rate of synthesis at 36 h.

  18. Studies of the Production of Fungal Polyketides in Aspergillus nidulans by Using Systems Biology Tools

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Andersen, Mikael Rørdam; Grotkjær, Thomas;

    2009-01-01

    -methylsalicylic acid (6-MSA) synthase gene and one expressing the 6-MSA synthase gene and overexpressing the native xylulose-5-phosphate phosphoketolase gene (xpkA) for increasing the pool of polyketide precursor levels. The physiology of the recombinant strains and that of a reference wild-type strain were...... characterized on glucose, xylose, glycerol, and ethanol media in controlled bioreactors. Glucose was found to be the preferred carbon source for 6-MSA production, and 6-MSA concentrations up to 455 mg/liter were obtained for the recombinant strain harboring the 6-MSA gene. Our findings indicate...... that overexpression of xpkA does not directly improve 6-MSA production on glucose, but it is possible, if the metabolic flux through the lower part of glycolysis is reduced, to obtain quite high yields for conversion of sugar to 6-MSA. Systems biology tools were employed for in-depth analysis of the metabolic...

  19. Effects of milk yield on biological efficiency and profit of beef production from birth to slaughter.

    Science.gov (United States)

    Miller, S P; Wilton, J W; Pfeiffer, W C

    1999-02-01

    Effect of milk yield (MY) on biological efficiency and gross margin as an indicator of profit potential of beef production from birth to slaughter was determined. Data included 9 yr of spring-born single male calves. Biological efficiency was calculated as carcass weight/total feed energy intake, including nonlactating and lactating intakes of cow and creep and feedlot intakes of calf. Slaughter end point was finish constant at 9 mm of fat thickness. Gross margin was determined as returns minus feed costs. Three breeding systems were analyzed: purebred Hereford (HE), large rotational (LR), and small rotational (SR). Analyses were performed separately by breeding system when differences in the effect of MY among breeding systems were significant. Increased MY was associated with increased preweaning gain (P .10) effect of MY on age at slaughter or on carcass weight per day of age at slaughter was found. Increased MY was associated with increased cow lactating energy intake (P gross margin from birth to slaughter (P profit potential of beef production from birth to slaughter. PMID:10100661

  20. The Pig PeptideAtlas: A resource for systems biology in animal production and biomedicine.

    Science.gov (United States)

    Hesselager, Marianne O; Codrea, Marius C; Sun, Zhi; Deutsch, Eric W; Bennike, Tue B; Stensballe, Allan; Bundgaard, Louise; Moritz, Robert L; Bendixen, Emøke

    2016-02-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within the veterinary proteomics domain, and this article demonstrates how the expression of isoform-unique peptides can be observed across distinct tissues and body fluids. The Pig PeptideAtlas is a unique resource for use in animal proteome research, particularly biomarker discovery and for preliminary design of SRM assays, which are equally important for progress in research that supports farm animal production and veterinary health, as for developing pig models with relevance to human health research. PMID:26699206

  1. Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?

    Science.gov (United States)

    O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Cristina Facchini, Maria; Marullo, Salvatore; Santoleri, Rosalia; Dell'Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto

    2015-10-01

    Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray’s water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts.

  2. Changing the values of parameters on lot size reorder point model

    Directory of Open Access Journals (Sweden)

    Chang Hung-Chi

    2003-01-01

    Full Text Available The Just-In-Time (JIT philosophy has received a great deal of attention. Several actions such as improving quality, reducing setup cost and shortening lead time have been recognized as effective ways to achieve the underlying goal of JIT. This paper considers the partial backorders, lot size reorder point inventory system with an imperfect production process. The objective is to simultaneously optimize the lot size, reorder point, process quality, setup cost and lead time, constrained on a service level. We assume the explicit distributional form of lead time demand is unknown but the mean and standard deviation are given. The minimax distribution free approach is utilized to solve the problem and a numerical example is provided to illustrate the results. .

  3. Egg and a lot of science: an interdisciplinary experiment

    Directory of Open Access Journals (Sweden)

    M. C. Gayer

    2014-08-01

    Full Text Available Egg and a lot of science: an interdisciplinary experimentGayer, M.C.1,2;Rodrigues, D.T.1,2; Escoto, D.F.1; Denardin, E.L.G.2, Roehrs, R.1,21Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil2Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, BrazilIntroduction: How to tell if an egg is rotten? How to calculate the volume of an egg? Because the rotten egg float? Why has this characteristic rotten egg smell? Because the gray-green color is formed on the surface of the cooked egg yolk? These issues are commonplace and unnoticed in day-to-day. Our grandmothers know how to tell if an egg is rotten or not, you just put the egg in a glass of water. If it is rotten floating, sinking is good. But why this happens? That they do not know answer. With only one egg chemical reactions work, macromolecules (proteins, density, membranes and conservation of matter. Hydrogen sulphide is responsible for the aroma of a freshly cooked egg. This gas as they break down the molecules of albumin, a protein present in the egg is formed. The color comes from a sulfide precipitation, this time with the Fe2+ ion contained in the yolk (Fe2+ + S2  FeS. The use of simple and easy to perform experiments, correlating various knowledge proves a very useful tool in science education. Objectives: Develop multidisciplinary learning contents through the problem. Materials and methods: The teacher provides students with a boiled egg, salt, a syringe and a cup, a plate and water. The teacher lays the aforementioned issues for students and allows them to exchange information with each other, seeking answers through experimentation. Results and discussion: Students engaged with the activity and interaction of groups in order to solve the proposed problem. Still, through trial and error have sought in various ways to find the answers. This tool takes the student to

  4. Biological effects of activation products and other chemicals released from fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of /sup 26/Al, /sup 49/V, /sup 51/Cr, /sup 54/Mn, /sup 55/Fe, /sup 58/Co, /sup 60/Co, /sup 93/Nb, and /sup 94/Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs.

  5. Use of biologically reclaimed minerals for continuous hydroponic potato production in a CELSS.

    Science.gov (United States)

    Mackowiak, C L; Wheeler, R M; Stutte, G W; Yorio, N C; Sager, J C

    1997-01-01

    Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions. PMID:11542555

  6. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    Directory of Open Access Journals (Sweden)

    Celio I. Chagas

    2014-10-01

    Full Text Available Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in depressions along the tributary network from these lands devoted to cattle production. The aims of this work were: (i to gather a reliable set of data from different monitoring periods and scales, (ii to search for simple and sensible variables to be used as indicators for surface water quality advising purposes and (iii to corroborate previous biological contamination conceptual models for this region. Concentration of pollution indicators in these ponds was related to mean stocking rates from nearby fields and proved to depend significantly on the accumulated water and sediments. Viable mesophiles and total coliforms were found mainly attached to large sediments rather than in the runoff water phase. Seasonal sampling showed that the time period between the last significant runoff event and each sampling date regarding enterococci proved to be a sensible variable for predicting contamination. Enterococci concentration tended to increase gradually until the next extraordinary runoff event washed away contaminants. The mentioned relationship may be useful for designing early warning surface water contamination programs regarding enterococci dynamics and other related microbial pollutants as well.

  7. Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production.

    Directory of Open Access Journals (Sweden)

    Lennart Balk

    Full Text Available BACKGROUND: Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills. METHODS AND PRINCIPAL FINDINGS: Samples from natural populations of haddock (Melanogrammus aeglefinus and Atlantic cod (Gadus morhua in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea. CONCLUSION: It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production.

  8. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26Al, 49V, 51Cr, 54Mn, 55Fe, 58Co, 60Co, 93Nb, and 94Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  9. A retrosynthetic biology approach to metabolic pathway design for therapeutic production

    Directory of Open Access Journals (Sweden)

    Faulon Jean-Loup

    2011-08-01

    Full Text Available Abstract Background Synthetic biology is used to develop cell factories for production of chemicals by constructively importing heterologous pathways into industrial microorganisms. In this work we present a retrosynthetic approach to the production of therapeutics with the goal of developing an in situ drug delivery device in host cells. Retrosynthesis, a concept originally proposed for synthetic chemistry, iteratively applies reversed chemical transformations (reversed enzyme-catalyzed reactions in the metabolic space starting from a target product to reach precursors that are endogenous to the chassis. So far, a wider adoption of retrosynthesis into the manufacturing pipeline has been hindered by the complexity of enumerating all feasible biosynthetic pathways for a given compound. Results In our method, we efficiently address the complexity problem by coding substrates, products and reactions into molecular signatures. Metabolic maps are represented using hypergraphs and the complexity is controlled by varying the specificity of the molecular signature. Furthermore, our method enables candidate pathways to be ranked to determine which ones are best to engineer. The proposed ranking function can integrate data from different sources such as host compatibility for inserted genes, the estimation of steady-state fluxes from the genome-wide reconstruction of the organism's metabolism, or the estimation of metabolite toxicity from experimental assays. We use several machine-learning tools in order to estimate enzyme activity and reaction efficiency at each step of the identified pathways. Examples of production in bacteria and yeast for two antibiotics and for one antitumor agent, as well as for several essential metabolites are outlined. Conclusions We present here a unified framework that integrates diverse techniques involved in the design of heterologous biosynthetic pathways through a retrosynthetic approach in the reaction signature space

  10. Linking Physical Dynamics and Biological Productivity in a Coastal Mesoscale Eddy

    Science.gov (United States)

    Simons, R. D.; Nishimoto, M. M.; Washburn, L.; Brown, K. S.; Siegel, D. A.

    2014-12-01

    The Santa Barbara Channel (SBC) eddy is a cyclonic mesoscale eddy located off the coast of Southern California, USA. In the summer of 1998 and 1999, the SBC eddy was surveyed for juvenile fishes. In 1998, very high numbers of juvenile fishes were observed within the eddy, but not in 1999. The ocean conditions that contributed to the differences in fish abundances inside the eddy were investigated with three-dimensional numerical modeling. The physical dynamics of the SBC eddy, which included eddy size, three-dimensional rotational structure, and isopycnal uplift, were evaluated using a three-dimensional Regional Ocean Modeling System (ROMS). The retention ability of the eddy was quantified using a three-dimensional particle tracking model driven by the ROMS. The physical dynamics and particle retention of the SBC eddy were found to differ significantly in 1998 and 1999. In 1998, when the SBC eddy was rotating at a steady rate spatially and temporally and cycling consistently in and out of solid-body rotation, the particle retention was high and the isopycnal uplift sustained. However in 1999, when the SBC eddy was rotating unsteadily in space and time and did not have periods of solid-body rotation, the particle retention was low and the isopycnal uplift unstable. We theorize that the steady symmetric rotation of the eddy in 1998 had two important impacts on the biological productivity inside the eddy. First, it provided a prolonged period of cold nutrient rich water uplifting into the euphotic zone, which stimulated productivity and consequently attracted zooplankton. Second, it allowed the zooplankton, prey for the juvenile fish, to be retained inside the eddy, which attracted the juvenile fish. We conclude that biological productivity inside mesoscale eddies may be linked to the stability of its three-dimensional rotational structure and consequently its ability to retain particles.

  11. Determination of production biology of cladocera in a reservoir receiving hyperthermal effluents from a nuclear production reactor. [Par Pond

    Energy Technology Data Exchange (ETDEWEB)

    Vigerstad, T J

    1980-01-01

    The effects on zooplankton of residence in a cooling reservoir receiving hyperthermal effluents directly from a nuclear-production-reactor were studied. Rates of cladoceran population production were compared at two stations in the winter and summer of 1976 on Par Pond located on the Savannah River Plant, Aiken, SC. One station was located in an area of the reservoir directly receiving hyperthermal effluent (Station MAS) and the second was located about 4 km away in an area where surface temperatures were normal for reservoirs in the general geographical region (Station CAS). A non-parametric comparison between stations of standing stock and fecundity data for Bosmina longirostris, taken for the egg ratio model, was used to observe potential hyperthermal effluent effects. There was a statistically higher incidence of deformed eggs in the Bosmina population at Station MAS in the summer. Bosmina standing stock underwent two large oscillations in the winter and three large oscillations in the summer at Station MAS compared with two in the winter and one in the summer at Station CAS. These results are consistent with almost all other Par Pond studies which have found the two stations to be essentially similar in spectra composition but with some statistically significant differences in various aspects of the biology of the species.

  12. Biological re-cultivation of industrial technological waste banks after steel production

    Science.gov (United States)

    Sokolovska, Maria; Zhiyanski, Miglena; Bech, Jaume

    2010-05-01

    The problem of re-cultivation of disturbed lands, after the creation of waste banks, is very important and of great scientific interest. The studies on the effectiveness of biological re-cultivation are focused mainly on activities and techniques for the acceleration of soil formation processes as. The relationship between substrate and plants is also studied, in order to create modern biotechnologies and contributes to the remediation of the re-cultivated lands within the territorial system. In this work we have studied three parts of an industrial waste bank named "The 7th of September" located in the green system of Sofia - Pernik agglomeration in Bulgaria. It consists of technological wastes produced by the steel industry. Its area of 20 dca is of special local importance. The aim of this study was to propose an appropriate technology for the biological re-cultivation, which could take place after all production activities had ceased. To achieve this aim a detailed study on the characteristics of climatic elements was carried out focusing on precipitation - limiting factor for future afforestation of waste banks. Analyses on hydro-physical and chemical parameters of substrates were undertaken in order to elaborate recommendations for their improvement and utility in biological re-cultivation. Here we present the characteristics of the vegetation which existed before the production activities and the approaches for choice of tree species in afforestation with different schemes and methods applied. On the basis of this study we were able to establish that the hydrological properties of substrates are quite similar to those of natural soils in the region. The variations obtained for some soil substrate layers were not significant. In relation to this we also outlined the quantity of organic matter and nutrient elements in waste banks as determining parameters for further biological re-cultivation. The studied site is located in the lower forest zone of the country

  13. Determination of supplier-to-supplier and lot-to-lot variability in glycation of recombinant human serum albumin expressed in Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Grant E Frahm

    Full Text Available The use of different expression systems to produce the same recombinant human protein can result in expression-dependent chemical modifications (CMs leading to variability of structure, stability and immunogenicity. Of particular interest are recombinant human proteins expressed in plant-based systems, which have shown particularly high CM variability. In studies presented here, recombinant human serum albumins (rHSA produced in Oryza sativa (Asian rice (OsrHSA from a number of suppliers have been extensively characterized and compared to plasma-derived HSA (pHSA and rHSA expressed in yeast (Pichia pastoris and Saccharomyces cerevisiae. The heterogeneity of each sample was evaluated using size exclusion chromatography (SEC, reversed-phase high-performance liquid chromatography (RP-HPLC and capillary electrophoresis (CE. Modifications of the samples were identified by liquid chromatography-mass spectrometry (LC-MS. The secondary and tertiary structure of the albumin samples were assessed with far U/V circular dichroism spectropolarimetry (far U/V CD and fluorescence spectroscopy, respectively. Far U/V CD and fluorescence analyses were also used to assess thermal stability and drug binding. High molecular weight aggregates in OsrHSA samples were detected with SEC and supplier-to-supplier variability and, more critically, lot-to-lot variability in one manufactures supplied products were identified. LC-MS analysis identified a greater number of hexose-glycated arginine and lysine residues on OsrHSA compared to pHSA or rHSA expressed in yeast. This analysis also showed supplier-to-supplier and lot-to-lot variability in the degree of glycation at specific lysine and arginine residues for OsrHSA. Both the number of glycated residues and the degree of glycation correlated positively with the quantity of non-monomeric species and the chromatographic profiles of the samples. Tertiary structural changes were observed for most OsrHSA samples which

  14. Analysis of Innovative and Modern Technology of Parking Lots

    Directory of Open Access Journals (Sweden)

    Jonas Damidavičius

    2016-04-01

    Full Text Available Management of urban communication systems and ensuring of residents demands are the main tasks of the sustainable city development. One of the most important areas that forms better urban image is sustainable mobility development. It has influence on social, economical viability and environmental quality. Nowadays, intensive rhythm of life and increasing transport demands, usage of cars become a significant problem which regards the air and noise pollution and lack of parking spaces. Due to the daily impossibility of residents to find vacant parking spaces influence unproper usage of public spaces, streets, pedestrian and bicycle paths, children backgrounds, green areas and other territories. This report provides an overview of concepts of parking lots and their technology, and property usage in city center, middle zones, suburban territories and as well an analysis of the evolution of parking spaces. The report presents modern and innovative concepts of parking lots, which improves quality of communication and life in city and improves architectural environment.

  15. LOT-G3: Plasma Lamp, Ozonator and CW transmitter

    CERN Document Server

    Gobato, Ricardo; Gobato, Alekssander

    2015-01-01

    The LOT-G3 is designed to be a versatile equipment that perform several simple experiments for use in helping the physics classes for high school. Easy construction, low cost, using easily accessible materials. Its construction involves simple practices and knowledge of electromagnetism. It has the function of a plasma globe to demonstrate the ionization of a low pressure gas, as well as the formation of magnetic field. Can be used as sanitizer closed environments such as automotive vehicles in ozonator function, demonstrating the ionization of oxygen in the atmosphere, producing ozone, essential to life on earth. And as a sparks transmitter, low power, low frequency modulated continuous wave in (CW), for signals in Morse code. Therefore the equipment here called LOT-G3, has three functions: a plasma lamp, ozonator and CW transmitter.

  16. Make 'em Laugh (& They'll Learn a Lot More)

    Science.gov (United States)

    Done, Phillip

    2006-01-01

    Learning and laughter go hand in hand. Teachers certainly do not need to be stand-up comedians and spew out one-liners or dress up like clowns to make their classes fun. A little comedy can bring a lot of joy and learning opportunities to the classroom. In this article, the author shares several strategies on how teachers can put in laughter into…

  17. A JOINT PRICING, LOT-SIZING AND SUPPLIER SELECTION MODEL

    OpenAIRE

    Rezaei, Jafar; Davoodi, Mansoor

    2011-01-01

    Abstract In this paper, we integrate the three strategies that are important to most firms, namely pricing, lot-sizing and supplier selection. Combining the three objectives of total profit, inconsistency and deficiency with a set of constraints, we formulate this integrated problem as a multi-objective non-linear programming model, proposing a genetic algorithm (NSGA-II) that provides decision-makers with a number of Pareto-optimal solutions, one of which can be selected on the ba...

  18. Powder characterization of HNS-II, Lot No. ENB-63

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A.A.; Quinlin, W.T.

    1991-07-01

    This is a compilation of powder characterization data generated by Pantex on hexanitrostilbene type II (HNS-II) Lot No. ENG-63 recrystallized by Ensign-Bickford Aerospace. Characterization includes particle size distribution, specific surface area, N,N-dimethylformamide (DMF) insoluble particles, melting point, Differential Scanning Calorimetry (DSC) endotherm and exotherm temperatures, purity determined by liquid chromatography, and photomicrographs of the bulk powder and foreign particles.

  19. Use of chemicals and biological products in Asian aquacultire and their potential environmental risks: a critical review

    NARCIS (Netherlands)

    Rico, A.; Satapornvanit, K.; Haque, M.M.; Min, J.; Nguyen, P.T.; Telfer, T.; Brink, van den P.J.

    2012-01-01

    Over the past few decades, Asian aquaculture production has intensified rapidly through the adoption of technological advances, and the use of a wide array of chemical and biological products to control sediment and water quality and to treat and prevent disease outbreaks. The use of chemicals in aq

  20. When do tissues and cells become products? Regulatory oversight of emerging biological therapies.

    Science.gov (United States)

    Farrugia, Albert

    2006-01-01

    Although therapeutics derived from biological sources have been subjected to regulatory oversight for some time, the products used in transplantation procedures have historically been exempt from this oversight. These products have been viewed as being part of medical practice rather than as the result of mainstream pharmaceutical manufacture. Furthermore, their unique source makes them difficult to assess in traditional regulatory systems based on the tenets of pharmaceutical quality control. With the increasing use of transplantation therapies to both replace dysfunctional organs and to influence genetic and metabolic processes, public health concerns on these therapies have increased. In addition, it is recognized that therapeutic claims for some of these interventions need to be properly assessed. These considerations have led the established regulatory agencies of the developed world to develop new regulatory paradigms for the products of transplantation practice. While a number of concerns have driven these developments, the minimization of infectious disease risk remains the paramount driver for introducing these regulatory systems. More than the regulation of medicines and medical devices manufactured in traditional pharmaceutical modes, the regulation of cell and tissue products is intimately linked to areas of public health policy and funding. This places regulators in a challenging position as they attempt to reconcile their roles as independent assessors with the needs of the overall public health framework. This is particularly difficult when considering measures which may affect access to life saving therapies. Regulators have recognized the need to assess these therapies through systems which incorporate consideration of risk-benefit ratios and include mechanisms for transparent and accountable release of products when full compliance to traditional concepts of manufacturing practice is not possible.

  1. Biological and Energy Productivity of Natural Spruce Forests in the Ukrainian Carpathians

    Directory of Open Access Journals (Sweden)

    R. D. Vasilishyn

    2014-10-01

    Full Text Available The modern practice of forestry production in Ukraine, which is in the process of implementing the conceptual changes in forest management and harmonization of its basic approaches to the basics of sustainable development, requires a significant expansion of the current regulatory and informational tools used to assess the ecological functions of forests. For this purpose, during the 2012–2014, as part of an international project GESAPU, models and tables of bioproductivity for forest tree species in Ukraine were completed. The article presents the results of modeling the dynamics of the conversion coefficients for the main components of phytomass of modal natural spruce forests of the Carpathian region of Ukraine based on information from 32 plots in the database of «Forest Phytomass of Ukraine». According to the state forest accounting of Ukraine as of January 1, 2011, the spruce forests in the Ukrainian Carpathians cover an area of 426.2 thousand ha, 45 % of which are spruce of natural origin. To evaluate the productivity of modal dynamics of pure and mixed spruce stands, the study developed models of the stock and overall productivity, derived by Bertalanffy growth function. On the basis of these models, normative reference tables of biological productivity of natural modal spruce forests of the Ukrainian Carpathians were developed. To successfully meet the challenges of evaluating the energy possibilities of forestry of Ukraine, the study used tables of energetic productivity of investigated stands. Built on the basis of the tables of bioproductivity, they reflect the dynamic processes of energy storage in the phytomass components and can be used in forest management to predict volumes of energetic woods.

  2. A model of the ocean iron cycle and its influence on biological production

    Science.gov (United States)

    Dutkiewicz, S.; Parekh, P.; Follows, M.

    2003-04-01

    Biological productivity in large regions of the ocean, specifically high nutrient, low chlorophyll regions, is limited by the deficit in iron relative to other nutrients. We have developed a parameterization of the iron cycle of the world's oceans which attempts to explicitly represent the processes by which this deficit in iron occurs. We have implemented this parameterization in the context of the MIT three dimensional global ocean model and examined the consequences for nutrient distributions, new production and primary production. The iron model parameterizes the mechanisms of scavenging of iron onto sinking particles and complexation with an organic ligand and is driven by specified aeolian flux patterns. First, using an idealized representation of export production, limited by light, phosphate and iron, the model reproduces the broad features of the observed ocean phosphate and iron distributions. We replace the simplified export parameterization with an explicit, but highly idealized, ecosystem model. The model represents a simplified food web with two phytoplankton size classes and a single grazer. The base currency for this model is phosphorus, but the larger phytoplankton class (i.e. diatoms) is also limited by silica. Both classes are limited by the availability of iron. The results of this model are also generally consistent with the observed patterns of phosphate and iron. In addition, the model captures the broad features of the distributions and cycles of silica, chlorophyll and primary production. We will also explore the sensitivities of this model to the forcing fields (e.g. aeolian iron flux) and parameter choices of the ecosystem model. This model represents a step towards the explicit representation of the ocean iron cycle, and its biogeochemical influences, in global biogeochemical models.

  3. Applying complex models to poultry production in the future--economics and biology.

    Science.gov (United States)

    Talpaz, H; Cohen, M; Fancher, B; Halley, J

    2013-09-01

    The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions.

  4. Applying complex models to poultry production in the future--economics and biology.

    Science.gov (United States)

    Talpaz, H; Cohen, M; Fancher, B; Halley, J

    2013-09-01

    The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions. PMID:23960140

  5. Characterization of soluble microbial products in a drinking water biological aerated filter.

    Science.gov (United States)

    Kang, Jia; Ma, Teng-Fei; Zhang, Peng; Gao, Xu; Chen, You-Peng

    2016-05-01

    Utilization-associated products (UAPs) and biomass-associated products (BAPs) were quantified separately in this study to characterize soluble microbial products (SMPs) in a drinking water lab-scale biological aerated filter (BAF), and their basic characteristics were explored using gel filtration chromatography and three-dimensional excitation-emission matrix (3D-EEM) spectrophotometry with fluorescence regional integration analysis and parallel factor model. UAPs were observed increased with the increase of filter media depth and accumulated after BAF treatment, whereas BAPs were basically constant. 3D-EEM spectroscopy analysis result showed that tryptophan and protein-like compounds were the main components of UAPs and BAPs, and fulvic-acid-like substance was a major component of BAPs, rather than UAPs. In terms of molecular weight (MW) distribution, UAP MW presented a bimodal distribution in the range of 1-5 and >10 kDa, while BAP MW exhibited unimodal distribution with MW >20 kDa fraction accounting for more than 90 %. The macromolecules of UAPs accumulated after BAF treatment. This study provides theoretical support for in-depth study of SMP characteristics. PMID:26801929

  6. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    Science.gov (United States)

    Lachkar, Z.; Gruber, N.

    2012-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The NPP drivers are identified with the aid of an artificial neural network analysis based on self-organizing-maps (SOM). Our results suggest that in addition to the expected NPP enhancing effect of stronger equatorward alongshore wind, three factors have an inhibiting effect: (1) strong eddy activity, (2) narrow continental shelf, and (3) deep mixed layer. The co-variability of these 4 drivers defines in the context of the SOM a continuum of 100 patterns of NPP regimes in EBUS. These are grouped into 4 distinct classes using a Hierarchical Agglomerative Clustering (HAC) method. Our objective classification of EBUS reveals important variations of NPP regimes within each of the four EBUS, particularly in the Canary and Benguela Current systems. Our results show that the Atlantic EBUS are generally more productive and more sensitive to upwelling favorable winds because of weaker factors inhibiting NPP. Perturbations of alongshore winds associated with climate change may therefore lead to contrasting biological responses in the Atlantic and the Pacific EBUS.

  7. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-10-01

    Full Text Available Eastern Boundary Upwelling Systems (EBUS are highly productive ocean regions. Yet, substantial differences in net primary production (NPP exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The identification of NPP drivers is done with the aid of an artificial neural network analysis based on self-organizing-maps (SOMs. We show that in addition to the expected NPP enhancing effect of stronger alongshore wind, three factors have an inhibiting effect: (1 strong eddy activity, (2 narrow continental shelf, and (3 deep mixed layer. The co-variability of these 4 drivers defines in the context of the SOM a continuum of 100 patterns of NPP regimes in EBUS. These are grouped into 4 distinct classes using a Hierarchical Agglomerative Clustering (HAC method. Our objective classification of EBUS reveals important variations of NPP regimes within each of the four EBUS, particularly in the Canary and Benguela Current systems. Our results show that the Atlantic EBUS are generally more productive and more sensitive to upwelling favorable winds because of a weaker factors inhibiting NPP. Perturbations of alongshore winds associated with climate change may therefore lead to contrasting biological responses in the Atlantic and the Pacific EBUS.

  8. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Science.gov (United States)

    Montesinos, Laura; Bundó, Mireia; Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation. PMID:26760761

  9. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Directory of Open Access Journals (Sweden)

    Laura Montesinos

    Full Text Available Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  10. A programmable controller for parking lot block heaters

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Automobile engine block heaters and interior car warmers are used by a substantially larger percentage of Alberta motorists than in the rest of Canada. This represents a substantial wintertime electricity demand. Therefore, any method of reducing the need for block heaters and vehicle warmers can save energy and help lower the peak evening power demand. Power-saver electrical cords and timers have been used, but neither of these measures represents the optimum system that might be used in large parking lots. One system showing considerable promise is reviewed in this report. In 1985, Magna Engineering designed a control strategy for the parking lot at the University of Lethbridge using 2 proposed control schemes, each of which was designed to supply power to the plug-in circuits for different time periods according to the ambient temperature. Power consumption and energy costs for each of these schemes were compared to normal, uncontrolled operation. Substantially less energy was used with the first scheme, reducing the average load per vehicle from 800 W to 500 W. Parking lot users did not report any inconvenience or discomfort after the on-off sequencing was altered. It was concluded that this fact, combined with the potential energy and cost savings, made the system widely applicable throughout Alberta. The calculated payback period of 2-3 years makes this concept particularly attractive. 2 figs., 3 tabs.

  11. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production.

    Science.gov (United States)

    López-Abelairas, M; Álvarez Pallín, M; Salvachúa, D; Lú-Chau, T; Martínez, M J; Lema, J M

    2013-09-01

    The biological pretreatment of lignocellulosic biomass for the production of bioethanol is an environmentally friendly alternative to the most frequently used process, steam explosion (SE). However, this pretreatment can still not be industrially implemented due to long incubation times. The main objective of this work was to test the viability of and optimise the biological pretreatment of lignocellulosic biomass, which uses ligninolytic fungi (Pleurotus eryngii and Irpex lacteus) in a solid-state fermentation of sterilised wheat straw complemented with a mild alkali treatment. In this study, the most important parameters of the mechanical and thermal substrate conditioning processes and the most important parameters of the fungal fermentation process were optimised to improve sugar recovery. The largest digestibilities were achieved with fermentation with I. lacteus under optimised conditions, under which cellulose and hemicellulose digestibility increased after 21 days of pretreatment from 16 to 100 % and 12 to 87 %, respectively. The maximum glucose yield (84 %) of cellulose available in raw material was obtained after only 14 days of pretreatment with an overall ethanol yield of 74 % of the theoretical value, which is similar to that reached with SE.

  12. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L. PMID:24520716

  13. Removal of disinfection by-products formation potential by biologically intensified process

    Institute of Scientific and Technical Information of China (English)

    AN Dong; LI Wei-guang; CUI Fu-yi; HE Xin; ZHANG Jin-song

    2005-01-01

    The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation ( R2 = 0.9562 and R2 = 0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R2 = 0.9782. In addition certain linear correlations between THMFP, HAAFP and UV254 ( R2 = 0.855 and R2 = 0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.

  14. Production of Some Biologically Active Secondary Metabolites From Marine-derived Fungus Varicosporina ramulosa

    Directory of Open Access Journals (Sweden)

    Atalla, M. M.

    2008-01-01

    Full Text Available In a screening of fungal isolates associated with marine algae collected from Abou-keer, Alexanderia during the four seasons of 2004, to obtain new biologically active compounds. Varicosporina ramulosa isolate was identified and selected as a producer of 13 compounds. Out of 13 pure compounds produced, compounds 3 and 10 were considered as antibacterial and antifungal compounds, respectively as they were active against gram positive, gram negative bacteria and a fungus. Optimization of conditions (fermentation media, incubation period, temperature, initial pH, aeration levels which activate compounds 3 and 10 production were studied. Also the spectral properties (UV, MS, GC/MS, IR and 1H-NMR of the purified compounds were determined. Compound 3 suggested to be dibutyl phthalate and compound 10 may be ergosterol or one of its isomers. Biological evaluation of the two compounds towards 6 different types of tumor cell lines showed weak effect of compound 3 at different concentrations on the viable cell count of the different tumor cell lines. While compound 10 showed different activities against the viable cell count of the 6 different tumor cell lines. It kills 50% of the viable infected liver and lung cells at concentrations equal to 99.7 µg/mL, 74.9µg/mL, respectively. Compound 10 can be recommended as new anticancer compounds.

  15. Back to the Roots: Prediction of Biologically Active Natural Products from Ayurveda Traditional Medicine

    DEFF Research Database (Denmark)

    Polur, Honey; Joshi, Tejal; Workman, Christopher;

    2011-01-01

    . We hereby present a number of examples where the traditional medicinal use of the plant matches with the medicinal use of the drug that is structurally similar to a plant component. With this approach, we have brought to light a number of obscure compounds of natural origin (e.g. kanugin......Ayurveda, the traditional Indian medicine is one of the most ancient, yet living medicinal traditions. In the present work, we developed an in silico library of natural products from Ayurveda medicine, coupled with structural information, plant origin and traditional therapeutic use. Following this......, we compared their structures with those of drugs from DrugBank and we constructed a structural similarity network. Information on the traditional therapeutic use of the plants was integrated in the network in order to provide further evidence for the predicted biologically active natural compounds...

  16. Production and Analysis of Biological Properties of Recombinant Human Apolipoprotein A-I.

    Science.gov (United States)

    Ryabchenko, A V; Kotova, M V; Tverdohleb, N V; Knyazev, R A; Polyakov, L M

    2015-11-01

    Production of recombinant human apolipoprotein A-I (apoA-I) in E. coli cells is described and its biological properties are compared with those of natural protein. Recombinant apoA-I was isolated as a chimeric polypeptide and then processed to a mature form apoA-I (rapo-I). We studied the ability of the resulting protein to penetrate into hepatocyte nuclei and regulate the rate of DNA biosynthesis in complex with estriol. Penetration of rapoA-I conjugated with FITC into hepatocyte nuclei was demonstrated. rapoA-I-estriol and apoA-I-estriol complexes induced similar increase in DNA biosynthesis rate in isolated hepatocytes, which confi rms functional similarity of the obtained recombinant mature protein (rapoA-I) and native human apoA-I. PMID:26612626

  17. Postmarketing safety reports for human drug and biological products; electronic submission requirements. Final rule.

    Science.gov (United States)

    2014-06-10

    The Food and Drug Administration (FDA or we) is amending its postmarketing safety reporting regulations for human drug and biological products to require that persons subject to mandatory reporting requirements submit safety reports in an electronic format that FDA can process, review, and archive. FDA is taking this action to improve the Agency's systems for collecting and analyzing postmarketing safety reports. The change will help the Agency to more rapidly review postmarketing safety reports, identify emerging safety problems, and disseminate safety information in support of FDA's public health mission. In addition, the amendments will be a key element in harmonizing FDA's postmarketing safety reporting regulations with international standards for the electronic submission of safety information.

  18. Simulated influence of postweaning production system on performance of different biological types of cattle: III. Biological efficiency.

    Science.gov (United States)

    Williams, C B; Bennett, G L; Keele, J W

    1995-03-01

    Methods were developed and incorporated into a previously published computer model to predict ME intake and calculate biological efficiencies in terms of grams of empty BW (EBW) and fat-free matter (FFM) gained/megacalorie of ME consumed from weaning to slaughter. Efficiencies were calculated for steers from F1 crosses of 16 sire breeds (Hereford, Angus, Jersey, South Devon, Limousin, Simmental, Charolais, Red Poll, Brown Swiss, Gelbvieh, Maine Anjou, Chianina, Brahman, Sahiwal, Pinzgauer, and Tarentaise) mated to Hereford and Angus dams, grown under nine backgrounding systems, finished at either a low (1.0 kg) or high (1.36 kg) ADG, and slaughtered at 300 kg carcass weight, small or greater degree of marbling, and 28% carcass fat. Backgrounding systems were high ADG (.9 kg) for 111, 167, or 222 d, medium ADG (.5 kg) for 200, 300, or 400 d, and low ADG (.25 kg) for 300 or 400 d, and 0 d backgrounding. The high ADG finishing system was more biologically efficient than the low ADG finishing system, and generally backgrounding systems were less biologically efficient than direct finishing after weaning (0 d backgrounding). Large-framed breeds were more efficient at the constant carcass weight and carcass fatness end point, and breeds that achieved the marbling end point at low levels of carcass fatness were more efficient at this end point. Some small-framed breeds gained EBW more efficiently but gained FFM less efficiently than some of the large-framed breeds. Variation in efficiency between genotypes was greatest with 0 d backgrounding and decreased in the other backgrounding systems. PMID:7608001

  19. Simulated influence of postweaning production system on performance of different biological types of cattle: III. Biological efficiency.

    Science.gov (United States)

    Williams, C B; Bennett, G L; Keele, J W

    1995-03-01

    Methods were developed and incorporated into a previously published computer model to predict ME intake and calculate biological efficiencies in terms of grams of empty BW (EBW) and fat-free matter (FFM) gained/megacalorie of ME consumed from weaning to slaughter. Efficiencies were calculated for steers from F1 crosses of 16 sire breeds (Hereford, Angus, Jersey, South Devon, Limousin, Simmental, Charolais, Red Poll, Brown Swiss, Gelbvieh, Maine Anjou, Chianina, Brahman, Sahiwal, Pinzgauer, and Tarentaise) mated to Hereford and Angus dams, grown under nine backgrounding systems, finished at either a low (1.0 kg) or high (1.36 kg) ADG, and slaughtered at 300 kg carcass weight, small or greater degree of marbling, and 28% carcass fat. Backgrounding systems were high ADG (.9 kg) for 111, 167, or 222 d, medium ADG (.5 kg) for 200, 300, or 400 d, and low ADG (.25 kg) for 300 or 400 d, and 0 d backgrounding. The high ADG finishing system was more biologically efficient than the low ADG finishing system, and generally backgrounding systems were less biologically efficient than direct finishing after weaning (0 d backgrounding). Large-framed breeds were more efficient at the constant carcass weight and carcass fatness end point, and breeds that achieved the marbling end point at low levels of carcass fatness were more efficient at this end point. Some small-framed breeds gained EBW more efficiently but gained FFM less efficiently than some of the large-framed breeds. Variation in efficiency between genotypes was greatest with 0 d backgrounding and decreased in the other backgrounding systems.

  20. Biological hydrogen production by Anabaena sp. – Yield, energy and CO2 analysis including fermentative biomass recovery

    OpenAIRE

    Ferreira, Ana F.; Marques, Ana C.; Batista, Ana Paula; Marques, Paula Alexandra; de Gouveia, L.; Carla M. Silva

    2012-01-01

    This paper presents laboratory results of biological production of hydrogen by photoautrotophic cyanobacterium Anabaena sp. Additional hydrogen production from residual Cyanobacteria fermentation was achieved by Enterobacter aerogenes bacteria. The authors evaluated the yield of H2 production, the energy consumption and CO2 emissions and the technological bottlenecks and possible improvements of the whole energy and CO2 emission chain. The authors did not attempt to extrapolate the results to...

  1. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2012-12-01

    Full Text Available In Poland the cultivation of the fibrous form of flax (Linum usitatissimum L. is dying out, but the acreage of its oilseed form, linseed, which provides seed (Semen lini used in therapy and being a source of -linolenic acid, is expanding. Nowadays, linseed is grown in 64 countries of the world, but yield levels in these countries vary greatly. Under European conditions, seed yield of linseed shows high variation, which is evidence of little knowledge of the biology of this plant and the lack of precise cultivation solutions in agricultural technologies used. A major reason is the difficulty in obtaining optimal crop density. A sparse crop results in low above-ground biomass yield, which is translated into insufficient crop yields. The selection of highly productive domestic and foreign varieties can partially increase linseed yield; apart from some domestic varieties, the Canadian cultivar 'Flanders' and the Hungarian cultivar 'Barbara' are positive examples in this respect. There is a possibility of effective selection at early stages of linseed breeding, which bodes well for the prospect of obtaining highly productive varieties with normal or very low -linolenic acid content.

  2. Human chorionic gonadotropin: Different glycoforms and biological activity depending on its source of production.

    Science.gov (United States)

    Fournier, Thierry

    2016-06-01

    Human chorionic gonadotropin (hCG) is the first hormonal message from the placenta to the mother. It is detectable in maternal blood two days after implantation and behaves like a super LH agonist stimulating progesterone secretion by the corpus luteum. In addition to maintaining the production of progesterone until the placenta itself produces it, hCG also has a role in myometrial quiescence and local immune tolerance. Specific to humans, hCG is a complex glycoprotein composed of two highly glycosylated subunits. The α-subunit is identical to the pituitary gonadotropin hormones (LH, FSH, TSH), contains two N-glycosylation sites, and is encoded by a single gene (CGA). By contrast, the β-subunits are distinct for each hormones and confer both receptor and biological specificity, although LH and hCG bind to the same receptor (LH/CG-R). The hCG ß-subunit is encoded by a cluster of genes (CGB) and contains two sites of N-glycosylation and four sites of O-glycosylation. The hCG glycosylation state varies with the stage of pregnancy, its source of production and in the pathology. It is well established that hCG is mainly secreted into maternal blood, where it peaks at 8-10weeks of gestation (WG), by the syncytiotrophoblast (ST), which represents the endocrine tissue of the human placenta. The invasive extravillous trophoblast (iEVT) also secretes hCG, and in particular hyperglycosylated forms of hCG (hCG-H) also produced by choriocarcinoma cells. In maternal blood, hCG-H is elevated during early first trimester corresponding to the trophoblastic cell invasion process and then decreases. In addition to its endocrine role, hCG has autocrine and paracrine roles. It promotes formation of the ST and angiogenesis through LH/CG-R but has no effect on trophoblast invasion in vitro. By contrast, hCG-H stimulates trophoblast invasion and angiogenesis by interacting with the TGFß receptor in a LH/CG-R independent signalling pathway. hCG is largely used in antenatal screening

  3. A hybrid flowshop scheduling model considering dedicated machines and lot-splitting for the solar cell industry

    Science.gov (United States)

    Wang, Li-Chih; Chen, Yin-Yann; Chen, Tzu-Li; Cheng, Chen-Yang; Chang, Chin-Wei

    2014-10-01

    This paper studies a solar cell industry scheduling problem, which is similar to traditional hybrid flowshop scheduling (HFS). In a typical HFS problem, the allocation of machine resources for each order should be scheduled in advance. However, the challenge in solar cell manufacturing is the number of machines that can be adjusted dynamically to complete the job. An optimal production scheduling model is developed to explore these issues, considering the practical characteristics, such as hybrid flowshop, parallel machine system, dedicated machines, sequence independent job setup times and sequence dependent job setup times. The objective of this model is to minimise the makespan and to decide the processing sequence of the orders/lots in each stage, lot-splitting decisions for the orders and the number of machines used to satisfy the demands in each stage. From the experimental results, lot-splitting has significant effect on shortening the makespan, and the improvement effect is influenced by the processing time and the setup time of orders. Therefore, the threshold point to improve the makespan can be identified. In addition, the model also indicates that more lot-splitting approaches, that is, the flexibility of allocating orders/lots to machines is larger, will result in a better scheduling performance.

  4. Biological material (DNA and RNA) bank of nuclear production workers and residents of nearby territories

    International Nuclear Information System (INIS)

    Seversk Biophysical Research Centre (SBRC) has been engaged in creating DNA and biological material bank of workers of nuclear production (Siberian Group of Chemical Enterprises - SGCE) and residents of nearby areas (the town of Seversk) since 2002. Following the developed methodology, for each person this bank includes three units of storage: DNA sample extracted by standard method using proteinase K (the main sample), DNA sample isolated by means of 'quick' extraction method (work sample), and 1.5 ml blood sample (spare sample). For each DNA donor there have been obtained cytogenetic agents to estimate frequency and spectrum of chromosome aberrations. There has been completed DNA bank of SGCE workers (healthy individuals, cancer patients and those who survived acute myocardial infarction) as well as Seversk children aged 9-11 examined within SBRC special screening programme to diagnose thyroid diseases. At present, this DNA and biological material bank includes 5,988 units of storage (DNA samples extracted by means of standard method, DNA work samples isolated by quick extraction method, and spare blood samples). For every donor there has been obtained an informed consent. Storage conditions comply with technical regulations and provide for long-term (for decades) safety of the material. Personal information on DNA donors (age, internal and external doses, length of service, occupational data and case history) is contained in the Regional Medicodosimetric Register. Currently work is underway to create RNA bank identical to the existing DNA bank. For each person this bank contains two units of storage: the main high quality RNA sample isolated by hot phenol extraction; a work sample - of single stranded cDNA, extracted on RNA matrix through reverse transcription reaction. RNA bank will allow complex study of radiation effects in low dose range on the transcript of nuclear production workers and people living nearby. Thus, SBNC DNA and biological material bank

  5. Removal of Review and Reclassification Procedures for Biological Products Licensed Prior to July 1, 1972. Final rule.

    Science.gov (United States)

    2016-02-12

    The Food and Drug Administration (FDA, the Agency, or we) is removing two regulations that prescribe procedures for FDA's review and classification of biological products licensed before July 1, 1972. FDA is taking this action because the two regulations are obsolete and no longer necessary in light of other statutory and regulatory authorities established since 1972, which allow FDA to evaluate and monitor the safety and effectiveness of all biological products. In addition, other statutory and regulatory authorities authorize FDA to revoke a license for biological products because they are not safe and effective, or are misbranded. FDA is taking this action as part of its retrospective review of its regulations to promote improvement and innovation. PMID:26878738

  6. Biological Production of Methane from Lunar Mission Solid Waste: An Initial Feasibility Assessment

    Science.gov (United States)

    Strayer, Richard; Garland, Jay; Janine, Captain

    A preliminary assessment was made of the potential for biological production of methane from solid waste generated during an early planetary base mission to the moon. This analysis includes: 1) estimation of the amount of biodegradable solid waste generated, 2) background on the potential biodegradability of plastics given their significance in solid wastes, and 3) calculation of potential methane production from the estimate of biodegradable waste. The completed analysis will also include the feasibility of biological methane production costs associated with the biological processing of the solid waste. NASA workshops and Advanced Life Support documentation have estimated the projected amount of solid wastes generated for specific space missions. From one workshop, waste estimates were made for a 180 day transit mission to Mars. The amount of plastic packaging material was not specified, but our visual examination of trash returned from stocktickerSTS missions indicated a large percentage would be plastic film. This plastic, which is not biodegradable, would amount to 1.526 kgdw crew-1 d-1 or 6.10 kgdw d-1 for a crew of 4. Over a mission of 10 days this would amount to 61 kgdw of plastics and for an 180 day lunar surface habitation it would be nearly 1100 kgdw . Approx. 24 % of this waste estimate would be biodegradable (human fecal waste, food waste, and paper), but if plastic packaging was replaced with biodegradable plastic, then 91% would be biodegradable. Plastics are man-made long chain polymeric molecules, and can be divided into two main groups; thermoplastics and thermoset plastics. Thermoplastics comprise over 90% of total plastic use in the placecountry-regionUnited States and are derived from polymerization of olefins via breakage of the double bond and subsequent formation of additional carbon to carbon bonds. The resulting sole-carbon chain polymers are highly resistant to biodegradation and hydrolytic cleavage. Common thermoplastics include low

  7. Toxicity of parking lot runoff after application of simulated rainfall.

    Science.gov (United States)

    Greenstein, D; Tiefenthaler, L; Bay, S

    2004-08-01

    Stormwater runoff is an important source of toxic substances to the marine environment, but the effects of antecedent dry period, rainfall intensity, and duration on the toxicity of runoff are not well understood. In this study, simulated rainfall was applied to parking lots to examine the toxicity of runoff while controlling for antecedent period, intensity, and duration of rainfall. Parking areas were divided into high and low use and maintained and unmaintained treatments. The parking stalls were cleaned by pressure washing at time zero. Simulated rainfall was then applied to subplots of the parking lots so that antecedent periods of 1, 2, and 3 months were achieved, and all of the runoff was collected for analysis. On a separate parking lot, rainfall was applied at a variety of intensities and durations after a 3-month antecedent period. Runoff samples were tested for toxicity using the purple sea urchin fertilization test. Every runoff sample tested was found to be toxic. Mean toxicity for the sea urchin fertilization test ranged from 2.0 to 12.1 acute toxic units. The toxicity increased rapidly during the first month but then decreased approximately to precleaning levels and remained there. No difference in toxicity was found between the different levels of use or maintenance treatments. The intensity and duration of rainfall were inversely related to degree of toxicity. For all intensities tested, toxicity was always greatest in the first sampling time interval. Dissolved zinc was most likely the primary cause of toxicity based on toxicant characterization of selected runoff samples.

  8. Nutrient availability affects pigment production but not growth in lichens of biological soil crusts

    Science.gov (United States)

    Bowker, M.A.; Koch, G.W.; Belnap, J.; Johnson, N.C.

    2008-01-01

    Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily P, K, and Zn) had a suppressive effect on gross photosynthesis (P = 0.05). We also monitored the growth and physiological status of our microcosms and found that other nutrients increased the production of scytonemin, an important sunscreen pigment, but only when not added with Mn (P = 0.01). A structural equation model indicated that this effect was independent of any photosynthesis-related variable. We propose two alternative hypotheses to account for this pattern: (1) Mn suppresses processes needed to produce scytonemin; and (2) Mn is required to suppress scytonemin production at low light, when it is an unnecessary photosynthate sink. Although Mn fertilization does not appear likely to increase photosynthesis or growth of Collema, it could have a role in survivorship during environmentally stressful periods due to modification of scytonemin production. Thus, Mn enrichment should be studied further for its potential to facilitate BSC rehabilitation. ?? 2008 Elsevier Ltd.

  9. Potentiels urbains et îlots de chaleur

    OpenAIRE

    Cornélis, Bernard; Binard, Marc; Istvan NADASDI

    1998-01-01

    The present contribution aims at answering in a quantitative way the question: is there a relationship between urban heat island and urban potential ? If such a relationship exits, it tries to quantify it and to answer the following questions : - would the potential model allow the representation of the heat island phenomenon ? - If so, in which conditions ? La présente contribution vise à répondre de manière quantitative à la question: existe-t-il une relation entre les îlots de chaleur ...

  10. REDUCING OF EXCESS SLUDGE PRODUCTION IN WASTEWATER TREATMENT USING COMBINED ANAEROBIC/AEROBIC SUBMERGED BIOLOGICAL FILTERS

    Directory of Open Access Journals (Sweden)

    M. A. Baghapour

    2011-09-01

    Full Text Available In this research, possibility of reducing excess sludge production in wastewater treatment was investigated using a combined anaerobic and aerobic submerged biological filter in a pilot scale. The physical model designed, erected and operated consisted of two pipes of PVC type with 147mm and 237mm diameter used as aerobic and anaerobic filters, respectively. The effective height of porous media in these filters was 70cm. Two filters were connected to eachother in a series form and the resulted system was loaded using synthetic wastewater based on sucrose in the range of 1.91 to 30.61 kg/m3 for anaerobic filter and 1.133 to 53.017 kg/m3 for aerobic filter. For similar loadings, the aerobic filter showed efficiency of 1.8 times that of anaerobic filter in removal of soluble COD. Return of 100% flow from the aerobic filter to the anaerobic filter for 30kg/m3.d of organic loading increased the efficiencies of the anaerobic filter, the aerobic filter and the combined system as 17%, 14% and 15%, respectively and the effect of the return of the flow was more pronounced in smaller hydraulic retention times and larger loadings. 100% return of the flow reduced the yield coefficient for the whole system to 0.037 for 53 kg/m3 loading which is a suitable value with regard to the scheme and no use of chemical materials such as chlorine and ozone. This coefficient reached a value as small as 0.007 in common loadings (7.5kg/m3 for 100% return of the flow which is very close to zero. So, this method could be considered as a complete biological treatment with low excess sludge and could be assessed in full scale.

  11. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties.

    Science.gov (United States)

    Osińska-Jaroszuk, Monika; Jarosz-Wilkołazka, Anna; Jaroszuk-Ściseł, Jolanta; Szałapata, Katarzyna; Nowak, Artur; Jaszek, Magdalena; Ozimek, Ewa; Majewska, Małgorzata

    2015-12-01

    Fungal polysaccharides (PSs) are the subject of research in many fields of science and industry. Many properties of PSs have already been confirmed and the list of postulated functions continues to grow. Fungal PSs are classified into different groups according to systematic affinity, structure (linear and branched), sugar composition (homo- and heteropolysaccharides), type of bonds between the monomers (β-(1 → 3), β-(1 → 6), and α-(1 → 3)) and their location in the cell (cell wall PSs, exoPSs, and endoPSs). Exopolysaccharides (EPSs) are most frequently studied fungal PSs but their definition, classification, and origin are still not clear and should be explained. Ascomycota and Basidiomycota fungi producing EPS have different ecological positions (saprotrophic and endophytic, pathogenic or symbiotic-mycorrhizae fungi); therefore, EPSs play different biological functions, for example in the protection against environmental stress factors and in interactions with other organisms. EPSs obtained from Ascomycota and Basidiomycota fungal cultures are known for their antioxidant, immunostimulating, antitumor, and antimicrobial properties. The major objective of the presented review article was to provide a detailed description of the state-of-the-art knowledge of the effectiveness of EPS production by filamentous and yeast Ascomycota and Basidiomycota fungi and techniques of derivation of EPSs, their biochemical characteristics, and biological properties allowing comprehensive analysis as well as indication of similarities and differences between these fungal groups. Understanding the role of EPSs in a variety of processes and their application in food or pharmaceutical industries requires improvement of the techniques of their derivation, purification, and characterization. The detailed analyses of data concerning the derivation and application of Ascomycota and Basidiomycota EPSs can facilitate development and trace the direction of application of these EPSs

  12. Removal of anaerobic soluble microbial products in a biological activated carbon reactor

    Institute of Scientific and Technical Information of China (English)

    Xiaojing Dong; Weili Zhou; Shengbing He

    2013-01-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable.Focusing on the biodegradation of anaerobic SMP,the biological activated carbon (BAC) was introduced into the anaerobic system.The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors.The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2,i.e.,BAC) functioned as a polishing step to remove SMP produced in UASB1.The results showed that 90% of the SMP could be removed before granular activated carbon was saturated.After the saturation,the SMP removal decreased to 60% on the average.Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation.A strain of SMP-degrading bacteria,which was found highly similar to Klebsiella sp.,was isolated,enriched and inoculated back to the BAC reactor.When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3·day),the effluent from the BAC reactor could meet the discharge standard without further treatment.Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective,cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  13. Dynamic programming algorithm for economic lot-sizing problem with bounded inventory and out-sourcing

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao; WANG Cheng-en

    2005-01-01

    This paper addresses a single item dynamic lot-sizing model with inventory capacity and out-sourcing. The goal is to minimize the total costs of production, setup, inventory holding and out-sourcing. Two versions of an out-sourcing model with time-varying costs are considered: stock out case and conservation case. Zero Inventory Order property has been found and some new properties are obtained in an optimal solution. Dynamic programming algorithms are developed to solve the problem in strongly polynomial time respectively. Furthermore, some numerical results demonstrate that the approach proposed is efficient and applicable.

  14. Regulatory and information support for evaluation of biological productivity of Ukrainian forests and climate change

    Science.gov (United States)

    Lakyda, Petro; Vasylyshyn, Roman; Lakyda, Ivan

    2013-04-01

    Stabilization and preservation of the planet's climate system today is regarded as one of the most important global political-economic, environmental and social problems of mankind. Rising concentration of carbon dioxide in the planet's atmosphere due to anthropogenic impact is the main reason leading to global climate change. Due to the above mentioned, social demands on forests are changing their biosphere role and function of natural sink of greenhouse gases becomes top priority. It is known that one of the most essential components of biological productivity of forests is their live biomass. Absorption, long-term sequestration of carbon and generation of oxygen are secured by its components. System research of its parametric structure and development of regulatory and reference information for assessment of aboveground live biomass components of trees and stands of the main forest-forming tree species in Ukraine began over twenty-five years ago at the department of forest mensuration and forest inventory of National University of Life and Environmental Sciences of Ukraine, involving staff from other research institutions. Today, regulatory and reference materials for evaluation of parametric structure of live biomass are developed for trees of the following major forest-forming tree species of Ukraine: Scots pine of natural and artificial origin, Crimean pine, Norway spruce, silver fir, pedunculate oak, European beech, hornbeam, ash, common birch, aspen and black alder (P.I. Lakyda et al., 2011). An ongoing process on development of similar regulatory and reference materials for forest stands of the abovementioned forest-forming tree species of Ukraine is secured by scientists of departments of forest management, and forest mensuration and forest inventory. The total experimental research base is 609 temporary sample plots, where 4880 model trees were processed, including 3195 model trees with estimates of live biomass components. Laboratory studies conducted

  15. Wine as a biological fluid: history, production, and role in disease prevention.

    Science.gov (United States)

    Soleas, G J; Diamandis, E P; Goldberg, D M

    1997-01-01

    Wine has been part of human culture for 6,000 years, serving dietary and socio-religious functions. Its production takes place on every continent, and its chemical composition is profoundly influenced by enological techniques, the grape cultivar from which it originates, and climatic factors. In addition to ethanol, which in moderate consumption can reduce mortality from coronary heart disease by increasing high-density lipoprotein cholesterol and inhibiting platelet aggregation, wine (especially red wine) contains a range of polyphenols that have desirable biological properties. These include the phenolic acids (p-coumaric, cinnamic, caffeic, gentisic, ferulic, and vanillic acids), trihydroxy stilbenes (resveratrol and polydatin), and flavonoids (catechin, epicatechin, and quercetin). They are synthesized by a common pathway from phenylalanine involving polyketide condensation reactions. Metabolic regulation is provided by competition between resveratrol synthase and chalcone synthase for a common precursor pool of acyl-CoA derivatives. Polymeric aggregation gives rise, in turn to the viniferins (potent antifungal agents) and procyanidins (strong antioxidants that also inhibit platelet aggregation). The antioxidant effects of red wine and of its major polyphenols have been demonstrated in many experimental systems spanning the range from in vitro studies (human low-density lipoprotein, liposomes, macrophages, cultured cells) to investigations in healthy human subjects. Several of these compounds (notably catechin, quercetin, and resveratrol) promote nitric oxide production by vascular endothelium; inhibit the synthesis of thromboxane in platelets and leukotriene in neutrophils, modulate the synthesis and secretion of lipoproteins in whole animals and human cell lines, and arrest tumour growth as well as inhibit carcinogenesis in different experimental models. Target mechanisms to account for these effects include inhibition of phospholipase A2 and cyclo

  16. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant.

    Science.gov (United States)

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Lukasz

    2012-05-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l(-1) nitrate, 4.8 mg l(-1) nitroglycerin, 1.9 mg l(-1) nitroglycol and 1,200 mg l(-1) chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic conditions was used. Complete removal of nitrates with simultaneous elimination of nitroglycerin and ethylene glycol dinitrate (nitroglycol) was achieved as a result of the conducted research. Specific nitrate reduction rate was estimated at 12.3 mg N g(-1) VSS h(-1). Toxicity of wastewater samples during the denitrification process was studied by measuring the activity of dehydrogenases in the activated sludge. Mutagenicity was determined by employing the Ames test. The maximum mutagenic activity did not exceed 0.5. The obtained results suggest that the studied wastewater samples did not exhibit mutagenic properties. PMID:22593607

  17. A biological/chemical process for reduced waste and energy consumption: caprolactam production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable to metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.

  18. Standard versus reserve lots of Thymus x citriodorus L. and Mentha spicata L. : nutritional contribution of the infusions

    OpenAIRE

    Rita, Íngride; Pereira, Carla; Barros, Lillian; Ferreira, Isabel C.F.R.

    2015-01-01

    Nowadays we can notice a significant increase in the consumption of tea and herbal infusions, in such a way that their daily worldwide consumption is valuated in more than three million cups. Hence, as expected, the tea market became a highly competitive and sophisticated sector, where a wide range of products continue to be developed for added-value [1, 2]. An example in the tea industry of a new range of emerging products, are the designated "reserve lots" exclusively made up...

  19. Demand uncertainty and lot sizing in manufacturing systems: the effects of forecasting errors and mis-specification

    OpenAIRE

    Kingsman, B G; R A Fildes

    2005-01-01

    This paper proposes a methodology for examining the effect of demand uncertainty and forecast error on lot sizing methods, unit costs and customer service levels in MRP type manufacturing systems. A number of cost structures were considered which depend on the expected time between orders. A simple two-level MRP system where the product is manufactured for stock was then simulated. Stochastic demand for the final product was generated by two commonly occurring processes and with different var...

  20. The classification of gene products in the molecular biology domain: Realism, objectivity, and the limitations of the Gene Ontology

    OpenAIRE

    Mayor, Charlie

    2012-01-01

    Background: Controlled vocabularies in the molecular biology domain exist to facilitate data integration across database resources. One such tool is the Gene Ontology (GO), a classification designed to act as a universal index for gene products from any species. The Gene Ontology is used extensively in annotating gene products and analysing gene expression data, yet very little research exists from a library and information science perspective exploring the design principles, philosophy and s...

  1. Comparison of heuristics for an economic lot scheduling problem with deliberated coproduction

    Directory of Open Access Journals (Sweden)

    Pilar I. Vidal-Carreras

    2009-12-01

    Full Text Available We built on the Economic Lot Scheduling Problem Scheduling (ELSP literature by making some modifications in order to introduce new constraints which had not been thoroughly studied with a view to simulating specific real situations. Specifically, our aim is to propose and simulate different scheduling policies for a new ELSP variant: Deliberated Coproduction. This problem comprises a product system in an ELSP environment in which we may choose if more than one product can be produced on the machine at a given time. We expressly consider the option of coproducing two products whose demand is not substitutable. In order to draw conclusions, a simulation model and its results were developed in the article by employing modified Bomberger data which include two items that could be produced simultaneously.

  2. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  3. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Science.gov (United States)

    2010-07-01

    ... Human Services that applicant did not act with due diligence; (iii) One-half the number of days... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human...

  4. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    OpenAIRE

    Birkhofer, Klaus; Bezemer, TM; . Bloem, J.; Bonkowski, M.; Christensen, S; Dubois, David; Ekelund , F; Fließbach, Andreas; Gunst, Lucie; K. Hedlund; Mäder, Paul; Mikola, J.; Robin, C.; Setälä, Heikki; Tatin-Froux , F

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences ...

  5. Long-term organic farming fosters below- and aboveground biota: Implications for soil quality, biological control and productivity

    OpenAIRE

    Birkhofer, K.; Bezemer, TM; . Bloem, J.; Bonkowski, M.; Christensen, S; Dubois, D; Ekelund , F; Fließbach, A.; Gunst , L; K. Hedlund; Mäder, P.; Mikola, J.; Robin, C.; Setälä , H; Tatin-Froux , F

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differenc...

  6. Long-term organic farming fosters below- and aboveground biota: Implications for soil quality, biological control, and productivity

    OpenAIRE

    Birkhofer, Klaus; Bezemer, T. Martijn; Bloem, Jaap; Bonkowski, Michael; Christensen, Søren; Dubois, David; Ekelund, Fleming; Fließbach, Andreas; Gunst, Lucie; Hedlund, Katarina; Mäder, Paul; Mikola, Juha; Robin, Christophe; Setälä, Heikki; Tatin-Froux, Fabienne

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences ...

  7. Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide

    NARCIS (Netherlands)

    Jourdin, Ludovic; Lu, Yang; Flexer, Victoria; Keller, Jurg; Freguia, Stefano

    2016-01-01

    Electron-transfer pathways occurring in biocathodes are still unknown. We demonstrate here that high rates of acetate production by microbial electrosynthesis are mainly driven by an electron flux from the electrode to carbon dioxide, occurring via biologically induced hydrogen, with (99±1)% elec

  8. WHO Expert Committee on Biological Standardization.

    Science.gov (United States)

    2013-01-01

    This report presents the recommendations of a WHO expert committee commissioned to coordinate activities leading to the adoption of international recommendations for the production and control of vaccines and other biologicals and the establishment of international biological reference materials. The report starts with a discussion of general issues brought to the attention of the Committee and provides information on the status and development of reference materials for various antibodies, antigens, blood products and related substances, cytokines, growth factors, endocrinological substances and in vitro diagnostic devices. The second part of the report, of particular relevance to manufacturers and national regulatory authorities, contains revised WHO Recommendations for evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products, for production and control of hepatitis B vaccines and for production and control of yellow fever vaccines. New WHO Guidelines on the independent lot release of vaccines are also included. Finally, there is an update to the procedure for the prequalification of vaccines. Also included are lists of Recommendations, Guidelines and other documents related to the manufacture and control of biological substances used in medicine, and of International Standards and Reference Reagents for biological substances. PMID:24340794

  9. Doing Gener in Brazilian Biology: Obstacles and Prejudices on Knowledge Production within the FAFESP Genome Proyect

    Directory of Open Access Journals (Sweden)

    Conceição da Costa, Maria

    2008-10-01

    Full Text Available This article aims to analyse the participation of women scientist in knowledge production within the Genome Project sponsored by FAPESP (The State of São Paulo Research Foundation. Between 1997 and 2003, FAPESP invested approximately 33 million euros to develop the FAPESP Genome Project (PGF, generating major changes in Molecular Biology in Brazil: institutions devoted to fostering science and technology have been investing large sum of money; bioinformatics became one of the fields with great demand for professionals, and the results of the Xylella Genome Project, first organism sequenced in Brazil, were published in several international scientific journals including Nature, and Brazil became the first country to develop genome projects outside USA, Europe and Japan. As a consequence of this process, women scientists were loosing space as “spokespersons of this new science”, playing secondary roles at the project.Este artículo tiene como objetivo analizar la participación de las mujeres en la producción de conocimiento del proyecto genoma financiado por la FAPESP (Fundación de Apoyo a la Investigación del Estado de São Paulo. Entre 1997 y 2003, FAPESP invirtió aproximadamente 33 millones de euros en el desarrollo del Proyecto Genoma Fapesp (PGF, provocando importantes cambios en la Biología Molecular brasileña: las instituciones de fomento a la investigación comenzaron a promoverla con grandes financiaciones; la bioinformática se tornó uno de los campos con mayor demanda de profesionales y, por fin, los resultados del Proyecto Genoma de la Xylella Fastidiosa, primer organismo vivo secuenciado en Brasil, se publicaron en revistas científicas internacionales, como Nature. Con ello se convierte en el primer país fuera de la tríada EUA-Europa-Japón en desarrollar proyectos genoma. Como consecuencia del proceso, las mujeres están perdiendo espacio como “portavoces de esta nueva ciencia”, ocupando papeles secundarios en el

  10. Organic marker compounds for surface soil and fugitive dust from open lot dairies and cattle feedlots

    Science.gov (United States)

    Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.

    Fugitive dust emissions from cattle feedlots and open lot dairies are substantial. In order to determine the contribution of intensive cattle operations on ambient PM levels, more knowledge besides the elemental composition is necessary in order to distinguish between airborne PM from nearby agricultural fields, barren lands, or dirt roads. Here, as part of the San Joaquin Valley Fugitive Dust Characterization Study, surface soil samples collected from feedlots and open lot dairy farms are investigated for potential source specific molecular marker compounds. More than 100 organic compounds were quantified including: n-alkanes, n-alkanoic acids, n-alkenoic acids, n-alkanols, n-alkanals, n-alkan-2-ones, steroids, triterpenoids, isoprenoids, and tocopherols (vitamin E) and metabolites. Biohydrogenation of plant lipids and sterols in the rumen results in distinctive alteration products. Animal and plant derived steroids are most abundant. Here, it is shown that 5 β-stigmastanol and epi-5 β-stigmastanol, two biohydrogenation products of sitosterol and stigmasterol, are the most distinctive molecular marker compounds. While stearic (C 18) and palmitic (C 16) acids are as individual compounds not source specific, biohydrogenation of the more abundant C 18 unsaturated fatty acids, causes the ratio of C 18/C 16 fatty acids to shift from below 0.5 for vegetation to an average of 3.0±0.7. Consequently, the C 18/C 16 fatty acid ratio is unique and can be used as well in source apportionment studies.

  11. Parking lots owned and maintained by the U.S. Fish and Wildlife Service

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — U.S. Fish and Wildlife Service parking lot inventory includes parking lots owned and maintained by the U.S. Fish and Wildlife Service on National Wildlife Refuges,...

  12. Predictive Analyses of Biological Effects of Natural Products: From Plant Extracts to Biomolecular Laboratory and Computer Modeling

    Directory of Open Access Journals (Sweden)

    Roberto Gambari

    2011-01-01

    Full Text Available Year by year, the characterization of the biological activity of natural products is becoming more competitive and complex, with the involvement in this research area of experts belonging to different scientific fields, including chemistry, biochemistry, molecular biology, immunology and bioinformatics. These fields are becoming of great interest for several high-impact scientific journals, including eCAM. The available literature in general, and a survey of reviews and original articles recently published, establishes that natural products, including extracts from medicinal plants and essential oils, retain interesting therapeutic activities, including antitumor, antiviral, anti-inflammatory, pro-apoptotic and differentiating properties. In this commentary, we focus attention on interest in networks based on complementary activation and comparative evaluation of different experimental strategies applied to the discovery and characterization of bioactive natural products. A representative flow chart is shown in the paper.

  13. Changes in biological productivity along the northwest African margin over the past 20,000 years

    Science.gov (United States)

    Bradtmiller, Louisa I.; McGee, David; Awalt, Mitchell; Evers, Joseph; Yerxa, Haley; Kinsley, Christopher W.; deMenocal, Peter B.

    2016-01-01

    The intertropical convergence zone and the African monsoon system are highly sensitive to climate forcing at orbital and millennial timescales. Both systems influence the strength and direction of the trade winds along northwest Africa and thus directly impact coastal upwelling. Sediment cores from the northwest African margin record upwelling-related changes in biological productivity connected to changes in regional and hemispheric climate. We present records of 230Th-normalized biogenic opal and Corg fluxes using a meridional transect of four cores from 19°N-31°N along the northwest African margin to examine changes in paleoproductivity since the last glacial maximum. We find large changes in biogenic fluxes synchronous with changes in eolian fluxes calculated using end-member modeling, suggesting that paleoproductivity and dust fluxes were strongly coupled, likely linked by changes in wind strength. Opal and Corg fluxes increase at all sites during Heinrich Stadial 1 and the Younger Dryas, consistent with an overall intensification of the trade winds, and changes in the meridional flux gradient indicate a southward wind shift at these times. Biogenic fluxes were lowest, and the meridional flux gradients were weakest during the African Humid Period when the monsoon was invigorated due to precessional changes, with greater rainfall and weaker trade winds over northwest Africa. These results expand the spatial coverage of previous paleoproxy studies showing similar changes, and they provide support for modeling studies showing changes in wind strength and direction consistent with increased upwelling during abrupt coolings and decreased upwelling during the African Humid Period.

  14. Photolytic transformation products and biological stability of the hydrological tracer Uranine.

    Science.gov (United States)

    Gutowski, Lukasz; Olsson, Oliver; Lange, Jens; Kümmerer, Klaus

    2015-11-15

    Among many fluorescence tracers, Uranine (sodium fluorescein, UR) has most widely been used in hydrological research. Extensive use of UR for tracing experiments or commercial use might cause a potential risk of long-term environmental contamination. As any organic substance released to the environment, also UR is subjected to chemical and physical reactions that can be chemical, biological and photolysis processes. These processes transform the parent compound (PC) and have not been extensively investigated for UR. This study applies two OECDs (301 D and 301 F) tests and a screening water sediment test (WST) to investigate the biodegradability of the PC. Photolysis in water was explored by Xe lamp irradiation. Subsequently, the biodegradability of the photolysis mixtures was examined. The primary elimination of UR was monitored and structures of its transformation products (TPs) were elucidated by HPLC-FLD-MS/MS. UR was found not readily biodegradable, although small degradation rates could be observed in the OECD 301 D and WST. HPLC-FLD analysis showed high primary elimination of the tracer during photolysis. However, the low degree of mineralization found indicates that the UR was not fully degraded, instead transformed to TPs. A total of 5 photo-TPs were identified. According to MS/MS data, chemical structures could be proposed for all identified photo-TPs. Likewise the parent compound it was demonstrated that photo-TPs were largely recalcitrant to microbial degradation. Although we did not find indications for toxicity, target-oriented studies on the environmental impact of these photo-TPs are warranted. Results obtained in this study show that deeper investigations are necessary to fully understand fate and risk connected to the use of UR. PMID:26179782

  15. Data Compilation for AGR-1 Baseline Compact Lot LEU01-46T-Z

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D [ORNL; Montgomery, Fred C [ORNL; Pappano, Peter J [ORNL

    2006-08-01

    This document is a compilation of characterization data for the AGR-1 baseline compact lot LEU01-46T-Z. The compacts were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program for the first AGR irradiation test train (AGR-1). This compact lot was fabricated using particle composite LEU01-46T, which was a composite of four batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with an {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness), followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness), followed by a SiC layer (35 {micro}m nominal thickness), followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). A data compilation for the AGR-1 baseline coated particle composite LEU01-46T can be found in ORNL/TM-2006/019. The AGR-1 Fuel product Specification and Characterization Guidance (INL EDF-4380) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-1 irradiation test. Section 6.2 of EDF-4380 provides the property requirements for the heat treated compacts. The Statistical Sampling Plan for AGR Fuel materials (INL EDF-4542) provides additional guidance regarding statistical methods for product acceptance and recommended sample sizes. The procedures for characterizing and qualifying the compacts are outlined in ORNL product inspection plan AGR-CHAR-PIP-05. the inspection report forms generated by this product inspection plan document the product acceptance for the property requirements listed in section 6.2 of EDF-4380.

  16. Data Compilation for AGR-1 Variant 2 Compact Lot LEU01-48T-Z

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D [ORNL; Montgomery, Fred C [ORNL; Pappano, Peter J [ORNL

    2006-08-01

    This document is a compilation of characterization data for the AGR-1 variant 2 compact lot LEU01-48T-Z. The compacts were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program for the first AGR irradiation test train (AGR-1). This compact lot was fabricated using particle composite LEU01-48T, which was a composite of three batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with an {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness), followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness), followed by a SiC layer (35 {micro}m nominal thickness), followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). A data compilation for the AGR-1 variant 2 coated particle composite LEU01-48T can be found in ORNL/TM-2006/021. The AGR-1 Fuel Product Specification and Characterization Guidance (INL EDF-4380) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-1 irradiation test. Section 6.2 of EDF-4380 provides the property requirements for the heat treated compacts. The Statistical Sampling Plan for AGR Fuel materials (INL EDF-4542) provides additional guidance regarding statistical methods for product acceptance and recommended sample sizes. The procedures for characterizing and qualifying the compacts are outlined in ORNL product inspection plan AGR-CHAR-PIP-05. The inspection report forms generated by this product inspection plan document the product acceptance for the property requirements listed in section 6.2 of EDF-4380.

  17. Data Compilation for AGR-1 Variant 1 Compact Lot LEU01-47T-Z

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D [ORNL; Montgomery, Fred C [ORNL; Pappano, Peter J [ORNL

    2006-08-01

    This document is a compilation of characterization data for the AGR-1 variant 1 compact lot LEU01-47T-Z. The compacts were produced by ORNL for the ADvanced Gas Reactor Fuel Development and Qualification (AGR) program for the first AGR irradiation test train (AGR-1). This compact lot was fabricated using particle composite LEU01-47T, which was a composite of three batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with an {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness), followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness), followed by a SiC layer (35 {micro}m nominal thickness), followed by another dense outer pyrcoarbon layer (40 {micro}m nominal thickness). The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified at LEU01-?? (where ?? is a series of integers beginning with 01). A data compilation for the AGR-1 variant 1 coated particle composite LEU01-47T can be found in ORNL/TM-2006/020. The AGR-1 Fuel Product Specification and Characterization Guidance (INL EDF-4380) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-1 irradiation test. Section 6.2 of EDF-4380 provides the property requirements for the heat treated compacts. The Statistical Sampling Plan for AGR Fuel Materials (INL EDF-4542) provides additional guidance regarding statistical methods for product acceptance and recommended sample sizes. The procedures for characterizing and qualifying the compacts are outlined in ORNL product inspection plan AGR-CHAR-PIP-05. The inspection report forms generated by this product inspection plan document the product acceptance for the property requirements listed in section 6.2 of EDF-4380.

  18. 7 CFR 27.12 - Classification request for each lot of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification request for each lot of cotton. 27.12... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Classification Requests § 27.12 Classification request for each lot of cotton. For each lot or mark of cotton of which...

  19. What controls biological production in coastal upwelling systems? Insights from a comparative modeling study

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-10-01

    Full Text Available The magnitude of net primary production (NPP in Eastern Boundary Upwelling Systems (EBUS is traditionally viewed as directly reflecting the wind-driven upwelling intensity. Yet, different EBUS show different sensitivities of NPP to upwelling-favorable winds (Carr and Kearns, 2003. Here, using a comparative modeling study of the California Current System (California CS and Canary Current System (Canary CS, we show how physical and environmental factors, such as light, temperature and cross-shore circulation modulate the response of NPP to upwelling strength. To this end, we made a series of eddy-resolving simulations of the two upwelling systems using the Regional Oceanic Modeling System (ROMS, coupled to a nitrogen-based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD ecosystem model. Using identical ecological/biogeochemical parameters, our coupled model simulates a level of NPP in the California CS that is 50 % smaller than that in the Canary CS, in agreement with observationally based estimates. We find this much lower NPP in the California CS despite phytoplankton in this system having nearly 20 % higher nutrient concentrations available to fuel their growth. This conundrum can be explained by: (1 phytoplankton having a faster nutrient-replete growth in the Canary CS relative to the California CS; a consequence of more favorable light and temperature conditions in the Canary CS, and (2 the longer nearshore water residence times in the Canary CS, which permit a larger buildup of biomass in the upwelling zone, thereby enhancing NPP. The longer residence times in the Canary CS appear to be a result of the wider continental shelves and the lower mesoscale activity characterizing this upwelling system. This results in a weaker offshore export of nutrients and organic matter, thereby increasing local nutrient recycling and reducing the spatial decoupling between new and export production in the Canary CS. Our results suggest that climate change

  20. 7 CFR 52.40 - Identification of lots sampled.

    Science.gov (United States)

    2010-01-01

    ... MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification Sampling § 52.40...

  1. Detection of Leptosphaeria maculans and Leptosphaeria biglobosa Causing Blackleg Disease in Canola from Canadian Canola Seed Lots and Dockage.

    Science.gov (United States)

    Fernando, W G Dilantha; Zhang, Xuehua; Amarasinghe, Chami C

    2016-01-01

    Blackleg, caused by Leptosphaeria maculans, is a major threat to canola production in Canada. With the exception of China, L. maculans is present in areas around the world where cruciferous crops are grown. The pathogen can cause trade barriers in international canola seed export due to its potential risk as a seed contaminant. The most recent example is China restricting canola seeds imported from Canada and Australia in 2009. Therefore, it is important to assess the level of Blackleg infection in Canadian canola seed lots and dockage (seeds and admixture). In this study, canola seed lots and dockage samples collected from Western Canada were tested for the presence of the aggressive L. maculans and the less aggressive L. biglobosa. Results showed that both L. maculans and L. biglobosa were present in seed lots and dockage samples, with L. biglobosa being predominant in infected seeds. Admixture separated from dockage had higher levels of L. maculans and L. biglobosa infection than samples from seed lots. Admixture appears to harbour higher levels of L. maculans infection compared to seeds and is more likely to be a major source of inoculum for the spread of the disease than infected seeds. PMID:27135232

  2. Scheduling Semiconductor Multihead Testers Using Metaheuristic Techniques Embedded with Lot-Specific and Configuration-Specific Information

    Directory of Open Access Journals (Sweden)

    Yi-Feng Hung

    2013-01-01

    Full Text Available In the semiconductor back-end manufacturing, the device test central processing unit (CPU is most costly and is typically the bottleneck machine at the test plant. A multihead tester contains a CPU and several test heads, each of which can be connected to a handler that processes one lot of the same device. The residence time of a lot is closely related to the product mix on test heads, which increases the complexity of this problem. It is critical for the test scheduling problem to reduce CPU's idle time and to increase tester utilization. In this paper, a multihead tester scheduling problem is formulated as an identical parallel machine scheduling problem with the objective of minimizing makespan. A heuristic grouping method is developed to obtain a good initial solution in a short time. Three metaheuristic techniques, using lot-specific and configuration-specific information, are proposed to receive a near-optimum and are compared to traditional approaches. Computational experiments show that a tabu search with lot-specific information outperforms all other competing approaches.

  3. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    DEFF Research Database (Denmark)

    Birkhofer, K.; Bezemer, TM; Bloem, J;

    2008-01-01

     Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological...... promoting negative environmental impacts of agriculture by reducing internal biological cycles and pest control. On the contrary, organic farming fosters microbial and faunal decomposers and this propagates into the aboveground system via generalist predators thereby increasing conservation biological...... of aboveground herbivore pests (aphids) in these systems. Long-term organic farming and the application of farmyard manure promoted soil quality, microbial biomass and fostered natural enemies and ecosystem engineers, suggesting enhanced nutrient cycling and pest control. Mineral fertilizers and herbicide...

  4. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    Science.gov (United States)

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype. PMID:25796071

  5. High-throughput assay for optimising microbial biological control agent production and delivery

    Science.gov (United States)

    Lack of technologies to produce and deliver effective biological control agents (BCAs) is a major barrier to their commercialization. A myriad of variables associated with BCA cultivation, formulation, drying, storage, and reconstitution processes complicates agent quality maximization. An efficie...

  6. Exploratory research on bioactive natural products with a focus on biological phenomena

    OpenAIRE

    Uemura, Daisuke

    2010-01-01

    The discovery of new basic compounds holds the key for advancing material sciences. We have focused on the identification and characterization of natural key compounds that control biologically and physiologically intriguing phenomena. The discovery of new bioactive molecules, facilitated by a deeper understanding of nature, should advance our knowledge of biological processes and lead to new strategies to treat disease. The structure and function of natural compounds are sometimes unexpected...

  7. Distributions of inorganic nitrogen and biological production in the equatorial Pacific: a basin-scale model sensitivity study of nitrification

    Science.gov (United States)

    Wang, Xiujun; Murtugudde, Raghu

    2015-12-01

    Recent evidence indicates that there is stronger nitrification in the euphotic zone than previously thought. We employ a physical-biogeochemical model to study the implications of nitrification for basin-scale distributions of nitrate, ammonium, and biological production in the equatorial Pacific. The model can faithfully reproduce observed features in nitrate distribution, with or without photoinhibition of nitrification in the euphotic zone. In addition, new production, net community production and export production are not very sensitive to the parameterization of nitrification in this model. However, simulated ammonium distribution, nitrate uptake and ammonium uptake are sensitive to this parameterization. High nitrification results in low ammonium concentration, low ammonium uptake rate, and high nitrate uptake rate in the euphotic zone. This study suggests that nitrification may be responsible for up to 40% of nitrate uptake in the equatorial Pacific. This modeling study also demonstrates large differences (in terms of the magnitude and spatial distribution) between nitrate uptake, new production and export production, reflecting decoupling of upward nutrient supply, biological uptake and downward export.

  8. Parameterizing ice-edge biological productivity in a changing Arctic: Growth factors associated with specific ice provenances

    Science.gov (United States)

    Sambrotto, R.

    2015-12-01

    Sea ice plays a significant role in the ecology of polar seas and a significant portion of the biological production in the Arctic occurs at ice edges. These environments are inherently variable in space and time and subject to climate variation as the summer ice extent changes. Recent field results from the northern Bering Sea suggest that the parameterization of ice edge production in coupled physical-biological models that ignore processes specific to the ice-melt environment will be insufficient to describe the variability and intensity of Arctic production. In addition to the stabilizing the surface layer, ice may contribute phytoplankton growth factors such as trace metals that have been derived from the regions of ice formation as well as aeolian deposition. Results of an analysis of sea ice formation, flow and melt suggests regions that are likely to receive trace metals from ice and has been validated with regions of known ice edge productivity in the Bering Sea. A similar analysis for the Chukchi Sea compared the likely ice-edge productivity regions between pre-2000 ice conditions and those in the more recent period of reduced summer ice cover. Changes are predicted in both the timing and distribution of these regions in proportion to the variations in the dominant ice flow patterns. Ways in which the non-local processes important to elevated ice edge productivity can be incorporated into couple arctic models will be discussed.

  9. Pedestrian and traffic safety in parking lots at SNL/NM : audit background report.

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Paul Ernest

    2009-03-01

    This report supplements audit 2008-E-0009, conducted by the ES&H, Quality, Safeguards & Security Audits Department, 12870, during fall and winter of FY 2008. The study evaluates slips, trips and falls, the leading cause of reportable injuries at Sandia. In 2007, almost half of over 100 of such incidents occurred in parking lots. During the course of the audit, over 5000 observations were collected in 10 parking lots across SNL/NM. Based on benchmarks and trends of pedestrian behavior, the report proposes pedestrian-friendly features and attributes to improve pedestrian safety in parking lots. Less safe pedestrian behavior is associated with older parking lots lacking pedestrian-friendly features and attributes, like those for buildings 823, 887 and 811. Conversely, safer pedestrian behavior is associated with newer parking lots that have designated walkways, intra-lot walkways and sidewalks. Observations also revealed that motorists are in widespread noncompliance with parking lot speed limits and stop signs and markers.

  10. Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Papoutsakis, Elefterios [Univ. of Delaware, Newark, DE (United States)

    2015-04-30

    This is the final project report for project "Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production" for the funding period of 9/1/12 to 2/28/2015 (three years with a 6-month no-cost extension) OVERVIEW AND PROJECT GOALS The bottleneck of achieving higher rates and titers of toxic metabolites (such as solvents and carboxylic acids that can used as biofuels or biofuel precursors) can be overcome by engineering the stress response system. Thus, understanding and modeling the response of cells to toxic metabolites is a problem of great fundamental and practical significance. In this project, our goal is to dissect at the molecular systems level and build models (conceptual and quantitative) for the stress response of C. acetobutylicum (Cac) to its two toxic metabolites: butanol (BuOH) and butyrate (BA). Transcriptional (RNAseq and microarray based), proteomic and fluxomic data and their analysis are key requirements for this goal. Transcriptional data from mid-exponential cultures of Cac under 4 different levels of BuOH and BA stress was obtained using both microarrays (Papoutsakis group) and deep sequencing (RNAseq; Meyers and Papoutsakis groups). These two sets of data do not only serve to validate each other, but are also used for identification of stress-induced changes in transcript levels, small regulatory RNAs, & in transcriptional start sites. Quantitative proteomic data (Lee group), collected using the iTRAQ technology, are essential for understanding of protein levels and turnover under stress and the various protein-protein interactions that orchestrate the stress response. Metabolic flux changes (Antoniewicz group) of core pathways, which provide important information on the re-allocation of energy and carbon resources under metabolite stress, were examined using 13C-labelled chemicals. Omics data are integrated at different levels and scales. At the metabolic-pathway level, omics data are integrated into a 2nd generation genome

  11. Photolytic transformation products and biological stability of the hydrological tracer Uranine

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, Lukasz, E-mail: gutowski@leuphana.de; Olsson, Oliver, E-mail: oliver.olsson@leuphana.de; Lange, Jens, E-mail: jens.lange@hydrology.uni-freiburg.de; Kümmerer, Klaus, E-mail: Klaus.Kuemmerer@uni.leuphana.de

    2015-11-15

    Among many fluorescence tracers, Uranine (sodium fluorescein, UR) has most widely been used in hydrological research. Extensive use of UR for tracing experiments or commercial use might cause a potential risk of long-term environmental contamination. As any organic substance released to the environment, also UR is subjected to chemical and physical reactions that can be chemical, biological and photolysis processes. These processes transform the parent compound (PC) and have not been extensively investigated for UR. This study applies two OECDs (301 D and 301 F) tests and a screening water sediment test (WST) to investigate the biodegradability of the PC. Photolysis in water was explored by Xe lamp irradiation. Subsequently, the biodegradability of the photolysis mixtures was examined. The primary elimination of UR was monitored and structures of its transformation products (TPs) were elucidated by HPLC–FLD–MS/MS. UR was found not readily biodegradable, although small degradation rates could be observed in the OECD 301 D and WST. HPLC–FLD analysis showed high primary elimination of the tracer during photolysis. However, the low degree of mineralization found indicates that the UR was not fully degraded, instead transformed to TPs. A total of 5 photo-TPs were identified. According to MS/MS data, chemical structures could be proposed for all identified photo-TPs. Likewise the parent compound it was demonstrated that photo-TPs were largely recalcitrant to microbial degradation. Although we did not find indications for toxicity, target-oriented studies on the environmental impact of these photo-TPs are warranted. Results obtained in this study show that deeper investigations are necessary to fully understand fate and risk connected to the use of UR. - Highlights: • Uranine (UR) was not biodegraded in water and water-sediment system (WST). • Only small degradation rate occurred in OECD 301 D and WST. • Photolysis leads to incomplete mineralization of UR.

  12. Record dynamics in the parking-lot model

    Science.gov (United States)

    Sibani, Paolo; Boettcher, Stefan

    2016-06-01

    We present an analytical and numerical study of the parking lot model (PLM) of granular relaxation and make a connection to the aging dynamics of dense colloids. As we argue, the PLM is a Kinetically Constrained Model which features astronomically large equilibration times and displays a characteristic aging behavior on all observable time scales. The density of parked cars displays quasi-equilibrium Gaussian fluctuations interspersed by increasingly rare intermittent events, quakes, which can lead to an increase of the density to new record values. Defining active clusters as the shortest domains of parked cars which must be rearranged to allow further insertions, we find that their typical length grows logarithmically with time for low enough temperatures and show how the number of active clusters on average gradually decreases as the system approaches equilibrium. We further characterize the aging process in terms of the statistics of the record-sized fluctuations in the interstitial free volume which lead to quakes and show that quakes are uncorrelated and that they can be approximately described as a Poisson process in logarithmic time.

  13. Record Dynamics and the Parking Lot Model for granular dynamics

    Science.gov (United States)

    Sibani, Paolo; Boettcher, Stefan

    Also known for its application to granular compaction (E. Ben-Naim et al., Physica D, 1998), the Parking Lot Model (PLM) describes the random parking of identical cars in a strip with no marked bays. In the thermally activated version considered, cars can be removed at an energy cost and, in thermal equilibrium, their average density increases as temperature decreases. However, equilibration at high density becomes exceedingly slow and the system enters an aging regime induced by a kinematic constraint, the fact that parked cars may not overlap. As parking an extra car reduces the available free space,the next parking event is even harder to achieve. Records in the number of parked cars mark the salient features of the dynamics and are shown to be well described by the log-Poisson statistics known from other glassy systems with record dynamics. Clusters of cars whose positions must be rearranged to make the next insertion possible have a length scale which grows logarithmically with age, while their life-time grows exponentially with size. The implications for a recent cluster model of colloidal dynamics,(S. Boettcher and P. Sibani, J. Phys.: Cond. Matter, 2011 N. Becker et al., J. Phys.: Cond. Matter, 2014) are discussed. Support rom the Villum Foundation is gratefully acknowledged.

  14. Extending cluster lot quality assurance sampling designs for surveillance programs.

    Science.gov (United States)

    Hund, Lauren; Pagano, Marcello

    2014-07-20

    Lot quality assurance sampling (LQAS) has a long history of applications in industrial quality control. LQAS is frequently used for rapid surveillance in global health settings, with areas classified as poor or acceptable performance on the basis of the binary classification of an indicator. Historically, LQAS surveys have relied on simple random samples from the population; however, implementing two-stage cluster designs for surveillance sampling is often more cost-effective than simple random sampling. By applying survey sampling results to the binary classification procedure, we develop a simple and flexible nonparametric procedure to incorporate clustering effects into the LQAS sample design to appropriately inflate the sample size, accommodating finite numbers of clusters in the population when relevant. We use this framework to then discuss principled selection of survey design parameters in longitudinal surveillance programs. We apply this framework to design surveys to detect rises in malnutrition prevalence in nutrition surveillance programs in Kenya and South Sudan, accounting for clustering within villages. By combining historical information with data from previous surveys, we design surveys to detect spikes in the childhood malnutrition rate. PMID:24633656

  15. [Comparative biological value of the proteins comprising the products for the tube and regular feeding of patients with mandibular fractures].

    Science.gov (United States)

    Kholodov, S V; Vitollo, A S; Kalamkarova, O M; Rud'ko, V F; Vysotskiĭ, V G

    1988-01-01

    A comparative clinical evaluation was made of the biological effectiveness of protein components in the composition of three types of diet for patients with fractures of the mandible who had received "Ensure" (USA), a product for complete tube feeding; an experimental sample developed at the Institute of Nutrition, Academy of Medical Sciences of the USSR; and a routine clinical diet. The biological effectiveness of the proteins was estimated by some anthropometric and biochemical parameters as well as on the basis of nitrogenous metabolism in the patients. It has been established that the protein content in the routine clinical diets does not meet the high requirements in amino acids of patients with fracture of the mandible. In this respect the products for tube and dietotherapy have proved to be effective and completely provide the need of such patients in essential amino acids that has been evidenced by the results of the investigations conducted. PMID:3146160

  16. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus

    OpenAIRE

    Neale, P.J.; A. L. Pritchard; R. Ihnacik

    2014-01-01

    A model that predicts UV effects on marine primary productivity using a biological weighting function (BWF) coupled to the photosynthesis–irradiance response (BWF/P-E model) has been implemented for two strains of the picoplanktonic cyanobacteria Synechococcus, WH7803 and WH8102, which were grown at two irradiances (77 and 174 μmol m−2 s−1 photosynthetically available radiation (PAR)) and two temperatures (20 and 26 °C). The model was fit using photosynthesis measured in a ...

  17. High performance liquid chromatography-tandem mass spectrometry of pharmaceuticals and personal care products in environmental and biological matrices

    OpenAIRE

    Purcell, Martha

    2009-01-01

    Pharmaceuticals and personal care products (PPCPs) have emerged in recent years as a new class of chemical and biological pollutants in our environment. In the search for suitably sensitive and specific techniques for detection of these compounds at very low concentrations, liquid chromatography-tandem mass spectrometry (LCMS/ MS) has emerged as the new technique of choice. This work describes methods for screening and quantification of various pharmaceutical and illicit drug residues i...

  18. Mass-energy balance analysis for estimation of light energy conversion in an integrated system of biological H2 production

    OpenAIRE

    A.I. Gavrisheva; B.F. Belokopytov; V.I. Semina; E.S. Shastik; T.V. Laurinavichene; A.A. Tsygankov

    2015-01-01

    The present study investigated an integrated system of biological H2 production, which includes the accumulation of biomass of autotrophic microalgae, dark fermentation of biomass, and photofermentation of the dark fermentation effluent. Particular emphasis was placed on the estimation of the conversion efficiency of light into hydrogen energy at each stage of this system. For this purpose, the mass and energy balance regularities were applied. The efficiency of the energy transformation from...

  19. A new approach for solving capacitated lot sizing and scheduling problem with sequence and period-dependent setup costs

    Directory of Open Access Journals (Sweden)

    Imen Chaieb Memmi

    2013-09-01

    Full Text Available Purpose: We aim to examine the capacitated multi-item lot sizing problem which is a typical example of a large bucket model, where many different items can be produced on the same machine in one time period. We propose a new approach to determine the production sequence and lot sizes that minimize the sum of start up and setup costs, inventory and production costs over all periods.Design/methodology/approach: The approach is composed of three steps. First, we compute a lower bound on total cost. Then we propose a three sub-steps iteration procedure. We solve optimally the lot sizing problem without considering products sequencing and their cost. Then, we determine products quantities to produce each period while minimizing the storage and variable production costs. Given the products to manufacture each period, we determine its correspondent optimal products sequencing, by using a Branch and Bound algorithm. Given the sequences of products within each period, we evaluate the total start up and setup cost. We compare then the total cost obtained to the lower bound of the total cost. If this value riches a prefixed value, we stop. Otherwise, we modify the results of lot sizing problem.Findings and Originality/value: We show using an illustrative example, that the difference between the total cost and its lower bound is only 10%. This gap depends on the significance of the inventory and production costs and the machine’s capacity. Comparing the approach we develop with a traditional one, we show that we manage to reduce the total cost by 30%.Research limitations/implications: Our model fits better to real-world situations where production systems run continuously. This model is applied for limited number of part types and periods.Practical implications: Our approach determines the products to manufacture each time period, their economic amounts, and their scheduling within each period. This outcome should help decision makers bearing expensive

  20. 77 FR 47397 - Request for Nominations of Specific Drug/Biologic Product(s) That Could Be Brought Before the...

    Science.gov (United States)

    2012-08-08

    ... pediatric oncology product development. DATES: Nominations must be received by September 4, 2012, to receive....gov , and please include the subject line ``Suggested Product for 2012 Pediatric Oncology Subcommittee...) That Could Be Brought Before the Food and Drug Administration's Pediatric Subcommittee of the...

  1. The potential of plants as a system for the development and production of human biologics [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2016-05-01

    Full Text Available The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology.

  2. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles;

    2011-01-01

    Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...... the four denitrification steps, the last one (N2O reduction to N2) seems to be inhibited first when O2 is present. Overall, N2O production can account for 0.1–25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we...

  3. Clinical applications of cellular therapy products

    OpenAIRE

    Serpil Yanbakan

    2015-01-01

    Adult stem cells have the potential to differentiate into multiple cell types and have usage about lots of regenerative medicine research fields. Especially bone marrow-derived mesenchymal stem cells have a wide range of case presentation. New discoveries about stem cell biology will progress new options about cellular therapy products and isolation of different stem cell types will increase hope for treatment of important illness such as Parkinson’s disease, diabetes, malign brain tumors. It...

  4. Occurrence of polycyclic aromatic hydrocarbons below coal-tar-sealed parking lots and effects on stream benthic macroinvertebrate communities

    Energy Technology Data Exchange (ETDEWEB)

    Scoggins, M.; McClintock, N.L.; Gosselink, L.; Bryer, P. [City Austin, Austin, TX (United States)

    2007-12-15

    Parking-lot pavement sealants recently have been recognized as a major source of polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments in Austin, Texas. Laboratory and field studies have shown that PAHs in sediments can be toxic to aquatic organisms and can degrade aquatic communities. After identifying increases in concentrations of PAHs in sediments below seal-coated parking lots, we investigated whether the increases had significant effects on stream biota in 5 Austin streams. We sampled sediment chemistry and biological communities above and below the point at which stormwater runoff from the parking lots discharged into the streams, thus providing 5 upstream reference sites and 5 downstream treatment sites. Differences between upstream and downstream concentrations of total PAH ranged from 3.9 to 32 mg/kg. Analysis of the species occurrence data from pool and riffle habitats indicated a significant decrease in community health at the downstream sites, including decreases in richness, intolerant taxa, Diptera taxa, and density. In pool sediments, Chironomidae density was negatively correlated with PAH concentrations, whereas Oligochaeta density responded positively to PAH concentrations. In general, pool taxa responded more strongly than riffle taxa to PAHs, but riffle taxa responded more broadly than pool taxa. Increases in PAH sediment-toxicity units between upstream and downstream sites explained decreases in taxon richness and density in pools between upstream and downstream sites.

  5. Is the biological productivity in the Bay of Bengal light limited?

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Narvekar, J.; Nuncio, M.; Kumar, A.; Ramaiah, N.; Sardessai, S.; Gauns, M.; Fernandes, V.; Paul, J.

    Recent measurements of chlorophyll, primary productivity (PP) and nutrients along the central Bay of Bengal (BOB) during summer, fall and spring intermonsoons showed that the northern bay becomes less productive compared to the south in summer...

  6. 76 FR 36019 - Amendments to Sterility Test Requirements for Biological Products

    Science.gov (United States)

    2011-06-21

    ... or other material (e.g., bulk material or active pharmaceutical ingredient (API), in-process material... November 20, 1973 (38 FR 32048), we reorganized and republished the biologics regulations, which included... requirements. On March 11, 1976 (41 FR 10427) and March 2, 1979 (44 FR 11754), we updated Sec. 610.12...

  7. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...

  8. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt; Nielsen, Peter Borch; Boe-Hansen, Rasmus;

    2016-01-01

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzy...

  9. 76 FR 13646 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-03-14

    ... personal privacy (5 U.S.C. 552b(c)(6)). The committee will discuss the report of the intramural research... the Agency on FDA's regulatory issues. Date and Time: The meeting will be held on April 6, 2011... Person: Donald W. Jehn or Denise Royster, Center for Biologics Evaluation and Research (HFM-71), Food...

  10. Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Bovenberg, Roel; Takano, Eriko

    2011-01-01

    One of the most promising applications of synthetic biology is the biosynthesis of new drugs from secondary metabolites. Here, we survey a wide range of strategies that control the activity of biosynthetic modules in the cell in space and time, and illustrate how these strategies can be used to desi

  11. Correlation of Arsenic Levels in Smokeless Tobacco Products and Biological Samples of Oral Cancer Patients and Control Consumers.

    Science.gov (United States)

    Arain, Sadaf S; Kazi, Tasneem G; Afridi, Hassan I; Talpur, Farah N; Kazi, Atif G; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Kamboh, Muhammad A

    2015-12-01

    It has been extensively reported that chewing of smokeless tobacco (SLT) can lead to cancers of oral cavity. In present study, the relationship between arsenic (As) exposure via chewing/inhaling different SLT products in oral cancer patients have or/not consumed SLT products was studied. The As in different types of SLT products (gutkha, mainpuri, and snuff) and biological (scalp hair and blood) samples of different types of oral cancer patients and controls were analyzed. Both controls and oral cancer patients have same age group (ranged 30-60 years), socio-economic status, localities, and dietary habits. The concentrations of As in SLT products and biological samples were measured by electrothermal atomic absorption spectrophotometer after microwave-assisted acid digestion. The validity and accuracy of the methodology were checked by certified reference materials. The resulted data of present study indicates that the concentration of As was significantly higher in scalp hair and blood samples of oral cancer patients than those of controls (p0.01). The intake of As via consuming different SLT may have synergistic effects, in addition to other risk factors associated with oral cancer.

  12. Correlation of Arsenic Levels in Smokeless Tobacco Products and Biological Samples of Oral Cancer Patients and Control Consumers.

    Science.gov (United States)

    Arain, Sadaf S; Kazi, Tasneem G; Afridi, Hassan I; Talpur, Farah N; Kazi, Atif G; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Kamboh, Muhammad A

    2015-12-01

    It has been extensively reported that chewing of smokeless tobacco (SLT) can lead to cancers of oral cavity. In present study, the relationship between arsenic (As) exposure via chewing/inhaling different SLT products in oral cancer patients have or/not consumed SLT products was studied. The As in different types of SLT products (gutkha, mainpuri, and snuff) and biological (scalp hair and blood) samples of different types of oral cancer patients and controls were analyzed. Both controls and oral cancer patients have same age group (ranged 30-60 years), socio-economic status, localities, and dietary habits. The concentrations of As in SLT products and biological samples were measured by electrothermal atomic absorption spectrophotometer after microwave-assisted acid digestion. The validity and accuracy of the methodology were checked by certified reference materials. The resulted data of present study indicates that the concentration of As was significantly higher in scalp hair and blood samples of oral cancer patients than those of controls (p0.01). The intake of As via consuming different SLT may have synergistic effects, in addition to other risk factors associated with oral cancer. PMID:25975948

  13. The Potential Role of Nuclear Techniques in Support of the Production of Biological Control Agents of Insect Pests

    International Nuclear Information System (INIS)

    While nuclear techniques could play a vital role in enabling cost-effective mass production of beneficial insects for use in augmentative biological control, surprisingly little use has been made of these techniques or ionizing radiation produced by other means (e.g., x-rays or electron beams from linear accelerators) for mass rearing beneficial insects. This technology has been available for quite some time, having been used to reproductively sterilize screwworm flies as early as 1951 (Bushland and Hopkins). Similarly, gamma radiation has been accepted internationally for human food preservation and disinfestation for many years (Anon., 1995). Quite a number of gamma radiation sources exist at or near USDA ARS and APHIS facilities throughout the U.S., as well as in many universities. Still, relatively little use has been made of this approach to assist in mass rearing of beneficial insects for use in augmentative biological control. As pointed out by Benbrook (1996), pest management is at a crossroads, and there still is a great need for new, biointensive pest management strategies. Nuclear techniques should play an increasing role in the future, as the overall thrust of biological control moves more and more toward augmentative releases (Knipling, 1992). It is the intent of this presentation to review some of the existing and potential uses that can be made of nuclear techniques and other sources of ionizing radiation in support of the biological control of insect pests. (author)

  14. Feed Lots, DATCP licensed approved import feed lot, Published in 2009, 1:24000 (1in=2000ft) scale, Wisconsin Department of Agriculture, Trade & Consumer Protection.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Feed Lots dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2009. It is described as 'DATCP licensed...

  15. A multi-phase algorithm for a joint lot-sizing and pricing problem with stochastic demands

    DEFF Research Database (Denmark)

    Jenny Li, Hongyan; Thorstenson, Anders

    2014-01-01

    item over a finite multi-period planning horizon. Thece-dependent demands. The stochastic demand is captured by the scenario analysis approach, and this leads to a multiple-stage stochastic programming problem. Given the complexity of the stochastic programming problem, it is hard to determine optimal...... prices and lot sizes simultaneously. Therefore, we decompose the joint lot-sizing and pricing problem with stochastic demands and capacity constraints into a multi-phase decision process. In each phase, we solve the associated sub-problem to optimality. The decomposed decision process corresponds...... to a practically viable approach to decision-making. In addition to incorporating market uncertainty and pricing decisions in the traditional production and inventory planning process, our approach also accommodates the complexity of time-varying cost and capacity constraints. Finally, our numerical results show...

  16. A Hybrid Algorithm for Solving the Economic Lot and Delivery Scheduling Problem in the Common Cycle Case

    DEFF Research Database (Denmark)

    Ju, Suquan; Clausen, Jens

    2004-01-01

    The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit. This incl......The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit....... This includes the determination of the production sequence of the component types within each cycle. We investigate the computational behavior of two published algorithms, a heuristic and an optimal algorithm. With large number of component types, the optimal algorithm has long running times. We devise a hybrid...

  17. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    OpenAIRE

    Celio I Chagas; Filipe B. Kraemer; Oscar J. Santanatoglia; Marta Paz; Juan Moretton

    2014-01-01

    Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in ...

  18. Time-Course Global Expression Profiles of Chlamydomonas reinhardtii during Photo-Biological H2 Production

    OpenAIRE

    Anh Vu Nguyen; Joerg Toepel; Steven Burgess; Andreas Uhmeyer; Olga Blifernez; Anja Doebbe; Ben Hankamer; Peter Nixon; Lutz Wobbe; Olaf Kruse

    2011-01-01

    We used a microarray study in order to compare the time course expression profiles of two Chlamydomonas reinhardtii strains, namely the high H₂ producing mutant stm6glc4 and its parental WT strain during H₂ production induced by sulfur starvation. Major cellular reorganizations in photosynthetic apparatus, sulfur and carbon metabolism upon H₂ production were confirmed as common to both strains. More importantly, our results pointed out factors which lead to the higher H₂ production in the mut...

  19. MODIS vegetation products as proxies of photosynthetic potential: a look across meteorological and biologic driven ecosystem productivity

    Science.gov (United States)

    Restrepo-Coupe, N.; Huete, A.; Davies, K.; Cleverly, J.; Beringer, J.; Eamus, D.; van Gorsel, E.; Hutley, L. B.; Meyer, W. S.

    2015-12-01

    A direct relationship between gross ecosystem productivity (GEP) measured by the eddy covariance (EC) method and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices (VIs) has been observed in many temperate and tropical ecosystems. However, in Australian evergreen forests, and particularly sclerophyll woodlands, MODIS VIs do not capture seasonality of GEP. In this study, we re-evaluate the connection between satellite and flux tower data at four contrasting Australian ecosystems, through comparisons of ecosystem photosynthetic activity (GEP) and potential (e.g. ecosystem light use efficiency and quantum yield) with MODIS vegetation satellite products, including VIs, gross primary productivity (GPPMOD), leaf area index (LAIMOD), and fraction of photosynthetic active radiation (fPARMOD). We found that satellite derived greenness products constitute a measurement of ecosystem structure (e.g. leaf area index - quantity of leaves) and function (e.g. leaf level photosynthetic assimilation capacity - quality of leaves), rather than productivity. Our results show that in primarily meteorological-driven (e.g. photosynthetic active radiation, air temperature and/or precipitation) and relatively aseasonal vegetation photosynthetic potential ecosystems (e.g. evergreen wet sclerophyll forests), there were no statistically significant relationships between GEP and satellite derived measures of greenness. In contrast, for phenology-driven ecosystems (e.g. tropical savannas), changes in the vegetation status drove GEP, and tower-based measurements of photosynthetic activity were best represented by VIs. We observed the highest correlations between MODIS products and GEP in locations where key meteorological variables and vegetation phenology were synchronous (e.g. semi-arid Acacia woodlands) and low correlation at locations where they were asynchronous (e.g. Mediterranean ecosystems). Eddy covariance data offer much more than validation and/or calibration of

  20. Biological sand filters: low-cost bioremediation technique for production of clean drinking water.

    Science.gov (United States)

    Lea, Michael

    2014-05-01

    Approximately 1.1 billion people in rural and peri-urban communities of developing countries do not have access to safe drinking water. The mortality from diarrheal-related diseases amounts to ∼2.2 million people each year from the consumption of unsafe water. Most of them are children under 5 years of age--250 deaths an hour from microbiologically contaminated water. There is conclusive evidence that one low-cost household bioremediation intervention, use of biological sand filters, is capable of dramatically improving the microbiological quality of drinking water. This unit will describe this relatively new and proven bioremediation technology's ability to empower at-risk populations to use naturally occurring biological principles and readily available materials as a sustainable way to achieve the health benefits of safe drinking water.

  1. Synthesis and biological evaluation of fatty hydrazides of by-products of oil processing industry

    Directory of Open Access Journals (Sweden)

    Toliwal S

    2009-01-01

    Full Text Available Some new 2-alkyl-5-mercapto-1,3,4-Oxadiazoles and 3-alkyl-5-mercapto-1,2,3-4H triazoles were synthesized from hydrazides of acid oil and oil recovered from spent bleaching earth. These newly synthesized compounds were characterized on the basis of elemental analysis and evaluated for biological properties. Certain derivatives exhibited fairly high antibacterial and antifungal activities when compared with streptomycin and immidil used as standard antibacterial and antifungal agents respectively.

  2. Mass-energy balance analysis for estimation of light energy conversion in an integrated system of biological H2 production

    Directory of Open Access Journals (Sweden)

    A.I. Gavrisheva

    2015-12-01

    Full Text Available The present study investigated an integrated system of biological H2 production, which includes the accumulation of biomass of autotrophic microalgae, dark fermentation of biomass, and photofermentation of the dark fermentation effluent. Particular emphasis was placed on the estimation of the conversion efficiency of light into hydrogen energy at each stage of this system. For this purpose, the mass and energy balance regularities were applied. The efficiency of the energy transformation from light into the microalgal biomass did not exceed 5%. The efficiency of the energy transformation from biomass to biological H2 during the dark fermentation stage stood at about 0.3%. The photofermentation stage using the model fermentation effluent could improve this estimation to 11%, resulting in an overall efficiency 0.55%. Evidently, this scheme is counterproductive for light energy bioconversion due to numerous intermediate steps even if the best published data would be taken into account.

  3. Data-driven, data-intensive computing for modelling and analysis of biological networks: application to bioethanol production

    Science.gov (United States)

    Park, Byung-Hoon; Samatova, Nagiza F.; Karpinets, Tatiana; Jallouk, Andrew; Molony, Scott; Horton, Scott; Arcangeli, Steven

    2007-07-01

    Modelling biological networks is inherently data-driven and data-intensive. The combinatorial nature of this type of modelling, however, requires new methods capable of dealing with the enormous size and irregularity of the search. Searching via 'backtracking' is one possible solution that avoids exhaustive searches by constraining the search space to the subspace of feasible solutions. Despite its wide use in many combinatorial optimization problems, there are currently few parallel implementations of backtracking capable of effectively dealing with the memory-intensive nature of the process and the extremely unbalanced loads present. In this paper, a parallel, scalable, and memory-efficient backtracking algorithm within the context of maximal clique enumeration is presented, and its applicability to large-scale biological networks aimed at studying the mechanisms for efficient bioethanol production is discussed.

  4. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  5. The importance of extremophile cyanobacteria in the production of biologically active compounds

    Directory of Open Access Journals (Sweden)

    Drobac-Čik Aleksandra V.

    2007-01-01

    Full Text Available Due to their ability to endure extreme conditions, terrestrial cyanobacteria belong to a group of organisms known as "extremophiles". Research so far has shown that these organisms posses a great capacity for producing biologically active compounds (BAC. The antibacterial and antifungal activities of methanol extracts of 21 cyanobacterial strains belonging to Anabaena and Nostoc genera, previously isolated from different soil types and water resources in Serbia, were evaluated. In general, larger number of cyanobacterial strains showed antifungal activity. In contrast to Nostoc, Anabaena strains showed greater diversity of antibacterial activity (mean value of percentages of sensitive targeted bacterial strains 3% and 25.9% respectively. Larger number of targeted fungi was sensitive to cultural liquid extract (CL, while crude cell extract (CE affected more bacterial strains. According to this investigation, the higher biological activity of terrestrial strains as representatives of extremophiles may present them as significant BAC producers. This kind of investigation creates very general view of cyanobacterial possibility to produce biologically active compounds but it points out the necessity of exploring terrestrial cyanobacterial extremophiles as potentially excellent sources of these substances and reveals the most prospective strains for further investigations.

  6. The application of residual oats flour in bread production in order to improve its quality and biological value of protein

    Directory of Open Access Journals (Sweden)

    Halina Gambuś

    2011-09-01

    Full Text Available   Background. High nutritional value of residual oat flour, which is a by-product in the production β-D-glucan concentration BETAVEN, was the reason to make a trial to apply it in the production of wheat and wheat-rye bread. The aim of the study was to establish a formulation for wheat and wheat-rye bread, in which part of wheat flour would be replaced by residual oat flour (at the level 20% of wheat flour, and to check the influence of this additive on sensory and nutritional properties of the products, with special consideration to content and biological value of the proteins. Material and methods. The material consisted of wheat flour, rye flour and residual oat flour, as well as loaves, baked with these flours. The quality of the obtained loaves was analysed taking into account: organoleptic assessment, loaf mass and volume, moisture content crumb and texture profile of the crumb. In the studied raw materials and bread, the following components were determined according to AOAC methods: protein content, fat, fiber and ash. In addition, composition of amino acids was assessed. Basing on the amino acid composition, Chemical Score (CS and Exogenic Amino Acid Index (EAAI were calculated, applying WHO/FAO protein standard (1991. Results. Bread with the share of residual oats flour received high consumer acceptance (37 points, comparable to control bread (38 points despite of lower volume. The applied amounts of oats flour did not influence moisture content and texture profile during storage. Wheat and wheat-rye loaves with the share of residual oats flour were characterised by a significantly higher level of dietary fiber, fat and protein, in comparison to control bread. It was found that biological activity of protein in wheat-rye bread was significantly higher (CS = 53.5, EAAI = 91.5 in comparison to wheat bread (CS = 47.9, EAAI = 89.9. The share of oats flour caused an increase in biological value of all bread types – wheat-oats (CS = 52

  7. Reaction difference of glue-lipiodol mixture according to the different lot number

    International Nuclear Information System (INIS)

    We noted that in a catheter, glue-lipiodol mixtures (GLM) prematurely turned into a cast during embolization of brain arteriovenous malformation, and to avoid this problem, added tungsten to GLM. The reaction time and hardness of GLM were then evaluated in vitro. Materials and Methods : Six lots of Lipiodol (Nos.97LU009A, 96LU018A, 96LU017A, 96LUollA and 95Lu020A)(Laboratoire Guerbet, Cedex, France) and three lots Histoacryl Blue (2/7121, Ex. Date 03/99 (993);2/6263, 06/98 (986);2/6132 03/98 (983))(B. Brown, Melsungen, Germany) were mixed in a 5 cc bottle at concentrations of 25-50%(glue:lipiodol=1:1 to 1:3) and observed for two weeks. The hardness of polymerized GLM was classified as liquid, gel, semi-solid or solid. After the addition of tungsten or tantalum powder (0.2 gm) and a drop of blood to GLM, different series of experiments were performed. pH was measured in distilled water mixed with tungsten of tantalum(0.1 to 0.5 gm). Results : At a concentration of 50%,most GLM turned into solid casts within 48 hours;at one of 25%, most GLM gelled within 24 hrs. At concentrations of 28 and 33%, hardness was between that of a solid and that of a gel. After the addition of tungsten to 50% and 25 %GLM, this remained in a liquid state until two weeks later, regardless of lipiodol products. In 5 cc distilled water with 0.1 to 0.5 gm tungsten, pH changed from 3.5 to 2.6, and on the addition of tantalum from 6.4 to 5.7.The addition of blood to the mixture immediately turned the cast solid at a GLM concentration of 50%, and semi-solid at one of 25%. Conclusion : The reaction time of GLM differed according to the lot number of lipiodol.The addition of tungsten seemed to prevent premature cast formation by decreasing pH;the mechanism was similar to that observed when acetic acid was added

  8. Biological productivity and potential resources of the exclusive economic zone (EEZ) of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    degree square was calculated from the production data. The potential fishery resources including demersal fishery of the entire EEZ of India worked out to be 3.45 million tones yr sup(-1). Since the annual fishery production is around 2.7 million tones...

  9. Energy balance of biofuel production from biological conversion of crude glycerol.

    Science.gov (United States)

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar D; Surampalli, Rao Y; Valéro, Jose R

    2016-04-01

    Crude glycerol, a by-product of biodiesel production, has gained significant attention as a carbon source for biofuel production. This study evaluated the energy balance of biodiesel, hydrogen, biogas, and ethanol production from 3.48 million L of crude glycerol (80% w/v). The conversion efficiency (energy output divided by energy invested) was 1.16, 0.22, 0.27, and 0.40 for the production of biodiesel, hydrogen, biogas, and ethanol respectively. It was found that the use of crude glycerol for biodiesel production was an energy gain process, with a positive energy balance and conversion efficiency of greater than 1. The energy balance revealed a net energy gain of 5226 GJ per 1 million kg biodiesel produced. Production of hydrogen, biogas and ethanol from crude glycerol were energy loss processes. Therefore, the conversion of crude glycerol to lipids and subsequently to biodiesel is suggested to be a better option compared to hydrogen, biogas, or ethanol production with respect to energy balance.

  10. Form for reporting serious adverse events and product problems with human drug and biological products and devices; availability--FDA. Notice.

    Science.gov (United States)

    1993-06-01

    The Food and Drug Administration (FDA) is announcing the availability of a new form for reporting adverse events and product problems with human drug products, biologic products, medical devices (including in-vitro diagnostics), special nutritional products (dietary supplements, medical foods, infant formulas), and other products regulated by FDA. There are two versions of the form. One version of the form (FDA Form 3500) is available for use by health professionals for voluntary reporting; the other version of the form (FDA Form 3500A) is to be used by user facilities, distributors, and manufacturers for reporting that is required by statute or FDA regulations. The new form will simplify and consolidate the reporting of adverse events and product problems and will enhance agency-wide consistency in the collection of postmarketing data. This notice also responds to written comments the agency received on proposed versions of this form. Copies of both versions of the new form appear at the end of this document. PMID:10171452

  11. Biologic Activities of Honeybee Products Obtained From Different Phytogeographical Regions of Turkey

    Directory of Open Access Journals (Sweden)

    Hamide Doğan

    2014-06-01

    Full Text Available Honeybee products are rich in phenolic compounds, which effect as natural antioxidants. These compounds may be attached as indicators in studies into the floral and geographical origin of the natural bee products. In this study, we aimed to determine average total antioxidant capacity, average total oxidant capacity and average oxidative stress index of natural bee products obtained from different regions of Turkey. Collected honeybee samples were kept at +4o C until extracted. Natural bee products were extracted with specific methods and antioxidant capacities were defined with in vitro analyses and data were compared. As a result, the highest average total antioxidant capacities were observed in propolis and pollen samples. Total antioxidant capacities of honeybee products collected from various regions demonstrated differences (P<0.05 because of different phytogeographical characteristics of regions of Turkey.

  12. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Michael J.; Leak, David J.; Spanu, Pietro D.; Murphy, Richard J. [Division of Biology, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ (United Kingdom); Porter Alliance, Imperial College London, London SW7 2AZ (United Kingdom)

    2010-08-15

    A current barrier to the large-scale production of lignocellulosic biofuels is the cost associated with the energy and chemical inputs required for feedstock pretreatment and hydrolysis. The use of controlled partial biological degradation to replace elements of the current pretreatment technologies would offer tangible energy and cost benefits to the whole biofuel process. It has been known for some time from studies of wood decay that, in the early stages of growth in wood, brown rot fungi utilise a mechanism that causes rapid and extensive depolymerisation of the carbohydrate polymers of the wood cell wall. The brown rot hyphae act as delivery vectors to the plant cell wall for what is thought to be a combination of a localised acid pretreatment and a hydroxyl radical based depolymerisation of the cell wall carbohydrate polymers. It is this quality that we have exploited in the present work to enhance the saccharification potential of softwood forest residues for biofuel production. Here we show that after restricted exposure of pine sapwood to brown rot fungi, glucose yields following enzymatic saccharification are significantly increased. Our results demonstrate the potential of using brown rot fungi as a biological pretreatment for biofuel production. (author)

  13. The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    Directory of Open Access Journals (Sweden)

    Susan M. Rundell

    2015-12-01

    Full Text Available Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sought to determine whether Ecuador’s fungal endophytes are hyperdiverse, and whether that biological diversity is reflected in the endophytes’ chemical diversity. To assess this chemical diversity, we analyzed a subset of isolates for their production of volatile organic compounds (VOCs, a representative class of natural products. This study yielded a total of 1526 fungal ITS sequences comprising some 315 operational taxonomic units (OTUs, resulting in a non-asymptotic OTU accumulation curve and characterized by a Fisher’s α of 120 and a Shannon Diversity score of 7.56. These figures suggest that the Ecuadorian endophytes are hyperdiverse. Furthermore, the 113 isolates screened for VOCs produced more than 140 unique compounds. These results present a mere snapshot of the remarkable biological and chemical diversity of stem-inhabiting endophytic fungi from a single neotropical country.

  14. Heat treatment of curdlan enhances the enzymatic production of biologically active β-(1,3)-glucan oligosaccharides.

    Science.gov (United States)

    Kumagai, Yuya; Okuyama, Masayuki; Kimura, Atsuo

    2016-08-01

    Biologically active β-(1,3)-glucan oligosaccharides were prepared from curdlan using GH64 enzyme (KfGH64). KfGH64 showed low activity toward native curdlan; thereby pretreatment conditions of curdlan were evaluated. KfGH64 showed the highest activity toward curdlan with heat treatment. The most efficient pretreatment (90°C for 0.5h) converted approximately 60% of curdlan into soluble saccharides under the optimized enzyme reaction conditions (pH 5.5, 37°C, 100rpm mixing speed, 24h, and 10μg of KfGH64/1g of curdlan). The resulting products were predominantly laminaripentaose and a small amount of β-(1,3)-glucans with an average degree of polymerization (DP) of 13 and 130. The products did not contain small oligosaccharides (DPhydrolysis of heat-treated curdlan by KfGH64 is a suitable method for the production of biologically active β-(1,3)-glucan oligosaccharides. PMID:27112889

  15. Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures.

    Science.gov (United States)

    Zheng, Xian-Jun; Yu, Han-Qing

    2005-01-01

    In this study batch experiments were conducted to investigate the inhibitory effects of butyrate addition on hydrogen production from glucose by using anaerobic mixed cultures. Experimental results showed that addition of butyrate at 4.18 and 6.27 g/l only slightly inhibited hydrogen production, and addition of butyrate at 8.36-12.54 g/l imposed a moderate inhibitory effect on hydrogen production. At addition of 25.08 g/l, butyrate had a strong inhibitory influence on substrate degradation and hydrogen production. The distribution of the volatile fatty acids produced from the acidogeneisis of glucose was significantly influenced by the addition of butyrate. The inhibition of butyrate addition on hydrogen production was described well by a non-competitive and non-linear inhibition model, with the maximum hydrogen production rate of 59.3 ml/g-SS/h, critical added butyrate concentration of 25.08 g/l, and inhibition degree of 0.323, respectively. The C(I,50) values (the butyrate concentration at which bioactivity is reduced by 50%) for hydrogen production rate and yield were estimated as 19.39 and 20.78 g/l of added butyrate, respectively.

  16. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O2 concentration in the biomass free air space (FAS) was kept optimal (O2 > 140 ml l-1, v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R2 = 0.991; R2CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  17. THE USE OF BIOLOGICAL PRODUCTS IN ABDOMINAL SURGERY AND LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    N. I. Gabrielyan

    2013-01-01

    Full Text Available This article provides an overview of new approaches to the prevention of infectious complications of bacterial nature after the high-technology operations in the abdominal surgery, first of all, after liver transplantation. At- tention is drawn to the first positive results of randomized studies on the use of biological preparations - probi- otics, prebiotics and synbiotics in patients after liver transplantation. The authors prove the prospects of further development of this subject based on successful model experiments on animals and various operational interven- tions in abdominal surgery. 

  18. Laser-assisted production of tricalcium phosphate nanoparticles from biological and synthetic hydroxyapatite in aqueous medium

    Science.gov (United States)

    Boutinguiza, M.; Pou, J.; Lusquiños, F.; Comesaña, R.; Riveiro, A.

    2011-04-01

    Pulsed laser ablation technique has attracted great attention as a method for preparing nanoparticles. In this work, calcined fish bones and synthetic hydroxyapatite, have been used as target to be ablated in de-ionized water with a pulsed CO 2 laser to produce calcium phosphate nanoparticles. The obtained nanoparticles were amorphous and spherical in shape with a mean diameter of about 25 nm. The microanalyses revealed that nanoparticles obtained from the synthetic HA undergo transformation to tricalcium phosphate. While nanoparticles obtained from the biological hydroxyapatite mostly preserve the composition of precursor material.

  19. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.)

    OpenAIRE

    Tadeusz Zając; Andrzej Oleksy; Agnieszka Klimek-Kopyra; Bogdan Kulig

    2012-01-01

    In Poland the cultivation of the fibrous form of flax (Linum usitatissimum L.) is dying out, but the acreage of its oilseed form, linseed, which provides seed (Semen lini) used in therapy and being a source of -linolenic acid, is expanding. Nowadays, linseed is grown in 64 countries of the world, but yield levels in these countries vary greatly. Under European conditions, seed yield of linseed shows high variation, which is evidence of little knowledge of the biology of this plant and the lac...

  20. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  1. Physical forcing of biological productivity in the northern Arabian Sea during the northeast monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Ramaiah, N.; Gauns, M.; Sarma, V.V.S.S.; Muraleedharan, P.M.; Raghukumar, S.; DileepKumar, M.; Madhupratap, M.

    to the inference that even a 1 degree C decrease in SST could lead to significantly higher primary productivity. Satellite data on sea surface temperature (advanced very high-resolution radiometer, AVHRR) and TOPEX/POSEIDON altimeter data suggest...

  2. Biological production of organic solvents from cellulosic wastes. Six-month progress report, June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Forro, J.R.; Nolan, E.J.

    1977-01-01

    Progress is reported in the following studies: production of cellulose by culturing Thermoactinomyces YX and derived mutants; the development of mutation techniques; cellulose mutant screening techniques; quantification of cellulose mutants; and alternate enhancement techniques. (JGB)

  3. Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.

    Directory of Open Access Journals (Sweden)

    Anh Vu Nguyen

    Full Text Available We used a microarray study in order to compare the time course expression profiles of two Chlamydomonas reinhardtii strains, namely the high H₂ producing mutant stm6glc4 and its parental WT strain during H₂ production induced by sulfur starvation. Major cellular reorganizations in photosynthetic apparatus, sulfur and carbon metabolism upon H₂ production were confirmed as common to both strains. More importantly, our results pointed out factors which lead to the higher H₂ production in the mutant including a higher starch accumulation in the aerobic phase and a lower competition between the H₂ase pathway and alternative electron sinks within the H₂ production phase. Key candidate genes of interest with differential expression pattern include LHCSR3, essential for efficient energy quenching (qE. The reduced LHCSR3 protein expression in mutant stm6glc4 could be closely related to the high-light sensitive phenotype. H₂ measurements carried out with the LHCSR3 knock-out mutant npq4 however clearly demonstrated that a complete loss of this protein has almost no impact on H₂ yields under moderate light conditions. The nuclear gene disrupted in the high H₂ producing mutant stm6glc4 encodes for the mitochondrial transcription termination factor (mTERF MOC1, whose expression strongly increases during -S-induced H₂ production in WT strains. Studies under phototrophic high-light conditions demonstrated that the presence of functional MOC1 is a prerequisite for proper LHCSR3 expression. Furthermore knock-down of MOC1 in a WT strain was shown to improve the total H₂ yield significantly suggesting that this strategy could be applied to further enhance H₂ production in other strains already displaying a high H₂ production capacity. By combining our array data with previously published metabolomics data we can now explain some of the phenotypic characteristics which lead to an elevated H₂ production in stm6glc4.

  4. Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry wastes

    OpenAIRE

    Costa, J.C.; Barbosa, S. G.; Alves, M. M.; Sousa, D.Z.

    2011-01-01

    Poultry industry wastes, namely feathers and poultry litter, are an interesting source of substrate for biogas production. The aim of this work was to assess the biomethane potential of raw poultry wastes, as well as the possibility of enhancing this potential by favouring the hydrolysis of cellulolytic and proteinaceous material in the wastes by using bioaugmentation and thermochemical pre-treatments. Biomethane production from poultry litter and chicken feathers was assessed in batch ass...

  5. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2012-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The NPP drivers are identified with the aid of an artifici...

  6. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2011-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The identification of NPP drivers is done with the aid of an artificial neur...

  7. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    OpenAIRE

    Laura Montesinos; Mireia Bundó; Esther Izquierdo; Sonia Campo; Esther Badosa; Michel Rossignol; Emilio Montesinos; Blanca San Segundo; María Coca

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice ...

  8. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  9. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  10. The impact of the United Nations Convention on Biological Diversity on natural products research.

    Science.gov (United States)

    Cragg, Gordon M; Katz, Flora; Newman, David J; Rosenthal, Joshua

    2012-12-01

    The discovery and development of novel, biologically active agents from natural sources, whether they be drugs, agrochemicals or other bioactive entities, involve a high level of interdisciplinary as well as international collaboration. Such collaboration, particularly at the international level, requires the careful negotiation of collaborative agreements protecting the rights of all parties, with special attention being paid to the rights of host (source) country governments, communities and scientific organizations. While many biodiversity-rich source countries currently might not have the necessary resources for in-country drug discovery and advanced development, they provide valuable opportunities for collaboration in this endeavor with research organizations from more high-income nations. This chapter discusses the experiences of the US National Cancer Institute and the US government-sponsored International Cooperative Biodiversity Groups program in the establishment of international agreements in the context of the Convention of Biological Diversity's objectives of promoting fair and equitable collaboration with multiple parties in many countries, and includes some specific lessons of value in developing such collaborations.

  11. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum.

    Science.gov (United States)

    Shkoporov, A N; Khokhlova, E V; Savochkin, K A; Kafarskaia, L I; Efimov, B A

    2015-06-01

    Bifidobacteria constitute a significant part of healthy intestinal microbiota in adults and infants and present a promising platform for construction of genetically modified probiotic agents for treatment of gastrointestinal disorders. In this study, three strains of Bifidobacterium longum were constructed that express and secrete biologically active single-chain antibodies against human TNF-α and Clostridium difficile exotoxin A. Anti-TNF-α scFv antibody D2E7 was produced at the level of 25 μg L(-1) in broth culture and was mostly retained in the cytoplasm, while VHH-type antibodies A20.1 and A26.8 against C. difficile exotoxin A were produced at the levels of 0.3-1 mg L(-1) and secreted very efficiently. The biological activity of both antibody types was demonstrated in the mammalian cell-based assays. Expression of A20.1 and A26.8 was also observed in vivo after intragastric administration of transformed B. longum strains to (C57/BL6 × DBA/2)F1 mice. The obtained B. longum strains may serve as prototypes for construction of novel probiotic medications against inflammatory bowel disease and C. difficile-associated disease. PMID:25994292

  12. Reproductive biology and nectar production of the Mexican endemic Psittacanthus auriculatus (Loranthaceae), a hummingbird-pollinated mistletoe.

    Science.gov (United States)

    Pérez-Crespo, M J; Ornelas, J F; Martén-Rodríguez, S; González-Rodríguez, A; Lara, C

    2016-01-01

    Many mistletoe species produce 'bird'-pollinated flowers; however, the reproductive biology of the majority of these species has not been studied. Psittacanthus auriculatus is a Mexican endemic mistletoe, most common in open, dry mesquite grassland. Knowledge of the reproductive biology of P. auriculatus is essential for understanding species formation and diversification of Psittacanthus mistletoes, but it is currently poorly understood. Thus, we studied floral biology and phenology, nectar production and breeding system and pollination of this species. The hermaphroditic red-pink flowers open from the middle to the tip and petals are curly, but remain partially fused forming a floral tube of ca. 20-mm long. Flowers are partially protandrous, produce large amounts of nectar, last 2 days, and stigma receptivity is highest during the second day. We recorded hummingbirds (Cynanthus latirostris, Hylocharis leucotis, Amazilia beryllina, A. violiceps, Calothorax lucifer, Archilochus colubris) and less commonly butterflies (Agraulis vanillae, Anteos clorinde, Papilio multicaudatus, Phocides urania, Phoebis sennae) as floral visitors. P. auriculatus flowers are self-compatible. However, this mistletoe is an obligate animal-pollinated species, as the sensitive stigma avoids self-pollination. Under natural conditions, reproductive success was higher than in manually selfed or cross-pollinated flowers, likely due to the traplining foraging behaviour of hummingbirds. We suggest that the apparent efficient foraging behaviour of hummingbirds maintains gene flow among P. auriculatus, promoting outcrossing. PMID:26154599

  13. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Xu, Xue [Rice Research Institute, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei 230031 (China); Wu, Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China)

    2013-08-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N{sup +} and Ar{sup +} ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models.

  14. Reproductive biology and nectar production of the Mexican endemic Psittacanthus auriculatus (Loranthaceae), a hummingbird-pollinated mistletoe.

    Science.gov (United States)

    Pérez-Crespo, M J; Ornelas, J F; Martén-Rodríguez, S; González-Rodríguez, A; Lara, C

    2016-01-01

    Many mistletoe species produce 'bird'-pollinated flowers; however, the reproductive biology of the majority of these species has not been studied. Psittacanthus auriculatus is a Mexican endemic mistletoe, most common in open, dry mesquite grassland. Knowledge of the reproductive biology of P. auriculatus is essential for understanding species formation and diversification of Psittacanthus mistletoes, but it is currently poorly understood. Thus, we studied floral biology and phenology, nectar production and breeding system and pollination of this species. The hermaphroditic red-pink flowers open from the middle to the tip and petals are curly, but remain partially fused forming a floral tube of ca. 20-mm long. Flowers are partially protandrous, produce large amounts of nectar, last 2 days, and stigma receptivity is highest during the second day. We recorded hummingbirds (Cynanthus latirostris, Hylocharis leucotis, Amazilia beryllina, A. violiceps, Calothorax lucifer, Archilochus colubris) and less commonly butterflies (Agraulis vanillae, Anteos clorinde, Papilio multicaudatus, Phocides urania, Phoebis sennae) as floral visitors. P. auriculatus flowers are self-compatible. However, this mistletoe is an obligate animal-pollinated species, as the sensitive stigma avoids self-pollination. Under natural conditions, reproductive success was higher than in manually selfed or cross-pollinated flowers, likely due to the traplining foraging behaviour of hummingbirds. We suggest that the apparent efficient foraging behaviour of hummingbirds maintains gene flow among P. auriculatus, promoting outcrossing.

  15. EMODnet Thematic Lot n° 4 - Chemistry

    DEFF Research Database (Denmark)

    Beckers, Jean-Marie; Buga, Luminita; Debray, Noelie;

    2015-01-01

    will contribute considerably to the validation of large data collections. This report intends to be a reference manual for EMODnet Chemistry data QA/QC and the subsequent product generation. In fact, during the first data validation loop, each region adopted its own protocol and the results showed many...... inconsistent data quality flags and the need for coordination and harmonization of practices. A dedicated workshop was organized to review the different practices and agree on a common methodology for data QA/QC and Diva products generation for EMODnet Chemistry....

  16. Biological hydrogen production: Simultaneous saccharification and fermentation with nitrogen and phosphorus removal from wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Steve; Dixon, Melissa [U.S. Army Edgewood Chemical Biological Center, 5183 Blackhawk Road Building E3160, Aberdeen Proving Ground, MD 21010-5424 (United States)

    2010-09-15

    A simple anaerobic biodegradation process using wastewater treatment plant (WWTP) effluent, shredded paper, and a purge of nitrogen gas was used to produce hydrogen and simultaneously capture nitrogen and phosphorus. Two reactor configurations, a sequencing batch reactor (SBR) and a classic batch reactor (CBR) were tested as simultaneous saccharification and fermentation reactors (enzymatic hydrolysis and fermentation in one tank). The CBR demonstrated greater stability of hydrogen production and simplicity of operation, while the SBR provided better nitrogen and phosphorus removal efficiencies. Nuclear magnetic resonance analyses showed acetic acid to be the main product from both reactors. Optimal CBR conditions were found to be pH 5, 4 g/L loading, 0.45 ml/g Accellerase 1500, and 38 C. Experiments with an argon purge in place of nitrogen and with ammonium chloride spiking suggested that hydrogenase and nitrogenase enzymes contributed similarly to hydrogen production in the cultures. Analysis of a single fermentation showed that hydrogen production occurred relatively early in the course of TOC removal, and that follow-on treatments might extract more energy from the products. (author)

  17. RESEARCHES REGARDING THE EFFECT OF SOME BIOLOGICALLY ACTIVE PRODUCTS UPON THE GERMINATION CAPACITIES OF SMOOTH BROME SEEDS

    Directory of Open Access Journals (Sweden)

    I. PET

    2013-12-01

    Full Text Available The carrying out of uniform forage crops represents an important technological loop for all agricultural species. The uniformity of these crops is caused especially by seed germination capacity, respectively by plant emergence capacity, depending upon the climatic and technological conditions. With regards to the researches carried out in this direction, we present here the influence exerted by some biologically-active products, used through extra-root application during plant vegetation period, upon seeds submitted to germination. The observations performed on smooth brome seeds have led to the conclusion that the per cent of germinated seeds ranges from 82%, in the untreated control variant, to 87.67% in the variant treated with the product Stimupro.

  18. A note on "Khouja and Park, optimal lot sizing under continuous decrease, Omega 31 "

    NARCIS (Netherlands)

    R.H. Teunter (Ruud)

    2004-01-01

    textabstractKhouja and Park (Omega 31, 539-545, 2003) analyze the problem of optimizing the lot size under continuous price decrease. They show that the classic EOQ formula can lead to far from optimal solutions and develop an alternative lot size formula using the software package Mathematica. This

  19. Statistical assessment of DNA extraction reagent lot variability in real-time quantitative PCR

    Science.gov (United States)

    Bushon, R.N.; Kephart, C.M.; Koltun, G.F.; Francy, D.S.; Schaefer, F. W.; Lindquist, H.D. Alan

    2010-01-01

    Aims: The aim of this study was to evaluate the variability in lots of a DNA extraction kit using real-time PCR assays for Bacillus anthracis, Francisella tularensis and Vibrio cholerae. Methods and Results: Replicate aliquots of three bacteria were processed in duplicate with three different lots of a commercial DNA extraction kit. This experiment was repeated in triplicate. Results showed that cycle threshold values were statistically different among the different lots. Conclusions: Differences in DNA extraction reagent lots were found to be a significant source of variability for qPCR results. Steps should be taken to ensure the quality and consistency of reagents. Minimally, we propose that standard curves should be constructed for each new lot of extraction reagents, so that lot-to-lot variation is accounted for in data interpretation. Significance and Impact of the Study: This study highlights the importance of evaluating variability in DNA extraction procedures, especially when different reagent lots are used. Consideration of this variability in data interpretation should be an integral part of studies investigating environmental samples with unknown concentrations of organisms. ?? 2010 The Society for Applied Microbiology.

  20. Identification of Anguina funesta from annual ryegrass (Lolium multiflorum) seed lots in Oregon

    Science.gov (United States)

    In 2010, seed galls containing Anguina sp. were isolated from 14 annual ryegrass (Lolium multiflorum) seed lots submitted for phytosanitary testing. To identify the species present, the ITS1 region of the ribosomal DNA of the nematodes from the seed lots was analyzed using a PCR-RFLP method (11). ...

  1. 7 CFR 800.85 - Inspection of grain in combined lots.

    Science.gov (United States)

    2010-01-01

    ... for grain in a combined lot shall, subject to the provisions of paragraphs (e) through (g) of this... shall be determined in accordance with the instructions. (e) Infested grain. If the grain in a combined... 7 Agriculture 7 2010-01-01 2010-01-01 false Inspection of grain in combined lots. 800.85...

  2. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production.

    Science.gov (United States)

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2016-05-15

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium removal compared to a control without addition. Subsequently, another water works was investigated in full-scale, where copper influent concentrations were below 0.05 μg Cu L(-1) and nitrification was incomplete. Copper dosing of less than 5 μg Cu L(-1) to a full-scale filter stimulated ammonium removal within one day, and doubled the filter's removal from 0.22 to 0.46 g NH4-N m(-3) filter material h(-1) within 20 days. The location of ammonium and nitrite oxidation shifted upwards in the filter, with an almost 14-fold increase in ammonium removal rate in the filter's top 10 cm, within 57 days of dosing. To study the persistence of the stimulation, copper was dosed to another filter at the water works for 42 days. After dosing was stopped, nitrification remained complete for at least 238 days. Filter effluent concentrations of up to 1.3 μg Cu L(-1) confirmed that copper fully penetrated the filters, and determination of copper content on filter media revealed a buildup of copper during dosing. The amount of copper stored on filter material gradually decreased after dosing stopped; however at a slower rate than it accumulated. Continuous detection of copper in the filter effluent confirmed a release of copper to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent

  3. Biological production of ethanol from coal. Task 4 report, Continuous reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle was particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.

  4. On the possibility of biologically active carbonhydrate substances forming during irradiation of vegetable products

    International Nuclear Information System (INIS)

    The purpose of this study was to find out whether desoxy-derivative sugars can form in fruits subjected to radurization. Tomato and apple fruits and natural apple juices were employed as test-objects, using gamma radiation from Co60 at the dose rate of 260 rad/s. Doses of 200-300 Krad and 1 Mrad were used to irradiate fruits and juices respectively. The data obtained on model systems cannot be used to draw conclusions regarding the appearance or otherwise of cytotoxic products in irradiated test plants. No desoxy sugars were found t form in fruits irradiated with 300 Krad. Tests aimed to detect certain products of carbohydrate radiolysis revealed the presence of these products in quantities which have no cytotoxic effect on the living organism. (E.T.)

  5. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500072, Andhra Pradesh (India); Anjaneyulu, Y. [TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2009-03-15

    Biohydrogen production from probiotic wastewater using mixed anaerobic consortia is reported in this paper. Batch tests are carried out in a 5.0 L batch reactor under constant mesophillic temperature (37 C). The maximum hydrogen yield 1.8 mol-hydrogen/mol-carbohydrate is obtained at an optimum pH of 5.5 and substrate concentration 5 g/L. The maximum hydrogen production rate is 168 ml/h. The hydrogen content in the biogas is more than 65% and no significant methane is observed throughout the study. In addition to hydrogen, acetate, propionate, butyrate and ethanol are found to be the main by-products in the metabolism of hydrogen fermentation. (author)

  6. Effects of different culture conditions on biological potential and metabolites production in three Penicillium isolates.

    Science.gov (United States)

    Reis, Filipa S; Ćirić, Ana; Stojković, Dejan; Barros, Lillian; Ljaljević-Grbić, Milica; Soković, Marina; Ferreira, Isabel C F R

    2015-02-01

    The genus Penicillium is well known for its importance in drug and food production. Certain species are produced on an industrial scale for the production of antibiotics (e.g. penicillin) or for insertion in food (e.g. cheese). In the present work, three Penicillium species, part of the natural mycobiota growing on various food products were selected - P. ochrochloron, P. funiculosum and P. verrucosum var. cyclopium. The objective of our study was to value these species from the point of view of production of bioactive metabolites. The species were obtained after inoculation and growth in Czapek and Malt media. Both mycelia and culture media were analyzed to monitor the production of different metabolites by each fungus and their release to the culture medium. The concentrations of sugars, organic acids, phenolic acids and tocopherols were determined. Antioxidant activity of the phenolic extracts was evaluated, as also the antimicrobial activity of phenolic acids, organic acids and tocopherols extracts. Rhamnose, xylose, fructose and trehalose were found in all the mycelia and culture media; the prevailing organic acids were oxalic and fumaric acids, and protocatechuic and p-hydroxybenzoic acids were the most common phenolic acids; γ-tocopherol was the most abundant vitamin E isoform. Generally, the phenolic extracts corresponding to the mycelia samples revealed higher antioxidant activity. Concerning the antimicrobial activity there were some fluctuations, however all the studied species revealed activity against the tested strains. Therefore, the in-vitro bioprocesses can be an alternative for the production of bioactive metabolites that can be used by pharmaceutical industry.

  7. Carbon, oxygen and biological productivity in the Southern Ocean in and out the Kerguelen plume: CARIOCA drifter results

    Directory of Open Access Journals (Sweden)

    L. Merlivat

    2014-12-01

    Full Text Available The Kerguelen Plateau region in the Indian sector of the Southern Ocean supports annually a large-scale phytoplankton bloom which is naturally fertilized with iron. As part of the second Kerguelen Ocean and Plateau compared Study expedition (KEOPS2 in austral spring (October–November 2011, one Carioca buoy was deployed east of the Kerguelen plateau. It drifted eastward downstream in the Kerguelen plume. Hourly surface measurements of pCO2, O2 and ancillary observations were collected between 1 November 2011 to 12 February 2012 with the aim of characterizing the spatial and temporal variability of the biological Net Community Production (NCP downstream the Kerguelen plateau, assess the impact of iron-induced productivity on the biological carbon consumption and consequently on the CO2 flux exchanged at the air–sea interface. The trajectory of the buoy until mid-December was within the longitude range, 72–83° E, close to the polar front and then in the polar frontal zone, PFZ, until 97° E. From 17 November to 16 December, the buoy drifted within the Kerguelen plume following a filament carrying dissolved iron, DFe, for a total distance of 700 km. In the first part of the trajectory, the ocean surface waters are a sink for CO2 and a source for CO2, with fluxes of respective mean values equal to −8 and +38 mmol CO2 m−2 d−1. Eastward, as the buoy escapes the iron enriched filament, the fluxes are in opposite direction, with respective mean values of +5 and −48 mmol O2 m−2 d−1. These numbers clearly indicate the strong impact of biological processes on the biogeochemistry in the surface waters within the Kerguelen plume in November-mid-December, while it is undetectable eastward in the PFZ from mid-December to mid-February. While the buoy follows the Fe enriched filament, simultaneous observations of dissolved inorganic carbon, DIC, and dissolved oxygen, O2, highlight biological events lasting from 2 to 4 days. Stoichiometric

  8. Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa)

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Maheswaran, P.A.; Jyothibabu, R.; Sunil, V.; Revichandran, C.; Balasubramanian, T.; Gopalakrishnan, T.C.; Nair, K.K.C.

    ? 3 in the coastal, offsh ore and open ocean r e s - pectively, and the corresponding column va l ues were 11.4 ? 24.4, 19.6 ? 20.5 and 13.9 ? 19.2 mg m ? 2 respectively. Primary production was two to three folds higher du r- ing the post...C m ? 2 d ? 1 (inshore) and 300 mgC m ? 2 d ? 1 (of f- shore) during December 1991 along the east coast of India 26 , the present average primary production val ues in November are very high (coastal, 734 mgC m ? 2 d ? 1 , of f...

  9. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  10. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    Science.gov (United States)

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated.

  11. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    Science.gov (United States)

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated. PMID:27225780

  12. The Jordan Romero Case; A Biological Super Athlete or a Product of the Sport Industry

    Directory of Open Access Journals (Sweden)

    George Kipreos

    2012-08-01

    Full Text Available Many questions have arisen in regards to Jordan Romero’s climbing actions, in terms of ethics and legality. Although, he has already successfully climbed most of the highest summits, his last expedition to climb mountain Everest, has found strong opposition and criticism. Jordan’s decision to climb Everest, at the age of 13, comes into contradiction with the convention on Human Rights, the International Public Law, the climbing rules and regulations of Nepal, and the Law of U.S.A. What should also be put into reference is the fact that Romero’s pursuit violates the Article No. 1 in the Declaration of Tyrol 2002 (Mountaineering, which defines individual responsibility for the activities of the climber. This paper outlines the legal and ethical aspects of Jordan’s venture, taking into account the biological hazards.

  13. BIOFILM FORMATION ON THE SURFACE OF MATERIALS AND MEDICAL PRODUCTS BY NOSOCOMIAL STRAINS ISOLATED FROM THE BIOLOGICAL SUBSTRATES OF PATIENTS

    Directory of Open Access Journals (Sweden)

    E. A. Nemets

    2013-01-01

    Full Text Available Aim. To study the ability of hospital-associated strains isolated from the biological substrates of patients oper- ated on under extracorporeal circulation, to form biofilms on the surface of medical materials and products. Materials and methods. The formation of biofilms of strains of Staphylococcus aureus, Serratia liquefaciens, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. isolated from the biological substrates of patients operated on under extracorporeal circulation, on different surfaces (politetraftorotilen, medical poly- ethylene, Polyoxybutirate-to-valerate, silicone, polyvinyl chloride, was studied by a modified method for the surface of the medical materials and products. Results. The influence of the material nature, as well as hydrophi- lization of the surface, on the ability of hospital-associated strains, isolated from the biological substrates of pa- tients operated on under extracorporeal circulation, to form biofilms is studied. It is shown that that certain strains exhibit an increased tendency to biofilm formation on more hydrophobic surfaces, e. g., Acinetobacter spp. At the same time the activity of Staphylococcus aureus on silicon surface (hydrophobic surface is minimal. Other strains almost equally form biofilms on hydrophilic and hydrophobic surfaces e.g. Serratia liquefaciens. It was also shown that the surface hydrophilization of PEG to 50% for all the studied strains leads to dramatic reduc- tion of biofilm formation. Conclusion. The tendency to form biofilms of a particular hospital-associated strain is individual and depends on the nature of the medical material and physical-chemical characteristics of its surface. Hydrophilization of the surface of the medical material is accompanied by a lowered risk of biofilm formation. 

  14. 77 FR 26162 - Amendments to Sterility Test Requirements for Biological Products

    Science.gov (United States)

    2012-05-03

    ... active pharmaceutical ingredient (API), in-process material, stock concentrate material), as appropriate... Federal Register of June 21, 2011 (76 FR 36019), FDA published a proposed rule that proposed revisions to... proposed rule (76 FR 36019 at 36019 to 36020), any product that purports to be sterile should be free...

  15. Application of cyclic phosphonamide reagents in the total synthesis of natural products and biologically active molecules

    OpenAIRE

    Thilo Focken; Stephen Hanessian

    2014-01-01

    A review of the synthesis of natural products and bioactive compounds adopting phosphonamide anion technology is presented highlighting the utility of phosphonamide reagents in stereocontrolled bond-forming reactions. Methodologies utilizing phosphonamide anions in asymmetric alkylations, Michael additions, olefinations, and cyclopropanations will be summarized, as well as an overview of the synthesis of the employed phosphonamide reagents.

  16. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Vrije, de G.J.; Urbaniec, K.; Koukios, E.G.; Claassen, P.A.M.

    2010-01-01

    Hydrogen can be produced through dark anaerobic fermentation using carbohydrate-rich biomass, and through photofermentation using the organic acids produced from dark fermentation. Sugar beet is an ideal energy crop for fermentative production of hydrogen in the EU due to its environmental profile a

  17. Biological Production in Lakes. Physical Processes in Terrestrial and Aquatic Ecosystems, Ecological Processes.

    Science.gov (United States)

    Walters, R. A.; Carey, G. F.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Primary production in aquatic ecosystems is carried out by phytoplankton, microscopic plants…

  18. Biological productivity regime and associated N cycling in the vicinity of Kerguelen Island area, Southern Ocean

    Science.gov (United States)

    Cavagna, A. J.; Fripiat, F.; Elskens, M.; Dehairs, F.; Mangion, P.; Chirurgien, L.; Closset, I.; Lasbleiz, M.; Flores-Leiva, L.; Cardinal, D.; Leblanc, K.; Fernandez, C.; Lefèvre, D.; Oriol, L.; Blain, S.; Quéguiner, B.

    2014-12-01

    Although the Southern Ocean is considered a High Nutrient Low Chlorophyll area (HNLC), massive and recurrent blooms are observed over and downstream the Kerguelen Plateau. This mosaic of blooms is triggered by a higher iron supply resulting from the interaction between the Antarctic Circumpolar Current and the local bathymetry. Net primary production, N-uptake (NO3- and NH4+), and nitrification rates were measured at 8 stations in austral spring 2011 (October-November) during the KEOPS2 cruise in the Kerguelen area. Iron fertilization stimulates primary production, with integrated net primary production and growth rates much higher in the fertilized areas (up to 315 mmol C m-2 d-1 and up to 0.31 d-1, respectively) compared to the HNLC reference site (12 mmol C m-2 d-1 and 0.06 d-1, respectively). Primary production is mainly sustained by nitrate uptake, with f ratio (corresponding to NO3- uptake/(NO3- uptake + NH4+ uptake)) lying in the upper end of the observations for the Southern Ocean (up to 0.9). Unexpectedly, we report unprecedented rates of nitrification (up to ~3 mmol C m-2 d-1, with ~90% of them organic matter, and (iii) an efficient food web, allowing the reprocessing of organic N and the retention of nitrogen into the dissolved phase through ammonium, the substrate for nitrification.

  19. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Plugge, C.M.; Buisman, C.J.N.

    2011-01-01

    This research introduces an alternative mixed culture fermentation technology for anaerobic digestion to recover valuable products from low grade biomass. In this mixed culture fermentation, organic waste streams are converted to caproate and caprylate as precursors for biodiesel or chemicals. It wa

  20. 21 CFR 610.53 - Dating periods for licensed biological products.

    Science.gov (United States)

    2010-04-01

    ... Vaccine Adsorbed ......do ......do Do. Plague Vaccine ......do ......do Do. Plasma products: 1. Fresh Frozen Plasma Not applicable ......do 1 year from date of collection of source blood (−18 °C or colder). 2. Liquid Plasma ......do ......do (a) 26 days from date of collection of source blood (between...

  1. Training mechanical engineering students to utilize biological inspiration during product development.

    Science.gov (United States)

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  2. [Our investigation on the chemistry of biologically active natural products. With the object of exploitation for structure determination methods, and elucidation of vital function].

    Science.gov (United States)

    Komori, T

    1993-03-01

    Our investigation on the chemistry of biologically active natural products during the last 40 years since 1953 are reviewed in this paper. The following subjects are discussed: I. photochemical relationship between rhodopsin and compounds related to areca alkaloid, II. furanoid diterpenoid constituents from dioscoreaceae plants and colombo root, III. field desorption and fast atom bombardment mass spectrometry of biologically active natural glycosides and glycosphingolipids, IV. investigation of biologically active marine natural products, 1) constituents of steroid glycoside sulfates from Asteroidea, 2) spine toxins from Acanthaster planci, 3) constituents of triterpenoid glycoside sulfates from Holothuroidea, 4) constituents of isoprenoids from Opisthobranchia and Octocorallia, 5) constituents of glycosphingolipids from Asteroidea. PMID:8509990

  3. Changes in Biological Production and Lake Chemistry in Lake Tanganyika over the Past 400 Years

    Science.gov (United States)

    Hartwell, A. M.; Montanye, B.; Cohen, A.; McKay, J. L.; Severmann, S.; McManus, J.

    2015-12-01

    We present biogenic silica (BSi) data as a proxy for primary productivity in three cores from the Luiche Platform region of Lake Tanganyika. We also present complementary sedimentary records of the nitrogen and organic carbon isotopes. Preliminary analysis of the BSi data suggests that in two cores located at approximately 100 meters, productivity began to decline at approximately 1700 CE with an initial plateau at roughly 1800 CE. Since approximately 1800 CE, the sedimentary biogenic silica contents vary, but are generally lower than in the earlier portions of the record. These observations are consistent with prior work; however, our results suggest that the decline in primary production may have occurred earlier at these shallower sites than previously inferred for a deeper core (Tierney et al., 2010). This different response between the shallower sites and deeper off shore sites may be driven by differences in nutrient supply, spatial variability, or some other factor. Sedimentary nitrogen isotope data generally show an inverse relationship to the BSi data in the shallower cores. One possible interpretation of this inverse relationship is that there is a shift in the source of the primary nitrogen being utilized within the photic zone, with a larger contribution of nitrogen fixation occurring during times of lower productivity and a larger contribution of upwelled nitrogen occurring during times of higher productivity. Tierney, J.E., M.M. Mayes, N. Meyer, C. Johnson, P. Swarzenski, A.S. Cohen, and J.M. Russell (2010) The Unprecedented Warming of Lake Tanganyika. Nature Geoscience, 3, 422-425, DOI: 10.1038/NGEO865

  4. Optimal pricing and lot sizing vendor managed inventory

    Directory of Open Access Journals (Sweden)

    Mohsen Ziaee

    2010-07-01

    Full Text Available Vendor Managed Inventory (VMI is one of the effective techniques for managing theinventory in supply chain. VMI models have been proven to reduce the cost of inventorycompared with traditional economic order quantity method under some conditions such asconstant demand and production expenditure. However, the modeling of the VMI problem hasnever been studied under some realistic assumptions such as price dependent demand. In thispaper, three problem formulations are proposed. In the first problem formulation, we study aVMI problem with one buyer and one supplier when demand is considered to be a function ofprice and price elasticity to demand, and production cost is also a function of demand. Theproposed model is formulated and solved in a form of geometric programming. For the secondand the third models, we consider VMI problem with two buyers and two suppliers assumingthat each buyer centre is relatively close to the other buyer centre. Each supplier has only oneproduct which is different from the product of the other supplier. Two suppliers cooperate incustomer relationship management and two buyers cooperate in supplier relationshipmanagement as well, so the suppliers send the orders of two buyers by one vehicle,simultaneously. For the third model, an additional assumption which is practically applicableand reasonable is considered. For all the proposed models, the optimal solution is comparedwith the traditional one. We demonstrate the implementation of our proposed models usingsome numerical examples.

  5. Sustainable production of cultivations, using biological and conservationists techniques; an applicable model to the Colombian warm tropic

    International Nuclear Information System (INIS)

    The hot Colombian tropics represent nearly 82% of the national territory. The intensive and wrongly use of the soil has been subjected for years in agricultural areas of the inter-Andean valleys, Caribbean region, the eastern plains and others sectors of the commercial agriculture in the hot climate it is promoting a progressive physical, chemical and biological degradation of the soil. The physical losses of soil and organic matter due to erosion, excessive mechanization, flooding rice as single crop, burning of crop residues, unsuitable systems of irrigation and drainage, alkalinization an compaction in cropping areas, and the problems with more incidence in the deployment of land productivity in the areas. The methods to overcome these limitations agree with the application of modem and sustainable technologies focusing production systems. The management of production systems, selecting tillage systems according to the physical development of the soil, planting species in continuous rotation cycles, planting and incorporation of green manure, between two agricultural semesters, the appropriate management of water in non-irrigated crops an modem irrigation and the utilization of crop residues, to return to the soil, part of the nutrients extracted constitute some of the factors management dependent that could affect favorably the land productivity, for the benefit of future generations. Based on these concepts, it is presented in this article some of the experimental results obtained by national of Agriculture Colombian Institute (ICA) in the Regional Soil Program Center of Agricultural Research (Nataima), located in El Espinal, Tolima State, Colombia

  6. Benders-based approach for an integrated Lot-Sizing and Scheduling problem

    Directory of Open Access Journals (Sweden)

    ouerfelli hala

    2012-07-01

    Full Text Available The main concern of the current paper is to present mathematical model and a decision method for production planning issues of a manufacturing organization. We aim at integrating the medium term and the short term as two levels of decision. These consist in periodical planning with determining the intended produced quantity and scheduling the functioning of machines. It is worth noting that in the literature there exist only few works on the issue of integration because of the shortage of numerical results. Thus, the integrated model presented here allows us to take into consideration the scheduling constraints in the Lot-sizing model. A recent algorithm, based on a heuristic approach to find a production planning with a feasible schedule for each period, has recently been published in which the two levels of decision were applied. In this paper, some of these ideas are developed in order to get an optimal solution. For this, an exact algorithm of Benders’ decomposition method is adopted to the integration problem. This has been proved efficient with reliance primarily on modeling view and the link between the two levels of decision and secondly on the numerical view.

  7. Biological and Histological Studies of Purified Product from Streptomyces janthinus M7 Metabolites

    Directory of Open Access Journals (Sweden)

    Tawfik Zahira S.

    2015-02-01

    Full Text Available Fifteen clinical samples were taken out from patients suffering cancer, these patients being under the treatment with radio- and/or chemotherapy. The samples were used for the isolation of bacterial cells surrounding tumor; the samples were collected from Center of Cancer Therapy, Ain Shams University, Cairo, Egypt. The clinical bacterial isolates were purified and identified according to Bergey's manual of determinative bacteriology ninth edition (1994. The bacterial isolates were found to be Klebsiella oxytoca m1; Enterobacter cancerogenus m2; P. aeruginosa m3; Citrobacter diversus m4; Enterobacter agglomerans m5; Klebsiella oxytoca m6; Enterobacter dissolvens m7; Serratia fonticola m8; Escherichia coli m9; Citrobacter freundii m10; Staphylococcus aureus m11; Escherichia coli m12; P. aeruginosa m13; Staphylococcus aureus m14; and Bacillus cereus m15. In the present study both primary and secondary screening methods were used to screen the antibacterial activity of St. janthinus M7 against fifteen clinical bacterial isolates. The St. janthinus M7 showed an increase in antibacterial activity against all the tested human bacterial pathogens. In this study Gamma irradiation at dose levels (0.5 and 1.5 kGy was used for the enhancement of the antibacterial activity of Streptomyces strain against the clinical isolates. Several commercial antibiotic discs (Doxorubicin, Augmentin, Norfloxacin, Ofloxacin, Oxacillin, and Cefazolin were used for comparing their antimicrobial activity with purified product. The results declared a significant increase in the antibacterial activity in most cases. The physiochemical properties of the purified product were carried out for determination of Rf, empirical formula, M.W, and chemical structure of product and then analyzed by thin layer chromatography, elemental analysis, UV, Mass, and NMR. The result exhibited brown color, one spot, Rf (0.76, M.W (473, while it recorded 270 nm in UV region and the calculated

  8. Genetic and Biological Changes of Newcastle Disease Virus Due to The Development of Chicken Production System

    Directory of Open Access Journals (Sweden)

    Sudarisman

    2009-09-01

    Full Text Available In many countries, Newcastle Disease (ND is one of the most important diseases of poultry. It causes serious economic losses in poultry industry. Newcastle Disease or pseudo-fowl pest is a highly infectious viral disease that causes very high mortality (up to 100% in severe epidemics in poultry and wild birds around the world. Newcastle Disease remains endemic in many regions and continues to severely limit poultry production in some developing countries. The disease is currently being controlled by routine vaccinations in many countries. However, it was reported that outbreaks of ND in vaccinated flocks often occur on the field may not only be due to differences in the antigenicity of the NDV wild field strains and vaccine strains, but could also be as a result of differences in pathogenicity and virulence between different strains used as vaccine seed in NDV vaccine production.

  9. Biological hydrogen production from corn-syrup waste using a novel system

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, H.; Nakhla, G.; El Naggar, H. [Civil and Environmental Engineering Department, University of Western Ontario, London, Ontario (Canada)

    2009-07-01

    The reported patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. The biohydrogenator was operated for 100 days at 37 {sup o}C, hydraulic retention time 8 h and solids retention time ranging from 2.2-2.5 days. The feed was a corn-syrup waste generated as a byproduct from an industrial facility for bioethanol production located in southwestern Ontario, Canada. The system was initially started up with a synthetic feed containing glucose at concentration of 8 g/L and other essential inorganics. Anaerobically-digested sludge from the St. Mary's wastewater treatment plant (St. Mary, Ontario, Canada) was used as the seed, and was heat treated at 70 {sup o}C for 30 min to inhibit methanogenesis. After 10 days, when the hydrogen production was steady, the corn-syrup waste was introduced to the system. Glucose was the main constituent in the corn-syrup; its concentration was varied over a period of 90 days from 8 to 25 g/L. The change in glucose concentration was used to study the impact of variable organic loading on the stability of hydrogen production in the biohydrogenator. Hydrogen production rate increased from 10 L H{sub 2}/L{center_dot}d to 34 L H{sub 2}/L{center_dot}d with the increase of organic loading rate (OLR) from 26 to 81 gCOD/L{center_dot}d, while a maximum hydrogen yield of 430 mL H{sub 2}/gCOD was achieved in the system with an overall average of 385 mL H{sub 2}/gCOD. (author)

  10. Biological treatment of solid wastes from the tobacco industry for enzyme production

    OpenAIRE

    Oliveira, Ana Iolanda; Curbelo, C.; Alvarez, G. M.; A.A. Vicente; Teixeira, J. A.

    2008-01-01

    Aiming at the production of enzymes using solid wastes from the tobacco industry, the solid fermentation kinetics of Aspergillus niger and Aspergillus terreus using waste of dark tobacco and Virginia tobacco as substrate were characterized. The efficiency of the fermentation process was evaluated by determining the enzymatic activity of the three enzymes that constitute the cellulose enzymatic system (CMCase, PFase and Xylanase). The results obtained led to the establishment of...

  11. What controls biological production in coastal upwelling systems? Insights from a comparative modeling study

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2011-01-01

    The magnitude of net primary production (NPP) in Eastern Boundary Upwelling Systems (EBUS) is traditionally viewed as directly reflecting the wind-driven upwelling intensity. Yet, different EBUS show different sensitivities of NPP to upwelling-favorable winds (Carr and Kearns, 2003). Here, using a comparative modeling study of the California Current System (California CS) and Canary Current System (Canary CS), we show how physical and environmental factors, such as light,...

  12. Development of molecular biology techniques for the detection of genetically modified organisms in maize food products

    OpenAIRE

    Sousa, S.C.; Mafra, I; Silva, C.S. Ferreira da; Amaral, J S; Oliveira, M.B.P.P.

    2008-01-01

    In the last years, the increase in the cultivated area of genetically modified (GM) maize has become a reality. GA21, MON810 and MON 863 maize crops are some of the authorized maize events for food and feed under the European Union (EU) regulations. These crops of transgenic maize bring profit towards the conventional ones, as they confer resistence to some plagues and/or herbices. Concerning the raise of production and consumption of foodstuffs derived from genetically modified organisms (GM...

  13. Aquatic productivity: isotopic tracer aided studies of chemical-biological interactions

    International Nuclear Information System (INIS)

    Inland waters subject to the accumulation and effects of trace contaminants are discussed and a review of international research projects on this subject is given. The following aspects are specially discussed: aquatic nitrogen and agriculture; aquatic ecosystems in arid zones of developing countries; micronutrients in aquatic ecosystems; microbiological activity (''primary production''); enzymic methods in water quality determinations. Recommendations of the Joint FAO/IAEA Advisory Group for measures to be taken in order to protect water quality are also given

  14. Biological Hydrogen Production from Corn-Syrup Waste Using a Novel System

    Directory of Open Access Journals (Sweden)

    George Nakhla

    2009-06-01

    Full Text Available The reported patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. The biohydrogenator was operated for 100 days at 37 °C, hydraulic retention time 8 h and solids retention time ranging from 2.2–2.5 days. The feed was a corn-syrup waste generated as a byproduct from an industrial facility for bioethanol production located in southwestern Ontario, Canada. The system was initially started up with a synthetic feed containing glucose at concentration of 8 g/L and other essential inorganics. Anaerobicaly-digested sludge from the St. Mary’s wastewater treatment plant (St. Mary, Ontario, Canada was used as the seed, and was heat treated at 70 °C for 30 min to inhibit methanogens. After 10 days, when the hydrogen production was steady, the corn-syrup waste was introduced to the system. Glucose was the main constituent in the corn-syrup; its concentration was varied over a period of 90 days from 8 to 25 g/L. The change in glucose concentration was used to study the impact of variable organic loading on the stability of hydrogen production in the biohydrogenator. Hydrogen production rate increased from 10 L H2/L·d to 34 L H2/L·d with the increase of organic loading rate (OLR from 26 to 81 gCOD/L·d, while a maximum hydrogen yield of 430 mL H2/gCOD was achieved in the system with an overall average of 385 mL H2/gCOD.

  15. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    OpenAIRE

    Catlett, Jennie L.; Ortiz, Alicia M.; Buan, Nicole R.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron trans...

  16. Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Cao, Guang-Li; Guo, Wan-Qian; Wang, Ai-Jie; Zhu, Yu-Hong; Liu, Bing-feng; Xu, Ji-Fei [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, 2nd Campus of HIT box 2614, Harbin, Hei Longjiang 150090 (China)

    2010-04-15

    This study addressed the utilization of an agro-waste, corn stover, as a renewable lignocellulosic feedstock for the fermentative H{sub 2} production by the moderate thermophile Thermoanaerobacterium thermosaccharolyticum W16. The corn stover was first hydrolyzed by cellulase with supplementation of xylanase after delignification with 2% NaOH. It produced reducing sugar at a yield of 11.2 g L{sup -1} glucose, 3.4 g L{sup -1} xylose and 0.5 g L{sup -1} arabinose under the optimum condition of cellulase dosage 25 U g{sup -1} substrate with supplement xylanase 30 U g{sup -1} substrate. The hydrolyzed corn stover was sequentially introduced to fermentation by strain W16, where, the cell density and the maximum H{sub 2} production rate was comparable to that on simulated medium, which has the same concentration of reducing sugars with hydrolysate. The present results suggest a promising combined hydrogen production process from corn stover with enzymatic hydrolysis stage and fermentation stage using W16. (author)

  17. Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa.

    Science.gov (United States)

    Penterman, Jon; Singh, Pradeep K; Walker, Graham C

    2014-09-01

    LexA and two structurally related regulators, PrtR and PA0906, coordinate the Pseudomonas aeruginosa SOS response. RecA-mediated autocleavage of LexA induces the expression of a protective set of genes that increase DNA damage repair and tolerance. In contrast, RecA-mediated autocleavage of PrtR induces antimicrobial pyocin production and a program that lyses cells to release the newly synthesized pyocin. Recently, PrtR-regulated genes were shown to sensitize P. aeruginosa to quinolones, antibiotics that elicit a strong SOS response. Here, we investigated the mechanisms by which PrtR-regulated genes determine antimicrobial resistance and genotoxic stress survival. We found that induction of PrtR-regulated genes lowers resistance to clinically important antibiotics and impairs the survival of bacteria exposed to one of several genotoxic agents. Two distinct mechanisms mediated these effects. Cell lysis genes that are induced following PrtR autocleavage reduced resistance to bactericidal levels of ciprofloxacin, and production of extracellular R2 pyocin was lethal to cells that initially survived UV light treatment. Although typically resistant to R2 pyocin, P. aeruginosa becomes transiently sensitive to R2 pyocin following UV light treatment, likely because of the strong downregulation of lipopolysaccharide synthesis genes that are required for resistance to R2 pyocin. Our results demonstrate that pyocin production during the P. aeruginosa SOS response carries both expected and unexpected costs.

  18. Scope for biological sensing technologies in meat production and export in northern Pakistan

    Science.gov (United States)

    Qureshi, M. S.; Qureshi, I. H.

    2013-12-01

    The Khyber Pakhtunkhwa province of Pakistan is rich in livestock resources, including 14.84 million sheep and goats (valued at US1.60 billion) and a 27% share of the national poultry sector (having an investment of US2.00 billion), and produces 834 billion kg meat. These huge assets have the potential to support the provincial economy through income generation, self employment and production of certified high-quality food items for the domestic and international Halal Food Market. A model has been developed for analyzing the gaps in the status of health, productivity, nutrition, fertility and management aspects of local farming. Improved practices would be introduced to combat the losses. The model will comprise a farming network linked to farmers' welfare centre, a central lab and an expert group. A strong sensing technology network would be introduced for data transfer and quality control of the inputs and products. The farmers will e-tag their animals for the purpose of traceability, online history and biodata. The data will be maintained in remote and central servers. A communication system would be developed utilizing mobile phones for the prices, demands and availability status of inputs and produce at local and international markets. A mobile money transfer system will be introduced to exchange, save and borrow small amounts of capital as well as take out short-term insurance policies.

  19. Robustness of nanofiltration for increasing the viral safety margin of biological products.

    Science.gov (United States)

    Caballero, Santiago; Diez, José M; Belda, Francisco J; Otegui, Magdalena; Herring, Steven; Roth, Nathan J; Lee, Douglas; Gajardo, Rodrigo; Jorquera, Juan I

    2014-03-01

    In this study, the virus-removal capacity of nanofiltration was assessed using validated laboratory scale models on a wide range of viruses (pseudorabies virus; human immunodeficiency virus; bovine viral diarrhea virus; West Nile virus; hepatitis A virus; murine encephalomyocarditis virus; and porcine parvovirus) with sizes from 18 nm to 200 nm and applying the different process conditions existing in a number of Grifols' plasma-derived manufacturing processes (thrombin, α1-proteinase inhibitor, Factor IX, antithrombin, plasmin, intravenous immunoglobulin, and fibrinogen). Spiking experiments (n = 133) were performed in process intermediate products, and removal was subsequently determined by infectivity titration. Reduction Factor (RF) was calculated by comparing the virus load before and after nanofiltration under each product purification condition. In all experiments, the RFs were close to or greater than 4 log10 (>99.99% of virus elimination). RF values were not significantly affected by the process conditions within the limits assayed (pH, ionic strength, temperature, filtration ratio, and protein concentration). The virus-removal capacity of nanofiltration correlated only with the size of the removed agent. In conclusion, nanofiltration, as used in the manufacturing of several Grifols' products, is consistent, robust, and not significantly affected by process conditions.

  20. Biologic treatment of wastewater from cassava flour production using vertical anaerobic baffled reactor (VABR

    Directory of Open Access Journals (Sweden)

    Gleyce T Correia

    2008-08-01

    Full Text Available The estimate cassava production in Brazil in 2007 was of 25 million tons (= 15% of the world production and most of it is used in the production of flour. During its processing, waste that can cause environmental inequality is generated, if discharged inappropriately. One of the liquid waste generated, manipueira, is characterized by its high level of organic matter. The anaerobic treatment that uses a vertical anaerobic baffled reactor (VABR inoculated with granulated sludge, is one of the ways of treating this effluent. The anaerobic biodigestion phases are separated in this kind of reactor, allowing greater stability and resistance to load shocks. The VABR was built with a width/height rate of 1:2. The pH, acidity, alkalinity, turbidity and COD removal were analyzed in 6 different regions of the reactor, which was operated with an increasing feeding from ? 2000 to ? 10000 mg COD L?¹ and HRT between 6.0 and 2.5 days. The VABR showed decreasing acidity and turbidity, an increase in alkalinity and pH, and 96% efficiency in COD removal with 3-day HRT and feeding of 3800 mg COD L?¹.